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Abstract. Quantiles play an essential role in modern statistics, as empha-
sized by the fundamental work of Parzen (1978) and Tukey (1977). Quantile
regression was introduced by Koenker and Bassett (1978) as a complement to
least squares estimation (LSE) or maximum likelihood estimation (MLE) and
leads to far-reaching extensions of ”classical” regression analysis by estimating
families of conditional quantile surfaces, which describe the relation between
a one-dimensional response y and a high dimensional predictor x. Since its
introduction quantile regression has found great attraction in mathematical
and applied statistics because of its natural interpretability and robustness,
which yields attractive applications in such important areas as medicine, eco-
nomics, engineering and environmental modeling. Although classical quantile
regression theory is very well developed, the implicit definition of quantile re-
gression still yields many new mathematical challenges such as multivariate,
censored and longitudinal data, which were discussed during the workshop.

Mathematics Subject Classification (2000): 62G10, 62G08, 62G30.

Introduction by the Organisers

The workshopFrontiers of quantile regression, organised by Victor Chernozhukov
(Boston), Holger Dette (Bochum), Xuming He (Ann Arbor) and Roger Koenker
(Champaign) was held 25 November – 1 December 2012. This meeting was well
attended by 16 participants with broad geographic representation from all conti-
nents. During the workshop all mathematical aspects of the recent development
in quantile regression analysis were discussed. A particular focus was on Mul-
tivariate quantile regression where several new concepts were presented by the
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participants, including Bahadur representations, asymptotic normality and uni-
form convergence of the corresponding estimates. Other talks discussed quantile
regression for longitudinal data and random effect models with applications in
functional data analysis and biostatistics and the definition of new spectra of sta-
tionary time series via quantile regression methods.
Several speakers presented their results on variable selection in high-dimensional
quantile regression models, especially under the framework of “large p small n
paradigm (here p refers to the dimension of the parameter to be estimated and n
denotes the sample size). It was shown that useful model identification is possible
when sparsity of the model is expected to hold. Two other speakers discussed
quantile regression methods for censored data. Specifically, the following research
fields in quantile regression were discussed during the workshop.

(1) Multivariate quantile regression
(2) Quantile regression for longitudinal data and random effect models
(3) Bayesian analysis in quantile regression
(4) Variable selection in high-dimensional quantile regression models
(5) Quantile regression for censored data
(6) Quantile regression in time series

The workshop stimulated intensive discussions between all participants and new
developments in various subfields of quantile regression analysis. For example, the
problem of quantile regression for multivariate was discussed in three talks from
different perspectives. Similarly, in the context of stationary time series a spectral
theory will be developed, which avoids the existence of any moments.
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Abstracts

Robust Inference in High-Dimensional Sparse Quantile Regression
Models

Alexandre Belloni

(joint work with Victor Chernozhukov, Kengo Kato)

Many applications of interest requires the measurement of the distributional im-
pact of a policy (or treatment) on the relevant outcome variable. To consider
the whole quantile impact instead of focusing only on the average effect allows to
study the impact on the tails of the distribution which might of main interest.
Examples where the tail of the distribution plays the central role of the analysis
include infant birth weight, student performance, and risk management just to
name a few.

Quantile treatment effects has emerged as an important paradigm to measure
such distributional impact particularly when the impact might be heterogeneous.
In this work we propose a method to estimate the quantile treatment effect α0 of
a poliy/treatment d of an outcome of interest y

τ − quantile(y | z, d) = dα0 + gτ (z),

where the unknown function gτ summarizes the confounding effects of the observed
controls z. To approximate gτ we rely on linear combinations of p-dimensional
covariates x = P (z). Given a sample with n independent observations, we allow
for p ≫ n to rely on a flexible family of functions in order to achieve an accurate
approximation for gτ in finite samples. In turn, the high-dimensionality brings
forth the need to perform model selection or regularization.

We are particularly interested in non-parametric settings in which it seems
unrealistic to assume a separation from zero of the relevant coefficients. Therefore,
in those settings, an important feature of any inferential procedure is its robustness
with respect to model selection mistakes. In particular the inferential analysis
presented here does not rely on the oracle property. It turns out that this feature
is fundamental to achieve a inferential procedure whose properties hold uniformly
over a large class of data generating processes similarly the average treatment
effect case studied in [3]. This allows us to overcome the impact of model selection
mistakes avoiding the criticisms in [6] which ties the oracle property with super-
efficient estimators [7].

Due to inherent non-linearity of quantile estimators the proposed method pro-
ceed in three steps. Each step relies on a different identification condition which
in turn requires a different estimation procedure. The first step aims to construct
an accurate estimate of the control function gτ via ℓ1-penalized quantile regres-
sion (ℓ1-qr) estimator [2, 5, 9]. The second step attempts to properly partial out
the confounding factors z from the treatment estimating a suitable residual via
heteroskedastic Lasso [8, 1]. Finally, the residual is used as the instruments for
the treatment in a Instrumental quantile regression [4]. Interestingly, although we
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provide a complete analysis which relies on these specific methods, several variants
are of the proposed method are possible. For instance, Lasso can be substituted
by Dantzig selector, SCAD, square-root Lasso, the associated post-model selec-
tion estimators or others. In our analysis we provide high-level conditions which
summarizes the required properties of the estimators.

Despite of possible model selection mistakes, under suitable regularities condi-
tions we show that the proposed estimator α̌ of α0 obeys

(1) V
−1/2
0

√
n(α̌− α0) N (0, 1)

where V0 := τ(1 − τ)J−1
0 and J0 = E[viv

′
i]. Moreover, we also propose the con-

struction of a confidence region Ân,ξ with asymptotic coverage 1 − ξ based on
an inverse statistics. Importantly, the robustness with respect to model selection
mistakes allows these results to hold uniformly over a large range of dgps.

In the process of establishing the main results we also contribute to the litera-
ture of high-dimensional estimation. An intermediary step of the method required
the estimation of a weighted least squares version of Lasso in which weights are
estimated. Finite sample bounds of Lasso for the prediction rate are established
to this new case. Finite sample bounds for the prediction norm on the estima-
tion error of ℓ1-penalized quantile regression in nonparametric models extending
results on [2, 5, 9]. We further developed results on instrumental quantile re-
gression problems in which we allow for the dimension to increase and estimated
instruments.
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Random-Effects Quantile Regression

Stéphane Bonhomme

(joint work with Manuel Arellano)

Nonlinear panel data is an active area of research. Despite some recent progress,
it is fair to say that we are still short of answers for panel versions of many models
commonly used in applied work. In this paper we focus on one particular nonlinear
model for panel data: quantile regression.

Quantile regression provides a flexible modelling of conditional distributions.
This is potentially useful in panel data applications, where conditioning on covari-
ates and initial conditions is key. Current approaches, since Koenker (2004), are
based on a quantile-by-quantile fixed-effects approach. In contrast, we propose a
random-effects approach, which relies on a flexible modelling of the conditional
distribution of individual effects using an additional quantile regression specifica-
tion.

The method. Specifically, our aim is to estimate models of the form:

Qτ (Yit | Xit, ηi) = X ′
itβ (τ) + ηiγ (τ) , τ ∈ (0, 1),

where the quantile function of outcomes is linear in regressors and individual ef-
fects. With data on Y , X and η we would just run an ordinary quantile regression,
i.e. minimize the check function:

(1) min
β,γ

N∑

i=1

T∑

t=1

ρτ (Yit −X ′
itβ − γηi) ,

where ρτ (u) = u (τ − 1{u ≤ 0}).
However, since ηi is unobserved we construct instead some imputations, say M

imputed values η
(1)
i , ..., η

(M)
i for each individual in the panel. Then we compute:

min
β,γ

N∑

i=1

M∑

m=1

T∑

t=1

ρτ

(
Yit −X ′

itβ − γη
(m)
i

)
.

For this approach to be valid, the imputed values have to be drawn from the
posterior distribution of ηi conditioned on the data: f (η | Yi, Xi). The trouble
is that this density depends on the distributions of Yi | Xi, ηi and ηi | Xi, hence
on the parameters to be estimated. We solve this using an EM-type iterative
procedure, which alternates between QR estimation and generation of imputed
values based on an approximation to the posterior density of ηi.

To complete the model, we assume a correlated random-effects structure for
the individual effects, based on a second layer of quantile regression. Formally, we
specify:

Qτ (ηi | Xi) = X ′
iδ (τ) , τ ∈ (0, 1),

where Xi is a function of regressors in all periods.
In each step of the iterative algorithm, the posterior density of ηi is recon-

structed using the parameters δ(·), β(·), and γ(·). In order to keep the dimension
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of the problem manageable we use a spline approximation strategy first proposed
by Wei and Carroll (2009), which takes advantage of smoothness restrictions across
percentile values τ ∈ (0, 1).

Contribution and outline. In the approach we propose, the random-effects
ηi are interpreted as missing data, assumed not to vary over time. Consistency
of the estimator is then established for fixed T , as N tends to infinity. This
last feature contrasts with most existing work on quantile regression for panel
data, where consistency holds as both N and T tend to infinity. In addition, we
establish conditions for nonparametric identification. For this purpose, we draw
a connection with nonlinear measurement error models and the work by Hu and
Schennach (2008).

Importantly, we show that our approach may easily be extended in various
directions. One extension is to allow for multiple random-effects, for example ran-
dom slopes, by building triangular quantile regression models. A second extension
is to allow for lagged outcomes as covariates, and more generally for predetermined
regressors. To handle predeterminedness we rely on a third layer of quantile re-
gression, and use another quantile regression to model the feedback process.

A practical feature of our approach is that the computational simplicity of stan-
dard quantile regression is preserved. In our iterative algorithm, each estimation
step relies on a simple quantile regression, which may be solved using linear pro-
gramming. To implement the algorithm, we use a modified EM algorithm with a
Monte Carlo E-step. Preliminary simulations suggest good finite sample properties
and numerical stability.

Lastly, we apply our method to estimate the effect of maternal smoking during
pregnancy on children’s birthweight. We use a sample of mothers and children
from Abrevaya (2006), and allow for mother-specific correlated random-effects to
address potential endogeneity of smoking. The panel data quantile regression
estimates show that the negative smoking effect is reduced when allowing for
mother-specific unobserved heterogeneity. Nonetheless, the average effect remains
negative, and is particularly large at the bottom of the distribution.
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Semiparametric Efficient Tests

Juan Carlos Escanciano

This paper proposes efficient tests for restrictions on finite-dimensional parameters
in regular semiparametric models. Our theory overcomes the main limitation of
the existing theory, which requires explicit computation and estimation of certain
projections onto infinite-dimensional tangent spaces and a case-by-case analysis.
We consider generic semiparametric models defined by an infinite number of mo-
ment conditions, including a finite-dimensional parameter of interest and possibly
containing moment-specific nonparametric nuisance parameters. We investigate
tests based on functionals of the sample analog of the moments, and show that
the optimal functional takes the form of a Radon-Nikodym derivative or non-
parametric Likelihood Ratio (LR). This functional LR test was first suggested by
Grenander (1950) in an abstract setting, and since then, numerous proposals have
used this principle. However, the asymptotic optimality of the nonparametric LR
test remained unknown.

Our first result shows that the functional LR test is efficient in our general
semiparametric setting. To prove this result we first obtain a generic asymptotic
representation of the LR test statistic as a score-type process (i.e. as a sample
mean of a score function). We characterize the score function in terms of the limit-
ing covariance and mean functions of the standardized sample moments. Then, we
show that the resulting score coincides with the so-called efficient score in the semi-
parametric model defined by the moment restrictions, which in turn establishes
the semiparametric efficiency of the functional LR test.

The LR test is generally infeasible, as it assumes knowledge of the singular
value decomposition of the limiting Gaussian process of the standardized sample
moments. We then propose and justify feasible efficient tests based on a novel
nonparametric estimator of the so-called efficient score, without requiring direct
computation of projections onto tangent spaces or sample splitting techniques.
The estimator of the efficient score solves an integral equation, a generalized in-
formation equality, using Tikhonov regularization and has a simple closed form
expression. The test based on the estimated efficient score is a natural extension
of the celebrated C(α) test of Neyman (1959) from parametric to semiparamet-
ric models. Thus, the proposed efficient tests are widely applicable, while being
straightforward to implement.

Finally, to illustrate the benefits of the approach, we apply the new methods to
a semiparametric linear quantile regression model with a continuum of quantiles.
The parameter of interest is a quantile-invariant parameter. Optimal inferences in
this model were not available because classical efficiency arguments are difficult to
apply. In particular, the orthogonal projection into the tangent space of nuisance
parameter has no simple closed form expression. In contrast, our methods deliver
relatively simple efficient tests in this example.
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Conditional Quantile Processes based on Series or Many Regressors

Iván Fernández-Val

(joint work with Alexandre Belloni, Victor Chernozhukov)

Quantile regression (QR) is a principal regression method for analyzing the impact
of covariates on outcomes, particularly when the impact might be heterogeneous.
This impact is characterized by the conditional quantile function and its function-
als [2, 5, 15]. For example, we can model the log of the individual demand for
some good, Y , as a function of the price of the good, the income of the individual,
and other observed individual characteristics X and an unobserved preference U
for consuming the good, as

Y = Q(X,U),

where the function Q is strictly increasing in the unobservable U . With the nor-
malization that U ∼ Uniform(0, 1) and the assumption that U and X are inde-
pendent, the function Q(X,u) is the u-th conditional quantile of Y given X , i.e.
Q(X,u) = QY |X(u|X). This function can be used for policy analysis. For exam-
ple, we can determine how changes in taxes for the good could impact demand
heterogeneously across individuals.

In this paper we develop the nonparametric QR series framework for performing
inference on the entire conditional quantile function and its linear functionals. In
this framework, we approximate the entire conditional quantile functionQY |X(u|x)
by a linear combination of series terms, Z(x)′β(u). The vector Z(x) includes
transformations of x that have good approximation properties such as powers,
trigonometrics, local polynomials, or B-splines. The function u 7→ β(u) contains
quantile-specific coefficients that can be estimated from the data using the QR
estimator of Koenker and Bassett [16]. As the number of series terms grows, the
approximation error QY |X(u|x) − Z(x)′β(u) decreases, approaching zero in the
limit. By controlling the growth of the number of terms, we can obtain consistent
estimators and perform inference on the entire conditional quantile function and
its linear functionals. The QR series framework also covers as a special case the so
called many regressors model, which is motivated by many new types of data that
emerge in the new information age, such as scanner and online shopping data.

We describe now the main results in more detail. Let β̂(·) denote the QR
estimator of β(·). The first set of results provides large-sample theory for the

empirical QR coefficient process of increasing dimension
√
n(β̂(·) − β(·)). We

obtain uniform strong approximations to this process by a sequence of the following
stochastic processes of increasing dimension:
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(i) a conditionally pivotal process,
(ii) a gradient bootstrap process,
(iii) a Gaussian process, and
(iv) a weighted bootstrap process.

To the best of our knowledge, all of the above results are new. The existence of the
pivotal approximation emerges from the special nature of QR, where a (sub) gra-
dient of the sample objective function evaluated at the truth is pivotal conditional
on the regressors. This allows us to perform high-quality inference without even
resorting to Gaussian approximations. We also show that the gradient bootstrap,
introduced by Parzen, Wei and Ying [20] in the parametric context, is effectively a
means of carrying out the conditionally pivotal approximation without explicitly
estimating Jacobian matrices. The conditions for validity of these two schemes
require only a mild restriction on the growth of the number of series terms in re-
lation to the sample size. We also obtain a Gaussian approximation to the entire
distribution of QR process of increasing dimension by using chaining arguments
and Yurinskii’s coupling. Moreover, we show that the weighted bootstrap works to
approximate the distribution of QR process for the same reason as the Gaussian
approximation. The conditions for validity of the Gaussian and weighted boot-
strap approximations, however, appear to be substantively stronger than for the
pivotal and gradient bootstrap approximations.

The second set of results provides estimation and inference methods for linear
functionals of the conditional quantile function, including

(i) the conditional quantile function itself, (u, x) 7→ QY |X(u|x),
(ii) the partial derivative function, (u, x) 7→ ∂xk

QY |X(u|x),
(iii) the average partial derivative function, u 7→

∫
∂xk

QY |X(u|x)dµ(x), and
(iv) the conditional average partial derivative, (u, xk) 7→

∫
∂xkQY |X(u|x)dµ(x|xk),

where µ is a given measure and xk is the k-th component of x. Specifically, we
derive uniform rates of convergence, large sample distributions and inference meth-
ods based on the strong pivotal and Gaussian approximations and on the gradient
and weighted bootstraps. It is noteworthy that all of the above results apply to
function-valued parameters, holding uniformly in both the quantile index and the
covariate value, and covering pointwise normality and rate results as a special
case. If the function of interest is monotone, we show how to use monotonization
procedures to improve estimation and inference.

The paper contributes and builds on the existing important literature on con-
ditional quantile estimation. First and foremost, we build on the work of He and
Shao [13] that studied the many regressors model and gave pointwise limit theo-
rems for the QR estimator in the case of a single quantile index. We go beyond
the many regressors model to the series model and develop large sample estima-
tion and inference results for the entire QR process. We also develop analogous
estimation and inference results for the conditional quantile function and its linear
functionals, such as derivatives, average derivatives, conditional average deriva-
tives, and others. None of these results were available in the previous work. We
also build on Lee [18] that studied QR estimation of partially linear models in
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the series framework for a single quantile index, and on Horowitz and Lee [14]
that studied nonparametric QR estimation of additive quantile models for a single
quantile index in a series framework. Our framework covers these partially linear
models and additive models as important special cases, and allows us to perform
inference on a considerably richer set of functionals, uniformly across covariate
values and a continuum of quantile indices. Other very important work includes
Chaudhuri [7], Chaudhuri, Doksum and Samarov [8], Härdle, Ritov, and Song [12],
Cattaneo, Crump, and Jansson [6], and Kong, Linton, and Xia [17], among others,
but this work focused on local, non-series, methods.

Our work also relies on the series literature, at least in a motivational and
conceptual sense. In particular, we rely on the work of Stone [21], Andrews [1],
Newey [19], Chen and Shen [10], Chen [9] and others that rigorously motivated
the series framework as an approximation scheme and gave pointwise normality
results for least squares estimators, and on Chen [9] and van de Geer [22] that gave
(non-uniform) consistency and rate results for general series estimators, including
quantile regression for the case of a single quantile index. White [23] established
non-uniform consistency of nonparametric estimators of the conditional quantile
function based on a nonlinear series approximation using artificial neural networks.
In contrast to the previous results, our rate results are uniform in covariate values
and quantile indices, and cover both the quantile function and its functionals.
Moreover, we not only provide estimation rate results, but also derive a full set of
results on feasible inference based on the entire quantile regression process.

While relying on previous work for motivation, our results require to develop
both new proof techniques and new approaches to inference. In particular, our
proof techniques rely on new maximal inequalities for function classes with grow-
ing moments and uniform entropy. One of our inference approaches involves an
approximation to the entire conditional quantile process by a conditionally piv-
otal process, which is not Donsker in general, but can be used for high-quality
inference. The utility of this new technique is particularly apparent in our high-
dimensional setting. Under stronger conditions, we also establish an asymptoti-
cally valid approximation to the quantile regression process by Gaussian processes
using Yurinskii’s coupling. Previously, [11] used Yurinskii’s coupling to obtain a
strong approximation to the least squares series estimator. The use of this tech-
nique in our context is new and much more involved, because we approximate
an entire empirical QR process of an increasing dimension, instead of a vector of
increasing dimension, by a Gaussian process. Finally, it is noteworthy that our
uniform inference results on functionals, where uniformity is over covariate values,
do not even have analogs in the least squares series literature (the extension of our
results to least squares is a subject of ongoing research, [3]).

This material is based upon work supported by the National Science Foundation
under Grant No. 1060889. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation (NSF).
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Toward Multivariate Quantile Regression

Alfred Galichon

(joint work with Guillaume Carlier and Victor Chernozhukov)

The aim of this talk is to investigate a multivariate notion of quantile regression.
Let us setup some notations. Consider (X,Y ) ∼ ν, where X ∈ R

n and Y ∈ R
d,

where d is some positive integer. It is assumed that X1 = 1 is constant. Denote

x̄ = E [X ]. Let µ = U
(
[0, 1]

d
)
the uniform density on [0, 1]

d
. We shall use the

notation ḟ (t) for df (t) /dt.

Conditional quantiles. For now we focus on the unidimensional case, and we
seek a variational principle for conditional quantiles which we will elaborate upon.
When d = 1, µ is the uniform distribution over [0, 1], and (X,Y ) ∼ ν is a random
vector where X ∈ R

n and Y ∈ R. A natural idea is to look for the U ∼ µ which
is maximally correlated to Y among those independent from X . Write

maxE [UY ](1)

s.t. U ∼ µ, (X,Y ) ∼ ν

(X,U) indep.

Theorem 1. The following holds:
(i) An optimal coupling (U,X, Y ) solution to problem (1) exists.
(ii) The value of problem (1) coincides with the value of its dual, namely

min
ϕ,ψ

∫
ϕ (x, u) dµdν +

∫
ψ (x, y) dν

s.t. ψ (x, y) ≥ uy − ϕ (x, u) .

(iii) A solution (ϕ, ψ) to the dual problem exists and is such that

ψ (x, y) = sup
u

{uy − ϕ (x, u)} and ϕ (x, u) = sup
y

{uy − ψ (x, y)} ,

in particular ϕ (x, u) is convex with respect to u for all x.
(iv) The primal solution (U,X, Y ) and the dual solution are related by

Y =
∂ϕ

∂u
(X,U)

and u→ ∂ϕ
∂u (x, u) exists almost everywhere and is nondecreasing.

(v) As a consequence,

∂ϕ

∂u
(x, u) = QY |X=x (u)

is the conditional quantile of Y |X = x.

Quantile regression. We see that problem (1) leads to the conditional quan-
tile representation u→ QY |X=x(u) without shape restriction regarding the depen-
dence in x. If we want to impose shape restrictions (like linearity w.r.t. x) on
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the dual variable ϕ, this means loosening the constraints in the primal problem.
As one looks for partial linearity of ϕ w.r.t. x, it is natural to relax the con-
straint of independence of U and X into mean independence of X from U , namely
E [X |U ] = x̄. Accordingly, write

maxE [UY ](2)

s.t. U ∼ µ, (X,Y ) ∼ ν

E [X |U ] = x̄

The next result relates this problem to the classical Quantile Regression procedure.
Call βQR (t) the classical Quantile Regression estimator, obtained from

βQR(t) = argminβ∈Rn

{
E[(Y − x.β)+] + (1− t)x̄.β

}
.

Theorem 2. The following holds:
(i) An optimal coupling (U,X, Y ) solution to Problem (2) exists.
(ii) The value of Problem (2) coincides with the value of its dual, namely

inf
b∈L1(µ),ψ∈L1(ν)

x̄

∫
bdµ+

∫
ψdν(3)

s.t. ψ (x, y) ≥ uy − x.b (u)

(iii) A solution (b, ψ) to the dual problem exists in L1, an is such that

(4) ψ(x, y) = sup
u∈[0,1]

{uy − x.b (u)}

(iv) Whenever the quantile regression estimator βQR (t) has no crossing, then
the solution to the primal problem (U,X, Y ) and to the dual problem (ψ, b) are
related by the first order conditions in (4), that is

Y = X.ḃ (U)

(where ḃ is the derivative of b), and

ḃ (u) = βQR (u) and ψ (x, y) = sup
u

{∫ u

0

y − x.βQR (t) dt

}
.

Multivariate quantiles. We now would like to extend Quantile Regression
to the multivariate case. We do this by appealing to the notion of multivariate
quantiles introduced in [4], which we now recall. Let µ be the uniform distribution

over the unit hypercube [0, 1]
d
. Let Y ∼ Q be a random vector of Rd. By the

Monge-Kantorovich duality

sup
U∼µ
Y∼Q

Eπ [Y.U ] = inf
ϕ(u)+ψ(y)≥〈u,y〉

∫
ϕ (u) dµ (u) +

∫
ψ (y)dQ (y)

where u.y denotes the standard scalar product in R
d, and the equality of the primal

and the dual, as well as the existence of solutions to both problems is a basic result
in Optimal transport theory (see [7] for an excellent introduction). Further, the
solutions of the dual (ϕ, ψ) can be taken convex, and are hence almost everywhere
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differentiable. Finally, the primal solutions (U, Y ) and dual solutions (ϕ, ψ) are
related by the complementary slackness relation

Y = ∇ϕ (U)

where ∇ϕ = (∂ϕ/∂u1, ..., ∂ϕ/∂ud) is the gradient of ϕ. Following [4], [5] and [6],
we take the map u→ ∇V (u) as the definition of our multivariate quantile, and call
ϕ(u) the Kantorovich potential of Q. Note that in dimension 1, this definition is
consistent with the usual one: the gradient of a convex function is a nondecreasing
function–which then coincides with the quantile function. The link with the notion
of statistical depth and fundamental symmetries of the problem are investigated
in a work in progress [6]. The link with the Knothe-Rosenblatt quantile is made
precise in [1].

Multivariate empirical quantile process. Let Q be a probability measure
on R

d with a density f(y) and Kantorovich potential ϕQ(u). Let QN be the empir-

ical distribution of an i.i.d. sample {y1, ..., yN} from Q, that is QN = 1
N

∑N
k=1 δyk ,

and let ϕQN (u) be the Kantorovich potential of QN . As explained in [4], ϕQN

is piecewise affine and can be expressed ϕQN (u) = maxk=1...N {u.yk − αk} where
the αk’s are determined by

min
α∈RN

{
E

[
max
k=1...N

{U.yk − αk}
]
+

1

N

N∑

k=1

αk

}
.

In ongoing work [2], the multivariate empirical quantile process is defined by

∇VN (u) =
√
N (∇ϕQN (u)−∇ϕQ (u))

where ∇ϕQN and ∇ϕQ are the multivariate quantiles of QN and Q respectively.
Letting AQ be the second order elliptic differential operator defined by

(AQV ) (u) = f (∇ϕQ (u))Tr
(
D2V (u) .D2ϕQ (u)

−1
)
+∇V (u) .∇f (∇ϕQ (u)) ,

it is shown that at the first order, VN is the solution to the following generalized
Laplace equation with Neumann-type boundary conditions

AQVN +
√
N (QN −Q) = 0.

Multivariate quantile regression. The ideas exposed in the last two para-
graphs combine very naturally with the first two, to lead to a convenient notion of
Multivariate Quantile Regression. Theorem 2 essentially holds without modifica-
tion. In ongoing work [3], we propose to use the multivariate version of program
(2) to compute the optimal coupling (U,X, Y ) ∼ π, and to look for β such that
distance between Y and X.β (U) is minimized, which thus provides a multivariate
analog of quantile regression.
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Of Distribution Functions, Halfspace Depth, Multivariate Quantiles,
and Multiple-Output Quantile Regression

Marc Hallin

(joint work with Zudi Lu, Davy Paindaveine and Miroslav Šiman)

1. Quantiles and Depth

1.1. Quantiles and quantile contours. The classical concept of quantile is in-
trinsically univariate, and strongly rooted into the well-ordered nature of the real
line; based on “analytical” characterizations, its empirical counterparts are ob-
tained through numerically “efficient” L1 algorithms and, via Bahadur represen-
tation results, yield standard central-limit asymptotics.

Let X ∼ P be a real-valued, absolutely continuous random variable with strictly
increasing distribution function FX = F . The quantile function of X is the in-
verse distribution function q ∈ (0, 1) 7→ F−1(q). It is characterized by a a col-
lection of nested regions of the form (−∞, F−1(q)], indexed by their probability
contents q ∈ (0, 1). Those regions are not equivariant under affine transforma-
tions: for instance, x 7→ −x yields −F−1

X (q) = F−1
−X(1 − q) 6= F−1

−X(q). The
same quantile function also can be characterized by the collection of nested re-
gions [F−1

+ (τ), F−1
− (τ)] indexed by their probability contents 1 − 2τ , τ ∈ (0, 1/2],

where F+(x) := P[X ≤ x] = F (x) and F+(x) := P[X ≥ x]. These regions, con-
trary to the previous ones, are equivariant under affine (location-scale-symmetry)
transformations (actually, equivariance holds under the much larger group of con-
tinuous monotone transformations).

Note that F−1
+ and F−1

− can be interpreted as the quantile functions associated
with the directions u = ±1 ∈ S0 (the unit sphere in dimension one), respec-
tively, yielding directional quantiles, thus, but also projected quantiles, computed
from the projections ±X of X on the directions u = ±1, respectively. The in-
tervals [F−1

+ (τ), F−1
− (τ)] can be considered as quantile regions (of order τ , with
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probability contents 1 − 2τ), and their boundaries {F−1
+ (τ), F−1

− (τ)} as quantile
contours (of order τ , with probability contents 1− 2τ). Contrary to the quantiles
themselves, quantile regions and contours are coordinate-free concepts, invariant
under affine (location-scale-symmetry) transformations.

Traditional quantiles also can be defined as the minimizers of weighted L1 cri-
teria. Let ρτ (z) := τ |z|I[z ≥ 0] + (1 − τ)|z|I[z ≤ 0] denote the so-called check
function. More precisely,

F−1
± (τ) = argmina∈R

E
[
ρτ

(
u(X − a)

)]
, u ∈ S0 = {−1, 1}, τ ∈ (0, 1/2]

They can be represented, asymptotically, as sums of independent summands; such
representations are called Bahadur representations, and yield “classical” central-
limit behavior. Finally, they define a probability-integral transformation which, in
terms of quantile contours, can be described as follows. Each x ∈ R belongs to one
and only one τ -contour: denote by τ(x) (which possibly takes value 0) the order of
that contour, by p(τ) its probability contents (here, p(τ) = 1−2τ). Then, p(τ(X))
is uniformly distributed over [0, 1], that is, for all u ∈ [0, 1],

P[p(τ(X))] ≤ u = P[X ∈ quantile region with probability contents u] = u.

1.2. Depth and depth contours. Contrary to quantile functions, depth func-
tions have a multivariate (or multiple output) origin, and were introduced as an
attempt to overcome the absence of natural order in R

k. Depth concepts typically
are based on “geometric” characterizations, their empirical versions require com-
putationally intensive combinatorial algorithms, and their asymptotics are non-
standard.

Let P be a probability measure on R
k. It will be convenient, throughout, to

assume that P has a nonvanishing Lebesgue-density. The halfspace depth HD(y,P)
of y ∈ R

k with respect to P is infu∈Sk−1
P[Hy,u], where Sk−1 := {u : ‖u‖ = 1} is

the unit sphere in R
k and Hy,u denotes the halfspace lying above the hyperplane

orthogonal to u and running through y: the depth of y is thus the minimal
probability lying above such hyperplanes—clearly, a measure of outlyingness. The
empirical version of that concept is the depth of y with respect to the empirical
measure Pn associated with an observed n-tuple Y1, . . . ,Yn. The collections of
points with given depth τ are called depth contours. Population depth contours
are continuous, convex, nested, and entirely characterize P.

The halfspace depth region D(τ) of order τ ∈ [0, 1] associated with P collects
all points of Rk with depth at least τ , that is,

D(τ) = DP(τ) := {y ∈ R
k : HD(y,P) ≥ τ}.

Clearly, D(0) = R
k. Also, it can be shown that, for any τ > 0,

D(τ) =
⋂

{H : H is a closed halfspace with P[Y ∈ H ] > 1− τ}.

The empirical version D(n)(τ) of D(τ), as usual, is obtained by replacing P with
the empirical measure associated with an observed n-tuple Y1, . . . ,Yn.
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1.3. (Directional) quantile regression. Apparently, quantiles and depth be-
long to distinct statistical planets. In the univariate case, however, the depth of
a point y ∈ R with respect to a probability distribution P with strictly mono-
tone distribution function F is either F (y) (y below the median) or (1 − F (y))
(y above the median), that is (the unique hyperplane running through y is {y}
itself), min(F (y), 1− F (y)) =min(F+(y), F−(y)). The only points with depth τ
(the τ-depth contour), 0 < d < 1/2, are F−1(τ) and F−1(1 − τ), that is, F−1

± (τ),
the directional quantiles of order τ . This establishes, in the one-dimensional case,
a relation between depth contours and quantile contours (one quantile associated
with each direction u = ±1 of S0). It also suggests extending to higher dimensions
this relation between depth and quantiles as a relation between depth contours
and the contours of a directional version of quantiles.

Recall the argmin form of the definition of quantiles: the τ -quantile (τ ∈ (0, 1))
of a univariate random variable Y is any element of the collection argmina∈R

Ψτ (a),
with Ψτ (a) := E[ρτ (Y −a)], where x 7→ ρτ (x) :=: τ |x|I[x > 0]+(1− τ)|x|I[x ≤ 0].
This actually defines a hyperplane dividing the total probability mass into two
parts, τ and 1− τ , while minimizing a weighted directional (here, direction is +1)
L1 criterion. This is exactly what the Koenker and Bassett (1978) quantile regres-
sion hyperplanes also do, in higher dimension, for a direction which is the “vertical”
direction (in a coordinate system where the covariates are “horizontal”).

In the case of a single, k-variate random variable Y (no covariates), there is no
reason for privileging any “vertical” direction. The following concept is developed
in Hallin et al. (2010). Fix u ∈ Sk−1, and use it as the “vertical direction” for a
(fully k-variate) L1 regression quantile hyperplane construction in the Koenker and
Bassett style. That is, denoting by ΓΓΓu an arbitrary k×(k−1) matrix of unit vectors
such that (u, ΓΓΓu) constitutes an orthonormal basis of Rk, decomposeY intoYu :=
(u′Y)u andY⊥

u := ΓΓΓ′
uY. Define the τττ -quantile hyperplane ΠHPŠ,τu (with τττ := τu)

of Y as any element of the collection of (k − 1)-dimensional hyperplanes

Πτττ := {y ∈ R
k : u′y = b′

τττΓΓΓ
′
uy + aτττ}

such that (aτττ ,b
′
τττ )

′ ∈ argmin(a,b′)′∈RkE[ρτ (Yu − b′Y⊥
u − a)]. Those quantile hy-

perplanes characterize lower and upper quantile halfspaces,

H−
τττ = H−

τττ (aτττ ,bτττ ) :=
{
y ∈ R

k : u′y < b′
τττΓΓΓ

′
uy + aτττ

}

and

H+
τττ = H+

τττ (aτττ ,bτττ ) :=
{
y ∈ R

k : u′y ≥ b′
τττΓΓΓ

′
uy + aτττ

}

and, varying u for fixed τ , quantile contours as the boundaries ∂R(τ) of the
quantile regions R(τ) :=

⋂
u∈Sk−1

⋂ {H+
τu}.

Empirical versions Π
(n)

HPŠ,τu
and R(n)(τ), as usual, are obtained by replacing P

with the empirical measure associated with an observed n-tuple Z1, . . . ,Zn, yield-
ing polygonal (polyhedral) contours with a finite number of edges; those contours
can be computed via linear programming.



3358 Oberwolfach Report 56/2012

1.4. (Directional) projection quantiles. Another directional approach to mul-
tivariate has been proposed by Kong and Mizera (2008). Still for u ∈ Sk−1, instead
of constructing regression hyperplanes in the Koenker-Bassett style, they propose
projecting (orthogonally) Y on the directed straight line with unit vector u, then
compute the ordinary τ -quantile of the projection. Varying u for fixed τ , they also
obtain contours, the envelopes of which, as we shall see, enjoy interesting prop-
erties. This is equivalent to replacing the quantile regression hyperplanes with

hyperplanes Π
(n)
KM;τu orthogonal to u and running through the projection quantile,

then considering the envelope, as u ranges over Sk−1, of the (infinite number of)
hyperplanes thus obtained.

2. From Directional Quantile Regression and Projection Quantiles

to Halfspace Depth

2.1. Two fundamental results. Hallin et al. (2010) establish the following
fundamental result: the directional quantile regression contours (regions) coincide
with the halfspace depth contours (regions). More precisely,

Theorem (i) (population case) For all τ ∈ [0, 1), R(τ) = D(τ), and (ii)
(empirical case) assuming that the n(≥ k + 1) data points are in general po-
sition, for any ℓ ∈ {1, 2, . . . , n − k} such that D(n)( ℓn ) has a non-empty inte-

rior, R(n)(τ) = D(n)( ℓn ) for all positive τ in [ ℓ−1
n , ℓn ).

Kong and Mizera (2008) similarly prove the equally fundamental result that the
envelopes of their projection quantile contours coincide with the halfspace depth
contours.

2.2. The best of two worlds? Directional quantile regression and directional
projection quantiles thus both establish a very direct and constructive bridge be-
tween quantile and depth contours. Projection quantile contours are conceptually

simpler; but it takes an infinite number of Π
(n)
KM;τu hyperplanes, even in the empir-

ical case, to construct a contour, while only a finite number of ΠHPŠ,τu is required.
From their relation to halfspace depth, quantile contours inherit the nice geo-

metric features of depth: convexity, connectedness, nestedness, affine-equivariance,
... essentially, all the properties that have been listed for traditional univari-
ate quantile contours. Via the same relation, quantile contours are bringing to
depth the nice analytic features of quantiles: tractable asymptotics (Bahadur rep-
resentation and central-limit asymptotics), L1 characterizations and optimality,
implementable linear programming algorithms, along with the simplex byprod-
ucts (duality and Lagrange multipliers) and, when contours are indexed by their
probability contents, a multivariate form of the classical probability integral trans-
formation.

3. Multiple Output Quantile Regression

Similar ideas apply in a regression context, where anm-dimensional response Y
is observed along with a p-dimensional vector of covariates X := (1,W). The
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relevant quantile hyperplanes, depth regions and contours then are those of the m-
dimensional distributions of Y conditional on W or, more precisely, the collection,
forw0 ranging over R

p−1, of the HPŠ hyperplanes, regions and contours associated
with the distributions PY|W=w0 of Y conditional on W = w0. These contours,
as functions of w0, constitute conditional quantile or depth tubes that completely
characterize the impact of the covariates on the conditional distributions of the
response. Consistent local bilinear estimators of those contours are provided in
Hallin et al. (2012).
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Composite Quantile Regression with high dimensional Single-Index
Models

Wolfgang Karl Härdle

(joint work with Weining Wang, Lixing Zhu, Yan Fan, Lining Yu)

Regression between Y and covariates X is a standard element of statistical
data analysis. We consider an efficient model setup that combines a solution to
both dimension reduction problems and variable selection problems. Specifically,
a composite regression with general weighted loss for the single index model with
possibly ultra high dimensional variables. Our setup is very general, and typically
include the interesting case of quantile regression and expectile regression. We have
derived the theoretical property of our estimation and demonstrate our method
with applications to firm risk analysis.

Quantile regression is one of the major statistical tools and is ”gradually de-
veloping into a comprehensive strategy for completing the regression prediction”
Koenker and Hallock (2001). In many fields of applications like quantitative fi-
nance, econometrics, marketing and also in medical and biological sciences, quan-
tile regression (QR) is a fundamental element for modeling and inference. An
application in financial time series analysis is the estimation of conditional Value-
at-Risk (VaR). Engle and Manganelli (2004) proposed the CaViaR framework to
model VaR dynamically. Koenker and Bassett (1982) used their QR techniques
to test heteroscedasticity in the field of labor market discrimination. The set of
conditional quantile curves are key elements in various statistical problems and
are therefore of great interest in practice. As a set of curves, they describe the
conditional behavior of a response variable given the explanatory variable, and
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display changes in all parts of the distribution, other than just the mean. In ad-
dition, quantile regression is robust w.r.t. outliers, a feature that is welcome in
many practical applications.

The QR estimation implicitly assumes an asymmetric ALD likelihood, and may
not be efficient in the QMLE case. Therefore, different type of flexible loss func-
tions are considered in literature to improve the estimation efficiency, such as,
composite quantile regression, Zou and Yuan (2008), Kai and Zou (2010) and Kai
and Zou (2011). Moreover, Fan and Wang (2011) proposed a more general loss
function framework for linear model, with a weighted sum of different kind of loss
function, and the weight is selected to be data driven. Another special type of loss
considered in Newey and Powell (1987) corresponds to expectile regression (ER)
that is in spirit similar to QR but contains mean regression as its special case,
while nonparametric expectile smoothing work could be found in Schnabel and
Eilers (2009). The ER curves are alternatives to the QR curves and give us a full
picture of regression of Y on X .

The difficulty of characterizing an entire distribution partly arises from the
high dimensionality of covariates, which asks for striking a balance between model
flexibility and statistical precision. To crack this tough nut, dimension reduction
techniques of semiparametric type such as single index models came into the focus
of statistical modeling. Tracy Z. Wu (2010) considers a quantile regression problem
in single index model. However, to our knowledge there are no further literature
on a more generalized regression framework for single-index model.

In addition to the dimension reduction, there is however the problem of choosing
right variables for projection. This motivates our second goal of this research,
variable selection via Lasso. Kong and Xia (1994), Wang and Yin (2008) and
Zeng and Zhu (2012) focused on variable selection in mean regression for single
index model. Considering the uncertainty on the multi-index model structure,
we restrict ourselves to the single-index model at the moment. An application
of our research is presented in the relevant financial risk area: to investigate how
the revenue distribution of companies depend on financial ratios describing risk
factors for possible failure. Such kind of research has important consequences for
rating and credit scoring.

When the dimension of X (the explanatory variables) is high, severe nonlinear
dependencies between X and the mean (quantile) curves are expected. This trig-
gers the nonparametric approach, but in its full gear, it runs into the “curse of
dimensionality” trap, meaning that the convergence rate of the smoothing tech-
niques is so slow that it is actually impractical to use in such situations. A balanced
dimension reduction space for quantile regression is therefore needed. The MAVE
technique, Xia, Tong, Li and Zhu (2002) provides us 1) with a dimension reduc-
tion and 2) good numerical properties for semiparametric function estimation.
The set of ideas presented there, however, have never been applied to composite
quantile framework or a even more general composite quasi-likelihood framework.
The semiparametric multi-index approach that we consider here will provide prac-
titioners with a tool that combines flexibility in modeling with applicability for
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even very high dimensional data. Consequently the curse of dimensionality is cir-
cumvented. The Lasso idea in combination with the minimum average contrast
estimate (MACE) technique will provide a set of relevant practical techniques for
a wide range of disciplines.
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Some Open Questions about Quantile Regression

Roger Koenker

I like to think of quantile regression as one of those fancy salumi slicers that
you see in good italian restaurants. Kernel regression taught us how to do local
regression by slicing the design space into pieces, and quantile regression sought
to do local regression in the y-domain. It has allowed us to see local slices of the
conditional distribution of y|x. In effect we get a deconstruction of the classical
global models. Robust statistics taught us to be suspicious about global likeli-
hoods, especially Gaussian ones, so it semed useful to suspend belief in global
likelihoods and slice them up into more digestible pieces. Some open questions
about expanding the scope of this approach were proposed in the talk:

• Model Selection and Post Selection Inference
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• Survival Analysis and Censored Data
• Multivariate Conditional Quantiles
• Time Series Methods
• Binary Response Models
• Likelihood Interpretations for QR Models

Most of the attention focused on the final topic that raised questions about semi-
parametric forms of the likelihood based on the quantile regression paradigm.

Quantile regression in longitudinal analysis

Chenlei Leng

(joint work with Cheng Yong Tang and Weiping Zhang)

Longitudinal data are characterized by dependence among the observations from
the same subject. However, how to account for this dependence is difficult in
quantile regression, due to the lack of a likelihood.

We study two approaches that deal with this difficulty. For the first approach
(Tang and Leng, 2011), we borrow strength from the mean regression to enhance
the estimation efficiency, by formulating multiple sets of smooth working esti-
mating equations. The empirical likelihood method is utilized to produce subject-
specific weights that are fed into the quantile regression. We show that efficiency is
improved as long as the correlation between the estimating equations between the
quantile regression and those of the mean regression is nonzero. For the second
approach (Leng and Zhang, 2012), we aggregate multiple sets of unbiased non-
smooth estimating equations. To overcome the discreteness of these equations, we
develop an induced smoothing algorithm for parameter estimation and statistical
inference. Methodological and computational aspects of both approaches will be
discussed.
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The Jackknife’s Edge: Inference on Censored Regression Quantiles

Stephen Portnoy

For (right) censored data, it is very common for the right tail of the survival func-
tion to be non-identifiable because of the abundance of censored observations in
the right tail. This is especially prominent in censored regression quantile analy-
sis, and introduces a serious problem with inference, especially near the point of
non-identifiability. The lack of readily estimable formulas for asymptotic variances
requires the use of resampling methods. Unfortunately, the bootstrap (in any of
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its versions) generates samples for which the point of non-identifiability has suffi-
cient variability over the resamples so that (in practice) an appreciable number of
the resamples can no longer estimate a quantile that the original data could esti-
mate. This leads to very poor coverage probabilities. Thus, resampling methods
that provide less variability over the resamples may be very useful in reducing the
number of such samples.

The jackknife is one such method, though even for single sample quantiles it is
necessary to use a “delete-d” jackknife with d of order strictly larger than

√
n. An-

other alternative is to use randomly reweighted “bootstrap” samples with weights
of the form (1+v), with v larger than 1/

√
n. It appears that these approaches can

be justified under appropriate asymptotic regimes. The argument for the usual
regression quantiles is relatively straightforward, and the basic outline is presented
in this talk. Some brief comments will suggest that it should be possible to ex-
tend these results to the censored regression quantiles of Portnoy (2003) using the
inductive argument in Portnoy and Lin (2010).

After giving some introductory material on censored regression quantiles and out-
lining some of the arguments mentioned above, I will present a small scale simula-
tion experiment, showing that randomly sampling a relatively modest number of
delete-d jackknifed samples with d = 2

√
n provides quite excellent coverage prob-

abilities for all τ -values for which the quantile is estimable. A canonical real-data
example will be presented suggesting that the delete-d jackknife method works at
least as well as previous methods. Some comments about future directions will be
offered.
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Quantile based spectral analysis

Stanislav Volgushev

(joint work with Holger Dette, Marc Hallin, Tobias Kley)

A classical quantity that is used in both time series analysis and signal detection is
the so-called periodogram. For real-valued observations X1, X2, ..., Xn it is defined
by

In(ω) :=
1

n

∣∣∣
n∑

t=1

Xte
−itgn(ω)

∣∣∣

where gn(ω) denotes the Fourier frequency 2πj
n ∈ (−π, π] closest to ω. An al-

ternative representation of the periodogram can be obtained by considering L2-
projections of the data X1, X2, ..., Xn onto the harmonic basis. More precisely, for



Mini-Workshop: Frontiers in Quantile Regression 3365

ωj =
2πj
n

In(ωj) =
n

4
b̂n(ωj)

′

(
1 −i
i 1

)
b̂n(ωj)

where b̂n(ωj) = (b̂1n(ωj), b̂2n(ωj))
′ with

(ân(ωj), b̂1n(ωj), b̂2n(ωj)) = arg min
b∈R3

n∑

t=1

(Xt − ct(ωj)
′b)

2

and ct(ωj) = (1, cos(tωj), sin(tωj))
′. Because of its intrinsic connection to L2-

methods, the classical periodogram inherits all the drawbacks of this approach,
including inherent non-robustness and a very narrow view of the world that is
essentially based on means and covariances. In a non-Gaussian setting, such an
approach clearly has many disadvantages. In the regression setting, quantile re-
gression (see [4]) is known to provide an alternative to mean regression. It has nice
robustness properties and at the same time provides a broader view on conditional
distributions. This leads to the natural question of whether this approach can be
successfully applied for the analysis of dynamic time series features. In this talk,
we proposed to consider a collection of so-called Laplace-periodograms that are
based on weighted L1 rather than L2 projections. More precisely, define

(ãτn(ω), b̃
τ
1n(ω), b̃

τ
2n(ω)) := arg min

b∈R3

n∑

t=1

ρτ (Xt − ct(ω)
′b) ,

(ãτn,R(ω), b̃
τ
1n,R(ω), b̃

τ
2n,R(ω)) := arg min

b∈R3

n∑

t=1

ρτ

(
F̂n(Xt)− ct(ω)

′b
)
,

where ρτ (u) := u(τ − I(−∞,0](u)) is the check function and F̂n is the ecdf of
X1, ..., Xn. We then proposed to consider the Laplace-periodogram kernel [see also
[2, 3] for the special case τ1 = τ2]

Lτ1,τ2n (ω) :=
n

4
b̃τ1n (ω)′

(
1 −i
i 1

)
b̃τ2n (ω), τ1, τ2 ∈ (0, 1),

and the rank-based Laplace-periodogram kernel

Lτ1,τ2n,R (ω) :=
n

4
b̃τ1n,R(ω)

′

(
1 −i
i 1

)
b̃τ2n,R(ω), τ1, τ2 ∈ (0, 1).

Next, the asymptotic properties of the kernels defined above were derived under the
assumption that the data X1, ..., Xn come from a strictly stationary time series.
More precisely, let Ω := {ω1, . . . , ων} ⊂ (0, π) denote distinct frequencies and
T := {τ1, . . . , τp} ⊂ (0, 1) distinct quantile orders. Then, under certain technical
assumptions we have (see [1] for details)

(Lτ1,τ2n (ω1), . . . , L
τ1,τ2
n (ων)) (Lτ1,τ2(ω1), . . . , L

τ1,τ2(ων))

where Lτ1,τ2(ωj) are independent random variables such that

Lτ1,τ2(ωj) ∼
1

2
f τ1,τ2(ωj)χ

2
2 if τ1 = τ2,
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and

f τ1,τ2(ω) :=
1

f(qτ1)f(qτ2)

∞∑

k=−∞

Cov(I{F (X1) ≤ τ1}, I{F (Xk) ≤ τ2})e−ikω

with F denoting the distribution function of X1 as well as

Lτ1,τ2(ωj)
d
=

1

4

(
Z11

Z12

)′ (
1 −i
i 1

)(
Z21

Z22

)
if τ1 6= τ2

where (Z11, Z12, Z21, Z22) ∼ N4(0,Σ4(ωj)), with

Σ4(ωj) =
1

2




f τ1,τ1(ωj) 0 ℜf τ1,τ2(ωj) −ℑf τ1,τ2(ωj)
0 f τ1,τ1(ωj) ℑf τ1,τ2(ωj) ℜf τ1,τ2(ωj)

ℜf τ1,τ2(ωj) ℑf τ1,τ2(ωj) f τ2,τ2(ωj) 0
−ℑf τ1,τ2(ωj) ℜf τ1,τ2(ωj) 0 f τ2,τ2(ωj)


 .

For the quantity Lτ1,τ2n,R (ω) a similar result with all instances of f τ1,τ2(ω) replaced
by

f τ1,τ2R (ω) :=

∞∑

k=−∞

Cov(I{F (X1) ≤ τ1}, I{F (Xk) ≤ τ2})e−ikω

can be derived. In particular, the absence of weighting in the definition of f τ1,τ2R (ω)
shows that the rank-based version is preferable. Moreover, the results above
demonstrate that by considering rank based Laplace periodogram kernels we are
able to obtain a rich view of time series dynamics and at the same time separate
marginal features of a time series from its dynamic structure.
In the final part of the talk, we demonstrated that smoothing can be used to
obtain consistent estimators of the quantities f τ1,τ2R and f τ1,τ2 . Interesting open
questions that we are currently working on include the asymptotic distribution of
smoothed Laplace peridograms, their application in the setting of signal detection
as well as extensions of the above methods to the setting of locally stationary time
series.
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Quantile based spectral analysis for nonstationary time series

Stefan Skowronek

(joint work with Holger Dette, Marc Hallin, Tobias Kley, Stanislav Volgushev)

In the field of time series analysis a lot of powerful tools have been developed
under the assumption of (strict) stationarity. However in typical applications such
a restriction can hardly be justified and non-stationary techniques seem to be
appropriate. Recently the concept of locally stationary processes could be used to
transfer important tools from stationary to non-stationary time series. The idea
of modeling local stationarity is based on the assumption, that a given process
behaves approximately stationary over a short period of time. This idea also
underlines the definitions from [4], [2] and [3]. Although the technical definitions
have to be adapted to the specific problems, all three approaches have in common,
that a process (Xt,T )1≤t≤T is called locally stationary, if for each rescaled point
in time ϑ = t

T there exists a process Xt(ϑ) which satisfies

• Xt(ϑ) is stationary
• Xt(ϑ) approximates Xt,T locally in time in a suitable fashion.

To obtain an meaningful asymptotic theorie consider rescaled time t
T instead of the

original time t.We want to apply the concept of local stationarity to quantile based
spectral analysis, where the objects of interest are cross covariant kernels, that can
be written in terms of distribution functions. Therefore it seems intuitively natural
to use differences of distribution functions to measure the distance between the
non-stationary process and its stationary approximation.

Definition 1. A sequence of stochastic processes (Xt,T )1≤t≤T is called locally
strictly stationary (of order 2) if for each time point ϑ there exists a strictly sta-
tionary processes Xj(ϑ) such that

(1) ||Fu,v(x, y;T )−Gu−v(x, y;ϑ)||∞ ≤ Lmax(|u/T − ϑ|, |v/T − ϑ|),
where Fu,v(x, y;T ) and Gu−v(x, y;ϑ) denote the joint distribution functions of
(Xu,T , Xv,T ) and (Xj(ϑ), Xj+h(ϑ)) respectively.

If we let y tend to infinity, we get an analogous condition for the marginal
distributions Ft,T (x) and G(x;ϑ). From a more heuristic point of view this means,
that the distribution function Ft,T (x) and the dependence structure of the time
series (Xt,T )1≤t≤T are allowed to change continuously over time t. One advantage
of this definition is its nonparametric character, as it doesn’t depend on the data
generating mechanism. A similar definition in [4] considers processes that have a
tvMA(∞) representation with time varying coefficients. In fact under conditions
used by Dahlhaus these processes are locally strict stationary in the sense of the
definition above. The approach in [3] exhibits the same nonparametric structure
but is based on a distance in probability rather than our distance in distributions.

With our concept of local strict stationarity we can define a nonstationary
version of the time varying covariance kernel of lag h of (Xt,T )t∈Z at time ϑ by

(2) γh(x1, x2;ϑ) = Cov(1{Xj(ϑ) ≤ x1}, 1{Xj+h(ϑ) ≤ x2}).
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It is important, that unlike in traditional spectral analysis we do not need assump-
tions on the moments of the process itself, as we consider covariances of indicators.
These covariances always exist and provide a canonical description of the joint dis-
tributions. If we assume, that the covariance kernels are absolutely summable we
can define a time varying spectral density by

(3) fx1,x2
(ω, ϑ) =

1

2π

∞∑

h=−∞

γh(x1, x2;ϑ)e
−ihω.

That this is indeed a meaningful definition can be seen if we consider an indicator
version of the Wigner-Ville spectrum (we set Xt,T = 0 for t /∈ [1, T ])

(4) fTx1,x2
(ω, ϑ) :=

1

2π

∞∑

s=−∞

Cov(1{X⌊ϑT−s/2⌋,T≤x1}, 1{X⌊ϑT+s/2⌋,T≤x2})e
−iωs.

Under the assumption of local strict stationarity and if fx1,x2
(ω, ϑ) and γh(x1, x2;ϑ)

are finite, we get

sup
ω,ϑ

|fx1,x2
(ω, ϑ)− γh(x1, x2;ϑ)| = o(1).

That means that our tv spectral density can be interpreted as the limit of the indi-
cator version of the Wigner-Ville spectrum. Analogue to the strictly stationarity
case Dette et al. [1] have investigated, fx1,x2

(ω, ϑ) can be estimated by a local
version of the Laplace-periodogram kernel

Lτ1,τ2T (ω, ϑ) :=
T

4
b̃τ1n (ω, ϑ)′

(
1 −i
i 1

)
b̃τ2T (ω, ϑ), τ1, τ2 ∈ (0, 1),

where forN = o(
√
T ), cu(ω) = (1, cos(uω), sin(uω))′ and ρτ (x) := x(τ−1(−∞,0](x))

(ãτT (ω, ϑ), b̃
τ
1T (ω, ϑ), b̃

τ
2T (ω, ϑ)) := arg min

b∈R3

N∑

u=1

ρτ
(
X⌊ϑT−N/2⌋ − cu(ω)

′b
)
.

Within this setting it is straight forward to proof that the results from Dette et
al. still hold in a nonstationary context.
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Analysis on Censored Quantile Residual Life Model via Spline
Smoothing

Ying Wei

(joint work with Yanyuan Ma)

Residual life is defined as the remaining time to event given the fact that the
survival time T of a patient is at least t, i.e., T−t | T ≥ t. In many clinical studies,
especially when the associated diseases are chronic or/and incurable, knowing
residual life is the major concern to patients. We propose a general class of quantile
residual life models, where a specific quantile of the residual life time, conditional
on an individual has survived up to time t, is a function of certain covariates with
their coefficients varying over time. Specifically, the model we consider can be
written as following.

Qτ (Ti − t | Xi, Ti ≥ t) = m(Xi, β(t)), t > 0,

where Qτ (T |A) denotes the τth conditional quantile function of a random variable
T conditional on an event A, τ is a quantile level ranging between 0 and 1, and t is
the time at which the residual life is considered. Here,m(·) is a parametric function
of covariate X , while the parameter β(t) = {β1(t), β2(t), . . . , βp(t)}T consists of p
unknown smooth functions of t. A special case of the model is the familiar linear
varying-coefficient model

Qτ (Ti − t | Xi, Ti ≥ t) = XT
i β(t), t > 0.

By taking into consideration that β(t) is a smooth function of t, we can obtain a
unified presentation of the residual life over a period of time, which is of interest
in many applications. Moreover, compared to estimating the residual life at given
times separately, we can achieve a more efficient estimator by estimating β(t)
globally.

We propose to estimate the coefficient functions using spline approximation.
Specifically, we take b(t) = [π1(t), . . . , πkn(t)]

T as kn B-spline basis functions given
a set of internal knots and the order of spline, and then approximate β(t) by
β(t) ≈ αb(t), where α is a p × kn matrix of unspecified parameters. With spline
representation of β(t), we proposed two estimation approaches. In the first ap-
proach, we construct a cumulative estimation equations, and solve for β(t) with
one step optimization. Specifically, at a given time tj , we construct the following
estimation equations

s(α, tj)

=

n∑

i=1

∂m{Xi,αB(tj)}
∂α

(
I [Yi ≥ t0 +m{Xi,αB(tj)}]
G [tj +m{Xi,αB(tj)}]

− (1− τ)
I(Yi ≥ tj)

G(tj)

)
= 0,

and then combining t = t1, . . . , tJ . The estimator of α can be obtained from

min
α

S(α) =
J∑

j=1

s(α, tj)
⊗2
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One can choose an arbitrary set of times t1, . . . , tJ as long as at least kn of
the J corresponding equations are linearly independent, for then the estimator is
uniquely defined. Note that this requires that J ≥ kn, so the number of distinctive
event/censor times is larger than the number of B-spline basis functions. Our
subsequent theoretical development further requires that there exist ǫ > 0 so that
J = o(n1/2−ǫ).

The one-step optimization is computationally intensive. Another way to allevi-
ate the computational burden is to estimate β(t) separately at t1, . . . , tJ . Denoting
the resulting estimator β̌(tj)’s, we then obtain the estimate of α by

min
α

J∑

j=1

{
αB(tj)− β̌(tj)

}⊗2

to obtain

α̃ =





J∑

j=1

β̌(tj)B
T(tj)









J∑

j=1

B(tj)B
T(tj)





−1

.

The two step approach reducing a one step p×kn dimensional optimization into J
separate p dimensional problem, andn hence it is more computationally efficient.

We developed large sample theorems for the estimators from both one-step and
two-step optimizations. We show that both estimators are consistent and asymp-
totically normally distributed. Based on the derived limiting variance-covariance
matrix, inference tools to test the significance of the covariate effect on residual
life are available following the classical Wald test theories. We compare the two
methods in terms of their asymptotic efficiency and computational complexity.
They are asymptotically equivalent when J = kn, and when incorporating the
variance-covariance matrix into the estimation.

We finally investigated the finite sample performance of the estimation and
testing procedures through numerical experiments. We also apply the methods to
a real data set from a neurological study.
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Mardenized Multivariate Quantiles?

Xuming He

Quantile is a useful notion for univariate data. Because it is closely related to rank-
ing and ordering, its generalization to multivariate data is not so straightforward.
It is not even clear whether there is a universally accepted notion of multivariate
ranking and quantile. Two recent papers, Hallin, Paindaveine, and Siman (2010)
and Kong and Mizera (2012), provided complementary perspectives on the prob-
lem of multivariate quantiles. In this talk, I introduce an earlier discovery of John
Marden that could lead to a very attractive notion of multivariate quantiles. I
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first learned about this in an informal seminar given by Marden at the University
of Illinois in 1999.

Given a set of points X = {x1, · · · , xn} in Rp, we define their positions through
the following transformation

P (x;X) =
cp
n

n∑

i=1

x− xi
||x− xi||

for some constant cp. If we call the set of points after the transformation as
X1 = {P (x1;X), · · · , P (xn;X)}, we can then iterate this transformation as X →
X1 → X2.... This iteration has a stationary point. Under mild conditions, this
iteration seems to converge to a stationary distribution that is independent of the
distribution of X. For bivariate data p = 2 with cp = π/4, the stationary distri-
bution is well-known as the least informative distribution in a unit circle. It is
also interesting to note that the inverse operation of this transformation can be
characterized by a convex optimization, so we can use the positions in the circle to
represent the bivariate quantile of the original data. I shall demonstrate numeri-
cally that the convergence of this iterative transformation is usually achieved with
a small number of steps. Limited experience with this approach suggests that this
approach leads to (nearly?) affine equivariant solutions, even though each step of
the iteration does not have this property.

My talk is based on preliminary investigations of what I might call “Mardenized
quantiles”, and I hope that my presentation will stimulate interest in this promising
direction.
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