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Abstract. Inverse problem typically deal with the identification of unknown
quantities from indirect measurements and appear in many areas in tech-
nology, medicine, biology, finance, and econometrics. The computational
solution of such problems is a very active, interdisciplinary field with close
connections to optimization, control theory, differential equations, asymp-
totic analysis, statistics, and probability. The focus of this workshop was
on hybrid methods, model reduction, regularization in Banach spaces, and
statistical approaches.
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Introduction by the Organisers

The workshop was well attended by 49 participants from four continents, among
them 12 females. 14 participants came from outside of Europe, and 8 were PhD
students or young postdocs (less than one year after PhD). The scientific program
consisted of 27 full and 6 short talks. On Wednesday night, after an excursion to
St Roman, an informal discussion on data assimilation and inverse problems in
weather prediction was organized by Roland Potthast.
The talks reflected a number of exciting new developments in the field of compu-
tational inverse problems. We highlight a few general trends:

• hybrid methods: A number of speakers reported on these new techniques
in biomedical imaging which combine different physical phenomena such
as light and sound. Hybrid methods promise to combine the advantages of
more traditional imaging techniques and lead a number of new challenging
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mathematical problems. Many classical inverse problems in partial dif-
ferential equations such as Calderon’s conductivity problem assume only
boundary measurements of the solution of the differential equation. This
leads to severe ill-posedness and low resolution even though one has high
contrast in the unknown coefficient. Hybrid methods in principle allow
for distributed measurements which would lead to a much better resolu-
tion, but additional equations have to be taken into account. A number of
clever approaches for the algorithmic treatment, modeling and the analysis
of such problems have been presented.

• model reduction: Regularization methods typically require numerous solu-
tions of the forward problem, and often one forward problem involves the
solution of a three-dimensional differential equation for many right-hand
sides. For many interesting problems recent advances in the application of
reduced order models allow a drastic reduction of computational complex-
ity without essential loss of accuracy. Other talks reported on progress
towards making large scale Bayesian inverse problems computationally
feasible using low rank approximations and allowing a quantification of
uncertainty.

• regularization in Banach spaces: Whereas for many decades regulariza-
tion methods were studied almost exclusively in a Hilbert space setting
using spectral methods, a number of talks reviewed the recent significant
progress in formulating and analyzing regularization methods in a Ba-
nach space setting using variational methods. Of particular interest are
l1 penalty terms, which promote sparsity of the solution with respect to a
given basis, and total (generalized) variation penalties. However, in par-
ticular for these most interesting spaces many questions still remain open
and are subject of current research.

• statistical approaches: Although it is well-known that reconstructions can
be significantly improved if knowledge on the distribution of the noise is
incorporated in the inversion method, such approaches could be analyzed
only recently in the context of nonlinear inverse problems as they appear
in differential equations. A different type of error is caused by random
perturbations of coefficients or boundaries in wave equations. Here a re-
markable body of theory has been developed analyzing the effects of such
random perturbations. Finally, despite some seemingly discouraging nega-
tive results progress was reported on the construction of confidence bands
and credibility sets in inverse problems.

Many talks initiated lively discussions during and after the talks. The long lunch
breaks and evening were used to continue existing and start new collaborations
among the participants.
The organizers would like to thank the Oberwolfach institute for their great hos-
pitality and for the opportunity to arrange this stimulating workshop.



Computational Inverse Problems 3063

Workshop: Computational Inverse Problems

Table of Contents

Otmar Scherzer (joint with Peter Elbau, Rainer Schulze)
Photoacoustic Sectional Imaging and Reconstruction Formulas for a
Single Scattering Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3067

Laurent Seppecher
An acousto-optic imaging model for the reconstruction of the optical
absorption parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3068

Bernadette Hahn
Reconstruction of dynamic objects in computerized tomography . . . . . . . . 3069

Laure Giovangigli
Mathematical modeling of fluorescence diffuse optical imaging of cell
membrane potential changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3071

Kui Ren (joint with Hao Gao, Alexander V. Mamonov, Hongkai Zhao)
Efficient Reconstruction Algorithms for Inverse Problems in Quantitative
Photoacoustic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3073

John Schotland
Inverse Problem of Acousto-Optic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 3075

Shari Moskow (joint with Simon Arridge, Kimberly Kilgore, and John
Schotland)
The inverse Born series in optical tomography and related inverse
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3076

Andreas Rieder (joint with Tim Kreutzmann)
Geometric Reconstruction in Bioluminescence Imaging . . . . . . . . . . . . . . . 3078

Christine De Mol (joint with Löıc Lecharlier)
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Abstracts

Photoacoustic Sectional Imaging and Reconstruction Formulas for a
Single Scattering Model

Otmar Scherzer

(joint work with Peter Elbau, Rainer Schulze)

We consider photoacoustic sectional imaging experiments. Opposed to standard
photoacoustic imaging (see e.g. [9, 8, 6, 10] for some mathematical and physical
review papers), where the detectors record sets of two-dimensional projection data
over time, from which the three-dimensional imaging data can be reconstructed, in
sectional imaging, a single scan procedure is implemented to be able to reconstruct
a set of two-dimensional slice imaging data. The advantages of the latter approach
are a considerable increase in measurement efficiency and the possibility to perform
selective plane imaging. However, the disadvantage is a decreased out-of-plane
resolution (i.e. the direction orthogonal to the focusing plane). Experimentally,
one can realize photoacoustic sectional imaging with pulsed laser illuminations
focusing to a single plane and with focusing detectors for the measurement of the
pressure wave [7].

Analogously to standard quantitative photoacoustic imaging we observe two
decoupled reconstruction problems:

(1) The inverse acoustic problem of recovering the initial pressure in the il-
luminated slice from the two-dimensional measurements of the pressure
wave and

(2) the inverse optical problem of reconstructing the absorption coefficient
from this initial pressure data, which is assumed to be proportional to the
absorption coefficient and to the light fluence of the laser pulse.

For the acoustic problem, we model the propagation of the pressure wave by the
linear three-dimensional wave equation and derive explicit reconstruction formu-
las for the initial pressure distribution for various detector geometries (including
point, line, and plane shaped detectors placed around the object). In particular for
line detectors in the illumination plane and vertical plane detectors, exact recon-
struction formulas for an arbitrary placement of these detectors around the object
are available [4]. Moreover, these photoacoustic sectional measurements allow for
a simultaneous reconstruction of an unknown speed of sound if measurements for
all possible slices through the object are performed [5].

For the optical problem, we assume (in accordance with the focused illumination
of only one slice) that scattering effects are sufficiently weak so that a single scat-
tering model for the light propagation of the illuminating laser beam is practible.
This is different to recent approaches in standard quantitative photoacoustic imag-
ing [1, 2] where the scattering is typically assumed to be so large that a diffusion
approximation model for the light propagation can be used. In this sectional imag-
ing approach, however, the scattering in the object should be rather small, since a
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localisation of the illumination is otherwise not possible. Nevertheless, our recon-
struction formulas for the single scattering approach rely on a similar strategy as
in the diffusion approximation and are based on deriving equations for quotients
of independent measurement data obtained from measurements for two different
laser illuminations (e.g. from two opposing directions) [3].
Acknowledgements: The work has been supported by the Austrian Science Fund
(FWF) within the national research network Photoacoustic Imaging in Biology
and Medicine, project S10505-N20.
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An acousto-optic imaging model for the reconstruction of the optical
absorption parameter

Laurent Seppecher

The idea is to increase the resolution of the Near Infa-Red light tomography using
acoustic perturbations of the medium. We use a classical approach to describe the
light diffusion which is diffusion absorption equation

(1) −∇D∇Φ+ aΦ = 0.

We perturb the PDE solution by some spherical short pulses which displace the
inside of the medium and we measure the variations of Φ on the boundary due to
the traveling of the acoustic pulse. Our unknown is the absorption term in the
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equation (1) and our measurements fead though a spherical means transform to
the knowledge of Ψ in the Helmholtz decomposition of

Φ2∇a = ∇Ψ+∇×A.

Then we write the solution a as a solution of

∇
(
Φ2∇a

)
= △Ψ in Ω

a = a0 on ∂Ω.

And we finally solve the coupled system that we have obtained using the fixed
point algorithm.

Reconstruction of dynamic objects in computerized tomography

Bernadette Hahn

In computerized tomography, the rotation of the x-ray source around the specimen
is the time consuming part of the scanning process since beams from only one
source position can be emitted at the same time. In 2D parallel scanning geometry,
this position is characterized by the direction θ of the emitted x-rays. Thus,
each beam direction θ can be uniquely identified by a time t ∈ RT ⊂ R via the
correlation

θ = θ(t) =

(
cos (t φ)
sin (t φ)

)
,

where φ denotes the constant angular velocity of the radiation source. The symbol
tin denotes the starting time of the scanning.

One basic assumption in this context is that the object does not change during
the data acquisition. In many applications, however, this supposition does not
hold, for example in medical imaging due to respiratory and cardiac motion or in
the imaging of driven liquid fronts in field oil extraction. The temporal changes of
the object lead to inconsistent data and the application of standard reconstruction
methods results in serious motion artefacts in the images. Hence, algorithms
should take into account the dynamics of the investigated object.

Let Ω ⊂ R2 and f ∈ L2(Ω × RT ) be a dynamic function, such that the static
function fθ(t)(x) := f(x, t) denotes the x-ray attenuation coefficient of the object
at time t. The mathematical model of dynamic computerized tomography is given
by

Af = g,

with

Af(θ(t), s) =
∫

Ω

f(x, t) δ(s− xT θ(t)) dx, θ(t) ∈ S1, s ∈ R.

For a fixed unit vector θ, it holds

Af(θ, s) = Rfθ(θ, s)
with the Radon transform R. Hence, some additional information of the motion is
required to obtain an adequate reconstruction of the functions fθ, [1]. With this in
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Figure 1. Movements of the phantom during the scanning.

mind, we consider a dynamic behaviour that is described by bijective, sufficiently
smooth motion functions

Γt : R
2 −→ R

2.

With this motion model, the dynamic object is represented by a static reference
function f ref ∈ L2(Ω),

f(x, t) = f ref(Γtx).

Without loss of generality, Γtin equals the identity and it holds

f ref(x) = f(x, tin).

Hence, f ref can be determined by reconstructing ftin from equation Af = g.
Therefore, the method of the approximate inverse [2] is applied as regularization
scheme due to the ill-posedness of the problem: Instead of ftin , we approximate

fγ
tin = fγ(x, tin) := 〈f, δγx,tin〉

with a mollifier δγx,tin ∈ L2(Ω×RT ). With a solution ψγ
x,tin of the auxiliary problem

A∗ψγ
x,tin = δγx,tin ,

the function fγ
tin can be computed from the data via

fγ
tin(x) = 〈g, ψγ

x,tin〉.
Moreover, the information about the dynamic behaviour needs to be included in
order to obtain adequate reconstructions. This is done by choosing an appropriate
mollifier. If eγx denotes a mollifier for the static function f ref, then

δγx,tin(y, v) =
(∫

RT

∣∣ detDΓ−1
τ (Γvy)

∣∣dτ
)−1

eγx(Γvy)

is a suitable mollifier for ftin considering the motion model.
The corresponding reconstruction kernel ψγ

x,tin can be computed by minimiz-

ing the defect ‖Aψγ
x,tin − δγx,tin‖2. In the static case, this minimizer makes an

inadequate approximation to the static reconstruction kernel that can be com-
puted exactly. Hence, the kernels ψγ

x,tin are rather calculated as a weighted sum
of the defect’s minimizer and the kernel in the static case, that corresponds to the
mollifier eγx.
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Figure 2. Dynamic (left) and static (right) reconstruction.

The sequence of pictures in Figure 1 illustrates the respiratory movement of a
chest phantom during one breathing cycle. The involved motion functions rep-
resent affine deformations. The analytically computed data are corrupted by 2%
noise. Including the dynamical information actually avoids the motion artefacts
that occur within the static filtered backprojection approach, Figure 2.
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Mathematical modeling of fluorescence diffuse optical imaging of cell
membrane potential changes

Laure Giovangigli

1. Governing model

We consider a cell, that we want to image. We inject fluorescent indicators, which
stick only on the cell membrane. These agents are chosen so that their concentra-
tion responds linearly to the potential jump across the membrane, when the cell
is immersed in an external electric field. We apply such en external electric field
at the boundary of our domain and use fluorescence optical diffuse tomography
to reconstruct the position and shape of the membrane, and image changes in the
membrane potential.

1.1. Coupled diffusion equations. A sinusoidally modulated near infrared mo-
nochromatic light source g, located at the boundary ∂Ω of the examined domain
Ω, launches an excitation light fluence φexc = Φexc(x, ω) e

iωt, into Ω. After it un-
dergoes multiple scattering and absorption, this light wave reaches the fluorescent
markers, which are accumulated on ∂C, the membrane of the cell C. The excited
fluorophores emit a wave φemt = Φemt(x, ω) e

iωt. The intensity of the emitted wave
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is proportional to the intensity of the excitation wave, when it reaches the fluo-
rescent molecule. The emitted waves pass through the absorbing and scattering
domain and are detected at the boundary ∂Ω.
After some simplifying assumptions, our model can be described by the following
coupled diffusion equations completed by Robin boundary conditions :





−D∆Φ g
exc(x, ω) +

(
µ+

iω

c

)
Φ g

exc(x, ω) = 0 inΩ,

ℓ
∂Φ g

exc

∂ν
(x, ω) + Φ g

exc(x, ω) = g(x) on ∂Ω,





−D∆Φ g
emt(x, ω) +

(
µ+

iω

c

)
Φ g

emt(x, ω) = γ̃(ω) cflr(x)Φ
g
exc(x, ω) inΩ

ℓ
∂Φ g

emt

∂ν
(x, ω) + Φ g

emt(x, ω) = 0 on ∂Ω,

where the source g is in L2(∂Ω).

1.2. Electrical model of the cell. We couple this model with an electric model
of the cell, which gives us a modelisation of the fluorophores concentration.

We apply at the boundary of our domain an electric field gele ∈ L2(∂Ω). We
consider that Ω\C and C are homogeneous and isotropic media with conductivity
1. The thickness ǫ of the cell membrane is supposed to be small. We denote by σ
the conductivity of the cell membrane. We assume that σ ≪ 1 and β > 0 to be
given by β = σ−1ǫ.
We can approximate the voltage potential u within our medium by the solution
to the following problem :

(1)





∆u = 0 inC ∪ Ω \ C,
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−

= 0 on ∂C,

u |+ −u |−= β
∂u

∂ν
on ∂C,

∂u

∂ν

∣∣∣∣
∂Ω

= gele,

∫

∂Ω

u = 0.

Since we have chosen the fluorescent indicators of the cell membrane such that
they respond linearly to the potential jump across the membrane, we can express
their concentration as

(2) cflr = δ [u]
∣∣
∂C
,

where δ is a constant.
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2. Forward problem

Given a cell C, optical parameters of our domain, a light source g and an electric
field gele, we solve the forward problem. We give in particular an explicit expression
of the excitation wave in the case of circular domain and cell.

3. Reconstruction of the cell membrane and its potential changes :

case of a perturbed disk

We study then the inverse problem in the case of a circular domain Ω of radius 1
and a cell Cǫ, whose shape is a perturbed disk :

∂Cǫ = {x̃; x̃(θ) = (R+ ǫh(θ))er , θ ∈ [0, 2π]} ,
with h ∈ C2([0, 2π]).
Given the intensity of the exciting light, the boundary potential and optical pa-
rameters, we reconstruct the Fourier coefficients of the cell deformation h. We
provide explicit formulas for the resolving power of the algorithm in the presence
of measurement noise.
All results and references cited in my presentation can be found in the article [1].
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Efficient Reconstruction Algorithms for Inverse Problems in
Quantitative Photoacoustic Imaging

Kui Ren

(joint work with Hao Gao, Alexander V. Mamonov, Hongkai Zhao)

Photoacoustic tomography (PAT) is a hybrid imaging modality that combines
the high-resolution ultrasound imaging with the high-contrast optical tomography
to take the advantages of both modalities. Reconstruction in PAT is a two-step
process. In the first step, one reconstructs the initial pressure field generated
from the photoacoustic effect using measured acoustic signal on medium surface.
This is a well-known inverse problem that has been thoroughly studied; see for
instance [2, 9, 10, 11, 13, 14, 15, 17, 18, 19] and references therein.

This work is concerned with the second step, call quantitative PAT (QPAT).
The objective is to reconstruct the optical absorption and the scattering coefficients
as well as the photoacoustic efficiency of the medium from the result of the first
step, i.e., the initial pressure field data. This step has recently attracted significant
attention as well [1, 3, 4, 5, 6, 7, 8].

We consider the problem in two different regimes: the weakly scattering trans-
port regime and the strongly scattering diffusive regime. In the first regime, we
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model the light propagation with the radiative transport equation:
(1)

v · ∇u+
(
σa(x) + σs(x)

)
u = σs

∫
Sd−1 K(v, v′)u(x, v′)dv′ in Ω× Sd−1

u(x, v) = g(x, v) on Γ−,

where u(x, v) is the density of photons at x ∈ Ω ∈ Rd (d ≥ 2) traveling in direction
v ∈ Sd−1, Γ− = {(x, v) : (x, v) ∈ ∂Ω× Sd−1 s.t. − n(x) · v > 0}, and g(x, v) is the
incoming illumination source. The functions σa(x) and σs(x) are the absorption
and the scattering coefficients respectively. The scattering kernel K(v, v′) satisfies
the normalization condition

∫
Sd−1 K(v, v′)dv′ = 1, ∀ v ∈ Sd−1. The initial pressure

data is given as

(2) H(x) = γ(x)σa(x)

∫

Sd−1

u(x, v)dv.

We showed in [12] that when the medium to be probed is non-scattering (σs =
0), explicit reconstruction schemes can be derived to reconstruct γ and σa uniquely
and stably from two well-selected data sets. When data at multiple wavelengths
are utilized, we can reconstruct simultaneously γ, σa and σs. We presented some
numerical simulations to validate the reconstruction methods developed.

In the strongly scattering diffusive regime, we replace the radiative tranport
model with the diffusion model:

(3)
−∇ ·D∇U + σaU = 0, in Ω

U + ηn ·D∇U = f(x), on ∂Ω

where U(x) =
∫
Sd−1 u(x, v)dv is the density of photons at x, D(x) is the diffusion

coefficient that is determined by σa and σs, and η > 0 is the rescaled extrapolation
length.

In this diffusive regime, we proposed in [16] a hybrid numerical reconstruction
procedure that uses both the initail pressure data and boundary current data.
We showed that these data allow the unique reconstruction of the boundary and
interior values D and σa. We developed an efficient reconstruction algorithm for
the numerical reconstruction.
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Inverse Problem of Acousto-Optic Imaging

John Schotland

The acousto-optic effect is a phenomenon in which the optical properties of a
material medium are modified due to interaction with acoustic radiation. Brillouin
scattering from density fluctuations in a fluid and the ultrasonic modulation of
multiply scattered light in a random medium are familiar examples of this effect.
We propose a tomographic method to reconstruct the optical properties of a highly
scattering medium from acousto-optic measurements. The method is based on the
solution to an inverse problem for the diffusion equation and makes use of the
principle of interior control of boundary measurements by an external wave field.
We prove local nonlinear injectivity and stability. We also propose a reconstruction
method and give an estimate for the approximation error.
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The inverse Born series in optical tomography and related inverse
problems.

Shari Moskow

(joint work with Simon Arridge, Kimberly Kilgore, and John Schotland)

For optical waves in highly scattering media, such as clouds or breast tissue, the
diffusion equation is an approximate model for the radiative transport equation.

−∆u(x) + k2(1 + η(x))u(x) = 0 x ∈ Ω(1)

u(x) + lν(x) · ∇u(x) = 0 x ∈ ∂Ω(2)

The forward problem is to determine the energy density u(x) for a given change
in absorption η of compact support. One can express the problem in integral
equation form for x ∈ Ω,

(3) u(x) = ui(x) − k2
∫

Ω

G(x, y)u(y)η(y)dy

where G is the Green’s function for the given domain Ω with homogeneous Robin
boundary conditions and ui is the solution to the known background problem.
Assume the medium is illuminated by a point source at some x1 ∈ ∂Ω, which the
resulting intensity response is read at another point x ∈ ∂Ω. The inverse problem
is to determine η(x) from the data φ(x1, x) = u(x) − ui(x). By inserting u ≈ ui
into the right hand side of (3) above, and iterating in a fixed point fashion one
obtains the well known Born series for the data φ. This series can be expressed as
a tensor power series in η :

(4) φ = K1η +K2η ⊗ η +K2η ⊗ η ⊗ η + · · ·
which is the data written as a series in the unknown. So, let us assume formally
that we could write the unknown coefficient in a series in the data:

(5) η = K1φ+K2φ⊗ φ+K2φ⊗ φ⊗ φ+ · · · .
If we substitute the forward series for φ into the formal series for η and equate like
tensor powers, we find formulas for the inverse series operators

K1 = K+
1 ,

K2 = −K1K2K1 ⊗K1,

K3 = −(K2K1 ⊗K2 +K2K2 ⊗K1 +K1K3)K1 ⊗K1 ⊗K1,

Kj = −




j−1∑

m=1

Km

∑

i1+...+im=j

Ki1 ⊗ ...⊗Kim


K1 ⊗ ...⊗K1.(6)

Here, since K1 does not have a bounded inverse, its inversion is ill-posed. We
assume K+

1 is some regularized pseudo-inverse, and this is the only inversion re-
quired to compute the terms of the the inverse series. Using the above formulas,
this yields an inversion technique distinctly different than Newton type iterations,
since no forward solutions are computed (aside from those of the background).
The use of this series for optical tomography was first proposed in [4]. In [5],[6]
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and [2] we show that if in some appropriately chosen norms, the forward operators
satisfy

‖Kj‖ ≤ νµj−1,

the inverse series converges (in the related norm) provided ‖K+
1 ‖ < 1

µ+ν and

‖K+
1 φ‖ <

1

µ+ ν
.

If a is the radius of a region known to contain the support of η, we find that this
‘radius’ of the inverse series stays bounded above away from zero as ka→ ∞. For
the related problem of electrical impedance tomography (or equivalently diffusion-
only optical tomography), one can write a similar forward series with operators of
quite different properties. In [1] we find that the forward series converges if the
contrast δD

D0
< 1 is less than one, and an analogous result for convergence of the in-

verse series. We test the approach numerically on a heart and lungs phantom. The
higher order terms in the inverse series yield improvements qualitatively like those
of Newton iterations, but without the necessity of computing forward solutions.
We also studied the use of this series on propagating scalar waves [3], where we
see that the radius of convergence in this case does indeed go to zero as ka→ ∞,
in contrast to the situation for diffuse optical tomography. We see some numerical
examples that demonstrate that the inverse Born series works, just not quite as
well as in the optical tomography and EIT cases. For Maxwell equations, we have
some preliminary theoretical results that suggest the convergence behavior of the
inverse series is similar to that for propagating scalar waves, however, we suspect
that reconstructions might be better for measurements in the near field due to the
presence of evanescent modes.
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Geometric Reconstruction in Bioluminescence Imaging

Andreas Rieder

(joint work with Tim Kreutzmann)

Bioluminescence imaging is a promising technique to study cancer/tumor growth
in a small animal. To this end the target cells are manipulated to emit photons
under stimulation, see e.g. [1]. From the photon flux over the animal’s surface one
has to recover location and intensity of the photon source q.

Photon propagation is modeled by the radiative transfer (Boltzmann transport)
equation. In this talk, however, we consider a much simpler model, the diffusion
approximation, in which the photon density u : Ω → R is governed by the boundary
value problem

−∇ · (D∇u) + µu = q in Ω,

u+ 2D∂nu = 0 on ∂Ω,

where Ω ⊂ Rd is the small animal (d = 3) or a cross section of it (d = 2). Further,
D : Ω → ]D0,∞[ and µ : Ω → ]µ0,∞[ are the diffusion and absorption coefficients,
respectively. Further, the Robin boundary value is set to zero implementing our
assumption that no photons penetrate the animal.

The (linear) forward operator

A : L2(Ω) → L2(∂Ω), q 7→ D∂nu,

maps the photon source to the measurements. Bioluminescence imaging entails
the inverse problem: Given g ∈ R(A) find a source q ∈ L2(Ω) satisfying Aq = g.
Due to the compactness of A we have to deal with an ill-posed problem which
is, moreover, not uniquely solvable. Indeed, A has a rather huge null space, see
[3]. Even, if we model the source as a hot spot we cannot restore uniqueness.
A hot spot is a source of type q = λχS where λ > 0 is the intensity and the
measurable domain S supports the source. Roughly speaking we cannot differ
between a hot spot with a large intensity and a small support and a hot spot with
a small intensity and a large support knowing only the photon flux.

As briefly explained above the bioluminescence sources are clusters of manipu-
lated and marked cells. Therefore, depending on the cell type and used markers a
sound guess of the expected intensity of the source is at hand: λ ∈ [λ, λ] = Λ for a
known Λ. Under this a priori knowledge the restriction to hot spots as searched-for
sources is reasonable. Consequently, we define the (nonlinear) forward operator

F : Λ× L → L2(∂Ω), F (λ, S) = λAχS ,

where L is the set of all measurable subsets of Ω.
The corresponding inverse problem (solve F (λ, S) = g for given g) remains ill-

posed and needs regularization. As regularizer we accept any minimizer of the
Tikhonov-like functional

Jα(λ, S) =
1

2
‖F (λ, S)− g‖2L2 + αPer(S) over Λ× L
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where α > 0 is the regularization parameter and Per(S) is the perimeter of S:

Per(S) = |D(χS)|

with |D(·)| denoting the BV-semi-norm.
Our approach is well-defined as the following theorems show.

Theorem (Existence of a minimizer) For any α > 0 and any g ∈ L2(∂Ω) there
exists a minimizer (λ∗, G∗) ∈ Λ× L of Jα:

Jα(λ
∗, G∗) ≤ Jα(λ,G) for all (λ,G) ∈ Λ× L.

Theorem (Stability) Let gn → g in L2 as n→ ∞ and let (λn, Sn) minimize

Jn
α (λ, S) =

1

2
‖F (λ, S)− gn‖2L2 + αPer(S) over Λ× L.

Then there exists a subsequence {(λnk , Snk)}k converging to a minimizer (λ∗, S∗) ∈
Λ× L of Jα in the sense that

‖λnkχSnk − λ∗χS∗‖L2 → 0 as k → ∞.

Furthermore, every convergent subsequence of {(λn, Sn)}n converges to a mini-
mizer of Jα.

Theorem (Regularization property) Let g be in range(F ) and let δ 7→ α(δ) where

α(δ) → 0 and
δ2

α(δ)
→ 0 as δ → 0.

In addition, let {δn}n be a positive null sequence and {gn}n such that

‖gn − g‖L2 ≤ δn.

Then, the sequence {(λn, Sn)} of minimizers of Jn
α(δn)

possesses a subsequence

converging to (λ+, S+) where

S+ = argmin{Per(S) : S ∈ L s.t. ∃λ ∈ Λ with F (λ, S) = g},
λ+ ∈ {λ ∈ Λ : F (λ, S+) = g}.

Furthermore, every convergent subsequence of {(λn, Sn)}n converges to a pair
(λ†, S†) with above property.

For approximating a minimizer of Jα by a steepest descent-like scheme we need
to calculate the derivative of Jα with respect to the domain. To avoid technical
difficulties we suppose throughout that the coefficients D,µ are continuously dif-
ferentiable, Ω is an open C2-domain, and S ∈ S = {Γ ⊂ Ω : ∂Γ ∈ C2}.
Theorem (Derivative of Jα) for k ∈ R, h ∈ C2

0 (Ω,R
3) we have that

J ′
α(λ, S)(k, h) =

〈
F (λ, S)− g, F (k, S) + u′

〉
L2(∂Ω)

+ α

∫

∂S

H∂S(h · n) ds
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where H∂S denotes the mean curvature of ∂S and u′ ∈ H1(Ω\∂S) solves the trans-
mission boundary value problem

−∇ · (D∇u′) + µu′ = 0 in Ω\∂S,
2D∂nu

′ + u′ = 0 on ∂Ω,

[u′]± = 0 on ∂S,

[D∂nu
′]± = −λh · n on ∂S.

Next we formulate an approximate variational principle which guarantees existence
of smooth almost critical points of Jα near to any of its minimizers. This is a
crucial property from a numerical point of view as it allows to approximate the
searched-for domain by smooth domains.

Theorem (Approximate variational principle) Let (λ∗, S∗) ∈ Λ×L be a minimizer
of Jα where λ∗ is an inner point of Λ. Then, for any ε > 0 sufficiently small there
is a (λε, Sε) ∈ Λ× S with

Jα(λ
ε, Sε)− Jα(λ

∗, S∗) ≤ ε, ‖λεχSε − λ∗χS∗‖L1 ≤ ε, ‖J ′
α(λ

ε, Sε)‖R×C2→R ≤ ε.

For a numerical realization of our approach in 2D we consider star-shaped domains
only

S = {x ∈ R
2 : x = m+ t θ(ϑ)r(ϑ), 0 ≤ t ≤ 1, 0 ≤ ϑ ≤ 2π}

where θ(ϑ) = (cosϑ, sinϑ)⊤, m is the center, and r : [0, 2π] → [0,∞[ parameterizes
the boundary of S. All previous results hold in this setting as well if we work
in a space of smooth parameterizations, say, r ∈ H3

p(0, 2π) ⊂ C2
p(0, 2π). We

have implemented star-shaped domains using trigonometric polynomials. Our
numerical experiments and results are reported in [2].
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Blind Deconvolution and Nonnegative Matrix Factorization

Christine De Mol

(joint work with Löıc Lecharlier)

We consider linear inverse problems in a discrete setting and in the case where
nonnegativity constraints apply. This amounts to solving the equation Kx = y,
where y ∈ Rn is the vector containing the data, x ∈ Rp is the vector of nonneg-
ative coefficients describing the unknown object and K is the n × p matrix with
nonnegative elements modelling the link between the two. Since observed data
are noisy, the problem is reformulated as the minimization of a cost function (also
called contrast or discrepancy) reflecting the statistical properties of the noise.

For the case of Poisson noise, one minimizes the (log-likelihood) cost function
(i.e. the Kullback-Leibler divergence between y and Kx)

(1) F (x) =

n∑

i=1

[
yi ln

(
yi

(Kx)i

)
− yi + (Kx)i

]
.

To do so, a classical and popular iterative algorithm is referred to as Richardson-
Lucy’s in astronomy [5, 4] and EMML (for Expectation-Maximization Maximum
Likelihood) in medical imaging. This algorithm is of multiplicative type and the

successive iterates (k = 0, 1, . . . ) are given by x(k+1) =
x(k)

KT1
◦ KT y

Kx(k)
, where 1

is a vector of ones, KT is the transpose of K and we use the Hadamard (entrywise)
product ◦ and division. When initialized with x(0) > 0, positivity is automatically
preserved throughout the iteration. To avoid instabilities due to ill-conditioning,
regularization by early stopping is usually applied.

A similar multiplicative algorithm for the case of Gaussian noise, i.e. to mini-
mize the least-squares cost function ‖Kx−y‖22 (where ‖y‖22 =

∑
i |yi|2 denotes the

squared ℓ2-norm), is the so-called Image Space Reconstruction Algorithm (ISRA):

x(k+1) = x(k) ◦ KT y

KTKx(k)
[1].

Motivated by several applications, we address the blind inversion problem where
both x and the linear operator K are unknown and should be recovered from the
data. The minimization of the cost function for both unknowns leads to a non-
convex optimization problem even if it is convex with respect to x or K separately.
The usual strategy, advocated by many authors, is then an alternate minimization
on x (with K fixed) and K (with x fixed).

We notice that the problem can be easily generalized to include multiple in-
puts/unknowns (x becomes a p×mmatrixX) and multiple outputs/measurements
(y becomes a n × m matrix Y ). The resulting problem of solving the equation
KX = Y is then often referred to as “Nonnegative Matrix Factorization” (NMF),
for which alternating ISRA or EMML algorithms have been popularized by Lee
and Seung [3]. An important special case is “blind deconvolution” under positiv-
ity constraints, which hold e.g. in incoherent optical imaging or for probability
densities.
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To regularize the problem we use additional penalties on both unknowns, ei-
ther quadratic (i.e. proportional their squared ℓ2-norm) or sparsity-enforcing (i.e.
proportional to their ℓ1-norm), or else a combination of both. For example, in
the case of Gaussian noise, we minimize, for K and X nonnegative (assuming Y
nonnegative as well), the following cost function

(2) F (K,X) =
1

2
‖Y −KX‖2F +

µ

2
‖K‖2F + λ ‖X‖1 +

ν

2
‖X‖2F

where λ, µ, ν denote the positive regularization parameters, ‖K‖2F =
∑

i,j K
2
i,j is

the squared Frobenius norm and ‖X‖1 =
∑

i,j |Xi,j | the ℓ1-norm. We notice that
the minimization can be done column by column on X and line by line on K and
we derive the following multiplicative alternating minimization algorithm

K(k+1) = K(k) ◦ Y (X(k))T

K(k)X(k)(X(k))T + µK(k)
(3)

X(k+1) = X(k) ◦ (K(k+1))TY

(K(k+1))TK(k+1)X(k) + νX(k) + λO
(4)

to be initialized with arbitrary but strictly positive K(0) and X(0) (O is a p ×m
matrix of ones). This algorithm reduces for µ = ν = 0 to a blind algorithm
proposed in [2] and to ISRA for K fixed and λ = µ = ν = 0. Since it can be
derived as a Majorization-Minimization scheme through the use of surrogate cost
functions, a monotonic decrease of the cost function at each iteration is ensured.
Moreover, building upon Zangwill’s theory [6], we are able to analyze the conver-
gence properties of this algorithm and in particular to prove convergence of the
sequence (K(k), X(k)) of iterates to a stationary point of (2).

A similar algorithm and similar convergence results can be derived for the case
of Poisson noise, i.e. when in (2) the least-squares discrepancy between Y and KX
is replaced by a Kullback-Leibler divergence. Moreover, the previous framework
can also accommodate a penalty on the (smoothed) total variation of X . Finally,
we report on work in progress concerning the numerical validation of these iterative
schemes as well as possible strategies to accelerate these algorithms.
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Detection of qualitative features in statistical inverse problems

Johannes Schmidt-Hieber

(joint work with Axel Munk and Lutz Dümbgen)

In the theory of deterministic inverse problems the main focus lies on stable recon-
struction methods. However, by assuming additionally that measurement errors
are random we can say more: Besides point estimators/reconstruction methods,
tests for statistical hypotheses and confidence statements can be considered as
well.
In applied inverse problems one often faces the problem that the shape of the
reconstruction may be highly dependent on the regularization parameter. This
dependence increases with the ill-posedness of the problem. For example it might
happen that some regularization parameter selection rules add an additional mode
to the reconstruction. Then, the question is the interpretability. Can we state
that there is a mode? In this talk we outline how to assign confidence values to
qualitative features such as modes or local increases and decreases for the (one
dimensional) nonparametric density deconvolution model.
The application for real data sets is evident. Given a point estimate together
with the constructed confidence statements we can distinguish which qualitative
features of the reconstruction are significant and which are likely to be artefacts.
To state is differently, we construct a tool that allows to substantiate visual im-
pressions from an estimator by confidence values.
In nonparametric settings there are delicate issues involved with confidence sets
if the smoothness of the true function is not known a-priori (cf. Low [3]). Never-
theless, confidence statements for qualitative features can be obtained (uniformly
over function classes) since they do not involve bias estimates (for nonparametric
regression cf. [1], for density estimation, cf. [2], and for density deconvolution, cf.
[4]). In order to construct these confidence statements, convergence of a multiscale
statistic to a distribution-free limit has to be proved (this is explained in more de-
tail in [5]). The multiscale statistic combines tests computed over all scales. This
has a number of advantages. Firstly, construction of the confidence statements
does not require the choice of a bandwidth. It is only necessary to select a global
confidence level. Secondly, since all scales are taken into account the method is
able to detect features of different size. This can be viewed as adaptation property.
Thirdly, by construction of the multiscale test, the derived confidence statements
hold simultaneously with probability at least the confidence level.
In Figure 1, we give a numerical illustration of our result, based on Laplace de-
convolution with sample size 2.000 (we consider the same setting as [4], Section
6). In the upper plot the true density and the (very smooth) convolved density
are displayed. As reconstruction method we take a kernel density estimator. In
the middle panel of Figure 1, reconstructions for three different bandwidth choices
are given. Two of them find a mode around .05, whereas the reconstruction cor-
responding to the largest bandwidth increases on [0, .24]. Can we state that the
additional mode is significant and therefore reject the smooth reconstruction? In
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Figure 1. Numerical example for Laplace density deconvolution.
Upper panel: True (dashed) and and observed density (solid).
Middle panel: Reconstructions for different bandwidth choices.
Lower panel: Confidence statement.

the lower plot, the confidence statement is displayed. Before interpreting the re-
sult, let us shortly explain how to read the plot. Pick one of the horizontal lines.
Then, with 90% confidence, we can conclude that somewhere on this interval there
is an increase or decrease of the true function, depending whether the line is plot-
ted above or below the thin line. By looking at the leftmost horizontal line, we
find that with confidence 90% there has to be a decrease somewhere on [.02, .24].
Therefore, we can conclude that the reconstruction that increases monotonically
on [0, .24] does not have the right shape behavior. On the other hand the addi-
tional modes occuring for the oscillating reconstruction cannot be substantiated
by the confidence statements and are thus classified as possible artefacts.
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Solution of large scale PDE inverse problems in model reduction
framework

Vladimir Druskin

(joint work with Liliana Borcea, Alexander Mamonov, Valeria Simoncini and
Mikhail Zaslavsky)

Many transient and steady-state inverse problems of remote sensing, such as
electromagnetic and seismic geophysical exploration, electrical impedance tomog-
raphy (EIT), etc., can be conveniently formulated as multi-input/multi-output
(MIMO) problems of control theory. Let us assume, that our measured data are
obtained with the help of m1 transmitters (inputs) and m2 receivers (outputs),
and they can be presented via matrix valued impedance function Y (s) ∈ Cm1×m2 ,
a.k.a. Weyl function or MIMO transfer function, given by

(1) Y (s) = C∗ [A(σ) + sI]
−1
B.

Here s ∈ C is the excitation frequency, A(σ) is a PDE operator with coefficient
distribution σ, e. g., diffusion operator A(σ)u = ∇ · (σ∇u) in R3 with space-
variable diffusion coefficient σ (the unknown in the inverse problem), assuming
regular enough function u. Operators B and C have respectively transmitter and
receiver density distributions as columns, e. g., for the above mentioned diffusion
problem B∗u = (

∫
R3 b1u, . . . ,

∫
R3 bm1u)

∗, C∗u = (
∫
R3 c1u, . . . ,

∫
R3 cm2u)

∗. Let
data D(s) (including possible measurement error) be available for some set of
frequencies S ⊂ C with probability measure dS. We assume, that the solution of
the inverse problem σopt can be uniquely obtained by minimization of the misfit
functional on a compact set Σ of admissible solutions σ for s ∈ S, i.e.,

(2) σmin = argmin
σ∈Σ

∫
‖D(s)− C∗ [A(σ) + sI]−1B‖2wdS,

where ‖.‖w is weighted matrix norm with weights dependent on s. If necessary, a
regularization penalty functional (e.g., Tikhonov’s) can be added to the r.h.s.
of (2). For example, such a formulation includes the EIT problem, in which
case S = {0} and A(σ) is the diffusion operator with σ being variable electrical
conductivity. If S is the entire imaginary axis, then problem (1) corresponds
to the transient inverse problems. Well known examples of such problems are:
transient control source electromagnetic method (tCSEM) with Maxwell’s operator
A(σ) = ∇×σ∇×; the inverse dynamic seismic problem, in which case A(σ) is the
first order elasticity operator.

The regularized Gauss-Newton (GN) algorithm is the method of choice for the
solution of (2). However, it requires multiple calls of forward solver accurately

enough approximating C∗ [A(σ) + sI]
−1
B. That can prohibitively expensive, es-

pecially for large scale 3D problems. This situation becomes aggravated in the
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transient problems, because in addition to very expensive forward solution it re-
quires handling extremely large Jacobian matrices.

Our objective is to reduce inversion complexity (without sacrificing its quality)
by reducing dimensionality of the forward solver. For that we consider a so-called
reduced order model (ROM) Yn(s) ∈ Cm1×m2 of Y (s), given by

(3) Yn(s) = C∗
n [An + sI]

−1
Bn,

where Cn ∈ Cn×m2 , Bn ∈ Cn×m1 , An ∈ Cn×n. In the standard control theory
setting A(s) is usually a large finite-dimensional operator, so Y (s) is a high order
rational function and Yn(s) can be viewed as its low order rational approximation
(assuming that order n is much smaller then A’s dimension), hence the name.
Usually Yn constructed as a rational interpolants (a.k.a. multipole Padé) of Y (s),
or using rational Krylov subspaces via Padé-Lanczos connections. The frequency
interpolation is not available for the EIT problem, so instead we use the DtN
interpolation based on network approximations. As result, the ROMs have expo-
nential convergence similar (or even superior) to spectral methods and sparsity
structure similar to the conventional second order finite-volume discretizations, so
the ROMS are vastly superior compared to conventional forward solvers from the
computational perspective. Original concept of such ROMs became known at the
end of the 19th century in context of network synthesis and filter design. The
goal of those techniques was to construct analogous electrical network matching a
given transfer function as accurately as possible in a targeted frequency range.

Projection operators Bn, Cn and class of discrete ROM operators Ãn (not nec-
essary compact) should satisfy the following requirements: An should be uniquely
recovered as

(4) An,opt = arg min
An∈Ãn

∫
‖D(s)− C∗

n [An + sI]−1Bn‖2wdS,

preferably using a direct layer stripping approach; An should mimic a matrix of a
dicretized A(s) via finite-volume or Galerkin method and Bn should mimic corre-
sponding discretization of B, etc. for Cn. Order n can play role of regularization
parameter in (4).

We interpret the synthetic operator An as a discretization of A, so the desired
estimate is obtained as cell average. It turned out, that such an estimate strongly
depends on the discretization grid, i.,e., σopt,n even diverges or converges to a
wrong limit, if the grid is not chosen properly. This property highlights fundamen-
tal difference between conventional inversion (2) (or its variants using Tikhonov
regularization) and ROM inversion (4). The former explicitly impose restrictions
on the class of admissible solutions Σ, such that problem becomes stable to data
perturbation, including errors in the forward solution. In contrary, optimization
(4) is performed in terms of An from (possibly noncompact) admissible set Ãn,
which can not be always translated to an appropriate constrain on σ. That may
lead to spurious oscillation of the latter.

Another research direction is to construct An via already mentioned Padé-
Galerkin connection using the RKS for the transient problems. We found (and
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proved), that the ROM approximation error Yn − Y lays in the null-space of the
ROMS Jacobian for a special class of H2 (Hardy space) -optimal approximations.

Model reduction method for a parabolic inverse resistivity problem

Alexander V. Mamonov

(joint work with Liliana Borcea, Vladimir Druskin and Mikhail Zaslavsky)

We consider a problem of recovery of a resistivity coefficient r(x) > 0 in a
one-dimensional parabolic equation

∂x[r(x)∂xu(x, t)] = ∂tu(x, t), x ∈ [0, 1], t > 0,(1)

u(x, 0) = δ(x), ∂xu(0, t) = u(1, t) = 0,(2)

from the measurement of the time-domain data d(t) = u(0, t). This particular
formulation is motivated by the controlled source electromagnetic exploration in
geophysics. This highly non-linear inverse problem is ill-posed and thus its numer-
ical solution is challenging. To mitigate the ill-posedness of the problem we put it
into the model reduction framework.

We treat the semi-discrete analogue of (1)–(2) as a dynamical system with a
transfer function

(3) G(s) = bT (sI −A(r))−1b, A(r) ∈ R
N×N , b ∈ R

N ,

where A(r) is a fine grid discretization of the operator in (1) that depends linearly
on the vector of discrete resistivities r ∈ RN

+ . Using the rational Krylov subspace
model reduction techniques we obtain a reduced model of (3) that has the form

(4) Gm(s) = bT
m(sIm−Am)−1bm, Am = V TA(r)V ∈ R

m×m, bm = V Tb ∈ R
m,

with V being an orthonormal basis for a rational Krylov subspace

(5) Km(σ) = span{(σ1I −A(r))−1b, . . . , (σmI −A(r))−1b}.
This corresponds to a rational interpolation of G(s) by Gm(s) at nodes σj , the
choice of which is discussed in detail in [1].

Since the reduced order transfer function (4) is a rational function of s, one
may consider its Stieltjes continued fraction expansion with positive coefficients
κk, k = 1, . . . , 2m, which can be obtained with Lanczos algorithm. It turns out
that these coefficients have a physical meaning of resistivities, as they themselves
correspond to coefficients of a discretization of (1)–(2) on a three point stencil [2].

We formulate the inverse problem of finding an estimate r⋆ of the resistivity as
a minimization of a functional

(6) r⋆ = arg min
r∈RN

+

1

2
‖Q(d(t)) −Q(y(t; r))‖22 ,

where y(t; r) = bT eA(r)tb is the time-domain response of the dynamical system.
The non-linear preconditioner Q maps the time domain response to the vector of
the continued fraction coefficients κk of the reduced model. If viewed as a function
of the fine grid discrete resistivities r, then Q(y( · , r)) is an approximate identity,
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m = 3, ǫ = 5% m = 4, ǫ = 0.5% m = 5, ǫ = 0.01% m = 6, ǫ = 0
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Figure 1. Reconstructions of resistivities r(x) (solid black line):
smooth (top row), piecewise constant (bottom row). Reconstruc-
tion after the first Gauss-Newton iteration is blue ×, after five
iterations is red ◦. Relative ℓ2 error is printed at the bottom of
the plots. Noise level is ǫ, reduced model dimension is m.

since the continued fraction coefficients correspond to the resistivities on a coarser
grid with 2m nodes. Thus, if we apply the Gauss-Newton iteration to (6) it will
converge quickly. It is also much less likely to get stuck in a local minimum, because
the functional in (6) is close to convex. These are the significant advantages of
our method over the more traditional regularized output least squares approaches,
that are prone to slow convergence and local minima. Another advantage comes
from the fact that the mapping from r to κk can be computed directly, without
the need to calculate the time domain solution y(t, r). This makes our method
computationally inexpensive.

The reconstructions from noisy data obtained in [1] with the inversion procedure
outlined above are given in Figure 1. We observe that the method performs well
for both the smooth and the piecewise constant resistivities. The model reduction
approach discussed here can be applied to the inverse problems in higher spatial
dimensions. Depending on the setting, such extension may require the study of
tangential rational interpolation and block Lanczos algorithms instead of their
scalar counterparts used here.
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Sparsity-based choice of regularization parameter

Samuli Siltanen

(joint work with Keijo Hämäläinen, Aki Kallonen, Ville Kolehmainen, Matti
Lassas and Kati Niinimäki)

We study the so-called S-curve method, introduced in [7], in the context of two-
dimensional X-ray tomography. The S-curve method can be seen as a generaliza-
tion of the ideas in [6].

Consider the discrete tomographic measurement model m = Af + ε, where f ∈
Rn is a piecewise constant discretization of the unknown attenuation coefficient,
m ∈ Rk is the vector of measurements, A is the system matrix and ε models
measurement noise. We assume that ε is white noise with standard deviation
σ > 0. Here is a simple geometric illustration of such a model:
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We are interested in computing sparse reconstructions by minimizing the func-
tional

(1) arg min
f∈Rn

+

arg min
f∈Rn

+

{
1

2σ2
‖Af −m‖2ℓ2 + α‖f‖B1

11

}
,

where 0 < α <∞ is the regularization parameter and the notation f ∈ Rn
+ means

that we minimize over vectors f having non-negative elements. The Besov space
norm in (1) can be written in terms of the wavelet coefficients of f :

‖f‖B1
11

=
∑

~k

|cJ0
~k|+

∑

j,ℓ,~k

|wj~kℓ|.

The analysis in [1, 2, 3, 4] shows that the minimizer of (1) is sparse, or has only
finitely many nonzero wavelet coefficients. Now of course the formulation above is
finite in the first place, so it may seem like the sparsity has no meaning. However,
one can refine the discretization by taking n larger above; in that case the number
of nonzero coefficients will stabilize at some point and remain constant for all
n > n0.
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It turns out that the minimization problem (1) can be transformed into the
standard form

(2) arg min
z∈R5n

{
1

2
zTQz + cT z

}
, z ≥ 0, Ez = b,

whereQ is symmetric andE implements equality constraints. A large-scale primal-
dual interior point quadratic programming (QP) method was developed for (2) in
[7, 5].

The idea of the S-curve method is to use a priori knowledge of the sparsity of
the unknown function to be reconstructed. To demonstrate this idea, we X-ray
imaged a walnut from different directions to produce tomographic data. Then we
took three other walnuts, sawed them in half, and took photos of the cross-sections:

We then computed the wavelet transform of the above photographs at resolution
128×128 and determined the number of nonzero wavelet coefficients. Next we com-
puted the minimizers of (1) with various choices of α and determined the number
of nonzero wavelet coefficients in each case. Now with large α the reconstruction
approaches to zero, and in the limit there are no nonzero wavelet coefficients. On
the other hand, with small α the reconstructions are very erratic due to too weak
regualrization. In such cases almost all of the wavelet coefficients are nonzero. In
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between these extreme cases there is some value of alpha giving the right sparsity,
and that optimal α can be revealed by the S-curve. See the picture above.
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Regularization in Variable RKHSs with application to the Blood
Glucose Reading

Valeriya Naumova

(joint work with Sergei V. Pereverzyev, Sivananthan Sampath)

This is the first from two presentations on regularization methods for Diabetes
Technology. Here we consider the problem of a reconstruction of a real-valued
function f : X → R, X ⊂ Rd, from a given data set

z = {(xi, yi)}ni=1 ⊂ X × R,

where it is assumed that yi = f(xi) + ξi, and ξi = {ξi}ni=1 is a noise vector. At
this point it should be noted that the reconstruction problem can be considered in

two aspects. One aspect is to evaluate the value of a function f(x) for x ∈ co{xi},
where co{xi} is the closed convex hull of data points {xi}. It is sometimes called

as interpolation. The other aspect is to predict the value of f(x) for x /∈ co{xi},
which is known as extrapolation.

Due to ill-posedness of the reconstruction problem, a regularization mechanism
is required [2]. A well-known technique to stabilize the ill-posed problems with
noisy data is by the Tikhonov regularization, i.e., by minimizing the functional

(1) Tλ,r(f) =
1

|z|

|z|∑

i=1

(yi − f(xi))
2 + λ||f ||2W r

2
,

where |z| is the cardinality of the set z, i.e., |z| = n, and λ is a regularization
parameter, which trades off data error with smoothness measured in terms of a
Sobolev space W r

2 [7].
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The Tikhonov method, even in its simplest form (1), raises two main issues
that should be clarified before use of this scheme. One of them is how to choose a
regularization parameter λ. This problem has been extensively discussed. A few
selected references from the literature are [1, 2, 3, 6].

The second issue is concerned with the choice of a space, in which a regulariza-
tion is performed and whose norm is used for a penalization. It is important to
stress that this choice is problem-dependent and can make a significant difference
in practice. Despite its significance, the second issue is much less studied and,
in general, the question about the proper choice of a regularization space is open
until now. At the same time, keeping in mind that a Sobolev spaceW r

2 used in (1)
is a particular example of a Reproducing Kernel Hilbert Space (RKHS), the issue
about the choice of a proper regularization space is, in fact, about the choice of a
kernel for an RKHS. At the same time, as it has been mentioned, for example, by
Micchelli, Pontil [4], even for the classical RKHS setting, a challenging and central
problem is the choice of the kernel itself, and the choice is tied to the problem of
choosing the basis for the approximation of the unknown function.

From the above discussion, it should be clear that despite the great success
of the regularization theory, the choice of the suitable regularization space still
remains an issue. The present talk aims to shed light on this important but as of
yet under-researched problem.

With this in mind, we describe a novel approach, so-called Kernel Adaptive
Regularized (KAR) algorithm, where the kernel and the regularization parameter
are adaptively chosen within regularization procedure [5].

The construction of such fully adaptive regularization algorithm is motivated by
the problem of reading the blood glucose concentration of diabetic patients. To this
end, we present an extensive collection of the results of the numerical experiments
with real clinical data which confirm the theoretical achievements. Efficiency and
superiority of the proposed approach is demonstrated by comparing the perfor-
mance of the constructed blood glucose estimators with the performance of the
commercially available systems for an estimation of the current blood glucose, and,
by doing so, we observe and discuss several attractive features of the constructed
estimators, which are of interest to both medical researchers and mathematicians.
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A Meta-Learning Approach to the Adaptive Regularization – Case
Study: Blood Glucose Prediction

Sergei V. Pereverzyev

(joint work with Valeriya Naumova, Sivananthan Sampath)

This is the second from two presentations on regularization methods for Diabetes
Technology. The positive theoretical and numerical results of the developed KAR-
algorithm [3] encouraged us to analyze the problem of the adaptive regularization
but this time in the framework of a meta-learning approach. The concept of meta-
learning presupposes that the kernel and the regularization parameter are selected
on the base of previous experience with similar learning tasks. Therefore, se-
lection rules developed in this way are intrinsically problem-oriented. Moreover,
meta-learning is very much dependent on the quality of data extracted from pre-
vious experience. In the literature [2] it is usually difficult obtaining good results
since such data (meta-examples, meta-features) are, in general, very noisy. This
gives a good reason for using regularization methods [1] in meta-learning, because
these methods are aimed for treating noisy data. Despite the naturalness of this
approach, the idea of a combination of meta-learning and regularization seems to
be new.

In this way we have developed the Fully Adaptive Regularized Learning (FARL)
approach [4], which allows a dynamic adjustment of the regularization space and
parameter to each particular input. The efficient applicability of the FARL-
algorithm is demonstrated on the problem of prediction of the blood glucose (BG)
levels of diabetic patients. The developed approach allows the construction of
blood glucose predictors which, as it has been demonstrated in the extensive clini-
cal trials, outperform the state of the art. Moreover, we also show how the results
of the application of the KAR-algorithm can be used as the input to the FARL-
algorithm for achieving more accurate clinical results.

Finally, we discuss the versatility and effectiveness of the proposed approach
for other applications from diabetes therapy management.

The material is patent pending, the patent application [5] has been filed jointly
by Austrian Academy of Sciences and Novo Nordisk A/S (Denmark).
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On the regularity of fixed-point iterations and practical convergence
results

Russell Luke

We consider optimization problems of the form

(Pα) minimize
x∈C

Fb ◦ A(x) + αϕ(x)

where X and Y are Hilbert spaces and C ⊂ X is closed. For example: C = X+,
ϕ = TV, ‖ · ‖pp, etc. and either Fb(y) := Dφ(y, b) where

Dφ(y, b) :=

∫

Ω

φ(y(t)) − φ(b(t))− 〈φ′(b(t)), (y(t)− b(t))〉 d(µ(t)),

the Bregman divergence parameterized by φ, or

Fb(y) := ιlev≤β(Dφ(·,b))(y)

where

ιB(y) :=

{
+∞ if y /∈ B

0 else.

Define xα to be a solution to (Pα) and x0 a solution to (P0). Let the regularization
ϕ be such that xα → x0 linearly as α → 0. Suppose also that xα is computed
by an iterative method, that is, you construct a sequence of iterates (xkα)k∈N with
xkα → xα. If x

k
α converges to xα arbitrarily slowly for a fixed α > 0, the complexity

estimates for the regularization scheme are moot. Convergence of the iterative
scheme for fixed α is not enough. On the other hand, you will never compute xα
exactly anyway, so how close is close enough, and how long will it take you to get
there?

What could go wrong? Even for nice geometries, one can have bad behavior. In
(Pα) let C = X = ℓ2, A = Id, Fb(y) := ιΩ1(y) and ϕ(x) = ιΩ2 where Ω1 = {e1}⊥
and Ω2 is a closed convex cone with sup 〈e1, Ω2〉 = 0 and Ω1 ∩Ω2 = {0}. For any
α ≥ 0 problem (Pα) in this instance is a convex feasibility problem with xα = x:
Given the sets Ω1 and Ω2

Find x ∈ Ω1 ∩ Ω2.

We attempt to solve this problem via the method of alternating projections (MAP):

x2k+1 = PΩ1x
2k , x2k = PΩ2x

2k−1



Computational Inverse Problems 3095

where for a general set Ω ⊂ X ,

PΩx := argminy∈Ω‖x− y‖.

Hundal [5] showed that there is a convex cone Ω2 for which the sequence of MAP
iterates for this problem converge weakly to 0, but not strongly. Indeed, in [2]
it was shown for the case of subspaces of a Hilbert space X the MAP algorithm
for finding x ∈ Ω1 ∩ Ω2 converges either uniformly linearly or arbitrarily slowly.
The problem is not specific to the MAP algorithm. Indeed, by the well known
connection between the projection and gradients of the squared distance function
[3] this dichotomy also afflicts the method of steepest descents without step-length
optimization applied to the problem of minimizing the sum of squared distances
to the subspaces. �

We take a closer look at the regularity assumptions of linear convergence results
for simple algorithms such as MAP in an effort to establish linear convergence
guarantees for nonconvex instances of this algorithm. In particular, we show the
weakest assumptions known at this time to guarantee local linear convergence
of the MAP iterates [6, 1]. Using the same notions of regularity we are also
able to prove local linear convergence of the more sophisticated Douglas Rachford
algorithm in the case where one of the sets is a subspace and the other set is what
we call (ǫ, δ)-regular [4]. Following [7] the results are extended to finite precision
implementations and demonstrated on the problem of phase retrieval in diffractive
X-ray imaging.
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Local analysis of the inverse boundary value problem for the
Helmholtz equation and iterative reconstruction

Maarten V. de Hoop

(joint work with E. Beretta, L. Qiu, O. Scherzer, X.S. Li. S. Wang, J. Xia)

We consider time-harmonic seismic waves, described by the Helmholtz equation,
and view the Dirichlet-to-Neumann map on the earth’s surface as the data. We es-
tablish conditional Lipschitz stability for the inverse boundary value problem. The
stability is obtained for models of the form of linear combinations of piecewise con-
stant functions, naturally admitting the presence of certain conormal singularities.
The dimension is determined by the number of linearly independent combinations.
The stability constant grows exponentially with the dimension of this model space.
We also include attenuation.

We consider then the nonlinear Landweber iteration and obtain a convergence
result, assuming Lipschitz stability. Specifically, we obtain a radius of convergence,
which depends on the above mentioned stability constant, and a convergence rate.
Essentially, the radius reduces rapidly with the dimension of the model space,
and hence compressive approximations become an important component of the
procedure. We finally introduce a convergent nonlinear projected steepest descent
iteration for the case of conditional Lipschitz stability.

To mitigate the growth of the stability constant with dimension on the one hand,
and the approximations by sparse model representations with associated errors on
the other hand, we introduce a multi-level approach with an associated condition
on stability constants and on the approximation errors between neighboring levels
to guarantee convergence.

We briefly summarize the computational techniques behind our massively par-
allel structured direct Helmholtz solver. We make use of a nested dissection based
domain decomposition, with separators of variable thickness, and introduce an
approximate multifrontal solver by developing a parallel Hierarchically SemiSepa-
rable (HSS) matrix compression, factorization, and solution approach.

Wave propagation in waveguides with random boundaries

Ricardo Alonso

(joint work with Liliana Borcea, Josselin Garnier)

We consider acoustic waves propagating in a waveguide with axis along the range
direction z. In general, the waveguide effect may be due to boundaries or the vari-
ation of the wave speed with cross-range, as described for example in [7, 5]. We
consider here only the case of waves trapped by boundaries, and take for simplicity
the case of two dimensional waveguides with cross-section D given by a bounded
interval of the cross-range x. The results extend to three dimensional waveguides
with bounded, simply connected cross-section D ⊂ R2.
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The pressure field p(t, x, z) satisfies the wave equation

(1)

[
∂2z + ∂2x − 1

c2(x)
∂2t

]
p(t, x, z) = F (t, x, z) ,

with wave speed c(x) and source excitation modeled by F (t, x, z). Since the equa-
tion is linear, it suffices to consider a point-like source located at (x0, z = 0) and
emitting a pulse signal f(t),

(2) F (t, x, z) = f(t)δ(x− x0)δ(z) .

Solutions for distributed sources are easily obtained by superposing the wave fields
computed here. The boundaries of the waveguide are rough in the sense that they
have small variations around the values x = 0 and x = X , on a length scale
comparable to the wavelength. Explicitly, we let

(3) B(z) ≤ x ≤ T (z) , where |B(z)| ≪ X, |T (z)−X | ≪ X,

and take either Dirichlet boundary conditions

(4) p(t, x, z) = 0 , for x = B(z) and x = T (z),

or mixed, Dirichlet and Neumann conditions

(5) p(t, x = B(z), z) = 0 ,
∂

∂n
p(t, x = T (z), z) = 0 ,

where n is the unit normal to the boundary x = T (z).

The goal of this work is to quantify the long range effect of scattering at the rough
boundaries. More explicitly, to characterize in detail the statistics of the random
field p(t, x, z). This is useful in sensor array imaging, for designing robust source
or target localization methods, as shown recently in [1] in waveguides with internal
inhomogeneities. Examples of other applications are in long range secure commu-
nications and time reversal in shallow water or in tunnels [4, 8].

Our approach based on changes of coordinates that straighten the boundary leads
to a transformed problem that is similar from the mathematical point of view to
that in waveguides with interior inhomogeneities, so we can use the techniques
from [7, 6, 2, 4, 3] to obtain the long range statistical characterization of the
wave field. However, the cumulative scattering effects of rough boundaries are
different from those of internal inhomogeneities. We quantify these effects by
estimating in a high frequency regime three important, mode dependent length
scales: the scattering mean free path, which is the distance over which the modes
lose coherence, the transport mean free path, which is the distance over which
the waves forget the initial direction, and the equipartition distance, over which
the energy is uniformly distributed among the modes, independently of the initial
conditions at the source. We show that the random boundaries affect most strongly
the high order modes, which lose coherence rapidly, that is they have a short
scattering mean free path. Furthermore, these modes do not exchange efficiently
energy with the other modes, so they have a longer transport mean free path. The
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lower order modes can travel much longer distances before they lose their coherence
and remarkably, their scattering mean free path is similar to the transport mean
free path and to the equipartition distance. That is to say, in waveguides with
random boundaries, when the waves travel distances that exceed the scattering
mean free path of the low order modes, not only all the modes are incoherent, but
also the energy is uniformly distributed among them. At such distances the wave
field has lost all information about the cross-range location of the source in the
waveguide. These results can be contrasted with the situation with waveguides
with interior random inhomogeneities, in which the main mechanism for the loss
of coherence of the fields is the exchange of energy between neighboring modes
[7, 6, 2, 4, 3], so the scattering mean free paths and the transport mean free paths
are similar for all the modes. The low order modes lose coherence much faster than
in waveguides with random boundaries, and the equipartition distance is longer
than the scattering mean free path of these modes.
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Large-Scale Solution of Bayesian Inverse Problems Governed by Wave
Propagation

Omar Ghattas

(joint work with Tan Bui-Thanh, Carsten Burstedde, James Martin, Georg
Stedler)

Inverse problems governed by wave propagation - in which we search to recon-
struct the unknown shape of a scatterer, or the unknown properties of a medium,
from observations of waves that are scattered by the shape or medium- play an
important role in a number of engineered and natural systems. Our goal is to
address the qualification of uncertainty in the solution of the inverse problem by
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casting the inverse problem as one in Bayesian inference. This provides a sys-
tematic and coherent treatment of uncertainties in all components of the inverse
problem, from observations to prior knowledge to the wave propagation model,
yielding the uncertainty in the infered medium/shape in a systematic and consis-
tent manner. Unfortunately, state-of-the-art MCMC methods for characterizing
the solution of Bayesian inverse problems are prohibitive when the forward prob-
lem is expensive and a high dimensional parametrization is employed to describe
the unknown medium. We report on recent research aimed at overcoming the
mathematical and computational barrier for large-scale Bayesian inverse prob-
lems. This includes: parallel adaptive mesh refinement/coarsening algorithms;
a high order parallel adaptive hp-confirming discontinuous Galerkin method for
wave propagation; parallel hyprid algebraic-geometric multigrid for treatment of
the regularizing priors; infinite-dimensional formulations of Baysian inverse prob-
lems and their consistent finite dimensional discretization; a stochastic Newton
MCMC method for solution of the statistical inverse problems; fast low rank ran-
domized SVD approximation of the Hessian based on compactness properties; and
applications to synthetic Bayesian inverse wave propagation in whole earth seis-
mology characterized by up to 106 earth parameters and 109 wave propagation
variables, on up to 105 processor cores.

Oracle inequalities in inverse problems

Laurent Cavalier

(joint work with Yuri Golubev, Dominique Picard, Alexandre Tsybakov)

Inverse problems appear in many fields of application, from geophysics to medical
image processing. The aim is to reconstruct some unknown object (or function)
based on noisy indirect observations. From a mathematical point of view this
often corresponds to inverting some operator equation : given g, find f such that
g = Af . Usually A is some linear operator A : H → H , where H is some Hilbert
space. The most interesting cases are ill-posed inverse problems where A is not
invertible as an operator. These problems are ill-posed in the sense that a small
error on g can imply a large one on the “inverse” f .

In this paper, we consider inverse problems with random noise, i.e. that the
error on the observation is random. The model is the following

Y = Af + εξ,

where ξ is a white noise, 0 < ε < 1 is a small parameter (the noise level) and Y is
the observation.

The study of inverse problems with random noise is a fastly growing field in
statistics. One of the most standard (and sometimes implicit) hypothesis is that
the operator A is compact. In this case one often uses Singular Value Decom-
position (SVD) in order to project the observation Y on some basis appropriate
for the operator. An equivalent model is then obtained in the form of a sequence
space model in the coefficients space.
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Let a finite set Λ of linear estimators be given (Truncated SVD, Tikhonov,
Pinsker...). Our aim is to mimic the estimator in Λ that has the smallest risk
on the true f . Under general conditions, we show that this can be achieved
by simple minimization of unbiased risk estimator (URE), provided the singular
values of the operator of the inverse problem decrease as a power law. The main
result is a nonasymptotic exact oracle inequality, i.e. that in some sense it mimics
the best estimator in a given family. This inequality can be also used to obtain
sharp minimax adaptive results. In particular, we apply it to show that minimax
adaptation on ellipsoids with polynomial or exponential weights, i.e. on Sobolev
or Analytic classes, is possible to obtain, without any loss of efficiency with respect
to optimal non-adaptive procedures.

Dealing with compact operators is an interesting and natural assumption in
statistics, in the sense that we decompose the observation Y in some basis, and then
handle its coefficients. However, one may ask if this fine hypothesis of compactness
is really needed, or is just more easy to deal with.

Firstly, SVD is usually used only as a mathematical tool and the method may
be computed in a much faster way, from a numerical point of view, for example
for Tikhonov regularization, Landweber iteration...

Secondly, compact operators are not necessary, and any continuous linear op-
erator with a known spectral decomposition can be studied, in an analogous way.
Instead of using the SVD we use the Spectral Theorem. The eigenvalues of the
compact operator A are replaced by the continuous spectrum of the linear operator
A.

The main point is to understand that this generalization to non-compact op-
erators is not a theoretical exercise, but that it helps to really understand the
problem. The examples deal with the operator of convolution on R and with the
estimation of the derivative of some function. The difference from convolution on
R with circular convolution, is that the operator is not any more compact and the
Fourier basis are not the eigenfunctions. However, from a heuristic point of view,
in this framework the Fourier transform is the analog of the Fourier basis. This
idea is true and the Fourier coefficients which are the eigenvalues of the circular
convolution are replaced here by the Fourier transform on L2(R) of the convolution
kernel r.

Using the unbiased risk estimation approach, in this context, we define our
estimator. We prove a precise oracle inequality, i.e. that in some sense it mimics
the best estimator in a given family. Thus, we generalize the results to this natural
extension.
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Nonlinear inverse problems with noisy operators in econometrics

Fabian Dunker

(joint work with Thorsten Hohage, Jean-Pierre Florens, Jan Johannes, Enno
Mammen)

We consider a nonlinear ill-posed operator equation

F(ϕ†) = 0 ,

where F : B ⊂ X → Y maps form a convex set B in a Banach space X to a
Hilbert space Y. In addition, we assume that the operator is not known exactly.

Only some estimate F̂ : B → Ŷ with random noise is given. This setup allows for
convex constraints on the solution ϕ† which can be incorporated in the set B.

We analyze for this problem the convergence of the iteratively regularized
Gauss-Newton method with a convex lower semi-continuous penalty functional
R and quadratic data misfit

ϕ̂j+1 := argmin
ϕ∈B

(
‖F̂ ′

n[ϕ̂j ](ϕ − ϕ̂j) + F̂n(ϕ̂j)‖2 + αjR(ϕ)
)
.

Using a variational source condition similar to [7], we derive a convergence rate
result, for convergence in probability. The source condition is weak in the sense
that it actually holds for exponentially ill-posed problems. The proved rates are
known to be order optimal in special cases.

Among other applications, problems like this appear in nonparametric instru-
mental quantile regression considered in [2] and [6], as well as in nonparametric
regression with instrumental variables. In this econometric applications convex
constraints like monotonicity or concavity are often imposed on the solution.

Let us focus on the latter regression problems. We propose the new nonpara-
metric instrumental regression model

(1) Y = ϕ(Z) + U while E[U ] = 0 and U ⊥⊥W

which assumes that the instrumental variable W is independent of the error term
U . If the joint density fY ZW of the explanatory variable Z, the response variable
Y , and the instrument W exists, this leads to a nonlinear integral equation

F(ϕ)(u,w) :=

( ∫
fY ZW (u+ ϕ(z), z, w)− fY Z(u + ϕ(z), z)fW (w) dz∫

yfY (y) dy −
∫
ϕ(z)fZ(z) dz

)
.

Here, fY Z is the joint density of Y and Z while fY , fZ , and fW denote the
marginals. Since this densities are not known exactly in applications but have
to be estimated from data, the operator is only given with random errors. In
addition, as probability densities are typically very smooth, the problem is often
severely ill-posed in practice.

We compare the new regression model (1) to the more standard instrumental
regression model

(2) Y = ϕ(Z) + U while E[U |W ] = 0
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considered in [4], [3], [8], [5], and [1] among others. Here, the independence as-
sumption in (1) is weakened to mean independence. This leads to a linear inverse
problem with noisy operator

∫
ϕ(z)fZ,W (z, y) dz =

∫
fY,W (y, w) dy.

We carried out numerical experiments for the case of a binary instrument W and
real-valued Z and Y . This provides an example where the nonlinear model (1)
yields good results whereas in the linear model (2) the solution is not identifiable.
Further more, numerical experiments were made where all three random variables
are one-dimensional and both models can identify the solution. In this examples
model (1) produced considerably better results.
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Convergence Rates for Tikhonov Regularisation on Banach Spaces

Markus Grasmair

The goal of this talk is the presentation of a general approach to the derivation of
convergence rates for non-smooth Tikhonov regularisation on Banach spaces. We
assume that F : U → V is a, possibly non-linear, operator between two Banach
spaces U and V , the first of which is assumed to be reflexive. Given noisy data
vδ ∈ V , we define an approximate solution of the operator equation F (u) = vδ as
any minimiser of the Tikhonov functional

T (u;α, vδ) :=
1

2

∥∥F (u)− vδ
∥∥2 + αR(u).

HereR : U → [0,+∞] is a regularisation term encoding a–priori information about
the noise-free solution of the equation, and α > 0 is a regularisation parameter
determining the emphasis put on regularity versus data explanation. Assume now
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that the noise level δ := ‖vδ−v‖ is known. Then it is known that, under some ad-
ditional conditions on R and F , the regularised solution uδα ∈ argminuT (u;α, vδ)
converge to the true solution

u† := argmin
{
R(u) : u ∈ U satisfies F (u) = v}

as δ → 0 and α → 0 in a suitable way. In this talk we treat the question of the
speed of this convergence.

A classical result in the context of linear operators between Hilbert spaces states
that, if u† satisfies the source condition u† ∈ ran(F ∗F )ν for some 0 < ν ≤ 1, then
the estimate ‖uδα−u†‖ = O(δ2ν/(2ν+1)) holds for a parameter choice α ∼ δ2/(2ν+1).
In the special cases ν = 1/2 and ν = 1 we obtain convergence rates with respect
to the norm of order O(δ1/2) and O(δ2/3), respectively. These results can also be
extended to a non-linear setting on a Hilbert space by linearising the function F
and then applying the results from the linear case. This, however, requires that
the operator F is sufficiently smooth and very well described by a linear mapping
in a neighbourhood of u†.

In any case, the approach usually taken in Hilbert spaces is not easily made to
work in the general setting of Tikhonov regularisation that was introduced above.
First, the fact that a general Banach space cannot identified with its dual makes
the definition of fractional powers of an operator (in fact already integer powers)
difficult if not impossible. In addition, as we allow quite general (lower semi-
continuous and coercive) regularisation terms R, there is no reason why we should
be able to obtain convergence rates with respect to the norm at all.

As an alternative, we propose to base the derivation of convergence rates on
variational inequalities of the form

(1) D(u, u†) ≤ R(u)−R(u†) + γ‖F (u)− F (u†)‖µ,
where D : U ×U → [0,+∞] is some distance like measure (for instance a power of
the norm or the Bregman distance), γ > 0, and 0 < µ ≤ 2. If such an inequality
holds for all u sufficiently close to u† (more precisely: all u ∈ U that can be
minimisers of the Tikhonov functional for small α and δ), then one can show that
D(uδα, u

†) = O(δµ) for a parameter choice α ∼ δ2−µ (see [1, 3]). Some instances
where this approach can be successfully applied are the following:

• Assume that U and V are Hilbert spaces, F is bounded linear, and R(u) =
‖u‖2. Then (1) holds with D(u, u†) = β‖u− u†‖2 and µ = 4ν/(2ν + 1) if
u† ∈ ran(F ∗F )ν for some 0 < ν ≤ 1/2. Thus the classical rates of lower
order are recoverable with this approach.

• Assume that U = ℓ2, F is bounded linear, and R(u) = ‖u‖ℓ1. If u† is
sparse, satisfies a restricted injectivity property, and the source condition
∂R(u†) ∩ ranF ∗ 6= ∅ holds, then (1) holds with D(u, u†) = β‖u − u†‖ℓ1
and µ = 1. Thus ‖uδα − u†‖ℓ1 = O(δ) for α ∼ δ (see [5]).

• Assume that U = ℓ2, F is locally Lipschitz and weakly continuous, and
R(u) = ‖u‖ℓp with 0 < p < 1. If u† is the unique R-minimising solution
of F (u†) = v, is sparse, and the restriction of F to the span of the support
of u† has a Lipschitz continuous inverse, then (1) holds with D(u, u†) =
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β‖u − u†‖ℓ1 and µ = 1, which implies a linear convergence rate. Thus it
is possible to obtain convergence rates even in non-convex cases (see [2, 3]
for results in this direction).

• The proposed approach can also be applied to non-differentiable functions.
Consider for instance F : L2

≥0(S
1) → L2(S1 × R≥0), F (u)(t, z) = 1 for

u(t) ≤ z and F (u)(t, z) = 0 else. This function, related to the snake
medel in image processing, is Hölder continuous of degree 1/2, but nowhere
differentiable. Still it is possible to derive variational inequalities of the
form (1) with R(u) = ‖u′‖22 and D(u, u†) = β‖(u − u†)′‖22, if u† satisfies
smoothness assumptions of the form u† ∈ W s,q(S1). If, for instance,
u† ∈ W 2,∞(S1), then a linear convergence rate with respect to the norm
can be derived (see [4]).
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[1] R. I. Boţ and B. Hofmann. An extension of the variational inequality approach for obtaining
convergence rates in regularization of nonlinear ill-posed problems. J. Integral Equations
Appl., 22(3):369–392, 2010.

[2] M. Grasmair. Non-convex sparse regularisation. J. Math. Anal. Appl., 365(1):19–28, 2010.
[3] M. Grasmair. Generalized Bregman distances and convergence rates for non-convex regu-

larization methods. Inverse Probl., 26(11):115014, 2010.
[4] M. Grasmair. An application of source inequalities for convergence rates of tikhonov regular-

ization with a non-differentiable operator. arXiv:1209.2246, University of Vienna, Austria,
2012.

[5] M. Grasmair, M. Haltmeier, and O. Scherzer. Sparse regularization with lq penalty term.
Inverse Probl., 24(5):055020, 13, 2008.

Convergence rates for cyclic iterative regularization methods

Antonio Leitão

(joint work with Stefan Kindermann)

This talk is devoted to the convergence analysis of a special family of iterative reg-
ularization methods for solving systems of ill–posed operator equations in Hilbert
spaces, namely the Kaczmarz type methods.

The analysis is focused on the Landweber-Kaczmarz (LK) explicit iteration an
the iterated-Tikhonov-Kaczmarz (iTK) implicit iteration. The corresponding sym-
metric versions of these iterative methods are also investigated (sLK and siTK).

We prove convergence rates for all four iterative methods above, extending and
complementing the convergence analysis established originally in [1, 2, 3, 4].
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TV -denoising and the evolution of sets - the magnadoodle approach

Christiane Pöschl

(joint work with Vicent Caselles and Matteo Novaga)

The purpose of this work is to compute explicit solutions of the total variation
denoising problem

(1) minimizeu∈BV (R2)∩L2(R2)

∫

R2

1

2
|u− χS |2 dx + λTVl2(u)

where S ∈ R2 and TVl2(u) is the total variation of u, defined by

TVl2(u) := sup

{∫
u∇ · ψ, ψ ∈ C1

0 , |ψ(x)|l2 ≤ 1, for all x ∈ Ω

}
.

While the solution in [1] is obtained by an explicit computation, we describe
it by the use of more generic geometric arguments. Our starting point is the
observation that uλ is a solution of (1) if and only if the sets [uλ ≥ s] minimize
the variational problem

(2) Fs,λ(X) := P (X) +
s

λ
|X \ S| − (1− s)

λ
|X ∩ S| s ∈ [0, 1], λ > 0 ,

where P (X) is the perimeter of X and |X | is the area [3, 1]. Let us point out that
for λ > 0 fixed, the solutions of (2) are monotonously decreasing as s increases
and can be then packed together to build up a function which solves (1) [2, 3].
Thus, in order to compute uλ, the minimizer of (1), we study solutions of (2) for
any value of λ > 0 and s ∈ [0, 1], which can be constructed by means of geometric
arguments.

We introduce the morphological imaging operators: closing Closer (X) and
opening Openr (X) (see [4]). Iterating these operators, we construct sets Γs,λ (S)
that have the following properties: Γs,λ (S) has smooth boundary that is either

equal to the boundary of S or an arc of a circle with radius λ
1−s inside S and an

arc of a circle with radius λ
s outside S. Hence Γs,λ (S) satisfies the Euler Lagrange

conditions of (2), and thus it is a possible minimizer of (2). In some cases the
minimizers of (2) are not unique, so it remains to find all minimizers (there is only
a finite number of them) and compare their energies.

We consider the following examples:

• In the case where S is a convex set, Γs,λ (S) is given by the opening of S

with parameter λ
1−s . Moreover we are in the situation where Γs,λ (S) and

the emptyset are the only sets that satisfy the Euler-Lagrangeconditions.
We observe that the corners of L2 − TV minimizers are blurred.
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• In the case where S is a star-shaped set such that Open λ
1−s

(S) is a

connected set, we construct the sets Γs,λ (S) by iterating the opening and
closing operators, composed with the intersection operator.

• In the case where S is the union of two convex sets S1, S2, there are several
non-empty sets, that satisfy the Euler-Lagrange conditions, for instance:
Open λ

1−s
(S1) , Open λ

1−s
(S2) , Open λ

1−s
(S1 ∪ S2) , Closeλ

s
(S). Additionally

we construct a set Γs,λ(S1, S2), that has non-empty intersection with S1

and S2 and and Γs,λ(S) \ S 6= ∅. The difficult part is to show that
Γs,λ(S1, S2) is the set with lowest energy concerning all sets with these
properties.

However for simple examples, we manage to do so and in these cases
we can observe that L2 − TV -minimization has a smearing effect, that is
uλ can be non-zero outside of S, meaning that the edges between two sets
are not preserved by L2 − TV minimization.

With this deeper inside on explicit solutions of the L2 − TV -problem, we are
able to calculate dual TV -semi norms explicitly. The G-space (introduced by Y.
Meyer [5]) is said to be a good space to model textures, hence it is of high interest
in the imaging-community. This space is defined by

G :=
{
v : v = ∇ · ~v,~v ∈ L∞(R2,R2)

}
,

with the norm |u|G := inf {|~v|∞ : v = ∇~v}. This dual TV -seminorm is connected

to our set-minimization problem with s = 0. Finding a set X such that |X∩S|
P (X)

is maximal is equivalent to calculating the G-norm of χS or finding the smallest
λ such that uλ = 0. Since we know how to construct the zero-levelsets of uλ,
calculating the G−norm of χS reduces to maximizing ρ(S1, S2), ρ(S1), ρ(S2), where
ρ(S1, S2) satisfies

ρ(S1, S2) =

∣∣Γ0,ρ(S1,S2) (S1, S2) ∩ (S1 ∪ S2)
∣∣

P
(
Γ0,ρ(S1,S2)(S1 ∪ S2)

) .

and ρ(Si) =
|Γ0,ρ(Si)

(Si)∩S|
P(Γ0,ρ(Si)

(Si))
, i = 1, 2.. With this we obtain a simple geometric

interpretation of the dual TV -seminorm (G-norm) which allows us to calculate it
without solving χS = ∇ · ~v.
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Regularization of diffusion weighted MRI-data without blurring the
geometrical structure

Saskia M. A. Becker

Motivation. Diffusion weighted magnetic resonance imaging (dMRI) is an im-
portant tool for in-vivo exploration of micro-structure in the human body [4].
Subsequent evaluation of the data and as a consequence medical decisions are
complicated by the significant noise from which dMRI suffers. Simple smoothing
methods may blur the structures observed with dMRI. This can be avoided using
position-orientation adaptive smoothing (POAS), see [1]. Using the example of
dMRI-data, we disuss the importance and consequences of an appropriate han-
dling of the specific geometry when regularizing geometrical structures.
The measurement space. The measurement process of dMRI is based on
the pulsed gradient spin echo sequence [7]. Here, data are acquired on a three-
dimensional regular grid for varying directions of the diffusion magnetic field gra-
dient. Hence, dMRI data can be described by a function S : R3 × S2 → R.
Taking into account the specific geometry of the measurement space we can ben-
efit from the whole information of the data in position and orientation. We follow
the approach in [2, 3], where dMRI-data has been interpreted as orientation score
and analyzed by embedding R3 × S2 into the special Euclidean motion group
SE(3) = R

3
⋊ SO(3). This approach suggests to apply solely left-invariant opera-

tions on the orientation score S.
Position-orientation adaptive smoothing (POAS) for dMRI. POAS takes
the specific geometry of the measurement space into account and reduces noise
without blurring the observed structures. The method is left-invariant and well-
defined w.r.t. the embedding of R3×S2 into SE(3). It is based on the Propagation-
Separation approach [6] which relates to Lepski’s method [5]. The Propagation-
Separation approach is especially powerful in case of large homogeneous regions
and sharp discontinuities as they appear in dMRI-data of the human brain. The
pointwise estimator is defined as a weighted mean of the observations. The adap-
tive weights are calculated as the product of two kernel functions. The adaptation
kernel compares the pointwise estimates of the previous iteration step enforcing
zero weights in case of significantly distinct values. This yields similar results as
non-adaptive smoothing within the homogeneity regions (propagation) and avoids
smoothing at structural borders (separation). The location kernel determines the
neighborhood under consideration, which is extended during iteration according to
a pre-selected sequence of bandwidths. The increasing number of included observa-
tions enables a monotone variance reduction during iteration, while the adaptation
kernel leads to a decreasing or, in case of model misspecification, bounded estima-
tion bias.
Numerical results. The algorithm POAS has been evaluated on simulated and
experimental data. It significantly improves the quality of dMRI-data without
blurring the observed structure. In particular, it can be used to reduce acquisition
time as illustrated in the following figure showing one representative color coded
fractional anisotropy (FA) map generated by estimating the diffusion tensor from
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the experimental diffusion weighted data for one subject (Left: Original data,
Right: Data after smoothing with POAS, and average image over four subsequent
measurements as reference to a kind of ground truth). More details can be found
in [1].
Acknowledgements. The author would like to thank Peter Mathé, Jörg Polzehl,
and Karsten Tabelow (WIAS Berlin) for helpful discussions.

References

[1] S.M.A. Becker, K. Tabelow, H.U. Voss, A. Anwander, R.M. Heidemann, and J. Polzehl,
Position-orientation adaptive smoothing of diffusion weighted magnetic resonance data
(POAS), Med. Image Anal. 16(6) (2012), 1142–1155.

[2] R. Duits and E. Franken, Left-invariant diffusions on the space of positions and orientations
and their application to crossing-preserving smoothing of HARDI images, International
Journal of Computer Vision 92(3) (2011), 231–264.

[3] E. M. Franken, Enhancement of crossing elongated structures in images, PhD thesis, Eind-
hoven University of Technology (2008).

[4] H. Johansen-Berg and T. E. J. Behrens, Diffusion MRI: From Quantitative Measurement
to In-Vivo Neuroanatomy, Academic Press (2009).
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Numerical realization of Tikhonov regularization: appropriate norms,
implementable stopping criteria, and optimal algorithms

Herbert Egger

A stable approximate solution to linear and nonlinear inverse problems can be
obtained by Tikhonov regularization [3]. The nonlinear case can also be reduced to
successive minimization of linearized Tikhonov functionals leading to Newton-type
regularizationmethods [7, 10]. For problems of practical interest, the application of
the forward operator usually involves the solution of partial differential or integral
equations. Therefore, already the minimization of the linear or linearized Tikhonov
functionals has to be realized by iterative methods in practice.

We consider linear inverse problems

(1) Tx = yδ

with bounded linear operators T : X → Y acting on Hilbert spaces X,Y and
perturbed data yδ with bound ‖y − yδ‖ ≤ δ on the data perturbation. Here
y = Tx† denotes the correct data for the true solution x†. We apply Krylov
subspace methods [6] for the iterative minimization of the Tikhonov functional

(2) Jδ
α(x) := ‖Tx− yδ‖2 + α‖x‖2

with positive regularization parameter α, including reliable stopping criteria that
guarantee the optimal error estimates provided by regularization theory. A key
ingredient for our analysis is to measure errors in the energy norm defined by

(3) ‖|x‖|2 := ‖x‖2T∗T+αI := ‖Tx‖2 + α‖x‖2.
If xδα denotes the minimizer of the Tikhonov functional and x† satisfies a source
condition x† = (T ∗T )µw, then regularization theory guarantees that

(4) ‖|x† − xδα‖|2 � α2µ+1‖w‖2 + δ2 =: ρ2(µ, ‖w‖, δ).
A simple argument shows that ‖|x− x†‖| � ρ(µ, ‖w‖, δ) + η provided that

(5) Jδ
α(x)− Jδ

α(x
δ
α) = ‖|x− xδα‖|2 ≤ η2,

hence an optimal approximation for the regularized solution xδα can be found by
choosing η � ρ(µ, ‖w‖, δ); see also [4, 5]. Since the regularization parameter can
always be bounded from below by α � δ2/(2µ+1), a sufficient condition to optimal
error estimates for x is to require η ≈ δ. We will call an iterative method optimal
(under all iterative methods working on the same Krylov subspace) if (5) can be
guaranteed in the minimal number of iterations.

Formally, the conjugate gradient method applied to the optimality system

(6) (T ∗T + αI)xδα = T ∗yδ

minimizes the error ‖|x− xδα‖| on the Krylov space Kk(T
∗T + αI, T ∗yδ) and thus

is the fastest method to reach (5). Since xδα is not known, (5) cannot be used as a
stopping rule in practice. Due to ‖|x − xδα‖| ≤ α−1/2‖(T ∗T + αI)x − T ∗yδ‖, one
can however utilize the following criterion

(7) ‖(T ∗T + αI)x − T ∗yδ‖ � α1/2δ
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to terminate the iteration and guarantee (5) with η = δ; see also [1, 8, 11]. The
method reaching this implementable stopping rule first is the minimal residual
method, which will therefore outperform the conjugate gradient method here.

Tikhonov regularization (6) can be formulated equivalently in a dual form [3, 9]

(8) (TT ∗ + αI)zδα = yδ, xδα = T ∗zδα.

The energy error can now be estimated by

‖|x− xδα‖| ≤ ‖(TT ∗ + αI)zδα − yδ‖
yielding another implementable stopping rule

(9) ‖(TT ∗ + αI)z − yδ‖ ≤ δ

for the iterative solution of (8) guaranteeing (5). Again, the minimal residual
method applied to (8) will be the fastest method satisfying (9) under all methods
working on the Krylov subspaces Kk(TT

∗ + αI, yδ) for the dual formulation.
Summarizing, we observe that the minimal residual method is the optimal it-

erative method for solving Tikhonov regularization in its primal (2) or dual (8)
form with implementable stopping rules. Since the minimal residual method and
the conjugate gradient method can be implemented in one algorithm [6], one can
actually utilize the minimal residual method for stopping the iteration, while em-
ploying the iterates of the conjugate gradient method as approximations for xδα.
Let us finally mention that the arguments also apply to preconditioned Krylov
subspace methods [2], which can be considered in a similar manner.
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Target Identification in Electrolocation: How Fishes Solve Inverse
Problems

Thomas Boulier

(joint work with Habib Ammari, Josselin Garnier)

In turbid waters of South America and Africa, there can be found small fishes that
are called weakly electric. In 1958, Lissmann and Machin explained the purpose of
the electric field they emit [4]: it is a location mechanism. In other words, knowing
the distorsion of the field induced by an object, these fishes are able to recognize
this latter.

In the last decades, behavioral studies have shown that they are able to recognize
the location, the shape, and the electrical parameters of any object located in
their vincinity (for a review, see [5]). Hence, in a mathematical point of view,
studying this ability - called active electrolocation - is a great opportunity for the
understanding of inverse problems.

1. Mathematical Model

In R2, let us denote Ω the body of the fish, and D ⊂ Rd \ Ω an object to
recognize.

Analysis of the electroreceptors have shown that the multi-frequency content of
the measurements are very important for these fishes [5]. The typical wavelength
is about 3km and the range of location does not exceed 1m. Thus, the electro-
quasistatic (or EQS) approximation is best suited for this problem. That is, the
electric field E in the Maxwell system is approximately irrotational, so that there
exists an electric potential u such that ∇u = E and

(1) ∇ · (σ + iεω)∇u = f,

where σ and ε are respectively the conductivity and the permittivity, ω is the
frequency, and f is the source of current. Electric parameters will be constant by
part: σ0, ε0 in the water, σb, εb in the fish’s body, σs, εs inside the skin, and σ1,
ε1 in the anomaly D.

The equation (1) with a constant by part complex-valued conductivity function
k := σ + iεω is simplified to the Laplace equation with jump relations across
the surfaces of discontinuity for k. Thus, it only remains to write the boundary
conditions across the skin, which is very thin and very resistive. From a multi-scale
analysis of the equations in terms of layer potentials developed in [7, chap. 3], we
have shown that on ∂Ω, one has [1]

(2) [u]− ξ
∂u

∂ν

∣∣∣∣
+

= 0, and
∂u

∂ν

∣∣∣∣
−

= 0,

where ξ is called the effective thickness by Assad [2], who derived formally these
equations during his Ph.D. thesis. It can be seen as the ratio between the small
conductivity of the skin σs and its small thickness.

Finally, for the sake of unicity of the solution, behavior at infinity has to be
made precise: the electric potential must goes to 0 at infinity.
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Figure 1. Numerical results. (a) Simulation of forward problem.
(b) Plot of SF-MUSIC imaging functional.

2. Algorithm of Localization

In this section, an algorithm that locates the anomaly D will be presented.
It uses multi-frequency measurements : if ω1, . . . , ωM are the frequencies of the
emitted signal, and x1, . . . , xN are the locations of the receptors on the skin ∂Ω,
the following space-frequency response matrix can be built

(3) M =

[(
1

2
I −K∗

Ω − ξ
∂DΩ

∂ν

)(
∂u

∂ν

∣∣∣∣
∂Ω+

− ∂U

∂ν

∣∣∣∣
∂Ω+

)
(xp, ωq)

]

1≤p≤N, 1≤q≤M

,

where U is the background electric field, K∗
Ω and DΩ are respectively Neumann-

Poincaré and double layer potential operators associated to Ω. In the case where
D = z+ δB, B being an open set of radius 1, dist(z, ∂Ω) ≫ 1 and δ ≪ 1, a dipolar
approximation of this measurements gives us [1]

(4) Mpq ≈ δ2∇U(z) ·M(kq, B) · ∇z
∂G

∂νx
(z, xp),

where G is the Green’s function in R2 and M(kq, B) is the first-order polarization
tensor (PT) associated to B with the ratio kq := (σ1 + iε1ωq)/σ0.

From (4), we deduce that the columns of the matrix M are linear combination
of partial derivatives of G. An algorithm called Space-Frequency MUSIC [6] uses
this remark to image the anomaly (see Figure 1).
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Optimization-Based Sampling for Estimation and Uncertainty
Quantification in Large-Scale Inverse Problems

Johnathan M. Bardsley

We begin with the linear, Gaussian statistical model

(1) b = Ax+ e,

where A ∈ Rn×n is the ill-conditioned forward model matrix, b ∈ Rn is the data,
x ∈ Rn is the unknown image, and e ∼ N(0, σ2I) is the noise. In all instances, we
assume that n is large.

The likelihood function for statistical model (1) has the form

(2) p(b|x, λ) ∝ λn/2 exp

(
−λ
2
‖Ax− b‖2

)
,

where λ = 1/σ2 is the noise precision and ‘∝’ denotes proportionality. If we
additionally assume a Gaussian prior of the form

(3) p(x|δ) ∝ δn/2 exp

(
− δ
2
xTLx

)
,

where δ is the prior precision, then the conditional probability density for x is
given by Bayes’ Law:

p(x|b, λ, δ) ∝ p(b|x, λ)p(x|δ)

∝ exp

(
−λ
2
‖Ax− b‖2 − δ

2
xTLx

)
.(4)

We can efficiently compute a sample x∗ from (4) by first generating new random

data b̂ from N(b, λ−1I) and ĉ from N(0, δ−1I) and then by solving the least
squares problem

x∗ = argmin
x

{∥∥∥∥
[
λ1/2(Ax − b̂)
δ1/2(Lx− ĉ)

]∥∥∥∥
2
}

= argmin
x

{
λ

2
‖Ax− b̂‖2 + δ

2
‖L1/2x− ĉ‖2

}
.(5)

Note that in this approach, we compute a sample x∗ by first randomizing the

“data”

[
b
0

]
by adding a noise realization from the correct distribution, and

then optimizing to obtain the sample x∗. Thus we call the approach, randomize
then optimize (RTO). With a collection of samples in hand, we can both estimate
the unknown x via, e.g., the sample mean, and quantify uncertainty via, e.g., the
sample standard deviation, or we can create a movie from the samples in order to
visualize the uncertainty in x.

In certain instances, samples from (5) can be computed directly, e.g. in the
case of deconvolution with periodic or Neumann boundary conditions. However
in many cases, the optimization problem must be solved iteratively. This is the
case, for example, for deconvolution with zero boundary conditions, computed
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tomography (CT), and also for nonlinear models in which the linear mapping
x 7→ Ax is replaced by a nonlinear mapping x 7→ A(x). For some of these cases
see [1].

In many applications (e.g., astronomical imaging and positron emission tomog-
raphy (PET)), the data b arises from a Poisson distribution. Thus, instead of (1),
we assume

(6) b = Poiss(Ax+ g),

where g is the N × 1 vector of background counts and is assumed to be known.
In this case, the probability density function for the data is given by

(7) p(b|x) =
N∏

i=1

([Ax]i + gi)
bi exp[−([Ax]i + gi)]

bi!
, x ≥ 0.

Assuming the prior p(x|δ) defined by (3), the conditional probability density
p(x|b, δ) then has the form

(8) p(x|b, δ) ∝ exp

(
−

n∑

i=1

{[Ax]i + gi − bi ln([Ax]i + gi)}+
δ

2
xTLx

)
.

The implementation of RTO in the Poisson noise case is very similar to the
Gaussian case. To compute a sample x∗ from p(x|b, δ), we first generate new data

b̂ from Poiss(b) and ĉ from N(0, δ−1I), and then solve the optimization problem

(9) x∗ = argmin
x≥0

{
n∑

i=1

{[Ax]i + gi − b̂i ln([Ax]i + gi)}+
δ

2
‖L1/2x− ĉ‖2

}
.

Note the presence of the nonnegativity constraint. The main difficulty in this
approach is that the optimization problem (9) is non-trivial. Moreover, it is not
obvious that RTO samples are exact samples from p(x|b, δ).

In my talk, I will discuss the RTO approach for computing samples of x from
p(x|b, δ). I will show results for each of the above mentioned applications: decon-
volution with Dirichlet, Neumann, and periodic boundary conditions, in both the
Gaussian and Poisson noise cases; tomography with Gaussian noise (CT) and with
Poisson noise (PET); and the nonlinear inverse problem of electrical impedance
tomography (EIT) with Gaussian noise. Moreover, I will show how, through hier-
archical Bayesian modeling of λ and δ, a simple MCMC sampling scheme can be
derived in which samples of x, δ, and λ (in the Gaussian noise case) are obtained,
making the separate selection of the regularization parameter unnecessary.
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Inverse Problems with Poisson data

Frank Werner

(joint work with Thorsten Hohage and Carolin Homann)

We consider inverse problems described by an operator equation

(1) F (u) = g

where the observed data is given by a Poisson process Gt with intensity tg†. Here
g† ∈ L1 (M) denotes the exact photon density and t > 0 is a scaling parameter
which can often be interpreted as exposure time. Problems of this type have been
studied in [1] only for very special cases of F . From a general point of view, a
promising approach to reconstruct u from Gt is Tikhonov-type regularization

(2) ûα = argminu∈B

[
Sdirect (Gt;F (u)) + αR (u)

]

where the data fidelity term Sdirect is (up to a small shift σ > 0) the negative
log-likelihood functional for Poisson data and R is a convex penalty including a
priori information on u. This method has been investigated in [6] for the setup
described above and convergence rates in expectation as t tends to ∞ have been
proven.

Unfortunately, the problem (2) is non-convex for nonlinear F and thus the
minimizer ûα is difficult to determine. Thus we consider two different approaches
which are both of the Newton-type form

(3) ûn+1 = argminu∈B [S (Gt;T (un) + T ′ [un] (u− un)) + αnR (u)] .

Now the first approach results from using T = F as in (1) and S = Sdirect.
This is referred to as the direct approach and has been studied in [4] where also
convergence and convergence rates in expectation have been proven.

The second approach results from setting F (u) := ln (F (u) + σ) with F as in
(1) and the shift σ and to apply (3) with T = F and S = Sexp which denotes
an approximation of the negative log-likelihood functional for ln (Gt + σ). This
method is referred to as the exponential approach.

It turns out that the inner problems are convex both for the direct and the
exponential approach, which is a substantial advantage over the method (2).

In this talk we presented convergence rates for both approaches, where the
results for the direct approach are improvements of those from [4] and those for
the exponential approach are new. For both methods one obtains under certain
conditions and for some specific stopping index n∗ the convergence rate

(4) E
[
DR

(
ûn∗

;u†
)]

= O
(
ϕ

(
1√
t

))

as t → ∞ where E denotes the expectation, DR the Bregman distance w.r.t. R
and ϕ measures the abstract smoothness of the unknown solution u† in terms of
a variational inequality (see e.g. [6]). Note that the obtained convergence rate (4)
coincides for both the direct and the exponential approach, but is obtained under
slightly different nonlinearity conditions. In fact, for the exponential approach the
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nonlinearity condition is posed on F and might be not fulfilled even if F in (1) is
linear.

Moreover, this talk was concerned with the numerical realization of the inner
problems in (3), which have to be solved in each iteration. In [4] we solved the
inner problems for the direct approach via sequential quadratic programming,
but it turned out that the minimizers ûn are difficult to calculate. This might
be due to the fact that in this setting a side condition in the image space is
posed. As this is not the case for the exponential approach, the inner problems
are strictly convex and differentiable and can hence be solved almost exactly by
Newton’s method applied to the gradient. Therefore we expected the results for
this method to be better. We also discussed the case of other inner solvers for the
direct inner problems, where for example the algorithms proposed in [2, 3] apply in
principle. Unfortunately straightforward implementations of those algorithms do
not perform better than the sequential quadratic programming approach. design
of other algorithms for the solution of the inner problems especially for large scale
inverse problems are important problems for future research.

As a real world application we considered coherent X-ray imaging. The specific
experimental setup is described in [4] and after some approximations it leads to

the forward operator F (ϕ) = |F (exp (iϕ))|2 where F denotes the 2D Fourier
transform. As only the modulus of the Fourier transform is observed and the
phase is unknown, such problems are called phase retrieval problems. This leads
to non-uniqueness, which is overcome by some constraint on the support of ϕ (see
e.g. [5]).

Both the direct and the exponential approach performed well for the phase re-
trieval problem with a slight numerical advantage for the exponential approach,
although it turned out that the exponential approach needs more operator evalua-
tions for the first Newton iterations. Therefore, a hybridization of both approaches
seems to be promising.
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Parameter identification problems with non-Gaussian noise

Christian Clason

Consider the inverse problem S(u) = yδ for a (possibly nonlinear) operator S
between two Banach spaces X and Y and noisy data yδ. One possible approach
for computing an (approximate) solution to the inverse problem is minimizing the
Tikhonov functional

F(S(u), yδ) + αR(u)

for an appropriate discrepancy term F and regularization term R. Just as the
regularization term incorporates a priori information on the solution, the discrep-
ancy term should be chosen based on a priori information on the noise. Here,
the standard L2 data fitting term is statistically motivated by the assumption of
Gaussian noise. For non-Gaussian noise, however, other data fitting terms turn
out to be more appropriate. For impulsive noise (appearing in digital image acqui-
sition, e.g., as salt-and-pepper noise) L1 fitting is more robust. Similarly, uniform
noise (e.g., arising from quantization errors) has a statistical connection to L∞ fit-
ting. Both formulations lead to non-differentiable problems which are challenging
to solve numerically.

This talk presents an approach that combines an iterative smoothing procedure
with a semismooth Newton method. Specifically, the L1 norm is replaced with a
Huber norm

‖u‖β :=

∫
|u(x)|β dx, |t|β =





t− β
2 t > β

−t− β
2 t < −β

1
2β t

2 |t| ≤ β

which has a semismooth Fréchet derivative. The L∞ fitting problem has the
equivalent formulation

min
u,c

c+ αR(u) subject to ‖S(u)− yδ‖L∞ ≤ c,

for which the Moreau–Yosida smoothing

min
u,c

c+ αR(u) +
γ

2

[
‖max(0, S(u)− yδ − c)‖2L2 + ‖min(0, S(u)− yδ + c)‖2L2

]

is introduced. Again, this functional has a semismooth Fréchet derivative. In
both cases, under a standard second order condition, the semismooth Newton
method converges locally superlinearly for fixed smoothing parameter β or γ, and
the family of minimizers of the smoothed problems converge (subsequentially) to
a minimizer of the original Tikhonov functionals as β → 0 or γ → ∞. The
semismooth Newton method is thus combined with a continuation strategy with
respect to the smoothing parameter, which in practice has a globalizing effect.

The efficiency of this approach is illustrated for the inverse potential problem
of recovering u from noisy measurements of y = S(u) solving −∆y + uy = f .
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Parameter choices for total variation regularization

Elena Resmerita

(joint work with Stefan Kindermann, Lawrence Mutimbu)

Total variation regularization has been a popular approach for denoising and de-
blurring problems. It aims at approximating true images u† ∈ BV (Ω) by mini-
mizing functionals of the form (see the Rudin-Fatemi-Osher model in [7])

E(u) := ||Ku− gδ||2L2 + αTV (u),

where BV (Ω) is the space of bounded variation functions, TV is the total vari-
ation seminorm, gδ are the noisy data satisfying ‖g − gδ‖ ≤ δ and α > 0 is the
regularization parameter. Here u† is understood as a solution of

minTV (u) subject to Ku = g,

whereK : BV (Ω) → L2(Ω) is a linear (identity or convolution) operator. Classical
choices for the regularization parameter are of a priori type, i.e., α = α(δ) and of a
posteriori type: α = α(δ, gδ). Unfortunately, knowledge on the noise level δ is not
always available. This is why parameter choice rules depending only on the noisy
data gδ, which would guarantee convergence of the minimizers uδα to u†, would be
of interest. However, such rules (called heuristic rules) cannot yield convergence
in the worst case, that is,

lim
δ
uδα → u for all gδ : ‖gδ − g‖L2 ≤ δ.

Convergence results for heuristic rules in case of quadratic regularization in Hilbert
spaces were established recently in a restricted noise case (see, e.g., [5], [4]), i.e.,

lim
δ
uδα → u for all gδ : ‖gδ − g‖L2 ≤ δ and gδ − g ∈ N ,

for some suitable set N . The investigated rules look for a parameter α∗ depending
on gδ, defined by

α∗ = argminα∈Mφ(α, g
δ),

where M is an appropriate interval or a discrete set M ⊂ R+. They have been
inspired by the seminal works [1], [2]. The paper [3] extends a couple of such rules
to non-quadratic regularization in Banach spaces, addressing q-convex penalties
or the ℓ1-penalty, which do not cover the total variation case.

Our work conducts a numerical study of several noiselevel-free regularization
parameter choice rules for total variation regularization of linear inverse problems.
First, we review convergence results for total variation regularization when a priori
and a posteriori rules are employed and point out that convergence with respect
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to the strict metric d is the best that one can obtain in BV (see [6]), where d is
defined on BV (Ω)×BV (Ω) by

d(u, v) := ‖u− v‖L1 + |TV (u)− TV (v)|.
Second, we propose some generalizations of two well-known heuristic parameter
choice rules, the quasioptimality principle and the Hanke-Raus rules. We investi-
gate the feasibility of these rules in one and two dimensions by numerical simulation
and conclude that the discrete quasioptimality principle using the strict metric or
parts of it and a Hanke-Raus rule perform well for the investigated denoising and
deblurring problems.

Determining an appropriate set N for noise restriction in order to ensure con-
vergence of the total variation regularization combined with the proposed rules
remains an open problem.
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Total generalized variation and applications to inverse problems in
medical imaging

Kristian Bredies

(joint work with Martin Holler, Florian Knoll, Karl Kunisch, Michael Pienn,
Thomas Pock, Rudolf Stollberger and Tuomo Valkonen)

We introduce and study the concept of total generalized variation (TGV) of order

k for symmetric tensor fields of order l: For u ∈ L1
loc(Ω, Sym

l(Rd)), let

TGVk,l
α (u) = sup

{∫

Ω

u · div v dx
∣∣∣∣ v ∈ Ck

0 (Ω, Sym
k+l(Rd)),

‖divi v‖∞ ≤ αi, i = 0, . . . , k − 1

}
.

The scalar case, proposed in [1], already generalizes the notion of total variation,
while l ≥ 1 generalizes the notion of total deformation studied in [2]. The func-
tional is in particular able to incorporate edge as well as higher-order smoothness
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information [3]. The associated Banach spaces are shown to coincide for any order
k with the space of symmetric tensor fields of bounded deformation in terms of the
strong topology (see [4, 3] for the case k = 2). The functional-analytic properties
of the latter allow to prove well-posedness of Tikhonov regularization for inverse
problems Ku = f where K is linear and bounded, i.e., existence and stability of
minimizers of

min
u∈Lp(Ω,Syml(Rd))

‖Ku− f‖2
2

+ TGVk,l
α (u).

We also study strict TGV-topologies reflecting the convergence notion ‖un−u‖1 →
0 and TGVk,l

α (un) → TGVk,l
α (u) which turn out not to be equivalent to the strict

TV-topology.
Furthermore, computational methods for the minimization of TGV-regularized

optimization problems are presented. They base on rewriting the suitably dis-
cretized objective functional as a convex-concave saddle point problem and apply-
ing the primal-dual iteration presented in [5]. On the one hand, this results in
simple, efficient and convergent methods and, on the other hand, in flexibility, for
instance, with respect to the choice of the discrepancy terms (for an application
outside inverse problems, see [6]). The TGV-regularization approach as well as
the proposed algorithms are applied to medical imaging problems such as under-
sampled magnetic resonance imaging (MRI) [7], reconstruction of noisy diffusion
tensor imaging data (DTI) [3] and denoising of dual energy computed tomography
(dual-energy CT) images [8].

Finally, numerical experiments confirm the high reconstruction quality as well
as the efficiency of TGV-based methods, see, for instance, Figures 1 and 2.

(a)

direct reconstruction TGV2-reconstruction

(b)

noisy DTI data direct TGV2-denoising “raw” TGV2-denoising

Figure 1. Numerical examples for TGV2-regularization: (a) Un-
dersampling MRI, (b) Diffusion tensor imaging (DTI).
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image A0 image B0 difference image A0 − B0 TGV2-denoising result

Figure 2. TGV2-regularization for dual-energy CT denoising.

References

[1] K. Bredies, K. Kunisch and T. Pock, Total generalized variation, SIAM J. Imaging Sci.,
3(3) (2010), 492–526.

[2] K. Bredies, Symmetric tensor fields of bounded deformation, Ann. Mat. Pur. Appl. (2012),
DOI 10.1007/s10231-011-0248-4.

[3] T. Valkonen, K. Bredies and F. Knoll, Total generalised variation in diffusion tensor imag-
ing, SFB MOBIS Report 2012-003 (2012), University of Graz.

[4] K. Bredies and T. Valkonen, Inverse problems with second-order total generalized variation
constraints, Proceedings of SampTA 2011 (2011), Singapore.

[5] A. Chambolle and T. Pock, A First-Order Primal-Dual Algorithm for Convex Problems
with Applications to Imaging, J. Math. Imaging Vis. 40(1) (2011), 120–145.

[6] K. Bredies and M. Holler, Artifact-free JPEG decompression with total generalized variation,
Proceedings of VISAPP 2012 (2012), Rome.

[7] F. Knoll, K. Bredies, T. Pock and R. Stollberger, Second order total generalized variation
(TGV) for MRI, Magnet. Reson. Med. 65(2) (2011), 480–491.

[8] M. Pienn, T. R. C. Johnson, P. Kullnig, R. Stollberger, G. Kovacs, M. Tscherner,
A. Olschewski, H. Olschewski and Z. Bálint, Cardiac output determination by dynamic
contrast-enhanced CT, J. Thorac. Imag. 27 (2012), W115-W163.

One Shot Inverse Scattering

Martin Hanke

Given far field data of a two-dimensional time-harmonic scattered wave, re-
flected by an ensemble of well-separated acoustic or electromagnetic scatterers, we
discuss an algorithm to approximate the far field data radiated by each of these
scatterers separately. The method is based on a Galerkin procedure considering
subspaces spanned by the singular vectors of ‘restricted’ far field operators that
map local source distributions to the corresponding radiated far field patterns.
Furthermore, we employ a windowed Fourier transform of the given far field to
extract the required a priori knowledge directly from the data. Finally, we use the
concept of scattering supports to compute (approximate) reconstructions of the
scatterers from the separated far field components.

This is joint work with Roland Griesmaier (Leipzig), Thorsten Raasch (Mainz),
and John Sylvester (Seattle).



3122 Oberwolfach Report 51/2012

References

[1] R. Griesmaier, M. Hanke, and T. Raasch, Inverse source problems for the Helmholtz equation
and the windowed Fourier transform. SIAM J. Sci. Comput. 34 (2012), A1544-A1562.

[2] R. Griesmaier, M. Hanke, and J. Sylvester, Far field splitting for the Helmholtz equation.
submitted (2012).

[3] S. Kusiak and J. Sylvester, The scattering support. Comm. Pure Appl. Math. 56 (2003),
1525–1548.

[4] J. Sylvester, Notions of support for far fields. Inverse Problems 22 (2006), 1273–1288.

Reporter: Carolin Homann



Computational Inverse Problems 3123

Participants

Dr. Ricardo J. Alonso

Department of Mathematics
Rice University
P.O. Box 1892
Houston, TX 77005-1892
UNITED STATES

Prof. Dr. Johnathan M. Bardsley

Department of Mathematical Sciences
University of Montana
Missoula, MT 59812-1032
UNITED STATES

Saskia Becker

Weierstraß-Institut für
Angewandte Analysis und Stochastik
Mohrenstr. 39
10117 Berlin
GERMANY

Prof. Dr. Marc Bonnet

ENSTA/UMA
32, Boulevard Victor
75739 Paris Cedex 15
FRANCE

Prof. Dr. Liliana Borcea

Department of Mathematics
Rice University
6100 Main Street
Houston, TX 77005-1892
UNITED STATES

Thomas Boulier
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École Normale Superieure
45, rue d’Ulm
75005 Paris Cedex
FRANCE

PD. Dr. Markus Grasmair

Fakultät für Mathematik
Universität Wien
Nordbergstr. 15
1090 Wien
AUSTRIA

Dr. Fernando Guevara Vasquez

Department of Mathematics
University of Utah
155 South 1400 East
Salt Lake City, UT 84112-0090
UNITED STATES

Bernadette Hahn

FR 6.1 - Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
GERMANY

Prof. Dr. Martin Hanke-Bourgeois

FB Mathematik/Physik/Informatik
Mathematisches Institut
Johannes-Gutenberg-Universität
55099 Mainz
GERMANY

Prof. Dr. Bernd Hofmann

Fakultät für Mathematik
TU Chemnitz
Reichenhainer Str. 41
09126 Chemnitz
GERMANY



Computational Inverse Problems 3125

Prof. Dr. Thorsten Hohage

Institut für Numerische
und Angewandte Mathematik
Universität Göttingen
Lotzestr. 16-18
37083 Göttingen
GERMANY

Carolin Homann

Institut für Numerische
und Angewandte Mathematik
Universität Göttingen
Lotzestr. 16-18
37083 Göttingen
GERMANY

Prof. Dr. Barbara Kaltenbacher

Institut für Mathematik
Universität Alpen-Adria
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