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Abstract. The accurate and efficient treatment of wave propogation phe-
nomena is still a challenging problem. A prototypical equation is the Helmholtz
equation at high wavenumbers. For this equation, Babuška & Sauter showed
in 2000 in their seminal SIAM Review paper that standard discretizations
must fail in the sense that the ratio of true error and best approximation
error has to grow with the frequency. This has spurred the development of
alternative, non-standard discretization techniques. This workshop focused
on evaluating and comparing these different approaches also with a view to
their applicability to more general wave propagation problems.
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Introduction by the Organisers

The non-standard methods that could overcome the limitations of standard finite
difference or finite element methods in the high-frequency regime include

• high order methods;
• Galerkin methods with special ansatz functions (e.g. plane waves);
• Petrov-Galerkin methods with wave-dependent test functions;
• boundary elements with a suitable compression of the integral operator.

Representatives of these methods were discussed at the workshop. In the time-
harmonic setting, several talks covered questions of stability, both on the contin-
uous level and of numerical schemes, with the particular emphasis of making the
wavenumber-dependence explicit. The topic of a posteriori error estimating and,
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more generally, adaptivity for this problem class was addressed in several contri-
butions. The iterative solution of the large systems of equations for Helmholtz
and Maxwell systems is particularly delicate and therefore the topic of two talks.
Since the underlying physical problem is often posed in unbounded domains, sev-
eral presentations were devoted to questions of coupling different discretizations,
to boundary element methods, and to “infinite elements”. Also, recent progress
on some time-domain formulations such as convolution quadrature techniques was
presented.
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Abstracts

FEM/BEM coupling for acoustics in the time-domain

Lehel Banjai

(joint work with V. Gruhne, Ch. Lubich, F. J. Sayas)

In this talk we have discussed the numerical simulation of acoustic wave propaga-
tion with localized inhomogeneities. A standard Galerkin finite element method
(FEM) in space and leapfrog time-stepping in time was applied on a finite spatial
domain containing the inhomogeneities. The equations in the exterior computa-
tional domain were dealt with by a time-domain boundary integral (TDBIE) for-
mulation discretized by the Galerkin boundary element method (BEM) in space
and convolution quadrature [1] in time.

We have given a stability analysis of the proposed method, starting with the
proof of a positivity preservation property of convolution quadrature as a conse-
quence of a variant of the Herglotz theorem. Combining this result with standard
energy analysis of the leapfrog discretization of interior equations gives the sta-
bility of the method. This is a work in progress and two formulations have been
described. For one a complete stability and convergence analysis is available,
whereas for the other the analysis is not complete but we have presented some
numerical results showing stability in practice. Related work, but for Galerkin
discretization of TDBIE, can be found in [2].
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DPG Method as a Non-conforming Discretization Scheme

Leszek Demkowicz

(joint work with J. Gopalakrishnan, M. Melenk, I. Muga, D. Pardo)

This is a “work in progress” report on our attempt to understand the pollution-free
behavior of the Discontinuous Petrov Galerkin (DPG) method for linear acoustics
equations. Let Ω ⊂ IR2 be a domain satisfying Melenk’s regularity assumptions [1].
We wish to solve the model linear acoustics problem:

(1)





iωu+∇p = g in Ω

iωp+ div u = f in Ω

p− un = 0 on Γ = ∂Ω .
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Here p is the pressure, u acoustic velocity, ω the angular velocity and un = u · n
stands for the normal component of velocity with n denoting the outward normal
unit vector. The DPG method is based on a mesh-dependent ultraweak variational
formulation:

(2)





(u, p) ∈ (L2(Ω))2 × L2(Ω), (ûn, p̂) ∈ H−1/2(Γ0
h)×H1/2(Γ0

h)

((u, p), Ah(v, q)) + 〈ûn, q〉+ 〈p̂, vn〉︸ ︷︷ ︸
=:b((u,p,ûn,p̂),(v,q))

= (g, v) + (f, q)

∀(v, q) ∈ H(div,Ωh)×H1(Ωh), q = −vn on Γ .

Here A(u, p) denotes the first order differential operator corresponding to sys-
tem (1), index h in Ah(v, q) indicates that the operator is applied element-wise
to discontinuous test functions coming from the broken test space H(div,Ωh) ×
H1(Ωh), (·, ·) stands for L2(Ω) inner product and 〈·, ·〉 for the conjugated duality
pairing on the mesh skeleton - H−1/2(Γh)×H1/2(Γh) or H

1/2(Γh)×H−1/2(Γh).
It has been proved in [4] that, if we equip the traces and fluxes with the minimum

energy extension norm corresponding to the graph norm,

(3) ‖(ûn, p̂)‖2E := inf{‖u, p‖2 + ‖A(u, p)‖2 : (ûn, p̂) = (u, p)|Γh
, un = p on Γ}

and use the (broken) graph norm for the test space, then the inf-sup constant
corresponding to the sesquilinear form b((u, p, ûn, p̂), (v, q)) is independent of both
the mesh and frequency ω. This implies that the DPG method with optimal test
functions is uniformly stable in frequency ω.

This, unfortunately, does not make it pollution free in the engineering sense. A
pollution free method is expected to deliver the same relative L2-error as long as
we use the same resolution of wavelength - a fixed number of elements of a specific,
fixed order, per wavelength. The stability estimate for the DPG method:

(4)
‖(u− uh, p− ph)‖+ ‖(ûn − ûn,h, p̂− p̂h)‖E
≤ C inf(wh,rh,ŵn,r̂) {‖(u− wh, p− rh)‖ + ‖(ûn − ŵn,h, p̂− r̂h)‖E}

implies such a result in 1D only (proved in [3] in a different way). In 1D, traces
and fluxes are just numbers so the best approximation of those is always zero
and the best approximation error on the right-hand side of (4) reduces to the
L2 best approximation error only. And L2- projection error is indeed pollution
free. In the multidimensional case, however, the minimum energy extension norm
hides derivatives (H1- and H(div)-like norms) which do exhibit pollution. This
can be intuitively seen from differentiating a plane wave solution eiωx. The best
approximation error in H1-norm would always be of order ω(ωh)r, always one
power of ω too much.

The existing convergence analysis indicates thus that, in multidimensions, the
DPG method exhibits the same pollution as classical Bubnov-Galerkin scheme.

This does not explain the almost pollution free behavior of the DPG method
observed numerically [4]. One perhaps should be more careful with this statement.
In a typical 2D experiment with plane waves, ff we compare second order DPG
method (four quadratic elements per wavelength to approximate fluxes and traces)
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with any other second order method, the DPG method is practically pollution free
(experiments with up to 250 wavelengths per domain). On a closer look though,
if we count degrees of freedom, the four quadratic DPG elements per wavelength
should be compared with four quintic standard finite elements. And, with four
quintic elements per wave length, the standard Bubnov-Galerkin method delivers
pollution-free results as well.

So, are there some higher order, “superconvergence” effects working behind the
scenes for the quadratic DPG method ?

A global interpretation of the DPG method.. In practice, the DPG
method requires an approximate inverse of the Riesz operator, In practical DPG
method approximate optimal test functions are obtained by using Bubnov-Galerkin
and locally enriched spaces of order p + ∆p where p is the order of trial shape
functions. In practically all computed examples, we have used ∆p = 2.

It was already noticed in [2] that the practical DPG method admits two in-
terpretations. The first one is based on the DPG ultraweak formulation with
discontinuous test functions, the second one is based on the ultraweak formulation
with globally conforming test functions,

(5)





(u, p) ∈ (L2(Ω))2 × L2(Ω)

((u, p), A(v, q))︸ ︷︷ ︸
=:b((u,p),(v,q))

= (g, v) + (f, q)

∀(v, q) ∈ H(div,Ω)×H1(Ω), q = −vn on Γ

where the global optimal test functions which now solve the global problem,

(6)





v ∈ H(div,Ω), q ∈ H1(Ω), q = −vn on Γ

(A(v, q), A(δv, δq)) + α((v, q), (δv, δq)) = b((u, p), (δv, δq))

∀δv ∈ H(div,Ω), δq ∈ H1(Ω), δq = −δvn on Γ ,

are approximated with non-conforming (“weakly conforming”) Bubnov-Galerkin
method where the global continuity of q and normal component vn have been
replaced with L2-orthogonality of jumps to polynomial spaces used for the dis-
cretization of traces and fluxes,

(7)
〈ûn, q〉 =

∑
e

∫
e ûn[q] = 0 ∀ûn

〈p̂, vn〉 =
∑

e

∫
e p̂[vn] = 0 ∀p̂ .

Loosely speaking, if in the first interpretation, we first localize optimal test func-
tions and then approximate them, in the second interpretation, we first approx-
imate and then localize. We emphasize that we are speaking only about the
interpretation of the method and not practical computations that are always done
locally. In particular, the global interpretation explains why decreasing coefficient
α in the test norm produces better results. Setting α = 0 in (6), we obtain a
non-conforming least squares method for the globally optimal test functions. No-
tice that in the limiting case α = 0, the optimal test functions solve the adjoint
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problem which, except for the sign change in the impedance boundary condition,
is the very same problem we are trying to solve. One might say thus that working
behind the scenes for the DPG method is a non-conforming least squares method.
If course, if we were able to solve for the global optimal test functions exactly, the
DPG method would reduce to L2-projection.

But we are not. Restricting ourselves to the theoretical case α = 0 (in practice,
we must use α > 0 to be able to localize the computation of test functions), a
Strang’s type reasoning leads to the estimate:
(8)

‖(u−uh, p−ph)‖ ≤ (1+
1

γh
) inf
(wh,rh)

‖(u−wh, p−rh)‖+
1

γh
sup

(vh,qh)

|((u, p), Ah(v, q))|
‖Ah(vh, qh)‖

Here, γh is the discrete inf-sup constant resulting from the approximation of opti-
mal test functions and an approximation of the exact inf-sup constant γ = 1. The
first term represents the best approximation error, the second one a consistency
error resulting from the weak enforcement of the interelement continuity. The best
approximation error, measured in the L2 norm, is pollution free.

The challenge now is to estimate γh and, first of all, the consistency error. We
hope to be able to demonstrate that the consistency error is of order ω(ωh)r where
the exponent r is higher that the polynomial order used for traces and fluxes. This
would explain the higher order effect in the performance of the DPG method.
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A posteriori error estimation for highly indefinite Helmholtz problems

Willy Dörfler

(joint work with S. Sauter)

One-dimensional Helmholtz equation [1]. We consider the boundary value
problem

L(γ)u := −u′′ + γu = f in Ω := (0, 1),

u = 0 in {0, 1}
for u : Ω → R, where f ∈ L2(Ω) and γ ∈ L∞(Ω), without a condition corre-
sponding its sign. It is assumed that the problem in its weak form formulation
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is well-posed in the norm ‖v‖H := ‖v′‖L2(Ω) + ‖κ∗v‖L2(Ω), with κ :=
√
|γ| and

κ∗ := max{κ, π}.
This problem is solved on the following approximation space: Choose a piece-

wise constant approximation γ to γ with respect to the underlying mesh. The
local basis is chosen to be the fundamental system of the operator L(γ). This
approximation space can be enhanced by the local “bubbles” L(γ)Ψ = 1. Such
functions may be highly oscillatory for locally negative γ and can be defined only
if

√−γh 6= π is valid, h the local cell width. The two resulting finite element
spaces allow estimates of first and second order in h.

We also provide a posteriori error estimates that allow to compute the solution
based on a posteriori controlled mesh refining techniques.

Two-dimensional Helmholtz equation [2]. Let D be a compact domain in
R2 with Lipschitz boundary (containing 0) and BR be a large ball around zero.
The Helmholtz problem on the complement Dc of D with Sommerfeld’s radiation
condition is approximated by a Helmholtz problem on Ω := BR \ D with an
approximated boundary condition. The problem for u : Ω → R reads

−∆u− k2u = f in Ω,

u = g on ∂D,

∂nu = Tku on ∂BR.

Here, f and g are given data functions, n is the exterior normal with respect to Ω
and k may be a spatially varying function that is however constant and larger 1
outside a ball Br ⊂ BR. Tk may be either u 7→ iku or the Dirichlet-to-Neumann
operator for the exterior domain R

2 \BR.
It has been proved in [3] [4] that the weak formulation satisfies an inf-sup-

condition and that optimal error estimates hold that only depend on a adjoint
approximability constant. Analysing the solutions’s structure more closely, it was
found that an hp-mesh that obeys kh/p < 1 with the moderate dependence p ∼
log(k) leads to a uniform error estimate.

A result of the present paper is, that these conditions will be sufficient to prove
that the residual a posteriori error estimator provides a uniform (in k) upper bound
for the error in the energy norm. Our analysis also allows variable k.
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Iterative Methods for Helmholtz and Maxwell Equations

Martin Jakob Gander

There is a certain confusion about which equation is really called the Helmholtz
equation, since in the literature on meteorology and climate simulation, also the
similar looking equation with the opposite sign on the zeroth order term is called
Helmholtz equation, due to early publications using this terminology [2, 3]. Even
standard textbooks have adopted this terminology, see for example [4] (sometimes
also the eigenvalue problem is called the Helmholtz equation [5]). This summer
during a conference, I was asked if maybe Helmholtz himself had already consid-
ered both equations, and so looked in the collected works of Helmholtz [6]. The
contributions of Helmholtz to advancing science are vast, he worked on hydro-
dynamics, acoustics (physical and physiological), electrodynamics, galvanism (the
contraction of muscles stimulated by electric current), optics (physical and phys-
iological), and even psychology. In a beautiful paper about the understanding of
organ pipes [7], see Figure 1, I then found the Helmholtz equation. Helmholtz de-
scribes in his paper the problem of the open end of the pipe, and using a domain
decomposition approach, he connects the outer spherical solution to the inner one
in the tube, in order to determine an appropriate boundary condition, a problem
that had not been satisfactorily addressed before, as described at the beginning of
the paper, see Figure 1.

Figure 1. Copy of the beginning of the seminal publication of
Helmholtz from [6], and an unusual shorthand notation for the
Laplacian (the gradient symbol ∇), according to Helmholtz due
to Green; only in one place later, Helmholtz uses the now common
symbol ∆ for the Laplacian (shown on the right).
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The numerical approximation of solutions of the Helmholtz equation poses two
main difficulties: the first one is related to the approximation problem. Usually, in
order to represent a signal accurately, about 10 points per wavelength are sufficient.
This is also true for solutions of the Helmholtz equation, but unfortunately, when
one discretizes the equation itself on a grid with about 10 points per wavelength,
the solution one obtains can be very inaccurate, not because there are not enough
points to accurately represent it, but because the discretized operator gives a
solution with a substantial phase error. This is the so called pollution effect, see
for example [8] and references therein.

The second fundamental difficulty is that iterative methods for the solution of
linear systems have historically been derived for discretizations of diffusive prob-
lems, especially Laplace’s equation, and all the intuition and analysis that went
into the development of these methods used fundamental properties of the dis-
cretized Laplace equation. Unfortunately, all these intuitions are incorrect for the
Helmholtz equation: there is no maximum principle, classical iterative methods
are not smoothers for the Helmholtz equation, there is no minimization principle.
In [1] one can find detailed explanations why Krylov methods, ILU precondition-
ers, multigrid and classical domain decomposition methods fail when used for
the Helmholtz equation. Only specialized methods for the Helmholtz equation
should be used, and in particular a new class of domain decomposition methods,
called optimized Schwarz methods, is quite effective [9, 10]. The time harmonic
Maxwell’s equations present the same two difficulties as the Helmholtz equation,
and optimized Schwarz methods have been developed for them, see e.g. [11].
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On shifted Laplace and related preconditioners for finite element
approximations of the Helmholtz equation

Ivan G. Graham

(joint work with P. Childs, M. Gander, E. Spence and D. Shanks)

As a model problem for high-frequency wave scattering, we study the boundary
value problem

(1)

{
−(∆ + k2)u = f in Ω,

∂u
∂n − iku = g on ∂Ω,

where Ω is a bounded domain in R
d with boundary Γ. Finite element approxima-

tions of this problem for high wavenumber k are notoriously hard to solve.
Although they are known to suffer from the pollution effect, low order finite

element and finite difference approximations of this problem are still highly utilsed
in applications and the iterative solution of the resulting systems with a number
of iterations which is independent (or close to being independent) of wave number
in general situations remains a problem of great interest in both theory and in
practice.

Quite a lot of recent research has focussed on preconditioning (1) using the
discretization of the “shifted Laplace” problem

(2)

{
−(∆ + k2 + iǫ)u = f in Ω,

∂u
∂n − iµ(k, ǫ)u = g on ∂Ω,

for some function µ(k, ǫ). It is generally observed that if the “absorption” param-
eter ǫ > 0, is taken large enough, the problem (2) becomes “easier” to solve, but
if ǫ is not taken too large then (2) is a good preconditioner for (1).

The use of absorption in preconditioning has been studied in various contexts by
several authors. Let Aǫ denote the system matrix arising from the finite element
approximation of (2). Then, for example, Erlangga, Vuik & Oosterlee [3] sought to
precondition A0 with a multigrid approximation of A−1

ǫ and typically used ǫ ∼ k2.
Ernst and Gander [4] used Fourier analysis in 1D to show that ǫ needs to be taken
to be O(k) for Aǫ to be a good preconditioner for A0 and needs to be taken to
be O(k2) for multigrid to have a convergence factor less than unity. However
the model problem considered in [4] was a very simplified one. Engquist and
Ying [5] essentially used ǫ = O(k) to enhance the performance of their sweeping
preconditioner. However none of these references give rigorous information on how
ǫ should be chosen in general to obtain the best performance for preconditioning.

Since the corresponding system matrices are complex and non-Hermitian, gen-
eral purpose iterative solvers such as GMRES or BiCGStab are required. The
analysis of the performance of such solvers is in general hard, since the system
matrices are often highly non-normal and so information about the spectrum is
not generally enough to provide infomation on the number of iterations. Thus
condition number estimates are of limited benefit. In this work we use GMRES
and we analyse its convergence using the field of values theory [1].
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Using the classical Morawetz multiplier theory from PDE analysis (described
in the review article [2]), we estimate the norm of the solution of problem (2) in
terms of the data, where the parameters k and ǫ appear explicitly in the estimates.
These estimates hold when Ω is a star-shaped Lipschitz domain for small ǫ and
for general Lipscitz domains when ǫ is large. The results also hold when Ω is the
complement of a star-shaped scatterer in a large ball, with a Dirichlet condition
on the scattering surface and either an exact far field condition or a first order
absorbing approximation on the surface of the ball. Such stability results for the
non-discretized problem (2) can then be used to infer bounds on the spectral norm
of A−1

ǫ which are explicit in k and ǫ and these in turn provide information about
the field of values of A−1

ǫ A0, under the assumption that the finite element meshes
are shape-regular. This, combined with the field of values theory of GMRES
alllows us to prove that the choice ǫ/k sufficiently small ensures k−independent
convergence for GMRES when A0 is preconditioned by A−1

ǫ .
In the talk we also presented an analysis of optimised Schwarz domain decompo-

sition methods (see, e.g. [6]) for (2), proving estimates on the rate of convergence
explicitly in terms of k and ǫ. We also gave numerical illustrations of the solution
of (1), preconditioned by approximations of (2), in 2D, for some constant and
variable wavespeed problems.
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Sparse Tensor Edge Elements

Ralf Hiptmair

(joint work with C. Jerez-Hanckes and Ch. Schwab)

As a model problem we consider the variational formulation of the Maxwell cavity
source problem [8, Ch. 5]: seek u ∈ V := H0(curl, D), D ⊂ R

3 bounded,

(curl u, curl v)L2(D) − k2 (u,v)L2(D)︸ ︷︷ ︸
=:a(u,v)

= (f ,v) ∀v ∈ H0(curl, D) ,(1)

where the wave number k > 0 is supposed to be different from a resonant frequency
of D. The source function f is “stochastic” in the sense that it belongs to L2(Ω, V ′)
for a probability space (Ω,A,P). Then also the solution u becomes a V -valued
square integrable random variable: u ∈ L2(Ω, V ). Its second moment M2u =
E(u ⊗ u) ∈ L1(V ⊗ V ), where E denotes the expectation, can be obtained as the
solution of

(A⊗ A)w(2) = M2f ,(2)

featuring the tensor product operator A ⊗ A : V ⊗ V → V ′ ⊗ V ′ based on the
operator A : V → V ′ induced by the bilinear form from (1). Well-known results
guarantee existence and uniqueness of solutions of this equation; see [13, Section 1]
for a comprehensive exposition.

Knowledge of the second moment w(2) yields key statistic quantities like the
variance of the random solution u. A possible approach is probabilistic methods
like the Multilevel Monte-Carlo method, where the boundary value problem (1)
is solved for many realizations of f and statistical information is extracted from
these samples [1, 7]. Yet, we focus on a deterministic direct approximation of the
solution of (2).

A stable Ritz-Galerkin discretization of Au = f by means of a finite dimensional
trial space Vh ⊂ V immediately spawns a stable Ritz-Galerkin discretization of (2),

when using the “full tensor product” trial and test space V
(2)
h := Vh ⊗ Vh. Unfor-

tunately, dim V
(2)
h = (dimVh)

2, whereas the approximation power of dimV
(2)
h is

usually not better than that of Vh. This is the notorious “curse of dimensionality”.
Taking for granted smoothness of M2u, a remedy is offered by sparse tensor

Galerkin discretization, using subspaces V̂
(2)
h of V

(2)
h with approximation power

almost like that of Vh, but dimensions substantially reduced to dim V̂
(2)
h ≈ dimVh,

see [13, Section 1.4], [14, 15, 12, 11], and [6] for an introduction to so-called sparse
grids.

However, the stability of sparse tensor Galerkin discretizations can no longer
be inferred from that for Vh applied to A, unless A is positive. Non-positive
operators are invariably encountered in wave propagation phenomena in frequency
domain, and for them stability of the sparse tensor Galerkin discretization has to be
established directly. This was done for boundary value problems for the Helmholtz
equation −∆u− k2u = f in [16], see also [13, Sect. 1.4]. In [9] we have tackled the
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issue for the Maxwell cavity source problem (1) and its discretization by means of
edge elements.

We start from a shape-regular sequence of nested tetrahedral triangulations of
D: T0 ≺ T1 ≺ · · · ≺ Tl ≺ . . . , as created by successive global regular refinement
of T0. We write Vl ⊂ H0(curl, D) for the edge element space on Tl. Fixing a
base resolution L0 ∈ N0 and a maximal resolution L > L0, we introduce sparse
tensor edge element spaces, cf. [16, Def. 5.1] and [13, Def. 1.17], [9, Section 4], [3,
Sect. 6.4]

V̂L,L0 :=
∑

(l,k)∈SL,L0

Vl ⊗ Vk ,

SL,L0 := {(l, k) ∈ {0, . . . , L}2, l + k ≤ L+ L0} , 0 ≤ L0 ≤ L ,

(3)

They yield an asymptotically optimal Galerkin finite element discretization of the
second moment problem, if we can establish that is a threshold level L0 ∈ N and
C > 0 such that the following inf-sup condition holds, cf. [3, Section 4]

sup
v̂
(2)∈V̂L,L0

|
〈
(A⊗ A)û(2), v̂(2)

〉
|∥∥v̂(2)

∥∥
V

≥ C
∥∥∥û(2)

∥∥∥
V

∀û(2) ∈ V̂L,L0 , ∀L ≥ L0 .(4)

A key tool in its proof are uniformly stable projectors F̂
(2)
L,L0

: V ⊗ V → V̂L,L0

that satisfy special commuting diagram properties

(curl⊗ curl) ◦ F̂(2)
L,L0

= Ĝ
(2)
L,L0

◦ (curl⊗ curl) ,(5)

(Id⊗ curl) ◦ F̂(2)
L,L0

= Ĥ
(2)
L,L0

◦ (Id⊗ curl) ,(6)

(curl⊗ Id) ◦ F̂(2)
L,L0

= Ĵ
(2)
L,L0

◦ (curl⊗ Id) ,(7)

with Ĝ
(2)
L,L0

, Ĥ
(2)
L,L0

, and Ĵ
(2)
L,L0

standing for other stable projectors onto

(curl⊗ curl)F̂
(2)
L,L0

, (Id⊗ curl)F̂
(2)
L,L0

, and (curl⊗ Id)F̂
(2)
L,L0

, respectively.
The construction of these projectors turned out to be challenging. The con-

struction that works relies on D. Boffi’s Fortin projectors [2] Fl : V → Vl that
are uniformly stable w.r.t. to the H(curl, D)-norm, satisfy a commuting diagram
property, and the absorption property Fl−1 ◦ Fl = Fl−1 = Fl ◦ Fl−1 for all l ∈ N0.
Then we find that p

F̂
(2)
L,L0

:=
∑

(l,k)∈SL,L0

∆Fl ⊗∆Fk , ∆Fl := Fl − Fl−1 , ∆F0 := F0 .(8)

is a projector that delivers suitable discrete candidate functions for (4), see [9,
Section 5].

Along the same lines we can deal with k-fold tensor product operators

A
(k) = A⊗ . . .⊗ A︸ ︷︷ ︸

k times

, k > 2 .

though a general treatment will be extremely tedious. For the Helmholtz operator
this case of higher moments is discussed in [13, Sect. 1].
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The ideas can also be extended to the second moment problem for the elec-
tric field integral equation (EFIE). In this case we work in the trace space V :=

H− 1
2 (divΓ,Γ) [5, Sect. 2] on a closed orientable polyhedral surface Γ and deal with

the non-positive sesqui-linear form, see [5, Sect. 7], and [10, 4],

a(ξ,η) =

∫

Γ

∫

Γ

exp(−ik|x− y|)
4π|x− y|

(
ξ(x)η(y)

− k−2 divΓ ξ(x) divΓ η(y)
)
dS(y)dS(x) , ξ,η ∈ V ,

which is discretized using surface edge elements (also known as Raviart-Thomas
boundary elements or RWG elements) [5, Sect. 8]. Tensor product saddle point
problems are discussed in [3].
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Fourier continuation methods

Mark Lyon

Fourier continuation present a viable and efficient alternative to traditional
methods for the resolution of the Gibbs phenomenon. These methods maintain
most of the advantages of traditional Fourier approximations and lead to spectral
PDE solvers with advantageous properties.

Significant computational problems remain unsolved because the best-known
algorithms are not yet efficient enough to obtain sufficiently accurate solutions.
Often, when referring to the efficiency of a PDE solution algorithm, the term
“points per wavelength” (PPW) is invoked to refer to the resolution of the nu-
merical scheme. It is well known (e.g. [2, 4]), however, that many traditional
PDE solvers require increasing numbers of PPW as the number of wavelengths in
the problem increases. Thus, the computational cost and memory requirements
exhibit super-linear growth with the scale of the problem.

In contrast, Fourier methods and the related Chebyshev methods have excel-
lent properties and completely overcome the difficulties due to pollution error,
requiring just a fixed number of points per wavelength. These methods, however,
require special conditions rarely met in real-world problems. Fourier methods
have traditionally required periodicity of the underlying function and Chebyshev
methods are significantly limited by the geometry of the problem. Fourier contin-
uation alleviate both the periodicity and geometric constraints of classical spectral
methods.

Figure 1 demonstrates the use of a Fourier continuation (FC) technique (also
termed Fourier extension) for overcoming the Gibbs’ phenomenon and allowing
spectrally accurate approximation of non-periodic functions with Fourier series.
These methods have been applied through new fast computational algorithms to
the solution of many PDEs in two and three spatial dimensions. The resulting
FC-AD solvers ([3, 5]) demonstrate that FC-AD techniques have inherited the
pollution free property of Fourier techniques, namely that the required number
of PPW does not go up as the size of the problem increases. Recent results
with respect to these Fourier Continuations include an increased understanding
of the resolution and stability of these techniques, application to non-linear PDEs
including the Navier-Stokes equations, and efficient methods for parallelization
(e.g. [1]). A recent algorithmic contribution allows for a fast and yet more accurate
FC method, which further reduces the PPW requirement significantly (accurate
results with just six PPW have been demonstrated). Continuing efforts to improve
and build on these PDE solvers include the refinement of the implementations of
the boundary conditions and optimal time-stepping for these techniques.
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Figure 1. Fourier continuation of the function f(x) = x.
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H-matrix approximability of the inverses of first kind BEM matrices

Jens M. Melenk

(joint work with M. Faustmann, D. Praetorius)

The boundary element method (BEM) is based on discretizations of bound-
ary integral operators and thus leads to fully populated matrices. Various com-
pression schemes for these BEM matrices have been devised to store and/or re-
alize the matrix-vector multiplication in log-linear complexity. Besides wavelet
methods, several clustering-based techniques are available such as multipole ex-
pansions, [GR97], panel clustering [HN89], adaptive cross approximation (ACA,
[Beb00]), and hybrid cross approximation (HCA, [BG05]). Many of these latter
approaches rely on approximating the matrix by a blockwise low-rank matrix and
can be understood as specific incarnations of the class of H-matrices introduced
in [Hac99, Gra01, Hac09]. In the context of the BEM (e.g., the approximation
of the classical single layer, double layer, and hypersingular operator) the various
approaches mentioned above exploit that exponential convergence in the block
rank can be achieved if the block structure results from clustering algorithms that
ensure an admissibilty condition of the form (*) given below. For the single layer
operator V , we show that also the inverse of the corresponding BEM matrix V
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can be approximated at an exponential rate in the block rank when using the same
block structure as that employed to approximate V. Full proofs are given in the
forthcoming work [FMP13].

Main results. On the boundary ∂Ω of a polygonal (for d = 2) or polyhedral
(for d = 3) Lipschitz domains Ω, we consider the single layer operator V associated
with the Laplacian and its Galerkin discretizationV that arises from the trial space
S0,0(Th) = span{χi | i = 1, . . . , N} of piecewise constant functions on a quasi-
uniform mesh Th = {Ti | i = 1, . . . , N} with mesh size h. Clusters are subsets of
the index set I := {1, . . . , N}. A box BR ⊂ R

d of side length R is said to be
a bounding box for a cluster σ, if suppχi ⊂ BR for all i ∈ σ. Two clusters σ,
τ ⊂ I are said to be η-admissible, if there are two bounding boxes BRσ , BRτ for
the clusters σ, τ such that

(*) η dist(BRσ , BRτ ) > min{diamBRσ , diamBRτ };

this is a standard admissibility condition underlying many compression schemes
for BEM matrices.

Thm. 1: Fix η > 0 and q ∈ (0, 1). Let the cluster pair (σ, τ) be η-admissible.
Then, for every k ∈ N there are matrices Xστ ∈ R|σ|×r, Yτσ ∈ R|τ |×r, of rank
r ≤ Cdimq

−dkd+1 with

‖V−1|σ×τ −XστY
T
τσ‖2 ≤ Ch−(d+2)qk,

where the constants C, Cdim are independent of h, σ, τ , r, and k.
Thm. 1 yields a blockwise low-rank approximation ofV−1. If the block partitioning
of V−1 has the structure of H-matrices, then by arguments similar to those of
[Gra01, Hac09, GH03, BH03] we can show:

Thm. 2: Fix η > 0. Let P be a partition of I × I based on a cluster tree TI

as described in [GH03, Hac09] with sparsity constant Csp, [Gra01, Hac09, GH03].
Then, for every r ∈ N there is a blockwise rank r matrix WH based on this
partitioning P such that

‖V−1 −WH‖2 ≤ CCspN
(d+2)/(d−1) depth(TI)e

−br1/(d+1)

,

where the constants C, b are independent of N and r.
We mention that typical clustering strategies applied to quasi-uniform meshes

with O(N) elements lead to fairly balanced cluster trees TI with depth(TI) =
O(logN) and feature a sparsity constant Csp that is bounded uniformly in N .

The key step. Thm. 1 is based on the following Thm. 3. In order to formulate
Thm. 3, we need to introduce some notation: For given f ∈ H1/2(Γ) we let
φh ∈ S0,0(Th) be defined by

(**) (V φh, v)L2(Γ) = (f, v)L2(Γ) ∀v ∈ S0,0(Th).

Thm. 3: Fix η > 0 and q ∈ (0, 1). Then, for each η-admissible cluster pair
(σ, τ) with bounding boxes BRσ , BRτ the following is true. For each k ∈ N there
exists a space Vk ⊂ S0,0(Th) with dimVk ≤ Cdimq

−dkd+1 such that for arbitrary
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f ∈ H1/2(Γ) with supp f ⊂ BRτ ∩Γ the corresponding solution φh of (**) satisfies

min
ψh∈Vk

‖φh − ψh‖L2(BRσ∩Γ) ≤ Ch−2qk‖f‖L2(Γ).

The constants C, Cdim are independent of h and the clusters σ, τ .
Extensions and outlook. Applications of the above theorems include the

ability to represent factorizations such as the Cholesky factorization and the LU-
decomposition of V in the H-matrix format with exponential accuracy in the
block rank. It is also possible to approximate V−1 in the H2-matrix format with
exponential accuracy in the block rank, if “min” is replaced with “max” in (*).
Further applications include the ability to represent discretizations of the Poincaré-
Steklov operator with exponential accuracy in the block rank, which is relevant
for the use of H-techniques for FEM-BEM coupling.

Similar approximation results have previously been shown for discretizations
of second order elliptic operators by the FEM in [BH03, Beb05a, Beb07, Sch06,
Bör10a, FMP12]. However, the method of proof underlying Thm. 3 and its FEM
counterpart in [FMP12] differs from that used in [BH03, Sch06, Bör10a] in that it
works in a fully discrete setting directly instead of studying first solution operators
on the continuous level and deduce approximation results on the discrete level by
an additional projection argument. This difference is the reason for exponential
convergence results in Thm. 3 and [FMP12] that are not limited in terms of the
mesh size h. The method of proof used for Thm. 3 and in [FMP12] permits gen-
eralizations in several directions, which are currently under way: Discretizations
by higher order elements, compressibility of the inverses of the (stabilized) hyper-
singular operator in BEM and BEM operators on open surfaces; Neumann and
mixed boundary conditions in FEM.
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Hardy space method for waveguides

Lothar Nannen

(joint work with M. Halla, T. Hohage, J. Schöberl)

Helmholtz equation: We consider for a given positive frequency ω > 0 solutions
u to the time-harmonic wave equation

(1) −∆u(x, y)− ω2u(x, y) = 0

on a simple domain Ω = (R ×D) \ K ⊂ Rd. D ⊂ Rd−1 is a bounded Lipschitz-
domain with outer normal νD and K ⊂ (a, 0)×D a compact scatterer with a < 0
and ∂K ∩ (R× ∂D) = ∅.

We assume sound hard boundary conditions ∂u
∂νD

= 0 on R × ∂D, ∂u
∂νK

=

gK on ∂K and a suitable radiation condition for |x| → ∞. In order to solve
this problem numerically by finite element methods, we split the domain into a
bounded interior domain Ωint := ((a, 0) × D) \ K and two unbounded exterior

domains Ωleft
ext := (−∞, a)×D and Ωright

ext := R+ ×D. While the interior problem
can be treated with standard finite element methods, the exterior problems need
particular attention. Therefore we consider in the following the right exterior
problem

−∆u− ω2u = 0, (x, y) ∈ Ωright
ext ,(2a)

∂u

∂νD
= 0, (x, y) ∈ R+ × ∂D,(2b)

u(0, •) = gin y ∈ D,(2c)

u is outgoing for x→ ∞.(2d)

We choose a orthonormal basis of eigenfunctions (ϕn)n∈N to the negative, self-
adjoint Neumann-Laplacian −∆ : D(−∆) ⊂ L2(D) → L2(D) with eigenvalues
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λ1 := 0 < λ2 ≤ λ3 ≤ . . .. By separation of variables, solutions u ∈ H1
loc(Ω

right
ext ) to

problem (2) are given by

(3) u(x, y) =

∞∑

n=1

(
cne

iκnx + dne
−iκnx

)
ϕn(y),

with phase velocities κn :=
√
ω2 − λn for ω2 ≥ λn and κn := i

√
λn − ω2 for

ω2 < λn. We assume in this paper κn 6= 0, n ∈ N.
Since e−iκnx → ∞ for x → ∞ and ω2 < λn, a reasonable radiation condition

requires dn = 0 for ω2 < λn. For the finitely many guided modes (i.e. ω2 > λn) it
follows by the limiting absorption principle, that for radiating solutions the group
velocities κ′n(ω) have to be positive. In the acoustic problem (2) this is equivalent
to positive phase velocities kn and therefore dn = 0 for all n ∈ N. This leads to
the following radiation condition: A solution u to (2a) is called outgoing, if for
each y ∈ D the Laplace transformed function

(4) û(s, y) :=

∫ ∞

0

e−sxu(x, y), ℜ(s) > 0,

has a holomorphic extension to the domain Cκ0 := {s ∈ C | ℑ(s/κ0) < 0} with a
fixed complex parameter κ0 with ℜ(κ0) > 0 and ℑ(κ0) > 0. For the details of the
so called pole condition for Helmholtz problems see e.g. [1].

We define the Hardy spaces Hκ0 ⊂ L2(κ0R) with κ0R := {κ0s | s ∈ R} of func-
tions, which are L2 boundary values of holomorphic functions v in Cκ0 satisfying
supǫ>0

∫
R
|v(κ0(s − ǫi))|2ds < ∞ (see e.g. [2]). Then a reformulation of the pole

condition is simply given by the condition û ∈ Hκ0 ⊗ L2(D).
A Galerkin method in this tensor product space leads to the Hardy space infinite

element method, where the basis functions are tensor products of basis functions
ψj , j = −1, ..., N in Hκ0 and standard finite element basis functions wl, l =
1, ...,M , of L2(D). For the details of this method and the transformation of (2a)
to this space see e.g. [3, 4]. Here, we present only the basis functions in Hκ0 :

(5) ψ−1 :=
1

s− iκ0
, ψj :=

2iκ

(s− iκ0)2

(
s+ iκ0
s− iκ0

)j
, j = 0, ..., N,

and the basic formula for calculating a mass integral

(6)

∫ ∞

0

u(x)v(x)dx
Laplace−→ − i

2π

∫

κ0R

ψj(s)ψk(−s)ds, j, k = −1, ..., N.

Problems exhibiting phase and group velocities of different signs: E.g.
in elastic waveguide problems, the signs of group and phase velocities of modes
can be different. Therefore, the standard Hardy space infinite element method as
well as the complex scaling/ perfectly matched layer method will lead to wrong
solutions, since the radiation condition behind these methods depends only on the
phase velocity. As a one-dimensional model problem containing these difficulties
we consider

(7)
(
−∂2x − ξ2

)2
u = ω2
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with a fixed parameter ξ > 0. (3) becomes for this problem

(8) u(x) =

4∑

n=1

cne
iκnx, κn := ±

√
±ω2 + ξ2.

In the scheme on the right hand side
the curves of iκn when ω goes from
0 (i.e. κn ± ξ) to ∞ are given. The
dashed lines represent the unwanted
wavenumbers κ1 and κ3 with nega-
tive group velocity κ′n. Note, that
a standard pole condition with the
given assumptions on κ0 would en-
force c1 = c2 = 0 for the guided
modes (i.e. ω < ξ), but c1 = c3 = 0
is required. Again we assume in the
following that ω > 0 and ω 6= ξ.

If we define the Hardy space Hγ analogously to Hκ0 as boundary values of
holomorphic functions in the shaded domain of the scheme, the correct radiation
condition is the following: u is outgoing, if the Laplace transformed function
û := Lu belongs to the Hardy space Hγ .

Instead of the integration over κ0R in (6), this modification leads to an inte-
gration over γ. The basis (5) shows for the acoustic problem (2) super-algebraic
convergence (see [4, 5]), but it will not be useful for the one-dimensional model
problem (7) due to the wrong radiation condition for ω < ξ. For this problem, it
turned out that the following basis with complex poles p0 and p1 (see the scheme
for the location) shows exponential convergence for arbitrary ω > 0 (see [6])

(9)

ψp0−1(s) :=
1

s− p0
,

ψp0,p1j (s) :=
2p0

(s− p0)2

( |p0|
max(|p0|, |p1|)

s+ p1
s− p0

)j
, j = 0, ..., N,

ψp1,p0j (s) :=
2p0

(s− p0)2

( |p1|
max(|p0|, |p1|)

s+ p0
s− p1

)j
, j = 0, ..., N.

Unfortunately, using this basis the condition number of the system matrix grows
fast for N → ∞ and is sensitive to the choice of the poles p0 and p1.

The biggest advantage of the method is, that the modes of the waveguide are
only needed for the theory. The radiation condition and the method itself is
independent of the frequency ω and the wavenumbers κn. Therefore they are
well suited for resonance problems, where the frequency ω is sought. To the
authors knowledge, all other numerical methods (e.g. mode matching methods)
for waveguide problems with different signs of group and phase velocity need to
solve the dispersion relation κn(ω) and are therefore frequency dependent.
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Generalized Convolution Quadrature for Hyperbolic Integral Equation

Stefan A. Sauter

(joint work with M. Lopez-Fernandez)

Model Problem. In this extended abstract, we will present the Generalized Con-
volution Quadrature (GCQ) (see [5]) for solving linear convolution equations of
the form

(1) k ∗ φ = g,

where ∗ denotes convolution with respect to time, g is a given function, and k
is some fixed kernel function/operator. We consider as our model problem the
numerical solution of the wave equation in an unbounded exterior domain Ω+ :=
R\Ω− for some bounded Lipschitz domain Ω− ⊂ R3 with boundary Γ := ∂Ω−

∂ttu = ∆u in Ω+ × (0, T ) ,

with Dirichlet boundary conditions u = g on Γ × (0, T ) and initial conditions
u (0) = ∂tu (0) = 0 in Ω+.

We employ the single layer potential ansatz u = K (∂t)φ in (0, T )×H1 (Ω+),
where, for ζ ∈ Cσ0 := {z ∈ C | Re z > σ0} for some σ0 > 0, we first define the
frequency dependent integral operator

K−ρ (ζ)φ =

∫

Γ

e−ζ‖·−y‖

4πζρ ‖· − y‖φ (y)dΓy

and via the inverse Laplace transform L−1 the operator K (∂t)φ = L−1 (K) ⋆ φ.
This operator satisfies the wave equation and the initial conditions. The unknown
density φ : (0, T ) → H−1/2 (Γ) is determined via the Dirichlet boundary conditions

K (∂t)φ (t) = g (t) in H1/2 (Γ) ∀t ∈ (0, T ) .
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The solution of the wave equation then is given by u (t, x) = (K (∂t)φ) (t, x) for
all t ∈ (0, T ) and all x ∈ Ω+.

Discretization by Generalized Convolution Quadrature. Convolution quad-
rature has been introduced in [6, 7] for parabolic problems and [8] for hyperbolic
ones. The derivation of the method and the error analysis require uniform time
stepping and the goal of the generalized convolution quadrature (GCQ) is to gen-
eralize this approach for non-uniform and adaptive time stepping.1

The convolution equation can be rewritten (see, e.g., [1, formulae before (6)])
as a system of integro-differential equations for the density φ and an auxiliary
function U : Cσ0 × [0, T ]

(2)

[
−I ∂t − ζ
0 Wρ

](
φ
U

)
=

(
0
∂ρt g

)

with WρU :=
1

2π i

∫

C

ζρK (ζ)U (ζ, ·) dζ and ρ ∈ N is a regularization parameter

(see [5]).
In the section below, we will present a contour quadrature for the approximation

of WρU which is of the form

∫

C

f (ζ) dζ ≈
NQ∑

k=1

ωkf (ζk) for some weights/nodes ωk,

ζk. As a consequence we need the values of U not at all points ζ ∈ C but only at
the quadrature points ζk and we set Uk := U (ζk, ·).

For the time discretization of the first equation in (2) we introduce time points
0 = t0 < t1 < . . . and denote the time steps by ∆n := tn − tn−1, n ≥ 1. We
employ the implicit Euler method and obtain the recursive approximation for the

first equation U (0) = 0 and U (n) (ζ) =
1

1− ζ∆n
U (n−1) (ζ) +

∆n

1− ζ∆n
φ(n). For

the spatial discretization we employ a boundary element method [9] and denote
by h the mesh width of the spatial discretization. The GCQ algorithm with
contour quadrature starts with the initialization steps: a) Generate boundary
element approximations Kh,k of the operators Kk = K (ζk) for all 1 ≤ k ≤ NQ;

b) set
(
U

(0)
h,k

)NQ

k=1
= 0; c) solve Kh

(
1
∆1

)
φ
(1)
h = (∂ρt g)

(1)
h . For the recursion n =

1, 2, . . . , N , we assume that φ
(n)
h and

(
U

(n−1)
h,k

)NQ

k=1
are computed. Then, a) an

Euler step is performed: U
(n)
h,k =

1

1− ζk∆n
U

(n−1)
h,k +

∆n

1− ζk∆n
φ
(n)
h ∀1 ≤ k ≤ NQ;

b) the systemKh
(

1
∆n+1

)
and right-hand sideR

(n+1)
h := g

(n+1)
h −

NQ∑

k=1

ωk
Kh,kU (n)

h,k

1−∆n+1ζk

are generated; c) the system Kh
(

1
∆n+1

)
φ
(n+1)
h = R

(n+1)
h is solved.

1Recently, variable time meshes for space-time Galerkin discretization of retarded potential
integral equations have been introduced in [10].
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This approach (Laplace transform/integrator for ODE/contour quadrature) al-
lows to use variable time stepping (Generalized Convolution Quadrature GCQ)
and avoids to store and integrate over the full history.

Contour Quadrature. To approximate the operatorWρ,hU
(n) we fix the contour

C to be the circle in C about ∆−1
min with radius ∆−1

min and propose a parametrization
by the composition γ = z◦u of a Möbius transform with the Jacobi elliptic function
sn (· | λ)

z (u) :=
∆−1

min

q − 1

(√
2q − 1

λ−1/2 + u

λ−1/2 − u
− 1

)
, u (σ) := sn (σ | λ) , σ ∈ Jλ,

where the parameter λ2 :=
q −√

2q − 1

q +
√
2q − 1

depends on the ratio q := ∆max/∆min of

the maximal and minimal mesh width. This transformation has been introduced
in [2] and has been analyzed in [3] for the class of contour integrals which contains
the integrand in Wρ,h.

The error analysis in [5], [3], and [4] implies the following theorem for the con-
vergence of the fully discrete GCQ.

Theorem. Let ρ = 3 and assume that 1 − ∆maxσ0 > 0. We further assume
that g ∈ Cρ+3 ([0, T ]) and g(ℓ) (0) = 0 for all 0 ≤ ℓ ≤ ρ + 2. Let the grading of
the time mesh be at most quadratically2, i.e., ∆min ≥ c∆2

max. We assume for the
number of contour quadrature points

NQ ≥ CN log2N.

Then, the GCQ algorithm generates an approximate solution φh =
(
φ
(n)
h

)N
n=1

which satisfies
(3)

max
1≤n≤N

∥

∥

∥
(φ (tn))

N

n=1 − φh

∥

∥

∥

H−1/2(Γ)
≤ max

1≤n≤N
‖φ−φh‖H−1/2(Γ) + Cg e

δ0T ∆

(

log
1

∆

)

,

where the constant Cg only depends on the right-hand side g and δ0 = O (1).

Remark. In [5], it was proved that, for sufficiently smooth data and boundary
elements of local polynomial order p, the first term in the right-hand side of (3)
can be estimated from above by Chp+3/2.
Results of numerical experiments (cf. [4]) show that for Dirichlet data g (t) which
are non-smooth at t = 0, quadratic grading of the time mesh can preserve optimal
convergence rates O (∆) while uniform grading leads to suboptimal convergence
rates O

(
∆1/2

)
.

2Generalizations to stronger mesh grading are considered in [4].
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Is the Helmholtz equation really sign indefinite?

Euan A. Spence

(joint work with A. Moiola)

Introduction. The usual variational (or weak) formulations of the Helmholtz
equation are sign-indefinite in the sense that the sesquilinear forms cannot be
bounded below by a positive multiple of the appropriate norm squared. This is of-
ten for a good reason, since in bounded domains under certain boundary conditions
the solution of the Helmholtz equation is not unique at certain wavenumbers (those
that correspond to eigenvalues of the Laplacian), and thus the variational problem
cannot be sign-definite. However, even in cases where the solution is unique for
all wavenumbers, the standard variational formulations of the Helmholtz equation
are still indefinite when the wavenumber is large.

To illustrate this, consider the interior impedance problem for the Helmholtz
equation. That is, given a bounded Lipschitz domain Ω ⊂ R

d, f ∈ L2(Ω), g ∈
L2(∂Ω), and k > 0, find u such that

Lu := ∆u + k2u = −f in Ω,(1a)

∂u

∂n
− iku = g on ∂Ω.(1b)
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This problem can be put in weak (or variational) form by multiplying by the
complex conjugate of a test function v and integrating by parts, i.e. using Green’s
identity

(2) vLu = ∇ · [v∇u]−∇u · ∇v + k2uv.

The result is that the boundary value problem (BVP) (1) can be reformulated as:

(3) Find u ∈ V such that a(u, v) = F (v) for all v ∈ V .
with V the Hilbert space H1(Ω) equipped with norm

‖v‖21,k,Ω := ‖∇v‖2L2(Ω) + k2 ‖v‖2L2(Ω) ,

the sesquilinear form a(·, ·) : V × V → C given by

(4) a(u, v) :=

∫

Ω

(
∇u · ∇v − k2uv

)
dx− ik

∫

∂Ω

uv ds,

and the antilinear functional F : V → C given by

(5) F (v) :=

∫

Ω

fv dx+

∫

∂Ω

gv ds,

Given a variational problem of the form (3), ideally one would like to prove that
there exist constants Cc, α > 0 such that

|a(u, v)| ≤ Cc ‖u‖V ‖v‖V for all u, v ∈ V , (continuity),(6)

|a(v, v)| ≥ α ‖u‖2V for all v ∈ V , (coercivity).(7)

“Sign-definite” is used as a synonym for “coercive” (thus a variational problem
is sign-indefinite if and only if it is not coercive). Note that several authors call
property (7) “V-ellipticity” (see, e.g., [3, §2.4.1], [2, §1], [7, Equation 2.43]) and use
the word “coercivity” for the weaker property of satisfying a G̊arding inequality
([3, §2.4.3], [7, Definition 2.1.54]).

If continuity and coercivity can be established then there are three important
consequences (i) existence and uniqueness of the solution to the variational prob-
lem (3) via the Lax–Milgram theorem, (ii) quasi-optimality of the Galerkin method
applied to (3) for any finite dimensional subspace of V , and (iii) sign-definiteness
of the finite dimensional matrix of the Galerkin method.

Returning to the variational formulation of the interior impedance problem (4)
and (5), one can show that if k2 ≥ λ1 (the smallest eigenvalue of the negative
Laplacian with Dirichlet boundary conditions) then there exists a v ∈ H1(Ω) such
that a(v, v) = 0; thus a(·, ·) is not coercive. This indefiniteness has implications
for both the analysis and the practical implementation of finite element methods
based on the variational formulation.

A new sign-definite variational formulation of the interior impedance
problem. This talk introduced a new sign-definite formulation of the Helmholtz
equation posed in the interior of a star-shaped domain with impedance bound-
ary conditions. Like the standard variational formulation, this new formulation
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arises just by multiplying the Helmholtz equation by a particular test function and
integrating by parts.

Consider the Hilbert space

(8) V :=
{
v : v ∈ H1(Ω), ∆v ∈ L2(Ω), ∇v ∈

(
L2(∂Ω)

)d}

with norm

‖v‖2V := k2 ‖v‖2L2(Ω)+‖∇v‖2L2(Ω)+k
−2 ‖∆v‖2L2(Ω)+L

(
k2 ‖v‖2L2(∂Ω) + ‖∇v‖2L2(∂Ω)

)
,

and obvious inner product, where L is the diameter (or some other characteristic
length scale) of the domain Ω. Define the sesquilinear form b : V × V → C by

b(u, v) :=

∫

Ω

(
∇u · ∇v + k2uv +

(
Mu+

1

3k2
Lu

)
Lv

)
dx

−
∫

∂Ω

(
ikuMv +

(
x · ∇∂Ωu− ikβu+

d− 1

2
u

)
∂v

∂n

+ (x · n)
(
k2uv −∇∂Ωu · ∇∂Ωv

))
ds,

and antilinear functional G : V → C by

G(v) :=

∫

Ω

(
Mv − 1

3k2
Lv

)
f dx+

∫

∂Ω

Mv g ds,

where β is an arbitrary real constant, d is the spatial dimension,

Lu := ∆u+ k2u, Mu := x · ∇u− ikβu+
d− 1

2
u,

and ∇∂Ω is the surface gradient on ∂Ω (recall that ∇∂Ω is such that if u is differ-
entiable in a neighbourhood of ∂Ω then ∇∂Ωu = ∇u− n ∂u∂n on ∂Ω).

The sesquilinear form b(·, ·) and functional G(·) are defined in this way because
if u is the solution to the BVP (1), then

(9) b(u, v) = G(v) for all v ∈ V ;

(this is not immediately obvious, see [4, Proposition 3.2]).
Using the Cauchy–Schwarz inequality it is straightforward to show that the

sesquilinear form b(·, ·) is continuous on V . In particular, if β is independent of k
(as we choose it to be below), then the continuity constant Cc ∼ k as k → ∞.

The main novelty of b(·, ·) is that, for some domains, it is coercive on V :

Theorem 1. [4, Theorem 3.4] Let Ω be a Lipschitz domain with diameter L that
is star-shaped with respect to a ball, i.e. there exists a γ > 0 such that x·n(x) ≥ γL
for all x ∈ ∂Ω such that n(x) exists. If the arbitrary constant β is chosen such

that β ≥ L
2

(
1 + 4

γ + γ
2

)
then, for any k > 0,

ℜb(v, v) ≥ γ

4
‖v‖2V for all v ∈ V,

i.e. b(·, ·) is coercive on V with constant γ/4.
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The idea behind the new formulation. As we saw in above, the standard vari-
ational formulation of the interior impedance problem (1) is based on integrating
over Ω Green’s identity for the Helmholtz equation (2).

The new variational formulation (9) comes from integrating the following iden-
tity over Ω

MvLu+MuLv = ∇ ·
[
Mv∇u+Mu∇v + x(k2uv −∇u · ∇v)

]
−∇u · ∇v −k2uv.

where the multiplier M is defined by Mv := x · ∇v − ikβv + d−1
2 v, and the real

number β is chosen to ensure coercivity of the resulting sesquilinear form.
The idea of multiplying the Helmholtz operator, L, by the multiplier M goes

back to Morawetz and Ludwig [6] and was then extensively used by Morawetz in
her famous work on the wave equation [5]. (For more history on the use of this
type of multiplier, see [1, §5.3].)
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Robust operator estimates

Christian Wieners

(joint work with B. Wohlmuth)

We provide robust stability estimates for first order systems, which then lead to
robust estimates for a discretization of least-squares type in operator depending
norms. This result transfers the ideas in [DGMZ12] for the Helmholtz equation to
the Maxwell problem.

The general setting. Let H be a Hilbert space with norm ‖ · ‖H , let U ⊂ H be
a dense subspace, and let L : U −→ H be a closed linear operator so that U is a
Hilbert space in the graph norm ‖u‖U =

√
‖u‖2H + ‖Lu‖2H. We provide stability

estimates of the form ‖u‖H ≤ CL‖Lu‖H for u ∈ U . This shows that L is injective;
surjectivity can be show by a corresponding estimate for the adjoint problem.
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Maxwell’s equations. Let (0, T ) be a time interval, and let the permeability µ and
permittivity ε be uniformly positive in L∞. Electro-magnetic waves are determined
by the first-order system for the magnetic field H and the electric field E

L(H, E) = (∂tH+ µ−1∇× E , ∂tE − ε−1∇×H)

defined on

U=
{
(H, E) ∈ L2((0, T ), UD) ∩ H1((0, T ),L2(Ω,R

3 × R
3)) : (H(0), E(0)) = 0 in Ω

}

with UD =
{
(h, e) ∈ U0 : h× n = 0 on ∂ΩH and e× n = 0 on ∂ΩE

}
depending on

the boundary decomposition ∂Ω = ∂ΩE ∪ ∂ΩH and the divergence constraint in
U0 =

{
(h, e) ∈ H(curl,Ω)2 : (µh,∇ψ)Ω = (εe,∇ψ)Ω = 0 for all ψ ∈ C∞

0 (Ω)}. Let

H be the closure of U in L2((0, T )× Ω,R3 × R3) with the weighted norm

‖(H, E)‖2H =

∫ T

0

((
µH(t),H(t)

)
Ω
+
(
εE(t), E(t)

)2
Ω

)
dt .

Then, we obtain the stability estimate ‖(H, E)‖H ≤ 2T ‖L(H, E)‖H .
The monochromatic Maxwell problem. Now we consider special monochromatic
solutions of Maxwell’s equation of the form (H, E)(x, t) = exp(iωt)(h(x), e(x)) for
given frequency ω; this results into L(h, e) = (iωh+µ−1∇×e, iωe−ε−1∇×h). Here,
we consider UR =

{
(h, e) ∈ U0 : 〈n× h, φ〉 = 〈n× e, n× φ〉 for all φ ∈ C∞(∂Ω)3

}
.

Note that smooth functions with ∇ · (εe) = ∇ · (µh) = 0 in Ω and Robin-type
boundary condition n × h − (n × e) × n = 0 on ∂Ω are dense in UR. Here, H
denotes the closure of UR in L2(Ω,C

3 × C3) with ‖(h, e)‖2H = (h, µh)Ω + (e, εe)Ω.
We consider stability for the case of constant permeability µ > 0 and permit-

tivity ε > 0 on domains with x · n(x) ≥ α > 0 for a.a. x ∈ ∂Ω and |x| ≤ R for
x ∈ Ω, see also [HMP11, Thm. 3.3] and [Moi11, Thm. 5.4.5]. Then, we obtain

‖(h, e)‖H ≤
(
2
√
εµR+

(µ+ ε)R2

α

)
‖L(h, e)‖H .

This extends the result for the Helmholtz problem [Mel95, Prop. 8.1.4] to the
Maxwell case.

Application. Based on a disjoint partitioning Ω̄ =
⋃
τ∈T τ̄ into open subdomains

τ ⊂ Ω and corresponding subspaces Vτ , we consider a weak formulation

(Lu, v)H,τ = (u, L∗v)H,τ + 〈γτu, γ∗τv〉 ,

in each subdomain τ , where L∗ is the adjoint operator and γτ , γ
∗
τ and suitable

trace mappings on ∂τ . The solution u ∈ U of Lu = f is then characterized by
∑

τ
〈γτu, γ∗τv〉 = (f, v)H , v ∈ kernel(L∗) .(1)

Let û = (γτu) be the solution trace on the skeleton
⋃
∂τ . This is approximated

in Ûh = span{ûkh} ⊂ ∏
γτ (Vτ ) as follows: For suitable finite element spaces Hτ,h
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and Vτ,h in τ and an inner product aτ (·, ·) in Vτ compute a test basis (vkτ,h, u
k
τ,h) ∈

Vτ,h ×Hτ,h with

aτ (v
k
τ,h, v) +

(
ukτ,h, L

∗v
)
τ

=
〈
ûkτ,h, γ

∗
τ v

〉
, v ∈ Vτ,h ,(

L∗vkh,τ , u
)
τ

= 0 , u ∈ Hτ,h .

The Petrov-Galerkin solution ûh = (ûτ,h) ∈ Ûh of (1) is defined by
∑

τ

〈
ûτ,h, γ

∗
τv
k
h

〉
= (f, vkh)Ω .

Provided a suitable inf-sup constant β > 0 for the saddle point problems in τ , a
stable a priori bound in operator depending norms for this discretization exists
depending only β and CL [WW12].
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