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Abstract. Classification is a central theme in mathematics, and a particu-
larly rich one in the theory of operator algebras. Indeed, one of the first major
results in the theory is Murray and von Neumann’s type classification of fac-
tors (weakly closed self-adjoint algebras of operators on Hilbert space with
trivial center), and one of its modern touchstones is the mid-1970s Connes-
Haagerup classification of amenable factors with separable predual. Several
significant themes in the classification theory of norm-separable C∗-algebras
have emerged since the work of Connes-Haagerup, and these were the focus
of our workshop. They include Elliott’s program to classify separable nuclear
C∗-algebras via K-theoretic invariants, the role of C∗-algebras in the clas-
sification of orbit equivalence relations of discrete countable group actions,
and the more recent contact between descriptive set theorists and operator
algebraists which seeks to quantify the Borel complexity of the isomorphism
relation for various natural classes of algebras.

Mathematics Subject Classification (2000): 46Lxx, 54Hxx.

Introduction by the Organisers

The workshop ran in the traditional Oberwolfach style, with plenty of time reserved
for interaction outside the regular program of lectures. We had 56 participants;
there were 29 talks (45 or 30 minutes) and an informal additional lecture on Thurs-
day night. We give an overview of the scientific background and the objectives of
the workshop below.
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A. K-theoretic rigidity and a conjecture for nuclear separable C∗-algebras.
The classification theory for norm-separable C∗-algebras (norm-closed self-adjoint
algebras of operators on Hilbert space) was begun by Glimm in 1960 when he
classified uniformly hyperfinite (UHF) C∗-algebras using what was later realized
to be their K-theory. This was followed by the Bratteli-Elliott classification of ap-
proximately finite-dimensional (AF) C∗-algebras by what would again, ultimately,
turn out to be their K-theory. These results prompted Elliott to conjecture c. 1990
that separable nuclear C∗-algebras are classifiable via invariants of a K-theoretic
nature, a conjecture which has since been worked on extensively and with consid-
erable success.

In the past five years the state of knowledge around Elliott’s conjecture for
simple C∗-algebras has advanced rapidly, particularly in the case that the projec-
tions of the algebra separate its tracial functionals. For instance, we now know
that the C∗-algebras associated to minimal uniquely ergodic dynamics on finite-
dimensional spaces are determined up to isomorphism by their graded ordered
K-theory. At the center of these developments are the Jiang-Su algebra Z and the
attendant property of Z-stability (a C∗-algebra A is Z-stable if A ≅ A⊗Z). This
sort of tensorial absorption property is ubiquitous in operator algebra classifica-
tion: Connes’ proof that an amenable II1 factorM with separable predual is the
hyperfinite factor R proceeded by showing first thatM⊗̄R ≅ M; the Kirchberg-
Phillips classification of simple purely infinite C∗-algebras relies heavily on the fact
that any such algebra A satisfies A ≅ A⊗O∞ for the Cuntz algebra O∞. But not
all simple separable nuclear C∗-algebras are Z-stable, in contrast with the tenso-
rial absorption properties of factors and purely infinite algebras. Why so? Very
roughly, the latter two classes of algebras are non-commutative generalizations of
low-dimensional spaces, while general C∗-algebras may exhibit characteristics of
higher-, even infinite-dimensional topological spaces. Here as in the classical case,
one expects many strong theorems to hold only for C∗-algebras which are finite-
dimensional in a suitable sense. This brings us to a conjecture that was a focus of
the workshop, one that relates Z-stability to topological and homological notions
of finite-dimensionality for C∗-algebras.

Conjecture 0.1. Let A be a unital simple separable nuclear C∗-algebra. The
following are equivalent:

(i) A has finite nuclear dimension;
(ii) A⊗Z ≅ A;
(iii) A has strict comparison.

A detailed exposition of properties (i) and (iii) is beyond the scope of this in-
troduction. Let us mention only that nuclear dimension generalizes the classical
covering dimension of a space to the realm of C∗-algebras, and that strict com-
parison means, roughly, that the pre-order on Hilbert modules over A given by
inclusion up to isomorphism is determined by the rank of the modules as measured
by traces. The implications (i) ⇒ (ii) ⇒ (iii) are known, and (iii) ⇒ (ii) holds un-
der some additional conditions. The implication (ii) ⇒ (i) so far is only known for
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classes where Elliott’s classification conjecture holds, so that Elliott’s program is
a central facet of the conjecture. The equivalence of (ii) and (iii) would represent
a broad generalization of Kirchberg’s celebrated O∞ stability theorem for nuclear
simple separable purely infinite C∗-algebras; in the case of finitely many extremal
traces it has indeed recently been established by Matui and Sato.

One goal of the workshop was to make progress on this conjecture (and its
implications for the structure theory of nuclear C∗-algebras) both through Elliott’s
program and through work on the structure of Hilbert modules over nuclear C∗-
algebras. Promising results towards a generalization of the conjecture to the non-
simple and non-unital case were also discussed. Another (closely related) theme
was Kirchberg’s program to classify nuclear purely infinite (not necessarily simple)
C∗-algebras and its connections with graph C∗-algebras and with semigroup C∗-
algebras introduced recently by Cuntz and Li to study problems related to number
theory.

B. Group actions and operator algebras. The study of orbit equivalence
relations of group actions can be studied in the measurable, Borel, and topological
settings, and all three areas have seen substantial progress in recent years. This
workshop was concerned principally with the topological setting, and with the
tight links to regularity properties as discussed above. The following questions
formed perhaps a Leitmotiv.

Questions 0.2. Let (X,G,α) be a dynamical system (with, say, X compact
metrizable and G discrete, countable and amenable).

(i) To what extent is the crossed product C∗-algebra C(X) ⋊α G determined
by its Elliott invariant? In other words, when are transformation group
C∗-algebras classifiable?

(ii) To what extent does the crossed product C∗-algebra C(X) ⋊αG determine
the underlying dynamical system?

Progress on the first question is interesting since the classifying invariant is
often computable. For the second question one would typically not expect the
dynamical system to be determined up to isomorphism, but up to some suitable
weaker notion (based on orbit equivalence), which in good cases will still be able to
detect and isolate pertinent properties of the underlying dynamical system. Both
questions are usually hard even when G = Z.

When X is the Cantor set, G = Z and α is minimal, there are highly satisfactory
answers to both questions: the transformation group C∗-algebras are simple AT
algebras, hence classified by their Elliott invariants (the latter essentially consisting
of ordered K-groups, tracial state spaces and natural pairings between these),
and they determine the underlying (Cantor minimal) system up to strong orbit
equivalence; these results have only very recently been partially extended to the
case of Zd-actions.

In the case that X is finite-dimensional, G = Z, and α is minimal and uniquely
ergodic, the first question has recently been settled; in this situation the trans-
formation group C∗-algebras are entirely determined by their ordered K-groups.
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The focus here will be on ways to eliminate the trace space condition; we will also
look at Zd-actions. As for the second question, strong orbit equivalence degener-
ates if the base space is connected, so one cannot expect the dynamical system to
be determined up to strong orbit equivalence unless X is zero-dimensional. This
prompts the question whether there is a higher rank version of the strong orbit
equivalence relation; in a somewhat analogous context, a higher rank version of
the Rokhlin property has been used successfully for the study of C∗-dynamical
systems.

C. Borel complexity and operator algebras. The classification of a category
by invariants can only be reasonable if the invariants are somehow definable or
calculable from the objects of the original category. For example, it is easily seen
that there are at most continuum many non-isomorphic separable C∗-algebras,
and so it is possible, in principle, to assign to each isomorphism class of separable
C∗-algebras a unique real number, thereby classifying the separable C∗-algebras
completely up to isomorphism. Few mathematicians working in C∗-algebras would
find this a satisfactory solution to the classification problem for separable C∗-
algebras, let alone nuclear simple separable C∗-algebras, since we do not obtain
a way of computing the invariant, and therefore do not have a way of effectively
distinguishing the isomorphism classes.

Since descriptive set theory is the theory of definable sets and functions in Polish
spaces, it provides a natural framework for studying classification problems. In
the past 30 years, a theory has been developed based on the observation that
in many cases where the objects of the category are themselves either countable
or separable, there is a natural standard Borel space which parametrizes (up to
isomorphism) these objects. A classification problem is therefore a pair (X,E)
consisting of a standard Borel spaceX , the (parameters for) objects to be classified,
and an equivalence relation E, the relation of isomorphism among the objects in
X . In most interesting cases, the equivalence relation E is easily definable from
the elements of X , and is seen to be Borel or, at least, analytic.

Let (X,E) and (Y,F ) be classification problems, in the above sense. A Borel
reduction of E to F is a Borel function f ∶ X → Y such that xEy ⇐⇒ f(x)Ff(y).
If such a function f exists then we say that E is Borel reducible to F , and we write
E ≤B F . We think of E as being “at most as complicated” as F .

The application of this theory of Borel complexity to operator algebras has its
roots in the work of Glimm and Effros from the 1960s, but has recently begun to
take off. Sasyk and Törnquist have studied the Borel complexity of various classes
of von Neumann factors, and proved, among other things, that even isomorphism
of amenable type III factors is turbulent, a notion of very high Borel complexity
introduced by Hjorth. Kerr, Li, and Pichot have obtained similar results for certain
representation spaces and group actions on the hyperfinite II1 factor, while Farah,
Toms, and Törnquist have established turbulence for the isomorphism of nuclear
simple separable C∗-algebras (interestingly, the proof of this theorem depends on
the validity of Elliott’s conjecture for the so-called AI algebras).

Some questions in these directions addressed during the workshop include:
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(1) Is the isomorphism relation for nuclear simple separable C∗-algebras Borel
reducible to the orbit equivalence relation of a Polish group action?

(2) Given a classification of a category of operator algebras by invariants, i.e.,
a theorem which guarantees the lifting of isomorphisms at the level of
invariants to operator algebra isomorphisms, when is the lift Borel com-
putable?

(3) What is the Borel complexity of the space of all separable C∗-algebras?
What about exact, or nuclear C∗-algebras, or nuclear ones satisfying the
Universal Coefficient Theorem?

(4) Can Borel complexity be employed to produce new examples of C∗-alge-
bras? (For example, nuclear C∗-algebras which do not have locally finite
nuclear dimension?)
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Abstracts

K-theory of crossed products by automorphic semigroup actions

Siegfried Echterhoff

(joint work with Joachim Cuntz and Xin Li)

Let e ∈ P ⊆ G be a sub-semigroup of the countable group G. The left-reduced
C*-semigroup algebra C∗λ(P ) is defined as the sub-C*-algebra of the bounded
operators B(ℓ2(P )) generated by the set of isometries {Vp ∶ p ∈ P} with

Vp ∶ ℓ2(P )→ ℓ2(P );Vpδq = δpq,
where {δq ∶ q ∈ P} denotes the standard orthonormal basis of ℓ2(P ).

An important example which motivated much of our work is given by the class
of ax+b-semigroups R⋊R× ⊆K⋊K× in which R is the ring of integers in a number
field K and R× = R∖{0}. In this case the semigroup C*-algebra has been studied
extensively by Cuntz, Deninger, and Laca in [1], where the authors computed the
KMS-states of the semigroup algebra C∗λ(R ⋊R×) which turned out to have close
connections to the Dedekind ζ-functions associated to the ideal classes for K. The
results presented here have been motivated by the desire to understand the K-
theory of these interesting algebras connected to number theory, but our results
apply in many other interesting cases of sub-semigroups P ⊆ G.

Let P ⊆ G be given. For X ⊆ P let EX ∶ ℓ2(P ) → ℓ2(X) ⊆ ℓ2(P ) denote the
orthogonal projection. Then

VpEXV
∗
p = EpX and V ∗p EXVp = Ep−1X

where p−1X ∶= {q ∈ P ∶ pq ∈ X} denotes the inverse image ofX under multiplication
with p. Let JP denote the smallest set of subsets X ⊆ P which contains ∅ and P ,
and which is closed under finite intersections and the operations X ↦ pX,p−1X
as considered above. We call JP the set of constructible right ideals in P . Since
we assume that the unit e of G lies in P , we get EP = Ve ∈ C∗λ(P ), from which
it then follows that {EX ∶ X ∈ JP } ⊆ C∗λ(P ). In fact, C∗λ(P ) equals the reduced
semi-group crossed product DP ⋊λ P where DP ⊆ C∗λ(P ) denotes the C*-algebra
generated by {EX ∶ X ∈ JP }.

Following ideas of Laca in the case of Ore semigroups (see [6]), which were ex-
tended to more general situations by Li ([8]), we want to dilate the semigroup ac-
tion of P on DP to an action of G on some algebraDP⊆G. For this let JP⊆G denote
the G-saturation of JP as subsets of G and let DP⊆G denote the commutative C*-
subalgebra of B(ℓ∞(G)) generated by the orthogonal projections {EY ∶ Y ∈ JP⊆G}.
By an argument due to Fell the reduced crossed product DP⊆G ⋊λ G is faithfully
represented in B(ℓ2(G)) by the canonical representation in such a way that

(1) C∗λ(P ) ⊆ EP (DP⊆G ⋊λ G)EP ,
where the orthogonal projection EP ∶ ℓ2(G)→ ℓ2(P ) is always a full projection in
DP⊆G ⋊λ G. We say that P ⊆ G satisfies the weak Toeplitz condition if we have
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equality in (1) (this condition is implied by the stronger Toeplitz condition of [8,
Definition 4.1]). It is shown in [8, Lemma 3.9] that the picture can be extended
to crossed products by actions α ∶ G → Aut(A) of G on a C*-algebra A. If P ⊆ G
satisfies the above (weak) Toeplitz condition we get

(2) A ⋊λ P = (1H ⊗EP )((A⊗DP⊆G) ⋊λ G)(1H ⊗EP ),
if we represent A faithfully and non-degenerately into B(H) and (A ⊗DP⊆G) ⋊λ
G into B(H⊗̂ℓ2(G)). Thus, the Toeplitz-condition implies that K∗(A ⋊λ P ) ≅
K∗((A⊗DP⊆G) ⋊λ G) by Morita equivalence.

We want to use this picture for computing the K-theory of C∗λ(P ) and, more
generally, A ⋊λ P . For this we observe that DP⊆G ≅ C0(ΩP⊆G) for some totally
disconnected space ΩP⊆G. So we look to general actions of a countable group G
on totally disconnected spaces Ω. In what follows we denote by C∞c (Ω) the set
of locally constant functions on Ω with compact supports. In order to explain
our main result assume that there exists a linear basis P = {pi ∶ i ∈ I} of C∞c (Ω)
consisting of projections in C0(Ω) such that P is G-invariant and closed under
multiplication (up to 0). Then there is an action of G on the discrete space I such
that g ⋅ pi = pgi for all i ∈ I. Moreover, there is a unique ∗-homomorphism

µ ∶ C0(I)→ C0(Ω)⊗K(ℓ2(I))
which sends a Dirac-function δi ∈ C0(I) to the projection pi ⊗ di if di ∶ ℓ

2(I) →
Cδi ⊆ ℓ2(I) denotes the orthogonal projection to the subspace spanned by δi.
The action of G on I induces a unitary representation U ∶ G → U(ℓ2(I)) and
the homomorphism µ becomes G-equivariant with respect to the given action on
C0(I) and the action τ ⊗AdU on C0(Ω)⊗K(ℓ2(I)), where τ denotes the action
on C0(Ω). Thus µ determines a class [µ] ∈ KKG(C0(I),C0(Ω) ⊗ K(l2(I))) ≅
KKG(C0(I),C0(Ω)). Our central result is the following (see [4, §3]):

Theorem 1. Let G,Ω, and {pi ∶ i ∈ I} be as above and let α ∶ G → Aut(A)
be an action of G on a C*-algebra A. Assume in addition that G satisfies the
Baum-Connes conjecture for A⊗C0(I) and A⊗C0(Ω). Then the descent

[idA⊗µ] ⋊λ G ∈KK((A⊗C0(I)) ⋊λ G, (A⊗C0(Ω)) ⋊λ G)
induces an isomorphism of K-theory groups

K∗((A⊗C0(I)) ⋊λ G) ≅K∗((A⊗C0(Ω) ⋊λ G).
Since I is discrete, it follows from Green’s imprimitivity theorem that there is

a Morita equivalence

(A⊗C0(I)) ⋊λ G ∼M ⊕
[i]∈G/I

A ⋊λ Gi,

where Gi = {g ∈ G ∶ gi = i} is the stabilizer of i ∈ I. Thus, if the conditions of the
above theorem are satisfied, we obtain an isomorphism

K∗((A⊗C0(Ω)) ⋊λ G) ≅ ⊕
[i]∈G/I

K∗(A ⋊λ Gi).
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The proof of the theorem uses a principle observed in [2] which, using the Baum-
Connes assumption, allows to reduce the above theorem to the case of actions of
finite groups and finite dimensional algebras, in which the result can be shown by
some more or less elementary combinatorics. We refer to [4, §3] for more details.
We should point out that by a seminal theorem of Higson and Kasparov ([5]) the
Baum-Connes assumption is always satisfied if G is a-T -menable (or amenable).
Moreover, under some extra condition which we don’t explain here, we can even
obtain KK-equivalence of the crossed products.

It turned out that the condition on the existence of a G-invariant and mul-
tiplicatively closed (up to 0) basis {pi ∶ i ∈ I} of C∞c (Ω) is quite restrictive for
general actions on totally disconnected spaces. For example, it is never satisfied
if an amenable group G acts minimally on the Cantor set Ω (see [4, Proposition
3.18]). But somehow surprisingly, the condition is very often satisfied for the di-
lated action of G on ΩP⊆G if we start with a sub-semigroup P ⊆ G as above. It is
then implied by the following independence condition for P ⊆ G:
Definition. We say that P ⊆ G satisfies the independence condition if the set
JP⊆G of constructible right P -ideals in G is independent in the following sense: If
X,X1, . . . ,Xl ∈ JP⊆G such that X = ∪li=1Xi, then X =Xi0 for some i0 ∈ {1, . . . , l}.
Namely, if P ⊆ G satisfies this independence condition, then {EX ∶ X ∈ IP⊆G} with
IP⊆G ∶= JP⊆G ∖ {∅} is a basis for C∞c (ΩP⊆G) as desired. We then get

Theorem 2. Suppose that P ⊆ G satisfies the (weak) Toeplitz condition and the
independence condition. Suppose further that G acts on the C*-algebra A such
that G satisfies the Baum-Connes conjecture for A⊗C0(IP⊆G) and A⊗C0(ΩP⊆G).
Then

K∗(A ⋊λ P ) ≅ ⊕
[X]∈G/IP⊆G

K∗(A ⋊λ GX)
where GX = {g ∈ G ∶ gX =X}. In particular, in case A = C we get

K∗(C∗λ(P )) ≅ ⊕
[X]∈G/IP⊆G

K∗(C∗λ(GX)).
It is shown in [4] that many interesting classes of sub-semigroups P ⊆ G satisfy

these conditions. Among them are the quasi-lattice ordered semigroups P ⊆ G
which are characterized by the conditions P ∩ P −1 = {e} and for all g ∈ G there
exists a p ∈ P with P ∩ gP = pP . In this case G acts freely and transitively on
IP⊆G and hence our results imply that K∗(A ⋊λ P ) ≅ K∗(A) if G satisfies the
Baum-Connes for A ⊗C0(ΩP⊆G). For a number of other interesting applications
we refer to [3, 4] and [9]. For our motivating example R ⋊R× ⊆K ⋊K× we get

Theorem 3. Let R be a Dedekind domain and let K = Q(R) denote its quotient
field. Let R⋊R× ⊆K ⋊K× denote the corresponding ax+ b-semigroup and let ClK
denote the ideal class group of K. Then

K∗(C∗λ(R ⋊R×)) ≅ ⊕
γ∈ClK

K∗(C∗λ(Iγ ⋊R∗)),
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where Iγ ⊆ R denotes a representative for γ and R∗ denotes the group of units in
R. In fact, the isomorphism is induced by a KK-equivalence between C∗λ(R⋊R×)
and ⊕γ∈ClK C

∗
λ(Iγ ⋊R∗).
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The Cuntz semigroup of close C∗-algebras

Stuart White

(joint work with Francesc Perara, Andrew Toms and Wilhelm Winter)

The uniform distance between two operator algebras A and B concretely repre-
sented on the same Hilbert space H was introduced by Kadison and Kastler using
the Hausdorff metric: d(A,B) is defined to be the infimum of those γ > 0 with the
property that every operator x in the unit ball of one algebra can be approximated
by an operator y in the unit ball of the other algebra such that ∥x − y∥ < γ. Close
operator algebras are naturally produced by small unitary perturbations uAu∗ of
a fixed algebra A (for a unitary u close to the identity operator or at least close
to the commutant of A) and Kadison and Kastler conjectured that all sufficiently
close pairs of von Neumann algebras arise in this fashion.1

Conjecture (Kadison-Kastler). Given ε > 0, there exists δ > 0 such that ifM,N ⊂
B(H) are von Neumann algebras with d(M,N) < δ, then there exists a unitary u
on H with uMu∗ = N and ∥u − 1H∥ < δ.

The conjecture was established in the late 1970’s by Christensen, Johnson and
Raeburn-Taylor when one of M or N is injective. However, for C∗-algebras, there
are examples due to Johnson and Choi-Christensen which show the need for further
refinement of the conjecture. This leads to the following question.2

1In fact the strong form of the conjecture stated above implies a positive answer to Kadison’s
similarity problem: see [1].

2which has been resolved positively when one algebra is nuclear.
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Question. Let H be a separable Hilbert space. Does there exist δ > 0 such that
every pair A,B ⊂ B(H) of separable C∗-algebras with d(A,B) < δ are (spatially)
isomorphic?

With the aim of establishing isomorphisms between close algebras, Kadison-
Kastler’s original work [2] examined properties and invariants of close operator
algebras, showing that close von Neumann algebras have the same type decom-
position structure. This theme has been continued subsequently: in particular,
Khoshkam has shown that close nuclear C∗-algebras have isomorphic K-theory
([4]). His argument also works outside the nuclear setting provided that the two
algebras are stably or completely close: i.e. A⊗K is close to B⊗K as a subalgebra
of B(H)⊗K, or equivalently dcb(A,B) ∶= supn d(A⊗Mn,B ⊗Mn) is small.3

To see this, suppose that A and B are unital C∗-algebras with dcb(A,B) < γ.
Then given n ∈ N and a projection p ∈Mn(A), we can find a projection q ∈Mn(B)
with ∥p − q∥ < γ√

2
.4 The map [p]0 ↦ [q]0 provides an isomorphism between

the Murray-von Neumann semigroups of A and B which induces an isomorphism
K0(A) ≅K0(B). This map is well defined is as the Murray-von Neumann equiva-
lence class of of a projection is stable under a small perturbation: if ∥p1 − p2∥ < 1
in a unital C∗-algebra A, then p1 ∼u p2 in A.

The main result of this report is that under the same hypotheses, the Cuntz
semigroup of A, Cu(A), is isomorphic to that of B.

Theorem 1 ([5]). Suppose that A and B are C∗-algebras acting non-degenerately
on the same Hilbert space with dcb(A,B) < 1/42. Then there exists a scale pre-
serving isomorphism Cu(A)→ Cu(B).

This is somewhat surprising: in contrast to projections the Cuntz-class of a
positive element is sensitive to small perturbations, so an approach similar to that
used in [4] can not work. Further, the Cuntz semigroup is a very refined invariant
which captures a wealth of information about a C∗-algebra: all of this transfers
to completely close algebras.

Very rapidly increasing sequences

The key tool used to prove Theorem 1 is the notion of very rapidly increasing
sequences in the Cuntz semigroup.

On (A⊗K)+, write a ≾ b if vnbv∗n → a for some sequence (vn) in A⊗K. Write
a ∼ b if a ≾ b and b ≾ a. The Cuntz semigroup of A, Cu(A), is (A ⊗ K)+/ ∼
equipped with the operation ⟨a⟩ + ⟨b⟩ ∶= ⟨a⊕ b⟩ and the order ⟨a⟩ ≤ ⟨b⟩ iff a ≾ b. A
key result of Coward, Elliott and Ivanescu is the existence of suprema of countable
upward directed sets in Cu(A). Now define x≪ y in Cu(A) if whenever (yn)n is a
sequence in Cu(A) with y ≤ supn yn, there exists some n with x ≤ yn. A sequence(yn) in Cu(A) with yn ≪ yn+1 for all n is called rapidly increasing.

3As nuclear C∗-algebras have the similarity property, there is an estimate dcb(A,B) <
Kd(A,B) whenever A (or B) is nuclear for some universal K > 0.

4This estimate is obtained by defining a self-adjoint unitary u = 2p− 1 ∈Mn(A) which can be

approximated by a self-adjoint unitary v ∈Mn(B) with ∥u − v∥ <
√
2γ. Now take q = (v + 1)/2.
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Definition. Say that a rapidly increasing sequence (an)∞n=1 of positive contrac-
tions in A⊗K is very rapidly increasing if given ε > 0 and n ∈ N, there existsm0 ∈ N
such that form ≥m0, there exists a contraction v ∈ A⊗K with ∥(vamv∗)an−an∥ < ε.

Given a positive contraction a, there is a canonical very rapidly increasing
sequence (g2−(n+1),2−n(a))∞n=1 with supremum a: thus we can view the Cuntz semi-

group as the suprema of very rapidly increasing sequences.5 In a tracial sense,
very rapidly increasing sequences behave increasingly like projections, giving the
following stability facts.6

(i) Let (an)∞n=1 be a very rapidly increasing sequence of contractions. Then
for every 0 < λ < 1, the sequence (⟨(an − λ)+⟩)∞n=1 is upward directed and
supn⟨(an − λ)+⟩ = supn⟨an⟩.

(ii) Any two very rapidly increasing sequences with the same suprema in Cu(A)
can be intertwined (after telescoping) to a single very rapidly increasing se-
quence.

(iii) Suppose A,B are C∗-algebras with d(A,B) < α for α < 1/27. Consider a
very rapidly increasing sequence (an)∞n=1 of positive contractions in A and
another positive contraction a ∈ A with ⟨a⟩ ≤ supn⟨an⟩. Then, given any
positive contractions bn, b ∈ B with ∥an − bn∥, ∥a − b∥ < 2α for all n, there
exists n0 such that

(1) ⟨(b − 18α)+⟩≪ ⟨(bn − γ)+⟩≪ ⟨(bn − 18α)+⟩
for n ≥ n0 and 18α < γ < 2/3.

When dcb(A,B) < α < 1/27, applying the last fact repeatedly to A ⊗ K and
B ⊗K, we obtain a well defined map Cu(A)→ Cu(B) given by

sup
n
⟨an⟩↦ sup

n
⟨(bn − 18α)+⟩

whenever (an) is a very rapidly increasing sequence of positive contractions in A⊗K
and bn are positive contractions in B⊗K with ∥bn−an∥ < 2α.7 There is more work
to be done to show that this map is surjective, though when dcb(A,B) < 1/42 we
do obtain an inverse to (1) by reversing the roles of A and B in the construction.

As Z-stable C∗-algebras8 have the similarity property [3], there exists a constant
K > 0 such that dcb(A,B) ≤K ⋅d(A,B) whenever A is Z-stable. Thus, whenever A
and B are close algebras with A ≅ A⊗Z , we have an isomorphism Cu(A) ≅ Cu(B),
so B has the Cuntz semigroup of a Z-stable C∗-algebra. A similar result holds
when A is stable; in this case (provided A has stable rank one), we can use the
resulting isomorphism between Cu(A) and Cu(B) to show that any sufficiently
close algebra B is also stable. The analogous statement for Z-stable algebras
remains open.

5Here g
2−(n+1),2−n

is the piecewise linear function on R with g
2−(n+1),2−n

(t) = 0 for t ≤ 2−(n+1)

and g
2−(n+1),2−n

(t) = 1 for t ≥ 2−n and linear in between.
6Here, (x − ε)+ denotes the function hε(x) where hε(t) =max(t − ε,0).
7One use of fact (iii) shows that (⟨bn − 18α)+⟩)n is upward directed — it is critical here that

we remove the same amount 18α from both sides in (1) — so this supremum exists.
8those A which absorb the Jiang-Su algebra Z tensorially, i.e. A ≅ A⊗Z.
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Question. Does there exist δ > 0, such that whenever A is a separable C∗-algebra
which absorbs Z tensorially and B is another C∗-algebra with d(A,B) < δ, then
B ≅ B ⊗Z?
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The generator rank for C∗-algebras

Hannes Thiel

The generator problem asks which C∗-algebras are singly generated, i.e., generated
as a C∗-algebra by one of its elements. More generally, for a given C∗-algebra A
one wants to determine the minimal number of generators, i.e., the minimal k such
that A contains k elements that are not contained in any proper sub-C∗-algebra.

It is often convenient to consider self-adjoint generators, which only leads to a
minor variation of the original generator problem, since two self-adjoint elements
a, b generate the same sub-C∗-algebra as the element a + ib. Given a C∗-algebra
A, let us denote by gen(A) the minimal number of self-adjoint generators for A,
and set gen(A) =∞ if A is not finitely generated, see [2]. By definition, A is singly
generated if and only if it is generated by two self-adjoint elements, that is, if and
only if gen(A) ≤ 2.

For more details on the minimal number of self-adjoint generators we refer the
reader to [2] and [5]. We just note that for a compact, metric space X , it is easy
to see that gen(C(X)) ≤ k if and only if X can be embedded into Rk.

The problem with computing the invariant gen(−) is that it does not behave
well with respect to inductive limits, i.e., in general we do not have gen(A) ≤
lim infn gen(An) if A = lim

Ð→
An is an inductive limit. This is unfortunate since

many C∗-algebras are given as inductive limits, e.g., AF-algebras or approximately
homogeneous algebras (AH-algebras).

To see an example where the minimal number of generators increases when
passing to an inductive limit, let X ⊂ R2 be the topologists sine-curve. Then X
can be embedded into R2 but not into R1, and therefore gen(C(X)) = 2. However,
X is an inverse limit of spaces Xn that are each homeomorphic to the interval,
i.e., Xn ≅ [0,1]. Therefore C(X) ≅ lim

Ð→n
C(Xn), with gen(C(X)) = 2, while

gen(C(Xn)) = 1 for all n.



3144 Oberwolfach Report 52/2012

To get a better behaved theory, instead of counting the minimal number of
self-adjoint generators, we will count the minimal number of “stable” self-adjoint
generators. This is the underlying idea of our definition of the generator rank of
a C∗-algebra. Given a C∗-algebra A, and k ≥ 1, we let Aksa denote the space of
self-adjoint k-tuples in A, and we let Genk(A)sa ⊂ Aksa be the subset of tuples that
generate A.

Definition 1 ([3, Definition 2.2]). Let A be a unital C∗-algebra. The generator
rank of A, denoted by gr(A), is the smallest integer k ≥ 0 such that Genk+1(A)sa
is dense in Ak+1sa . If no such k exists, we set gr(A) =∞.

Given a non-unital C∗-algebra A, let Ã denote its minimal unitization, and set
gr(A) ∶= gr(Ã).

Thus, while “gen(A) ≤ k” records that Genk(A)sa is not empty, “gr(A) ≤ k −
1” records that Genk(A)sa is dense. This indicates why the generator rank is
usually much larger than the minimal number of self-adjoint generators. The
payoff, however, is that the generator rank is much easier to compute.

The definition of the generator rank is analogous to that of the real rank as
introduced by Brown and Pedersen, [1]. This explains the index shift of the defi-
nition, and with this index shift one obtains the general estimate rr(A) ≤ gr(A),
see [3, Proposition 2.5].

The most interesting value of the generator rank for A is one, which means
exactly that the (single) generators are dense in A. One can show that Genk(A)sa
is a Gδ-subset of A

k
sa for each k (although not necessarily dense). It follows that

gr(A) ≤ 1 if and only if the generators form a dense Gδ-subset of A, which means
that the generic element of A is a generator.

The generator rank has many of the permanence properties that are also satis-
fied by other noncommutative dimension theories, see [4]. In particular, it does not
increase when passing to ideals, quotients or inductive limits. Thus, the generator
rank is indeed better behaved than the theory of counting the minimal number of
self-adjoint generators. However, while it easy to see that for unital C∗-algebras
A,B we have gen(A ⊕ B) = max{gen(A),gen(B)}, the analog question for the
generator rank seems surprisingly hard:

Question 2. Given two separable C∗-algebras A and B, do we have gr(A⊕B) =
max{gr(A),gr(B)}?

It is easy to see that every finite-dimensional C∗-algebra has generator rank
one. We get the following consequence:

Corollary 3 ([3, Corollary 3.3]). Let A be a separable AF-algebra. Then A has
generator rank at most one. In particular, A is singly generated.



C*-Algebras, Dynamics, and Classification 3145

We also compute the generator rank of commutative and homogeneous C∗-
algebras. If X is a compact, metric space, then:

gr(C(X)) = dim(X ×X),
gr(C(X,Mn)) = ⌈dim(X)+ 1

2n − 2
⌉ , for n ≥ 2.

This allows us to show that a unital, separable AH-algebra has generator rank
one if it is either simple with slow dimension growth, or when it tensorially absorbs
a UHF-algebra, see [3, Corollary 4.30]. The following natural questions remain
open:

Question 4. Let A be unital, separable C∗-algebra that tensorially absorbs the
Jiang-Su algebra. Does it follow that A has generator rank at most one?

Question 5. Let A be unital, separable, real rank zero, stable rank one, nuclear
C∗-algebra. Does it follow that A has generator rank at most one?

Note that every II1-factor M acting on a separable Hilbert space contains a
weakly dense sub-C∗-algebra A that is unital, separable and has real rank zero
and stable rank one. Thus, a positive answer to Question 5 without the assump-
tion of nuclearity would imply that every II1-factor M is singly generated (as a
von Neumann algebra). It is known that this would imply that every separably
acting von Neumann algebraM is singly generated, which is a long-standing open
question first asked by Kadison in 1967.

The author was partially supported by the Danish National Research Founda-
tion through the Centre for Symmetry and Deformation, Copenhagen.
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The complexity of the relation of unitary equivalence of

automorphisms of separable C∗-algebras

Martino Lupini

If A is a separable C*-algebra, denote by Aut (A) the Polish group of automor-
phisms of A endowed with the topology of pointwise convergence, and Inn (A) the
Borel subgroup of inner automorphisms. Two automorphisms α,β of A are said
to be unitarily equivalent if α ○ β−1 ∈ Inn (A). This defines a Borel equivalence
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relation Eu.e.A on Aut (A). The main result presented here concerns the Borel
complexity of the equivalence relation Eu.e.A .

The study of Borel complexity of Borel (or analytic) equivalence relations on
standard Borel spaces is one of the main applications of descriptive set theory (see
[2] for an introduction to this subject). If E and E′ are two analytic equivalence
relations on standard Borel spaces X and X ′ respectively, E is said to be Borel
reducible to E′ if there is a Borel map f ∶ X → X ′ such that, for every x, y ∈ X ,
xEy if and only if f (x)E′f (y). This offers a notion of comparison that allows one
to confront the complexity of different equivalence relations. Some distinguished
equivalence relations can be used as benchmark of complexity. Among these are
the relation =R of equality of real numbers and the relation ≃C of isomorphism
within some class of countable structures C. An analytic equivalence relation E is
called smooth if it is Borel reducible to =R, and classifiable by countable structures
if it is Borel reducible to ≃C for some class C of countable structures. Since =R is
Borel reducible to ≃C for any class C of countable structures with uncountably many
isomorphism classes, a smooth equivalence relations is, in particular, classifiable by
countable structrues. Smooth equivalence relations are rare and have the lowest
Borel complexity. An example of smooth equivalence relation is the relation of
unitary equivalence of irreducible representation of a given separable type I C*-
algebra. Much wider is the class of equivalence relations that are classifiable by
countable structures. This can be regarded as the class of equivalence relations for
which one can hope to find “easy” complete invariants, such as (ordered) groups,
rings, modules, etc. An example of such relation is, for example, the relation of
isomorphism of AF algebras or Kirchberg algebras.

In [3], John Phillips proved that the relation Eu.e.A of unitary equivalence of
automorphisms of a separable non-continuous trace C*-algebra is not smooth.
The main result presented here is the following one, which is a strengthening of
Phillips’ result.

Theorem. If A is a non-continuous trace separable C*-algebra, then the relation
Eu.e.A of unitary equivalence of automorphisms of A is not classifiable by countable
structures.

The main tool in the proof of the theorem is the following non-claissifiability
criterion.

Criterion. Suppose that E is an analytic equivalence relation on the standard

Borel space X . Assume moreover that there is a Borel function f ∶ (0,1)N → X

such that, for any x, y ∈ (0,1)N, if x − y ∈ ℓ1, then f (x)Ef (y), and for any

comeager subset C of (0,1)N there are x, y ∈ C such that f (x) /E f (y). Then, E
is not classifiable by countable structures.

The proof of this criterion can be deduced from Hjorth’s theory of turbulence
and, in particular, from the fact that the action of ℓ1 on RN by translation is
turbulent (cf. Proposition 3.25 of [1]). An introduction to the theory of turbulence
can by found in [1] (Chapter 3).
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In [3], Phillips also shows that, if A is a unital C*-algebra with continuous
trace, then the relation Eu.e.A is smooth. Together with the main result here, this
implies that there is a dichotomy in the Borel complexity of the relation of unitary
equivalence of automorphisms of a separable unital C*-algebra A: Either such a
relation is smooth, or it is non classifiable by countable structures. It would be
interesting to know if the same dichotomy holds for non-unital C*-algebras.

Problem 1. Suppose that A is a separable C*-algebra such that Eu.e.A is non-
smooth. Is it true that Eu.e.A is non-classifiable by countable structures?

It should be observed that, in the non-unital setting, continuous trace does not
imply smoothness of the relation of unitary equivalence of automorphisms. There
is in fact an example of a separable C*-algebra with continuous trace A such that
Eu.e.A is even not classifiable by countable structures. It would be interesting to
know exactly for which C*-algebras A the relation Eu.e.A is smooth or, respectively,
classifiable by countable structure.

Problem 2. Characterize the C*-algebras A for which Eu.e.A is smooth or, respec-
tively, classifiable by countable structures.
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Tracial approximation and classification of C∗-algebras of generalized

tracial rank 1

Guihua Gong

(joint work with Huaxin Lin and Zhuang Niu)

For a simple C*-algebras A, if any given finite set F ⊂ A can be approximated arbi-
trarily well by a subalgebraB ⊂ A of the formB =⊕ni=1Mki(C) (such A is called an
AF algebra) or of the form
B = {⊕ni=1Mki(C)}⊕{⊕mj=1Mlj(C[0,1])} (such A is called an AI algebra), then
A is classified by Elliott in the early stage of the classification theory. But for
most simple C*-algebras A, such approximation can not be done for arbitrarily
given finite subset F ⊂ A. On the other hand, it is much easier to approximate
a “large portion” of any given finite subset F ⊂ A by a class of good C*-algebras
such as finite dimensional algebras, or interval algebras. The following definition
was given by Lin:
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Definition 1. Let S be a class of “good” unital C*-algebra. A is called TAS ,
if for any finite set F ⊂ A, 0 /= a ∈ A+, and ǫ > 0, ∃B ∈S , B ⊂ A with 1B = p such
that

(1) ∥px − xp∥ < ǫ ∀x ∈ F ;
(2) dist(pxp,B) < ǫ ∀x ∈ F ;
(3) 1a − p is unitarily equivalent to a projection in the hereditary subalgebra of

A generated by a.
(This property is called Decomposition Theorem by Elliott-Gong, which pre-

dates Lin’s definition.)
If we choose S to be a Elliott-Thomsen building block with trivial K1-group

defined as follows, then we refer TAS algebras as algebras with generalized tracial
rank 1.

Definition 2. Let F1, F2 be two finite dimensional C*-algebras, and α0, α1∶F1 →
F2 two unital homomorphisms,

A(F1, F2, α0, α1) = {(f, a) ∈ C([0,1], F2)⊕ F1; α0(a) = f(0), α1(a) = f(1)}
is called Elliott-Thomsen building block.

In this talk, we described the complete classification of Z-stable (here Z is the
Jiang-Su algebra) simple nuclear separable C*-algebra A with UCT, under the
condition that A⊗UHF is of generalized tracial rank 1. This class of C*-algebras
may include all Z-stable simple unital ASH algebras – at least it is proved that it
covers Elliott invariants of all Z-stable unital ASH algebras.

Semigroup C∗-algebras, K-theory, and classification

Xin Li

1. The construction, conditions, and examples

Let P be a subsemigroup of a group G. For every p ∈ P , Vp ∶ ℓ2(P ) → ℓ2(P ),
εx ↦ εpx defines an isometry. The reduced semigroup C*-algebra of P is given as
follows:

Definition 1. C∗r (P ) ∶= C∗ ({Vp: p ∈ P}) ⊆ L(ℓ2(P )).
In the study of semigroup C*-algebras (see [6], [7]), the following two conditions

turn out to be very important:
Let J ∶= {p−11 q1⋯p

−1
n qnP : pi, qi ∈ P} ∪ {∅}.

Definition 2. J is independent if for all X , X1, ..., Xn in J ,

X =
n

⋃
i=1

Xi ⇒X =Xi for some 1 ≤ i ≤ n.

Definition 3. P ⊆ G is Toeplitz if for every g ∈ G with EPλgEP ≠ 0, there exist
p1, q1, . . . , pn, qn in P such that EPλgEP = V ∗p1Vq1⋯V ∗pnVqn . Here λ is the left

regular representation of G, and EP is the orthogonal projection in L(ℓ2(G)) onto
the subspace ℓ2(P ) of ℓ2(G).
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The following lemma explains why the Toeplitz condition is useful:

Lemma 4. If P ⊆ G is Toeplitz, then C∗r (P ) ∼M C0(ΩP⊆G) ⋊r G, where ΩP⊆G is
a totally disconnected locally compact space on which G acts.

Here is a list of examples of subsemigroups of groups for which our two condi-
tions (independence and Toeplitz) hold:

● N0 ⊆ Z, Nn0 ⊆ Z
n, N∗n0 ⊆ Z

∗n;
● Artin-Tits monoids in right-angled Artin-Tits groups or Artin-Tits groups
of finite type, e.g. Braid monoids in Braid groups;
● Examples from number theory: Let K be a number field, let R be the
ring of integers in K, and consider the ax + b-semigroup R ⋊ R× as a
subsemigroup of the ax + b-group K ⋊K× over K.

2. K-theory

To compute K-theory for semigroup C*-algebras, the strategy is as follows: The
Toeplitz condition allows us to pass over to reduced group crossed products at-
tached to dynamical systems G ↷ Ω with Ω totally disconnected (see Lemma 4).
The independence condition gives further restrictions on G ↷ Ω. Let us make
precise what sort of dynamical systems we want to study:

Let G↷ Ω be a dynamical system with G countable and Ω locally compact, to-
tally disconnected and second countable. CO(Ω) denotes the collection of compact
open subsets of Ω.

Definition 5. V ⊆ CO(Ω) ∖ {∅} is called a G-invariant basis if

(1) V is closed under finite intersections ≠ ∅,
(2) G ⋅ V = V ,
(3) R(V) = CO(Ω), where R(V) is the set-theoretical ring generated by V , i.e.

the smallest family of subsets of Ω containing V and closed under finite
unions and complements,

(4) V is independent in the same sense as in Definition 2, i.e., a compact open
set in V cannot be decomposed into finitely many strictly smaller compact
open sets in V .

Here is our general K-theoretic result for crossed products attached to dynamical
systems with such an invariant basis:

Theorem 6 (j. w. with Cuntz and Echterhoff). Let G ↷ Ω be a dynamical
system as above and assume that V ⊆ CO(Ω) ∖ {∅} is a G-invariant basis. If G
satisfies the Baum-Connes conjecture with coefficients, then K∗(C0(Ω) ⋊r G) ≅
⊕[V ]∈G/VK∗(C∗r (GV )). Here GV = {g ∈ G: g ⋅ V = V }.

This gives a formula for K∗(C∗r (P )) if we assume the independence and the
Toeplitz condition. We refer the reader to [1] and [2] for more details. More-
over, this K-theoretic formula is not only interesting in the context of semigroup
C*-algebras, but it applies in other situations as well. For example, M. Norling
observed that the formula can be used to compute K-theory for inverse semigroup
C*-algebras [8].
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3. Classification

Using our general K-theoretic results, we obtain the following classification results
for semigroup C*-algebras:

The first result is about semigroup C*-algebras for Artin monoids in right-
angled Artin groups. These C*-algebras have been studied in [3], [4] and [5].

Theorem 7. Let (AΓ,A
+
Γ) and (AΓ′ ,A

+
Γ′) be graph-irreducible right-angled Artin

groups in the sense of [4] (we assume that Γ and Γ′ are graphs with countably
many vertices). The semigroup C*-algebras C∗r (A+Γ) and C∗r (A+Γ′) are isomorphic
if and only if (exactly) one of the following conditions hold:

● Both Γ and Γ′ consist of only one vertex; in that case, C∗r (A+Γ) and C∗r (A+Γ′)
are isomorphic to the Toeplitz algebra;
● Both Γ and Γ′ have countably infinitely many vertices; in that case,
C∗r (A+Γ) and C∗r (A+Γ′) are isomorphic to the Cuntz algebra O∞;
● Both Γ and Γ′ have at least two but finitely many vertices, and the Euler
characteristics in the sense of [4], [5] coincide: χ(Γ) = χ(Γ′).

The proof of this result uses a recent result of S. Eilers, G. Restorff and E. Ruiz
concerning the classification of graph C*-algebras.

The second classification result is concerned with semigroup C*-algebras of
ax + b-semigroups over rings of integers in number fields.

Theorem 8. Let K and L be finite Galois extensions of Q, and let R and S be
the rings of integers in K and L. Assume that K and L have the same number of
roots of unity. Then C∗r (R ⋊R×) ≅ C∗r (S ⋊ S×) if and only if K ≅ L.
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Untitled

Nicola Watson

Nicola Watson presented the recent results of her work on the classification of
nuclear, simple C∗-algebras, relating the properties of having finite nuclear di-
mension, (rationally) real rank zero and being TAF.

On groups with quasidiagonal C∗-algebras

José R. Carrión

(joint work with Marius Dadarlat and Caleb Eckhardt)

In [7] Lance provided a C∗-algebraic characterization of amenability for discrete
groups by proving that a discrete group Γ is amenable if and only if its reduced
C∗-algebra, C∗r (Γ) is nuclear. Later Rosenberg showed that if C∗r (Γ) is quasidiag-
onal, then Γ is amenable [5]. The converse to Rosenberg’s theorem remains open,
namely: if Γ is a discrete, amenable group, is C∗r (Γ) quasidiagonal [11]?

Our main results are the following.
First, if Γ is not amenable, then the modulus of quasidiagonality of C∗r (Γ) is

controlled by the number of pieces in a paradoxical decomposition of Γ. The modu-
lus of quasidiagonality measures how badly a C*-algebra violates quasidiagonality
[9]. This may be regarded as a quantitative version of Rosenberg’s previously men-
tioned result, which may be rephrased to say that the modulus of quasidiagonality
does not vanish for some subset of a non-amenable group.

We call a group that embeds in ∏∞k=1Mn(k)(C)/∑∞k=1Mn(k)(C) for some in-
creasing sequence of positive integers (n(k)) an MF group, in analogy with the
MF algebras of Blackadar and Kirchberg [2]. Our second result states that C∗r (Γ)
is quasidiagonal if and only if Γ is amenable and MF. We expand the class of
amenable groups with quasidiagonal C∗-algebras beyond the class of groups that
are locally embeddable into finite groups in the sense of Vershik and Gordon [10]
(so-called LEF groups). It applies, for example, to the topological full groups as-
sociated to Cantor minimal systems [3, 8, 6, 4] and gives us examples of simple
amenable groups with quasidiagonal C∗-algebras. It also applies to an example of
Abels that provides an amenable group that is not LEF [1]. We observe that if
a group is not LEF, then it cannot be a union of residually finite groups and one
cannot obtain quasidiagonality using previously known techniques based on finite
approximation properties of the group. However, we have that Γ/∆ is MF if Γ is
residually finite and ∆ is a central subgroup of Γ.

Our third result concerns strong quasidiagonality. If Γ and Λ are amenable
groups such that Γ is non-torsion and Λ has a finite dimensional representation
other than the trivial one, then C∗(Λ ≀ Γ) has a non-finite quotient and therefore
cannot be strongly quasidiagonal. We have, therefore, that the C∗-algebra of the
lamplighter group Z/2Z ≀ Z is quasidiagonal (even residually finite dimensional)
but has a non-finite quotient.
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A Dixmier-Douady theory for strongly self absorbing C∗-algebras

Marius Dadarlat

(joint work with Ulrich Pennig)

Let X be a compact metrizable space. For a separable C*-algebra D we denote
by CD(X) the set of all separable continuous field C*-algebras over X with fibers
abstractly isomorphic to D. In particular, if A is a separable continuous field
C*-algebra over X with all fibers isomorphic to the compact operators K on an
infinite dimensional separable Hilbert space, we write A ∈ CK(X).

Dixmier and Douady [1] proved the following theorems:

Theorem 1. Suppose that X has finite covering dimension. Then A ∈ CK(X) is
locally trivial if and only if for each point x ∈ X , there is closed neighborhood V
of x and a projection p ∈ A(V ) such that rank(p(v)) = 1 for all v ∈ V .

Theorem 2. The isomorphism classes of locally trivial fields in CK(X) form a
group under the operation of tensor product. Moreover this group is isomorphic
to Ȟ3(X,Z).

We give generalizations of these results to continuous field C*-algebras with
fibers D ⊗ K, where D is a fixed strongly self-absorbing C*-algebra. The class
of strongly self-absorbing C*-algebras was introduced by Toms and Winter [3].
A separable unital C*-algebra D is strongly self-absorbing if the the ∗-homo-
morphism ℓ ∶ D → D ⊗D, ℓ(d) = d ⊗ 1D is approximately unitarily equivalent to
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some ∗-isomorphism D → D ⊗ D. The only known strongly self-absorbing C*-
algebras are the Jiang-Su algebra Z , the UHF-algebras of infinite type, the Cuntz
algebras O2 and O∞ and any tensor product of those algebras.

Let D be a separable strongly self-absorbing C*-algebra (the case D = C is
allowed). K0(D) has a natural ring structure. We denote byK0(D)× the invertible
elements in this ring and by K0(D)×+ the group of positive invertibles.

Theorem A. Suppose thatX has finite covering dimension and let A ∈ CD⊗K(X).
Then A is locally trivial if and only if for each point x ∈ X , there is closed neigh-
borhood V of x and a projection p ∈ A(V ) such that [p(v)] = [1D] in K0(D), for
all v ∈ V .

The latter condition means that for each v ∈ V, there is an isomorphism
φ ∶ D ⊗ K → A(V ) such that φ∗[1D ⊗ e] = [p(v)] where e ∈ K is a rank-one
projection.

Using results from [2] we prove that the group Aut(D) is contractible with
respect to the point-norm topology. Moreover, we employ some classical deloop-
ing results from algebraic topology due to G. Segal and P. May to show that
Aut(D ⊗K) is an infinite loop space and hence Aut(D ⊗K) is the 0-space in the
spectrum of a generalized cohomology theory E∗D(X). Suppose that X is con-
nected with base point x0. If D ≠ C, then there isomorphisms of multiplicative
(abelian) groups

[X,Aut(D ⊗K)] ≅ E0
D(X) ≅K0(D)×+ ⊕K0 (C0(X ∖ x0)⊗D) .

The group operation on the latter group is induced by the multiplication in the
ring K0(C(X)⊗D).

Theorem B. Let X be a finite connected CW complex. The isomorphism classes
of locally trivial fields in CD⊗K(X) form an abelian group under the operation of
tensor product. Moreover this group is isomorphic to E1

D(X).
If D = C, then of course E1

C
(X) ≅H3(X,Z), this is the Dixmier-Douady case.

In general one may use the Atiyah-Hirzebruch spectral sequence for specific
computations. For illustration, we have the following.

If D = UHF is the universal UHF-algebra then

E1
UHF (X) ≅H1(X,Q×+) ×H3(X,Q) ×H5(X,Q)×⋯

If D = Z is the Jiang-Su algebra and if assume that H∗(X,Z) is torsion free,
then

E1
Z (X) ≅H3(X,Z) ×H5(X,Z) ×⋯
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Uniqueness and Existence Theorems

Huaxin Lin

One of the most important tools used in the Elliott program is the Elliott inter-
twining argument. It has been employed for classification of AF-algebras, simple
AT-algebras of real rank zero, for example. It was used by almost all authors who
provided a classification theorem. The Elliott intertwining argument includes two
types of subarguments, the so-called uniqueness and existence theorems. These
are the integral part of the Elliott intertwining argument. A Uniqueness Theorem
has the following form: Let A and B be two unital C∗-algebras. Suppose that
φ1, φ2 ∶ A→ B are two unital monomorphisms. Suppose also that

Inv(φ1) = Inv(φ2).
Then there exists a sequence of unitaries un ∈ B such that

lim
n→∞

u∗nφ2(a)un = φ1(a) for all a ∈ A.
An Existence Theorem has the following form: Let Φ ∶ Inv(A) → Inv(B) be a

map. Then there exists a unital homomorphism φ ∶ A→ B such that Inv(φ) = Φ.
W. Winter ([7]) provided a remarkable method which provides a new approach

to the Elliott program. In fact, Winter’s method makes it possible to classify
C∗-algebras which may not have finite tracial rank. As in the Elliott intertwining
argument, Winter’s method also requires a uniqueness and existence theorem. But
this time, it requires a much finer uniqueness and existence theorem. Given two
unital homomorphisms φ ∶ A⊗Mp → B ⊗Mp and ψ ∶ A⊗Mq → A⊗Mq, consider

φ0 = φ⊗ idMq
∶ A⊗Mp ⊗Mq → B ⊗Mp ⊗Mq and

φ1 = ψ ⊗ idMp
∶ A⊗Mp ⊗Mq → B ⊗Mp ⊗Mq,

where Mp and Mq are UHF-algebras with supernatural numbers p and q of in-
finite type which are relatively prime. When are they asymptotically unitarily
equivalent, i.e., when is there a continuous path of unitaries {u(t) ∶ t ∈ [0,1)} ⊂
B ⊗Mp ⊗Mq such that

lim
t→1

u(t)∗φ0(a)u(t) = φ1(a) for all a ∈ A⊗Mp ⊗Mq?

A uniqueness theorem is needed here. If φ1 and φ2 are asymptotically unitarily

equivalent, then [φ1] = [φ2] in KK(A,B), (φ1)T = (φ2)T and φ
�

1 = φ�2 are the
same, where φT , ψT ∶ T (A) → Tf(C(X)), where Tf(C(X)) is the faithful tracial
state space of C(X), and
φ�, ψ�

∶ U(Mn(C(X)))/CU(Mn(C(X)))→ U(Mn(A))/CU(Mn(A)) are the con-
tinuous homomorphisms induced by φ and ψ. But there are more. Namely, the
rotation related mapsRφ,ψ . Using the Basic Homotopy Lemma among many other
related results, one has the following:

Theorem 1. ([1] and [4]) Let A be a unital AH-algebra and let B be a unital
separable simple amenable C∗-algebra with TR(B) ≤ 1. Suppose that φ,ψ ∶ A→ B
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are two unital monomorphisms such that

[φ] = [ψ] in KK(A,B), φT = ψT , φ� = ψ� and

Rφ,ψ = 0.
Then there exists a continuous path of unitaries {u(t) ∶ t ∈ [0,1)} ⊂ B such that

lim
t→1

u(t)∗φ(a)u(t) = ψ(a) for all a ∈ A.
We also need an existence theorem. Realizing an element in KK(A,B) by a

homomorphism in the case that Ki(A) is not finitely generated and has torsion is
quite different from the case that Ki(A) is torsion free or finitely generated. The
issue is that functor KK does not to preserve inductive limits. As it turns out,
it requires also a version of uniqueness theorem as well as a version of the Basic
Homotopy Lemma ([2]).

Theorem 2. [4] (and [6] in the case that TR(A) = 0 ) Let C be a unital AH-algebra
and let A be a unital separable simple C∗-algebra with TR(A) ≤ 1. Suppose that
κ ∈ KK(C,A) with κ(K0(C)+ ∖ {0}) ⊂ K0(A)+ ∖ {0} and λ ∶ T (A) → Tf(C) is a
continuous affine map which is compatible with κ. Then there exists a monomor-
phism φ ∶ C → A such that ([φ], φT ) = (κ,λ).

Moreover, for any η ∈ Hom(K1(C),Aff(T (A))/R0, there is another monomor-
phism ψ ∶ C → A with ([ψ], ψT ) = (κ,λ) such that

Rφ,ψ = η.
There are examples ([3]) that X is a one-dimensional compact metric space, A

is a UHF-algebra and κ ∈ KL(C(X),A) with κ([1C(X)]) = [1A], κ(K0(C(X)) ∖{0}) ⊂ K0(A)+ ∖ {0}, but no unital homomorphism φ ∶ C(X) → A such that[φ] = [κ]! Therefore, the word “compatible” is important and necessary.
This results in the following classification theorem:

Theorem 3. ([4]) Let A and B be two unital separable simple amenable C∗-
algebras which are of rational tracial rank at most one which satisfy the UCT.
Then A ≅ B if and only if

(K0(A),K0(A)+, [1A],K1(A), T (A), rA) ≅ (K0(B),K0(B)+, [1B],K1(B), T (B), rB).

The rest of the talk is part of a joint work with Guihua Gong and Zhuang
Niu. With the building blocks of Elliott and Thomsen, a more general class of
amenable simple C∗-algebras can be introduced. A C∗-algebra A in this class will
be written as GTR(A) ≤ 1 (generalized tracial rank at most one). We have the
following uniqueness theorem.

Theorem 4. (Gong–L–Niu—2012) Let A1 and B be two unital separable simple
amenable C∗-algebras which satisfy the UCT. Let A = A1 ⊗ U for some infinite
dimensional UHF-algebra U such that GTR(A) ≤ 1. Suppose that φ,ψ ∶ A→ B are
two unital monomorphisms. Then φ and ψ are asymptotically unitarily equivalent
if and only if

[φ] = [ψ] in KK(A,B), φT = ψT ,
φ� = ψ� and Rφ,ψ = 0.
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The following two statements serve as existence theorems.

Theorem 5. (Gong–Lin –Niu–2012) Let A1 and B1 be unital separable amenable
simple C∗-algebras which satisfy the UCT, let A = A1⊗U1 and B = B1⊗U2, where
U1 and U2 are two infinite dimensional UHF-algebras. Suppose that GTR(A) ≤ 1
and GTR(B) ≤ 1. Suppose also that (κ,λ, γ) is a compatible triple as above. Then
there exists a unital monomorphism φ ∶ A→ B such that ([φ], φT , φ�) = (κ,λ, γ).
Theorem 6. (Gong–Lin –Niu–2012) Given a unital monomorphism φ ∶ A → B

and given an element R ∈ Hom(K1(A), ρB(K0(B)))/R0. There exists a unital
monomorphism ψ ∶ A→ B such that

[ψ] = [φ], ψT = φT , ψ� = φ�

Rφ,ψ = R.
Combining the existence theorems as above, using Winter’s method, we have

the following:

Theorem 7. (Gong–Lin—Niu) Let A and B be two unital separable simple
amenable Z-stable C∗-algebras which satisfy the UCT. Suppose that GTR(A ⊗
Mp) ≤ 1 and GTR(B ⊗Mp) ≤ 1 for any UHF-algebra Mp of infinite type. Then
A ≅ B are isomorphic if and only if

Ell(A) ≅ Ell(B).
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Topological full groups of étale groupoids

Hiroki Matui

In this talk I described some recent results about topological full groups of étale
groupoids on Cantor sets. Let G be an essentially principal étale groupoid whose
unit space G(0) is a Cantor set. The topological full group [[G]] of G is a subgroup

of Homeo(G(0)) consisting of all homeomorphisms of G(0) whose graph is ‘con-
tained’ in the groupoid G as a compact open subset. Clearly [[G]] is a countable
group. There exists a natural short exact sequence:

1Ð→ U(C(G(0))) Ð→ N(C(G(0)),C∗r (G))Ð→ [[G]] Ð→ 1,

where N(C(G(0)),C∗r (G)) denotes the group of unitaries in C∗r (G) which normal-

ize C(G(0)).
The following theorem says that when G is minimal, [[G]] (and its certain

normal subgroups) ‘remembers’ the groupoid G. We let [[G]]0 denote the kernel
of the index map I ∶ [[G]] → H1(G) and let D([[G]]) denote the commutator
subgroup of [[G]].
Theorem 1. For i = 1,2, let Gi be a minimal and essentially principal étale
groupoid whose unit space is a Cantor set. The following are equivalent.

(1) G1 is isomorphic to G2 as an étale groupoid.
(2) [[G1]] is isomorphic to [[G2]] as a group.
(3) [[G1]]0 is isomorphic to [[G2]]0 as a group.
(4) D([[G1]]) is isomorphic to D([[G2]]) as a group.

Furthermore, under some additional assumptions, we can prove that D([[G]])
is simple. One may think of D([[G]]) as an analogue of alternating groups.

Theorem 2. Let G be a minimal groupoid as above. Suppose that G is either
almost finite or purely infinite. Then D([[G]]) is simple.

Let ϕ ∶ Z→ Homeo(X) be a minimal action of Z on a Cantor set X . For ϕ one
can associate the transformation groupoid Gϕ. The groupoid Gϕ is known to be
almost finite.

Theorem 3. For Gϕ as above, the following hold.

(1) The abelianization [[Gϕ]]ab is isomorphic to (H0(Gϕ)⊗Z2)⊕ Z.
(2) D([[Gϕ]]) is finitely generated if and only if ϕ is expansive.
(3) D([[Gϕ]]) is never finitely presented.

Moreover, K. Juschenko and N. Monod recently proved the following theorem.

Theorem 4. For Gϕ as above, [[Gϕ]] is amenable.

This provides the first examples of finitely generated simple amenable infinite
groups.

Next, we consider étale groupoids arising from one-sided shifts of finite type.
Let (X,σ) be a one-sided irreducible shift of finite type. Then one can define the
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étale groupoid G by

G = {(x,n, y) ∈X ×Z ×X ∣ ∃k, l ∈ N, n = k−l, σk(x)=σl(y)} .
It is easy to see that G is purely infinite and minimal. V. V. Nekrashevych observed
that when (X,σ) is the full shift over n symbols, the topological full group [[G]]
is canonically isomorphic to the Higman-Thompson group Vn,1. Thus, [[G]] is
regarded as a generalization of the Higman-Thompson group.

In the following theorem, for a clopen subset Y ⊂ X , we let G∣Y = {g ∈ G ∣
r(g), s(g) ∈ Y } denote the reduction of G to Y . The groupoid G∣Y is also purely
infinite and minimal.

Theorem 5. Let G be as above and let Y ⊂X be a clopen set.

(1) [[G∣Y ]] (and [[G∣Y ]]0 and D([[G∣Y ]])) ‘remembers’ G∣Y .
(2) D([[G∣Y ]]) is simple.
(3) [[G∣Y ]] has the Haagerup property.
(4) The abelianization [[G∣Y ]]ab is isomorphic to (H0(G)⊗ Z2)⊕H1(G).
(5) [[G∣Y ]] is of type F∞, and hence is finitely presented.
(6) [[G∣Y ]]0 and D([[G∣Y ]]) are finitely generated.

We remark that, in this setting, H0(G) is a finitely generated abelian group
and H1(G) is isomorphic to the torsion-free part of H0(G).
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Large subalgebras, crossed products, and the Cuntz semigroup

N. Christopher Phillips

Large subalgebras and centrally large subalgebras are useful for obtaining infor-
mation about the structure of transformation group C*-algebras. They are large
enough to give information about the algebra they are contained in, but can often
be chosen to be small enough that their structure is much more easily accessible.

In the following, we use a ≾A b to mean that a is Cuntz subequivalent to b

with respect to the algebra A. (Cuntz subequivalence with respect to a subalgebra
B ⊂ A might be different from Cuntz subequivalence with respect to A.)

Definition 1. Let A be an infinite dimensional simple unital C*-algebra. A unital
subalgebra B ⊂ A is said to be large in A if for every m ∈ Z>0, a1, a2, . . . , am ∈ A,
ε > 0, x ∈ A+ with ∥x∥ = 1, and y ∈ B+ ∖ {0}, there are c1, c2, . . . , cm ∈ A and g ∈ B
such that:

(1) 0 ≤ g ≤ 1.
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(2) For j = 1,2, . . . ,m we have ∥cj − aj∥ < ε.
(3) For j = 1,2, . . . ,m we have (1 − g)cj , cj(1 − g) ∈ B.
(4) g ≾B y.
(5) ∥(1 − g)x(1 − g)∥ > 1 − ε.
We emphasize that the Cuntz subequivalence in (4) is relative to B, not A.

Definition 2. Let A be an infinite dimensional simple separable unital C*-algebra.
A unital subalgebra B ⊂ A is said to be centrally large in A if for every m ∈
Z>0, a1, a2, . . . , am ∈ A, ε > 0, x ∈ A+ with ∥x∥ = 1, and y ∈ B+ ∖ {0}, there are
c1, c2, . . . , cm ∈ A and g ∈ B such that:

(1) 0 ≤ g ≤ 1.
(2) For j = 1,2, . . . ,m we have ∥cj − aj∥ < ε.
(3) For j = 1,2, . . . ,m we have (1 − g)cj , cj(1 − g) ∈ B.
(4) g ≾B y.
(5) ∥(1 − g)x(1 − g)∥ > 1 − ε.
(6) For j = 1,2, . . . ,m we have ∥gaj − ajg∥ < ε.
The difference from the definition of a large subalgebra (Definition 1) is the

approximate commutation condition in (6). In particular, a centrally large subal-
gebra is large.

The main easily described example is as follows; it is originally due to Putnam.
We have used a different convention from that used elsewhere, where one usually
takes

C∗(Z,X,h)Y = C∗(C(X), uC0(X ∖ Y )).
Definition 3. Let X be a locally compact Hausdorff space and let h∶X →X be a
homeomorphism. Let u ∈ C∗(Z,X,h) be the canonical unitary which implements
the action. Let Y ⊂X be a nonempty closed subset. Define

C∗(Z,X,h)Y = C∗(C(X), C0(X ∖ Y )u) ⊂ C∗(Z,X,h).
We call this subalgebra the Y -orbit breaking subalgebra of C∗(Z,X,h).
Theorem 4. Let X be a compact Hausdorff space and let h∶X →X be a minimal
homeomorphism. Let Y ⊂ X be a compact set such that hn(Y ) ∩ Y = ∅ for all
n ∈ Z ∖ {0}. Then C∗(Z,X,h)Y is a centrally large subalgebra of C∗(Z,X,h).

We give some of the relations between a simple unital C*-algebra A and a large
subalgebra B.

Theorem 5. Let A be an infinite dimensional simple separable unital C*-algebra,
and let B ⊂ A be a large subalgebra. Then:

(1) B is simple.
(2) A is purely infinite if and only if B is purely infinite.
(3) The restriction map T (A)→ T (B) on the tracial state spaces is bijective.
(4) The restriction map QT (A) → QT (B) on the spaces of normalized 2-

quasitraces is bijective.
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(5) If one deletes from the Cuntz semigroups Cu(A) and Cu(B) the classes
of the projections, the inclusion map B → A induces a bijection on what
remains (the classes of the purely positive elements).

(6) A and B have the same radius of comparison.
(7) A has strict comparison of positive elements if and only if B has strict

comparison of positive elements.

There is a kind of converse to Theorem 5(1): if one drops simplicity of A
from the definition, but B is simple, then it follows that A is simple. However,
Definitions 1 and 2 are clearly unsuitable when A is not simple. For example, if A
is simple and B ⊂ A is a proper subalgebra which is large in A, then B⊕B should
be large in A⊕A. But Definition 1 is not satisfied.

Theorem 5(5) is false without the exclusion of the classes of the projections. In
particular, K0(A) and K0(B) can be quite different.

We get more if we assume that B is centrally large in A. The following theorem
is joint work with Dawn Archey.

Theorem 6. Let A be an infinite dimensional simple separable unital C*-algebra,
and let B ⊂ A be a centrally large subalgebra. If B has stable rank one, then so
does A.

Conjecture 7. Let A be an infinite dimensional simple separable unital C*-
algebra, and let B ⊂ A be a centrally large subalgebra. If B is tracially Z-stable
in the sense of Hirshberg and Orovitz, then so is A.

Tracial Z-stability is a kind of weakening of Z-stability.
The proof of the conjecture is nearly done. Hirshberg and Orovitz, using work

of Matui and Sato, show that a simple separable unital nuclear tracially Z-stable
algebra is in fact Z-stable. In particular, if A is nuclear and B is Z-stable, then
so is A.

Theorem 4 is what is needed for applications to crossed products by mini-
mal homeomorphisms. As long as Y ≠ ∅, the Y -orbit breaking subalgebra of
C∗(Z,X,h) will be a direct limit of recursive subhomogeneous C*-algebras with
topological dimension equal to the dimension of X. In particular, if X is finite
dimensional, then the Y -orbit breaking subalgebra is a direct limit of recursive
subhomogeneous C*-algebras with no dimension growth. If Y meets each orbit at
most once, so that Theorem 4 applies, then C∗(Z,X,h)Y is simple (Theorem 5(1)),
and therefore Z-stable. (The consequences gotten this way are not new.) If X is
not finite dimensional, then at least the computation of the radius of comparison
of C∗(Z,X,h) is reduced to the computation of the radius of comparison of a
simple direct limit of recursive subhomogeneous C*-algebras.

The original motivation for large subalgebras is the following result.

Theorem 8. Let d ∈ Z>0. Let X be a compact metric space, and let h be a free
minimal action of Zd on X. Suppose that one of the following holds:

(1) X is the Cantor set.
(2) X is a compact smooth manifold and the action is via diffeomorphisms.
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Then there is a centrally large subalgebra B ⊂ C∗(Zd,X,h) such that B is a direct
limit of recursive subhomogeneous C*-algebras with no dimension growth.

It is likely that case (2) can be generalized to continuous actions on finite
dimensional compact metric spaces, using methods of Kulesza.

Since B is Z-stable, one concludes that C∗(Zd,X,h) has strict comparison of
positive elements and, assuming Conjecture 7, that C∗(Zd,X,h) is in fact Z-stable.

The subalgebra B is an analog of the orbit breaking subalgebra of C∗(Z,X,h).
Unlike for the orbit breaking subalgebra, no easy known formula for B is known.
Even the construction appears to depend on finite dimensionality.

A significant amount (but not all of the conclusion here) was already known
whenX is the Cantor set. Although not stated in these terms, the proofs depended
on a suitable centrally large subalgebra and results related to those above. The
large subalgebra is AF, making it possible to prove that the order on projections
over C∗(Zd,X,h) is determined by traces directly from the corresponding fact
about the subalgebra.

In case (2), nothing was previously known. Even when C∗(Z,X,h) has many
projections, there seems to be no reason to expect B to have many projections.
Since C∗(Z,X,h) has strict comparison of positive elements, it follows that the
order on projections overC∗(Zd,X,h) is determined by traces. Strangely, however,
the proof ultimately depends on Theorem 5(5), which is about the part of the
Cuntz semigroup which remains after the classes of the projections are deleted.

This material is based upon work supported by the US National Science Founda-
tion under Grants DMS-0701076 and DMS-1101742.

Classification of crossed product C∗-algebras and mean dimension for

topological dynamical systems

Taylor Hines

(joint work with Andrew Toms and N. Christopher Phillips)

The mean topological dimension was introduced by Gromov [2] and later studied
by Lindenstrauss and Weiss [4] as a way of measuring both the underlying size as
well as the ’chaotic-ness’ of a topological dynamical system. In this talk, we show
how the mean dimension relates to the classification program for C∗-algebras by
giving evidence for why the mean dimension of a topological dynamical system
should roughly equal twice the radius of comparison of the corresponding crossed
product C∗-algebra. This evidence is based on an example constructed by Giol
and Kerr [1], who show that positive mean dimension is related to positive strict
comparison, as well as the result of Lin and Phillips [3] that such a crossed product
C∗-algebra can be approximated by an inverse limit of recursive subhomogeneous
algebras. The evidence not only suggests a method for computing the radius of
comparison (a purely algebraic invariant) in terms of the mean dimension (a purely
dynamic invariant) but also that the mean dimension zero systems are the ones
that have classifiable crossed products.
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Towards a model for free Cantor minimal Z2-systems

Thierry Giordano

(joint work with Ian Putnam and Christian Skau)

1. Introduction

The work of R. Hermann, I. Putnam and C. Skau [HPS] used ideas from operator
algebras to construct a complete model for minimal actions of the group Z on
a compact, totally disconnect metrizable space having no isolated points, i.e. a
Cantor set. The data (a Bratteli diagram, with an order structure on the edge
set of the diagram) is basically combinatorial and the two great features of the
model are that it contains, in a reasonably accessible form, the orbit structure
of the resulting Cantor dynamical system and also cohomological data proveded
either from the K-Theory of the associated C*-algebras or more directly from the
dynamics via group cohomology. This led to a complete classification of such
systems up to orbit equivalence [GPS1]. This was the first extension of a famous
program initiated by Henry Dye [D] in the study of orbit equivalence in ergodic
theory to the topological situation (See also [CFW], [OW]).

The classification in [GPS1] was extended to include minimal actions of Z2 in
[GMPS1] and minimal actions of finitely generated abelian groups in [GMPS2].
However the original model of [HPS] had not been extended, which has handi-
capped the general understanding of these actions. Notice also that the higher
dimensional case has applications to the study of quasicrystals.

2. The cohomology of free minimal actions of Z2 on the Cantor set

Let us review some properties of the cohomology of a free minimal action (X,ϕ)
of Z2 on the Cantor set. Recall (see for example [HF]) that we consider this
cohomology as the group cohomology of Z2 with coefficient module C(X,Z) but
with no preferred choice of projective resolution.

We then have:

1) H0(X,ϕ) = {f ∈ C(X,Z) ;f = f ○ϕ } = Z, as the system is minimal.

2) H2(X,ϕ) = C(X,Z)/{f − f ○ ϕ ; f ∈ C(X,Z) } is the group of co-invariants
of (X,ϕ). Notice that H2(X,ϕ) is not necessarily torsion free.
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To describe the 1-cocycles and the 1-coboundaries, let us introduce the following
notation:

(i) If ψ ∈ Homeo(X) and f ∈ C(X,Z), we define ∂ψf by

∂ψf(x) = f ○ ψ(x) − f(x), x ∈X .

(ii) To a 1-cocycle θ, we then assign the two functions f and g in C(X,Z)
defined by f(x) = θ(x, (1,0)) and g(x) = θ(x, (0,1)), x ∈ X .

Using the cocycle relation and denoting by α = ϕ(1,0) and β = ϕ(0,1) the two
canonical generators of the Z2-action ϕ, it is easy to show that

Z1(X,ϕ) = {(f, g) ; f, g ∈ C(X,Z) and∂βf = ∂αg} and
B1(X,ϕ) = {(∂αh, ∂βh) ; h ∈ C(X,Z)}.

Let us state some properties of the first group of cohomology:

3) H1(X,ϕ) is a torsion free group.

4) The group Z2, realized as the subgroup generated by [(1X ,0)] and [0, (1X)]
is canonically imbedded in H1(X,ϕ). We do not know if this inclusion is always
strict, for a free, minimal Z2-action on the Cantor set.

Definition. For an invariant probability measure µ of a free, minimal Z2-action(X,ϕ) on the Cantor set, let τ1µ ∶ H
1(X,ϕ) → R2 and τ2µ ∶ H

2(X,ϕ) → R denote
the two group homomorphisms given by:

τ1µ([(f, g)]) = (∫
X
fdµ,∫

X
gdµ) and τ2µ([f]) = ∫

X
fdµ .

Definition. Let (X,ϕ) be a free, minimal action of Z2 on the Cantor set. For
any pair of cocycles (fi, gi) ∈ Z1(X,ϕ), let us define the continuous function

(f1, g1) ∧ (f2, g2) = f1 ⋅ g2 ○ β − g1 ⋅ f2 ○ α

We then have:

Proposition. Keeping the above notation, then the map defined above is an
associative, anti-commutative ∧-product from H1(X,ϕ) to H2(X,ϕ).

If for any two vectors (ai, bi) ∈ R2, we consider the standard wedge product(a1, b1) ∧ (a2, b2) given by a1b2 − b1a2 ∈ R, we then have:

Proposition. Let (X,ϕ) be a free, minimal action of Z2 on the Cantor set with a
unique, ergodic, invariant probability measure µ. For any pair [(f1, g1)], [(f2, g2)] ∈
H1(X,ϕ), we have:

τ2µ([(f1, g1)] ∧ [(f2, g2)]) = τ1µ([(f1, g1)]) ∧ τ1µ([(f2, g2)]).
Example. Let 0 < α < β < 1 be two rationally independent irrational numbers.

We consider the natural action of Z2 on the circle R/Z by rotation by α and by β.
Disconnecting the circle along the Z2-orbit of 0, we get the Cantor set X and the
two rotations Rα and Rβ extends as homeomorphisms of X . In [HF], Hunton and
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Forrest show that the three 1-cocycles (1X ,0), (0,1X) and (χ[0,α], χ[0,β]) generate
H1.

For the unique ergodic invariant measure µ on X , we have that τ1µ(H1) is the
dense subgroup of R2 generated by (1,0), (0,1) and (α,β).

We do not know if for any ergodic invariant probability measure µ of a free,
minimal Z2-action (X,ϕ) on the Cantor set, τ1µ(H1) is a dense subgroup of R2.
However it will be one of the assumption we will need for the construction of our
model below.

Before showing an interesting consequence of this assumption, let us recall that
a Denjoy homeomorphism is an aperiodic homeomorphism of the circle which
is not conjugate to a pure rotation. By a Denjoy system we mean a Denjoy
homeomorphism restricted to its unique invariant Cantor set (See [GPS1] and
[PSS]).

Theorem. Let α be an irrational number satisfying no integral equations and
assume that for any ergodic invariant probability measure µ of a free, minimal
Z2-action (X,ϕ) on the Cantor set, τ1µ(H1) is a dense subgroup of R2.

Then there is no free, minimal Z2-action (X,ϕ) on the Cantor set, with a
unique, invariant probability measure µ such that µ(C(X,Z)) = Z + αZ. In other
words, there is no free, minimal Z2-action on the Cantor set orbit equivalent to a
Denjoy system.

3. A model of free minimal actions of Z2 on the Cantor set

If (X,ϕ) is a Cantor minimal Z-system, then its first cohomology group is equal
to the quotient of C(X,Z) by the subgroup {f − f ○ϕ−1 ; f ∈ C(X,Z) }.

Hence, Hermann, Putnam and Skau’s result [HPS] and Effros, Handelman and
Shen’s characterization of dimension groups [EHS] show that any simple dimension
group is the first cohomology group of a Cantor minimal system.

Recall that for any two vectors (ai, bi) ∈ R2, the standard wedge product(a1, b1) ∧ (a2, b2) is given by a1b2 − b1a2. Then we extend the dimension one
above result to free, minimal, uniquely ergodic Z2-action (X,ϕ) on the Cantor set
as follows:

Theorem. Let G1 and G2 be two torsion free, countable abelian groups, endowed
with an associative, anti-commutative ∧-product fromG1 into G2 and let τ1 ∶ G1 →
R2 and τ2 ∶ G2 → R be two group homomorphisms.

If τ1(G1) contains Z2 as the subgroup generated by {(1,0), (0,1)} and is a
dense subgroup of R2and if for any a, b ∈ G1, τ2(a ∧ b) = τ1(a) ∧ τ1(b).

Then there exists a uniquely ergodic, free, minimal Z2-action (X,ϕ) on the
Cantor set such that Hi(X,ϕ) ≅ Gi for i = 1,2.

The author was partially supported by a grant from NSERC Canada.
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Mean dimension and von Neumann-Lück dimension

Hanfeng Li

(joint work with Bingbing Liang)

Gromov introduced mean dimension for continuous actions of countable amenable
groups on compact metrizable spaces [1], as a dynamical analogue of the covering
dimension of compact metrizable spaces. It was studied in detail by Lindenstrauss
and Weiss [3]. Let a countable amenable group Γ act continuously on a compact
metrizable space X . For each finite open cover U of X , set

ord(U) =max
s∈X

∑
U∈U

1U(x) − 1,
and set

D(U) =min
V≻U

ord(V),
where V ≻ U means that a finite open cover V of X is finer than U in the sense that
every element of V is contained in some element of U . For any finite open covers
U and V of X , denote by U ∨ V the open cover of X consisting of U ∩ V for all
U ∈ U and V ∈ V . The function defined on the set of all nonempty finite subsets of
Γ sending F to D(⋁s∈F s−1U) satisfies the conditions of the Ornstein-Weiss lemma

[7] [3, Theorem 6.1], and hence D(⋁s∈F s
−1U)

∣F ∣ converges to some real number t when

F becomes more and more left invariant in the sense that for any δ > 0, there exist
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some ε > 0 and nonempty finite subset K of Γ such that ∣D(⋁s∈F s
−1U)

∣F ∣ − t∣ < δ for

every nonempty finite subset F of Γ satisfying ∣KF ∖F ∣ < ε∣F ∣. Denote this limit
t by mdim(U). The mean topological dimension of the action of Γ on X , denoted
by mdim(X), is defined as supU mdim(U) for U ranging over all finite open covers
of X .

For any countable group Γ, Lück defined a dimension for every (left) module
M of the integral group ring ZΓ [4, 5]. Here ZΓ consists of finitely supported
Z-valued functions on Γ. We write the elements of ZΓ as ∑s∈Γ fss, where fs ∈ Z is
zero for all but finitely many s ∈ Γ. Then the algebraic structure of ZΓ is defined
by

∑
s∈Γ

fss +∑
s∈Γ

gss =∑
s∈Γ

(fs + gs)s, (∑
s∈Γ

fss)(∑
t∈Γ

gtt) =∑
s∈Γ

(∑
t∈Γ

fst−1gt)s.
Consider the left regular representation of Γ on ℓ2(Γ) given by λ(s∑t∈Γ gtt) =∑t∈Γ gs−1tt. The left group von Neumann algebra LΓ is the strong operator closure
of all complex-coefficient linear combinations of λs for all s ∈ Γ. And ZΓ embeds
into LΓ naturally by ∑s∈Γ fss ↦ ∑s∈Γ fsλs. The von Neumann trace tr of LΓ is
defined by tr(a) = ⟨aδe, δe⟩, where δe denotes the element of ℓ2(Γ) taking value
1 at the identity element of Γ and value 0 everywhere else. One can also extend
the trace tr to Mn(LΓ) for any n ∈ N by tr((ajk)1≤j,k≤n) = ∑nj=1 tr(ajj). For each
finitely generated projective (left) LΓ-module M̃, its dimension dim(M̃) is defined
as tr(P ) for any P ∈Mn(LΓ) for some n ∈ N with P 2 = P and M̃ ≅ (LΓ)nP . For
any (left) LΓ-module M̃, its von Neumann-Lück dimension, denoted by dim(M̃),
is defined as supÑ dim(Ñ ) for Ñ ranging over all finitely generated projective

submodules of M̃. For any (left) ZΓ-moduleM, its von Neumann-Lück dimension,
denoted by dim(M), is defined as dim(LΓ⊗ZΓM).

For any discrete abelian group G, denote by Ĝ the Pontrjagin dual of G, which
is a compact abelian group. For for any countable group Γ and any countable
ZΓ-module M, the module structure ofM corresponds to an action of Γ on the
countable discrete abelian groupM by automorphisms, which in turn corresponds

to an action of Γ on the compact metrizable abelian group M̂ by continuous
automorphisms, a so-called algebraic action. One natural question is the relation
between various L2-invariants of the module M and dynamical invariants of the
action Γ↷ M̂. Our main result is:

Theorem 1. Let Γ be a countable amenable group and M be a countable left
ZΓ-module. Then the mean topological dimension of the action Γ ↷ M̂ is equal
to the von Neumann-Lück dimension ofM.

We give two applications to dynamics.

Corollary 2. Let Γ be a countable amenable group. Consider an equivariant
short exact sequence of compact metrizable abelian groups

0→X1 →X2 →X3 → 0
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with Γ-actions by continuous automorphisms. Then

mdim(X2) =mdim(X1) +mdim(X3).
For a continuous action of a countable amenable group Γ on a compact metriz-

able space X , given any compatible metric ρ on X , Lindenstrauss and Weiss also
introduced a metric mean dimension for the action [3], as a dynamical analogue
of the lower box dimension of a compact metric space. For a finite open cover U
of X , set mesh(U , ρ) = maxU∈U diam(U,ρ). For any nonempty finite subset F of
Γ, define a new metric ρF on X by ρF (x, y) = maxs∈F ρ(sx, sy). For any ε > 0,
the function defined on the set of all nonempty finite subsets of Γ sending F to
logminmesh(U ,ρF )<ε ∣U ∣ also satisfies the conditions of the Ornstein-Weiss lemma,

and hence
logminmesh(U,ρF )<ε

∣U∣
∣F ∣ converges to some limit, denoted by S(X,ε, ρ), when

F becomes more and more left invariant. The metric mean dimension of the action
Γ↷X with respect to ρ, denoted by mdimρ(X), is defined as limε→0

S(X,ε,ρ)
∣ log ε∣ .

The Pontrjagin-Schnirelmann theorem [8, 6] says that for any compact metriz-
able space, its covering dimension is equal to the minimal value of the lower box
dimensions over all compatible metrics. A natural question is whether the dy-
namical analogue holds. Lindenstrauss and Weiss showed that for any continuous
action of a countable amenable group on a compact metrizable space, its mean
topological dimension is no bigger than the metric mean dimension for any com-
patible metric [3]. Lindestruass showed that if a continuous action of Z on a
compact metrizable space has a nontrivial minimal factor, then its mean topolog-
ical dimension is equal to the minimal value of the metric mean dimensions over
all compatible metrics [2].

Corollary 3. For any action of a countable amenable group Γ on a compact
metrizable abelian group X by continuous automorphisms, one has mdim(X) =
mdimρ(X) for some compatible metric ρ on X being translation invariant in the
sense that ρ(x + y, x + z) = ρ(y, z) for all x, y, z ∈X .

We also give an application to L2-invariants. Recall that the rank of a discrete
abelian group G is defined as the dimension of real vector space Q⊗Z G.

Corollary 4. Let Γ be a countably infinite amenable group, andM be a countable
left ZΓ-module. IfM has finite rank as a discrete abelian group, then dim(M) = 0.
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Combinatorial independence, amenability, and sofic entropy

David Kerr

(joint work with Hanfeng Li)

Inspired by the Elton-Pajor theorem in Banach spaces and by work in the local
theory of dynamical entropy as initiated by Blanchard, we developed in [5] a sys-
tematic approach to the study of combinatorial independence in dynamics that
permits one to treat in a unified way various phenomena associated with random-
ness like weak mixing and entropy. We showed for example that a continuous
action G↷X of a countable amenable group on a compact metric space has posi-
tive entropy if and only if it has a nondiagonal IE-pair, with the notion of IE-pair
being defined as follows. Given a pair (A0,A1) of subsets of X , a set J ⊆ G is an
independence set for (A0,A1) if the collection {(s−1A0, s

−1A1)}s∈J is independent
in the sense that for every finite set F ⊆ J and function ω ∶ F → {0,1} the inter-
section ⋂s∈F s−1Aω(s) is nonempty. The independence density of (A0,A1) is the
largest q ≥ 0 such that every finite set F ⊆ G has a subset of cardinality at least
q∣F ∣ which is an independence set for (A0,A1) (in [5] we formulated independence
density using Følner sets, but it turns out to give the same quantity [8]). A pair(x0, x1) ∈ X ×X is an IE-pair if for all neighbourhoods U0 and U1 of x0 and x1,
respectively, the pair (U0, U1) has positive independence density. More generally
for every k ≥ 1 one defines IE-k-tuples, the set of which is written IEk(X,G). Note
that these definitions do not require G to be amenable.

Recent seminal work by Bowen [1] initiated the development of an entropy the-
ory for actions of groups which satisfy the very weak finite approximation property
of soficity [6, 7, 4]. In [6], for example, we established a variational principle and
used it to compute the sofic topological entropy of certain principle algebraic ac-
tions of residually finite groups in terms of the Fuglede-Kadison determinant in the
group von Neumann algebra, yielding a formula which is consistent with previous
work on algebraic actions. The goal of the present project has been to undertake
an analysis of combinatorial independence as it relates to topological entropy in
this broadened sofic framework [8].

Let G ↷ X be a continuous action of a countable sofic group on a compact
metric space and Σ = {σi ∶ G → Sym(di)} a sofic approximation sequence for G,
meaning that

(i) lim
i→∞

1

di
∣{v ∈ {1, . . . , di} ∶ σi,st(v) = σi,sσi,t(v)}∣ = 1 for all s, t ∈ G,
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(ii) lim
i→∞

1

di
∣{v ∈ {1, . . . , di} ∶ σi,s(v) ≠ σi,t(v)}∣ = 1 for all distinct s, t ∈ G,

and di → ∞ as i → ∞. Given a dynamically generating continuous pseudometric
ρ on X , we define on the set of all maps from a finite set {1, . . . , d} to X the
pseudometric

ρ2(ϕ,ψ) = (1
d

d∑
v=1

(ρ(ϕ(v), ψ(v)))2)
1/2
.

For a nonempty finite set F ⊆ G, a δ > 0, and a map σ from G to Sym(d) for
some d ∈ N, we write Map(ρ,F, δ, σ) for the set of all maps ϕ ∶ {1, . . . , d}→X such
that ρ2(ϕσs, αsϕ) < δ for all s ∈ F , where αs is the transformation x ↦ sx of X .
Writing Nε(⋅) to mean the maximum cardinality of an ε-separated set, we then
define the topological entropy of the action to be

hΣ(X,G) = sup
ε>0

inf
F

inf
δ>0

lim sup
i→∞

1

di
logNε(Map(ρ,F, δ, σi)),

a quantity that does not depend on ρ.
In this framework we define a Σ-IE-pair as an externalization to Σ of the in-

ternal concept of IE-pair from the first paragraph, with the points in the sofic
approximation space playing the role that group elements did before. We say that
a set J ⊆ {1, . . . , d} is a (ρ,F, δ, σ)-independence set for a pair (A0,A1) of subsets
of X if for every function ω ∶ J → {0,1} there exists a ϕ ∈Map(ρ,F, δ, σ) such that
ϕ(v) ∈ Aω(v) for every v ∈ J . Fix a free ultrafilter U on N. We say that (A0,A1)
has positive upper independence density over Σ if there exists a q > 0 such that for
every nonempty finite set F ⊆ G and δ > 0 the set of all i for which (A0,A1) has
a (ρ,F, δ, σi)-independence set of cardinality at least qdi is a member of U . As
before we now define Σ-IE-pairs and more generally Σ-IE-k-tuples, the collection
of which is denoted by IEΣ

k (X,G). As in the amenable case, it turns out that
hΣ(X,G) > 0 if and only if there is a nondiagonal Σ-IE-pair in X ×X .

Given actions G↷X and G↷ Y we have the product formula

IEk(X × Y,G) = IEk(X,G) × IEk(Y,G).
for IE-tuples. We do not know whether the same formula holds for Σ-IE-tuples.
However, if we consider the measure-preserving action of G on the commutant of
the ultraproduct Loeb space ∏U{1, . . . , di} associated to the sofic approximation
sequence Σ = {σi ∶ G → Sym(di)}, then the ergodicity of the commutant of this
action in the space of all automorphisms arising from elements of Sym(di) implies
the product formula. This ergodicity can fail for sofic approximation sequences of
nonamenable groups due to observations of Elek and Paunescu, but we show that
it holds for residually finite groups when Σ is built from finite quotients, and also
for amenable groups with Σ arbitrary. The latter was achieved by establishing a
refinement of the Rokhlin lemma for sofic approximations.
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Poly-Z group actions on Kirchberg algebras

Masaki Izumi

(joint work with Hiroki Matui)

Our goal is to classify outer actions of a poly-Z group on a Kirchberg algebra. So
far we have obtained a complete classification result for Hirsch length less than or
equal to 3, in the sense that we have enough obstructions to distinguish any two
outer actions belonging to different KK-trivial cocycle conjugacy classes.

A discrete group G is said to be poly-Z if there exists a normal series {e} =
G0 ⊲ G1 ⊲ ⋯ ⊲ GN = G, with Gi+1/Gi ≅ Z for all i = 0,1,⋯,N − 1. The number
h(G) = N is called the Hirsch length of G, which is independent of the choice of
the normal series as above, and coincides with the cohomological dimension of G.

A typical example of a poly-Z group is ZN . More generally, the class of poly-
Z groups includes every finitely generated torsion free nilpotent group and every
cocompact lattice of a simply connected solvable Lie group. For h(G) = 1, there
exists only one poly-Z group Z. For h(G) = 2, there exist exactly two poly-Z
groups Z2 and Z ⋊−1 Z, the fundamental group of the Klein bottle. For h(G) = 3,
there exist infinitely many poly-Z groups, e.g. Z2

⋊Γ Z with Γ ∈ GL(2,Z).
Throughout this note, we use the following notation: α and β are outer actions

of a poly-Z groupG on a unital Kirchberg algebraA. We denote by A♭ the quotient
C∗-algebra Cb([0,∞),A)/C0([0,∞),A). We often identify an element in A♭ with
one of its representatives in Cb([0,∞),A). We denote A♭ = A♭ ∩ A′, where A is
identified with the set of constant functions. The action α induces G-actions on
A♭ and A♭, which will be denoted by the same symbol α.

A family of unitaries {ag}g∈G in A is said to be an α-cocycle if they satisfy the
cocycle relation agαg(ah) = agh. When {ag}g∈G is an α-cocycle, then αa defined by
αag = Adag ○αg is a G-action too, which is called a cocycle perturbation of α. We
say that α and β are KK-trivially cocycle conjugate if there exist γ ∈ Aut(A) with
KK(γ) =KK(id) and an α-cocycle {ag}g∈G satisfying βg = γ ○Adag ○ αg ○ γ−1.
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The first classification result for poly-Z group actions on Kirchberg algebras
was obtained by H. Nakamura [3] for G = Z in 2000. He showed that α and β are
KK-trivially cocycle conjugate if and only if KK(α1) =KK(β1).

A partial classification result for G = Z2 was obtained by Izumi-Matui [2] in
2010. We introduced an invariant Φ(α) ∈ KK1(A,A) for Z2-actions α satisfying
KK(αg) =KK(id), and showed that Φ gives rise to a one-to-one correspondence
between the set of KK-trivial cocycle conjugacy classes of α with KK(αg) =
KK(id) and {x ∈ KK1(A,A); K0(1)⊗̂Ax = 0 ∈ K1(A)}. Since KK1(A,A) as a
Z2-module induced by α in this case is trivial, we can identify KK1(A,A) with
the cohomology group H2(Z2,KK1(A,A)), and the invariant Φ(α) is identified
with the primary obstruction o

2(α, id) discussed below.
We go back to the general case, and try to seek necessary conditions for α

and β to be KK-trivially cocycle conjugate, that is βg = γ ○Adag ○ αg ○ γ−1. An
obvious necessary condition is KK(αg) =KK(βg). A little less obvious necessary
condition is that β should be continuously approximated by cocycle perturbations
of α. Namely sinceKK(γ) =KK(id), there exists a continuous family of unitaries{w(t)}t≥0 in A satisfying γ(x) = limt→∞Adw(t)(x) for any x ∈ A. Thus setting
ug(t) = w(t)agαg(w(t)∗), which is an α-cocycle for each t, we obtain.

βg(x) = lim
t→∞

Adw(t) ○Adag ○ αg ○Adw(t)∗(x) = lim
t→∞

Adug(t) ○ αg(x).
It turns out that these two conditions are sufficient. In fact, the second condition
can be relaxed a little bit.

Theorem 1. If there exists an α-cocycle {ug}g∈G in U(A♭) satisfying the condition
βg = limt→∞Adug(t) ○ αg, then α and β are KK-trivially cocycle conjugate.

The proof of Theorem 1 is an induction argument by the Hirsch length, and it
is technically very complicated. It requires the following facts as basic ingredients.

Theorem 2. Let the notation be as above.

(1) There exists an outer asymptotically representable action of G on the
Cuntz algebra O∞. (See [2] for the definition of asymptotic representabil-
ity).

(2) If A is strongly self-absorbing, there exists a unique outer action of G on
A up to KK-trivial cocycle conjugacy. In particular, such an action is
asymptotically representable.

(3) Let µ be an outer action of G on O∞. Then α on A and α⊗µ on A⊗O∞
are cocycle conjugate.

Theorem 1 alone does not classify actions except for G = Z, and we need a
criterion for the existence of an α-cocycle {ug}g∈G in U(A♭) satisfying the condition
in Theorem 1. Assume that KK(αg) =KK(βg) holds for every g ∈ G. Then there
exists ug ∈ U(A♭) satisfying βg = limt→∞Adug(t) ○ αg. Let wg,h = ugαg(uh)u∗gh,
which is a unitary in U(A♭), and let σg = Adug ○ αg ∣A♭ . Then the pair (σ,w) is
a cocycle action of G on A♭, and the following two conditions are equivalent: (i){ug}g∈G can be chosen to form an α-cocycle, (ii) (σ,w) is equivalent to a genuine
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action. For (ii), one can easily find an obstruction. We denote by o
2(α,β) the

cohomology class of [K1(wg,h)] in H2(G,K1(A♭)), which does not depend on the
choice of {ug}g∈G. Unless o2(α,β) vanishes, (ii) never holds. We call o2(α,β) the
primary obstruction for α and β to be KK-trivially cocycle conjugate. For the
coefficient module K1(A♭), we have the following description. Note that Dadarlat
[1] showed πn(Aut(A⊗K)0) ≅KKn(A,A) for n ≥ 1.
Theorem 3. For each finite CW-complex X , there exists an isomorphism from[X,U(A♭)]0 onto [X,Map(S1,Aut(A⊗K))]0, which is natural in X . In particular,
the isomorphism for X = Sn−1 yields Kn(A♭) ≅ πn(Aut(A⊗K)0) for n ≥ 1.

When o
2(α,β) = 0, we may and do choose {ug}g∈G so that wg,h ∈ U(A♭)0,

and choose a continuous path {w̃g,h(s)}s∈[0,1] in U(A♭)0 from 1 to wg,h. Then
K1(σg(w̃h,k)w̃g,hkw̃∗gh,kw̃∗g,h) ∈ K1(SA♭) = π1(U(A♭)0) ≅ π2(Aut(A ⊗ K)0), and
they give rise to an element o

3(α,β,u) ∈ H3(G,KK(A,A)). We call o3(α,β,u)
the secondary obstruction, which does not depend on the choice of {w̃g,h}g,h∈G
while it may depend on the choice of {ug}g∈G.
Theorem 4. Assume KK(αg) =KK(βg).

(1) Assume h(G) = 2. Then α and β are KK-trivially cocycle conjugate if
and only if o2(α,β) = 0.

(2) Assume h(G) = 3. Then α and β are KK-trivially cocycle conjugate if
and only if o2(α,β) = 0 and o

3(α,β,u) = 0 for some choice of {ug}g∈G.
Theorem 4 shows that when h(G) ≤ 3, the number of KK-trivial cocycle con-

jugacy classes of outer G-actions α on A with given KK(αg) is bounded by
#H2(G,KK1(A,A)) ×#H3(G,KK(A,A)). While it is a subtle problem to de-
cide the exact ranges of o2 and o

3 in general, we can decide them in the case of
the Cuntz algebra A = On. Note that KK(γ) =KK(id) for any γ ∈ Aut(On).
Theorem 5. Assume that h(G) ≤ 3 and n is finite.

(1) There exist exactly #H2(G,Z/(n − 1)) cocycle conjugacy classes of outer
G-actions on On.

(2) There exist exactly #H2(G,Z/(n − 1)) ×#H3(G,Z/(n − 1)) cocycle con-
jugacy classes of outer cocycle actions of G on On.

Let BG be the classifying space, and let EG be its universal cover. Then we
have Hn+1(G,Kn(A♭)) ≅ Hn+1(BG,πn(Aut(A ⊗K)0)), which suggests that our
obstructions might come from those for the existence of a section of a fiber bundle
over BG with a fiber Aut(A ⊗K)0. Indeed it is the case. We denote by Pα the
principal Aut(A)-bundle over BG defined by (EG ×Aut(A))/G with a G-action
g(x, γ) = (gx,αg ○γ). Replacing A with A⊗K and αg with αsg = αg⊗Ad ρg, where
ρ is the right regular representation of G, we obtain a principal Aut(A⊗K)-bundle
over BG, denoted by Psα.

Conjecture 6. The following two conditions are equivalent:

(1) The two actions α and β are KK-trivially cocycle conjugate.
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(2) Psα and Psβ are isomorphic by a base point preserving map.

The implication from (1) to (2) is always true. Note that (2) never holds unless
KK(αg) = KK(βg). Assuming this condition, we can construct a fiber bundle
Isα,β = (EG ×Aut(A⊗K)0)/G with a G-action g(x, γ) = (gx,βsg ○ γ ○ αsg−1). Then

(2) holds if and only if Isα,β → BG has a section, and o
2 (resp. o

3) is identified

with the primary (resp. secondary) obstruction for the existence of the section.
Thus Theorem 4 shows that the implication from (2) to (1) is true for h(G) ≤ 3.

When A is strongly self-absorbing, the homotopy groups of Aut(A) are trivial
(see [1]). This implies that Pα and Pβ are trivial bundles, and (2) holds. Therefore
Theorem 2,(2) shows that the conjecture is true for such A.
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Isomorphism of separable C*-algebras is below a group action

Asger Törnquist

In this talk, I reported in recent joint work with George Elliott, Ilijas Farah, Vern
Paulsen, Christian Rosendal and Andrew Toms. The question was raised in previ-
ous work by Farah-Toms-Tornquist if the isomorphism relation of general separable
C*-algebras can be distinguished from the isomorphism relation for nuclear simple
separable C*-algebras using Borel reducibility as a complexity measure. It was fur-
ther considered that a distinguishing feature could be that isomorphism of nuclear
simple separable C*-algebras is ”below a group action”, whereas, potentially, the
general isomorphism problem might not be. Here, being ”below a group action”
means that the isomorphism relation is Borel reducible to an orbit equivalence re-
lation induced by a Borel action of a Polish group on a standard Borel space. The
new result is that isomorphism of separable C*-algebras is below a group action,
thus ruling out this as a way of distinguishing the general isomorphism problem
from its restriction to various natural subclasses. Additionally, similar techniques
also allow us to prove that complete isomettry and n-isometry for (separable)
operator spaces and operator systems also are below a group action.
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Classification of graph C∗-algebras with one non-trivial ideal

Efren Ruiz

(joint work with Søren Eilers, Takeshi Katsura, Gunnar Restorff and Mark
Tomforde)

The magnificent recent progress of the classification theory for simple C∗-algebras
has few direct consequences for general C∗-algebras, even for those with finite ideal
lattices. Furthermore, it is not even clear what kind of K-theoretical invariant to
use in such a context.

When there is just one non-trivial ideal, however, there is a canonical choice
of invariant. Associated to every extension 0 → B → E → A → 0 of nonzero
C∗-algebras is the standard six term exact sequence of K-groups, Ksix(E),

K0(B) // K0(E) // K0(A)
��

K1(A)

OO

K1(E)oo K1(B)oo

providing a necessary condition for two extensions to be isomorphic.
Many of the classification results using the six term exact sequence of K-groups

involve C∗-algebras whose simple sub-quotients are of the same type. Moreover,
most results were achieved by using the standard Elliott intertwining argument.
In [7], Rørdam used a completely different technique to classify a certain class
C∗-algebras with one non-trivial ideal. He considered C∗-algebras A with one
non-trivial ideal I such that I and A/I are separable nuclear purely infinite simple
C∗-algebras in the bootstrap category of Rosenberg and Schochet. Employing the
fact that every separable nuclear purely infinite simple C∗-algebra in the bootstrap
category is strongly classified by KK-theory, in the sense that every invertible
element of KK(A,B) lifts to a ∗-isomorphism from A to B, and the fact that
every essential extension of A by B is absorbing, Rørdam showed that the six
term sequence is, indeed, a complete stable isomorphism invariant in this case.

The author with Eilers and Restorff generalized Rørdam’s results in [4] and [3].
We have provided a framework for classifying nonsimple C∗-algebras whose simple
sub-quotients are not necessarily of the same type. In particular, in [4] we showed
that the six term exact sequence in K-theory is a complete stable isomorphism
invariant for C∗-algebras A with one non-trivial ideal I satisfying the following:

(1) I and A/I are strongly classified by KK-theory and
(2) the extension 0→ I → A→ A/I → 0 is full.

This has allowed for the classification of certain nonsimple C∗-algebras in which
there are ideals and quotients of mixed type (some finite and some infinite).

In [5], Eilers and Tomforde, used the techniques from the theory of graph C∗-
algebras, to show that the machinery of [4] can be used to classify graph C∗-
algebras with one non-trivial ideal up to stable isomorphism. Building on their
work, the author with Eilers and Restorff in [2] showed that the six term exact
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sequence in K-theory together with the scale of the quotient is a complete isomor-
phism invariant for the class of non-unital graph C∗-algebras with one non-trivial
ideal. Thus, nearly completing the classification of graph C∗-algebras with one
non-trivial ideal. The only remaining case is the case where the C∗-algebra is uni-
tal. Unfortunately, the techniques in [5] and [2] can not be used in the unital case.
The results in these papers relied on the fact that every non-unital full extension
absorbs any extension which is not the case for unital extensions. Recently, the
author with Eilers and Restorff obtained existence and uniqueness theorems for
unital graph C∗-algebras with one non-trivial ideal. One can then use the stan-
dard Elliott intertwining argument to classify unital graph C∗-algebras with one
non-trivial ideal. As a consequence, isomorphisms of the invariant can be lifted to
an isomorphism on the associated graph C∗-algebras.

To complete the classification of graph C∗-algebras with one non-trivial ideal,
one needs to determine the range of the invariant. Recent results of Eilers, Katsura,
Tomforde, and West [1] and the author with Eilers, Katsura, and Tomforde, we
now can determine the range of the invariant. Hence, completing the classification
of graph C∗-algebras with one non-trivial ideal.

We can use the above results to determine when a unital C∗-algebra with one
non-trivial ideal is a graph C∗-algebra. Our results can also be used to determine
when an extension of two simple graph C∗-algebras is again a graph C∗-algebra.

Theorem 1. If A is a unital C∗-algebra with one non-trivial ideal I such that A
has real rank zero,

(1) if A/I is AF, then A/I ≅Mn;
(2) if I is AF, then I ≅ K;
(3) K∗(I) and K∗(A/I) are finitely generated;
(4) K1(I) and K1(A/I) are free groups;
(5) rank(K1(I)) ≤ rank(K0(I)), and
(6) rank(K1(A/I)) ≤ rank(K0(A/I)),

then there exists a graph E such that A ≅ C∗(E).
Theorem 2. Let A be a C∗-algebra with one non-trivial ideal I such that I and
A/I are graph C∗-algebras. Suppose the following holds:

(1) A has real rank zero.
(2) IfK0(A/I)+ =K0(A/I) andK0(I)+ ≠K0(I), then I is stable andK0(A)+ =

K0(A).
(3) If A is a unital C∗-algebra, then

(a) K0(A) is finitely generated
(b) rank(K1(A)) ≤ rank(K0(A))
(c) K0(I)+ ≠K0(I) implies that K0(I) ≅ Z.

Then there exists a graph E such that A ≅ C∗(E).
We end with some open problems.

Problem 3. Find an algebraic invariant that will be a complete stable isomor-
phism invariant for the class of graph C∗-algebras with finitely many ideals.
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It has been conjectured by the author with Eilers and Restorff that ideal related
ordered K-theory is the right invariant to consider. Another invariant that one
could consider is the reduced filtered K-theory introduced by Restorff in [6].

Problem 4. Find an algebraic invariant that will be a complete isomorphism
invariant for the class of graph C∗-algebras with finitely many ideals.

One can also consider permanence properties of graph C∗-algebras like that
of Theorem 2. When is an extension A of graph C∗-algebras again a graph C∗-
algebra? It will not be the case that A is always a graph C∗-algebra. As Theorem 2
indicates, there are K-theoretical obstructions.

Problem 5. Let A be a C∗-algebra and let I be an ideal of A. Suppose I and
A/I are graph C∗-algebras. Determine when A is a graph C∗-algebra? Can the
obstructions be describe using K-theoretical data?
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The Kadison-Singer problem

Charles Akemann

Charles Akemann talked about the development of the Kadison-Singer problem.
He presented an approach to the problem using the notion of a paving by projec-
tions.
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One-parameter continuous fields of Kirchberg algebras

with rational K-theory

Rasmus Bentmann

(joint work with Marius Dadarlat)

This work is concerned with the classification of continuous fields of Kirchberg
algebras over the unit interval by K-theoretic invariants. To give some background,
we first recall related work by a number of different authors. We then state
our main result and close with some remarks concerning filtrated K-theory with
(generalized) coefficients.

In [6], M. Dadarlat and R. Meyer proved a universal multi-coefficient theorem
(UMCT) for separable C(X)-algebras over a totally disconnected compact metriz-
able space X . As a consequence, by Kirchberg’s classification theorem [9], separa-
ble continuous fields over such spaces whose fibres are stable Kirchberg algebras
satisfying the universal coefficient theorem (UCT) are classified by an invariant
the authors call “filtrated K-theory with coefficients.” This result is also implicitly
contained in [7].

The invariant filtrated K-theory with coefficients comprises the K-theory with
coefficients (the Λ-modules defined in [5], also called total K-theory) of all distin-
guished subquotients of the given field, along with the action of all natural maps
between these groups. It is demonstrated in [6], generalising an observation from
[3], that coefficients are necessary for such a classification result over any infinite
metrizable compact space.

First classification results for continuous fields of Kirchberg algebras over the
interval where proven by Dadarlat and Elliott in [4]. It is shown that, for d ∈ {0,1},
separable stable continuous fields whose fibers are Kirchberg algebras satisfying
the UCT and having torsion-free Kd-group and trivial Kd+1-group are classified
by the so-called Kd-sheaf.

The purpose of our work is to relax the K-theoretic assumptions made in [4]. We
allow both K0 and K1 of the fibers to be non-zero. In order to avoid coefficients,
we do however assume that the K-groups of all subquotients are divisible (or free).
We call this property K-divisibility (K-freeness). For instance, all fields which are
stable under tensoring with the universal UHF-algebra are K-divisible.

Our invariant is the following: the filtrated K-theory of a C([0,1])-algebra A
consists of the abelian groups K∗(A(I)) for all (open, half-open or closed) subin-
tervals I ⊆ [0,1] together with the six-term sequence maps

K∗(A(J))→ K∗(A(I))→ K∗(A(I ∖ J))→ K∗+1(A(J))
for every subinterval I ⊆ [0,1] and every relatively open subinterval J ⊆ I.

Our main result then reads as follows:

Theorem. Filtrated K-theory is a complete invariant for separable, K-divisible
continuous C([0,1])-algebras whose fibers are stable Kirchberg algebras satisfying
the UCT.
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An analogous result holds for K-free algebras. As Takeshi Katsura pointed out
during the workshop, our approach also works under the alternative assumption
that, for d = 0 or d = 1, we have Kd(A(I)) = 0 for all subintervals I ⊆ [0,1]. It re-
mains open whether the same is true for the K-theoretic assumptions in Dadarlat-
Elliott’s theorem.

Besides Kirchberg’s classification result for non-simple nuclear purely infinite
C∗-algebras [9] (and the work of several people showing in combination that Kirch-
berg’s theorem is applicable), our approach is based on two crucial ingredients:

● the work in [6], which relates E-theory over a second countable space X
with the corresponding version of KK-theory and with E-theory groups
over finite approximating spaces of X ;
● the universal coefficient theorem for C∗-algebras over so-called accordion
spaces from [1] (generalizing results from [13, 2, 11, 10]) including a de-
scription of projective and injective objects in the target category of fil-
trated K-theory.

The relevance of accordion spaces in this framework is due to the fact that suffi-
ciently many finite approximating spaces of the interval are accordion spaces.

In order to remove the K-divisibility/K-freeness condition from the previous
classification result one expects, as indicated earlier, to need some version of fil-
trated K-theory with coefficients for C∗-algebras over the interval. This requires,
to begin with, the correct definition of filtrated K-theory with coefficients for
C∗-algebras over accordion spaces. It was observed in [8] that, already over the
two-point Sierpiński space S, the näıve candidate for such a definition—using the
corresponding six-term sequence of Λ-modules—produces an invariant which lacks
desired properties such as a UMCT.

We argue that, in order to give a fully satisfactory definition of filtrated K-theory
with coefficients for C∗-algebras over S, one has to allow all finitely generated in-
decomposable exact six-term sequences of abelian groups as coefficients—just like
Dadarlat and Loring choose all finitely generated indecomposable abelian groups
as coefficients to make their UMCT work [5].

It is easy to see that there is a countable number of isomorphism classes of
such six-term sequences. However, unlike in the case of abelian groups, it is not
possible to list them in a nice way; more precisely, it follows from the main result
in [12] that their classification is at least as complicated as the classification of
modules over the free associative Z/p-algebra with two non-commuting generators
for every prime p.

This wildness phenomenon seems to make filtrated K-theory with (generalized)
coefficients as sketched above virtually impossible to compute explicitly, limiting
its rôle in the theory to a rather theoretical one.
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Do phantom Cuntz-Krieger algebras exist?

Sara Arklint

(joint work with Rasmus Bentmann, Takeshi Katsura, Gunnar Restorff and
Efren Ruiz)

The Cuntz and Cuntz-Krieger algebras are historically and in general of great
importance for our understanding of simple and nonsimple purely infinite C∗-
algebras as they were not only the first constructed examples of such but are also
very tangible due to the combinatorial nature of their construction, [6].

The Cuntz algebras and the simple Cuntz-Krieger algebras can be identified as
the UCT Kirchberg algebras with a specific type of K-theory. A similar charac-
terization for Cuntz-Krieger algebras with finitely many ideals is desirable. We
conjecture such a characterization and report on partial confirmations of the con-
jecture. The results rely heavily on the deep results by Kirchberg on ideal-related
KK-theory, [9].

Definition 1. We say that a C∗-algebra A looks like a Cuntz-Krieger algebra if

(1) A is unital, separable, nuclear, purely infinite,
(2) A has real rank zero,
(3) X = Prim(A) is a finite space,
(4) for all x ∈ X , K∗(A(x)) is finitely generated, K1(A(x)) is a free group,

rank(K0(A(x))) = rank(K1(A(x))),
(5) and A(x) is UCT for all x ∈X .
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If a C∗-algebra A looks like a Cuntz-Krieger algebra without being isomorphic to
a Cuntz-Krieger algebra, we call it a phantom Cuntz-Krieger algebra.

Of course, all Cuntz-Krieger algebras of real rank zero look like Cuntz-Krieger
algebras. Note that up to stable isomorphism, a real rank zero extension of C∗-
algebras that look like Cuntz-Krieger algebras will look like a Cuntz-Krieger alge-
bra. Hence if phantom Cuntz-Krieger algebras do not exist, the definition provides
a characterization of the Cuntz-Krieger algebras of real rank zero and of extensions
of such.

The Cuntz-Krieger algebras can be viewed as graph algebras, and within the
realm of graph algebras, phantom Cuntz-Krieger algebras do not exist.

Theorem 2 ([3]). Let E be a countable directed graph. If C∗(E) is unital and
rank(K0(C∗(E))) = rank(K1(C∗(E))), then C∗(E) is a Cuntz-Krieger algebra.

Using this, one can show the following which gives a positive answer to a ques-
tion raised by Elliott.

Theorem 3 ([3]). Let A be a unital C∗-algebra. If A is stably isomorphic to a
Cuntz-Krieger algebra, then A is a Cuntz-Krieger algebra.

As a corollary, corners of Cuntz-Krieger algebras are Cuntz-Krieger algebras,
[3]. Since Cuntz-Krieger algebras are semiprojective, this is a special case of a
conjecture posed by and confirmed in the graph algebra case by Eilers-Katsura:
that unital corners of semiprojective C∗-algebras are semiprojective, [7].

The obvious approach for establishing nonexistence of phantom Cuntz-Krieger
algebras is through K-theoretical classification. For instance, note that if a C∗-
algebra looks like a Cuntz-Krieger algebra and has vanishing K-groups, then it is
O2-absorbing and by the work of Kirchberg, [9], has to be a Cuntz-Krieger algebra.
Furthermore, a simple C∗-algebra A that looks like a Cuntz-Krieger algebra will
by Szymański’s theorem, [14], have the same K-groups as a Cuntz-Krieger algebra
B of real rank zero. So since such C∗-algebras are UCT Kirchberg algebras, it
follows from the Kirchberg-Phillips classification theorem, [10], that A and B are
isomorphic, and simple phantom Cuntz-Krieger algebras do not exist.

The case with one nontrivial ideal was dealt with similarly by Eilers-Katsura-
Tomforde-West, [8]. The invariant used in this case consists of the six-term exact
sequence inK-theory related to the ideal and was originally introduced by Rørdam,
[13]. Completeness of this invariant up to unital isomorphism follows from the
ideal-related UCT by Bonkat, [5], and Eilers-Katsura-Tomforde-West establish its
range for graph algebras and Cuntz-Krieger algebras. For general primitive ideal
spaces, the generalization of Rørdam’s invariant is needed.

Definition 4. For a C∗-algebra A, its (concrete) filtered K-theory FK(A) consists
of the groups and maps

K∗(J/I) // K∗(K/I)
xxqqq

qq
qq
qq
q

K∗(K/J)
○▼▼▼▼▼

ff▼▼▼▼▼
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occuring in all six-term exact sequences for all extensions of subquotients 0 →
J/I →K/J →K/J → 0 in A.

The reduced filtered K-theory FKR(A) consists of only some of these groups
and maps and was introduced by Restorff to classify real rank zero Cuntz-Krieger
algebras up to stably isomorphism, [12]. This invariant seems most appropriate for
working with graph algebras, and by applying the range result by Eilers-Katsura-
Tomforde-West one can establish its range.

Theorem 5 ([1]). Let A be a C∗-algebra that looks like a Cuntz-Krieger algebra.
Then there exists a Cuntz-Krieger algebra B of real rank zero and with Prim(A) ≅
Prim(B), together with an isomorphism FKR(A) → FKR(B) that sends [1A] in
K0(A) to [1B] in K0(B).

The completeness of (reduced) filtered K-theory is a far deeper result and more
difficult to achieve. Generalizing the results by Bonkat and Restorff, Meyer-Nest
established a ideal-related UCT for filtered K-theory in the case with linear ideal
lattice, [11]. Unfortunately, Meyer-Nest also provided a counterexample to clas-
sification with filtered K-theory, and Bentmann-Köhler, [4], used their methods
to show that filtered K-theory is a complete invariant for so-called Kirchberg X-
algebras exactly when the primitive ideal space X is a so-called accordion space.
However, none of the constructed counterexamples have the K-theory of a C∗-
algebra that looks like a Cuntz-Krieger algebra. For combinatorical reasons, five
of the six connected four-point spaces that are not accordion spaces have a more
manageable filtered K-theory, and using this we were able to establish complete-
ness for (reduced) filtered K-theory in these cases under extra assumptions on the
K-theory.

Theorem 6 ([9, 11, 4, 2, 1]). Let A and B be C∗-algebras that look like Cuntz-
Krieger algebras. Assume that Prim(A) and Prim(B) are homeomorphic and of
the type described above. Then any isomorphism FKR(A) → FKR(B) that sends[1A] in K0(A) to [1B] in K0(B), can be lifted to a ∗-isomorphism A→ B.

As a corollary, phantom Cuntz-Krieger algebras do not exist under these as-
sumptions on the primitive ideal space. It seems possible that the reduced filtered
K-theory is complete for all C∗-algebras that look like Cuntz-Krieger algebras in-
dependent of primitive ideal space but a strategy of proof different than the one
in [2, 1] will be needed.
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A Connection between Easy Quantum Groups, Varieties of Groups,

and Reflection Groups

Moritz Weber

(joint work with Sven Raum)

We present a link between easy quantum groups, discrete groups, and combi-
natorics. By this, we infer new connections between quantum isometry groups,
tensor categories, C∗-algebras, reflection groups, varieties of groups, and the com-
binatorics of partitions. More precisely, we consider easy quantum groups [2] and
find a relation to subgroups of the infinite free product Z∗∞2 of Z2 = Z/2Z. By
this, we obtain a link to varieties of groups, which yields a “quantum invariant”
for varieties of groups on the one hand, and a statement on the complexity of
easy quantum groups on the other. Moreover, we obtain a triangular relationship
between easy quantum groups, categories of partitions, and discrete groups. Also,
we obtain a large number of new quantum isometry groups.

The talk refers to an article, which will appear soon [5].

Easy quantum groups. Let G ⊆ On be an orthogonal Lie group and con-
sider the C∗-algebra C(G) of continuous functions on G. It is generated by the
coordinate functions and may be seen as the following universal C∗-algebra:

C(G) = C∗ (uij ,1 ≤ i, j ≤ n ∣ uij = u∗ij , (uij) is orthogonal, uijukl = ukluij , (RG))
Here, (RG) are certain relations on the generators uij , and (uij) is the matrix
formed by the generators uij . The liberation G+ of G is a compact quantum group
given by the universal C∗-algebra

C(G+) = C∗ (uij ,1 ≤ i, j ≤ n ∣ uij = u∗ij , (uij) is orthogonal, (RG)) ,
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where we omit the commutativity of the generators uij . It is equiped with a
comultiplication which turns it into a Hopf algebra.

In this sense, Wang [7, 8] constructed the free orthogonal and the free symmetric
quantum group, liberating the groups On and Sn. The intertwiner spaces of Sn,
S+n, On and O+n admit a combinatorial description by means of partitions. In their
2009 article [2], Banica and Speicher initiated a systematic study of easy quantum
groups, i.e. of compact quantum groups whose intertwiner spaces have “a nice
combinatorics” – they are given by categories of partitions [2, 9]. A partition is
given by k upper and l lower points which may be connected by lines. Denote
by P (k, l) the set of all such partitions. A category of partitions C consists of a
collection of subsetsD(k, l) ⊂ P (k, l), for all k, l ∈ N, that is closed under operations
reflecting the properties of a tensor category (i.e. of an intertwiner space). By [2],
a compact quantum subgroup G of O+n is called easy, if its intertwiner space is
spanned by linear maps indexed by a category of partitions C, i.e.:

Hom(u⊗k, u⊗l) = span{Tp ∣ p ∈ D(k, l)} for all k, l ∈ N

It is a consequence of the seminal work by Woronowicz [10] that the correspon-
dence between easy quantum groups and their categories of partitions is one-to-
one, thus easy quantum groups are completely determined by their categories of
partitions.

The approach of Banica and Speicher constitutes a constructive view on the
liberation of groups but it goes far beyond it. It is a source of a large number of
new examples of intermediate quantum subgroups of S+n and O+n, or more general
of Sn and O+n. Furthermore, it has become a useful link between quantum groups,
combinatorics and free probability theory (Köstler, Speicher, Curran, . . .). At the
same time, easy quantum groups give rise to interesting operator algebras (Vaes,
Vergnioux, Brannan, Freslon, . . .). Parts of the easy quantum groups were clas-
sified in [2, 1, 9], but the full classification remained an open problem. Roughly
speaking, we show that it is not feasible.

A map between easy quantum groups and subgroups of Z∗∞2 . Let
Sn ⊆ G ⊆ O+n be an easy quantum group. By definition, its intertwiner space is
given by a category of partitions C. We restrict to those categories, which contain
the partition (1,4)(2,3,5,6) ∈ P (0,6) on six points (i.e. the first and the fourth
point are connected by a line, and the remaining four by another), but not the
partition (1)(2) ∈ P (0,2) on two points. Those categories are called simplifiable
hyperoctahedral. Note that non-hyperoctahedral categories of partitions are com-
pletely classified [1, 9] – our class of categories is a subclass of the hyperoctahedral
categories, the non-classified case.

We label the partitions in C by letters a1, a2, . . . in order to obtain words. Map-
ping these words to the infinite free product Z∗∞2 (where now a2i = e) yields the
following main result.
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Theorem 1 ([5]). There is a lattice isomorphism F between simplifiable hype-
roctahedral categories of partitions and S0-invariant subgroups of E, where E is
the subgroup of Z∗∞2 consisting of all words of even length.

Here, S0 is the subsemigroup of End(Z∗∞2 ) generated by finite identifications
of letters and conjugation by any letter. Based on this map F , we deduce several
consequences.

Consequences for easy quantum groups and varieties of groups. The
elements xk ∶= a1ak+1 in Z∗∞2 give rise to a free basis. Hence, the map F also yields
a correspondence to proper S-invariant subgroups of F∞, where S is analogous
to S0. This class of subgroups of F∞ contains the lattice of fully characteristic
subgroups of F∞, which in turn is anti-isomorphic to the lattice of varieties of
groups [3]. A variety of groups is the class of all groups that satisfy a given set of
identical relations (choose a set R of words in F∞; the variety given R is the class
of all groups, in which any choice of elements fulfills all the relations from R). By
Ol’shanskii [4], there are uncountably many varieties of groups. Thus:

Theorem 2 ([5]). There is an injection of lattices of varieties of groups into the
lattice of easy quantum groups, hence there are uncountably many pairwise non-
isomorphic easy quantum groups.

Our theorem also gives a way of dealing with varieties of groups by means of
compact quantum groups resp. by the combinatorics of partitions.

Consequences for quantum isometry groups. Quantum isometry groups
were first studied by Bichon, Bhowmick, and Goswami, see also the work of Banica,
Skalski, Soltan, and others. The idea is to consider quantum group (co-)actions
on non-commutative spaces. We reveal the following triangular correspondence:

categories of partitions
α←→ easy quantum groups

β ⤢ discrete groups ⤡ γ

The map α is given by Woronowicz resp. by Banica and Speicher’s approach
to easy quantum groups, whereas β is given by our map F . More precisely, for
any n ∈ N we map a simplifiable hyperoctahedral category of partitions C to the
quotient of the n-fold free product Z∗n2 by F (C)n, where F (C)n consists of words
only involving the letters a1, . . . , an. The map γ is basically given by the quan-
tum isometry group G of the discrete group, and in the converse direction by the
diagonal group inside of C(G).

Consequences for C∗-algebras. The link between varieties of groups and
C∗-algebras can also be investigated from a purely C∗-algebraic point of view,
since to each variety of groups we assign a C∗-algebra.

The computation of the K-theory of these C∗-algebras – or in general of the
easy quantum groups resp. of their C∗-algebras – is an open problem. Voigt [6]
computed the K-theory for O+n, but the other cases are unknown.
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Trace spaces of simple nuclear C∗-algebras

with finite-dimensional extreme boundary

Yasuhiko Sato

We mainly consider unital separable simple nuclear C∗-algebra A with many ex-
tremal traces. Recently, we prove that if the trace space of A has compact finite-
dimensional extreme boundary then there exist unital embeddings of matrix al-
gebras into a certain central sequence algebra of A which is determined by the
uniform topology on the trace space. As an application, it is shown that if fur-
thermore A has strict comparison then A absorbs the Jiang-Su algebra tensorially.

In [1], B. Blackadar introdueced the notion of strict comparison by using the
uniform topology on the trace space of C∗-algebras. M. Rørdam adapted that
strict comparison in order to apply Goodearl-Handelman’s Hahn-Bnach type the-
orem [7], and he proved that Z-absorption implies strict comparison in [15], [16].
Therefore, in the study of the Jiang-Su algebra it becomes necessary to obtain the
uniform structure on the trace space of C∗-algebras. The following is the main
result of this note.

Theorem 1. Let A be a unital separable simple infinite-dimensional nuclear C∗-
algebra with at least one tracial state. Suppose that the extreme boundary of T (A)
is a compact finite-dimensional space. Then for any k ∈ N there exists a unital
embedding of the k by k matrix algebra into a variant of the central sequence
algebra of A defined by

A′ ∩ (l∞(N,A)/{(an)n ∈ l∞(N,A) ∶ lim
n→∞

max
τ∈T (A)

τ(a∗nan) = 0}) .
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Here, we denote by T (A) the set of tracial states of A which is called trace
space in [6]. And, in what follows we denote by ∂e(T (A)) the extreme boundary
of T (A). As a main application of this theorem, we present the following result.
Once we know the above theorem, the proof of this corollary can be obtained in
the same way as the proof of [14, Theorem 1.1].

Corollary 2. If A and T (A) satisfy the same conditions in the above theorem,
then the following are equivalent:

(i) A⊗Z ≅ A.
(ii) A has strict comparison.
(iii) Any completely positive map from A to A can be excised in small central

sequences.
(iv) A has property (SI).

By using the next Proposition, M. Dadarlat and A. Toms investigated the
dimension functions on the compact finite-dimensional extreme boundary of trace
spaces, ( in the proof of [3, Lemma 4.4]). This result was essentially based on the
works by D. A. Edward [5], J. Cuntz, G. and K. Pedersen [2], and H. Lin [12].
The starting point of our proof is this proposition.

Proposition 3. Let A be a unital separable simple infinite-dimensional C∗-
algebra with at least one tracial state. Suppose that ∂e(T (A)) is compact. Then
for any positive function f ∈ C(∂e(T (A)) there exists a sequence an, n ∈ N of
positive elements in A such that

lim
n→∞

max
τ∈∂e(T (A))

∣τ(an) − f(τ)∣ = 0 and ∥an∥ ≤ ∥f∥ for n ∈ N.
Our first aim is to study central sequences with a kind of uniform structure on

trace spaces. For this purpose, the following lemma plays a central role. In the
lemma, let us remark that the required finite unitaries {ui} are heavily depend on
double-dealing of a finite subset F of A. So this lemma is much weaker than the
strong amenability which was defined by B. Johnson. [11].

Lemma 4. Let A be a unital nuclear C∗-algebra. Then for any finite subset F of
A and ε > 0 there exist unitaries u1, u2, ..., uN of A such that

∥[ 1
N

N∑
i=1

Adui(a), b]∥ < ε, for all a, b ∈ F.

Corollary 5. Let A be a unital separable nuclear C∗-algebra with at least one
tracial state. Then for any a ∈ A there exists a central sequence an ∈ A, n ∈ N such
that ∥an∥ ≤ ∥a∥ and

τ(a) = τ(an) for any τ ∈ T (A) and n ∈ N.
Combining this result with Proposition 3, we could obtain a simple main tech-

nical tool Lemma 6 concerning multiplicativity and orthogonality on the compact
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extreme boundary. In the following, (i) is a variant of [13, Lemma 4.6] and (ii) is
a version of [14, Lemma 3.3] for the uniform topology on ∂e(T (A)).
Lemma 6. Let A be a unital separable simple infinite-dimensional C∗-algebra.
Suppose that ∂e(T (A)) is compact. Then the following hold:

(i) For any central sequence (fn)n ∈ A∞ and a ∈ A, it follows that
lim
n→∞

max
τ∈∂e(T (A))

∣τ(fna) − τ(fn)τ(a)∣ = 0.
(ii) Moreover, if A is nuclear, for mutually orthogonal positive functions fi ∈

C(∂e(T (A))), i = 1,2, ...,N there exist central sequences (ai,n)n, i =
1,2, ...,N of positive maps in A such that

lim
n→∞

max
τ∈∂e(T (A))

∣τ(ai,n) − fi(τ)∣ = 0 for i = 1,2, ...,N,

and lim
n→∞

∥ai,naj,n∥ = 0 for i ≠ j.
Due to the above technical tools we can obtain the following proposition. The

proof of the main theorem is straightforward from this proposition, and the proof
of this proposition was inspired by techniques for C(X)-algebras from [8, Theo-
rem 4.6] and [4, Theorem 0.1]. Recently, these techniques were developed by A.
Toms and W. Winter to show Z-absorption of the crossed product C∗-algebras by
minimal homeomorphisms on a compact finite dimensional space [18]. Our proof
as well as theirs heavily relies on the condition of finite covering dimenion. It
might be interesting that the number of completely positive maps corresponds to
the covering dimension of ∂e(T (A)) in this proposition.

Proposition 7. Let A be a unital separable simple nuclear C∗-algebra. Suppose
that ∂e(T (A)) is compact and d = dim(∂e(T (A))) <∞. Then for any k ∈ N there
exist order zero completely positive maps ϕl ∶Mk → At∞, l = 0,1, ..., d such that

d∑
l=0

ϕl(1k) = 1 and [ϕl(a), ϕm(b)] = 0 for l ≠m, a, b ∈Mk.
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The Homotopy Lifting Theorem for Semiprojective C∗-Algebras

Bruce Blackadar

We prove a complete analog of the Borsuk Homotopy Extension Theorem for
arbitrary semiprojective C*-algebras:

Theorem. [Borsuk Homotopy Extension Theorem] Let X be an ANR, Y
a compact metrizable space, Z a closed subspace of Y , (ϕt) (0 ≤ t ≤ 1) a uniformly
continuous path of continuous functions from Z to X (i.e. h(t, z) = ϕt(z) is a
homotopy from ϕ0 to ϕ1). Suppose ϕ0 extends to a continuous function ϕ̄0 from
Y to X . Then there is a uniformly continuous path ϕ̄t of extensions of the ϕt to
functions from Y to X (i.e. h̄(t, y) = ϕ̄t(y) is a homotopy from ϕ̄0 to ϕ̄1).

In particular, any function from Z to X homotopic to an extendible function is
extendible. The theorem also works for metrizable spaces which are not necessarily
compact when phrased in the homotopy language; we have stated it in the version
which can potentially be extended to noncommutative C*-algebras. The theorem
can be regarded as giving a “universal cofibration property” for maps into ANR’s.

There is a direct analog of (compact) ANR’s in the category of (separable)
noncommutative C*-algebras: the semiprojective C*-algebras. Many of the results
about ANR’s carry through to semiprojective C*-algebras with essentially identical
proofs (just “turning arrows around”). However, Borsuk’s proof of the Homotopy
Extension Theorem is not one of these: the proof simply does not work in the
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noncommutative case. The underlying reason is that in a metrizable space, every
closed set is a Gδ, but this is false in the primitive ideal space of a separable
noncommutative C*-algebra in general.

We can, however, by a different argument obtain a complete analog of the
Borsuk Homotopy Extension Theorem for arbitrary semiprojective C*-algebras:

Theorem. [Homotopy Lifting Theorem] Let A be a semiprojective C*-alge-
bra, B a C*-algebra, I a closed ideal of B, (ϕt) (0 ≤ t ≤ 1) a point-norm continuous
path of *-homomorphisms from A to B/I. Suppose ϕ0 lifts to a *-homomorphism
ϕ̄0 ∶ A → B, i.e. πI ○ ϕ̄0 = ϕ0. Then there is a point-norm continuous path (ϕ̄t)
(0 ≤ t ≤ 1) of *-homomorphisms from A to B beginning at ϕ̄0 such that ϕ̄t is a
lifting of ϕt for each t, i.e. the entire homotopy lifts. In particular, ϕ1 lifts to a
*-homomorphism from A to B.

Corollary. Let A be a semiprojective C*-algebra, B a C*-algebra, I a closed
ideal of B, ϕ a *-homomorphism from A to B/I. If ϕ is homotopic to a *-homo-
morphism from A to B/I which lifts to B, then ϕ lifts to B.

In the course of the proof we obtain some other results about semiprojective C*-
algebras which are of interest: a partial lifting theorem with specified quotient,
a lifting result for homomorphisms close to a liftable homomorphism, and that
sufficiently close homomorphisms from a semiprojective C*-algebra are homotopic.

Theorem. [Specified Quotient Partial Lifting Theorem] Let A be a
semiprojective C*-algebra, B a C*-algebra, (Jn) an increasing sequence of closed
ideals of B with J = [∪Jn]−, I another closed ideal of B, and ϕ ∶ A → B/J and
ϕ̃ ∶ A→ B/I *-homomorphisms with πI+J ○ϕ = πI+J ○ ϕ̃. Then for some sufficiently
large n there is a *-homomorphism ψ ∶ A → B/Jn such that πJ ○ ψ = ϕ and
πI+Jn

○ ψ = πI+Jn
○ ϕ̃.

Theorem. [Close Lifting Theorem] Let A be a semiprojective C*-algebra
generated by a finite or countable set G = {x1, x2, . . . } with limj→∞ ∥xj∥ = 0 if
G is infinite. Then for any ǫ > 0 there is a δ > 0 such that, whenever B is a
C*-algebra, I a closed ideal of B, ϕ and ψ *-homomorphisms from A to B/I
with ∥ϕ(xj) − ψ(xj)∥ < δ for all j and such that ϕ lifts to a *-homomorphism
ϕ̄ ∶ A→ B (i.e. πI ○ ϕ̄ = ϕ), then ψ also lifts to a *-homomorphism ψ̄ ∶ A→ B with∥ψ̄(xj)− ϕ̄(xj)∥ < ǫ for all j. (The δ depends on ǫ, A, and the set G of generators,
but not on the B, I, ϕ, ψ.)

Corollary. [Close Homotopy Theorem] Let A be a semiprojective C*-alge-
bra generated by a finite or countable set G = {x1, x2, . . . } with limj→∞ ∥xj∥ = 0 if G
is infinite. Then for any ǫ > 0 there is a δ > 0 such that, whenever B is a C*-algebra,
ϕ0 and ϕ1 *-homomorphisms from A to B with ∥ϕ0(xj) − ϕ1(xj)∥ < δ for all j,
then there is a point-norm continuous path (ϕt) (0 ≤ t ≤ 1) of *-homomorphisms
from A to B connecting ϕ0 and ϕ1 with ∥ϕt(xj) − ϕ0(xj)∥ < ǫ for all j for any
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t ∈ [0,1]. (The δ depends on ǫ, A, and the set G of generators, but not on the B,
ϕ0, ϕ1.)

In fact, for any ǫ > 0, a δ that works for the Close Lifting Theorem also works
for the Close Homotopy Theorem.

Finally, we discuss ℓ-open and ℓ-closed C*-algebras.
If A and B are C*-algebras, denote by Hom(A,B) the set of *-homomorphisms

from A to B, endowed with the point-norm topology. Hom(A,B) is separable and
metrizable (if A and B are separable). If A and B are unital, let Hom1(A,B) be
the set of unital *-homomorphisms from A to B. Hom1(A,B) is a clopen subset
of Hom(A,B) (since a projection close to the identity in a C*-algebra is equal to
the identity).

If A = C(X) and B = C(Y ), then Hom1(A,B) is naturally homeomorphic to
XY , the set of continuous functions from Y to X , endowed with the topology of
uniform convergence (with respect to any fixed metric on X , or with respect to
the unique uniform structure on X compatible with its topology).

Examples show that Hom(A,B, I) is neither open nor closed in Hom(A,B/I)
in general. We seek conditions on A insuring that Hom(A,B, I) is always open or
closed in Hom(A,B/I) for any B and I.

Definition. Let A be a separable C*-algebra.

(i) A is called ℓ-open if, for every pair (B, I), the set Hom(A,B, I) is open in
Hom(A,B/I).

(ii) A is ℓ-closed if, for every pair (B, I), the set Hom(A,B, I) is closed in
Hom(A,B/I).

The next result is an immediate corollary of the Close Lifting Theorem:

Corollary. Every semiprojective C*-algebra is both ℓ-open and ℓ-closed.

The converse is at least very nearly true in the commutative category, and I
conjecture it holds in general.

Although there is no obvious direct proof that an ℓ-open C*-algebra is ℓ-closed,
I do not know an example of a C*-algebra which is ℓ-open but not ℓ-closed, and I
conjecture that none exist. There are ℓ-closed C*-algebras which are not ℓ-open.
I do not have a good idea how to characterize ℓ-closed C*-algebras.

We conclude with some examples.
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Reduction of the dimension of nuclear C∗-algebras

Luis Santiago

The notion of covering dimension of a topological space has led to different di-
mension theories for C*-algebras; for instance, the stable rank, real rank, decom-
position rank, and nuclear dimension. Each of these dimension theories have had
important applications to the theory of C*-algebras. It was shown in [5] and [6]
that simple separable nonelementary unital C*-algebras with finite decomposition
rank or more generally with finite nuclear dimension absorb the Jiang-Su algebra
tensorially. As a consequence, new classification results have been obtained for
simple C*-algebras. For C*-algebras that can be written as direct limits of subho-
mogeneous algebras one can also associate a dimension, namely the infimum over
all such direct limit decompositions of the supremum of the covering dimension
of the spectrum of all the C*-algebras appearing on the given direct limit. For
instance, it was shown in [3] that for simple separable unital AH-algebras with
very slow dimension growth this dimension is at most three. This result was used
in [1] to classify this class of C*-algebras.

In this work we study different notions of dimension for certain C*-algebras of
the form A⊗B, where B is simple, nuclear, either projectionless or unital with no
nonzero projections but its unit, and with a specified direct limit decomposition.
We are particularly interested in two cases: the first case is when B is the C*-
algebraW constructed in [4] and the second is when B is the Jiang-Su algebra Z .
The C*-algebra W is a simple separable nuclear C*-algebra that is stably finite,
stably projectionless, has a unique tracial state, and has trivial K-groups. This
algebra should be considered as a stably finite analog of the Cuntz algebra O2. It
should play central role in the classification of projectionless C*-algebras.

Let A be a C*-algebra and let T(A) denote the cone of lower semicontinuous
traces on A+ with values in [0,∞] (note that the traces are not required to be
densely finite). It has been shown in [2] that T(A) belongs to the category of
compact Hausdorff non-cancellative cones with jointly continuous addition and
jointly continuous scalar multiplication. Our main motivation for studying C*-
algebras of the form A⊗W is the following conjecture of Leonel Robert:

Conjecture 1. If A and B are separable nuclear C*-algebras then

T(A) ≅ T(B) ⇐⇒ A⊗W ⊗K ≅ B ⊗W ⊗K,
where the isomorphism between T(A) and T(B) is assumed to be a linear home-
omorphism.

This conjecture has been shown to be true for AF-algebras and forO2-absorbing
algebras. In fact, in the O2-absorbing case this conjecture is nothing more than
Kirchberg Classification Theorem of O2-absorbing algebras. As a consequence of
Theorem 4 below we obtained the following result: if A is a separable direct limit
of homogeneous C*-algebras, then the tensor product A ⊗W is a direct limit of
a sequence of 1-dimensional noncommutative CW-complexes (these are subhomo-
geneous algebras of 1-dimensional spectrum). This result reduces the proof of
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Robert’s Conjecture for direct limits of homogeneous algebras to prove a classi-
fication result for direct limits of 1-dimensional noncommutative CW-complexes.
This result also implies that the decomposition rank and the nuclear dimension
of A⊗W is one. Another consequence of Theorem 4 is that if A is a C*-algebra
in the class A defined below then the stable rank of A⊗W is one. In particular,
the stable rank of the tensor product of W with a direct limit of separable type I
C*-algebras is one.

Definition 2. Let A be a class of C*-algebras. We say that a C*-algebra B is
locally contained in A if for every ǫ > 0 and every finite subset F of B there exists
a C*-algebra A ∈ A and a *-homomorphism ϕ∶A → B such that the distance from
x to ϕ(A) is less than ǫ for every x ∈ F .
Definition 3. Let us denote by A the smallest class of C*-algebras that satisfies
the following properties:

(i) C0(X) ∈ A for every locally compact space X .
(ii) If A ∈ A then A⊗Mn(C) ∈ A for every n ∈ N.
(iii) If A ∈ A then every hereditary sub-C*-algebra of A belongs to A. In

particular, every closed two-sided ideal of A belongs to A.
(iv) If A ∈ A then every quotient of A belongs to A.
(v) If A,C ∈ A and if

0→ A→ B → C → 0

is an exact sequence of C*-algebras then B ∈ A.
(vi) If A is locally contained in A then A ∈ A.
The following theorem is our main result:

Theorem 4. Let B be a direct limit of a system of (nonunital) recursive subho-
mogeneous algebras with no dimension growth. The following statements hold:

(i) If B has a finite number of ideals then sr(B) = 1, if and only if, for every
ideal I of B the index map δ∶K1(A/I)→ K0(I) is trivial.

(ii) If B is simple, projectionless, and K0(B) = K1(B) = 0 then sr(A⊗B) = 1
for every C*-algebra A ∈ A.

(iii) If B is simple, K1(B) = 0, and B is either projectionless or it is unital
and its only non-zero projection is its unit then sr(A ⊗ B) = 1 for every
C*-algebra A that is approximately contained in the class of (nonunital)
recursive subhomogeneous algebras with 1-dimensional spectrum.

Moreover, if B is a simple direct limit of a sequence of 1-dimensional noncommuta-
tive CW-complexes with K0(B) = K1(B) = 0, and A is approximately contained in
the class of C*-algebras that are stably isomorphic to a commutative C*-algebra,
then A⊗B is approximately contained in the class of C*-algebras that are stably
isomorphic to 1-dimensional noncommutative CW-complexes. In particular the
decomposition rank and the nuclear dimension of A⊗B is one. If in addition A is
separable then A⊗B can be written as an inductive limit of C*-algebras that are
stably isomorphic to 1-dimensional noncommutative CW-complexes.
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Central sequences of C∗-algebras and tensorial absorption of Z

Eberhard Kirchberg

(joint work with Mikael Rørdam)

A year ago, the following remarkable result was proved:

Theorem 1 (Matui–Sato). Let A be a unital, separable, simple, non-elementary,
stably finite, nuclear C*-algebra, and suppose that ∂eT (A) is finite. Then the
following are equivalent:

(i) A ≅ A⊗Z ,
(ii) A has strict comparison (i.e., Cu(A) is almost unperforated),
(iii) Every cp map A→ A can be excised in small central sequences,
(iv) A has property (SI).

The equivalence of (1) and (2) for every non-elementary separable simple nuclear
C*-algebra A has been conjectured by A.Toms and W.Winter. We come back later
to the properties mentioned in (3) and (4).

Note that if A is not stably finite, then T (A) = ∅ and (2) implies that A is
purely infinite. Since A is nuclear it follows A ≅ A⊗O∞ ≅ A⊗Z .

The condition that ∂eT (A) is finite had been weekend recently by independent
approaches.

The isomorphism A ≅ A⊗Z is necessary for the verification of the (old original)
Elliott conjecture: The (non-elementary) counterexamples to the Elliott conjecture
are all C*-algebras A that do not absorb the Jiang-Su algebra (e.g. those given by
Villardsen, Rørdam, Toms, ... – compare the talk of G. Gong). For any of this
unital C*-algebras, Z does not embed unitally into Aω∩A

′, but for the stably finite
ones among them there a surjection Aω ∩A

′ → Rω ∩R′, so Aω ∩A′ is not small
(or abelian), where R denotes the hyperfinite II1-factor with separable predual.

It was known for separable C*-algebras A that A ≅ A ⊗ Z if and only if the
unital C*-algebra F (A) ∶= (A′ ∩ Aω)/Ann(A,Aω) contains a copy of Z unitally.
Here ω ∈ γ(N) ∶= β(N) ∖N denotes a free ultrafilter,

Aω ∶= ℓ∞(A)/cω(A), cω(A) ∶= {(xn) ∈ ℓ∞(A) ∣ lim
ω
∥xn∥ = 0},
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and Ann(A,Aω) ∶= {b ∈ Aω ∣ bA = 0 = Ab} . For fixed ω ∈ γ(N) the algebra
F (A) is in a natural way an invariant of Morita equivalence. In particular the
natural map from F (A⊗K) to F (A) is an isomorphism, and – in case of simple
A – one can pass to a hereditary sub-C*-algebra B of A with the property that
every lower semi-continuous semi-finite 2-quasi-trace on B+ is bounded. The sys-
tem of isomorphism classes of unital separable C*-algebras of F (A) and several
(later defined) σ-ideals of F (A) are independent from the chosen free ultrafilter
ω. Combination of results of M. Dadarlat and A. Toms [1] and E.K. [3] show that
A ≅ A ⊗ Z for separable A is equivalent to the existence of a sub-homogenous
C*-subalgebra B ⊂ F (A) without characters and 1F (A) ∈ B.

Mathui and Sato [5] have introduced two interesting new properties on central
sequence algebras: Property (SI) and “Excision in small central sequences”. They
allow to apply similar technics as in case of the study of strongly purely infinite
nuclear C*-algebras.

We outline how this leads (among others) to a proof of the Toms-Winter conjec-
ture in case of non-elementary, separable, simple, and nuclear A with the property
that the extremal rays of the cone CT of lower semi-continuous semi-finite (ad-
ditive) traces τ ∶A+ → [0,∞] have a compact and finite-dimensional generating
subset K ⊂ CT : ∂CT = R+ ⋅K.

Similar results have been also obtained in [8], [9], [2] and [6] for the case of
nuclear algebras. Here I present my view on this topics.

Conjecture 2. The invariant F (A) contains all technical informations that decide
if A can be classified, and some information on the class of A.

It seems that classification of the stable Z-absorbing amenable A follows some-
times from a complete understanding of the invariant

Fcont(A) ∶= (A′ ∩Cb(R+,A))/(Ann(A,Cb(R+,A))
K-groups of Fcont(A) should define the KK-equivalence class of A.

Some facts about the invariant F (A) of separable A:
(i) F (A) = C, if and only if, A is elementary (i.e. A =Mn or A = K).
(ii) F (A) simple and [1]0 = 0 in K0(F (A)), if and only if, A = O2 or A =
O2 ⊗K.

(iii) Any separable nuclear C*-algebra B is in the UCT-class, if and only if,[1]0 = 0 in F (A) for every A with K∗(A) = 0 and simple F (A).
(iv) F (A) = (A′ ∩M(A)ω)/(Ann(A,M(A)ω)

Theorem 3 (K.1994, opposite direction 2004). A (non-zero) separable C*-algebra
A is simple, purely infinite and nuclear, if and only if, F (A) is simple and
F (A) /= C.

If F (A) /= C is simple then F (A) is purely infinite.
In particular, O∞ ↪ F (A) unitally, which entails that A ≅ A⊗O∞.
The conclusion A ≅ A⊗O∞ follows from the more general fact:

Let D is any separable unital tensorially self-absorbing C*-algebra then A ≅
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A⊗D ⇐⇒ ∃ unital *-homomorphism D → F (A).
(Which shows e.g. that A ≅ A⊗Z for all unital and approximately divisible sepa-
rable A.)

The important argument for the easy direction (from simple nuclear A to simple
purely infinite F (A)) is:

If B is simple and purely infinite, A ⊂ B separable, V ∶A → B nuclear, then
there is s ∈ Bω with s∗as = V (a) for all a ∈ A. (“Excision” property of V with
respect to 1 ∈M(B).)

D. McDuff: IfM is a separable II1 von Neumann factor, ω is a free ultrafilter,
and ifMω

∩M ′ is not abelian, then R↪Mω
∩M ′, where R denotes the hyperfinite

II1 factor. We denote byMω the ultrapower von Neumann algebra with respect to
the norm ∥a∥2, and adopt unusual notation Aω for the (operator) norm-ultrapower.

If the latter holds, then M is said to be a McDuff factor.

Proposition 4 (Strengthened version of a theorem of Sato). Let A be a separable
C*-algebra with a bounded trace τ , M ∶= πτ (A)′′, and let ω be a free ultrafilter on
N. The natural maps

Aω →Mω and Aω ∩A
′ →Mω

∩M ′

are surjective and map the annihilator Ann(A,Aω) to zero.
In particular, if M is a McDuff factor then some quotient of the unital algebra

F (A) contains a subalgebra isomorphic to R unitally.

The argument (and similar others later considered) use implicitly that the kernel
of Aω ↦Mω is a σ-ideal:

Definition 5. Let J a closed ideal of a C*-algebra B. J is called σ-ideal (of B) if
for every a ∈ J+ and every separable sub-C*-algebra C ⊂ B there exists a positive
contraction e ∈ C′ ∩ J with ea = a.

More generally we have that cω(A) is a σ-ideal of ℓ∞(A), or that Tω∶Aω → Cω
defines a σ-ideal JT ofAω by JT ∶= {a ∈ Aω ∶ ∥a∥T,ω = 0}, where ∥πω(a1, a2, . . .)∥T ∶=
limω ∥T (a∗nan)∥1/2 for a central cp contraction T ∶A→ C, with C commutative.

The prove is straight-forward if one uses the ε-test indicated in [3, Lemma A.1]

for suitable sets Xn (of morphisms) and non-negative functions f
(k)
n on Xn.

Proposition 6 (E.K. [3]). Let A separable and B1,B2, . . . unital separable C*-
algebras, ω,ω′ ∈ γ(N), and hn∶Bn → F (A)ω′ injective unital *-morphisms. Then
there exists an – on the tensor factors injective – unital *-morphism

h∶ B1 ⊗max B2 ⊗max ⋯ → F (A) .
We consider the universal C*-algebras Dn ∶= C∗(c1, . . . , cn, d1, . . . , dn;R) with

relations

(R) ∶ c∗kdk = 0, c∗kck = d∗kdk, and ∑
k

c∗kck = 1 .
Clearly Dn has no character, and is weakly semi-projective.
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Lemma 7. If a unital C*-algebra B has no character, then ∃ n ∈ N and a unital
*-homomorphism Dn → B.

Corollary 8. If A is separable and F (A) has no character, then ∃ n ∈ N and a
unital ∗-homomorphism Dn ⊗maxDn ⊗max ⋯ → F (A).
Theorem 9 ([1]). Let D be a unital C*-algebra. If ⊗∞k=1D contains a unital
subhomogeneous C*-algebra without characters, then Z ↪⊗∞k=1D.

Hence: A ≅ A ⊗ Z if and only if F (A) contains a unital subhomogeneous
C*-algebra without characters.

Question 10. Suppose that A is a separable C*-algebra such that F (A) has no
characters. Does it follow that F (A) contains a unital copy of Z (so that A ≅
A⊗Z)?

Question 11 (Dadarlat–Toms). Does Z embed unitally into ⊗∞n=1D whenever D
is a unital C*-algebra without characters?

The two questions above are equivalent!
Results of L.Robert and M.Rørdam about divisibility properties for C*-algebras

[7] imply the existence of non-elementary, unital, simple, separable, nuclear C*-
algebras A such that F (A) has a character (but has also a sub-quotient ≅R).

Let A separable with T (A) ≠ ∅ (traces of norm = 1). Define

∥a∥2,τ ∶= τ(a∗a)1/2, ∥a∥2 ∶= sup
τ∈T (A)

∥a∥2,τ , a ∈ A.

Define ∥ ⋅ ∥2 on Aω by ∥πω(a1, a2, a3, . . . )∥2 ∶= limω ∥an∥2, where πω ∶ ℓ∞(A) → Aω
is the quotient map. Set JA ∶= {x ∈ Aω ∶ ∥a∥2 = 0} ⊲ Aω .

It is not difficult to see that Ann(A,Aω) ⊂ JA. Hence, JA defines a quotient

Ft(A) ∶= (A′ ∩Aω)/(A′ ∩ JA) ⊂ Aω/JA
of F (A), and on Ft(A) ⊂ Aω/JA we get a norm ∥a∥2 ∶= ∥Tω(a∗a)∥1/2 ≤ ∥a∥ for
a ∈ Aω/JA , where Tω ∶Aω → Cb(∂T (A))ω is the ultrapower of the map T ∶A →
Cb(∂T (A)) given by T (a)(τ) ∶= τ(a).

If ω′ ∈ γ(N) (not necessarily ω′ = ω) then we can repeat this construction with
Ft(A) and ∥ ⋅ ∥2 on Ft(A) (in place of A and ∥ ⋅ ∥2 on A). Get an ideal JFt(A) of
Ft(A)ω′ .

The permanence properties for the family of the separable sub-C*-algebras of
Ft(A) are better than in case of F (A):
Theorem 12. The natural *-morphism A⊙ F (A)→ Aω defines a *-morphism

A⊗min Ft(A) → Aω/JA .
It is injective if A is simple.

Let ω,ω′ ∈ γ(N), B1,B2, . . . unital separable sub-C*-algebras of Ft(A)ω′/JFt(A)
then there exists a unital *-morphism

B1 ⊗min B2 ⊗min⋯ → Ft(A) .
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If Ft(A) contains a sub-homogenous algebra without character unitally, then R
is unitally contained in Ft(A).
Question 13. Let B a separable unital C*-algebra without character and separat-
ing T (B). Does B ⊗min B ⊗min ⋯ contain a sub-homogenous C*-algebra without
character?

A positive answer gives that R ⊂ Ft(A). If there is a positive answer then the
following questions remain:
When Ft(A) has not a character?
When we can conclude from M2 ⊂ Ft(A) that Z ⊂ F (A) (i.e. that A⊗Z ≅ A)?
Definition 14 (Matui–Sato, reformulated). A separable simple C*-algebra A is
said to have property (SI) if for all positive contractions e, f ∈ F (A) such that

e ∈ JA, sup
k

∥1 − fk∥2 < 1,
there is s ∈ F (A) with fs = s and s∗s = e.
Proposition 15. Let A be a separable, simple, unital, stably finite C*-algebra
with property (SI). TFAE:

(i) A ≅ A⊗Z.
(ii) ∃ unital *-homomorphism R→ Ft(A).
(iii) ∃ unital *-homomorphism M2 → Ft(A).
(iv) ∃ unital *-homomorphism I(2,3)→ F (A).

Proposition 16. If A is a non-elementary, unital, simple, separable, stably finite
C*-algebra with T (A) =QT (A) such that

(i) πτ(A)′′ is McDuff factor for all τ ∈ ∂eT (A).
(ii) ∂eT (A) is (weak ∗) closed in T (A) (i.e., T (A) is a Bauer simplex).
(iii) ∂eT (A) has finite covering dimension.

Then there is a unital *-homomorphism M2 → Ft(A).
The last proposition and the following theorem have also a version for stably

projection-less (hence non-unital) A:
Then one has to require in place of (2) and (3) that the extremal rays of the cone
R>0 ⋅T (A) of non-zero traces on A contain a finite-dimensional compact subset M
with R+ ⋅M = R+ ⋅ ∂eT (A).

Results similar to the ones above and below have been obtained independently by
Y.Sato, and in a paper of A. Toms, S. White and W. Winter in case of amenable
A.

Theorem 17. Let A be a non-elementary, unital, simple, separable, stably finite
C*-algebra such that

(i) πτ(A)′′ is McDuff factor for all τ ∈ ∂eT (A).
(ii) ∂eT (A) is weak ∗ closed in T (A) (i.e., T (A) is a Bauer simplex).
(iii) ∂eT (A) has finite covering dimension.
(iv) A has property (SI).
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Then A ≅ A⊗Z .
● Note that A ≅ A⊗Z implies (1), but not (2) and (3).
● It is not known if A ≅ A⊗Z implies (4).

Definition 18 (Matui–Sato, reformulated). A cp map ϕ∶A → A ⊆ Aω can be
excised in small central sequences if for all positive contractions e, f ∈ Aω ∩A′ with

e ∈ JA, sup
k

∥1 − fk∥2 < 1,
there exists s ∈ Aω such that

fs = s, s∗as = ϕ(a)e, a ∈ A.
Proposition 19 (Matui–Sato). Let A be a unital simple C*-algebra.

(i) If idA∶A→ A can be excised in small central sequences, then A has property
(SI).

(ii) If A is simple, separable, unital and nuclear, and if A has strict compari-
son, then idA can be excised in small central sequences.

Definition 20. Let A be a unital, simple, stably finite C*-algebra. Then A has
local weak comparison if there exists a constant γ = γ(A) such that for all positive
element a, b ∈ A:

γ ⋅ sup
τ∈QT (A)

dτ (a) < inf
τ∈QT (A)

dτ (b) Ô⇒ a ⪯ b.

▷

A has strict comparison ⇐⇒ Cu(A) is almost unperforated Ô⇒ Cu(A) has
strong tracial m-comparison for some m <∞ (in the sense of Winter) Ô⇒ A has
local weak comparison.

Proposition 21. Let A be a unital, simple, stably finite C*-algebra.

(i) If A has local weak comparison, then every nuclear cp ϕ∶A → A can be
excised in small central sequences.

(ii) (Matui-Sato) If idA can be excised in small central sequences, then A has
property (SI).

Corollary 22. Let A be a non-elementary, stably finite, simple, separable, unital
and nuclear C*-algebra. Suppose that ∂eT (A) is closed in T (A) and that ∂eT (A)
has finite covering dimension. Then the following are equivalent:

(i) A ≅ A⊗Z,
(ii) A has local weak comparison,
(iii) A has strict comparison (⇐⇒ Cu(A) is almost unperforated).

Question 23. Are (1), (2) and (3) above equivalent for all non-elementary, stably
finite, simple, separable, unital and nuclear C*-algebra?

Are (2) and (3) above equivalent for all non-elementary, stably finite, simple,
separable, unital and nuclear C*-algebra!?
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Let bT (A) denote the closure of ∂eT (A) in A∗, Tω ∶Aω → C(bT (A))ω the ul-
trapower of the cp evaluation map T (a)(τ) ∶= τ(a). The multiplicative domain
of Tω is denoted by Mult(Tω). Since ∥Tω(a∗a)∥ = ∥a∥22 it follows that the ideal
JA is contained in the kernel of Tω, and that every positive element a ∈ Aω with
Tω(a) = 0 is in JA. Thus Mult(Tω) defines a “faithful” completely positive map
Ψ∶Aω/JA → C(bT (A))ω. This does not mean that Ψ is faithful as a linear map!

We identify naturally Affc(T (A)) with a unital subspace of C(bT (A),R) =
C(bT (A))sa, and identify C-Affc(T (A)) with a unital subspace of C(bT (A)).

The following proposition shows the limitation of the method for the proof of
the main theorem: One has approximately to imitate inside A constructions (e.g.
decompositions of the unit of bT (A)) by positive elements of A in a way that
T ∶A → C(bT (A)) becomes on those elements of A almost multiplikative.

Proposition 24. Let A a unital and separable C*-algebra with T (A) ≠ ∅.
The following properties of A are equivalent:

(i) For each τ0 ∈ bT (A) and every non-empty compact set K ⊆ ∂eT (A)∖ {τ0}
there exists a positive contraction a ∈ A with

τ0(a) > 1/2, sup
τ∈K

τ(a) < 1/4.
(ii) ∂eT (A) is closed in T (A).
(iii) Affc(T (A)) = C(bT (A))sa.
(iv) C-Affc(T (A)) = C(∂eT (A)).
(v) Tω maps the closed unit ball of Aω onto the closed unit ball of C(bT (A))ω.
(vi) Mult(Ψ) ⊆ center(Aω/JA) and Ψ∶Mult(Ψ) → C(bT (A))ω is a surjective

∗-isomorphism.
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Dimension reduction and Jiang-Su stability

Aaron Tikuisis

(joint work with Wilhelm Winter)

Recent developments in the study of classification of C∗-algebras have suggested
an important role of new regularity conditions (more stringent than amenability).
These developments arise in response to an example of Villadsen [7], which was
built on by Rørdam [3] (cf. also [5]), to disprove the Elliott conjecture. The general
idea is captured by the following conjecture:

Conjecture. For a simple, separable, unital, nonelementary, nuclear C∗-algebra
A in the UCT class, the following are equivalent:

(i) A is Z-stable;
(ii) A has finite nuclear dimension;
(iii) A has strict comparison of positive elements;
(iv) A is an inductive limit of nice building blocks (2-NCCW complexes, direct

sums of Mn ⊗Om ⊗C(T)).
Moreover, the algebras satisfying (i)-(iv) are classifiable.

(Closely related is the Toms-Winter conjecture, stating that (i),(ii), and (iii) are
equivalent even without assuming the UCT.) It should be noted that the conjecture
is known to hold for the examples of Villadsen [6].

This talk focused on the relationship between properties (i) and (ii), although
it is important to view their relationship in context of the other two properties. A
C∗-algebra is said to be Z-stable if it is isomorphic to its tensor product with Z .
Nuclear dimension is a non-commutative generalization of topological dimension,
building on the idea that the completely positive approximation property is a
noncommutative version of (arbitrarily fine) partitions of unity [9].

Among the many partial verifications of the conjecture, we note that (ii) ⇒ (i)
has been shown by Winter in full generality [8]. On the other hand, (i) ⇒ (ii) is
perhaps the least-understood implication of the conjecture, and earlier verifications
of this implication have always relied on classification (i.e. factored through (iv)).

The following result is, we hope, the beginning of a new approach to establishing
and understanding (i) ⇒ (ii):

Theorem. (T-Winter [4]) The decomposition rank of C(X,Z) is at most 2, in-
dependent of X.

This result, and (i) ⇒ (ii) in general, amounts to dimension reduction: showing
that tensoring with the Jiang-Su algebra has the effect of lowering the dimension
(at least, when the dimension is sufficiently high beforehand). Some notable ear-
lier results about dimension reduction are the following: Villadsen’s example A
(mentioned above) has infinite nuclear dimension, but by classification, A⊗Z has
decomposition rank at most 2. Gong’s reduction theorem [1] states that, if A is
a simple AH algebra with very slow dimension growth then it is a limit of alge-
bras with topological dimension at most three. Finally, Kirchberg and Rørdam [2]
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showed that for any space X , C0(X,C ⋅ 1O2
) ⊂ C(X,O2) factors as

C0(X)→ C0(Y )→ C(X,O2),
where dimY ≤ 1. The latter result highly relies on K∗(O2) = 0 (and little else),
and is used in the proof of the result of myself and Winter mentioned above.

Part of this talk concerned explaining some key ideas from the proof of the
result of myself and Winter. A key point of this proof is establishing the following:

Lemma. Let X = [0,1]d. Then C(X,C ⋅1n∞) ⊂ C(X,Mn∞) can be approximately
factorized as

C(X) ψ
Ð→ C0(Y,C ⋅ 1O2

)⊕F ⊂ C0(Y,O2)⊕F ϕ
Ð→ C(X,Mn∞),

where ψ,ϕ are c.p.c. and ϕ is order zero when restricted to C0(Y,O2) or F .
In fact, the result follows (at least with Mn∞ in place of Z) from this and

Kirchberg-Rørdam’s result for C0(Y ) ⊂ C0(Y,O2). The lemma is proven somewhat
explicitly for the case d = 1 (using as input a c.p.c. approximate embedding of
C0((0,1],O2) to Mnk , given by quasidiagonality of the cone over O2), and then
for general d roughly by taking products.

The result on dimension reduction opens many questions, including the follow-
ing: Can we say more about the structure of C(X) ⊂ C(X,Z); does it (approx.)
factorize through subhomogeneous algebras with low topological dimension? Is
dimnuc(A ⊗Z) < ∞ for every nuclear C∗-algebra A? What is the decomposition
rank of C(X) ⊂ (X,Mn); is it < dimX , or does this dimension drop only occur
when we put a UHF algebra in for Mn?

Slides from the talk may be found on my website: http://www.math.uni-
muenster.de/u/aaron.tikuisis
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The p-shift endomorphism and purely infinite C∗-algebras

Eduard Ortega

(joint work with Enric Pardo)

We talked about the crossed product C∗-algebra associated to an injective en-
domorphism, but we showed that this turns out to be equivalent to study the
crossed product C∗-algebra associated to the dilated autormorphism. In particu-
lar, given a C∗-algebra A with a non-trivial projection p, we study the so called
Bernoulli p-shift endomorphism ∆p ∶ A

⊗∞ Ð→ A⊗∞ defined by xz→ p⊗x for every
x ∈ A⊗∞. We showed that the dilation of the Bernoulli p-shift endomorphism is
topologically free, and this provides of a natural way to twist any endomorphism
of a D-absorbing C∗-algebra, where D is a strongly self-absorbing C∗-algebra with
non-trivial a projection, into one that its dilated automorphism is essentially free
and have the same K-theory map than the original one. Finally we gave condi-
tions on the endomorphism and in the C∗-algebra to guarantee that the associated
crossed product C∗-algebra is purely infinite. Therefore, combining both results
we constructed purely infinite C∗-algebras with diverse ideal structure and various
ideal related K-theory.

On the invariant translation approximation property

Joachim Zacharias

The purpose of the lecture was to present some recent developments on the invari-
ant translation approximation property (ITAP) for groups. This approximation
property has been introduced by John Roe around 2000 in connection with the
coarse Baum-Connes conjecture. In his 2003 lectures on coarse geometry ([9])
he proved that amenable and finitely generated free groups have the ITAP. It is
still an open problem whether all groups have the ITAP. There is also a stronger
version (SITAP) of the ITAP involving coefficients which was introduced by the
author in 2006 in [10]. Until recently it was not known whether all discrete groups
verify both conditions, but thanks to the work of De la Salle and Lafforgue ([2])
we can show now that the version with coefficients is not verified for the group
Γ = SL(3,Z) (and other groups [4]). There has also been some very recent work
by Katsura and Uuye [6], who resolved a technical question form [10]. The new
results we describe are partly in collaboration with Jacek Brodzki and Issan Patri.

Let Γ be a discrete group acting on ℓ2(Γ) via the left and right regular repre-
sentation given by

λset = est and ρset = ets−1
The reduced group C∗-algebra C∗r (Γ) is defined as the C∗-algebra generated by{λs ∣ s ∈ Γ}. We may identify bounded operators on ℓ2(Γ) with matrices [αs,t]s,t∈Γ
and define the uniform Roe algebra UC∗r (Γ) as the closure of scalar Γ×Γ-matrices[αs,t] of finite width (i.e. {st−1 ∣ αs,t ≠ 0} is finite) with uniformly bounded entries
acting on ℓ2(Γ). The reduced group C∗-algebra C∗r (Γ) is naturally contained in
UC∗r (Γ). Indeed the left translation λr on ℓ2(Γ) is given by the matrix where
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αs,t = 1 if st−1 = r and αs,t = 0 otherwise; so the matrices [αs,t] of finite width such
that αsr,tr = αs,t for all s, t, r ∈ Γ form precisely the group ring C[Γ]. They may
also be characterized as those finite width matrices fixed by all automorphisms of
the form Ad(ρt).
Definition 1. We say that Γ has the invariant translation approximation property
(ITAP) if

C∗r (Γ) = UC∗r (Γ)Γ.
Equivalently, Γ has the ITAP iff C∗r (Γ) = UC∗r (Γ) ∩ L(Γ), where L(Γ) is the

von Neumann algebra generated by the left regular representation.
The stronger version with coefficients is defined as follows: let S ⊆ B(H) be a

(concrete) operator space. Consider matrices [as,t]s,t∈Γ with finite width, where
as,t ∈ S for all s, t ∈ Γ and ∥as,t∥ is uniformly bounded. Each such matrix defines
a bounded operator on ℓ2(Γ,H) and we define the operator space UC∗r (Γ, S) as
the closure of the set of such matrices. UC∗r (Γ, S) is an operator space in general
and a C∗-algebra if S is a C∗-algebra. Note that Ad(ρt) still acts on UC∗r (Γ, S),
for every S.

Definition 2. We say that Γ has the strong invariant translation approximation
property (SITAP) if

C∗r (Γ)⊗ S = UC∗r (Γ, S)Γ,
where ⊗ denotes the minimal tensor product.

It is well-known that exactness of Γ can be characterised by nuclearity of
UC∗r (Γ) ([3] and [8]). Note that UC∗r (Γ,−) may be regarded as a functor on
C∗-algebras and we can characterise exactness of Γ in terms of exactness proper-
ties of this functor.

An important very weak approximation property which we need is the OAP,
which may be regarded as the matricial version of Grothendieck’s AP. It was
introduced in [7] and studied in [5] for group algebras. See [1] for an excellent
exposition. Using this property we can characterise the (SITAP) as follows:

Theorem 3. ([10]) Let Γ be exact. Then Γ has the SITAP iff C∗r (Γ) has the
OAP.

It has been a longstanding open problem whether the OAP and exactness of
C∗r (Γ) are equivalent. By recent results of De la Salle and Lafforgue this is not he
case ([2]), they showed that C∗r (SL(3,Z)) does not verify the OAP but is known
to be exact. Thus this group also fails the SITAP.

We have the following permanence properties of the (S)ITAP:

Theorem 4. (i) (S)ITAP is closed under subgroups, inductive limits and
extensions byfinite groups.

(ii) If one of Γ1 and Γ2 has (S)ITAP, the other SITAP and is exact then
Γ1 × Γ2has (S)ITAP.

(iii) If Γ1 and Γ2 verify SITAP and are exact then so does Γ1 ⋆ Γ2.
(2) can be extended to certain semidirect products.
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One can also develop a very similar theory for locally compact groups. Though
we know now that not every group verifies the SITAP the question whether every
discrete group verifies the ITAP remains open but we have a strong candidate for
a counterexample.

The author was partially supported by EPSRC.
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