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Introduction by the Organisers

The half-size workshop Non-Archimedean Analytic Geometry, organized by
Vladimir Berkovich (Rehovot), Walter Gubler (Regensburg) and Annette Werner
(Frankfurt) had 26 participants. Non-Archimedean analytic geometry is a central
area of arithmetic geometry. The first analytic spaces over fields with a non-
Archimedean absolute value were introduced by John Tate and explored by many
other mathematicians. They have found numerous applications to problems in
number theory and algebraic geometry. In the 1990s, Vladimir Berkovich initiated
a different approach to non-Archimedean analytic geometry, providing spaces with
good topological properties which behave similarly as complex analytic spaces.
Independently, Roland Huber developed a similar theory of adic spaces. Recent
years have seen a growing interest in such spaces since they have been used to
solve several deep questions in arithmetic geometry.

We had 19 talks in this workshop reporting on recent progress in non-Archi-
medean analytic geometry and its applications. All talks were followed by lively
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discussions. Several participants explained work in progress. The workshop pro-
vided a useful platform to discuss these new developments with other experts.

During the workshop, we saw applications to complex singularity theory and
to Brill–Noether theory in algebraic geometry. Progress was made in the study
of Berkovich spaces over Z, and they were used for an arithmetic Hodge index
theorem with applications to the non-archimedean Calabi-Yau problem. An analog
of complex differential geometry was developed on Berkovich spaces which allows
us to describe non-archimedean Monge-Ampère measures as a top-dimensional
wedge product of first Chern forms or currents. Two talks focused on p-adic
differential equations where Berkovich spaces help to understand the behaviour of
radii of convergence. Scholze’s perfectoid spaces, which have led to spectacular
progress regarding the monodromy weight conjecture, and their relations to p-
adic Hodge theory were the topic of two other lectures. Methods from Model
Theory become increasingly important in arithmetics, and we have seen two talks
adressing this in connection with analytic spaces. Skeleta and tropical varieties are
combinatorial pictures of Berkovich spaces, and these tools were used in several
talks. In the one-dimensional case these methods lead to a better understanding
of well-studied objects of algebraic geometry such as moduli spaces of curves or
component groups.



Non-Archimedean Analytic Geometry 3213

Workshop: Non-Archimedean Analytic Geometry

Table of Contents

Matthew Baker (joint with Omid Amini)
Linear series on metrized complexes of algebraic curves . . . . . . . . . . . . . . 3215

François Loeser (joint with Ehud Hrushovski)
Monodromy and the Lefschetz fixed point formula . . . . . . . . . . . . . . . . . . . . 3217

Michael Temkin (joint with Oren Ben-Bassat)
Berkovich analytic spaces and tubular descent . . . . . . . . . . . . . . . . . . . . . . . 3219

Jérôme Poineau
Analytic spaces over Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3221

Ehud de Shalit (joint with Eran Assaf)
p-adic boundary values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3222

Francesco Baldassarri
Logarithmic radii of convergence and finite coverings of non-archimedean
curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3224

Antoine Chambert-Loir (joint with Antoine Ducros)
Real differential forms and currents on Berkovich spaces . . . . . . . . . . . . . 3228

Kiran S. Kedlaya
Perfectoid spaces and étale local systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3231

Vladimir G. Berkovich
Finiteness results for vanishing cycles of formal schemes . . . . . . . . . . . . . 3233

Jean-Marc Fontaine
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Abstracts

Linear series on metrized complexes of algebraic curves

Matthew Baker

(joint work with Omid Amini)

This is a report on the paper [1], written jointly with Omid Amini.

A metric graph Γ is the geometric realization of an edge-weighted graph G in
which each edge e of G is identified with a line segment of length ℓ(e). We call G
a model for Γ.

Let κ be an algebraically closed field. A metrized complex C of κ-curves is the
following data:

• A connected finite graph G with vertex set V and edge set E.
• A metric graph Γ having G as a model (or equivalently, a length function
ℓ : E → R>0).
• For each vertex v of G, a complete, nonsingular, irreducible curve Cv of
genus gv ≥ 0 over κ.
• For each vertex v of G, a bijection e 7→ xev between the edges of G incident
to v and a subset Av = {xev}e∋v of Cv(κ).

A divisor on a metrized complex of curves C is an element D = DΓ⊕
∑
v Dv of

Div(Γ)⊕ (⊕v Div(Cv)) such that deg(Dv) = DΓ(v) (the coefficient of v in DΓ) for
all v in V . The degree of D is defined to be the degree of DΓ.

LetK be a complete and algebraically closed non-Archimedean field with residue
field isomorphic to κ and let X/K be a smooth, proper, connected algebraic curve.
There is a metrized complex C = CX canonically associated to any semistable
model X of X over the valuation ring R of K, along with a canonical specialization
map τCX∗ : Div(X)→ Div(CX). Both CX and the map τCX∗ are most conveniently
defined using Berkovich’s theory of non-Archimedean analytic spaces.

A rational function f on a metrized complex of curves C is the data of a rational
function fΓ on Γ and nonzero rational functions fv on Cv for each v ∈ V . One
can define the divisor of f in a natural way, and two divisors in Div(C) are called
linearly equivalent if they differ by the divisor of some rational function. A divisor
E = EΓ ⊕

∑
v Ev is called effective if EΓ and the divisors Ev are all effective.

The rank rC of a divisor D = DΓ ⊕
∑
v Dv in Div(C) is defined to be the largest

integer k such that D − E is linearly equivalent to an effective divisor for all
effective divisors E of degree k on C. If rX(D) denotes the usual rank function
rX(D) = dim |D| = h0(D)− 1 on Div(X), we have:

Theorem 1 (Specialization Theorem). For all D ∈ Div(X), we have

rX(D) ≤ rCX(τ
CX
∗ (D)).
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The theory of divisors and linear equivalence on metrized complexes of curves
generalizes both the classical theory for algebraic curves and the corresponding
theory for metric graphs and tropical curves found in [4, 6]. The former corre-
sponds to the case where G consists of a single vertex v and no edges and C = Cv
is an arbitrary smooth proper curve. The latter corresponds to the case where the
curves Cv have genus zero for all v ∈ V . Since any two points on a curve of genus
zero are linearly equivalent, the divisor theory (and rank function) on C and Γ are
essentially equivalent.

As in [2], the main utility of Theorem 1 is that the rank function rC on a metrized
complex of curves is surprisingly well-behaved; for example, it satisfies an analogue
of the Riemann-Roch formula. The genus of a metrized complex of curves C is
g(C) = g(Γ) +

∑
v∈V gv, where gv is the genus of Cv. A canonical divisor on C,

denoted K, is defined to be any divisor linearly equivalent toK#⊕
∑

v∈V (Kv+Av),

where K# =
∑

v (degG(v) + 2gv − 2) (v), Kv is a canonical divisor on Cv, and Av
is the sum of the degG(v) points in Av. The following result generalizes both
the classical Riemann-Roch theorem for algebraic curves and the Riemann-Roch
theorem for metric graphs:

Theorem 2 (Riemann-Roch for metrized complexes of algebraic curves). Let C
be a metrized complex of algebraic curves over κ and K a divisor in the canonical
class of C. For any divisor D ∈ Div(C), we have

rC(D) − rC(K −D) = deg(D) − g(C) + 1.

Our theory of linear series on metrized complexes of curves has close connections
with the Eisenbud-Harris theory of limit linear series for strongly semistable curves
of compact type, and suggests a way to generalize the Eisenbud-Harris theory to
more general semistable curves. A proper nodal curve X0 over κ is of compact
type if its dual graph G is a tree. For such curves, Eisenbud and Harris define a
limit grd L on X0 to be the data of a (not necessarily complete) degree d and rank
r linear series Lv on Xv for each vertex v ∈ V such that if two components Xu

and Xv of X0 meet at a node p, then for any 0 ≤ i ≤ r,

aLv

i (p) + aLu

r−i(p) ≥ d ,

where aLi (p) denotes the i
th term in the vanishing sequence of a linear series L at

p.

Let C be a metrized complex and let F = {Fv : v ∈ V }, where Fv is a κ-
subspace of the function field κ(Cv) for each v ∈ V . For D ∈ Div(C), we define
the F -rank of D, denoted rC,F(D), to be the largest integer k such that for any
effective divisor E of degree k on C, there is a rational function f = (fΓ, (fv)v∈V )
with fv ∈ Fv for all v ∈ V such that D−E+div(f) ≥ 0. A grd on a metrized complex
C is an equivalence class of pairs (D,H) with rC,H(D) = r and H = {Hv} with
Hv an (r+1)-dimensional subspace of κ(Cv) for all v. The equivalence relation is
(D,H) ∼ (D′,H′) iff there is a nonzero rational function f = (fΓ, {fv}) on C such
that D′ = D + div(f) and H ′v = Hv · fv for all v.
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If R is a dvr with residue field κ and X/R is a regular semistable arithmetic
surface whose generic fiberX is smooth, then for any divisorD onX with rX(D) =
r and deg(D) = d, our specialization machine gives rise in a natural way to a limit
grd on the special fiber X0 of X. Moreover:

Theorem 3. If X0 is of compact type, then there is a bijection between limit grd’s
in the sense of Eisenbud-Harris and grd’s on the metrized complex CX.

These ideas have Diophantine applications to the study of rational points on
curves over number fields (specifically, to the method of Coleman-Chabauty). Eric
Katz and David Zureick-Brown have recently used a special case of Clifford’s
theorem for metrized complexes to prove the following theorem [5] which answers
affirmatively a question of M. Stoll:

Theorem 4. Let X be a smooth projective geometrically irreducible curve of genus
g ≥ 2 over Q and assume that the Mordell-Weil rank r of the Jacobian of X is
less than g. Fix a prime number p > 2r+2 and let X be a proper (not necessarily
semistable) regular model for X over Zp. Then (letting X̄sm denote the smooth
locus of X̄)

#X(Q) ≤ X̄sm(Fp) + 2r.
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Monodromy and the Lefschetz fixed point formula

François Loeser

(joint work with Ehud Hrushovski)

Let X be a smooth complex algebraic variety and f : X → A1
C be a non-constant

morphism to the affine line. Let x be a singular point of f−1(0), that is, such that
df(x) = 0.

Fix a metric on X . Let 0 < η ≪ ε ≪ 1. By Milnor’s local fibration Theorem
the morphism f restricts to a fibration, called the Milnor fibration,

B(x, ε) ∩ f−1(B(0, η) \ {0}) −→ B(0, η) \ {0}.
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Here B(a, r) denotes the closed ball of center a and radius r.
The Milnor fiber at x,

Fx = f−1(η) ∩B(x, ε),

has a diffeomorphism type that does not depend on η and ε and is endowed with an
automorphism, defined up to homotopy, the monodromyMx, induced by the char-
acteristic mapping of the fibration. In particular the cohomology groupsHq(Fx,C)
are endowed with an automorphism Mx, and we can consider the Lefschetz num-
bers

Λ(Mm
x ) = tr(Mm

x ;H•(Fx,C)) =
∑

i

(−1)itr(Mm
x ;Hi(Fx,C)).

In [1], N. A’Campo proved that if x is a singular point of f−1(0), then Λ(M1
x) =

0 and this was later generalized by Deligne to the statement that Λ(Mm
x ) = 0 for

0 < m < µ, with µ the multiplicity of f at x, cf. [2].
In [6], Λ(Mm

x ) was expressed in terms of arcs in the following way. Set

Xm,x = {ϕ ∈ X(C[t]/tm+1); f(ϕ) = tm mod tm+1, ϕ(0) = x}.

Note that Xm,x can be viewed in a natural way as the set of closed points of a
complex algebraic variety.

Then, according to [6], for every m ≥ 1,

(∗) χc(Xm,x) = Λ(Mm
x ).

Here χc denotes the usual Euler characteristic with compact supports. Note that
one recovers Deligne’s statement as a corollary since Xm,x is empty for 0 < m < µ.
The original proof in [6] proceeds as follows. One computes explicitly both sides
of (∗) on an embedded resolution of f = 0 and checks both quantities are equal.
The computation of the left hand side relies on the change of variable formula
for motivic integration in [5] and the one on the right hand side on A’Campo’s
formula in [2]. In this talk we present a geometric proof of (∗) not using resolution
of singularities which is given in our paper [9].

Our approach uses étale cohomology of non-archimedean spaces and motivic
integration. More precisely we use the following ingredients:

• The analytic Milnor fiber introduced by Nicaise and Sebag in [10].
• Finiteness of the étale cohomology with compact supports (cf. [3]) of
locally closed semi-algebraic subsets of Berkovich spaces associated to al-
gebraic varieties proved by F. Martin in [7]
• A proved in [9] stating that motivic integration as developed by Hrushovski
and Kazhdan in [8] is compatible with étale realization.
• The Lefschetz fixed point theorem for finite order automorphisms of alge-
braic varieties, cf. [4].
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Berkovich analytic spaces and tubular descent

Michael Temkin

(joint work with Oren Ben-Bassat)

1. Motivation

This report is devoted to a joint work with Oren Ben-Bassat that will be published
in Advances in Mathematics (see [4] for a preprint version). The main aim of our
research was to study how a coherent sheaf F on an algebraic variety can be
reconstructed from its restrictions onto an open subvariety U and its complement
Z = X − U . Informally speaking, this can be reformulated as a question of
gluing coherent sheaves F|U and F|Z to a coherent OX -module F . Solution of
analogous descent problems were known in the literature under certain affineness
assumptions (see [1], [2], and [3]) and the main achievement of our solution is
that it is of global nature. On the other hand, in the earlier known situations
one used another scheme W for the gluing; in a sense, W played the role of the
intersection. In our approach, W is replaced with a Berkovich analytic space W ,
so the construction becomes subtler.

2. Main result

If one wants to reconstruct F , then at the very least one should know the restric-
tions of F onto all closed subschemes whose reduction is Z, or equivalently one

should know the formal completion F̂Z of F along Z. So, we consider the formal

completion X = X̂Z of X along Z and show how to reconstruct F from the restric-

tion FU and the formal completion F̂Z . In fact, we introduce an analytic space
W analogous to a punctured tubular neighborhood of Z, construct “restriction”
functors Coh(U) → Coh(W ) and Coh(X) → Coh(W ), and prove our main result
that takes the following very intuitive form:

Coh(X)→̃Coh(U)×Coh(W ) Coh(X)
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Naturally, we call this type of descent tubular descent.

3. Choice of W

Before explaining what W is, let us consider the case that k = C. Then one often
considers a tubular neighborhood Tε of Z. It is an open neighborhood of Z in
the classical analytic topology and is contractible to Z. The gluing of sheaves can
then be performed along the punctured tubular neighborhood Tε−Z. Having this
case in mind, one can view X as an (infinitesimal) algebraic version of a tubular
neighborhood and wonder if a “punctured formal scheme X − Z” (or a “generic
fiber”) can be meaningfully defined.

It was discovered by Tate and Grothendieck that a generic fiber of a formal
scheme can be defined in some cases as a non-archimedean analytic space. Today
there are three different theories of such spaces: Tate’s rigid spaces, Berkovich
analytic spaces, and Huber’s adic spaces. We chose to define W as a Berkovich
k-analytic space, where the valuation on k is trivial, but other alternatives are
possible (and would lead to the same category Coh(W )). Our definition runs as
follows: one considers the generic fiber Xη of the k-special formal scheme X, and
removes the generic fiber Zη from it. Note that Xη can be viewed as a tubular
neighborhood of Zη, and W = Xη − Zη is an analog of the punctured tubular
neighborhood. If X is proper then we also prove that W depends only on U
because actuallyW = U∞ = Uan−Uη (the space U∞ was introduced by Berkovich
in a private correspondence with Drinfeld and called the ”infinity” of U in that
correspondence).

4. A work of A. Thuillier on the homotopical type of divisor at

infinity

I would also like to note that when giving the Oberwolfach lecture I learned from
Sam Payne that the space W was used in a spectacular way by Amaury Thuillier
in [5]. The main result [5, Th. 4.10] states that if the ground field k is perfect, X is
regular and proper, and Z is a normal crossings divisor, then the topological type
of the simplicial complex ∆(Z) depends only on U and not on its compactification
U →֒ X . In fact, Thuillier constructs a deformation retractW → ∆(Z) and shows
that W depends only on U when X is proper (as remarked above, it is U∞).
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[5] Thuillier, A.: Géométrie toröıdale et géométrie analytique non archimédienne. Application
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Analytic spaces over Z

Jérôme Poineau

In the late eighties, Vladimir G. Berkovich has defined a notion of analytic space
over a general Banach ring (A, ‖.‖) (see [1]). In this talk, we are mainly concerned
with the case where A = Z endowed with the usual absolute value.

Let n be an integer. The affine analytic space of dimension n over Z, which
is denoted A

n,an
Z , is defined as the set of semi-norms over the polynomial ring

Z[T1, . . . , Tn]. (For a general Banach ring (A, ‖.‖), we also require that the semi-
norm be bounded by ‖.‖ over A ; this condition is always satisfied in the case of Z.)
It is endowed with the topology generated by the subsets of the form {r < |P | < s},
with P ∈ Z[T1, . . . , Tn] and r, s ∈ R, and with the sheaf O of functions that are
locally uniform limits of rational functions without poles.

The affine analytic space An,an
Z is naturally fibered overM(Z) = A

0,an
Z . Among

its fibers, there are usual analytic spaces Cn (quotiented by the action of the
conjugation) as well as non-archimedean p-adic analytic spaces, for every prime
number p.

In [2], we carried out a detailed study of the one-dimensional case. The purpose
of the talk is to investigate the local theory of the space An,an

Z , for any n (see [3]).
The basic tool is a local Weierstraß division theorem in a rather general setting.

Let B be an analytic space and X be a relative line over it. Let b ∈ B and x be
the point 0 over b. If two analytic functions f and g are given on a neighbourhood
of x, the Weierstraß division theorem allows to divide f by g, as soon as g does not
vanish identically on the fiber over b, with a polynomial remainder. This result
may be extended to the case where x is a rigid point over b, which means that the
induced extension of residue fields is algebraic.

Let us mention that the case of a point x over b which is not rigid is indeed
simpler: the local ring at the point x in its fiber over b is a field, hence any analytic
function which vanishes at x vanishes on the whole fiber.

Using those results, we may now carry out a local study of analytic spaces by an
induction process. It closely follows the strategy that is used in complex analytic
geometry. Let x be a point in the analytic space A

n,an
Z . We prove that the local

ring Ox is Noetherian, regular and excellent. A direct study ensures that it is also
Henselian. Pushing the methods further, we show that the structure sheaf O is
coherent.

The results we have just mentioned actually hold for more general rings such as
rings of integers of number fields or discrete valuation rings (with the additional
assumption that their fraction fields have characteristic 0 as regards excellence).
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p-adic boundary values

Ehud de Shalit

(joint work with Eran Assaf)

This is a report on work in progress with Eran Assaf.

Let K be a finite extension of Qp and X ⊂ PdK Drinfeld’s p-adic symmetric
domain of dimension d, regarded as a rigid analytic space over K. The module
Ωd(X) of rigid analytic d-forms on X is a rich and interesting representation of
G = GLd+1(K). It has been studied extensively in the paper [1]. It was shown
to possess a G-equivariant filtration of length d + 1, whose graded pieces were
completely classified. These graded pieces are the prototypes of the admissible
representations studies by Schneider and Teitelbum, whose construction mixes
smooth and algebraic representations, locally analytic induction and modules of
differential equations. These graded pieces were later on shown to be irreducible
in [2].

Nevertheless, the structure of Ωd(X) as a whole remains somewhat mysterious.
Let F = G/P be the full flag variety of G (P denoting a Borel subgroup) and
C(F ,K) the space of continuous K-valued functions on F . Let C(F ,K)inv be the
sum of the spaces C(G/Q,K) where Q is a parabolic properly containing P. Thus
C(F ,K)/C(F ,K)inv is the “continuous Steinberg representation”. The starting
point of [1] is a map

I : Ωd(X)′ → C(F ,K)/C(F ,K)inv

(Ωd(X)′ is the strong dual of Ωd(X), which is a locally convexG-module of compact
type), whose image consists of locally analytic vectors. The map I is constructed
as follows. Fix a flag ξ0 = (ξ00 ⊃ ξ01 ⊃ · · · ⊃ ξ0d ⊃ 0), where ξ0i is a subspace
of codimension i in Kd+1. If ξ is a another flag in general position w.r.t. ξ0 (a
flag lying in the big Bruhat cell w.r.t.P, where P is the stabilizer of ξ0), then
intersecting subspaces of complementary dimensions gives a frame {ei} of Kd,
hence a differential form

ω(ξ0, ξ) =

d∑

i=0

(−1)id log e0 ∧ · · · ∧ d̂ log ei ∧ · · · ∧ d log ed.

Let λ ∈ Ωd(X)′. The map ξ 7→ λ(ω(ξ0, ξ)), extended by zero outside the big
cell, is continuous. It depends on ξ0 and has singularities on the boundary of the
big cell, but modulo C(F ,K)inv is independent of any choice, G-equivariant and
“analytic”. Call it I(λ).

Let Ωd(X)j be the subspace topologically spanned by rational d-forms on Pd,
whose polar divisor is supported on the union of at most d + 1 − j K-rational
hyperplanes. Then Ωd(X) = Ωd(X)0, Ωd(X)1 is the space of exact forms, and
Ωd(X)d+1 = 0. The filtration thus obtained is clearly G-stable. The main result
of [1] is a description of Ωd(X)j/Ωd(X)j+1.

Motivated by the case d = 1, which was studied long ago by Morita, and by our
approach to the cohomology ofX in [3], we study a map J in the opposite direction.
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More precisely, let π : F → Pd(K) be the map sending a full flag ξ as above to
the hyperplane ξ1 (here we regard Pd(K) as the space of hyperplanes in Kd+1).
Let CS(F ,K) be the space of locally analytic K-valued functions on F which are
locally constant in the fibers of π. Let CS(F ,K)inv = CS(F ,K) ∩ C(F ,K)inv.
We define a G-equivariant map

J : CS(F ,K)→ Ωd(X)′

and prove the following.

Theorem 5. The map J induces an isomorphism

CS(F ,K)/CS(F ,K)inv ≃ Ωd(X)′2

(the filtration on Ωd(X)′ is orthogonal to the filtration on Ωd(X)). Restricted to
the smooth Steinberg representation, J recovers the Schneider-Stuhler isomorphism

C∞(F ,K)/C∞(F ,K)inv ≃ Ωd(X)′1 = Hd
dR(X)′.

Moreover, I ◦ J is the identity on CS(F ,K)/CS(F ,K)inv.

As a result we obtain a characterization of I(Ωd(X)′2) which is not supplied by
knowing its two graded pieces.

The construction of J relies on some lemmas on the Bruhat-Tits building of G.

Denote this building by T . If σ ∈ T̂d is an oriented d-cell in T , then σ is a chain
of lattices

σ = [L0 ⊃ · · · ⊃ Ld ⊃ πL0]

(here π is the uniformizer of K, the inclusions are strict, and the whole chain is
considered up to a common homothety). We denote by F(σ) the compact and
open subset of flags ξ ∈ F which are compatible with σ in the sense that for all i,

ξi ∩ L0 + πL0 = Li.

These sets form a basis for the topology of F . Furthermore, F(τ) ⊂ F(σ) if and
only if (i) τ is parallel to σ (ii) the elementary divisors of τ w.r.t.σ are non-
increasing m0 ≥ m1 ≥ · · · ≥ md. Let r : X → |T | be the reduction of X to the
real realization of T . If σ ∈ Td, we let Xσ be the pre-image of the open chamber
|σ|, isomorphic to the multi-annulus

1 > |z1| > · · · > |zd| > |π|.

Given a finite partition of F into a union of F(σ), for σ ∈ Σ, we define a finite
subcomplex ΠΣ of T , which becomes larger and larger as the partition becomes
finer and finer, and which does not contain the σ from Σ. In particular, using fine
enough partitions, we can guarantee that the complement of the affinoid XΣ =
r−1(ΠΣ) is an arbitrarily small neighborhood of the complement of X in Pd.

Let now φ ∈ CS(F ,K). Choosing a fine enough partition as above, we may
write

φ =
∑

σ∈Σ

1F(σ) ⊗ π
∗φσ
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where the φσ ∈ C
an(Pd(K),K) is locally analytic, and extends to a rigid analytic

function in a polydisk in Pd containing Xσ, and in fact any Xτ if F(τ) ⊂ F(σ).
We then define, for ω ∈ Ωd(X)

J(φ)(ω) =
∑

σ∈Σ

resXσ (φσω).

The residue is defined as in [3]. This is then well-defined and independent of all
choices, because of a variant of “Cauchy’s theorem” for residues.

To get beyond Ωd(X)′2 we consider also φ as above which are locally meromor-
phic, and whose polar divisor is (locally) supported on the union of K-rational
hyperplanes. We can show that the image of J then intersects every step in the
filtration of Ωd(X)′ in a dense subspace. We can also compute I ◦ J by means
of what we call “partial Mittag-Leffler decompositions”. However, the results are
not as nice as for locally analytic φ, and the spaces of locally meromorphic φ do
not carry a good topology.

We have also made progress on a similar construction for k-forms, 0 ≤ k ≤ d.
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Logarithmic radii of convergence and finite coverings of

non-archimedean curves

Francesco Baldassarri

1. Polystable formal schemes

Let k be a non-archimedean valued field of characteristic 0. A standard k◦-formal
scheme is an affine k◦-formal scheme T of the form

(1) T = S(m)×
h∏

i=1

Tdi,ai ,

where

S(m) = Spf k◦{X1, . . . , Xm} ,

while, for i = 1, . . . , h,

Tdi,ai := Spf k◦{Xi,0, . . . , Xi,di}/(Xi,0 · · · · ·Xi,di − ai) ,

for ai ∈ k◦◦; it is non-degenerate if a1 · · · · ·ah 6= 0. A k◦-formal scheme X is strictly
polystable nondegenerate if every point x ∈ Xs admits a Zariski open connected
affine neighborhood U in X endowed with an étale morphism

(2) ϕ : U→ T ,
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to a standard non-degenerate k◦-formal scheme T. Then,

(3) (U, ϕ = (X1, . . . , Xm, X1,0, . . . , X1,d1 , . . . , Xh,0, . . . , Xh,dh))

is a polystable coordinate neighborhood of x ∈ X. The special fiber Xs ⊂ X defines a
canonical log-structure on X. From now on, X will thus be regarded as a log-formal
scheme, log-smooth over Spf k◦, equipped with its own canonical log-structure.
We denote by X = Xη the generic fiber of X, equipped with the specialization
morphism of G-ringed spaces

spX : XG −→ X .

For any k-analytic space Y , a k-rational strict open polydisk in Y (resp. a k-

rational strict open polyannulus in Y of height ρ ∈
√
|k×|) is an open analytic

domain in Y , isomorphic to the standard open unit polydisk

Dn
k (0, 1

−) = {x ∈ Ank | |Ti(x)| < 1 , ∀i = 1, . . . , n }

(resp. to the standard open polyannulus of height ρ

Cnk (0; (ρ, 1)) = {x ∈ Ank | ρ <
n∏

i=1

|Ti(x)| < 1} ) ,

in the k-analytic affine n-space Ank , with coordinates (T1, . . . , Tn). So, using the
coordinates

(4) (X1, . . . , Xm, X1,1, . . . , X1,d1 , . . . , Xh,1, . . . , Xh,dh) ,

ϕη the isomorphism

(5) sp−1X (x) =:]x[X
∼
−−→ P = Dm

k (0, 1−)×
h∏

i=1

Cdik (0; (|ai|, 1)) ⊂ Ank ,

for

n = m+ d1 + · · ·+ dh .

Notice that every k-rational point x = (x1, . . . , xm, x1,1, . . . , xh,dh) ∈ P (k) ad-
mits a unique maximal open neighborhood which is a strict open k-rational poly-
disk centered at x, namely

DP (x, 1
−) :=

(
m∏

u=1

D(xu, 1
−)

)
×

h∏

i=1

j=di∏

j=1

D(xi,j , |xi,j |
−) ,

where D(x, ρ−) stands for the standard open disk of radius ρ ≥ 0.
So, any x ∈ X(k) admits a unique maximal open neighborhood in ]spX(x)[X⊂

X , which is a k-rational strict open polydisk centered at x. We call it the X-
normalized unit open polydisk centered at x and denote it byDX(x, 1

−). An explicit
choice of an isomorphism

(6) (T1, . . . , Tn) : DX(x, 1
−)

∼
−−→ Dn

k (0, 1
−)

is given, in terms of the coordinates (4) by

(7) (T1, . . . , Tm) = (X1 −X1(x), . . . , Xm −Xm(x)) ,
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(Tm+1, . . . , Tn) =
(

X1,1 −X1,1(x)

X1,1(x)
, . . . ,

X1,d1 −X1,d1(x)

X1,d1 (x)
, . . . ,

Xh,1 −Xh,1(x)

Xh,1(x)
, . . . ,

Xh,dh −Xh,dh(x)

Xh,dh (x)

)

.

Locally at x, the OX-module Der(X/k◦) of k◦-linear continuous derivations of
OX, which preserve the ideal sheaf of Xs, is freely generated by

(8) (∂
(X)
1 , . . . , ∂

(X)
n ) :=

(

∂

∂X1
, . . . ,

∂

∂Xm

, X1,1
∂

∂X1,1
, . . . , X1,d1

∂

∂X1,d1

, . . . , Xh,1
∂

∂Xh,1
, . . . , Xh,dh

∂

∂Xh,dh

)

.

We denote by Diff(X/k◦) the OX-module of differential operators of OX which
preserve the ideal sheaf of Xs and, for any N = 0, 1, 2, . . . , by Diff (N)(X/k◦)
the OX-submodule of differential operators of degree ≤ N . Free generators of
Diff (N)(X/k◦) are

(9) (∂(X))[α] :=
(∂

(X)
1 )α1

α1!
· · · · ·

(∂
(X)
n )αn

αn!
,

of degree α1 + · · ·+ αn ≤ N .
This situation can easily be generalized to the case when we also have a strict

normal crossings divisor Z ⊂ X, relative to Spf k◦. We get a smooth log-scheme

(X,Z) over Spf k◦, and the same definitions (D(X,Z)(x, ρ
±), ∂

(X,Z)
i , Diff (N)

((X,Z)/k◦), . . . ).

2. The convergence polygon

Definition 6. Let x ∈ X(k). An ( (X,Z)-normalized) optimal basis of horizontal
sections of (E ,∇) at x, is a basis of E∇x , (e1, . . . , eµ), such that there exists real
numbers f1(x) ≥ f2(x) ≥ · · · ≥ frk E(x) ≥ 0 such that ei prolongs to a horizontal
section of (E ,∇) on D(X,Z)(x, (e

−fi(x))−), and that h(X,Z)(x) := f1(x) + f2(x) +
· · ·+ frk E(x) ≥ 0 be minimal for this property.

An optimal basis exists at any x ∈ X(k). We define the (X,Z)-normalized
convergence polygon of (E ,∇) at x as in Fig. 1 [1], [2], [8], [9], [10], [11]. A general
point x ∈ X , corresponds to a bounded character

χx : B →H (x) =: K .

We define the canonical K-rational point xK ∈ XK(K) above x by its character

χxK = χx⊗̂idK : B⊗̂kK → K .

We then set

(10) N(X,Z)(x; (E ,∇)) := N(X,Z)⊗̂K◦(xK ; (E ,∇)K) .

We expect that x 7→ N(X,Z)(x) be continuous and piecewise affine on X , and
that it define a finite n+1-polyhedron aboveX . In the case of curves and for ζ = ∅,
these results have been announced here [10], [11]. The function x 7→ h(X,Z)(x) is
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∗

∗✏
✏✏✏✏∗

slope fµ1+···+µs−1+1 = · · · = frk E ≥ 0
∗

µ1 µ1+µ2

. . . . . .

µ1+···+µs−1 rk E

h(X,Z)(x)

∗Frk E = h(X,Z)(x, (E ,∇)

∗

Fµ1+µ2∗

Fµ1 ∗

Figure 1. The convergence polygon N(X,Z)(x)

harmonic at points of type 2,3 in X \Z, except for a finite number of points of type
2, where is still is subharmonic [8]. We interpret the laplacian of x 7→ h(X,Z)(x)
at those points as an index. i.e. as an Euler-Poincaré characteristic in De Rham
cohomology. There is no difficulty in extending these notions to compact smooth
dagger curves.

3. Finite morphisms of non-archimedean curves

Let ϕ : Y → X be a finite morphism of connected compact rig-smooth strictly k-
analytic dagger curves branched overB ⊂ X(k), and let Z = ϕ−1(B). Then ϕmay
be seen as a finite log-étale morphism (X,Z)→ (X,B). We assume that this ex-
tends to a finite morphism Φ : (Y,Z)→ (X,B) of strictly polystable formal models
[5]. The direct image connection ϕ∗(OY , dY ) is a logarithmic connection (F ,∇F)
on (X,B)/k, and the convergence polygon x 7→ N(X,Z)(x; (F ,∇F )) is defined all
over X . The De Rham cohomology of Y (resp. of X) is finite-dimensional [7].
We are trying to prove that, for a sufficiently refined choice of the formal models
(Y,Z) and (X,B), a Riemann-Hurwitz formula exists and is formulated in terms
of the Laplacian of the function x 7→ h(X,B)(x; (F ,∇F )).
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Real differential forms and currents on Berkovich spaces

Antoine Chambert-Loir

(joint work with Antoine Ducros)

In this talk, I described the first steps of a theory of differential forms with real
coefficients and currents on an analytic space in the sense of Berkovich. The
motivation for this work is the quest for an analytic non-archimedean Arakelov
geometry. Two main ideas lie at the hear of the construction: a local version of
tropical geometry (see for example [11]) and the definition in [12] of a bicomplex of
differential superforms on a real vector space. A preliminary version of this work
is available in [6].

To any hermitian line bundle L̄ on a complex manifold X , complex geometry
attaches a curvature form c1(L̄) which is a differentialform of type (1, 1) on X
and represents the class of the line bundle L in the De Rham cohomology of X .
If dim(X) = n, its power c1(L̄)

n is a form of type (n, n), hence gives rise to a
measure on X . Such measures appear naturally in arithmetic geometry, notably
in equidistributions theorems.

Indeed, let X be a flat and projective Z-scheme, let L be a pair consisting of a
line bundle L on X together with a hermitian metric on the holomorphic line bun-
dle L onX = X (C). Using Arakelov geometry, [4] defines a height function h

L
on

the set of cycles on X , in particular a height function on X (Q̄) which is invariant
under the action of the Galois group. Moreover, if L is relatively semipositive,
LQ is ample and the hermitian metric is nonnegative, [16] proved an equidistri-
bution theorem for points of “small height” which generalizes the theorem of [13].
The limit measure on X is precisely the measure c1(L̄)

dim(X)/ degL(X). (In fact,
it is sufficient that the metric be only continuous and nonnegative, then c1(L̄) is a
current whose product c1(L̄)

n exists as a measure.) In turn, such equidistribution
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theorems have been essential for the proof of the Bogomolov conjecture ([14, 18])
that describes points of small Néron-Tate height on subvarieties of abelian varieties
over number fields.

Let us now pass to non-archimedean geometry. Let p be a prime number and
let Xp be the analytic space in the sense of [2] associated to X ⊗Qp. [5] defined a
measure on Xp attached to the p-adically metrized line bundle induced by (X ,L )
on Xp; the construction holds for the more general admissible metrics defined
by [17]. Moreover, similar equidistribution theorems hold, as shown there for
curves, and by [16] in general. As observed by [8, 9, 10, 7], there is also an
analogous theory for function fields which allowed [9, 15] to prove new instances
of the Bogomolov conjecture over function fields.

I now describe my work [6] with Ducros.
Let k be a field with a non-archimedean absolute value, complete; let X be an

analytic space over k in the sense of [2, 3].
A smooth function on X is a real valued function which can be written locally

φ(log|f1|, . . . , log|fr|), where f1, . . . , fr are holomorphic invertible functions on X
and φ is a C∞-function on Rr. Smooth functions form a subsheaf AX of the
sheaf of real valued continuous functions on X . If X is good and paracompact, for
example if X is the analytic space associated to an algebraic variety, this sheaf is
fine (there are partitions of unity).

If f1, . . . , fr are defined on an open subset U , we obtain an analytic morphism
f : U → Gr

m from U to the r-dimensional torus T = Gr
m. Such a datum allows

to borrow techniques from tropical geometry. Let trop: Gr
m → Rr be the trop-

icalization map x 7→ (log|T1(x)|, . . . , log|Tr(x)|); we write ftrop = trop ◦ f . By a
theorem of Ducros which generalizes a result of Berkovich, ftrop(V ) is a compact
polyhedron of Rr for every compact analytic domain V of U . We shall hence call
a triple (U, f, P ), where U and f are as above, and P is a polyhedron containing
ftrop(U) a tropical chart.

To define differential forms on X , we first work locally and consider such a
tropical chart (U, f, P ). On an open subset Ω of the real space E = Rr, A.
Lagerberg [12] defined a superform of type (p, q) to be an element of

A
p,q(Ω) = C

∞(Ω)⊗

p∧
E∗ ⊗

q∧
E∗,

thus doubling the De Rham complex of Rr. In coordinates, one may write such a
form as

ω =
∑

1≤i1<···<ip≤r
1≤j1<···<jq≤r

ωIJ d
′ xi1 ∧ · · · ∧ d′ xip ⊗ d′′ xj1 ∧ · · · ∧ d′′ xjq .

Superforms form a graded commutative algebra, possess two differentials d′ and
d′′, respectively defined by the graded Leibniz rule and the formulas

d′ φ =
r∑

i=1

∂φ

∂xi
d′ xi, d′′ φ =

r∑

j=1

∂φ

∂xj
d′′ xj .
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Lagerberg’s definition can be extended to superforms on polyhedra.
Let U be an open subset of X . The limit of all spaces A p,q(P ), where (U, f, P )

ranges over all tropical charts of U , define a pre-sheaf on X ; its associated sheaf
is the sheaf A

p,q
X of smooth (p, q)-forms on X . Forms of type (0, 0) are identified

with smooth functions.
As observed by Lagerberg, one may integrate forms of type (r, r) on an open

subset ofRr. However, the resulting number depends on the choice of a coordinate
system. Consequently, to integrate forms of type (n, n) on a real polyhedron P
of dimension n, one needs to fix Haar measures on all n-dimensional faces of P .
Precisely, we introduce the notion of a calibration of P which amounts, up to the
choice of a fine enough polytopal decomposition of P , of a pair (o, v) consisting of
an orientation and of a n-vector for each n-dimensional face of P , and identifying
(o, v) with (−o,−v).

We prove that any polyhedron written as the tropicalization ftrop(X) of a com-
pact analytic space, for some morphism f : X → T , has a canonical calibration.
The construction of this calibration is defined using basic properties of finite flat
morphisms on analytic spaces. This allows to integrate forms of type (n, n) on an
analytic space of dimension n.

The usual Stokes formula on half-spaces of a real vector space gives rise to
an analog for polyhedra, where the integration on (n − 1)-dimensional faces is
done with respect to an ambient n-vector which is the sum of n-vectors on all
adjacent faces. This gives rise to the “boundary integral” of a (n − 1, n)-forms
and to a Stokes formula in analytic geometry. A far reaching generalization of the
balancing condition in tropical geometry states that if a (n−1, n)-form vanishes on
the boundary ∂(X) of the analytic space X (boundary in the sense of Berkovich),
then its boundary integral vanishes.

At that point, one can begin to define currents by duality. Space is too short
to describe the rest of the construction here. There is an analog of the Poincaré-
Lelong equation d′ d′′ log|f | = δdiv(f). Line bundles with smooth metrics have a
curvature (1, 1)-form; using the Poincaré-Lelong equation, we prove that for proper
analytic spaces, integrating the maximal power of curvature forms captures the
degree of line bundles in intersection theory.

Taking models in formal geometry gives rise to continuous metrics for line bun-
dles. However these metrics are not smooth in general; consequently, their cur-
vature form is not a form, but a current. Adapting methods of [1] from pluripo-
tential theory, we can show that these currents multiply. Finally, we prove that
if dim(X) = n, the nth power of such a current is equal the measure previously
defined in [5].
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Perfectoid spaces and étale local systems

Kiran S. Kedlaya

We report on some recent developments providing a new geometric basis for p-adic
Hodge theory1, which appear in our papers [3, 4, 5] and independently in the work
of Scholze [6, 7].

Let A be a uniform (commutative) Banach algebra over Qp equipped with its
spectral norm. We say A is perfectoid if for all x ∈ A, there exists y ∈ A with
|x−yp| ≤ p−1|x|. For example, if A is an analytic field, then A is perfectoid if and
only if A is not discretely valued and the Frobenius map on A◦/(p) is surjective.
Also, the completion of any arithmetically profinite extension of Qp is perfectoid.

Theorem 7. Let A be a perfectoid algebra with Gel’fand spectrumM(A).

1It is likely that there exist numerous applications beyond p-adic Hodge theory. For in-
stance, [6] includes a striking partial result on the weight-monodromy conjecture for ℓ-adic étale
cohomology.
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(a) Every rational subspace ofM(A) is represented (in the category of uniform
Banach algebras) by a bounded homomorphism A→ B with B perfectoid.

(b) The structure sheaf on the G-topology of special subsets (finite unions of
rational subdomains) ofM(A) has ring of global sections equal to A.

(c) The adic spectrum Spa(A,A◦) is an adic space2 (by (a) and (b)).
(d) Let B,C be additional perfectoid algebras and let A → C and B → C be

bounded homomorphisms. Then the completed tensor product A⊗̂CB is
uniform and perfectoid.

(e) Let B be a finite étale A-algebra. Then the Banach A-module norm on
B is equivalent to a power-multiplicative norm under which B is again
perfectoid.

These and other basic properties of perfectoid algebras are derived using the
perfectoid correspondence. For A perfectoid, let R(A)+ denote the inverse limit
of A◦/(p) under Frobenius. As usual in p-adic Hodge theory, R(A)+ admits the
power-multiplicative norm |(· · · , x1, x0)| = limn→∞ |x̃n|p

n

where x̃n ∈ A◦ lifts
xn ∈ A◦/(p) (the limit exists because the sequence stabilizes). There is a natural
surjective3 homomorphism θ :W (R(A)+)→ A◦ (where W denotes Witt vectors);
put R(A) = R(A)+[θ(p)−1] and extend the norm multiplicatively.

Theorem 8. Let A be a perfectoid algebra.

(a) The ring R(A) is a perfect uniform Banach algebra over Fp and R(A)◦ =
R(A)+.

(b) For A → B a bounded morphism representing a rational subdomain of
M(A), R(A) → R(B) represents a rational subdomain of M(R(A)), and
every rational subdomain of M(R(A)) arises uniquely in this way.

(c) For B a finite étale R-algebra, R(B) is a finite étale R(A)-algebra, and
every finite étale R(A)-algebra arises uniquely in this way. (This can be
used to recover the almost purity theorem of Faltings.)

(d) The construction in (b) induces a functorial homeomorphism M(A) ∼=
M(R(A)) for the natural topology, the strictly special G-topology, and
the special G-topology, and a functorial homeomorphism Spa(A,A◦) ∼=
Spa(R(A), R(A)◦) for the natural topology and the étale topology.

A perfectoid space is an adic space which is locally isomorphic to Spa(A,A+)
where A is a perfectoid algebra and A+ is an open subring of A◦ which is integrally
closed in A such that the Frobenius map on A+/(p) is surjective. Unlike the
category of adic spaces, the category of perfectoid spaces admits4 fibred products.

Problem. Let A be a uniform Banach algebra over Qp equipped with its spectral
norm. Suppose that Spa(A,A◦) is a perfectoid adic space. Must A be a perfectoid
algebra?

2This gives numerous examples of adic spaces for which A is not strongly noetherian.
3The kernel of θ is principal; its generators are primitive of degree 1 in the sense of [2].
4In addition, if X, Y are perfectoid spaces and X → Z, Y → Z are morphisms in the category

of uniform adic spaces, we expect that X ×Z Y exists and is perfectoid.
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Certain constructions in p-adic Hodge theory naturally give rise to sheaves on
perfectoid spaces. For example, for any perfectoid algebra A, there is an analogue
of the Fargues-Fontaine construction [2] giving a scheme CA some of whose vector
bundles (those satisfying a pointwise stability condition) correspond to the étale
Qp-local systems on Spa(A,A◦). The CA glue as adic spaces.

To study étale local systems on Berkovich spaces, we cover these spaces by
perfectoids. For example, put Sn = AnQp

and let Y be the perfectoid space obtained

from Sn by adjoining the p-power roots of 1 and of the coordinate functions. Then
for any unramified morphism ψ : X → Sn, the product X×ψ,SnY is perfectoid and
admits an action of a group Γ = Z×p ⋉Znp . We can then study étaleQp-local systems
on X using (ϕ,Γ)-modules over a relative Robba ring, generalizing Andreatta and
Brinon [1], or Γ-equivariant vector bundles on relative Fargues-Fontaine curves.

To globalize further, it is convenient to use Scholze’s proétale topology; this
simplifies matters because étale Qp-local systems correspond to genuinely locally
constant Qp-sheaves for the proétale topology. For example, Scholze uses this lan-
guage to construct a de Rham-étale comparison isomorphism for analytic spaces;
we plan to extend this construction to nontrivial coefficients. We also plan to con-
sider universal local systems on (transversal subspaces of) Rapoport-Zink period
domains; this should connect to the ongoing work of Scholze and Weinstein on the
moduli of p-divisible groups.
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Finiteness results for vanishing cycles of formal schemes

Vladimir G. Berkovich

Let k be a non-Archimedean field with nontrivial valuation, k◦ its ring of integers,

and k̃ its residue field. A formal scheme X over k◦ is said to be locally finitely
presented if it is a locally finite union of open affine subschemes of the form Spf(A)
with A isomorphic to a quotient of k◦{T1, . . . , Tm} by a finitely generated ideal. If
the valuation on k is discrete, a formal scheme X over k◦ is said to be special if it
is a locally finite union of open affine subschemes Spf(A) with A isomorphic to a
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quotient of k◦{T1, . . . , Tm}[[S1, . . . , Sn]]. In both cases, the generic fiber Xη of X
is a paracompact strictly k-analytic space, and the closed fiber Xs of X is a scheme

of locally finite type over k̃. In [1] and [2], we defined for both classes of formal
schemes, respectively, a vanishing cycles functor Ψη from the category of étale

sheaves on Xη to the category of étale sheaves on Xs = Xs⊗k̃ k̃
s provided with an

action of the Galois group of k. The comparison theorem from [1, 5.3] (resp. [2,

3.1]) implies that if X is the formal completion X̂/Y of a scheme X of finite type over
k◦ along an open (resp. arbitrary) subscheme Y ⊂ Xs, then for any finite abelian

group Λ of order prime to char(k̃) there is a canonical isomorphismRΨη(ΛXη)
∣∣
Y

∼
→

RΨη(Λ(X̂/Y)η
). In particular, the vanishing cycles sheaves RqΨη(ΛXη) of such a

formal scheme X are constructible.

Theorem 1. Let X be a locally finitely presented (resp. special) formal scheme
over k◦ for an arbitrary (resp. discretely valued) k. Then for any finite abelian

group Λ of order prime to char(k̃), the vanishing cycles sheaves RqΨη(ΛXη) are
constructible.

The statement of Theorem 1 for locally finitely presented formal schemes is
deduced from the following finiteness result.

Theorem 2. Let k be an algebraically closed non-Archimedean field, and let
X be a compact k-analytic space. Then for any finite abelian group Λ of order

prime to char(k̃), the étale cohomology groups Hq(X,Λ) are finite.

In [1, 5.6], the statement of Theorem 2 was proven under the assumption that
X is locally isomorphic to an analytic domain in the analytification of a scheme
of finite type over k. If the characteristic of k is zero, the statements of Theorem
2 as well as of Theorem 1 for locally finitely presented formal schemes (resp. the
formal completions X/Y of a locally finitely presented formal scheme X along a
subscheme Y ⊂ Xs) follow from results of Huber ([3] and [4]). In the general case,
Theorem 2 is deduced from Gabber’s weak uniformization theorem [5, Exp. VII,
1.1]. Theorem 1 for special formal schemes is deduced from a version of Gabber’s
result.
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Galois representations and perfectöıd spaces

Jean-Marc Fontaine

This talk is an attempt to describe the link between the constructions I made with
Laurent Fargues [1],[2] and the work of Peter Scholze on perfectóıd spaces [3] as
well as some natural generalizations, some of them already considered by Kiran
Kedlaya and Ruochuan Liu [4].

We fix a prime number p. In this talk:
– An ultrametric field is a field E complete with respect to a non trivial non

archimedean absolute value whose residue field kE is of characteristic p.
– An ultrametric submultiplicative norm on a commutative ring A is a map

| · | : A→ R≥0

such that |a| = 0 ⇐⇒ a = 0, |a+ b| ≤ max{|a|, |b|}, |1| = 1, |ab| ≤ |a||b|).
– A Banach ring is a commutative ring A equipped with an equivalence class of

ultrametric submultiplicative norms (called the admissible norms), complete with
respect to the topology they define and admitting a pseudo-uniformizer, that is
an invertible topologically nilpotent element.

If A is a Banach ring, it is reduced. Moreover, if we set

A0 =
{
a ∈ A | ∃C s.t. |an| ≤ C

}
, A00 =

{
a ∈ A | (an)n∈N is top. nilp.

}
,

then A0 is an open subring independent of | · | and A00 is an open ideal of A0.
– A spectral ring is a Banach ring A such that A0 is bounded. This is equivalent

to requiring the existence of a power multiplicative admissible norm (|an| = |a|n,
if a ∈ A and n ∈ N).

– A perfectöıd ring is a spectral ring admitting a pseudo-uniformizer π which
is a pth-power and such that A0/πA0 is a ring of characteristic p on which the
absolute Frobenius x 7→ xp is surjective.

– A perfectöıd field is an ultrametric field which is a perfectöıd ring.
– If E is any ultrametric field, a perfectöıd E-algebra is a Banach E-algebra

which is a perfectöıd ring, though a perfectöıd kE-algebra is a perfectöıd ring
containing kE as a discrete subfield.

– If E is any ultrametric field, π a pseudo-uniformizer of A and R any perfect

ring containing kE = Ẽ, the π-adic completion WE0(R) of E0 ⊗W (kE) W (R) is

the unique E0-algebra separated and complete for the π-adic topology which is π-
torsion free and such that its reduction mod E00 isR. The projectionWE0(R)→ R
has a unique multiplicative section a 7→ [a] = 1⊗̂(a, 0, . . . , 0, . . .).

– If E is an ultrametric field such that E0 is a dvr and if π is a generator of
E00, a perfectöıd E-pair is a pair (R, I) with R a perfectöıd kE-algebra and I a
principal ideal of WE0(R0) with a generator of the form [λ]− πη with λ a pseudo-
uniformizer of R and η a unit in WE0(R0).

The tilting functor associate to any perfectöıd ring A a perfectöıd ring of char-
acteristic p

A♭ = {a = (a(n))n∈N | a
(n) ∈ A , (a(n+1))p = a(n)

}
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with (a+ b)(n) = limm→+∞(a(n+m) + b(n+m))p
m

, (ab)(n) = a(n)b(n) and |a| = |a(0)|).
If char(A) = p, the map a 7→ a(0) identifies A♭ to A.

Let E be an ultrametric field such that E0 is a dvr and let π be a generator of
E00. If A is a perfectöıd E-algebra, the map

θA :WE0(A♭,0)→ A0

(here A♭,0 = (A♭)0) sending
∑+∞
i=0 [ai]π

i to
∑
a
(0)
i πi is a surjective homomorphism

of E0-algebras and (A♭, ker θA) is a perfectöıd E-pair. The map

A→ (A♭, ker θA)

induces an equivalence of categories between perfectöıd E-algebras and perfectöıd
E-pairs. A quasi-inverse is the functor

(R, I) 7→ (R, I)♯E = (WE0(R0)/I)[1/π] .

A corollary of this result is Scholze’s equivalence of categories between per-
fectöıd algebras over a perfectöıd field K and perfectöıd K♭-algebras.

Let E be an ultrametric field, R a perfectöıd kE-algebra and π (resp. ̟) a
pseudo-uniformizer of E (resp. R). We set

Bb,+E (R) =WE0(R0)[ 1π ] and BbE(R) = Bb,+E (R)[ 1
[̟] ] .

We fix q > 1 and denote vπ : E → R ∪ {+∞} the valuation on E normalized
by vπ(π) = 1 and v̟ : R → R ∪ {+∞} the unique map such that v̟(̟) = 1,
v̟(̟

−1) = −1 and that the map | · |̟ : R → R≥0 defined by |a|̟ = q−vπ(a) is a
power multiplicative admissible norm.

If r > 0 and if ρ = q−r, there is a unique norm | · |ρ on BbE(R) such that,
if (an)n∈N is a bounded sequence of elements of R and (νn)n∈N is a sequence of
elements of E going to 0 with vπ(νn+1) > vπ(νn) for all n, then

∣∣
+∞∑

n=0

[an]νn
∣∣
ρ
= q−minn∈N{v̟(an)+rvπ(νn)} .

We denote BE(R) the completion of BbE(R) for these | · |ρ’s. This a Fréchet E-
algebra. If I denote the set of non empty closed intervals contained in (0, 1), we
have

BE(R) = lim
←− I∈I

BE,I(R)

where BE,I(R) is the Banach algebra completion of BbE(R) for the norm | · |I
defined by |f |I = maxρ∈I{|f |ρ}. Moreover, for each I ∈ I,

• BE(R) is a spectral ring,
• if E is a perfectöıd field BE,I(R) is a perfectöıd E-algebra and (BE(R)

♭ =
BE♭,I(R),
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• Y ad
E,I(R) := Spa(BE(R), B

0
E(R)) is an adic affinöıd space in the sense of

Huber, i.e. the structural presheaf over the associated topological space
|Y ad
E,I(R)| is a sheaf.

This last result is, granted to Scholze, a consequence of the second when E is
perfectöıd. The general case can be deduced from this special case by a suitable
scalar extension followed by a kind of faithfully flat descent. As a consequence, we
see, that we can associate to our construction an adic space in the sense of Huber

Y ad
E (R) = lim

−→ I∈I
Y ad
E,I(R) .

When kE is finite with q elements, there is a unique continuousE-automorphism
ϕ of BbE(R) such that ϕ([a]) = [aq] for all a ∈ R. It extends uniquely to a
continuous automorphism of BE(R) and defines also an automorphism of Y ad

E (R).
One can define the adic space Xad

E (R) quotient of Y ad
E (R) by the group ϕZ(≃ Z).

If E is locally compact and if we chose a Galois extension E∞ of E which is
arithmetically profinite, but not finite, the completion K of E∞ is a perfectöıd
field and K♭ is the completion of the radical closure of the field of norms E of the
extension E∞/E. We have canonical identifications

|Y ad
K (R)| = |Y ad

K♭(R)| and |Y ad
K♭(R)| = |Y

ad
E (R)|

(in Scholze’s terminology, for all I ∈ I, the tilt of the perfectöıd space Y ad
K,I(R)

is Y ad
K♭,I

(R) and this implies they have the same underlying topological space,

the second identification results from the fact that BK♭,I(R) is nothing but the
completion of the radical closure of BE,I(R)). Moreover Γ = Gal(E∞/E) acts on

Y ad
K (R) and |Y ad

E (R)| = |Y ad
K (R)|/Γ.

Assume moreoverR = F a perfectöıd field. ThenXad
E (F ) can be viewed as some

analytisation of the curve XE(F ) I constructed with Laurent Fargues. Assume F
algebraically closed and consider the punctured unit disk

D∗ =
{
λ ∈ F | 0 < |λ| < 1

}
.

For ? = E,K♭,K,E the set Spm B?(F ) of closed maximal ideal of B?(F ) is a
subset of |Y ad

? (F )| and we have identifications

D∗ = Spm BE(F ) = Spm BK♭(F ) = Spm BK(F ) , D∗/Γ = Spm BE(F ){
closed points of XE(F )

}
= D∗/(Γ× ϕZ) .

References

[1] L. Fargues, J.-M. Fontaine, Vector bundles and p-adic Galois representations. Fifth ICCM.
Part 1, 2, 77–113, AMS/IP Stud. Adv. Math. 51, Amer. Math. Soc., Providence, RI, 2012.

[2] L. Fargues, J.-M. Fontaine, Courbes et fibrés vectoriels en théorie de Hodge p-adique,
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Continuity and finiteness of the convergence Newton polygon of a

p−adic differential equation

Andrea Pulita

(joint work with Jérôme Poineau)

Abstract. We prove the local finiteness of the convergence Newton polygon of
a differential equation over a quasi-smooth K-analytic curve, in the sense of
Berkovich theory. If (F ,∇) is the equation, for each x ∈ X , we define the conver-
gence Newton polygon NP conv(F , x) of F , whose first slope is the logarithm of
the radius of convergence function of F , and the other slopes are the logarithms
of the radii of convergence of all the Taylor solutions of F at x. The finiteness
result means that there exists a locally finite graph Γ(F ) ⊂ X , together with a
canonical retraction δF : X → Γ(F ), such that the partial heights of the conver-
gence Newton polygon as functions on X factorize through δF . Roughly speaking
this result implies that there are only a finite number of numerical invariants that
one can extract from the slopes of the partial heights of the Newton polygon along
the segments of X . As a corollary we have their continuity.

In the ultrametric context the (one variable) radius of convergence function of a
differential module M is an important invariant by isomorphisms. It is a function
defined over a certain Berkovich space X and its slopes along the segments of X
are numerical invariants (by isomorphism) of M. If M is a differential module
over K((T )), where K is trivially valued and of characteristic 0, then from the
knowledge of the radius of convergence function of M (and of its submodules)
one can recover the B.Malgrange irregularity of M, the Poincaré-Katz rank of M,
and more generally the entire formal Newton polygon. The Radius of convergence
function is also a major tool in the proof of the p-adic local monodromy theorem
(cf. [1], [9], [5]), and more recently of the Sabbah’s conjectures (cf. [6]). The
radius of convergence function is today one of the most important invariants of
an ultrametric differential module. In this paper we prove its finiteness. Roughly
speaking this implies that the numerical invariants that one can extract from the
slopes of the radius of convergence function along the segments of X are finite in
number. We now explain what this means, and we give an idea of the proof.

Let (K, |.|) be a complete valued ultrametric field of characteristic 0. Let X
be a quasi-smooth1 K-analytic curve, in the sense of Berkovich theory. We recall
the Ducro’s notion of (weak) triangulation, which is a way of cutting a curve into
pieces that are isomorphic to virtual disks or annuli. Let Γ be a locally finite
graph (i.e. a finite union of closed segments) in X . If Γ contains the skeleton
ΓS of the triangulation, then the inclusion Γ ⊂ X admits a canonical retraction
δΓ : X → Γ, and X is the topological projective limit of such retractions (cf. [2,

Thm.2.20]). If X is an affinoid subset of the affine line A1,an
K , we provide a set of

sufficient conditions that guarantee that given function f : X → T , where T is

1Quasi-smooth means that ΩX is locally free, see [4, 2.1.8]. This corresponds to the notion
called “rig-smooth” in the rigid analytic setting.
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a set, factorizes through such a retraction δΓ. In this case Γ = Γ(f) is called the
skeleton of f . Roughly speaking Γ(f) is the complement in X of the union of all
the disks on which f is constant. The conditions of the criterion are the following:

(C1) For all K-rational point x ∈ X there exists an open disk containing x on
which f is constant.

(C2) f is piecewise linear, continuous, with a finite number of breaks on each
closed segment of X .

(C3) There exists a finite connected union of closed segments Γ such that if
D−(t, ρ) ∩ Γ = ∅, then f is log-concave (hence decreasing by (C1)) on the
segments inside D−(t, ρ).

(C4) The modulus of all possible non zero slopes of f at any point is lower
bounded by a positive real number νf > 0, which is independent on the
Berkovich point.

(C5) Γ(f) is directionally finite at all its bifurcation points i.e. there are a finite
number of branches of Γ(f) passing through a bifurcation point x of Γ(f).

(C6) f is super-harmonic outside a finite set C (f) ⊆ X .

Among the functions satisfying these properties there are the functions of O(X),
but also those of the type min(|f1|−α1 , . . . , |fn|−αn), with αi > 0, and many others.
These properties are modeled on those satisfied by the partial height of the Newton
polygon of a differential operator. The rough idea of the proof is that the super-
harmonicity implies that at each bifurcation point of Γ(R) the function R has a
break, while the assumption (C2) provides that there are a finite number of breaks,
and hence a finite number of bifurcation points.

Let now (M,∇) be a differential module over the differential ring (O(X), d
dT ).

Let Y ′ = G(T ) · Y , G ∈ Mr(O(X)), be the differential equation associated to M
in a basis. One is allowed to consider Taylor solutions of this equation and test
their radius of convergence at each point of X(Ω), for all complete valued field
extension Ω/K. This fact permits to associate to any Berkovich point ξ ∈ X
a radius of convergence by testing Taylors solutions at tξ := T (ξ) ∈ X(H (ξ)).
Namely denote by Y (T, tξ) the Taylor solution of this equation around tξ, with

initial value Y (tξ, tξ) := Id. If Y (n) = Gn(T ) ·Y is the n-th iterate of the equation,

then Y (T, tξ) :=
∑
n≥0Gn(tξ)

(T−tξ)
n

n! . The minimum of the radii of convergence

at tξ of the entries of Y (T, tξ) is given by RY (ξ) := lim infn |
Gn(tξ)
n! |

−1/n
Ω . One

obtains a function RY : X → R>0 depending on the chosen basis of M. In order
to make this number invariant by base changes in M one sets

(1) RM(ξ) := min(lim inf
n

ξ(Gn/n!)
−1/n, ρξ,X) ,

where ρξ,X is the radius of the largest open disk centered at tξ ∈ X(H (ξ)) con-

tained in X⊗̂H (ξ). RM : X → R>0 is called the radius of convergence function
of M. It represents the smallest radius of convergence of a Taylor solution of M
around tξ. We now refine this construction by taking in account the other radii.
The vector space of germs of convergent solutions at tξ ∈ X(H (ξ)) is naturally
filtered by the radius of convergence of its elements. We associate a polygon
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NP conv(M, ξ) to this filtration, called convergence polygon of M at ξ. Its first
slope sM1 (ξ) = hM1 (ξ) is equal to ln(RM(ξ)). For i = 1, . . . , r its i-th slope is given
by sMi (ξ) := ln(RM

i (ξ)), where RM
i (ξ) ≤ ρξ,X is the radius of the largest open disk

centered at tξ on which M admits at least r − i + 1 linearly independent Taylor
solutions, where r is the rank of M. This defines univocally NP conv(M, ξ) as the
epigraph2 of the convex function h : [0, r] → R defined by the fact that h(0) = 0,
and that h(ξ) is linear on [i − 1, i] with slope sMi (ξ). The values hMi (ξ) := h(i)
are called the i-th partial heights. The main result provides important properties
on the behavior of NP conv(M, ξ) as a function of ξ. Namely we prove that the
functions RY ,RM, sMi , h

M
i : X → R>0 are all finite functions i.e. they have a finite

skeleton and factorize through it. As a consequence one has their continuity. We
precise moreover a family of formal properties enjoyed by them as the piecewise
linearity, convexity, super-harmonicity, integrality. Roughly speaking this result
means that there are a finite number of numerical invariants of M that one can
extract from the slopes of RY ,RM, sMi , h

M
i along the branches of X , and that

these functions are all definable in the sense of [8]. We prove this basically by
a classical result due to Young [10] permitting to control “small” slopes of the
polygon. In the non p-adic case, this is enough to control all the slopes since they
are always “small”. In the p-adic case the “big” values of the slopes are reduced
to the “small” values by using the Frobenius push-forward techniques as in [7] and
[3].

In the second step we show how to deduce from this the local finiteness of Γ(F )
on a general curve. Around each point that does not admit as a neighborhood an
affinoid of the affine line we use a slight improvement of A.Ducros result providing
a locally étale morphism with values into the affine line with particularly good
properties. We give the exact behavior between the polygon of F and its push-
forward on the affine line.
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The Arithmetic Hodge index theorems and arithmetic Berkovich

spaces

Shou-Wu Zhang

(joint work with Xinyi Yuan)

Let us recall the classical Hodge index theorem for a fiberation π : X −→ B of
a projective and smooth variety over a project and smooth curve of dimension
relative dimension n ≥ 1. Let L1, · · · , Ln−1 be ample line bundles on D, and
D ∈ N(X/B) a non-zero element satisfying the condition Dη · L1,η · · ·Ln−1,η = 0
on the generic fiber Xη. The classical Hodge index theorem asserts:

D2 · L1 · · ·Ln−1 < 0.

In [1, 2], Faltings and Hiriljac have proved a Hodge index theorem for arithmetic
surfaces. In [3], such a Hodge index theorem has been generalized to high dimen-
sional arithmetic varieties.

In this talk, we give a further extension to projective and flat families π : XU −→
U over an open variety U in either algebraic geometry or arithmetic geometry. In
the case of algebraic geometry, U is an open variety over a field k, and in case of
arithmetic geometry, we assume that U is flat and of finite type over SpecZ.

First we construct a group P̂ic(XU )int of integral metrized line bundles on XU
as follows: define a group of model metrized line bundles:

P̂ic(XU )mod := lim
−→
X

P̂ic(X )

where the limit runs over all projective and flat models X −→ B such that B
is either projective over k in algebraic geometry, or projective and flat over Z in

arithmetic geometry, and P̂ic(X ) is the usual Picard group in algebraic geometry
or the group of Hermitian line bundles in arithmetic geometry. Then we define a

topology in this group using an strictly effectively divisor D̂ with support |D| =

X0 \ U . The completion is denoted by P̂ic(XU )cont. More precisely, an element
L̄ in this group is represented by data (L̄i,mi,j) (i ≥ j ≥ 1) with a convergence
condition, where

(1) L̄i is a sequence of line bundles on models Xi with compatible morphisms
πi,j : Xi −→ Xj (i ≥ j ≥ 0) of U-models, and

(2) ℓi,j is a compatible system of rational sections of Li⊗π∗i,jL
−1
j whose divisor

supports on Xi \ U .
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The convergence condition is follows: for any ǫ > 0 there is a i0 such that for any
i ≥ j ≥ i0, the divisors

ǫπ∗i,0D̂ ± d̂ivℓi,j

are both strictly effective. The group P̂ic(XU )int of integrate metrized line bundles
are of form

L̄ = (lim L̄′n)− (lim L̄′′n)

with all L̄′n and L̄′′n nef bundles.
Let X −→ SpecK denote the generic fiber of X −→ U . Then we define

P̂ic(X)int = lim
−→
U

P̂ic(XU )int, P̂ic(K)int = lim
−→
U

P̂ic(U)int.

All of these elements can be realized as metrized line bundles in Berkovich spaces
Xan and (SpecK)an. We can define (absolute) intersection pairing on

P̂ic(K)d+1
int −→ R, (H̄1, · · · , H̄d+1) 7→ H̄1 · · · H̄d+1,

and relative intersection pairing

P̂ic(X)n+1
int −→ P̂ic(K)int : (L̄1, · · · , L̄n+1) 7→ π∗(L̄1 · · · L̄n+1).

Definition 9. Let L̄ = (L, ‖ · ‖L), M̄ = (M, ‖ · ‖M ) ∈ P̂ic(X)int and H̄ ∈

Ŝpec(K)int.

(1) H̄ ≫ 0: H̄ is big and nef, i.e., it is the limit of nef bundles with positive
highest self-intersection.

(2) H̄ ≥ 0: H̄ is pseudo-effective, i.e., it has non-negative intersection with
big and nef bundles.

(3) L̄ ≫ 0: L is ample, L̄ is nef with positive L̄dimY · Y ≫ 0 for any sub
variety Y of X.

(4) M̄ is L̄-finite: there are ǫ > 0 such that

L̄≫ ǭM ≫ −L̄.

Theorem 10. Let M̄, L̄1, · · · , L̄n−1 be adelic line bundles on X such that every
L̄i are positive and that M · L1 · · ·Ln−1 = 0 on X, then

π∗(M̄
2 · L̄1 · · · L̄n−1) ≤ 0.

Moreover, if M̄ is L̄i-finite for each i, then the equality holds if and only if M̄ =
f∗M̄ ′ for some adelic bundle M ′ on SpecK.

Remark 11. LetW denote the subspace of P̂ic(X)int of elements which are Li-finite
for all i with pairing defined by

〈M̄1, M̄2〉 = M̄1 · M̄2 · L̄1 · · · L̄n−1.

Then the theorem implies that the pairing is non-degenerate, that V := π∗P̂ic(K)int
is a maximal isotropic subspace, and that V ⊥/V is negatively defined.

Remark 12. When K is a number field, and M̄, L̄1, · · · , L̄n−1 are realized on a
model X over OK such that L̄1 = · · · = L̄n−1 is arithmetically ample, the theorem
is due to Moriwaki [3].
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The same proof will give a local Hodge index theorem for bundles over a local
field K. An immediate consequence is the following Calabi–Yau theorem:

Theorem 13. Let X be a projective variety over a valuation field K of dimension
n. Let L be an ample bundle on X with two semi-positive metrics ‖ · ‖1 and ‖ · ‖2.
Assume that the induced measures on Xan equal to each other:

c1(L, ‖ · ‖1)
n = c2(L, ‖ · ‖2)

n.

Then
‖ · ‖1 = c‖ · ‖2

for some constant c > 0.

The application to dynamical system is given as follows. Let X be a variety
over a field K with two polarized endomorphisms f1, f2 in the sense that there
are two ample line bundles L1 and L2 such that f∗i Li = qiLi with some qi > 1.
Let Prep(fi) be the sets of pre periodic points, namely points with finite forward
orbits under fi respectively.

Theorem 14. If Prep(f1) ∩ Prep(f2) is dense in X then Prep(f1) = Prep(f2).
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The skeleton and top weight cohomology of Mg,n

Sam Payne

(joint work with Dan Abramovich, Lucia Caporaso, and Søren Galatius)

Let U ⊂ X be an open immersion of smooth complex varieties, where the bound-
ary ∂X = X \U is a divisor with simple normal crossings. The boundary complex
∆(∂X) is the dual complex of the boundary divisor. It has vertices vi correspond-
ing to the irreducible components Di of ∂X , edges joining vi to vj corresponding
to the irreducible components of Di ∩Dj, 2-faces spanned by vi, vj , and vk corre-
sponding to the irreducible components of Di∩Dj∩Dk, and so on. A fundamental
fact is that, if X is complete, the simple homotopy type of the boundary complex
∆(∂X) is an invariant of U , independent of the choice of compactification. The
rational homology of this complex computes, with a degree shift, the top graded
piece of the weight filtration on the cohomology of U . See [4].

The cone over ∆(∂X), denoted Σ(X) to indicate its role as an analytic skeleton,
embeds naturally in the analytification Uan with respect to the trivial valuation.
It is the space of valuations on the function field of U that are monomial in local
coordinates given by the defining equations of the irreducible components of ∂X
that contain each stratum, and is canonically identified with the cone complex
associated to the toroidal embedding U ⊂ X in [2]. Thuillier describes a canonical
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strong deformation retraction from Uan onto Σ(X) [5]. The preimage of the vertex
0 in Σ(X) is the subspace Ui ⊂ Uan consisting of points over valued extensions of
the complex numbers that are defined over their respective valuation ring. There-
fore, the complement UanrUi is independent of the choice of compactification; it
may be interpreted as a “deleted tubular neighborhood at infinity.” If X is com-
pact, then this deleted tubular neighborhood deformation retracts onto Σ(X)r 0,
and both have the homotopy type of the boundary complex ∆(∂X).

We generalize this construction slightly, to smooth toroidal Deligne–Mumford
stacks, i.e. stacks that are étale locally like U ⊂ X as above. Let X be a Deligne–
Mumford stack with an open substack U . Assume that X has an étale cover by
a scheme V → X such that UV ⊂ V is a toroidal embedding with simple normal
crossings, where UV is the preimage of U . An important example is the Deligne–
Mumford–Knudsen compactification of the moduli space of curves with marked
points, Mg,n ⊂ Mg,n. Given such a cover, let V2 = V ×X V . The functorial
properties of skeletons of toroidal schemes produce a natural diagram of skeletons
Σ(V2) ⇒ Σ(V ). We show that the colimit of this diagram is independent of the
choice of cover, and is canonically a deformation retraction of Uan. We call it the
skeleton of the toroidal embedding, and denote it Σ(X).

For the special caseMg,n ⊂ Mg,n, we use local monodromy computations on
the boundary strata to produce a canonical identification

Σ(Mg,n) ∼=M trop
g,n .

This gives a modular interpretation to the skeleton of the Deligne–Mumford–
Knudsen modular compactification ofMg,n; it parametrizes stable tropical curves
of genus g with n marked legs. All of this is joint work with D. Abramovich and
L. Caporaso.

In joint work with S. Galatius, I have applied this modular interpretation of the
skeleton ofMg,n to compute the homotopy type of the deleted tubular neighbor-
hood at infinity inM1,n. We show that it is contractible for n ≤ 2, and homotopic
to a wedge sum of (n− 1)!/2 spheres of dimension n− 1, for n ≥ 3. We conclude
that the 2nth graded piece of Hk(M1,n,Q) has rank (n − 1)!/2, for k = n ≥ 3,
and vanishes otherwise, generalizing published results for n ≤ 3 [1, 3], as well as
an unpublished computation of O. Tommasi for n = 4.
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Covers of curves and covers of skeleta

Joseph Rabinoff

(joint work with Omid Amini, Matthew Baker and Erwan Brugallé)

1. Triangulated punctured curves

LetK be an algebraically closed field which is complete with respect to a nontrivial,
non-Archimedean valuation val. Let R be the valuation ring of K and let k be its
residue field. A triangulated punctured K-curve consists of the following data:

(1) a smooth, proper, connected K-curve X (regarded either as a scheme or
as a K-analytic space),

(2) a finite set of points D ⊂ X(K) (the set of punctures), and
(3) a finite set V ⊂ X of type-2 points,

with the requirement that the open analytic domainX\(V ∪D) be a disjoint union
of finitely many open annuli, finitely many punctured open balls, and infinitely
many open balls. (More precisely, one should refer to such an object as a semistably
triangulated punctured K-curve for reasons that will become clear below.) The
skeleton Σ = Σ(X,V,D) of a triangulated punctured K-curve (X,D, V ) is defined
to be the union of V ∪ D with the skeleta of all of the open annuli and balls in
the decomposition X \ (V ∪ D). The skeleton is the geometric realization of a
graph with vertex set V ∪ D; its open edges are the skeleta of the open annuli
and punctured balls. There is a natural metric on Σ \ D with respect to which
the length of the skeleton of an open annulus is the logarithmic modulus of the
annulus.

The proof of the following theorem can be found in [3, Propositions 2.2 and 2.3]
and [2, Proposition 2.4.4].

Theorem 15 (Berkovich, Bosch-Lütkebohmert). Let X be a semistable formal
model of X and let red : X → Xk be the reduction map.

(1) If ξ ∈ Xk is a generic point then red−1(ξ) is a single type-2 point.
(2) If ξ ∈ Xk is a node then red−1(ξ) is an open annulus.

(3) If ξ ∈ Xk is a smooth closed point then red−1(ξ) is an open ball.

Let X be a semistable formal model such that the points of D reduce to distinct
smooth closed points of Xk. Let V be the set of all points of X that reduce to
generic points of Xk. It follows from Theorem 15 that (X,D, V ) is a triangu-
lated punctured curve. In fact this association defines a bijective correspondence
between the semistable models of (X,D) of the above form and the set of trian-
gulations (X,D, V ). See [4, §5] for a proof of this fact.

Definition 16. Let (X,D, V ) and (X ′, D′, V ′) be triangulated puncturedK-curves.
A finite morphism from (X ′, D′, V ′) to (X,D, V ) is the data of a finite morphism
f : X ′ → X such that f−1(D) = D′, f−1(V ) = V ′, and f−1(Σ(X,V,D)) =
Σ(X ′, V ′, D′).
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The following theorem seems well-known to experts. We provide a proof in our
paper as none exists in the literature to our knowledge.

Theorem 17. Let (X,D) and (X ′, D′) be punctured K-curves and let f : X ′ → X
be a finite morphism such that D′ = f−1(D). Then there exist triangulations V, V ′

such that f becomes a finite morphism of triangulated punctured K-curves.

One deduces the following Corollary from Theorem 17 using the fact that, if
X,X′ are the semistable models corresponding to V, V ′, then f : X ′ → X extends
(necessarily uniquely) to a finite morphism X′ → X if and only if f−1(V ) = V ′.

Corollary 18. Let X,X ′ be K-curves and let f : X ′ → X be a finite morphism.
There exist semistable models X,X′ of X,X ′, respectively, such that f extends to
a finite morphism X′ → X.

Corollary 18 was proved independently by Coleman [5] and Liu [6] in differ-
ent contexts. Liu in fact proves much more precise theorems in the case of a
discretely-valued base. All of Coleman’s and Liu’s statements follow formally from
Theorem 17, and over more general base fields (using a suitable descent argument).

2. Metrized complexes of curves

Let (X,D, V ) be a triangulated punctured K-curve and let Σ be its skeleton.

Consider a point x ∈ V . Since x has type 2, the residue field H̃ (x) is a finitely
generated extension field of k of transcendence degree 1; it is therefore the function
field of a canonically determined proper, smooth, connected k-curve Cx. Moreover,
there is a canonical injection ιx : Tx(Σ) →֒ Cx(k) from the set Tx(Σ) of outgoing
directions at x to the set of closed points of Cx; see [4, §5] for a definition of
ιx. The data (Σ, {Cx}x∈V , {ιx}x∈V ) is called a metrized complex of curves. The
metrized complex structure on Σ is intrinsic to the triangulated curve (X,D, V ).

Let f : (X ′, D′, V ′)→ (X,D, V ) be a finite morphism of triangulated punctured

curves. For x′ ∈ V ′ with image x = f(x′) the field homomorphism H̃ (x)→ H̃ (x′)
induces a finite morphism fx′ : Cx′ → Cx. The set-theoretic map f |Σ′ : Σ′ → Σ of
skeleta along with the maps (fx′)x′∈V ′ satisfy the following properties:

(1) f takes vertices to vertices and edges to edges.
(2) If e′ is an edge of Σ′ and e = f(e′) then f maps e′ bijectively onto e, and

there exists an integer df (e
′) ∈ Z≥1, called the expansion factor of f along

e′, such that for all x′, y′ ∈ e′, the distance from f(x′) to f(y′) is df (e
′)

times the distance from x′ to y′.
(3) Let x′ ∈ V ′, let x = f(x′), and let e be an edge of Σ adjacent to x. Then

the quantity ∑

e′∋x′

f(e′)=e

df (e
′)

is independent of the choice of edge e adjacent to x.
(4) For x′ ∈ V ′, if e′ is an edge representing an outgoing direction ~v′ ∈ Tx′(Σ′)

then df (e
′) is the ramification degree of fx′ at ιx′(~v′).
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Properties (1) and (2) say that f : Σ′ → Σ is an integral morphism of metric
graphs; property (3) says that f is harmonic. It is clear that (3) follows from (4). A
finite morphism of metrized complexes of curves consists of the data (f, {fx′}x′∈V ′)
as above, satisfying (1)–(4).

3. Lifting theorems

Our main results treat the problem of finding a finite morphism of triangulated
punctured curves inducing a given finite morphism of abstract metrized complexes
of curves on skeleta. The following proposition says that every metrized complex
is a skeleton:

Proposition 19. Let Σ = (Σ, {Cx}x∈V , {ιx}x∈V ) be a metrized complex of curves.
There exists a triangulated puncturedK-curve (X,D, V ) such that Σ ∼= Σ(X,D, V )
as metrized complexes.

The proof of Proposition 19 is not difficult; it involves a simple deformation
theory argument along with some cutting and pasting of analytic curves. Similar
results have appeared in the literature, for instance in [7]. The following theorem
is much more substantial.

Theorem 20. Let (X,D, V ) be a triangulated punctured K-curve with skeleton
Σ. Let f : Σ′ → Σ be a finite morphism of metrized complexes of curves such that,
for all vertices x′ ∈ Σ′, the morphism fx′ : Cx′ → Cf(x′) is tamely ramified, and
every ramification point is in the image of ιx′ . Then there exists a triangulated
punctured K-curve (X ′, D′, V ′) and a morphism f : (X ′, D′, V ′)→ (X,D, V ) such
that the induced morphism on skeleta is isomorphic to Σ′ → Σ. The morphism
f : X ′ → X is only branched over D. Moreover, the set of isomorphism classes of
such covers X ′ → X is finite, and can be explicitly classified, along with the finite
group Aut(X ′/X).

Theorem 20 strengthens and generalizes existing theorems in the literature:
see [7] and [8]. Its proof uses the theory of the tamely ramified étale fundamental
group as applied to the residue curves Cx to perform a canonical and functorial
local lifting procedure; the local lifts are then glued along the edges. Some of the
ideas in this proof also appeared in [7].

4. Application: surjectivity of homomorphisms of component groups

In this section K is a complete field equipped with a discrete valuation normalized
such that val(K×) = Z. The following question is due to Ken Ribet, who posed
it to Matt Baker in personal correspondence:

Question 21. Let f : X ′ → X be a finite morphism of smooth, proper, geometri-
cally connectedK-curves and let f∗ : ΦX′ → ΦX be the induced homomorphism of
component groups of special fibers of Néron models of Jacobians. Is f∗ surjective
when:
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(1) the minimal regular model ofX ′ consists of two rational components meet-
ing each other transversally at some number of points, and

(2) X is a Mumford curve of genus at least 2?

By a theorem of Raynaud, the component group ΦX can be calculated in terms
of the skeleton Σ of X associated to a regular semistable model of X . In the
language of [1], Raynaud’s theorem provides an isomorphism ΦX ∼= Jac(Σ) of the
component group ΦX with the Jacobian of the graph Σ. This isomorphism re-
mains valid when Σ is the skeleton of a model of X which is semistable but not
necessarily regular. Given triangulations of X,X ′ making f into a finite morphism
of triangulated curves, the map f∗ : ΦX′ → ΦX coincides with the functorially in-
duced map on skeleta Jac(Σ′)→ Jac(Σ). (Here we are suppressing some technical
details related to the fact that triangulations and skeleta are geometric notions
defined after passing to a complete and algebraically closed valued extension field
of K.)

For ℓ1, . . . , ℓg+1 ∈ Z≥1 let B(ℓ1, . . . , ℓg+1) denote the “banana graph” consisting
of two vertices attached by g + 1 edges of lengths ℓ1, . . . , ℓg+1. The skeleton
Σ′ associated to the minimal regular model of a curve X ′ as in Question 21 is
isomorphic to B(1, 1, . . . , 1). Let Σ′ = B(1, 1, 1, 1) and Σ′ = B(1, 2, 2) and consider
the harmonic morphism f : Σ′ → Σ which takes the first two edges of the source
to the first edge of the target and the third (resp. fourth) edge of the source to
the second (resp. third) edge of the target with expansion factor 2. One checks
that the induced map Jac(Σ′) → Jac(Σ) is not surjective. We promote f to a
finite morphism of metrized complexes by attaching P1

k to each vertex, defining
the induced homomorphisms P1

k → P1
k by z 7→ z2, and associating the edges

of the source (resp. target) to the points 1,−1, 0,∞ ∈ P1
k(k) (resp. 1, 0,∞ ∈

P1
k(k)). By Proposition 19 there exists a triangulated curve X with skeleton Σ,

and by Theorem 20 there exists a triangulated curve X ′ and a finite morphism of
triangulated curves f : X ′ → X inducing f : Σ′ → Σ on skeleta. This procedure
can be carried out in such a way that the curves X,X ′ and the morphism f are
defined over K. By the above remarks, the induced homomorphism ΦX′ → ΦX is
not surjective. This provides a negative answer to Question 21.
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Tempered Anabelianness of punctured Tate curves

Emmanuel Lepage

Tempered fundamental group

Let K be a complete non-archimedean field and let X be a smooth K-analytic
space. In [2, Rem. 6.3.4.(ii)], V. Berkovich defines a notion of étale covers, and in
[3], J. de Jong uses this definition to construct an étale fundamental group. Here
we will be interested in a smaller category of covers:

Definition 22 ([1, Def. III.2.1.1]). An étale map S → X is a tempered cover if
there exists a surjective finite étale cover X ′ → X such that S ×X X ′ → X ′ is a
topological cover.

In particular, finite étale covers and topological covers are tempered covers. The
category of tempered covers will be denoted by Covtemp(X). If x̄ is a geometric
point, one gets a functor Covtemp(X) → Set by mapping a tempered cover S to
the fiber Sx̄.

Definition 23. The tempered fundamental group πtemp
1 (X, x̄) is the group of au-

tomorphism of Fx̄.

It becomes a topological group by considering as fundamental open neighbor-
hood of 1 the stabilizers of arbitrary elements s of Fx̄(S) for arbitrary object S

of Covtemp(X). If one withdraws the base point x̄, πtemp
1 (X) is well defined up

to inner automorphism. The fundamental group πalg
1 (X, x̄) classifying the finite

étale covers is the profinite completion of πtemp
1 (X, x̄).

Example. [1, § III.2.3.2] If K = Cp and E is an elliptic curve, then

(1) if E has good reduction, πtemp
1 (E) ≃ Ẑ2;

(2) if E is a Tate curve, πtemp
1 (E) ≃ Ẑ× Z.

The tempered fundamental group is much more complicated when X is a hy-
perbolic curve. For example, it is not locally compact. One may wonder what can
be recovered of a hyperbolic curve from its tempered fundamental group. Most
precisely,

Question. If X1 and X2 are two hyperbolic curves over Cp, is the map

IsomQp(X1, X2)→ OutIsom(πtemp
1 (Xan

1 ), πtemp
1 (Xan

2 ),

given by functoriality of the tempered fundamental group, a bijection ?

The main result of this talk is the following :
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Theorem 24 ([4, Theorem 0.3]). Let q1, q2 6= 0 ∈ Q̄p be such that |q1|, |q2| < 1.
Let Ei = Gm/q

Z
i and Xi = Ei\{0} for i = 1, 2. If there exists an isomorphism

πtemp
1 (X1) ≃ π

temp
1 (X2), then there exists σ ∈ Gal(Q̄p/Qp) such that q2 = σ(q1).

Sketch of the proof of Theorem 24

Let φ be an isomorphism πtemp
1 (X1) → πtemp

1 (X2). It induces an equivalence of
categories φ∗ : Covtemp(X2)→ Covtemp(X1).

Step 1. The isomorphism φ induces a homeomorphism

φ∗ : X1 → X2,

which is functorial with respects to tempered cover [4, Theorem 0.1], so that it
is compatible with the decomposition groups. The starting idea is to apply the
following results of S. Monchizuki to finite étale covers of X1:

Theorem 25 ([5]). Let Y1, Y2 be two hyperbolic curves over Q̄p and let φ be an

isomorphism πtemp
1 (Y an

1,Cp
) ≃ πtemp

1 (Y an
2,Cp

). Then φ induces a natural isomorphism

GY1 → GY2 of the corresponding graphs of the stable reductions.

Let Y2 be a finite Galois cover of X2 of Galois group G and let Y1 = φ∗Y2.
Then one gets an isomorphism GY1/G → GY2/G and GYi/G is a skeleton of
the analytic space Ei. The thing is to show that the map Ei → lim

←−Yi
GYi/G

is a homeomorphism. This is equivalent to the fact that the union Ṽ (X) :=⋃
f :Yi→Xi

f(V (Yi)), where f goes through finite étale covers of Xi and V (Yi) is
the set of vertices of the skeleton of Yi given by the stable reduction, is dense in
Ei.

Step 2. Let Ω = Gm − q
Z be the universal topological cover of a punctured

Tate curve X = Gm/q
Z\{0}.

To f ∈ O×(Ω), one can associate a µpn -torsor Ω[f
1/pn ] of Ω by adding a pnth

root of f . Such an invertible function has an explicite description in terms of an
infinite product :

f(z) = czm
∏

j<0

(
z − qj

qj

)αj ∏

j≥0

(
z − qj

z

)αj

,

where m,αj ∈ Z. The µpn -cover Ω[f1/pn ] descends to a cover of some finite
topological cover of X if and only if the sequence is periodic and

∑
αj = 0.

Moreover Ω[f1/pn ] depends only on the values of m and αj mod pn, and therefore
can still be defined when m,αj ∈ Zp. So does the differential form

ω :=
df

f
= m

dz

z
+
∑

j<0

αj
dz

z − qj
+
∑

j≥0

αj(
dz

z − qj
−
dz

z
).

Let x ∈ Gm(Cp) and, for n ≫ 0 let rn be the radius of convergence of f1/pn

and let yn be a preimage in Ω[f1/pn ] of the Gauss point bx,rn of the disc of center
x and radius rn. Then the speed of convergence of rn can be described in terms of

e(x, f) = multx
df
f . Moreover yn is a point of type 2 and H̃(yn) is not isomorphic
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to F̄p(T ) if e(x, f) /∈ {pk − 1}k∈N. Therefore if e(x, f) /∈ {pk − 1}k∈N, yn must

belong to the skeleton of Ω[f1/pn ], and if the sequence (αj)j is periodic, the image

in X of (yn)n gives a sequence of element in Ṽ (X) which tends to x.
Step 3. Step 1 gives us a homeomorphism Ω1 → Ω2 which extends to an

homeomorphism φ∗ : Gm → Gm. One can assume that φ∗(q
j
1) = qj2 for every

j ∈ Z. If Yi is a finite topological cover of Xi, let

AYi = Hom(πtemp
1 (Yi),Zp(1))/Hom(πtop

1 (Yi),Zp(1)).

The isomorphism φ induces an isomorphism

φ̄ : lim
−→
Y2

AY2 → lim
−→
Y1

AY1 .

The previous step gives a map, which happens to be an isomorphism,

ψi : {(m, (αj)) ∈ Zp × ZZ
p , (αj) periodic and

∑

j

αj = 0} → lim
−→
Yi

AYi .

Lemma 26 ([4, prop. 4.2]). There exists β ∈ Z×p such that φ̄ψ2 = βψ1.

Step 4. In step 2, one associated to (m, (αj)) ∈ Zp × ZZ
p a differential form ωi

on Ωi with logarithmic poles along {qji , j ∈ Z}.

Lemma 27 ([4, lem. 4.3]). If x ∈ Gm(Cp), then multx ω1 = multφ∗(x) ω2.

This is mainly a consequence of the fact that the speed of convergence of the
radius r1,n is encoded in multx ω1 and that φ∗ is compatible with decomposition
groups.

If P ∈ Zp[T ] is a polynomial, there exists an explicit (m, (αi)) ∈ Zp × ZZ
p , not

depending on q, such that ω(1) = P (q)dz. The previous lemma applied to this
(m, (αi)) and to x = 1 gives us in particular that

P (q1) = 0 if and only if P (q2),

which gives the result.
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Berkovich spaces, polyhedra and model theory

Antoine Ducros

This talk was about some results which are proven in the recent paper [4].

LetX be an analytic space over a non-Archimedean, complete field k and let f =
(f1, . . . , fn) be a family of invertible functions on X . Let us recall two results, both
of which were proven using de Jong’s alterations – but these alterations could have
been avoided for 1), which could have been deduced quite formally from a former
result by Bieri and Groves (see [2]), based upon explicit computations on Newton
polygons.

1) The compact set |f |(X) is a polytope of the R-vector space (R∗+)
n (we use

the multiplicative notation) ; this was proven by Berkovich in [1] in the locally
algebraic case and has been extended to the general case by the author in [3].

2) If moreover X is Hausdorff and n-dimensional, and if ϕ denotes the mor-
phism X → Gn,anm,k induced by f , then the pre-image of the skeleton Sn of Gn,anm,k

under ϕ has a piecewise-linear structure making ϕ−1(Sn) → Sn a piecewise im-
mersion ; this was proven by the author in [3]. (Remind that Sn is the set of
semi-norms of the form

∑
aIT

I 7→ max |aI |rI).

In the aforementioned paper, we improve 1) and 2), and give a new proof of
both of them. Our proofs are based upon the model theory of algebraically closed,
non-trivially valued fields and don’t involve de Jong’s alterations.

Let us quickly explain what we mean by improving 1) and 2), and give some
precisions about our proofs.

• Concerning 1), we also prove kind of a local avatar of it: if x ∈ X , there exists a
compact analytic neighborhood U of x, such that for every compact analytic neigh-
borhood V of x in X , the germs of polytopes (|f |(V ), |f |(x)) and (|f |(U), |f |(x))
coincide (in other words, the image of a germ is a germ of polyhedron). Moreover
if x /∈ ∂X the germ (|f |(U), |f |(x)) is equidimensional, and its dimension can be
computed explicitely.

Our new proof of 1), as well as that of its local avatar, is based upon the quan-
tifyer elimination for algebraically closed, non-trivially valued fields. Concerning
the local avatar, we have also use Temkin’s theory of the reduction of analytic
germs, which was developed in [6].
• Concerning 2), we prove that the piecewise linear structure on ϕ−1(Sn) is

canonical, that is, doesn’t depend on the map we choose to write it as a pre-image
of the skeleton; we thus answer a question which was asked to us by Temkin.

Moreover, we prove that the pre-image of the skeleton ’stabilizes after a finite,
separable ground field extension’, and that if ϕ1, . . . , ϕm are finitely many mor-
phisms from X to Gn,anm,k , the union

⋃
ϕj(Sn) also inherits a canonical piecewise-

linear structure.
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The main model-theoretic result we use instead of de Jong’s desingularization
to re-prove and extend 2) is a theorem of finiteness (or tameness) by Hrushovski
and Loeser, which we will now describe very roughly.

In their recent paper [5] about the homotopy type of Berkovich spaces, Hru-
shovski and Loeser associate to every morphism Y →X of varieties over a valued

field k (the valuation is arbitrary, i.e. non necessarily of height 1) a functor Ŷ /X ,
from the category of non-trivially valued, algebraically closed extensions of k to
that of sets; this functor should be thought of as a model-theoretic avatar of an
‘algebra-analytic’ object: a fibration whose base would the algebraic variety X ,
and whose fibers would be the analytification of the fibers of Y →X . They prove
that this functor is pro-definable in general, and definable when Y is of relative
dimension ≤ 1. This is this definability assertion (whose proof ultimately relates
on Riemann-Roch’s theorem for algebraic curves) which plays a key role in our
proof.
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Model theoretic approaches to non-archimedean geometry

Ehud Hrushovski

(joint work with François Loeser)

This report concerns joint work with François Loeser, [5].
Let V be a variety over an R-valued field F . For simplicity we will assume V

is projective, though the result applies to semi-algebraic subsets of V as well.
We require a slight extension of the piecewise-linear category. Let R∞ = R∪∞.

Consider subsets P of Rn∞ cut out by linear inequalities
∑
αixi ≤

∑
bixi+c, with

αi, βi ∈ Z, c ∈ R, and equalities xi = ∞. Subsets cut out purely by equalities of
the latter form will be called Zariski closed. A morphism P → Q is a continuous
map which is piecewise linear away from ∞, and also on the faces at ∞, in the
obvious sense. We refer to this category as ∞PL, and to the objects as extended
polyhedra. Compare e.g. [11]. (Actually we use Rw∞ rather than Rn∞, where w is
a finite set with Galois action, so as to represent the mondromy.)
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A subset of V an the form Uan, with U a closed subvariety of V , is also called
Zariski closed

Theorem 28. [5] There exists a canonical directed system Pi of compact extended
polyhedra, with∞PL embedding maps φij : Pi → Pj , retractions πij : I×Pj → Pi,
and homotopies αij : Pj × I → Pj from IdPj to πij making Pi an ∞PL strong
deformation retract of Pj . We have

V an ∼= lim
←−

Pi

while the set V an# of Abhyankar elements is obtained as

V an# = lim−→Pi

The isomorphisms V an ∼= lim
←−

Pi and V
an
ab = lim−→Pi respect a lot more structure.

The extended polytope Pi comes together with an Abelian sheaf on the Zariski
topology (in the above sense), obtained by pushing forward the sheaf of regular
functions on V under the projection V an → Pi. Taken along with these sheaves,
the Pi can recover the geometry of V an completely. To begin with, a Zariski closed
set is precisely a pullback of a Zariski closed subset of some Pi. Moreover, if Z is
Zariski closed and h is a regular map on V anrZ, then valh factors through some
Pi.

Similar results were proved by many authors, beginning with Berkovich [2], at
various levels of generality. See also [8] for a projective limit representation. Our
method of obtaining the homotopies is different, however, and likely to have other

applications: we work with a slightly different space, the stable completion V̂ , that
permits inductive constructions, and reduces many questions to relative dimension
one. The stable completion can be defined over valued fields whose value group
may be non-archimedean. We find definable strong deformation retractions to
definable extended polyhedra, and as in Theorem 28 the subset V# of Abhyankar

elements is preserved. Whereas V̂ is pro-definable, V# is a union (direct limit) of
definable sets.

One of the consequences of (pro)-definability of V̂ , along with the ability to use
a non-archimedean value group, is is an automatic uniformity phenomenon. For
instance, we obtain the following corollary for Berkovich spaces:

Proposition 29. Let f : X → Y be a morphism of quasi-projective varieties,
Xb = f−1(b). Then there are finitely many possibilities for the homotopy type of
Xan
b , as b runs through Y (F ). In fact there exist strong deformation retracts Pb of

Xan
b , whose homeomorphism type is one of finitely many possibilities, as b varies.

In this talk I will describe the points of the stable completion (called stably
dominated types), a valuative criterion for continuity of functions (or homotopies),
and a relation to the usual Berkovich space.

0.1. Imaginaries. Let Γ = K∗/O∗ be the value group of a valued field K with
valuation ring O. Such quotients are called imaginary sorts. The addition and
ordering of Γ pull back to semi-algebraic subsets of K, hence are called definable.



Non-Archimedean Analytic Geometry 3255

It follows from Robinson’s quantifier elimination that +, < generate all definable
relations on Γ. Thus any subset of Γn (or Γn∞) is automatically piecewise linear
(∞PL).

Already in [1], it is clear that the value group is treated as a separate sort; the
base structure is allowed to have value group elements that are not the values of
any field element of the structure.

The quotients Sn = GLn(K)/GLn(O) can be viewed as higher-dimensional
analogs of Γ. They are closely related to the spaces studied in [10]. Note that
Sn(Qp) is countable. On the other hand over a base consisting of the field Qp and
the value group R, one sees essentially a real building interpolating between the
p-adic lattices. Such buildings are often built ‘by hand’ but appear here naturally
on their own.
Sn admits a covering Tn by Grassmanian varieties over the residue field, Tn =

GLn(K)/Ker(GLn(O)→ GLn(k)). T1 is the sort RV of [6], and is also equivalent
to M. Temkin’s graded residue sort [12]. Beyond T1 we do not explicitly use the
sorts Tn, as the topology is skewed towards Γ more than to k; we expect the Tn
will be important in extensions of this work restoring the balance between them.

It is shown in [3] that any family of semi-algebraic subsets of Km can be
parametrized by a definable subset of Sn × Tn × Kn, for some n. It was in this
work that the notion of a stably dominated type first arose.

We can view Sn as the family of linear norms on Kn, and this induces a nat-
ural topology on Sn, analogous to that topology on V an. When H is a K-space
isomorphic to Kn, it will be convenient to use the sort LH = Mn(K)/GLn(O)
of semi-lattices on H . It can be constructed Sn and Sm, m < n, fibered over
Grassmanians of H . The elements of LH can be viewed as linear semi-norms on
H (where a seminorm l corresponds to a semi-lattice Λ if Λ = {h : l(h) ≥ 0}.)

0.2. Definition of V̂ . Let F0 be a valued field; we no longer assume that it is
valued in R. Let V be a variety over F0. We consider valued field extensions
F,L, L′ of F0. Let V an0 (L) be the the set of pairs (L′, b) with L′ = L(b) a valued
field extension of L with Γ(L) = Γ(L′), b ∈ V (L′); up to the obvious notion of
isomorphism over L.

Now for F ≥ F0 define V̂ (F ) to be the set of functorial sections L → V an0 (L),
i.e. maps L 7→ pL ∈ V an0 (L)) defined on all valued field extensions L of F , and
compatible with all embeddings L′ → L of valued fields over F . It can be shown

that p is determined uniquely by pF ; hence V̂ (F ) can be identified with a subset

of V an0 (F ). The topology and sheaf structures on V̂ are defined analogously to
V an.

In fact, if p ∈ V̂ (F ), then p is an F -definable type. To explain this notion pass

to an affine open subvariety U such that p ∈ Û(F ). Fix an affine embedding of
U ; let Hd be the set of polynomials of degree at most a fixed integer d, viewed as
functions on U . Then {h ∈ Hd : valh(a) ≥ 0} is a definable O-submodule H of
regular functions on U . Definability implies that there exists Λd = Λd(p) ∈ LHd

such that for any L ≥ F and H ∈ H(L), h(a) ≥ 0 holds for a realization of pL
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iff h ∈ Λd. This defines a continuous map V̂ → Ld. It is a continuous map and
indeed the linear topology on Ld described above is the quotient topology. Thus

for affine V , V̂ embeds into the projective limit of the Ld.

It is easy to describe the image of V̂ in the projective limit (see below), but

for fixed d the proof that the image of V̂ in Ld is definable, and that the induced
topology is the quotient topology, is rather model theoretic; it would be interesting
to see a direct geometric proof.

A third point of view is of Weierstrass domains. If W is a Weierstrass domain
in an affinoid, with a unique element in the Shilov boundary, then this element is
an Abhyankar type and sits in the stable completion; see [9] §4, [12]. In general a

point of V̂ corresponds to a sequence Wd of Weierstrass domains in affine space,
corresponding to the lattices Λd, such that at the limit the Shilov boundary reduces
to a single point.

We omit here the description in terms of domination by the stable sorts, that

gives stably dominated types their name; see [4], [5]. Note that a point of V̂ (F ) is

still a point of V̂ (F ′) for F ≤ F ′, as is the case for ordinary points of V ; for V an,
the functoriality reverses direction.

0.3. Valuative criterion. In the same way that valuations provide a criterion for
compactness in algebraic geometry, iterated valuations provide such a criterion for
the stable completion. This should be compared to [7]. We consider algebraically
closed valued fields K2,K1,K0 with nontrivial places K2 → K1 → K0. We obtain
three valued fields Kj with residue field Ki (2 ≥ j > i ≥ 0.) The corresponding
value groups fit into an exact sequence 0 → Γ10 → Γ20 → Γ21. The theory of
(K2,K1,K0) is called ACV

2F ; we have ACV 2F = ACV F ×ACF ACV F , a fiber
product of theories over the two obvious interpretations of ACF in ACVF, as
valued field and as residue field. Also, ACV 2F = ACV F ×DOAG DOAG2, where
DOAGTh(Γ,+, <) and DOAG2 is the theory of a divisible ordered Abelian group
with a distinguished convex subgroup.

Let V be a projective variety over the prime field, for simplicity. Then there
are natural pro-definable maps

V̂10 ←− V̂20 −→ V̂21

The right arrow relies on an isomorphism V̂210 → V̂20, where V̂210 is the set of
stably dominated types of V for the theory ACV 2F . (The left arrow depends in

addition on V̂ (O21)210 = V210.)

We can now state a criterion for a definable map f : Y → V # to extend to a

(unique) continuous pro-definable map F : Ŷ → V̂ . (Where again we suppose for
simplicity that Y is defined over the prime field.) Namely, f can be interpreted

over (K2,K0) or over (K2,K1). The resulting maps f20 : Y → V̂20 and f21 :

Y → V̂21 should commute with the above map V̂20 −→ V̂21. Similarly f should be

compatible with V̂10 ←− V̂20.
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0.4. Comparison of V̂ with V an. In [5], functoriality and base change are
used for the comparison. We describe here a different method, based on ideas
of Poineau. Let F be a field valued in R, and let V be an algebraic variety over

a field F . By [5] we obtain a strong definable deformation retraction H : V̂ → Υ,
where Υ is definably∞PL, and various good properties hold. The question is how
to transpose this retraction to V an. Since H is F -definable it is Galois invariant,
and so we may assume that F = F alg. For any base structure F c ⊃ F , H restricts

to a strong deformation retraction V̂ (F c) → Υ(F c). Now Υ(F c) is ∞PL in the
usual sense provided Γ(F c) = R; so it suffices to find a structure F c such that

the natural map V̂ (F c) → V an is an isomorphism. This cannot be done if F c is
restricted to the field and value group sorts.

However, as soon as elements of Sn are allowed, there is a natural construction
of such an F c. Namely, let F c agree with F in the field sort, with R in the value
group sort; and let Λ ∈ Ln(F

c) iff Λ is the intersection of elements Λn ∈ Ln(F ).
We can also define F c Galois theoretically: let Fmax be a maximally immediate
extension of F alg; then in each sort, F c is the fixed substructure of Aut(Fmax/F ).
It is clear that F c is unique up to a unique isomorphism, as a structure extending
F . Any element of V an, viewed as a type over F , extends uniquely to a type over
F c. Now the following result, essentially from [9], clinches the comparison:

Theorem 30. Let F = F alg be R-valued. The natural map V̂ (F c) → V anF is an
isomorphism.

A model-theoretic proof would go as follows. Injectivity of the map p 7→ p|F c is
a completely general fact about stably dominated types ([4]), and one sees easily
that p|F ⊢ p|F c sot hat p 7→ p|F is also injective. To prove surjectivity, let q be an
element of V an, represented by a valued field extension L = F (b), b ∈ V (F ). We
may assume V is affine, and considerH = Hd as above. Then {h ∈ H(F ) : vh(b) ≥
0} generates a lattice Λd ∈ LHd

, with corresponding linear seminorm ld on Hd We
can functorially define pL by the formulas: vh(x) = ld(h). The problem is to show
consistency: that for any h1, . . . , hk ∈ Hd(L) there exists x with vhi(x) = ld(hi).
Taking an ultrapower (F ∗, b) of (F, b) in the sense of continuous logic, it is clear
that b |= pF∗ . (In fact any L with value group R embeds in such an ultrapower,
so pL is consistent in this case.) It follows that pL is consistent whenever F ∗ is an
elementary extension of L. But by Robinson’s quantifier elimination for ACVF,
any L′ ≥ F admits a common elementary extension with F ∗; so pL′ is consistent.
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Automorphisms of Drinfeld half-spaces over a finite field

Amaury Thuillier

(joint work with Bertrand Rémy and Annette Werner)

For every integer n > 1, Drinfeld considered in [4] the p-adic analytic space Ωn+1

obtained by removing all rational hyperplanes from P
n,an
Qp

. Since then, these

spaces are of fundamental importance for understanding representation theory of
PGLn+1(Qp) or for realizing (part of) the local Langlands correspondence. In this
setting, it was shown by Berkovich that every automorphism of Ωn+1 is induced by
a projective linear transformation [2]. This result was generalized to products of
Drinfeld half-spaces by Alon [1], who also pointed out and corrected a discrepancy
in Berkovich’s proof. Berkovich’s strategy exploits a natural connexion between
Ωn+1 and the Bruhat-Tits building of the group PGLn+1(Qp).

In his theory of period domains, Rapoport [5] studied both generalizations of
Drinfeld spaces over a p-adic field and similar spaces over a finite field. In the
latter case, one obtains algebraic varieties defined as suitable open subsets of flag
varieties. In particular, if V is a finite dimensional vector space of a finite field
k, then the Drinfeld half space Ω(V) is simply the complement of all (rational)
hyperplanes in P(V) = Proj Sym•V. In [3], Dat, Orlik and Rapoport asked if a
statement analogous to Berkovich’s theorem holds for Ω(V).

Theorem 31. Let V be a finite dimensional vector space over a finite field k.
(i) The restriction map

PGL(V) = Autk
(
P(V)

)
→ Autk

(
Ω(V)

)
, ϕ 7→ ϕ|Ω(V)
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is an isomorphism. Equivalently, every k-automorphism of Ω(V) extends
to a k-automorphism of P(V).

(ii) For every field extension K/k the natural map

PGL(V) −→ AutK
(
Ω(V)K

)

is an isomorphism. Equivalently, every K-automorphism of Ω(V)K comes
by base change from a k-automorphism of P(V).

One possible proof would be to adapt Berkovich’s and Alon’s arguments. How-
ever, we adopt a slightly different, and maybe more natural, viewpoint. Thereby,
we want to highlight that the true content of this theorem is about extension of
automorphisms, and that it has in fact very little to do with buildings. This prob-
lem is however naturally connected to non-Archimedean analytic geometry, even
if it belongs to classical (birational) algebraic geometry.

We consider the blow-up π : X → P(V) of P(V) along the full hyperplane
arrangement. The scheme X is projective and smooth over k. It contains Ω(V) as
an open dense subscheme and the complement D = X− Ω(V) is a simple normal
crossing divisor whose irreducible components (resp. strata) are naturally indexed
by linear subspaces (resp. flags of linear subspaces) in P(V) :

D =
⋃

L

EL.

First step — Using Berkovich spaces other k endowed with the trivial valuation,
one shows that any k-automorphism ϕ of Ω(V) extends to a k-automorphism of
X. Since D is a (simple) normal crossing divisor on X, the analytic space Ω(V)an

retracts to a closed subset S(V) canonically equipped with the structure of a
cone complex [6]. Moreover, in this particular situation, the following additional
property holds:

Lemma 32. The map

ι : S(V)→ HomAb

(
O
(
Ω(V)

)×
,R>0

)
, x 7→ (f 7→ |f(x)|)

is a closed embedding such that (the images of) distinct cones span distinct linear
spaces.

From this, it is easy to deduce that ϕ induces an automorphismS(V) preserving
the conical structure, and then that ϕ extends to an automorphism of X.

Second step — In order to descend ϕ to a k-automorphism of P(V), it is enough
to check that the following permutation ϕ̂ of the set of (rational) linear subspaces
of P(V):

ϕ(EL) = Eϕ̂(L)

preserves the subset of hyperplanes.
One can first check that a hyperplane can only go to a hyperplane or a point

by computing rk CH1(EL) and then use induction on dim V to exclude the second
possibility, thereby finishing the proof of the theorem. Another way to argue,
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suggested to us by Carlo Gasbarri, is to observe that the canonical divisor on X
defines an element of CH1(X) fixed under the natural action of ϕ which essentially
“remembers” the codimension of blown-up linear subspaces.

It is natural wonder whether it is possible to prove this theorem without con-
sidering Berkovich spaces. A more interesting problem is to find other “natural”
toroidal compactifications satisfying the specific property above (Lemma).
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The Kontsevich-Soibelman skeleton of a degeneration of Calabi-Yau

varieties

Johannes Nicaise

(joint work with Mircea Mustaţă)

In [1, §6.6], Kontsevich and Soibelman associate a skeleton to each smooth and
projective family of varieties over a punctured disc in the complex plane endowed
with a relative differential form of maximal degree. This skeleton is a subset of the
non-archimedean generic fiber of the family, which is a smooth and proper analytic
space over the field of complex Laurent series. Its construction is motivated by the
study of Mirror Symmetry. Kontsevich and Soibelman explain how their skeleton
can be computed by extending the family to a projective family over the disc such
that the total space is a smooth complex analytic space and the fiber over the
center of the disc is a divisor with strict normal crossings. The proof of this result
is based on the Weak Factorization Theorem.

Our project consists of several steps. First, we develop and generalize the
construction of the Kontsevich-Soibelman skeleton. More precisely, we define a
skeleton Sk(X,ω) ⊂ Xan for every complete discretely valued field K, every con-
nected smooth properK-varietyX and every non-zero differential form of maximal
degree ω on X , as follows. Let X be a (not necessarily proper) regular R-model of
X . The differential form ω defines a rational section of the relative canonical line
bundle KX/R and therefore a divisor divX(ω) on X. To each irreducible component
E of Xk, we associate a couple of numerical data (N, ν) ∈ Z>0×Z where N is the
multiplicity of E in Xk and ν − 1 is the multiplicity of E in divX(ω). We call the
quotient µ/N the weight of E with respect to ω. In this way, we obtain a function
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weightω on the set of divisorial points of Xan. The infimum of this function in
R∪{−∞} is called the weight of X with respect to ω and denoted by weightω(X).
This definition is reminiscent of the definition of the log-canonical threshold in
birational geometry.

A divisorial point x on Xan is called ω-essential if weightω(x) = weightω(X).
We define the skeleton Sk(X,ω) of X with respect to ω as the closure of the
set of ω-essential divisorial points in the set of birational points of Xan (points
whose image in X is the generic point; they correspond to height one valuations
on the function field K(X) that extend the discrete valuation on K). This skele-
ton is a birational invariant of the pair (X,ω) and it coincides with the skeleton
of Kontsevich-Soibelman if K = C((t)) and X and ω are defined over the field
C{t, t−1} of germs of meromorphic functions at the origin of the complex plane.
The subset Sk(X,ω) of Xan is invariant under multiplication of ω by elements in
K×. In particular, if X has geometric genus one, then Sk(X,ω) does not depend
on the choice of ω, and we’ll denote it simply by Sk(X).

From the definition of the skeleton, it is not even clear whether it is non-empty.
We can provide an explicit description of Sk(X,ω) in terms of a proper regular
model with normal crossings, in arbitrary characteristic and without using Weak
Factorization. This generalizes the theorem of Kontsevich-Soibelman mentioned
above. Let R be the valuation ring of K and k its residue field. Assume that X
has a regular proper R-model X such that the special fiber

Xk =
∑

i∈I

NiEi

is a divisor with strict normal crossings. The existence of such a model is known
when k has characteristic zero or X is a curve. For each i in I we denote by
(Ni, νi) the couple of numerical data associated to Ei and ω.

The simplicial space Sk(X) associated to the reduced special fiber (Xk)red can
be canonically embedded intoXan. The vertices of this simplicial space correspond
bijectively to the irreducible components of Xk, and their images in Xan are the
associated divisorial valuations on the function field of X . These divisorial points
are connected in Sk(X) by means of families of monomial valuations associated to
the divisor Xk. The faces of Sk(X) correspond bijectively to the generic points ξ of
intersections of irreducible components of Xk. Such a point ξ is called ω-essential
if the following conditions are satisfied:

• if E is an irreducible component of Xk passing through ξ and (N, ν) is the
associated couple of numerical data, then ν/N = weightω(X),
• the point ξ is not contained in the closure of the locus of zeroes of ω on
X .

Theorem 33. The weight of X with respect to ω is given by

weightω(X) = min{µi/Ni | i ∈ I}.
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Moreover, the skeleton Sk(X,ω) is the union of the closed faces of Sk(X) corre-
sponding to ω-essential points ξ. In particular, it is a non-empty compact subspace
of Xan.

Our main result is the following theorem.

Connectedness Theorem. Let k be a field of characteristic zero, and let X be
a smooth, proper, geometrically connected k((t))-variety of geometric genus one.
Then the skeleton Sk(X) is connected.

This result can be viewed as an analog of the Shokurov-Kollár Connectedness
Theorem in birational geometry [2, 7.4] and our proof follows similar lines, with
some important modifications: while the proof of the Shokurov-Kollár Connect-
edness Theorem is based on a relative Kawamata-Viehweg vanishing theorem, the
key ingredient in our proof is a variant of Kollár’s Torsion Freeness Theorem [2,
2.17.4] for schemes over k[[t]]. We deduce this variant from Kollár’s theorem by
means of Greenberg Approximation and Grothendieck’s comparison theorem for
coherent cohomology of formal schemes.
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Institut de Mathématiques de Jussieu
Case 247
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