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Introduction by the Organisers

In 1977 Furstenberg gave an ergodic proof of the celebrated theorem of Sze-
merédi on arithmetic progressions, hereby starting a new field, ergodic Ramsey
theory. Over the years the methods of ergodic theory and topological dynamics
have led to very impressive developments in the fields of arithmetic combinatorics
and Ramsey theory. Furstenberg’s original approach has been enhanced with sev-
eral deep structural results of measure preserving systems, equidistribution results
on nilmanifolds, the use of ultrafilters etc. Several novel techniques have been de-
veloped and opened new vistas that led to new deep results, including far reaching
extensions of Szemerédi’s theorem, results in Euclidean Ramsey theory, multiple
recurrence results for non-abelian group actions, convergence results for multiple
ergodic averages etc. These methods have also facilitated the recent spectacu-
lar progress on patterns in primes. The field of ergodic theory has tremendously
benefited, since the problems of combinatorial and number-theoretic nature have
given a boost to the in depth study of recurrence and convergence problems. The
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aim of this workshop was to expose wide circles of young mathematicians to the
beautiful results and methods of this rapidly developing area of mathematics.

The Arbeitsgemeinschaft Ergodic Theory and Combinatorial Number Theory,
organised by Vitaly Bergelson (Columbus), Nikos Frantzikinakis (Heraklion), Ter-
ence Tao (Los Angeles), Tamar Ziegler (Haifa), was held 7 October –13 October
2013. It was well attended with over 50 participants with broad geographic rep-
resentation from all continents. The majority of the participants were graduate
students and young postdocs with various mathematical backgrounds. We realize
that the material we originally intended to cover in the one hour presentations
was in most cases much too heavy. Nevertheless, all speakers made intelligent
selections among the assigned material, and managed to present very good talks.
The meeting also profited from the presence of some more senior researchers who
interacted with the younger participants and had stimulating discussions. The
traditional hike took place under foggy conditions and no one was lost.
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Abstracts

Background in Ergodic Theory I

Dong Han Kim

Let (X,B, µ) be a measure space. A transformation T is called measure preserving
if µ(T−1E) = µ(E) for any measurable E ∈ B. The following are examples of
measure preserving systems:

• Rotations on the circle: Tx = x + θ (mod 1) on X = [0, 1) preserves the
Lebesgue measure.

• Homomorphism on the torus: X = Rn/Zn is the n-dimensional torus with
Lebesgue measure and Tx = Ax is an integral matrix A with nonzero
determinant. The doubling map on the circle, Tx = 2x (mod 1) on [0, 1)
with the Lebesgue measure is a special case.

• Shift space: X =
∏∞

n=1 A, A is a finite set called an alphabet, where
σ : X → X is the left shift map σ : (x1x2x3 . . . ) 7→ (x2x3x4 . . . ) with a
shift invariant (stationary) measure µ on X .

Given a measure preserving system (X,µ, T ) we can choose a partition on X
and thus associate a shift space. For example, the (1/2, 1/2) Bernoulli system is
isomorphic to the 2x map on the unit interval with the Lebesgue measure with
the partition {[0, 1/2), [1/2, 1)}.

Let T : (X,µ) → (X,µ) be a probability measure preserving transformation
and E ⊂ X be a measurable set. The Poincaré Recurrence Theorem states that
almost all point x ∈ E returns infinitely often to E under the iteration by T .

A measure preserving transformation T : (X,µ) → (X,µ) is called ergodic if

T−1E ⊜ E implies µ(E) = 0 or µ(E) = 1.

Equivalently, there is no invariant function except for constant functions, or 1 is a
simple eigenvalue of the operator UT : L2(X,µ) → L2(X,µ), UT (f) = f ◦ T.

A rotation on the circle is ergodic if and only if the rotation angle θ is irra-
tional. To see this let f(x) =

∑∞
−∞ ane

2πinx be an invariant function. Then

f ◦ T (x) =
∑∞

−∞ ane
2πin(x+θ) =

∑∞
−∞ ane

2πinθe2πinx. Since f ◦ T (x) = f(x), we

get ane
2πinθ = an for all n. If θ is irrational, then e2πinθ cannot be 1 unless n = 0.

Therefore, an = 0 for all n 6= 0, which implies that f(x) is constant.
A homomorphism on the torus, T (x) = Ax on Rn/Zn is ergodic if A has no

root of unity as eigenvalues. In general, if G is a compact abelian group and
T : G → G is a continuous surjective endomorphism, then T is ergodic with
respect to the Haar measure if and only if the trivial character χ ≡ 1 is the only
χ ∈ Ĝ that satisfies χ ◦ T n = χ for some n > 0.

The Birkhoff ergodic theorem states that if T : (X,µ) → (X,µ) is ergodic and
f ∈ L1(X,µ), then for µ-almost every x ∈ X

1

n

n−1∑

k=0

f(T kx) →
∫

X

f dµ.
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If T is not ergodic, then the limit is an invariant function.
Let M(X) be the set of Borel probability measure on X . The map µ 7→(

f 7→
∫
X f dµ

)
is a bijection between M(X) and C(X)∗. The weak*-topology

on M(X) is the smallest topology such that µ 7→
∫
f dµ is continuous for all

f ∈ C(X). If X is a compact metrisable space, then M(X) is compact in the
weak*-topology.

Let X be a compact metric space and T : X → X be continuous and let
M(X,T ) be the set of T - invariant Borel probability measure. Then M(X,T )
is non-empty, compact and convex. Moreover, µ is ergodic if and only if µ is an
extreme point M(X,T ) and two ergodic measures are mutually singular.

Let M(X,T ) be the set of T -invariant ergodic measures on X . The ergodic
decomposition theorem says that

µ =

∫

E(X,T )

νdλ(ν)

in the sense that for any µ ∈ M(X,T ), there exists a unique probability measure
λ on the compact metric space M(X,T ) such that λ(E(X,T )) = 1 and

∫

X

f dµ(x) =

∫

E(X,T )

(∫

X

f dν(x)

)
dλ(ν)

for any continuous map f ∈ C(X).
If M(X,T ) has only one measure, T is said to be uniquely ergodic. For a

uniquely ergodic T , the Birkhoff average converges to the same limits for every
point. An irrational rotation is uniquely ergodic.

The upper Banach density of set S of integers is

d∗(S) := lim sup
nj−mj→∞

|S ∩ [mj , nj]|
nj −mj

.

The theorem of Szemerédi states that any set of integers with positive upper Ba-
nach density contains arbitrarily long arithmetic progressions. Szemerédi’s The-
orem can be obtained by a multiple recurrence theorem in ergodic theory. This
is a consequence of the following “correspondence principle” of Furstenberg: If S
is a set of integers, then there exists an invertible probability preserving system
(X,X , µ, T ) (in fact it is a shift on the space X = {0, 1}Z with an appropriate
shift invariant measure), and a set A ∈ X , with µ(A) = d∗(S), and such that

d∗(S ∩ (S − n1) ∩ . . . ∩ (S − nℓ)) ≥ µ(A ∩ T−n1A ∩ · · · ∩ T−nℓA)

for every n1, . . . , nℓ ∈ Z and ℓ ∈ N.
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Background in Ergodic Theory II

Markus Haase

The aim of this talk is to provide some more background material from ergodic
theory. As usual, we let (X,T ) be an invertible measure-preserving system on
some probability space X = (X,ΣX , µX). The corresponding Koopman operator
on L2(X) is — by abuse of notation — again denoted by T , i.e., Tf = f ◦ T for
every function f ∈ L2(X).

A. The spectral theorem. The Koopman operator T is a unitary operator on
the Hilbert space H = L2(X). To study such operators, the spectral theorem is a
powerful tool, and in fact was employed by von Neumann [4] in his proof of the
mean ergodic theorem. We sketch one possible approach.

Given a unitary operator T on some Hilbert space H one considers the com-
mutative unital C∗-algebra

A := {p(T, T−1) | p ∈ C[z, z−1]}
which, by the Gelfand–Naimark theorem is isomorphic (via Φ, say) to a C∗-algebra
C(K). The compact space K is the Gelfand space of A; in our case it can be
identified with K = σ(T ) ⊆ T, and under this identification Φ(T ) = (z 7→ z).
By the Riesz representation theorem and since polynomials C[z, z−1] are dense in
C(K) (by the Stone–Weierstrass theorem), for each two vectors x, y ∈ H there is
a unique complex µx,y ∈ M(K) such that

〈T nx, y〉 =

∫

K

Φ(T n) dµx,y =

∫

T

zn dµx,y (n ∈ Z).

A short computation yields ‖Sx‖ = ‖Φ(S)‖L2(µx) for any S ∈ A (we abbreviate

µx = µx,x); hence the Hilbert space L2(µx) is isometrically isomorphic to the cyclic
subspace Z(x) := clHAx of H . (Under this isomorphy, x ∈ Z(x) corresponds to
the function 1, and T corresponds to multiplication by z.) As Z(x)⊥ is invariant
under T and T−1 one can use a Zorn argument to decompose H orthogonally as

H =
⊕

α
Z(xα) ∼=

⊕
α

L2(K,µxα) ∼= L2(
⊔

α
Kα,

⊕
α
µxα),

where each Kα is a disjoint copy of K = σ(T ). Hence (H,T ) is unitarily equivalent
to L2 over a locally compact space together with a multiplication operator by a
T-valued continuous function.

B. Markov operators. Viewing a Koopman operator exclusively as a unitary
operator disregards many structural features, in particular the positivity. Given
probability spaces X,Y we call an operator S : L2(Y ) → L2(X) a Markov operator
if S ≥ 0 (meaning that Sf ≥ 0 whenever f ≥ 0) and S1 = 1 = S′1. By a mild form
of Riesz-Thorin interpolation, a Markov operator S is a contraction. Moreover, its
adjoint S′ is again a Markov operator, and the Markov operators form a compact
convex set (for the weak operator topology). For the proof of the following theorem
see [2, Section 13].
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Theorem 1. For a Markov operator S : L2(Y ) → L2(X) the following assertions
are equivalent:

(i) S(f · g) = Sf · Sg for all f, g ∈ L∞;
(ii) |Sf | = S|f | for all f ∈ L2;

(iii) ‖Sf‖2 = ‖f‖2 for all f ∈ L2;
(iv) There is a Markov operator R : L2(X) → L2(Y ) such that RS = I.

Markov operators satisfying (i)-(iv) of Theorem A are called Markov embeddings.

C. Factors. Measure preserving systems (X,T ) form the objects of a category
with morphisms being the Markov operators S intertwining the Koopman opera-
tors (called T -Markov operators). Two T -Markov embeddings S1, S2 are equivalent
if there is a T -Markov isomorphism Φ such that S1Φ = S2.

Theorem 2. For a dynamical system (X,T ) the following objects canonically
correspond to each other:

1) T -Markov embeddings S : L2(Y ) → L2(X) modulo equivalence;
2) T -biinvariant Banach sublattices E of L2(X) containing 1;
3) T -biinvariant unital C∗-subalgebras A of L∞(X) containing 1 modulo equiv-

alence given by A ∼ B if clL2A = clL2B.
4) sub-σ-algebras Σ of ΣX modulo equivalence given by equality modulo µX-

null sets.

[The correspondences are: S 7→ ran(S) for 1)⇒2); E 7→ E ∩ L∞ for 2)⇒3);
A 7→ {M | 1M ∈ clL2A} for 3)⇒4); and Σ 7→ (X,Σ, µX) for 4)⇒1).]

D. The Kronecker factor. Given a m.p.s (X,T ), its Kronecker factor is

K(X) := clL2span
⋃

λ∈T
ker(λI − T ).

It is easy to see that ker(λ− T ) ∩ L∞ is dense in ker(λ − T ). Therefore, K(X) is
the L2-closure of a T -biinvariant unital C∗-subalgebra of L∞ and hence a factor.
One says that (X,T ) has discrete spectrum if K(X) = L2(X).

Theorem 3 (Halmos–von Neumann [3]). An ergodic m.p.s. (X,T ) has discrete
spectrum if and only if it is (Markov) isomorphic to a rotation on a compact mono-
thetic group. This group is the dual of the group of eigenvalues of T , considered
as a discrete subgroup of T.

[Sketch of proof: let A = clL∞span
⋃

λ∈T
ker(λ − T ) ∩ L∞; the Koopman op-

erator T on A has relatively compact orbits hence the strong operator closure
G := cl{T n | n ∈ Z} is a compact group of automorphisms of A; by Gelfand–
Naimark A ∼= C(K), and under this isomorphism each S ∈ G is induced by a
homeomorphism ϕS of K. The system (K;ϕT ) is minimal, and hence S 7→ ϕS(x0)
is a homeomorphism G → K, where x0 ∈ K is any chosen point.]
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E. Weakly mixing systems. We turn to a characterization of K(X)⊥.

Lemma. For f ∈ L2(X), (X,T ) an m.p.s., the following are equivalent:

(i) f ⊥ K(X);
(ii) the spectral measure µf of f is continuous, i.e., has no atoms;

(iii) 1
n

∑n−1
j=0 |〈T nf, f〉|2 → 0;

(iv) D − limn〈T nf, g〉 = 0 for all g ∈ L2;

(v) D − limnT
nf = 0 in the weak topology;

(vi) 0 ∈ clw{T nf | n ≥ 0}.
[For (i)⇒(ii) use the spectral theorem, for (ii)⇒(iii) see [1,p.59], implication (iii)
⇒(iv) is polarization and the Koopman-von Neumann lemma [1, Lemma 2.41], for
(iv)⇒(v) reduce to the separable case and employ a diagonal argument, (v)⇒(vi)
is trivial and (vi)⇒(i) straightforward.]

Theorem 4. For a m.p.s. (X,T ) the following assertions are equivalent.

(i) (X,T ) is weakly mixing, i.e., K(X) = span{1};
(ii) 1

n

∑n−1
j=0 |〈T jf, g〉 −

∫
X
f ·
∫
X
g| → 0 for all f, g ∈ L2;

(iii) (X ×X,T × T ) is ergodic;
(iv) (X × Y, T × S) is weakly mixing for each weakly mixing m.p.s. (Y, S).

[(i)⇔(ii) follows from the lemma; for (ii)⇒(iii) use the mean ergodic theorem in its
weak form; for (iii)⇒(ii) note that if Tf = λf and |λ| = 1 then f ⊗f ∈ fix(T ⊗T );
(iv)⇒(i) is clear and for (i)⇒(iv) one uses (ii) for the product system.]
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Ergodic Proof of the Polynomial Szemerédi Theorem I

Akos Magyar

In 1975, Szemerédi proved the following long standing conjecture of Erdös and
Turàn:

Theorem. Let Λ be a subset of the integers with positive upper density. Then Λ
contains arbitrarily long arithmetic progressions.

Szemerédi’s proof was combinatorial in nature and intricate. In 1977 Fursten-
berg [3] gave an entirely different proof using ergodic theory. He showed that
Szemerédi’s theorem is equivalent to a statement about multiple recurrence of
measure preserving systems and then proved this ergodic statement.
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Theorem (Furstenberg [3]). Let (X,X , µ, T ) be a finite measure preserving system
and A ∈ X be a set with positive measure. Then for every k ∈ N, there exists n ∈ N

such that

µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0.

In order to establish such multiple recurrence property one usually analyzes
the limiting behavior of some closely related ergodic averages. In the case of
Szemerédi’s one seeks to show that for every f ∈ L∞(µ) that is non-negative and
not identically zero we have

(1) lim inf
N→∞

1

N

N∑

n=1

∫
f(x) · f(T nx) · · · f(T knx) dµ > 0.

Furstenberg proved this by first establishing a new structure theorem allowing one
to decompose an arbitrary measure preserving system into component elements
exhibiting one of two extreme types of behavior: compactness, characterized by
regular, “almost periodic” trajectories, and weak mixing, characterized by irreg-
ular, “quasi-random” trajectories. On T, these types of behavior are exemplified
by rotations and by the doubling map, respectively.

We use the case k = 2 of (1) to illustrate the basic idea. Our goal is to show
that

(2) lim inf
N→∞

1

N

N∑

n=1

∫
f(x) · f(T nx) · f(T 2nx) dµ > 0.

An ergodic decomposition argument enables us to assume that our system is er-
godic. We split f into “almost periodic” and “quasi-random” components. Let K
be the closure in L2 of the subspace spanned by the eigenfunctions of T , i.e. the
functions f ∈ L2(µ) that satisfy f(Tx) = e2πiαf(x) for some α ∈ R. We write
f = g + h, where g ∈ K and h⊥K. It can be shown that g, h ∈ L∞(µ) and g is
again nonnegative and g is not identically zero. We expand the average in (2) into
a sum of eight averages involving the functions g and h. In order to show that the
only non-zero contribution to the limit comes from the term involving g alone, it
suffices to establish that

(3) lim
N→∞

1

N

N∑

n=1

T ng · T 2nh = 0

in L2(µ), and similarly with h and g interchanged, and with g = h, which is similar.
To establish (3), we use a Hilbert space van der Corput lemma on xn = T ng ·T 2nh.
Some routine computations and a use of the ergodic theorem reduce the task to
showing that

lim
N→∞

1

N

N∑

n=1

∣∣∣
∫

h(x) · h(T 2nx) dµ
∣∣∣ = 0.

But this is well known for h⊥K (in virtue of the fact that for h⊥K the spectral
measure σh is continuous, for example).
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We are left with the average (2) when f = g ∈ K. In this case f can be
approximated arbitrarily well by a linear combination of eigenfunctions, which
easily implies that given ε > 0 one has ||T nf − f ||L2(µ) ≤ ε for a set of n ∈ N with
bounded gaps. Using this fact and the triangle inequality, one finds that for a set
of n ∈ N with bounded gaps,∫

f(x) · f(T nx) · f(T 2nx) dµ ≥
(∫

f dµ
)3

− c · ε

for a constant c that is independent of ε. Choosing ε small enough, we get (2).
For k > 2 the “quasi-random” component is not much harder to analyze. The

structured component is the distal factor of the system, which can be built by
successive isometric extensions. The proof that the multiple recurrence property
is preserved by isometric extensions is much harder than the one described above.
It ultimately depends on a clever use of van der Waerden’s theorem on arithmetic
progressions. Details, along this line of proof can be found in [2, 4, 6, 7].

In 1979, Furstenberg and Katznelson used similar techniques to prove a multidi-
mensional extension of Szemerédi’s theorem [5]. In 1996, Bergelson and Leibman
[1] proved the following polynomial extension of Szemerédi’s theorem.

Theorem. Let Λ be a subset of the integers with positive upper density and
p1, . . . , pk polynomials with integer coefficients and zero constant term. Then Λ
contains patterns of the form m,m + p1(n), . . . ,m + pk(n) for some m,n ∈ N.

In particular Λ contains patterns of the form m,m+ n2,m+ 2n2, and patterns
of the form m,m + n,m + n2. The proof follows the general strategy described
above but there a few new obstacles to overcome. The more serious is that the
coloristic result needed to prove polynomial multiple recurrence for distal systems
was not available at that point. This is now known as the polynomial extension
of van der Waerden’s theorem and Bergelson and Leibman proved it by making
clever use of topological dynamics tools coupled with an inductive scheme (PET
induction) particularly designed for this polynomial setup.
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Uniformity Seminorms and Characteristic Factors

Ilya Khayutin

This lecture follows primarily the work of Host-Kra [3] and we present the struc-
ture theory of Host-Kra, and in a somewhat different framework of Ziegler, for
probability measure preserving dynamical systems. This theory is used to prove
the following theorem.

Theorem 1 ([3], [8]). Let T be a measure preserving transformation of the prob-
ability measure space (X,X , µ), k ∈ N, and f1, f2, . . . , fk ∈ L∞

µ (X). Then the
averages

(1)
1

N

N−1∑

n=0

T nf1 · T 2nf2 · . . . · T knfk

converge in L2
µ(X).

This approach goes back to Furstenberg’s proof of Szemerédi’s theorem, the
following definition of characteristic factor has been formulated in [2].

A. Characteristic factors and structure theorem. The starting idea in study-
ing the averages (1) goes back to Furstenberg’s proof of Szemerédi’s theorem. One
looks for a factor of the system which is characteristic, i.e. convergence of the aver-
ages for the factor system implies the convergence of the averages for the original
system, and which have some additional structure which allows us to prove conver-
gence in the factor. To show that those characteristic factors have this algebraic
or geometric structure is the deepest part of the structure theory. The following
definition was first formulated in [2].

Definition (Characteristic Factor). A factor X → Y is characteristic for the
averages (1) for a given k if for f1, . . . , fk ∈ L∞

µ (X) we have

1

N

N−1∑

n=0

T nf1 · T 2nf2 · . . . · T knfk−

1

N

N−1∑

n=0

T n E
(
f1 | Y

)
· T 2n E

(
f2 | Y

)
· . . . · T kn E

(
fk | Y

) L2
µ(X)−−−−→

N→∞
0,

where Y ⊆ X is the T -invariant σ-algebra which corresponds to the factor Y .
Equivalently, if for any f1, . . . , fk as above with E

(
fi | Y

)
= 0 for some i, the

multiple ergodic averages (1) converge to 0 in L2
µ(X).

The key step in establishing convergence for the multiple ergodic averages (1) is
following structure theorem which is the deepest and hardest result of this analysis.

Theorem 2 ([3], [8]). Let (X,X , µ, T ) be an invertible ergodic measure preserving
system. Then we have a chain of factors X → . . . → Zk(X) → Zk−1(X) . . . →
Z1(X), s.t. for all k ∈ N the factor Zk−1(X) is isomorphic to an inverse limit of
(k-1)-step nilsystems and is characteristic for the averages (1).
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B. Nilsystems. Nilsystems have some particularly nice rigidity properties which
allow one to prove convergence of the averages (1).

Definition (Nilmanifold). Let G be a k-step nilpotent Lie group, Γ < G a uniform
lattice, i.e. Γ is a discrete subgroup and G/Γ is compact, in particular there is a
unique Haar left G-invariant probability measure on G/Γ, we call G/Γ a k-step
nilmanifold.

Choosing a ∈ G, a nilrotation by a is the action T : G/Γ → G/Γ := x 7→ ax.
We call the measure preserving system (G,G/Γ,m, T ) a nilsystem where G/Γ is
the Borel σ-algebra of G/Γ and m is the unique G-invariant measure.

Nilsystems exhibit some remarkable rigidity properties. In particular, each
element of G acts Ad-unipotently.

Theorem 3 ([4], [5], [6], [7]). Let f ∈ C(G/Γ), then the ergodic averages

1

N

N−1∑

n=0

f(T nx)

converge for all x ∈ G/Γ.

Note that if X = G/Γ is a nilmanifold, so is Xk = Gk/Γk for k ∈ N. So if
a ∈ G, look at the nilrotation on Xk given by (a, a2, . . . , ak−1) ∈ Gk and at the
point (x, x, . . . , x) ∈ Xk for x ∈ X , we get by the previous theorem pointwise
convergence of the averages (1) for continuous f1, . . . , fk ∈ C(X). This implies L2

µ

convergence of the averages (1) for all f1, . . . , fk ∈ L∞
µ (X).

The characteristic factors of the averages (1) are not nilsystems, but inverse
limits of such. One gets L2 convergence of the averages (1) for bounded measurable
functions in an inverse limit of k-step nilsystems by approximation using functions
measurable with respect to a k-step nilsystem factor.

C. Host-Kra cube spaces and measures. We define inductively the spaces
X [k] which are instrumental in defining the Host-Kra characteristic factors. From
now on we only consider invertible ergodic systems X . The reduction to this case
from the general one is simple using the ergodic decomposition and the natural
invertible extension.

The systems X [k] are constructed inductively from (X,X , µ, T ). Set X [k] =

X2k , X [k] the corresponding product σ-algebra and T [k] = T 2k , i.e. T [k] acts as T
in all coordinates.

Definition (Box Measures). Define the measures µ[k] inductively. Set µ[0] = µ and
denote by I [k] the σ-algebra of the T [k]-invariant sets in X [k]. We define µ[k+1] on
X [k+1] := X [k]×X [k] as the relatively independent joining of (X [k],X [k], µ[k], T [k])
with itself over I [k].

It is easy to see that µ[k] = µ2k for all k, i.e. µ[k] is the product measure, if and
only if X is weakly-mixing, equivalently the Kronecker factor is trivial. Otherwise,
the systems X [k] are non-ergodic for k ≥ 1.
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D. Uniformity seminorms. Using the Host-Kra cube measure we define the
following seminorms on L∞

µ (X).

Definition (Gowers-Host-Kra Seminorms). For a real valued f ∈ L∞
µ (X) by

‖f‖2kUk(X) =

∫

X[k]

∏

ǫ∈{0,1}k

f(xǫ)dµ
[k](x).

Proposition. We have the following:

(1) ‖ · ‖Uk(X) is a seminorm on L∞
µ (X) for all k ≥ 0,

(2) for all real valued f ∈ L∞
µ (X):

∣∣∫
X fdµ

∣∣ = ‖f‖U1(X) ≤ ‖f‖U2(X) ≤ . . . ≤
‖f‖Uk(X) ≤ . . . ≤ ‖f‖∞,

(3) X is weak-mixing if and only if for all real valued f ∈ L∞
µ (X): ‖f‖Uk(X) =∣∣∫

X fdµ
∣∣ for all k ≥ 1.

Next we discuss the connection between the uniformity seminorms ‖ · ‖Uk(X)

and the multiple ergodic averages (1).

Lemma. For every k ∈ N and real valued f ∈ L∞
µ (X) we have

‖f‖2k+1

Uk+1(X) = lim
N→∞

1

N

N−1∑

n=0

‖f · T nf‖2kUk(X).

The proof follows by the mean ergodic theorem on the space X [k].

Lemma (Seminorms Majorize the Averages). Let (X,X , µ, T ) be ergodic and k ∈
N. For any real valued f1, . . . , fk ∈ L∞

µ (X) with ‖fi‖∞ ≤ 1 for all i, the following
holds

lim sup
N→∞

∥∥∥∥∥
1

N

N−1∑

n=0

T nf1 · T 2nf2 · . . . · T knfk

∥∥∥∥∥
L2

≤ min
1≤l≤k

l · ‖fl‖Uk(X).

The proof follows inductively by the previous lemma and the Van der Corput
lemma.

Corollary. We can define factors Zk−1(X) of X such that

E(f | Zk−1) = 0 ⇔ ‖f‖Uk(X) = 0.

If Zk−1 ⊆ X is the T -invariant σ-algebra corresponding to the factor Zk−1(X),
then those factors are characteristic for the averages (1).

Corollary. If X is weak-mixing then for all k ∈ N: ‖ · ‖Uk(X) =
∣∣∫

X ·dµ
∣∣, hence

we can take for all k: Zk−1 = {∅, X}, the trivial σ-algebra, which corresponds to
the trivial one-point factor.

This proves that for X weak-mixing, if f1, . . . , fk ∈ L∞
µ (X), then

1

N

N−1∑

n=0

T nf1 · T 2nf2 · . . . · T knfk
L2

−−−−→
N→∞

∫

X

f1dµ · . . . ·
∫

X

fkdµ.
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This theorem was first proved in [1]. Although this is not the shortest way to
show this result, it demonstrates the relevance of the seminorms estimates to the
matter at hand.

E. The Kronecker factor. Furstenberg showed in [1] the L2 convergence of the
averages of order k = 2 by proving that the Kronecker factor is characteristic for
them. We have shown that the factor Z1(X) which we know to be characteristic
for the averages of order 2 is actually the Kronecker factor. By this we have
reproved Furstenberg’s result by a somewhat lengthy argument. The proof uses
the spectral theorem for compact operators to show that the invariant factor of
X [1] is naturally isomorphic to the Kronecker of X , and then using the Fourier
transform for compact abelian groups, F , on the Kronecker we can show the that
for every f ∈ L2

µ(X): ‖f‖2U1(X) = ‖F E (f | K) ‖4L4(K) and hence E (f | Z1) = 0 ⇔
E (f | K) = 0.
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Equidistribution of Polynomial Sequences on Nilmanifolds

Przemyslaw Mazur

Several recurrence and convergence results in ergodic theory reduce to recurrence
and equidistribution properties of polynomial sequences on nilmanifolds. The aim
of this talk is to give a brief overview of the basic qualitative equidistribution
results of such sequences. Corresponding quantitative equidistribution results are
also available and details can be found in [1].

A. Equidistribution in the Abelian case. Let P : N → Td be a polynomial
sequence on Td, i.e., a sequence of the form

P (n) = α0 + α1n + · · · + αkn
k

where α0, α1, . . . , αk ∈ Td. A classical result of Weyl [5] describes completely the
qualitative equidistribution properties of such sequences.
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Theorem 1 (Abelian equidistribution criterion). The sequence (P (n)), defined
above, is equidistributed in Td if and only if there exists i ∈ {1, . . . , k} such that
k · αi /∈ Z for every k ∈ Zd with k 6= 0.

The proof of Theorem 1 proceeds by first showing that the general sequence
(x(n)) that takes values in Td is equidistributed in Td if and only if for every
k ∈ Zd with k 6= 0 one has

(1) lim
N→∞

1

N

N∑

n=1

e2πik·x(n) = 0.

This is known as Weyl’s criteron and follows from the fact that trigonometric poly-
nomials are dense in the space C(Td). Combining this criterion with an elementary
estimate of van der Corput one easily establishes the following useful result:

Theorem 2 (Abelian van der Corput criterion). The sequence (x(n)) with values
in Td is equidistributed in Td if for every h ∈ N and nonzero k ∈ Zd the sequence
(k · (x(n + h) − x(n))) is equidistributed in Td.

The van der Corput criterion is particularly suitable for use for polynomial se-
quences. For instance, in order to show that the sequence (n2α) is equidistributed
in T, it suffices to show that the sequence (2nhα) is equidistributed in T for every
nonzero h ∈ Z. Using Weyl’s criterion one checks that these linear sequences are
equidistributed if and only if α is irrational. The necessity of the conditions of
Theorem 1 can be checked in a similar manner using the van der Corput criterion
and induction on the degree of the polynomial P .

Using Theorem 1 it is not hard to get the following decomposition result (see
[1, 4]):

Theorem 3 (Abelian factorization theorem). Let (P (n) be a polynomial sequence
in Zd. There exists a decomposition P = Pr +Pe, such that all non-constant coef-
ficients of the polynomial Pr have rational coordinates, and the sequence (Pe(n))
is equidistributed in a subtorus of Td.

For example, if α is irrational and P (n) =
(
n
2 + n2α, n2

(
α+ 1

3

))
, then Pr(n) =

n(12 , 0) +n2(0, 1
3 ) and Pe(n) = n2(α, α). One can check that the sequence (Pe(n))

is equidistributed in the subtorus {(t, t), t ∈ T} of T2.

B. Equidistribution in the nilpotent case. The Abelian equidistribution re-
sults of the previous section admit extensions that cover polynomial sequences on
nilmanifolds. A simple example of a non-Abelian nilmanifold to keep in mind is
the following:

Example (Heisenberg nilmanifold). Let G be the nilpotent group that consists

of all upper triangular matrices of the form
(

1 x z
0 1 y
0 0 1

)
with real entries. If we only

allow integer entries we get a subgroup Γ of G that is discrete and cocompact.
Then G/Γ is a nilmanifold.
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We start with the simplest equidistribution result that covers linear sequences
(see [2, 3]):

Theorem 4 (Nilpotent equidistribution criterion for linear sequences). Let X =
G/Γ be a nilmanifold a ∈ G and x ∈ X. The sequence (anx) is equidistributed in
X if and only if there exists no nontrivial character χ of X such that χ(a) = 1.

Note that a character χ of X factors through the Abelian nilmanifold Z =
X/[G,G]. If π : X → Z is the projection map, then using the Abelian equidistri-
bution result for linear sequences, we get that the sequence (anx) is equidistributed
in X if and only if the sequence

(
π(anx)

)
is equidistributed in Z.

Applying the previous criterion to the Heisenberg nilmanifold we see that for

a =
( 1 α γ

0 1 β
0 0 1

)
and x ∈ X , the sequence (anx) is equidistributed in X if and only if

the numbers 1, α, and β are rationally independent.
The proof of Theorem 4 is harder than the proof of related Abelian equidistribu-

tion results like the one given in Theorem 1. The reason is that linear combinations
of characters in X are not dense in the space C(X), and as a consequence Weyl’s
criterion is not applicable anymore. On the other hand, using a vertical character
decomposition, and a non-Abelian counterpart of van der Corput’s criterion, one
can give a not very complicated proof of Theorem 4 (see [4]).

Next we give the equidistribution result that covers general polynomial se-
quences (see [2]).

Theorem 5 (Nilpotent equidistribution criterion for polynomial sequences). Let
X = G/Γ be a nilmanifold with G connected, a1, . . . , al ∈ G, p1, . . . , pl ∈ Z[t] and

g(n) = a
p1(n)
1 · · · apl(n)

l . Then for every x ∈ X the sequence (g(n)x) is equidis-
tributed in X if and only if there exists no nontrivial character χ of X such that
χ ◦ g is constant.

Again one gets that the sequence (g(n)x) is equidistributed in X if and only
if the sequence

(
π(g(n)x)

)
is equidistributed in Z = X/[G,G]. The proof of this

result is carried out in [2] by cleverly reducing it to Theorem 4. Note that the
case where the group G is not connected is more subtle, in this case the role of Z
plays the nilmanifold Z ′ = X/[G0, G0], where G0 is the connected component of
the identity element in G.

Using the previous equidistribution result one can get the following decompo-
sition result (it is implicit in [2] and explicit in [1]):

Theorem 6 (Nilpotent factorization theorem). Let X = G/Γ be a nilmanifold,
(g(n)) be as in Theorem 5, and x ∈ X. There exists a decomposition g = c · gp · ge,
such that c ∈ G, the sequence (gr(n)) is periodic, and the sequence (ge(n)x) is
equidistributed in a subnilmanifold of X.
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PET Induction and Seminorm Estimates

Konstantinos Tyros

In 1977, H. Furstenberg [2] gave a new proof of Szemerédi’s Theorem [7] using
ergodic theory. In particular, he proved that if (X,X , µ, T ) is an invertible measure
preserving system and A is an element of Σ of positive measure, then

lim inf
N→∞

1

N

N∑

n=1

µ(T−nA ∩ T−2nA ∩ ... ∩ T−knA) > 0

every positive integer k and applying Furstenberg’s Correspondence Principle he
deduced Szemerédi’s Theorem. This gives rise to the following natural set of
questions. What can we say about the limit behavior of averages of the form

(1)
1

N

N∑

n=1

∫

X

(f1 ◦ T n) · ... · (fk ◦ T kn)dµ

with k a positive integer and f1, ..., fk ∈ L∞(µ), or even of averages of the form

(2)
1

N

N∑

n=1

∫

X

(f1 ◦ T p1(n)) · ... · (fk ◦ T pk(n))dµ

where p1, ..., pk are integer polynomial, i.e. polynomial taking integer values on
the integers?

In 1987, V. Bergelson [1], assuming that the system is weakly mixing, treated
the case where the averages are of the form (2), by developing the PET induction.
In particular, if the polynomials appearing in (2) are essentially distinct, then the

averages in (2) converge in L2(µ) to the constant function
∏k

i=1

∫
X
fidµ. To each

polynomial family we assign a type and we endow the set of all possible types by
a well ordering. A use of the var der Corput inequality allows us to transform an
average of the form (2) to a similar one involving a polynomial family of smaller
type. The proof is completed by an induction (PET induction) on the type of the
family of polynomials involved.

In 2005, B. Host and B. Kra [4] treated averages of the form (1) in an arbitrary
invertible measure preserving system (X,X , µ, T ). The strategy of the proof is to
construct a sequence of factors (Zl(X))l of (X,X , µ, T ) that satisfyies the following
properties:

(i) All averages of the form (1) involving functions defined on Zl(X) converge.
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(ii) For every averages of the form (1) consisting of functions defined in L∞(X),
there exists some l such that the factor Zl(X) is characteristic for these
averages.

Using a similar strategy, B. Host and B. Kra in [3] convergence of the averages
(2). Moreover, under some minor additional assumptions they proved that the
averages of the form (2) converge in L2(µ). This additional assumption was later
removed by A. Leibman in [5].

We give some additional details regarding the proof of convergence of the av-
erages (2). By a result of A. Leibman [6] and the information provided by [4]
concerning the structure of the factors (Zl(X))l one can easily see that averages
of the form (2) defined on one of these factors converge in L2. Therefore, in order
to complete the proof of the general case, B. Host and B. Kra proved that every
average of the form (2) has a characteristic factor from Zl(X) for some i ∈ N. This
last result is obtained by a variation of the PET induction. Moreover, in the case
that the involved polynomials are linear, upper bounds for the limit of the norm
of the corresponding averages are provided, in terms of some seminorms defined
in [4].

In this talk we gave a detailed presentation of the PET induction as designed
by V. Bergelson in [1], as well as a description of the needed modifications of
this method as made by B. Host and B. Kra in [3]. Moreover, we presented the
aforementioned seminorm estimates.
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Ergodic Proof of the Polynomial Szemerédi Theorem II

Tanja Eisner

The goal of this talk is to prove the following characterization of polynomials which
are “good” for the polynomial Szemerédi theorem.

Theorem. (Bergelson, Leibman, Lesigne [2]) Let p1, . . . , pr : Z → Z, r ∈ N, be
polynomials. Then the following assertions are equivalent.
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(i) For every dense set E ⊂ Z there exist a, n ∈ Z such that

a, a + p1(n), . . . , a + pr(n) ∈ E.

(ii) The polynomials p1, . . . , pr are jointly intersective, i.e.,

∀k ∈ Z \ {0} ∃n ∈ Z : p1(n), . . . , pr(n) ∈ kZ.

Here, by a dense set we mean a set with positive upper density. Note that (ii) is
a special case of (i) for the dense sets kZ, k 6= 0.

The following conditions on polynomials p1, . . . , pr ensure that they are jointly
intersective.

• p1, . . . , pr have a joint integer root. The case that every pj vanishes at
zero corresponds to the classical polynomial Szemerédi theorem of Bergel-
son and Leibman [1]. However, there are jointly intersective polynomials
without integer and even rational roots.

• p1, . . . , pr are multiples of the same intersective polynomial q. In fact, this
condition is necessary and sufficient for a family of polynomials of one
variable to be jointly intersective.

The method of the proof of the non-trivial implication (ii)⇒(i) consists of several
steps which we sketch here. First, the Furstenberg correspondence principle leads
to the following reformulation of (i):

(i’) For every measure preserving system (X,µ, T ) and every measurable set
A ⊂ X with µ(A) > 0,

lim inf
N→∞

1

N

N∑

n=1

µ(A ∩ T−p1(n)A · · · ∩ T−pr(n)A) > 0.

The second step is to use the modern theory of characteristic factors [3] and a
limiting argument to reduce the problem to nilsystems, i.e., systems of the form
(G/Γ, µ, T ), where G is a nilpotent Lie group, Γ is a cocompact discrete subgroup
of G, µ is the Haar measure and T is a left rotation on G/Γ by an element of G.

In the next step one considers a larger nilmanifold and uses a differential geom-
etry argument to translate (i’) to the following recurrence property of polynomial
sequences: For a nilmanifold X = G/Γ, a polynomial sequence in G of the form

g(n) = a
p1(n)
1 · · · apr(n)

r and x ∈ X ,

x ∈ Orbg(x),

where Orbg(x) = {g(n)x, n ∈ Z}.
Note that at this point, the classical polynomial Szemerédi theorem is already

proved since pj(0) = 0 for every j implies x = g(0)x. To show the assertion for
general jointly intersective polynomials, one first needs to study certain algebraic
properties of such polynomials for orbits on tori. Here, the idea is to pass to a
sublattice of Z on which intersective polynomials behave nicely so that the closure
of the orbit is a subtorus. When this is done, one uses the following result of
Leibman [4]: An orbit under a polynomial sequence is dense in X if and only if
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its projection is dense in the so-called horizontal torus G/[G,G]Γ. The induction
on the dimension of the nilmanifold finishes the proof.

Remarks. 1) The above approach gives an alternative proof of Szemerédi’s
theorem corresponding to the case p1(n) = n, . . . , pr(n) = rn. It seems to
be the only known proof of Szemerédi’s theorem which can be generalized
to jointly intersective polynomials. In particular, it is not clear how to
prove the van der Waerden type result of the above theorem using other
methods.

2) By the same methods one can show that (ii) implies that the set

E ∩ (E − p1(n)) · · · ∩ (E − pr(n))

is syndetic for every E ⊂ Z with positive upper Banach density.

The following analogue of the multidimensional polynomial Szemerédi theorem
due to Bergelson and Leibman [1] is open.

Conjecture. Let p1, . . . , pr : Zm → Zk be polynomials. Then the following asser-
tions are equivalent.

(i) For every dense set E ⊂ Zk there exist a ∈ Zk and n ∈ Zm so that
a, a + p1(n), . . . , a + pr(n) ∈ E.

(ii) The polynomials p1, . . . , pr are jointly intersective, i.e., for every finite
index subgroup Λ ⊂ Zk there exists n ∈ Zm so that p1(n), . . . , pr(n) ∈ Λ.
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The Structure of Multiple Correlation Sequences and Applications

Michael Bateman

A. The results. We discuss here the paper [2] of Bergelson, Host, and Kra, which
proves a strong generalization of special cases of the Furstenberg multiple recur-
rence theorem and simultaneously generalizes a theorem of Khintchine. Precisely:

Theorem 1. Suppose (X,X , µ, T ) is an invertible ergodic measure preserving
system. Then for every ǫ > 0, the set of n such that

µ(A ∩ T nA ∩ T 2nA ∩ T 3nA) > µ(A)4 − ǫ

is syndetic. Similarly, for every ǫ > 0, the set of n such that

µ(A ∩ T nA ∩ T 2nA) > µ(A)3 − ǫ
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is syndetic.

In light of this theorem, the following fact is perhaps rather surprising:

Theorem 2. For every l ∈ N, there exists an ergodic invertible measure preserving
system (X,X , µ, T ) and set A, such that

µ(A ∩ T nA ∩ T 2nA ∩ T 3nA ∩ T 4nA) < µ(A)l

for every n.

The point is that there is a significant difference between the 5-term recurrence
theorems and the 2,3, and 4 -term recurrence theorems. We note that the 2-term
theorem is due to Khintchine, and strengthens the Poincaré recurrence theorem.
Also, we note that Theorem 1 generalizes the cases k = 3, 4 of the Furstenberg
recurrence theorem:

Theorem 3 (Furstenberg [3]). Suppose (X,X , µ, T ) is an invertible measure pre-
serving system. Then for any k, and any A with µ(A) > 0,

lim inf
N−M→∞

1

N −M

N∑

n=M

µ(A ∩ T nA ∩ · · · ∩ T (k−1)nA) > 0.

We note that Furstenberg’s theorem already tells us that

{n : µ(A ∩ T nA ∩ T 2n ∩ T 3nA) > 0}
is syndetic, so the major gain in the theorem of [2] is providing the lower bound
of µ(A)4 − ǫ (in the case of 4-term recurrence) rather than merely a lower bound
of 0.

B. Proof of positive results. The proof of Theorem 1 requires studying the
following multiple correlation sequences:

I(f, k, n) =

∫
f(x) f(T nx) · · · f(T (k−1)nx) dµ.

We imagine that k and f are fixed, so that the numbers I(f, k, n) form a sequence
in the parameter n. Another main theorem of [2] that ultimately relies on the
structure theorem from [4] is:

Theorem 4. The sequence I(f, k, n) is equal to a (k − 1)-step nilsequence plus a
sequence that converges to zero in uniform density.

We say that a sequence {an}n converges to zero in uniform density if

lim
N−M→∞

1

N −M

N∑

n=M

|an| = 0.

The point is that the behavior of the numbers I(f, k, n) is captured by the be-
havior of a nilsequence up to a negligible error. Theorem 1 then follows from
Theorem 4 together with rather explicit knowledge of the nilsequence guaranteed
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by the theorem. The analogous calculations do not work in the length 5 and higher
cases.

C. Proof of negative results. Theorem 1 does not hold without the assumption
of ergodicity. Consider the system on the 2-torus given by

T (x, y) = (x, y + x),

and consider a set A = T × B, where the set B will have properties specified
momentarily. We then have

µ(A ∩ T nA ∩ T 2nA) =

∫ ∫
1B(y)1B(y + nx)1B(y + 2nx)dxdy

=

∫ ∫
1B(y)1B(y + x)1B(y + 2x)dxdy

where the second equality follows from a simple change of variables and the first
equality follows from the definition of T . The point is that this expression quanti-
fies the presence of three term arithmetic progressions in B. If we define B to be
a union of small intervals that is a scaled down version of a set of integers without
three-term arithmetic progressions (such integer sets are given in [1]), then the
above quantities will be small. Wrestling with the numerology a bit proves that
ergodicity is required in Theorem 3, since the above system is not ergodic.

Importantly, the same method is used to provide a counterexample for the case
of 5-term progressions. Instead of creating a system that allows us to capture facts
about 3APs, we create an ergodic system so that the number

µ(A ∩ T nA ∩ T 2nA ∩ T 3nA ∩ T 4nA)

captures the number of 5-tuples a1, . . . , a5 that satisfy f(j) = aj for some integer
quadratic polynomial f . An example of Ruzsa shows that there are large sets
of integers without any such 5-tuples, and we shrink this example to live inside
the torus as before. Also, as before, some wrestling with the numerology proves
Theorem 2.
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Euclidean Ramsey Theory

Brian Cook

The basic question in Euclidean Ramsey Theory can be described as follows: Given
a k-point configuration in Rn, say K = {x1, ... , xk}, and a natural number r, does
every r-coloring of Rn contain a monochromatic K ′ which is congruent to K. A
fixed configuration is said to be Ramsey if there exists an n0 such that this question
has an affirmative answer for all values of r provided that n sufficiently large.

The complete classification of configurations which are Ramsey is unknown,
however there are two basic results in this direction. Define a brick to be the ver-
tices of a rectangular parallelepiped, and a spherical set to be one whose elements
lie on a common sphere. It is known that any subset of a brick is Ramsey and
any non-spherical set is not Ramsey, see [4]. As all bricks are in fact spherical,
it is natural to conjecture that Ramsey sets are those that are spherical. This
classification is still an open problem.

Katznelson and Weiss provide the first instance of a density type result in
Euclidean Ramsey Theory, and do so via ergodic methods. Let K = {0, 1}. Given
a set E ⊂ R2 of positive upper Banach density, i.e., there exists a sequence of
squares in the plane {Si} such that m(Si) → ∞ with

lim sup
m(E ∩ Si)

m(Si)
> 0,

we have a congruent copy of λK provided that λ is sufficiently large. In other
words, every sufficiently large distance appears in A. This result first appears in
print in [1], where Bourgain shows this and that a similar result holds for a n-point
configuration K = {x1, ... , xn} ∈ Rn which spans a (n− 1)-dimensional subspace.
The methods used in the proof are those from harmonic analysis.

Also in [1], Bourgain provides a counterexample showing that no density type
result can hold for the configuration K = {0, 1, 2} ∈ Rn. This example is ex-
tended to all non-spherical configurations by Graham [3]. Turning back to ergodic
methods, Furstenberg, Katznelson, and Weiss prove that the result for three term
progressions fails by a δ. Define Eδ to be the collection of points within distance
δ of the set E. With K = {0, u, v} ⊂ R2, and E ⊂ R2 of positive upper Banach
density, there exists λ0 such that given any λ > λ0 and any δ > 0 there exists a
configuration K ′ in Eδ such that K ′ is congruent to λK.

The proof given in [2] translates the problem to an associated problem in a
dynamical system via a correspondence principle. They attach to the a given set
E in the plane a R2 measure preserving system (X,B, µ, T ) and a subset Ẽ ⊂ X
such that the recurrence property

(1) µ(Ẽ ∩ T−1
u Ẽ ∩ T−1

v Ẽ) > 0

implies the recurrence property of the thickened set Eδ

Eδ ∩ (Eδ − u) ∩ (Eδ − v) 6= ∅.
The problem of showing that (1) holds is carried out by reducing to the case

when the system (X,B, µ, T ) is a Kronecker action.
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Ziegler [6] extends this method to show that a similar result holds for (k + 1)-
point configurations in Rk. This is again a reduction to the case of Kronecker
actions, meaning that the Kronecker factor is characteristic for the associated
averages. Following the advent of the Host-Kra structure Theorem [5], Ziegler in
[7] obtains the full result for arbitrary configurations in any dimension.

For nontrivial triangular configurations in the plane, it is still unknown whether
the thickening of the set E is necessary.
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Recurrence for Random Sequences

Benjamin Krause

A subset of the positive integers, S ⊂ Z+ is said to be ergodic if for any ergodic
measure preserving system, (X,X , µ, T ), and any f ∈ L2(X,X , µ, T ), the aver-
ages 1

|S∩[1,N ]|
∑

n∈S,n≤N T nf converge in the L2 sense to
∫
f (i.e. the orthogonal

projection of f onto set of functions fixed by T ). In particular, Von Neumann’s
familiar mean ergodic theorem states that Z+ is an ergodic sequence.

The spectral theorem provides a concrete framework for studying norm conver-
gence of exotic ergodic averages: S = {s1, s2, . . . } ⊂ Z+ is ergodic precisely when
the exponential sums

1

|S ∩ [1, N ]|
∑

n∈S,n≤N

e2πinβ

converge pointwise as N → ∞ for every β ∈ T ∼ [0, 1) to the function 1{0}(β).
A serious obstruction to pointwise convergence of the above exponential sums is

the sparseness of the set S: under the lacunary assumption
sj+1

sj
≥ 5, for instance,

one can find α = α(S) ∈ [0, 1) so that { 1
t

∑
j≤t e

2πisjα} fails to converge (cf. e.g.

[5], §2.3).
In §8 of his celebrated paper, [2], Bourgain uses a probabilistic argument to

show, however, the existence of very sparse ergodic sets S.

Proposition ([2], Proposition 8.2 (i)). Suppose that {Yn} : Ω → {0, 1} are inde-
pendent random variables with expectations {σn}, and let Sω = {n : Yn(ω) = 1}.
If limn nσn = ∞, then Sω is almost surely ergodic.
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For instance if σn = logn
n , then almost surely we have |Sω∩[1,N ]|

(logN)2 → 1
2 .

To prove this result, Bourgain uses concentration of measure technique to com-
pare the randomly generated sums

1

|Sω ∩ [1, N ]|
∑

n∈Sω,n≤N

e2πinβ =
1

|Sω ∩ [1, N ]|
∑

n≤N

Yn(ω)e2πinβ

with the associated deterministic sums, 1∑
n≤N σn

∑
n≤N σne

2πinβ , whose conver-

gence follows by summation by parts.
We sketch the proof of this comparison step. Set WN :=

∑
n≤N σn, and express

WN = C(N)2 logN , where C(N) → ∞ as N → ∞.

By the law of large numbers, |Sω∩[1,N ]|
WN

=
∑

n≤N Yn(ω)

WN
→ 1 almost surely, so it

suffices to show that

lim
N→∞

sup
β∈T

∣∣∣ 1

WN

∑

n≤N

(Yn(ω) − σn)e2πinβ
∣∣∣ =: lim

N→∞
sup
β∈T

|PN (ω, β)| = 0

almost surely. By Borel-Cantelli, this in turn may be accomplished by exhibiting
an increasing sequence c(N) → ∞ so that

P

(
sup
β∈T

|PN (ω, β)| ≥ 1

c(N)

)

is summable.
Temporarily ignoring the supremum, one uses Chernoff’s inequality ([6], Theo-

rem 1.8) to estimate, for fixed β ∈ T,

P

(
|PN (ω, β)| ≥ 1

c(N)

)
. max{e−

W2
N

4c(N)2VN , e−
WN

2c(N) } ≤ e
− WN

4c(N)2 ,

where VN := Var
(∑

n≤N(Yn(ω) − σn)e2πinβ
)

is bounded by WN .

This estimate says that for large N , for any given β ∈ T, PN (ω, β) is overwhelm-
ingly likely to be o(c(N)−1). This alone is not enough to conclude the proof, since
one first must take an uncountable supremum over β ∈ T before applying any
concentration estimate; in particular, a crude union bound is ineffective. But
each PN (ω, β) is a (smooth) trigonometric polynomial of degree at most N . In
particular, by Bernstein’s polynomial inequality [1], one may estimate

sup
β∈T

|PN (β)| ≤ 10 max
β∈∆N

|PN (β)|,

where ∆N ⊂ T is a 10N -element net.
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Consequently, for all sufficiently large N ,

P

(
sup
β∈T

|PN (β)| ≥ 1

c(N)

)
≤ P

(
max
β∈∆N

|PN (β)| ≥ 10

c(N)

)
=

P


 ⋃

β∈∆N

|PN (β)| ≥ 10

c(N)


 ≤ 10N sup

β∈T

P

(
|PN (β)| ≥ 10

c(N)

)
≤

Ne
− WN

Kc(N)2 = e
logN(1− C(N)2

Kc(N)2
)
,

where K > 0 is a large fixed number chosen to absorb various constants. Finally,

choosing c(N)2 = C(N)
K , so that (1 − C(N)2

Kc(N)2 ) = 1 − C(N) → −∞ completes the

proof.
Bourgain’s method of “comparison and concentration” is actually robust enough

to prove fruitful in the study of questions concerning pointwise convergence along
randomly generated subsets of the integers:

Proposition ([2], Proposition 8.2 (ii)). For any ergodic measure-preserving sys-

tem, (X,µ, T ), and any f ∈ L2(X,µ, T ), if, in the above notation, σn > log logn
n ,

then
1

|Sω ∩ [1, N ]|
∑

n≤N

Yn(ω)f(T nx) →
∫

X

f dµ

µ-almost everywhere, with probability 1.

Two particularly exciting modern directions in the study of convergence along
(sparse) randomly generated subsets are

• Pointwise convergence of ergodic averages for f ∈ L1(X,µ, T );
• Convergence of multiple ergodic averages of the form

1

N

∑

n≤N

f(T an(ω)x)g(San(ω)x),

where T, S are commuting shifts, and an(ω) are randomized versions of
fractional powers nα, with α > 0.

See [4] and [3], respectively, for further discussion.
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Recurrence for Hardy Sequences

Joanna Ku laga-Przymus

A Hardy field is a field consisting of germs of real-valued functions at infinity that
is closed under differentiation. A union of all Hardy fields H is a large class of
functions which includes e.g. the so-called logarithmico-exponential functions LE
(i.e. functions which can be “built” using real constants, the exponential function,
the logarithmic function, addition, multiplication, division and composition of
functions - as long as the function is defined for large arguments). A list of key
properties satisfied by functions from H includes the following:

• every a ∈ H eventually has a constant sign,
• every a ∈ H is eventually monotone,
• for a ∈ H, b ∈ LE there exists a Hardy field containing both a and b,

• for a ∈ H, b ∈ LE the following limit always exists: limx→∞
a(x)
b(x) ∈

R ∪ {±∞} (hence one can use l’Hospital’s rule for calculating limits of
quotients).

Recurrence (as well as convergence) problems which classically involved arith-
metic progressions [12], and later also polynomial sequences [2, 3], can be general-
ized to the case of sequences obtained by evaluating functions from Hardy fields at
integers. Known results on (single and multiple) recurrence involve such sequences
with an additional growth condition (the growth is at most polynomial) which stay
away from constant multiples of polynomials with integer coefficients:

Theorem (Special Case [9], General Case [7]). Let T : (X,B, µ) → (X,B, µ) be
an invertible measure-preserving system. Fix k ≥ 1, A ∈ B with µ(A) > 0 and let
a ∈ H have at most polynomial growth. Then

µ(A ∩ T [a(n)]A ∩ T 2[a(n)]A ∩ · · · ∩ T k[a(n)]A) > 0

whenever |a(t) − cp(t)| → ∞ for any c ∈ R and any p ∈ Z[t].

Examples of such sequences are [n
√
2], [n logn], [n3

√
3 + n+ 1], [n2 + log logn].

One can also prove an L2-convergence result concerning averages of the form

(1)
1

N

N∑

n=1

T [a(n)]f1 · T 2[a(n)]f2 · . . . · T k[a(n)]fk,

where f1, . . . , fk ∈ L∞(X,B, µ):

Theorem (Case k = 1 [5], General Case [7]). Fix k ≥ 1. Let a ∈ H have at most
polynomial growth. The averages (1) converge if and only if one of the following
holds:
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• |a(t) − cp(t)| ≻ log t for all c ∈ R and p ∈ Z[t],
• a(t) − cp(t) → d for some c, d ∈ R and p ∈ Z[t],
• |a(t) − t/m| ≪ log t for some m ∈ Z.

The proof of the above theorem for k = 1 follows from an equidistribution
result for Hardy sequences [4] and the spectral theorem. The main tools used in
the proof of the general case include the structure theorem [11], equidistribution
results on nilmanifolds [6] obtained using quantitative equidistribution [10], and
the so-called PET induction [1].

There are many open problems in this area, see [7, 8] for a detailed list. They
involve e.g. averages of the form

(2)
1

N

N∑

n=1

T [a1(n)]f1 · T [a2(n)]f2 · . . . · T [ak(n)]fk,

where ai ∈ H are from the same Hardy field and grow at most polynomially fast
or averages of the form

1

N

N∑

n=1

T
[a1(n)]
1 f1 · T [a2(n)]

2 f2 · . . . · T [ak(n)]
k fk,

where T1, . . . , Tk : (X,B, µ) → (X,B, µ) are commuting measure-preserving trans-
formations. Sufficient (and necessary) conditions for recurrence and for conver-
gence are the most “obvious” types of results one could ask for. It is not unrea-
sonable to expect to obtain conditions similar to the ones for the more “standard”
averages (1). Here is a sample:

Question ([7]). Fix k ≥ 1. Let ai ∈ H for 1 ≤ i ≤ k have at most polynomial
growth. Is it true that the averages (2) converge if and only if for every a ∈
span(a1, . . . , ak), other than the trivial combination, one of the following holds:

• |a(t) − cp(t)| ≻ log t for all c ∈ R and p ∈ Z[t],
• a(t) − cp(t) → d for some c, d ∈ R and p ∈ Z[t],
• |a(t) − t/m| ≪ log t for some m ∈ Z?

The convergence of averages (2) was proven to hold under some stronger as-
sumptions in [7].

A yet further possible direction is to try to use the “Szemerédi type” results
and look for the corresponding Hardy-field patterns in the primes. One can also
ask questions about recurrence and convergence along sequences of the form [pcn],
where c > 0 is not an integer and pn is the n-th prime number.
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Van der Corput Sets

Manfred G. Madritsch

A. Historical background. Starting point of the theory of van der Corput sets
was the famous paper by Weyl [10], who considered uniformly distributed se-
quences. In particular, in this article he investigated polynomial sequences and
proved that a sequence of the form (p(n))n≥1 with p a polynomial is uniformly dis-
tributed if and only if p− p(0) has at least one irrational coefficient. The proof of
this theorem is based on applications of the Cauchy-Schwarz inequality. Together
with Weyl’s criterion this leads to the investigation of differences in the arguments
of exponential sums. These differences motivated van der Corput [9] to consider
them as such and to prove the following statement.

Theorem. Let (un)n≥1 be a sequence in T. If for all h ≥ 1 the sequence (un+h −
un)n≥1 is uniformly distributed, then the sequence (un)n≥1 is uniformly distributed.

This statement simplifies and shortens Weyl’s proof by using his idea to a greater
extend. The central tool of Van der Corput’s proof is the following inequality,
which has many applications apart from uniform distribution.

Theorem. Let (un)n≥1 be a complex valued sequence such that un = 0 for n < 1
and n > N . If H is a positive integer then

∣∣∣
∑

n≤N

un

∣∣∣
2

≤ N + H − 1

H

∑

|h|≤H

(
1 − |h|

H

) ∑

n≤N

un+hun.

B. Van der Corput sets. Van der Corput’s theorem states that it suffices to
consider the sequences of differences (un+h − un)n≥1 for h ∈ N. However, it can
be shown that it suffices to consider only a subset of the natural numbers. This
motivates the following definition.
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Definition. Let H ⊂ N be a set. Then we call H a van der Corput set (or
vdC set) if it has the following property: given a sequence (un)n≥1 in T, if for all
h ∈ H the sequences (un+h−un)n≥1 are uniformly distributed, then the sequence
(un)n≥1 is uniformly distributed.

Let us call (vdC) the class of all van der Corput sets. These sets were considered
from the aspects of pseudo-polynomials and uniform distribution in [1, 4, 6]. The
main interest for the field of ergodic theory originates from the following result of
Kamae and Mendès-France [7].

Theorem. Let H be a van der Corput set. Then we have the following property:
given a positive measure σ on T such that for all h ∈ H, σ̂(h) = 0, then σ({0}) = 0.

Some years later Ruzsa [8] proved further equivalent definitions of van der Cor-
put sets.

Theorem. Let H be a van der Corput set. Then the following properties hold.

(1) H is correlative, i.e. meaning that whenever (αn)n≥1 is a sequence of
complex numbers satisfying

∑

n≤N

|αn|2 = O(N) and

∑

n≤N

αn+hαn = o(N) (h ∈ H),

then ∑

n≤N

αn = o(N).

(2) Let ε > 0, then there is a polynomial P (x) =
∑

h∈H ah coshx with ah ∈ R

satisfying
P (x) ≥ 0, P (0) = 1, a0 ≤ ε.

(3) H is forcing continuity for positive measures (FC+), i.e. if σ ∈ M+(T)
is a positive measure on the circle and σ̂(h) = 0 for h ∈ H, then σ is
continuous.

As a corollary he obtained the following result.

Corollary. If I is an infinite subset of Z, then the set of differences H := {n−m :
n,m ∈ I and n 6= m} is a vdC set.

C. Van der Corput sets and recurrence. The main goal of this talk is to
draw the relations of van der Corput sets with recurrence sets and sets forcing
continuity.

Definition. We call a set H ⊂ Z Poincaré or recurrent if whenever (X,B, µ, T )
is a dynamical system and A is a measurable set of positive measure, then

µ(T−hA ∩ A) > 0

for some h ∈ H .



3016 Oberwolfach Report 50/2012

Let us call (P) the class of all recurrent sets. Since it is not so easy to relate van
der Corput sets and recurrent sets directly, we will make a detour to intersective
sets.

Definition. We call a set H ⊂ Z intersective if for all subsets S ⊂ Z with positive
upper density we have

H ∩ (S − S) 6= ∅.
Luckily for us Bertrand-Mathis [3] was able to show that the notions of in-

tersectivity and recurrence coincide. Now the following result by Kamae and
Mendes-France [7] connects the notion of van der Corput set and intersective set.

Theorem. If there exists a set S with nonzero upper density such that H ∩ (S −
S) = ∅, then H cannot be a van der Corput set.

Now together with the different equivalent definitions of van der Corput sets of
Ruzsa we obtain the following sequence of implications:

(FC+) =⇒ (vdC) =⇒ (P ).

Ruzsa [8] conjectured that also the inverse implications are true, however this was
disproved by Bourgain [5].

D. Enhanced vdC. In this final section of the talk we want to repair this chain
of implications. To this end Bergelson and Lesigne [2] introduced the notion of
enhanced vdC sets. In the same paper they showed that enhanced vdC sets share
many properties of vdC sets like:

(1) Ramsey property. If H = H1 ∪ H2 is an enhanced vdC set, then at least
one of the sets H1 and H2 is enhanced vdC.

(2) Sets of differences. Let H ∈ N. Suppose that, for all n > 0 there exists
a1 < a2 < · · · < an such that {aj − ai : 1 ≤ i < j ≤ n} ⊂ H . Then H is
an enhanced vdC set.

Furthermore they were able to show that the notions of enhanced vdC set and
FC+ set coincide. However for the case of enhanced vdC sets many questions are
open and the interested reader may find some of them in the paper of Bergelson
and Lesigne [2].
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Markov Processes and Ramsey Theory for Trees

Jakub Konieczny

In 2003, H. Furstenberg and B. Weiss published the paper “Markov Processes and
Ramsey Theory for Trees”, where they established new results in Ramsey theory
through application of novel recurrence properties for Markov processes [1]. The
aim of the talk is to summarize their work.

A fundamental question in Ramsey theory is to ascertain how large (in terms
of cardinality) a subset of a structured set must be, in order to ensure that some
structure is preserved in the subset. One of the most fundamental results in
Ramsey theory is van der Waerden’s theorem:

Theorem (van der Waerden). For any fixed length h and number of colors r,
there exists a lower bound on the length H such that if we color an arithmetic
progression of length at least H with r colors, then there exists a monochromatic
arithmetic sub-progression of length h.

We consider a generalization of this theorem to the context of trees. For this
purpose, we need to lay down some definitions. To begin with, a tree is defined to
be an acyclic graph with a distinguished vertex called root, so that every vertex
is connected with the root by exactly one simple path. When two vertices are
connected by an edge, the one that lies further from the root is said to be a
descendant of the closer one, and vertices that have no descendants are referred
to as leaves. All considered trees will have uniform height, meaning that all leaves
lie at the same distance, called the height of the tree, from the root.

If edges of a tree are all assigned letters from a fixed finite alphabet A, there is
a natural way of associating words over A with vertices of the tree. In fact, it is
convenient to define trees ab initio as subsets of words satisfying certain natural
conditions. A binary tree is a full tree over two letter alphabet, so in particular
all vertices except for leaves have exactly two descendants.

In order to consider Ramsey theory for trees, one also needs to introduce a
notion of substructure. The appropriate definition turns out to be quite subtle.
We define an arithmetic binary subtree to be a subset consisting of evenly spaced
vertices, structured in the shape of a binary tree, in a way so that any vertex
is connected by a path of fixed length to its two descendants. Additionally, we
require a property referred to as immediate branching, which says that the initial
edges of the two paths connecting a given vertex with its two descendants are
always assigned some two fixed, distinct letters of the alphabet. For a binary tree,
this simply means that the two paths leading to the descendants are disjoint.
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The first of the discussed theorems is an analogue of van der Waerden’s theorem
in the realm of trees.

Theorem A. For any fixed height h and number of colors r, there exists some
lower bound on the height H such that if we color a binary tree of height at least
H with r colors, then there exists a monochromatic arithmetic binary subtree of
height h.

The next result generalizes Theorem A in a way that is similar to the way that
Szemerédi’s theorem generalizes van der Waerden’s theorem. To state it, we need
to introduce the notion of the density of a subset of a tree. If the tree has height L,
then any maximal path p connecting the root and a leaf consists of L+ 1 vertices,
so for a subset S of the tree we can define the density of its restriction to p to be

Dp(S) = |S∩p|
L+1 . The density of S is then defined to be the average of Dp(S) over

all maximal paths p. With this definition, the higher a vertex is placed in a tree,
the larger weight is attached to it.

Theorem B. For any fixed height h and lower bound on density δ > 0, there exists
some lower bound on the height H such that if we take any subset of a binary tree
of height at least H with density at least δ, then the subset contains an arithmetic
binary subtree of height h.

The last of the discussed theorems concerns trees that are not necessarily bi-
nary. To control the behavior of considered trees, an additional parameter called
branching is introduced. For a tree with uniform height L, branching is the unique

∅
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aaa

aaaa aaab
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aaba aabb
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abaa abab
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baba babb
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a a

a a a

a a a a a
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b b

b b b

b b bb b b

Figure 1. An example of a tree over a two letter alphabet
A = {a, b}. The underlined vertices form an arithmetic binary
subtree. The subtree vertex baab cannot be replaced by baba (im-
mediate branching), nor by baa (equal spacing).
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number α > 0 such that the tree has 2αL leaves. A motivating example is a binary
tree, whose branching is equal to 1.

Theorem C. For any fixed height h, lower bound on the branching β > 0, and
upper bound on the degree s, there exists a lower bound on the height H such that
any tree of height at least H, branching at least β and vertex degree at most s + 1
contains an arithmetic binary subtree of height h.

The proofs of these theorems are very similar to analogous proofs of multi-
ple recurrence results in classical ergodic theory. Theorem A is an immediate
consequence of Theorem B, since for any coloring with r colors, one can find a
monochromatic set with density at least 1

r .
To prove Theorem B, we reduce it to a version of the Multiple Recurrence

Theorem for Markov processes by means of an explicit construction. The space for
the Markov system consists of infinite labeled Markov trees, which can be thought
of as trees with transition probabilities attached to edges and additional labels
attached to vertices. This is a far reaching generalization of the space of {0, 1}-
valued sequences. Transition probabilities for the Markov system are chosen in a
way that reflects random walks on the trees. These transitions roughly correspond
to the shift map on {0, 1}N. We also introduce an invariant measure, acquired
through a limit transition, so as to encode existence of certain positive density
subtrees. Application of the Multiple Recurrence Theorem to thus constructed
system directly proves Theorem B.

The proof of Theorem C follows along similar lines. One encodes the behavior
of positive density trees in a Markov system on the space of labeled Markov trees.
A crucial difference is that one needs to introduce the notion of entropy, together
with some continuity properties, in order to ensure that the constructed Markov
system is sufficiently non-degenerate.

The difficult step is to prove the version of the Multiple Recurrence for Markov
systems. One first reduces the general problem to a special class of endomorphic
Markov systems, which are analogous to invertible dynamical systems. The reduc-
tion follows from the facts that any Markov system is a factor of an endomorphic
Markov system, and that the claim for a factor follows from the claim for the larger
system. The proof of the Multiple Recurrence in the special case is based on a
construction of a dynamical system that can be used to approximate the Markov
system, thus reducing the problem to the grounds of the classical ergodic theory.
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Convergence Results Involving Multiple Ergodic Averages

Sun Wenbo

A. History. In [13], the following theorem was proved:

Theorem 1. Let G be a nilpotent group of measure preserving transformations
of a probability space (X,X , µ). Let f1, . . . , fl ∈ L∞(µ) and pi,j be integer valued
polynomials. Then for every T1, . . . , Tl ∈ G, the average

1

N

N∑

n=1

d∏

j=1

(T
p1,j(n)
1 . . . T

pl,j(n)
l )fj

converges in L2(µ).

We give a historical account of this problem. For l = 1, p1,i(n) = jn, for
j = 1, . . . , d, Theorem 1 was first proved in the paper [8] by Host and Kra and
subsequently Ziegler gave a different proof in [15]. In particular they proved the
following:

Theorem 2. Let (X,X , µ, T ) be an invertible measure preserving space, and
f1, . . . , fd ∈ L∞(µ). Then the limit

lim
N→∞

1

N

N∑

n=1

f1(T nx) . . . fd(T dnx)

exists in L2(µ).

The next natural step was to extend Theorem 2 from the linear case to the
polynomial case, i.e. prove mean convergence for the averages

1

N

N∑

n=1

f1(T p1(n)x) . . . fd(T pd(n)x)

which is the special case of Theorem 1 for l = 1. Bergelson proved it for weakly
mixing systems in [2]. In [6], Furstenberg and Weiss proved a special case for
d = 2, p1(n) = n, p2(n) = n2. The general case was proved by Host, Kra [9] and
Leibman [10]. A further natural step was to extend the previous result to the case
of commutative transformations, i.e. prove mean convergence for the averages

1

N

N∑

n=1

f1(T
p1(n)
1 x) . . . fd(T

pd(n)
d x)

when TiTj = TjTi, which is another special case of Theorem 1. When all the
polynomials are equal to n, Conze and Lesigne [4] proved this for the case d =
2. In [14], Zhang proved extended this result for d = 3 under the assumption
TiT

−1
j (i 6= j) is totally ergodic, and Frantizikinakis and Kra [5] extended this

result for general d under the same assumption. Later, the ergodicity assumptions
were dropped by Tao [11]. After that, alternative proofs were given by Austin [1],
Host [7] and Towsner [12]. For nonlinear polynomials, Chu, Frantzikinakis and
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Host [3] proved mean convergence under the assumption that the polynomials pi
have distinct degrees. Finally, Walsh proved Theorem 1 in [13].

We should also remark that Walsh’s proof uses little ergodic theory and is
similar in spirit to the proof of convergence for commuting transformations with
linear iterates given by Tao in [11]. Unfortunately, although such arguments are
particularly suitable for proving convergence, they give little information for the
limiting function, so in particular it is not clear if such arguments can be used to
prove multiple recurrence results. On the other hand the more complicated ergodic
arguments provide information for the limiting function (and in some cases give
an explicit description) that can be used to exhibit multiple recurrence.

Below we explain some ideas used in the Proof of Theorem 1.

B. L-Reducible functions. We letg = (g1, . . . , gd), gi(n) = T
p1,i(n)
1 . . . T

pl,i(n)
l .

To prove Theorem 1, we define the notion of an L-reducible function:

Definition. GivenL ∈ N and ǫ > 0, we say that σ ∈ L∞(µ) with ‖σ‖L∞(µ) ≤ 1
is an (L, ǫ)-reducible function (or L-reducible function) with respect to g, if there
exist M > 0, b0, . . . , bd−1 ∈ L∞(µ), ‖bi‖L∞(µ) ≤ 1, such that for all 0 ≤ l ≤ L, we
have

‖gd(l)σ − 1

M

M∑

m=1

< gd|1G >m (l)b0

d−1∏

i=1

< gd|gi >m (l)bi‖L∞(µ) ≤ ǫ,

where < g|h >m (n) = g(n)g−1(n + m)h(n + m).

By direct computation, we get the following two facts:
(i) If fd is orthogonal to any L-reducible function (L ≪ N), then the previous

averages converge to 0.
(ii) If fd is the linear combination of some L-reducible functions (L ≥ N), then

we can replace the family of functions g = (g1, . . . , gd) in the average (1) with a
new family g′ = (g1, . . . , gd−1, < gd|1G >m, < gd|g1 >m, . . . , < gd|gd−1 >m). We
call the procedure of transforming from g to g′ a step.

C. Structure theorem. Motivated by a traditional method used to prove con-
vergence for multiple ergodic averages, we want to decompose fd into two parts:
one part is orthogonal to any L-reducible function and another is the linear combi-
nation of some L-reducible functions. Unfortunately, we cannot do so because the
L in the previous observations cannot be the same one (one is larger than n and one
is smaller than n). Nevertheless, we can decompose fd into three parts instead of
two. We can write fd as fd = fd,1+fd,2+fd,3, where fd,1 can be viewed as “orthog-
onal to any L1-reducible function”, fd,2 can be viewed as “the linear combination
of some L2-reducible functions”, and fd,3 is an error term (L1 ≪ N ≤ L2).

D. Induction. The sketch of the proof of Theorem 1 is as follow: we first decom-
pose fd = fd,1 + fd,2 + fd,3 as mentioned before. Then the fd,1 part will be small
by observation (i) and so is the fd,3 part as it is the error term. By observation

(ii), for the fd,2 part, we can reduce the original family g to a new family g′. If we
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continue this procedure, we can reduce the family g′ to another family g′′. It can
be proved that this reduction will stop after finitely many steps when the family
becomes trivial. This finishes the proof as the convergence result is obvious for a
trivial family.
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Probabilistic Properties of Multiple Ergodic Averages

Evgeny Verbitskiy

Nonconventional ergodic theorems (also known as “multiple ergodic theorems”)
establish convergence of expressions like

S
(k)
N =

1

N

N∑

n=1

f1(T nx) . . . fk(T nkx),

where T : X → X is a measure-preserving transformation.
Recently, there has been a surge of new results establishing finer probabilistic

properties of non-conventional averages: namely, Central Limit theorems, Large
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Deviations results, and results on the validity of multifractal formalism for non-
conventional averages.

A. Central limit theorems. Principle results are due to Kifer and Varadhan [8,
10, 12, 11], who obtained central limit theorems for both discrete time expressions
of the form

1√
N

[Nt]∑

n=1

(
F
(
X(q1(n)), . . . , X(qℓ(n))

)
− F̄

)

and similar expressions in the continuous time where the sum is replaced by an
integral. Here X(n), n ≥ 0 is a sufficiently mixing stationary vector process with
some moment conditions, F is a continuous function with polynomial growth and
Lipschitz-regularity properties, F̄ =

∫
Fd(µ × · · · × µ), µ is the distribution of

X(0). The functions qi(n), i = 1, . . . , l, are positive functions assuming integer
values on integers with some growth conditions which are satisfied, for instance,
when qi’s are polynomials of increasing degrees. It is interesting to mention the
following phenomenon: if qi(n) = in for i ≤ k ≤ ℓ while for i > k, the polynomials
qi(n) grow faster than linear, then {q1, . . . , qk} and {qk+1, . . . , ql} have different
effect on the limiting process.

B. Large deviations results. Principle results are due to Kifer & Varadhan
[12] and Carinci, Chazotte, Giardina, and Redig [1]. Suppose µ is a translation
invariant measure on Σ = {−1, 1}N = {(xn)n∈N : xn ∈ {−1, 1}}. Does the rate
function

I(k)(a) = lim
ǫ→0

lim
n→∞

1

n
logµ

(
S
(k)
N ∈ [a− ǫ, a + ǫ]

)

exist and have nice properties? The natural candidate for I is the Legendre trans-
form of the “free-energy”

F (λ) = lim
n→∞

1

n
Eµ exp

(
λnS(k)

n

)
.

provided this limit exists and is differentiable. For Bernoulli measures µ (i.e.,
{xn} form an iid sequence of random variables), existence of rate functions has been
established by Kifer & Varadhan [12]. For Σ = {−1, 1}N and f(x) = x1 for x =
(x1, x2, . . . ), the rate function has been identified explicitly in [1] by making link to
Ising models of statistical mechanics. Kifer and Varadhan announced that in the
forthcoming paper existence of large deviations rate functions will be established
for Markov µ’s.

C. Multifractal analysis of nonconventional averages. Initiated by the pa-
per of Fan, Liao, and Ma [2], but also Kifer [9] , the study of the multiple ergodic
average from a point view of multifractal analysis have attracted much atten-
tion. The major achievements have been made by Fan, Kenyon, Peres, Schmeling,
Seuret, Solomyak, Wu and et al. ([3, 4, 5, 6, 7, 14, 13, 15]).
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Consider symbolic space Σ = {−1, 1}N, and for θ ∈ [−1, 1], consider also the
level sets

Bθ :=
{
x ∈ X : lim

n→∞
1

n

n∑

k=1

xkx2k · · ·xℓk = θ
}
.

Then Fan-Liao-Ma [2] showed that

dimH(Bθ) = 1 − 1

ℓ
+

1

ℓ
H
(1 + θ

2

)
,

where H(t) = −t log2 t− (1 − t) log2(1 − t) is the entropy function.
For the symbolic space Σ = {0, 1}N, one can similarly consider level sets

Aα :=
{

(ωk)∞1 ∈ Σ : lim
n→∞

1

n

n∑

k=1

ωkω2k = α
}

(α ∈ [0, 1]).

In [2], the authors asked to compute the Hausdorff dimension of the sets Aα’s.
It turned out to be a substantially more difficult question. As a first step, they
also suggested to study a subset of A0:

A′
0 :=

{
(ωk)∞1 ∈ Σ : ωkω2k = 0 for all k ≥ 1

}
.

One can show that A0 and A′
0 have the same Hausdorff dimension.

The Hausdorff dimension of A′
0 was later given by Kenyon, Peres and Solomyak

[7]:
dimH A = − log(1 − p),

where p ∈ [0, 1] is the unique solution of the equation

p2 = (1 − p)3.

Enlightened by the idea of [7], the question about Aα was finally answered by
Peres and Solomyak [13], and independently by Fan, Schmeling and Wu [3, 4]: for
any α ∈ [0, 1],

dimH Aα = − log2(1 − p) − α

2
log2

q(1 − p)

p(1 − q)
,

where (p, q) ∈ [0, 1]2 is the unique solution of the system
{

p2(1 − q) = (1 − p)3,
2pq = α(2 + p− q).

Multifractal problems lead to interesting combinatorial and probabilistic ques-
tions. At the present moment, only a very limited class of functions f can be
treated: for example, one can evaluate multifractal spectra corresponding to aver-
ages

1

n

n∑

i=1

xix2i . . . xki, x ∈ {−1, 1}N,

but not the spectra of

1

n

n∑

i=1

(xix2i + xix2ix3i).
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Szemerédi and van der Waerden Theorems for Commuting Actions of

Non-Commutative Groups

Phu Chung

In 1977, Furstenberg established an ergodic theorem for Z-actions which implies
the theorem of Roth on arithmetic progressions, the first nontrivial case of Sze-
merédi’s theorem [3, 4].

Let G be a countable group. Let {Tg}g∈G and {Sg}g∈G be commuting measure
preserving actions of G on a probability space (X,B, µ). In this talk, I will present
the proof of Bergelson, McCutcheon and Zhang [2], concerning an extension of the
ergodic Roth theorem for amenable groups and two of its applications: a multiple
recurrence theorem and a van der Waerden type theorem in this amenable setting.

A group G is called amenable if there exists a sequence {Fn}n∈N of nonempty

finite subsets of G such that ∀g ∈ G, |gFn∩Fn|
|Fn| → 1 as n → ∞. Amenability for

discrete groups is preserved by the following processes: taking subgroups, forming
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quotient groups, forming group extensions, forming upward directed unions of
amenable groups.

The class of amenable groups contains finite groups, abelian groups, nilpotent
groups, solvable groups, groups with polynomial growth and more general, groups
with sub-exponential growth. A free group with two generators F2 is a non-
amenable group.

Theorem. Let G be a countable amenable group. Let {Fn}n∈N be a left Folner
sequence of G. Then for any u, v ∈ L2(X,B, µ), the following limit

lim
n→∞

1

|Fn|
∑

g∈Fn

u(Tgx)v(SgTgx)

exists in the L1 norm.

A set A ⊂ G is right (left) syndetic if there is some finite set F ⊂ G such that⋃
f∈F Af = G (

⋃
f∈F fA = G).

Corollary. With the above assumptions, for any A ∈ B with µ(A) > 0, there
exists λ > 0 such that the set

Eλ = {g ∈ G : µ(A ∩ T−1
g A ∩ (SgTg)−1(A)) > λ}

is both left and right syndetic.

Corollary (Three dimensional van der Waerden-type theorem). Let G be a count-
able amenable group and r ∈ N. For any finite partition G × G × G =

⋃r
i=1 Ci,

the set

{g ∈ G : there exist i, 1 ≤ i ≤ r, and (a, b, c) ∈ G×G×G such that

{(a, b, c), (ag, b, c), (ag, bg, c), (ag, bg, cg)} ⊂ Ci}

is both left and right syndetic.

Minimal idempotent ultrafilters were used successfully by Bergelson and Mc-
Cutcheon [1] to get a stronger version of the first corollary for general countable
groups (not necessary amenable).

Let (G, ·) be a countable group. We denote by βG the space of ultrafilters on
G. The group operation · on G extends naturally to βG by the rule A ∈ p · q ⇔
{x ∈ G : Ax−1 ∈ p} ∈ q, where Ax−1 = {y ∈ G : yx ∈ A} for any p, q ∈ βG, and
A ⊂ G. Then (βG, ·) becomes a semigroup.

Let K be the union of the minimal right ideals of βG. Then K is a two-sided ideal
and indeed the smallest two-sided ideal. A minimal idempotent is an idempotent
ultrafilter p belonging to the minimal ideal K. A set A ⊂ G is a right central∗ set
if A ∈ p for any minimal idempotent p. We say that A ⊂ G is an inverse right
central∗ set if A−1 = {g−1 : g ∈ A} is a right central∗ set. Note that if A ⊂ G is
right central∗, then A is right syndetic and if A is inverse right central∗ then A is
left syndetic.
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Theorem. Let G be a countable group. Let {Tg}g∈G and {Sg}g∈G be commuting
measure preserving actions of G on a probability space (X,B, µ). Then for any
A ∈ B with µ(A) > 0, there exists λ > 0 such that the set

Eλ = {g ∈ G : µ(A ∩ T−1
g A ∩ (SgTg)−1(A)) > λ}

is both (right) central∗ and inverse (right) central∗.
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Recurrence Beyond Nilpotent Groups

Michael Björklund

A. General comments. Let G be a group equipped with a finite and symmetric
generating set S. For simplicity we can assume that S is of the form {g±1 , g±2 },
where g1 and g2 are elements of infinite order. If G is abelian, then the ergodic
Roth’s theorem asserts that for every ergodic probability measure preserving action
G on a standard Borel probability space (X,µ) and for every measurable subset
B ⊂ X of positive measure, there exists n 6= 0 such that

µ(B ∩ gn1B ∩ gn2B) > 0.

In particular, there exists n 6= 0 such that µ(gn1B ∩ gn2B) > 0. We stress that this
weaker version is an easy consequence of Poincaré Recurrence Theorem since we
can rewrite the last expression as µ(B ∩ (g−1g2)nB), and thus apply the latter
theorem for a single transformation.

This strategy fails if G is not abelian, and it is the aim of this talk to investigate
to which extent the conclusion fails for different classes for groups. More specifi-
cally, we will consider probability measure preserving group actions of non-abelian
groups G on standard Borel probability measure spaces (X,µ) and ask about the
existence of a positive measure Borel set B ⊂ X such that

µ(gn1B ∩ gn2B) = 0, ∀n 6= 0.

It is not too hard to build such examples for very non-abelian groups such as free
groups on at least two generators; however, as we will see in a very special case
and discuss in greater generality, this situation cannot occur for nilpotent groups.
However, it does occur already for non-nilpotent solvable groups. It is an open
problem to determine whether this can occur for groups of intermediate growth.
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B. Special cases. We are only going to discuss this topic for the following two
groups. Let A ∈ SL2(Z) and define

GA = Z ⋉A Z2,

which as a set can be identified with Z3, and the group multiplication is defined
by

(m,x)(n, y) = (m + n, x + Any), m, n ∈ Z x, y ∈ Z2.

If A is the identity matrix we recover Z3, if A is unipotent, e.g.

A =

(
1 1
0 1

)
,

then GA is nilpotent, and if A is hyperbolic, e.g.

A =

(
2 1
1 1

)
,

then GA is solvable, but not nilpotent.

We can distinguish between three special elements in GA, namely

a = (1, 0) b = (0, e2) c = (0, e1),

where ei, i = 1, 2, denote the standard basis in Z2. In the second case above, these
elements satisfy the relations

ab = cba ac = ca and bc = cb,

and in the third case, we have

ab = cba ac = c2ab and bc = cb.

Note that if GA acts by measure-preserving actions on a standard Borel probability
measure space (X,µ) and if B ⊂ X is a positive measure Borel set, then

µ(anB ∩ bnB) = µ(B ∩ cγn(a−1b)nB)

for all n, where γn is an integer sequence. If A is unipotent, then γn is a quadratic
sequence, and thus van der Corput methods (as in the ergodic proof of Sarközy’s
Theorem) can be utilized. This approach can be further developed for general
nilpotent groups, and it can be proved that the analogue of Roth’s theorem holds
here too ([1]).

If A is hyperbolic, then γn grows exponentially and we don’t expect any good
recurrence properties (for a general action). To construct an explicit example we
will use induction of sub-actions. The idea is to consider an isometric action of Z2

on T1 (and so given by an element τ ∈ HOM(Z2,T) with special properties and
then induce to a full GA-action. The special properties can be briefly encoded as
the non-recurrence of the element τ under the action of the transpose A∗ on T2;
this non-recurrence holds due to the hyperbolicity of A (and thus A∗).

The general construction of such counter-examples is due to Bergelson and
Leibman and can be found in [2].
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Sumset Phenomenon and Ergodic Theory

Dominik Kwietniak

This note surveys some recent results on properties of sumsets of infinite sets.

A. Introduction. In 1920, H. Steinhaus [9] proved that the set of distances
between the points of a Lebesgue measurable set A ⊂ R of positive measure fills
up an interval [0, ε) for some ε > 0. Steinhaus’ result has the following refinement,
known as Steinhaus Lemma:

Theorem. Let G be a locally compact group with identity e and let λ denote a left
Haar measure on G. If A is a λ-measurable subset of G such that 0 < λ(A) < ∞,
then the set AA−1 contains an open neighborhood of e.

A generic “sumset phenomenon” result says that the sumset of two large sets
has nontrivial structure, where notions of “largeness” and “structure” depend
again on the context. The first result of this type for the integers is the one of
Jin [8], who showed by methods of non-standard analysis that whenever A and
B are sets of integers having positive upper Banach density, the sumset A + B is
piecewise syndetic.

B. Notation. Let G be a group. If A and B are subsets of G and c ∈ G, then
we write Ac = {ac : a ∈ A}, AB = {ab : a ∈ A, b ∈ B}, A−1 = {a−1 : a ∈ A}.
If + is used to denote the group operation in G, as we always do if G is abelian,
then we denote these sets by A + c, A + B, and −A, respectively. An interval of
length k is any set I of k consecutive integers. A set A ⊂ Z is syndetic if for some
positive integer k any interval of length k contains an element of A. A set A ⊂ Z

is thick if A contains an interval of length k for any positive integer k. We say
that A is piecewise syndetic if A + [0, k] is thick for some k ∈ N. By |X | (X △ Y ,
respectively) we denote the cardinality of a set X (the symmetric difference of X
and Y , respectively). The relative density of a set A with respect to a finite set B
is defined as D(A|B) = |A ∩B|/|B|. The upper Banach density of a set A ⊂ Z is
the number

d∗(A) = lim sup
k→∞

max
n∈Z

D(A|{n, n + 1, . . . , n + k − 1}).
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C. Sumset phenomenon for Z. We say that a set A ⊂ Z is large if d∗(A) > 0.

Theorem (Jin 2002 [8]). If A,B ⊂ Z are both large, then A + B is piecewise
syndetic.

This result was strengthened by Bergelson, Furstenberg and Weiss [3]. They
replaced the conclusion that A + B is piecewise syndetic by the conclusion that
A + B is piecewise Bohr. Recall that the Bohr compactification of a discrete
countable group G is a compact Hausdorff topological group bG that may be
canonically associated to G. It is the largest compact Hausdorff group bG such
that there exists a non-necessarily one-to-one homomorphism ι : G → bG with a
dense image. It can be proved that every discrete countable group has a unique
(up to natural isomorphism) Bohr compactification. A set B ⊂ G is a Bohr set if

B contains ι−1(U) for some nonempty open set U ⊂ bG. If G is abelian and Ĝ

denotes the group of characters of G, then one can prove that bG = ι(G), where

ι : G → TĜ by g 7→ {γ(g)}γ∈Ĝ. Hence, for an abelian G a set B ⊂ G is Bohr if

there exists an integer n > 0, characters γ1, . . . , γn ∈ Ĝ, and a nonempty open set
U ⊂ Tn such that {g ∈ G : (γ1(g), . . . , γn(g)) ∈ U} is a nonempty subset of B.
For G = Z a set B is a Bohr set if and only if there exists a Kronecker system
(Z,Z,mZ , Rα) and a nonempty open set U ⊂ Z such that {n ∈ Z : Rn

α(e) ∈ U}.
A set B ⊂ Z is piecewise Bohr if it is an intersection of a Bohr set and a thick set.
Since every Bohr set is syndetic, piecewise Bohr sets are piecewise syndetic.

Theorem (Bergelson, Furstenberg and Weiss 2006 [3]). If A,B ⊂ Z are both
large, then A + B is piecewise Bohr.

Further refinement comes from Griesmer [6, 7].

Definition. Let ν = {νj} be a sequence of probability measures on (Z,P(Z)).
Define an upper density of a set A ⊂ Z with respect to ν as

dν(A) = lim sup
j→∞

νj(A).

Definition. A sequence ν = {νj} of probability measures on (Z,P(Z)) is an
equidistributed averaging sequence if for every θ ∈ (0, 2π) we have

lim
j→∞

∫
exp(inθ)dνj(n) = 0.

Theorem (Griesmer 2012 [7]). Let ν = {νj} be an equidistributed averaging se-
quence and let A,B ⊂ Z.

(1) If A is large and dν(B) > 0, then A + B is piecewise Bohr.
(2) If A is large and dν(B) = 1, then A + B is thick.

D. Sumset phenomenon for countable amenable groups. It is natural to
ask whether the above theorems are valid in a more general setting. It turns
that the last three theorems hold in all countable amenable groups [2, 7]. Those
are the groups in which it is possible to define an appropriate notion of density
generalizing upper Banach density. A countable discrete group G is amenable, if
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there exists a left invariant, finitely additive, probability measure µ defined for all
subsets of G. Equivalently, a countable group G is amenable if there is a Følner
sequence in G. A Følner sequence in a group G is a sequence F1, F2, . . . of finite
subsets of G such that for any g ∈ G we have

lim
n→∞

|gFn △ Fn|
|Fn|

= 0.

Given a Følner sequence F = {Fn} and A ⊂ G we define an upper density of
A with respect to F by setting dF (A) := lim supD(A|Fn) (n → ∞). The upper
density d∗(A) of a set A ⊂ G is defined as the supremum of dF (A) over all Følner
sequences F in G.

We say that a set S ⊂ G is syndetic if there is a finite set F ⊂ G such that
F ·S = G. A set T ⊂ G is thick if for each finite set F ⊂ G there exits a g ∈ G such
that Fg ⊂ T . A set B ⊂ G is piecewise syndetic (piecewise Bohr, respectively)
if it is an intersection of a syndetic set (Bohr set, respectively) and a thick set.
Every piecewise Bohr set is piecewise syndetic, but not conversely.

With all necessary changes the last three theorems hold in the setting of count-
able amenable groups (see [6, p. 41] for the definition of an ergodic averaging
scheme generalizing Definition ).

E. Concluding remarks and open problems. The original proof of Jin’s the-
orem [8] used nonstandard analysis. A nice and elementary proof of Jin’s result
may be found in [2]. The proofs in [2, 3, 7] rely on ergodic theory. Recently, Bei-
glböck [1] provided a beautiful short proof of Jin’s theorem and its generalization.
The proof is valid for an arbitrary countable amenable semigroup.

This short survey does not exhaust the subject. There is a preprint of di Nasso
[5] applying nonstandard analysis tools, and a forthcoming paper of Björklund and
Fish [4] contains a wealth of new results.

Let mbZ be the Haar measure on bZ.

Question (Question 5.1 of [7]). Let A ⊂ Z, and let Ã denote the closure of A in
bZ. Which, if any, of the following implications hold?

(1) If mbZ(Ã) > 0 and d∗(B) > 0,then A + B is piecewise syndetic.

(2) If mbZ(Ã) > 0 and d∗(B) > 0, then A + B is piecewise Bohr.

(3) If Ã = bZ and d∗(B) > 0, then A + B is thick.

Question (Question 5.2 of [7]). If A ⊂ Z is dense in bZ, is A a set of recurrence,
that is, for every measure preserving system (X,X , µ, T ) and every set D ∈ X
with µ(D) > 0, there exists n ∈ A such that µ(A ∩ T−nA) > 0?

Question (Question 5.3 of [7]). Suppose A ⊂ Z has the property that A + B is
thick whenever d∗(B) > 0. Must the following be true? “For all ergodic measure
preserving system (X,X , µ, T ) and every set D ∈ X with µ(D) > 0, we have
µ
(⋃

a∈A T aD
)

= 1.”

Question (Question 5.4 of [7]). Suppose A ⊂ Z has the property that A + B is
piecewise syndetic (alternatively, piecewise Bohr) whenever d∗(B) > 0. What can
be said about A?
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Topological Dynamics and Ramsey Theory

Bálint Farkas

The following classical result of B. L. van der Waerden confirms a conjecture of
Baudet [6].

Theorem 1 (van der Waerden). Let r ∈ N, and let

N = C1 ∪ C2 ∪ . . . ∪ Cr

be a partition (an r-coloring). Then for every k ∈ N there is a monochromatic
arithmetic progression of length k, i.e., there is j0 ∈ {1, . . . , r} and there are
a, n ∈ N, n 6= 0 such that

a, a + n, a + 2n, . . . , a + (k − 1)n ∈ Cj0 .

In [3] H. Furstenberg and B. Weiss realized how effectively methods from topo-
logical dynamics can be used to prove this and similar statements in Ramsey the-
ory. That very paper opened a whole new area of research, whose very essentials
this talk is concerned with.

The topological dynamical formulation of van der Waerden’s theorem reads as
follows:

Theorem 2 (van der Waerden, topological version). Let X be compact space, and
let T : X → X be a homeomorphism of X. Then for every open cover

X = U1 ∪ U2 ∪ · · · ∪ Ur

and for every k ∈ N, there is j0 ∈ {1, 2, . . . , r}, and there is n ∈ N, n 6= 0, such
that

(1) Uj0 ∩
k−1⋂

i=1

T−niUj0 6= ∅.
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To see how this result follows from van der Waerden’s theorem, we induce a
coloring of N by means of the given open cover and an element x ∈ X : Define

χ(n) := min
{
j ∈ {1, . . . , r} : T nx ∈ Uj

}
.

Now, an arithmetic progression a, a + n, . . . , a + (k − 1)n of length k in color
j0 yields that T ax belongs to the intersection given in (1). In turn, van der
Waerden’s theorem can be deduced from the topological version above by studying
the recurrence properties of the shift transformation on a suitable subsystem of
the space {1, . . . , r}N of all r-colorings.

In [1] V. Bergelson and A. Leibman generalized Theorem 2 for polynomial ex-
pressions of commuting homeomorphisms. An integral polynomial is a polynomial
p ∈ Z[x] with p(0) = 0. Given T1, T2, . . . , Tt : X → X commuting homeomor-
phisms and integral polynomials p1, p2, . . . , pt we call

g(n) := T
p1(n)
1 T

p2(n)
2 . . . T

pt(n)
t

a polynomial expression.

Theorem 3 (Bergelson, Leibman). Let X be a compact space, let T1, . . . , Tt be
commuting homeomorphisms of X, and let A be a finite set of non-trivial polyno-
mial expressions of these homeomorphisms. Then for every open cover

X = U1 ∪ U2 ∪ · · · ∪ Ur

there is j0 ∈ {1, 2, . . . , r} and there is n ∈ N, n 6= 0, such that

Uj0 ∩
⋂

g∈A

g−1(n)Uj0 6= ∅.

The proof of this result uses the Polynomial Exhaustion Technique due to
Bergelson, now classically termed as PET-induction, which is a powerful tool for
proving statements about finite subsets of integral polynomials by induction along
a suitable well-ordered set (in this case, the set of weight functions). In the talk I
showed some details of the proof.

Remark. (1) The merit of the topological dynamical approach becomes ap-
parent, when we pass to minimal subsystems. In fact, it is enough to prove
Theorem 3 for minimal systems, i.e., when there are no nontrivial closed
subsets of X invariant under the action of the transformations. In this
case, the following is true: For every nonempty open V ⊆ X there is an
n ∈ N, n 6= 0, with

V ∩
⋂

g∈A

g−1(n)V 6= ∅.

(2) If T1, . . . , Tt act minimally on X and X is metric, then the set of x ∈ X
for which there exists (nk) ⊆ N with g(nk)x → x for all g ∈ A as k → ∞
is a dense Gδ set, in particular, it is residual. This explains why results as
Theorem 2 may be called multiple recurrence theorems.
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(3) If we set A := {gj(n) = T jn : j = 1, . . . , t} for some given homeomorphism
T : X → X , we obtain the first straightforward generalization of Birkhoff’s
recurrence theorem (corresponding to the case t = 1), i.e., the topological
van der Waerden theorem. The case when A = {gj(n) := T n

j : j = 1, . . . , t}
for some commuting homeomorphisms T1, T2, . . . , Tt : X → X is also due
to Furstenberg and Weiss [3].

(4) Leibman [5] proved that Theorem 3 remains valid even if T1, T2, . . . , Tt

generate a nilpotent group. The proof is verbatim the same as the one for
Theorem 3 as soon as one defines suitable weights of systems of polynomial
expressions (by using bases in nilpotent groups).

(5) The proof of Theorem 3 yields that the set of good n ∈ N has a special
structure. A subset S of N is called an IP set if there is a sequence
(nk) ⊆ N such that all nonrepeating, nonempty finite sums formed from
the elements of the sequence belong to S. Now, if T1, . . . , Tt act minimally
on X , then there is a j0 ∈ {1, . . . , r} such that set

{
n : Uj0 ∩

⋂

g∈A

g−1(n)Uj0 6= ∅
}

intersects every IP set nontrivially, i.e., it is a so-called IP∗ set.

That IP∗ sets are in a certain sense large, is the consequence of Hindman’s
theorem [4].

Theorem 4 (Hindman, additive version). If

N = C1 ∪ C2 ∪ . . . ∪Cr ,

then there is j0 ∈ {1, . . . , r} such that Cj0 is an IP set.

Theorem 5 (Hindman, set theoretic version). Let F be the set of nonempty,
finite subsets of N. If

F = C1 ∪C2 ∪ . . . ∪Cr ,

then there is j0 ∈ {1, . . . , r} and a sequence (αi) of disjoint finite nonempty subsets
of N such that αi together with any finite union of them belongs to Cj0 .

These two formulations can easily be seen to be equivalent, by considering the
binary expansion of natural numbers and the binary sequence then as a charac-
teristic sequence of a subset of N. The additive version of Hindman’s theorem can
be conveniently proved by using enveloping semigroups of topological dynamical
systems, idempotents therein and the notion of proximality, see [3].

Remark. (1) Hindman’s theorem yields that IP sets are partition regular.
This in turn gives that the dual family of IP∗-sets is closed under taking
finite intersections, and in fact it is a filter, see [2, Ch. 8]. Note that a
subset S ⊆ N is an IP∗ set if and only if it is contained in every idempotent
ultrafilter over N.



Arbeitsgemeinschaft: Ergodic Theory and Combinatorial Number Theory 3035

(2) The set F is directed under the relation: α < β iff maxα < min β. Given
X a compact metric space, a net (xα)α∈F ⊆ X and a sequence (αj)j∈N ⊆
F of pairwise disjoint sets, we set x̂α := x⋃

j∈α αj
. Then (x̂α)α∈F is called a

sub-IP-net of (xα)α∈F . Hindman’s theorem is equivalent to the following:
Every net (xα)α∈F in a compact metric space has a convergent sub-IP-
net. The deduction of this statement from the set theoretic version of
Hindman’s theorem can be carried out along the same lines as the proof
of the Bolzano–Weierstraß theorem, but now by using Theorem 5 as the
structured infinite pigeon-hole principle.
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Ultrafilters and Coloring Problems

Andreas Koutsogiannis

The goal of this talk is to give applications of ultrafilters to partition Ramsey
theory.

The first principle of Ramsey theory is that when we have an infinite highly
organized structure (for example a semigroup), then, for any finite coloring of this
structure we can find arbitrarily large (sometimes even infinite) monochromatic
highly organized substructures. The second principle is that there is a notion of
largeness such that any large set contains these highly organized substructures.

The first of the classical results of Ramsey theory are due to Hilbert, Schur and
van der Waerden (see [4]).

Hilbert’s Lemma states that we can find infinite monochromatic translations of
a set of finite sums.

Theorem 1 (Hilbert, 1892). For any finite coloring N =
⋃r

i=1 Ci, r ∈ N, and
for any n ∈ N, there exists 1 ≤ i0 ≤ r such that for some xj , j = 1, . . . , n and for
infinitely many t we have

t + FS((xj)
n
j=1) = t +

{∑
j∈α xj : ∅ 6= α ⊆ {1, . . . , n}

}
⊆ Ci0 .

Schur allows one to omit the translates on the finite sums when n = 2.

Theorem 2 (Schur, 1916). If N =
⋃r

i=1 Ci, r ∈ N, there exist 1 ≤ i0 ≤ r and
x, y, z ∈ Ci0 such that x + y = z.
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The following result is due to van der Waerden and it is one of the most fun-
damental results of Ramsey theory.

Theorem 3 (van der Waerden, 1927). Whenever the natural numbers are finitely
partitioned, one of the cells of the partition contains arbitrary long arithmetic
progressions.

One may wonder why it is called Ramsey theory. The reason is that Ramsey’s
theorem is a more general structural result, not depending on the arithmetical
structure of N.

Theorem 4 (Ramsey, 1930). Let M be an infinite subset of N and k, r ∈ N. If
[M ]k = {m1 < . . . < mk : mi ∈ M, 1 ≤ i ≤ k} and we have [M ]k =

⋃r
i=1 Ci,

then there exist 1 ≤ i0 ≤ r and an infinite subset L of M such that [L]k ⊆ Ci0 .

We define the filters and ultrafilters of the set of the natural numbers and we
extend the addition (resp. the multiplication) of N to the set of ultrafilters of N,
βN, which is the Stone-Čech Compactification of N. For X 6= ∅ the ultrafilters of
X are the finite additive {0,1}-valued measures on the subsets of X (see [1], [5]).

Via a fundamental result of Ellis, we prove the existence of idempotent ultra-
filters and we use this fact in order to give a proof of Hindman’s theorem a la
Poincaré recurrence (see [1], [2], [5]).

Theorem 5 (Hindman, 1974) Let N =
⋃r

i=1 Ci, r ∈ N, be a finite coloring of the
set of the natural numbers. Then, there exist an infinite sequence (xn)n∈N ⊆ N

and 1 ≤ i0 ≤ r such that

FS((xn)n∈N) = {∑i∈α xi : ∅ 6= α ⊆ N, |α| < ∞} ⊆ Ci0 .

At this point, note that Hindman’s result is a generalization of the results of
Hilbert and Schur. In addition, we prove that a subset of the natural numbers is
a member of an idempotent ultrafilter if and only if it contains an IP-set (i.e. the
finite sums of an infinite sequence). Hence, we can say that Hindman’s theorem is
the density version of itself.

Since there exist IP-sets that do not even contain arithmetic progressions of
length 3 (take for example FS((10n)n∈N))), not every idempotent may reveal
something about van der Waerden’s theorem. In order to prove van der Waerden’s
theorem we first prove the existence of a minimal idempotent (see [2]) according
to the partial order between idempotents

µ ≤ ν ⇐⇒ µ ∗ ν = ν ∗ µ = µ, where

µ ∗ ν(A) = µ({n ∈ N : ν({m ∈ N : n + m ∈ A}) = 1}) for every µ, ν ∈ βN,
A ⊆ N,

showing that a subset of the natural numbers which is a member of a minimal
idempotent contains arbitrary long arithmetic progressions (these sets are called
central).

In order to mix the two structures, that of the addition and the multiplication,
of N, we prove (see [3]) the existence of an additively and multiplicatively central
set in N.
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Theorem 6 (Bergelson, Hindman, 1990). For any finite partition N =
⋃r

i=1 Ci,
there exists 1 ≤ i0 ≤ r such that Ci0 is both additively and multiplicatively central.

So, for every finite partition of the set of natural numbers, there exists a com-
binatorial rich cell of the partition that contains arbitrary large arithmetic pro-
gressions, arbitrary large geometric progressions, an additively IP-set, as well as a
multiplicatively IP-set.

Finally, we stated some more coloring results concerning words, the proof of
which uses the minimal idempotents in an essential way.
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Ultrafilters and Ergodic Theory

Jason Rute

This talk is a survey on how ultralimits (or p-limits) can be used to prove recurrence
results in ergodic theory, which in turn have combinatorial consequences such as
the following.

Theorem 1. Partition N into A1 ∪ . . . ∪ Ak. Then there is some i (1 ≤ i ≤ k)
and some x, y, z ∈ Ai such that x− y = z2.

The main idea is that recurrence results can be strengthened by replacing av-
eraging limits with ultralimits, while the proofs remain similar.

A. Background on ultrafilters. Recall the following definitions and facts.

Definition. An ultrafilter p on N is a collection of subsets of N such that the
following hold: (1) For all A,B ⊆ N, if A ∈ p and A ⊆ B, then B ∈ p. (2) For all
A,B ⊆ N, if A ∈ p and B ∈ p, then A∩B ∈ p. (3) ∅ /∈ p. (4) If N = A1∪ . . .∪Ak,
then Ai ∈ p for some i (1 ≤ i ≤ k).

The collection of ultrafilters on N is denoted βN, and is homeomorphic (under
an appropriate topology) to the Stone-Čech compactification of N. Informally, an
ultrafilter is a measure of largeness. Some set A is p-large, or has p-measure one
if A ∈ p.
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Definition. Addition on N is extended to βN via

∀A ⊆ N A ∈ (p + q) ⇔ {n ∈ N | (A− n) ∈ p} ∈ q

where A− n = {m ∈ N | m + n ∈ A}.

Definition ([4]). Given p ∈ βN, say that

(1) p is idempotent if p + p = p.
(2) p is essential idempotent if p is idempotent and for all A ∈ p, A has positive

upper Banach density, i.e.

lim sup
|N−M|→∞

1

N −M
|A ∩ [M, . . . , N − 1]| > 0.

(3) p is minimal idempotent if p is idempotent and p belongs to a minimal
right ideal of (βN,+).

Let A ⊆ N. Say that A is an “IP”, D, C set if, respectively, A ∈ p for some
idempotent, essential idempotent, minimal idempotent p ∈ N. Say that A is a
IP ∗, D∗, C∗ set if, respectively, A ∈ p for all idempotent, essential idempotent,
minimal idempotent p ∈ N. (C sets are also called central sets. What I refer to as
“IP” sets can also be characterized combinatorially via Hindman’s theorem.)

The previous definitions are measures of “largeness” and they satisfy the fol-
lowing implications

IP ∗ ⇒ D∗ ⇒ C∗ ⇒ C ⇒ D ⇒ “IP”.

B. Ultralimits. Let (xn)n∈N be a sequence from a compact Hausdorff space X .
Let p ∈ βN.

Definition. Say that p -limn∈N xn = a if and only if for all neighborhoods U of
a, we have {n ∈ N | xn ∈ U} ∈ p. This is the ultralimit of (xn) under p. (An
alternate notation is limn→p xn; here n → p in the topology of βN.)

Proposition 1. The ultralimit p -limn∈N
xn exists (because X is compact) and is

unique (because X is Hausdorff).

This next proposition is a consequence of ultrafilter addition.

Proposition 2. Given p, q ∈ βN,

p -lim
n∈N

q -lim
m∈N

xn+m = q+p -lim
k∈N

xk.

Hence if p ∈ βN is idempotent, then

p -lim
n∈N

p -lim
m∈N

xn+m = p -lim
k∈N

xk.
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C. A refinement of a theorem of Sárközy and Furstenberg. Using ultra-
limits, one can state and prove the following refinement of a theorem of Sárközy
[8] and Furstenberg [7].

Theorem 2 ([1]). Let q ∈ Q[n] such that q(Z) ⊆ Z, and q(0) = 0. Let (X,B, µ, T )
be an invertible measure preserving system and A ∈ B. For any idempotent p ∈ βN,

p -lim
n∈N

µ(A ∩ T q(n)A) ≥ µ(A)2.

Also, since p is an arbitrary idempotent, for all ε > 0,

(1) {n ∈ N | µ(A ∩ T q(n)A) > µ(A)2 − ε} is IP ∗.

Theorem 1 follows from Theorem 2 by the Furstenberg correspondence principle
and the fact that one of the Ai in the partition is both “IP” and has positive upper
Banach density (see [2]). This is stronger than the Sárközy and Furstenberg result
which only shows that there is a monochromatic x, y such that x − y is a perfect
square. The added strength comes from (1) which lets us choose some z in the
same part as x and y.

The proof of Theorem 2, however, is similar to more classical versions using
averaging limits: The space of L2 functions is decomposed into two orthogonal
subspaces. One decomposition is handled using an idempotent ultralimit version
of the van der Corput trick, while the other makes heavy use of Proposition 2.

D. Ultralimits and factors. Using stronger ultrafilters, we can characterize the
Kronecker factor and weak mixing.

Proposition 3 ([2, 4]). Let (X,B, µ, T ) be an invertible measure preserving
system. Let p ∈ βN be an essential (or minimal) idempotent. Then the Kronecker
factor is {

f ∈ L2

∣∣∣∣ p -lim
n∈N

T nf = f

}
.

(Here the ultralimit is in the weak-topology. Hence the unit ball is compact and
the ultralimit exists.)

Idempotent ultrafilters can be used to characterize mild mixing as well (see [2]).
Using essential idempotents and Proposition 3, one can prove a version of Sze-

merédi’s theorem for generalized polynomials [6].
All the ultralimit definitions and facts on N also extend to any countable group

G. Hence, one can use minimal idempotents in βG with a version of Proposition 3
to prove the following nonamenable, noncommutative version of Roth’s theorem
for groups.

Theorem 3 ([5]). Let G be a countable group. Let (X,B, µ) be a probability
space. Let (Tg)g∈G and (Sg)g∈G be measure preserving actions of G such that
TgSh = ShTg for all g, h ∈ G. Then all A ∈ B and for all ε > 0,

{g ∈ N | µ(A ∩ T−1
g A ∩ S−1

g T−1
g A) > ε} is C∗.
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For further information on ultralimits in ergodic theory and additive combina-
torics, see the surveys [1, 2, 3].
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merédi’s theorem for generalized polynomials, J. Anal. Math. 111 (2010), 77–130.

[7] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton
University Press, Princeton, N.J., 1981.
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Multiple Recurrence for Generalized Polynomials

Pavel Zorin-Kranich

The extension by Furstenberg and Katznelson [7] of Furstenberg’s multiple re-
currence theorem [6] can be formulated as follows. For any commuting measure-
preserving transformations T1, . . . , Tk on a probability space (X,µ) and every
A ⊂ X with µ(A) > 0, for any linear functions gi : Z → Z, i = 1, . . . , k, the
multiple recurrence set

R := {n ∈ Z : µ(T
−g1(n)
1 A ∩ · · · ∩ T

−gk(n)
k A) > 0}

is syndetic. Furstenberg and Katznelson later showed that R is in fact IP* [8] using
methods that can be called “ergodic theory without averaging”, in particular IP-
limits instead of Cesàro limits. This turned out to be a powerful tool, used for
instance in their proof of the density Hales-Jewett theorem [9].

Another generalization has been found by Bergelson and Leibman who showed
that R remains syndetic under the assumption that gi : Z → Z are polynomials
vanishing at zero [3]. The first step to combining this result with the above has
been made by Bergelson, Furstenberg and McCutcheon in the case k = 2 [1].
The main result of their paper states that, for an arbitrary unitary operator U ,
polynomial g : Z → Z vanishing at zero and IP system (nα) the weak limit

w-IPα-limUg(nα)
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is an orthogonal projection provided that it exists. Since by Hindman’s theorem
[10] the existence can be assumed without loss of generality (i.e. upon passing to
a sub-IP-system), a simple Hilbert space argument shows that R is IP*. This
result has been extended to higher values of k by Bergelson and McCutcheon
[4] who developed an appropriate version of the Furstenberg-Katznelson structure
theory for measure preserving systems. Roughly speaking, in this theory the above
Hilbert space projection result was utilized to construct compact sub-extensions
of extensions that are not weakly mixing.

The proof of the above Hilbert space projection result relies on a certain al-
gebraic property of the map α 7→ g(nα), namely that is an FVIP system, i.e. it
belongs to a finitely generated group of VIP systems (IP analogues of polynomials)
closed under discrete derivatives. The notion of an FVIP system has gained impor-
tance after Bergelson, H̊aland and McCutcheon [2] found new examples that come
from admissible generalized polynomials. These are, roughly speaking, functions
Z → Z obtained from the identity function n 7→ n using standard algebraic op-
erations and the composition of an R-linear combination with the nearest integer
function. Thus for instance ⌊an2 + ⌊bn + 1/2⌋ + 1/3⌋ is an admissible general-
ized polynomial while ⌊πn⌋ is not since ⌊· + 1/3⌋ “looks like” the nearest integer
function ⌊·+1/2⌋ while ⌊·⌋ does not. It is arguably the main result of the aforemen-
tioned article [2] that for every IP system (nα) and every admissible generalized
polynomial g there exists a sub-IP-ring on which g(nα) is an FVIP system.

For an FVIP system (gα) and an arbitrary unitary operator U the weak limit

P = w-IPα-limUgα

is an orthogonal projection provided that it exists. This allowed McCutcheon
to extend the multiple recurrence theorem to admissible generalized polynomials
[12] along the lines of his earlier joint work with Bergelson [4], obtaining that
R is IP* under the assumptions that the functions gi are admissible generalized
polynomials.

All above results generalize to the case when T1, . . . , Tk generate a nilpotent
group as shown by Leibman [11] and the speaker [13]. It should be noted that P
fails to be a projection for a general VIP system (see [1] for a counterexample), but
it is conjectured that the limit is always a positive operator. If true, such a result
could be the first step on the way to a joint extension of the density Hales-Jewett
theorem and the polynomial multiple recurrence results.

Another approach to multiple recurrence for generalized polynomials is due to
Bergelson and McCutcheon [5] and uses ultralimits instead of IP-limits. It is not
yet fully explored, in particular only the case T1 = · · · = Tk has been treated
in a satisfactory generality. The first step in this argument is again a Hilbert
space projection theorem, this time stating not only that P = p- limUg(n) is a
projection but also that its range is the Kronecker factor. It is also applicable
to a class of functions g larger than the admissible generalized polynomials. The
fact that the range of P is the Kronecker factor greatly simplifies some of the
further steps, for instance one can reuse the classical Furstenberg structure theory.
These improvements come at a price: one has to work with essential idempotent
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ultrafilters p, leading for instance to the conclusion that R is D* (a property weaker
than IP* but still stronger than syndeticity).
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Ultrafilters, Nonstandard Analysis and Characteristic Factors

Heinrich-Gregor Zirnstein

A. Introduction. The aim of this talk was to give a short introduction to non-
standard analysis [1, 6] and Loeb measures [3] motivated by the recent application
of these techniques to ergodic theory. For instance, Towsner [5] gives a proof of
the convergence of multiple ergodic averages by using nonstandard intervals to
construct measure preserving systems. Likewise, Szegedy [2] proves structure the-
orems in additive number theory by working with ultrapowers of the finite groups
Z/NZ.

B. Ultrapowers. The original motivation for nonstandard mathematics was to
make rigorous the notions of infinitely large and infinitesimally small numbers.
This can be done by enlarging the set of natural numbers N to the set of nonstan-
dard natural numbers ∗N as follows:
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Definition (Ultrapower). Pick a non-principal ultrafilter p on N. The ultrapower
∗V of a set V is defined as the set of equivalence classes of sequences

∗V :=
∏

n→p

V := (
∏

n∈N

V )/∼

where two sequences are considered equal if they are equal for “most” indices

(an) ∼ (bn) ⇐⇒ {n : an = bn} ∈ p.

The constant sequences embed V ⊆ ∗V . Furthermore, the ultrapower shares
many properties with the original set, all operations and relations on V can be
extended to ∗V so that any expression that makes sense over V , like a+b > c, also
makes sense over ∗V . In fact, the ultrapower has essentially the same properties
as the original set:

Theorem (Transfer principle). Let ϕ be a logical formula with quantifiers that
range of the sets V,P(V ), . . . . Let ∗ϕ denote the formula obtained when replacing
the ranges of quantifiers with the ultrapowers ∗V, ∗P(V ), . . . . Then, ϕ holds true
if and only if ∗ϕ holds true.

For example, the induction principle for standard numbers

ϕ = ∀.S ∈ P(N).∃s ∈ N.∀x ∈ N.s ∈ S ∧ (x ∈ S =⇒ s ≤ x)

is equivalent to the induction principle for the nonstandard numbers

∗ϕ = ∀.S ∈ ∗P(N).∃s ∈ ∗N.∀x ∈ ∗N.s ∈ S ∧ (x ∈ S =⇒ s ≤ x).

Note that ∗P(V ) is the ultrapower of the powerset, which is much smaller than
the collection P(∗V ) of all subsets, ∗P(V ) ( P(∗V ). Sets of the former form are
called internal sets. Thus, the nonstandard induction principle does not apply to
all subsets of the nonstandard numbers, only to the internal subsets. Exercise:
the set N is not internal. Likewise, the internal functions are defined as sequences
of functions.

The first example of an element of ∗N that is not in N is given by the (equivalence
class of the) sequence c ∈ ∗N with cn = n. As this sequences eventually grows
larger than any constant sequence, it is larger than any standard number, i.e. we
have

∀m ∈ N. c > m

Numbers with this property are called unbounded, they are “infinitely large”.
We can also introduce the notion of infinitesimal numbers.

Definition. Let r ∈ ∗R be a hyperreal number.

• The hyperreal number r is called bounded if it can be bounded by a stan-
dard number

∃L ∈ R.|r| < L.

• The hyperreal number r is called infinitesimal if it is smaller than every
standard number

∀ε ∈ R. |r| < ε.
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• Every bounded number has a standard part

st(r) := unique x ∈ R such that x− r is infinitesimal

C. The Loeb measure. Having infinite numbers at our disposal, we can also
make sense of integrals as infinite sums. The connection to classical measure theory
is given by the construction of the Loeb measure.

Theorem. (Loeb measure) Let c ∈ ∗N be an unbounded nonstandard number and
consider the interval of natural numbers [1, c] ⊂ ∗N. There exists a σ-algebra L
and a unique measure ν on L, the Loeb measure, with the following properties

• The σ-algebra L contains all internal subsets of this unbounded interval.
• The Loeb measure counts elements

ν(A) = st

( |A|
c

)
for A internal.

• The σ-algebra L is complete in the measure-theoretic sense

A ⊆ B,B ∈ L, ν(B) = 0 =⇒ A ∈ L.
Given a measure, we can define measurable and integrable functions in the usual

way. For internal functions, the integral is just an unbounded sum.

Lemma. Let f : [1, c] → ∗R be a finitely bounded internal function. Then, the
function st ◦f is integrable and we have

∫
st(f(x))d(x) = st

(
1

c

c∑

k=1

f(k)

)
.

D. A universal measure preserving system. In a sense, the shift on the
nonstandard interval [1, c] is the prototypical measure preserving system.

Definition. Let c ∈ ∗N be unbounded. Consider the interval [1, c] and the measure
preserving system ([1, c],L, ν, T ) with the transformation

T (n) = (n + 1) mod c.

This system is called a universal system.

Proposition. Every standard Borel space ([0, 1],B, µ) with a measure preserving
transformation T is a factor of the universal system.

Essentially, this just means that the integral in any measure preserving system
can be represented by an infinite sum, very much in the spirit of the pointwise
ergodic theorem, which tells us that

1

c

c∑

n=0

f(T nx) →
∫

fdµ,

at least in the case where the transformation is ergodic. Thus, the universality
can be deduced from the pointwise ergodic theorem, but this is not required, see
[4] for a proof from first principles.
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Nilspace factors of ultra product groups and Gowers norms

Balázs Szegedy

Furstenberg’s correspondence principle provides a classical example for a limit
theory. Assume that for every i ∈ N we have a 0 − 1 sequence Si of length i.
We say that {Si}∞i=1 is convergent if the frequency of every fixed pattern (for
example 0110) converges as i goes to infinity. Furstenberg constructed a natural
limit object for a convergent sequence {Si}∞i=1 in the form of a measure preserving
system ({0, 1}Z,B, µ, T ) where µ is a probability measure on the Borel σ-algebra
B of the compact space {0, 1}Z that is invariant under the coordinate-wise shift T .
This correspondence creates a very fruitful link between additive combinatorics
and dynamical systems.

Dynamical systems in general can be very chaotic. A major tool to isolate
manageable structures in them is the concept of factor. Let (X,A, µ, T ) be a
measure preserving system. A factor of this system is given by a sub-σ-algebra
B ⊂ A with T−1(B) ⊆ B. A factor is particularly useful if the system (X,B, µ, T )
is simple enough to analyze but rich enough to carry information about a given
question. Let f ∈ L∞(X,A, µ) be a function. The goal is to make sure that
the projection E(f |B) is similar to f regarding a given property. Philosophically,
we can say that fs := E(f |B) is the structured part and fr := f − fs is the
noise (or quasi-random part) of f . One of the oldest examples is the Kronecker

factor K. It is the unique biggest factor which is isomorphic to a compact abelian
group with a shift. Furstenbergs’s ergodic theoretic proof of Roth’s theorem on
3-term arithmetic progressions relies on the fact that projections to this factor
preserve averages related to 3-term arithmetic progressions. An important point
of view in the subject was brought in by Host and Kra [4] who developed a way of
characterizing factors using norms. The norms they introduced are called Host-
Kra semi norms and are close relatives of the so-called Gowers norms. Let f be a
function on a finite abelian group A. The k-th Gowers norm [3] of f is defined by

‖f‖2kUk
= E

(
∆t1(∆t2(. . .∆tkf(x) . . . ))

)

where ∆tf(x) = f(x)f(x + t) and the expected value is taken over independent
random choices of t1, t2, . . . , tk and x.
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Our goal is to point out that many useful ideas in ergodic theory can be trans-
ferred to a more general picture in the frame of which dynamical systems are
replaced by various limit constructions. We continue by describing a convenient
framework for limit structures using ultra products.

Let ω be a non-principal ultra filter on N. If {Xi}∞i=1 is growing sequence of
finite sets then the ultra product space X =

∏
ω Xi is the set of equivalence classes

of
∏

i Xi such that (x1, x2, . . . ) ∼ (x′
1, x

′
2, . . . ) if and only if {i : xi = x′

i} is a set
in ω. Let Q denote the family of subsets Y ⊆ X which have the form Y =

∏
ω Yi

where Yi ⊂ Xi for every i ∈ N. Sets in Q generate a σ-topology T (see [8]) on
X that is similar to an ordinary topology but only countable unions of open sets
are guaranteed to be open. With this topology X is compact in the sense that if
it is covered by a countable union of open sets then there is a finite sub-system
which already covers X . We will also consider the σ-algebra A generated by T .
There is a unique probability measure µ on (X,A) which has the property that
µ(Y ) = limω µi(Yi) for every Y ∈ Q where µi is the uniform measure on Xi.

The space X equipped with the topology T and probability space structure
(X,A, µ) serves as a pre-limit object of the spaces Xi. Typically it is assumed
that the sets Xi are models of a fixed axiom system (graphs, hypergraphs, groups,
fields, vectorspaces, etc...). In this case X is a measurable and topological struc-
ture satisfying the same axioms. A factor of X is a sub-σ-algebra of A which
preserves certain algebraic structures. The precise definition depends always on
the specific context. Limit theories arise when we study projections to these fac-
tors. It was demonstrated in [2] that both Szemerédi’s regularity lemma [10] and
the Hypergraph regularity theory [6] can be obtained by projections of ultra prod-
uct graphs (resp. hypergraphs) to certain factors. In particular it produces a new
proof of Szemerédi’s famous theorem [9] on arithmetic progressions. In the rest of
this paper we outline an application of the limit framework to groups.

Assume that each space Xi is a finite group Gi and G is the ultra product group.
The group G is similar to a compact topological group in the sense that the maps
(x, y) → xy and x → x−1 are continuous in the corresponding σ-topologies.

If each Gi (an so G) is abelian then one can define the Gowers norms Uk on
L∞(G) in a similar way as for finite groups however they are only semi-norms.
We say that a function f ∈ L∞(G) is k-degree noise if ‖f‖Uk+1

= 0. A function
f ∈ L∞(G) is k-degree structured if it is orthogonal to every k-degree noise.
It is proved in [7] (see also [8]) that for each k there is a σ-algebra Fk such that
L∞(Fk) is the set of k-degree structured functions. It is easy to see that {Fi}∞i=1

is a growing sequence of σ-algebras.
The Hilbert-space L2(Fk) is a module over the function algebra L∞(Fk−1). We

denote by Ĝk the set of shift invariant rank one modules over L∞(Fk−1). It is
proved in [7] (see also [8]) that

L2(Fk) =
⊕

W∈Âk

W
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where the components are orthogonal. It follows that every function f ∈ L2(Fk)
has a unique decomposition f =

∑
W∈Âk

PW (f) where PW (f) is the projection of
f to W . We interpret this as the k-th order Fourier decomposition of f . The
set Ĝk is an abelian group with respect to point-wise multiplication. We say that

Ĝk is the k-th order dual group of G.

A further, deeper analysis of k-degree structured functions can be given by
using a family of algebraic structures called parallelepiped structures or nil-spaces
[5],[1]. It turns out that Fk is composed of nilspace factors [8] but we omit the
details here. This inifinite theory can be used to give inverse theorems for the
Gowers norms as described in [8].
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Möbius and Dynamics

Seonhee Lim

The Möbius function µ : N → R is a function defined by µ(n) = (−1)q if n =
p1 · · · pq is a product of q distinct primes and µ(n) = 0 otherwise.

The Möbius function is believed to behave randomly. For instance, the Prime
Number Theorem is equivalent to

∑

n≤N

µ(n) = o(n),

and the Riemann hypothesis is equivalent to
∑

n≤N µ(n) = O(n1/2+ǫ), for any
ǫ > 0.

Another property of the Möbius function is that it has high complexity in the
sense that it is realized by values of a function on a system of positive entropy.
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P. Sarnak conjectured that the Möbius function is asymptotically orthogonal to
any deterministic sequence [6].

Definition. A sequence an is deterministic if there exist a compact space X and
a continuous map T : X → X whose topological entropy htop(T ) is zero, such that

an = f(T nx),

for some continuous function f on X and a point x ∈ X .

Conjecture (Sarnak Conjecture [6]). For any deterministic sequence an,
∑

n≤N

µ(n)an = o(N).

Below, we give some examples of deterministic sequences for which this conjec-
ture has been verified.

A. Background. Let H2 be the hyperbolic plane. The group PSL2(R) acts sim-
ply transitively on the unit tangent bundle T 1(H2), thus we can identify PSL2(R)
with T 1(H2). Under this identification, the geodesic flow {gt} on the unit tangent

bundle T 1(H2) corresponds to multiplying the matrix
(
et/2 0
0 e−t/2

)
on the right,

where as a horocycle flow {us} corresponds to multiplying the matrix
(
1 s
0 1

)
on

the right. One can easily see that nearby vectors diverge exponentially under
the geodesic flow, which is a property of a hyperbolic flow. In contrast, nearby
vectors diverge polynomially under the horocycle flow, a property of a parabolic
flow. These properties are reflected on the fact that the geodesic flow has positive
entropy whereas the horocycle flow has zero entropy. Here, by entropy we mean
topological entropy. It is the supremum of measure-theoretic entropies over all
flow-invariant probability measures (variational principle). It is defined as follows:

Definition. Let us define a family of new metrics:

dN (x, y) = max
0≤t≤N

d(T t(x), T t(y)).

These metrics can be considered as metrics on the “spaces of orbit segments of
length N”. A subset S ⊂ X is (N, ǫ)-separated if dN (x, y) > ǫ, for any x, y ∈ S.
Let SN,ǫ be a maximal (N, ǫ)-separated set. The volume entropy is the exponential
growth rate of the number of “distinguishable orbit segments”:

htop(T ) = lim
ǫ→0

lim sup
N→∞

|SN,ǫ|
N

.

The topological entropy of the geodesic flow is equal to the exponential volume
growth of balls (volume entropy), which is n − 1 for Hn, thus 1 for hyperbolic
surfaces. The topological entropy of the horocycle flow is zero. Let us use the fact
that for s > 0,

(
s1/2 0

0 s−1/2

)(
1 1
0 1

)(
s−1/2 0

0 s1/2

)
=

(
1 s
0 1

)
=

(
1 1
0 1

)s

.
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Since the topological entropy is invariant under conjugacy, we have

htop(u) = htop(us) = shtop(u).

The last equality follows by the definition of topological entropy. Assuming that
the topological entropy of the horocycle flow is finite, we conclude that it must be
zero.

Let us consider the orbit closure of the horocycle map. Let us restrict to Γ =
SL2(Z) for simplicity. There are obvious orbit closures, namely finite orbits and
closed orbits (corresponding to finite points on a horizontal line, and a horizontal
line). There are also dense orbits since the horocycle map is ergodic. Ratner’s
theorem with a simple calculation says that these are the only possibilities. More
generally, for a Lie group G, a lattice subgroup Γ and a group U generated by
unipotent elements, the orbit closure of U is the orbit of a closed subgroup H ≤ G.

Next let us consider the following question. Suppose the orbit of x under the
horocycle map u is dense in X = Γ\G. Is the orbit of (x, x) under (up, uq) dense in
X ×X? For simplicity, let us assume p = q = 1. Then we are asking what are the
self-joinings of µ. There is one that always exists, namely the trivial joining µ×µ.
There is also the diagonal joining, which is the pushforward of µ by x 7→ (x, x).
If g ∈ G is a commensurator element (g ∈ Comm(Γ)), i.e. Γ′ := Γ ∩ gΓg−1 ⊂ Γ
is of finite index, then a finite cover joining exists, which is the pushforward of
µ′ by Γ′x 7→ (Γx,Γgx). Ratner’s joining classification theorem says that for the
unipotent flow u, the trivial joining and the finite cover joinings are the only
possibilities.

B. Sarnak’s conjecture and the Bourgain-Sarnak-Ziegler theorem. One
reason to believe the conjecture of Sarnak is that it is implied by the Chowla
conjecture.

There are cases for which the Sarnak conjecture is known to hold. Some of the
cases are:

(1) Kronecker flow: G is a compact Abelian group, g ∈ G, and T (x) = xg. [3]
(2) Homogeneous flow on a compact nilmanifold: X = Γ\N where N is a

nilpotent Lie group and Γ is a cocompact discrete subgroup of N . [4]
(3) Unipotent flow on X = Γ\SL(2,R), where Γ is a lattice subgroup. [2]
(4) Weak-mixing systems with minimal self-joining property [2]

We remark that Green and Tao were motivated in [4] to verify the Sarnak
conjecture for nilflows because of its relation to the Hardy-Littlewood conjecture.
They established a stronger form of Sarnak’s conjecture for nilmanifolds (with rate
O( 1

logA N
) for any A > 0) and used it in conjunction with the inverse Gowers norm

theorem of Green-Tao-Ziegler [5] to verify a special case of the Hardy-Littlewood
conjecture, namely that the number of arithmetic progressions of primes of length
k is asymptotic to a specific multiple of N

logk N
.

Background explained in the previous section is related to the Sarnak conjecture
by the following theorem.
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Theorem (Bourgain-Sarnak-Ziegler). If
∑

n≤N f(T pnx)f(T qnx) = o(N), then∑
n≤N µ(n)an = o(N).

Now let us sketch the proof of the Sarnak conjecture for the horocycle flow
(following Bourgain-Sarnak-Ziegler). By Ratner’s joining classification theorem,
we know that

lim
N→∞

1

N

∑

n≤N

f(T pnx)f(T qnx) =

∫

X×X

(f, f)(T, T )(x, x)dν,

for some ν which is either the trivial joining µ or a finite cover joining. If ν is the
trivial joining, then the above expression equals

∫
X fdµ

∫
X fdµ.

(1) If
∫
fdµ = 0, then it is zero.

(2) If not, then f = f1+c where
∫
fdµ = 0 and c =

∫
fdµ. Then

∑
µ(n)f(n) =∑

µ(n)f1(n) +
∑

µ(n)C → 0, since the first part goes to zero by part (1) and the
second part by the Prime Number Theorem.

The remaining case is when ν is a finite cover joining. This is the technical
part of the paper of Bourgain-Sarnak-Ziegler. They showed that for most (all but
finite) (p, q), this case does not happen, using the fact that g ∈ Comm(Γ).

We remark that the assumption of the Bourgain-Sarnak-Ziegler theorem is very
strong, for example, it implies the asymptotic orthogonality of f(T nx) not only
with the Möbius function but also with any bounded multiplicative function.
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Green-Tao and Tao-Ziegler Theorems I

Benny Löffel

This talk is the first of two talks concerning the Green-Tao and Tao-Ziegler The-
orems. Green and Tao proved the following result.

Theorem (Green-Tao). The primes contain infinitely many arithmetic progres-
sions of length k for any k.

The aim of this first talk is to give an overview of the proof of this theorem
as presented in [1], whereas the second talk will focus on some specific aspects of
this proof and also discuss the generalization to polynomial progressions, which is
a result of Tao and Ziegler [2].
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A. A quantitative Szemerédi theorem. One might want to prove this theorem
by applying Szemerédi’s theorem. Of course, this is not possible directly, since the
primes do not have positive upper density in the natural numbers. However, Green
and Tao used a “transference principle” which allows them to modify the problem
in such a way, that one actually can apply a quantitative version of Szemerédi’s
theorem to conclude the proof.

We use the following notation. We consider a fixed k and try to find arithmetic
progressions of length k in the primes ≤ N , where we let N go to infinity. For
technical reasons we will not work in the interval [1, N ] = {1, . . . , N}, but in the
ring Z/NZ. We say that an element p ∈ Z/NZ is prime if the corresponding
element in [1, N ] is a prime number. All quantities which appear below depend
on N , except mentioned otherwise.

The goal is to apply the following (quantitative) form of Szemerédi’s theorem.

Theorem (Szemerédi). Let f : ZN −→ R be a function such that 0 ≤ f ≤ 1 and

(1) E
(
f(x)|x ∈ ZN

)
≥ δ

for some δ > 0. Then

(2) E
(
f(x)f(x + r) . . . f(x + (k − 1)r)|x, r ∈ ZN

)
≥ c(k, δ) − o(1)

for some constant c(k, δ) which does not depend on f or N .

To see why this theorem implies Szemerédi’s theorem, consider f to be the
characteristic function of some dense set. In our case, we would like to choose f
to be the characteristic function of the primes in the interval [1, N ], written as a
function f : ZN −→ R. Then (2) tells us that there are arithmetic progressions of
length k in the primes ≤ N (for N large enough). However, this f does not satisfy
(1) and so it would be desirable to have a function g : ZN −→ R which satisfies
the assumptions of Szemerédi’s theorem and such that Ef ≈ Eg, where

Ef = E
(
f(x)f(x + r) . . . f(x + (k − 1)r)|x, r ∈ ZN

)
,

Eg = E
(
g(x)g(x + r) . . . g(x + (k − 1)r)|x, r ∈ ZN

)
.

To achieve this, Green and Tao use a transference principle.

B. The transference principle. The transference principle gives us such a
function g whenever f can be bounded above by some “pseudorandom measure”
ν : ZN −→ R+. A function ν : ZN −→ R+ is called a measure if E(ν) = 1 + o(1).
A measure ν is called pseudorandom if it satisfies a “linear forms condition” and
a “correlation condition”, which we do not discuss further here.

First of all, we have the problem that the primes are not random enough, so
we cannot bound their characteristic function by a pseudorandom measure. This
regularity arises from the fact that the primes are not uniformly distributed among
the equivalence classes modulo p, for any (small) prime number p. To remove this
regularity, we use the so called W -trick. We define

W =
∏

p≤w(N)

p



3052 Oberwolfach Report 50/2012

where w(N) goes slowly to infinity as N → ∞. The trick is now, that we do not
try to find arithmetic progressions in the set

{n | 1 ≤ n ≤ N, n is prime},
but in the set

(3) {n | 1 ≤ n ≤ N, Wn + 1 is prime}
which is much more random. Clearly, any arithmetic progression in the set (3)
leads to an arithmetic progression in the primes, so it suffices to find arithmetic
progressions in the set (3).

For this, we define the function f : ZN −→ R by

f(n) =

{
ck,W log(Wn + 1) if Wn + 1 is prime and εkN ≤ n ≤ 2εkN ,

0 otherwise.

where ck,W is some constant depending only on k and W and εk is some quantity
which is chosen such that we have no problems with wrap-arounds.1

Note that the support of f is not dense, but f is unbounded as N → ∞.
A simple calculation using the prime number theorem in arithmetic progressions
shows, that Ef > δ for some δ > 0 and for all N large enough. Based on work of
Goldston and Yıldırım, Green and Tao proved that there exists a pseudorandom
measure ν : ZN −→ R such that f(x) ≤ ν(x) for all x ∈ ZN .

The rough idea of the transference principle is now as follows: Whenever f can
be bounded by some pseudorandom measure ν, there exists a bounded function g
(say 0 ≤ g ≤ 1), which behaves almost as f in the sense that f −g is small in some
appropriate norm ‖ · ‖. Green and Tao have chosen this norm such that whenever
‖f − g‖ is small so is E(f) − E(g) and Ef −Eg. To make all this precise, one has
to do quite a bit of work. This is discussed in more detail in the second talk.

Actually, in their paper [1], Green and Tao used this transference principle im-
plicitly. In [2], Tao and Ziegler stated the transference principle the first time
explicitly, and subsequently Gowers [3] and Reingold, Trevisan, Tulsiani and Vad-
han [4] gave (independently) simpler proofs of this principle.

To give a lower bound for Ef , it suffices now to find a lower bound for Eg. But
this is easy: Since we know that E(f) > δ and E(f) ≈ E(g) by the remarks above,
we get that E(g) > δ. Then the assumptions of Szemerédi’s theorem are satisfied
and hence Ef ≈ Eg > c(k, δ) − o(1). This concludes the proof of the Green-Tao
theorem.
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Green-Tao and Tao-Ziegler Theorems II

Rene Rühr

This is a summary of the second talk on the Green-Tao theorem ([2]) which states
that there are infinitely many progressions of arbitrary length inside the primes. It
is proven by a generalization of a quantitative Szemerédi theorem for ZN mimicking
ergodic theoretic ideas on which we focus:

Theorem (Szemerédi’s theorem relative to a pseudorandom measure). Let f be a
non-negative function on Z that is pointwise bounded by a pseudorandom measure
ν. Assume that E[f(x)|x ∈ Z] ≥ δ. Then

E [f(x)f(x + m) . . . f(x + (k − 1)m)|x,m ∈ Z] > c(δ, k) − ok,δ(1)

where c(δ, k) does not depend on N and ok,δ(1) is a sequence that goes to zero as
N → ∞.

The pseudorandom measure ν is a function1 that satisfies the normalization

E[ν(x)|x ∈ Z] = 1 + o(1)

and two properties, the linear form condition and the correlation condition that are
defined (or motivated) during the talk. Suppose that f satisfies the assumption of
the theorem. Then the “generalized Koopman-von Neumann structure theorem”
allows us to decompose the function f into a uniform part fU and an anti-uniform
part fU⊥ with respect to the Gowers uniformity norm ‖ · ‖Uk−1 :

0 ≤ fU + fU⊥ ≤ f

so that fU⊥ is essentially bounded by 1 and ‖fU‖Uk−1 is small. As fU⊥ has
asymptotically the same expectation as f , we can apply a quantitative version of
Szemerédi’s theorem [3] to it. On the other hand the “generalized von Neumann
theorem” tells us that the average along arithmetic progressions is controlled by
the Gowers uniformity norm and so the average

E[fU⊥(x)fU⊥ (x + m) . . . fU⊥(x + (k − 1)m)|x,m ∈ Z]

approximates the desired term

E[f(x)f(x + m) . . . f(x + (k − 1)m)|x,m ∈ Z]

asymptotically. We prove the special case for k = 3, which already includes the
main ideas and motivates the linear form condition which states that the measure
ν satisfies

E[ν ◦ φ1(y) . . . ν ◦ φL(y)|y ∈ ZK ] = 1 + o(1)

1The functions f and ν are actually sequences of functions defined on ZN for any N .
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where the φl are arbitrary linear forms φl : ZK
N → ZN whose coefficients satisfy

some minor properties only depending on k (in particular K = O(k)).

Theorem (Generalized von Neumann Theorem). Let f0, f1, f2 be functions on
ZN bounded pointwise in modulo by a pseudorandom measure ν, then

E[f0(x)f1(x + m)f2(x + 2m)|x,m ∈ ZN ] = ‖f0‖U2 + o(1).

We finish by sketching the proof of the following transference principle

Theorem (Generalized Koopman-von Neumann structure theorem). Let f be a
non-negative function bounded by a pseudorandom measure ν and let ε > 0 be
sufficiently small. Then there exists a σ-algebra B and a measurable set Ω ∈ B
such that the following three conditions hold.

Smallness Condition: E[1Ω(x)ν(x)|x ∈ ZN ] = oε(1)

ν is uniformly distributed: ‖1ΩcE[ν − 1|B]‖L∞ = oε(1)

Gowers uniformity: ‖1Ωc(f − E[f |B])‖Uk−1 ≤ ε
1

2k

We set fU = 1Ωc(f − E[f |B]) which corresponds to the uniform part of f
and define fU⊥ = 1ΩcE[f |B] so that the second property indeed implies that
fU⊥ = 1 + o(1).

The Green-Tao theorem has been generalized in [4] to show that there are infin-
itely many polynomial progressions inside the primes. This paper is also the first
to give explicitly an abstract structure theorem whose proof has been simplified
in [1] using a finite-dimensional Hahn-Banach theorem.
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Departement Mathematik
ETH-Zentrum
Rämistr. 101
8092 Zürich
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