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Introduction by the Organisers

TheMini-Workshop was jointly organised by Michael Hintermüller, Günter Leuger-
ing and Jan Sokolowski.

Shape and topological sensitivities are important tools in many applications in
shape design, geometrical optimization and geometrical evolution. Typical appli-
cations include the topological optimization of structures, optimization of shapes,
geometrical inverse problems e.g. in mathematical image processing, or geometric
evolution (like mean curvature flow or other shape gradient related flows). In this
context, shape sensitivity typically aims at perturbations of underlying geomet-
rical objects, domains or manifolds, in a direction normal to the given geometry
(while keeping the topology of the geometry unchanged), whereas the topological
expansion allows to study the sensitivity of a solution of a partial differential equa-
tion (PDE) posed on a given domain or manifold and the sensitivity of a geometry
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dependent objective function with respect to changes of the topology of the un-
derlying geometry, respectively. Such objective functions, occurring for instance
in shape optimization, may depend both, directly and implicitly, e.g. through the
solution of a (system of) PDEs, on the geometry of interest.

Starting from early work in the field by Murat and Simon, in recent years sig-
nificant progress has been achieved in the understanding of geometrical objects as
variable structures which might be subject to optimization procedures or geomet-
rical evolution. Here we refer to the monographs by Sokolowski and Zolesio as well
as Delfour and Zolesio for a summary of the state-of-the-art and further references
in shape sensitivity and to work by Sokolowski and Zochovski for basic analytical
concepts in topological sensitivity; further see the work by Allaire and Jouve as
well as Garreau, Guillaume and Masmoudi where also numerical realizations are
presented. Concerning the numerical realization we also mention that level set
methods, pioneered by Osher and Sethian, are widely used tools.

Despite the aforementioned progress many important theoretical and numerical
questions in shape and topological sensitivity remain widely open. It was therefore
the aim of the workshop to bring together a rather diverse group of scientists with
all of them being internationally renown researchers in the field and excelling in
different branches of the theme of the workshop. Their expertise ranges from an-
alytical investigations, the design and analysis of numerical solution algorithms to
the realization and further development of the subject within applications in shape
and topology optimization, geometric evolution and geometric inverse problems.

The workshop was attended by 17 participants from 7 countries. In total 13
talks were scheduled in a flexible time frame to allow for ample discussion time,
a special lecture (in two parts) by P. Plotnikov on ”Compressible Navier-Stokes
Equations. Theory and Shape Optimization” related to the recent monograph by
P. Plotnikov and J. Sokolowski was scheduled, and a round table discussion on
challenges and future topics (including a tutorial on constrained shape optimiza-
tion) took place on Thursday afternoon.

The various talks of the workshop addressed the following major topics areas:

Combined shape and topological sensitivity. Applications in geometric inverse prob-
lems, such as inclusion detection in computerized tomography, for instance, require
the combination of topological sensitivities (for an automatized detection of the
correct number and topological properties of objects hidden in a given domain
from boundary measurements) and shape sensitivity (for adjusting the shape of
the detected objects). Currently, the computation of these sensitivities is typically
done in separate resulting in two-phase approaches on the numerical level which
first apply topological derivatives for detecting inclusions and then shape sensi-
tivities for local shape adjustments. Subsequently, these two phases are repeated
until ”convergence”, i.e., stationarity with respect to both, topology and shape.

Clearly, the separate application of topological and shape derivatives is sub-
optimal only as one may get stuck at local minimizers possibly far from global
optimizers. This behavior is in particular unwanted in the context of geometric
inverse problems as the latter typically suffer from numerous (and spurious) local
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minimizers. Moreover, on the numerical level the two-phase approach requires the
separate implementation of the derivatives and their associated induced geometry
changes and thus leads to inefficiencies.

A similar need for a combined application of both sensitivity concepts arises in
topology optimization (minimal compliance minimization etc.), the design of band
gaps in crystals, in Mumford-Shah based image segmentation, as well as in many
other applied problems.

Moreover, on the analytical side typically perimeter constraints need to be taken
into account in order to have a well-posed shape/topology optimization problem
(and to avoid homogenization). From the topological sensitivity point of view this,
however, yields singularities due to the difference of dimensionality of the space
for the perimeter vs. the change in topology (in the domain). Again, this is a
point where both communities need to combine their strengths in order to handle
this situation properly on the analytical as well as on the numerical level.

Extended topological expansions and their numerical realization. The current liter-
ature almost exclusively considers first order topological expansions only. Indeed,
in many applications and in minimal compliance problems in particular, the asso-
ciated topological gradients yield satisfactory results. Algorithmically, these gradi-
ents are realized by ”punching” a small hole at the location, where the topological
derivative is most negative (if it would be non-negative on the entire domain, then
the current shape would be topologically stationary). When creating, at a time,
more than one (small) hole in a structure subject to topology optimization, in-
teractions between these holes become important. Such interactions appear to be
typically captured by higher order topological expansions only. Further, in the
context of geometric inverse problems, there is evidence that extended (beyond
first order) topological expansions are indispensable to provide correct informa-
tion on the location of hidden inclusions. We mention that in this application
rather than creating holes in domains, properties of coefficients in PDE-operators
are changed in an infinitesimally small ball-shaped domain indicating a change in
material properties. The latter obviously also constitute a topological change.

Analytically, such higher order expansions require an improved asymptotic anal-
ysis for the solutions of various types of PDEs relevant in associated applications
such as the Navier-Lamé system in elasticity, or, in the context of tomography, the
Neumann-to-Dirichlet map for second order linear elliptic problems in electrical
impedance tomography or Maxwell’s system in magnetic induction tomography.
Here, higher order expansions of the PDE solution with respect to a characteristic
quantity of the considered topological change (e.g., the radius of a hole (elasticity)
or an inclusion (tomography)) are needed.

Level set based shape and topology optimization and applications. In many of
the aforementioned topics, which were addressed within the workshop, the numer-
ical realization of the shape and topological sensitivity based calculus plays an
important role. It is well-known that the level set method, which was popularized
by the work of S. Osher and J. Sethian, represents a versatile tool in the numerical
realization of moving interface and free boundary problems. Over the years, highly



3378 Oberwolfach Report 57/2012

efficient algorithms for the numerical realization of the level set method (narrow
band, fast marching method,...) have been invented, analyzed, implemented and
used successfully in various applications.

Concerning the combined use of shape gradient related descent methods inter-
twined with topological sensitivity, level set based techniques are significantly less
advanced. In contrast to moving boundary problems, in the context of shape and
topology optimization the (pseudo)time marching through the level set equation,
a PDE of Hamilton-Jacobi type, when equipped with appropriate descent criteria
acts like a line search method well-known from numerical optimization. As a con-
sequence, stability criteria such as the Courant-Friedrichs-Levy (CFL) condition
for the discretization in time can be significantly relaxed and, thus, allow for larger
geometry changes from one iteration to the next.
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Optimal Control of a Free Boundary Problem with Surface Tension

Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3397

Michael Stingl (joint with Bastian Schmidt)
Parametric Shape Optimization Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 3400

Michel C. Delfour
Groups of Transformations for Geometrical Identification Problems:

Metrics, Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3403

Antoine Laurain (joint with Carlos Conca, Rajesh Mahadevan)
Minimization of the Ground State for Two Phase Conductors in Low

Contrast Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3407

Jan Friederich (joint with Günter Leugering, Paul Steinmann)
Sensitivities for Graph Operations in Finite Element Meshes . . . . . . . . . . 3411





Mini-Workshop: Geometries, Shapes and Topologies 3381

Abstracts

Compressible Navier-Stokes Equations. Shape Optimization

Pavel Plotnikov

(joint work with Jan Sokolowski)

The talk is devoted to the study of boundary value problems for equations of
viscous gas dynamics, named compressible Navier-Stokes equations. The principal
significance of the mathematical theory of Navier -Stokes equations lies in the
central role they now play in fluid dynamics. We focus on existence results for
the inhomogeneous in/out flow problem, in particular the problem of the flow
around a body placed in a finite domain, on the stability of solutions with respect
to domain perturbations, on the domain dependence of solutions to compressible
Navier-Stokes equations, and on the drag optimization problem.
Existence theory The problem of the flow of a viscous gas around a moving rigid
body S ∈ Rd, d = 2, 3, can be formulated as follows. Choose an arbitrary n
arbitrary hold-all B ⊂ R3, for instance, a sufficiently large ball, such that S ⊂ B.
Next, we transfer the boundary conditions from infinity to ∂B and arrive at the
following boundary value problem for the velocity v and the density ρ. Find
functions (v, ρ) satisfying

∂t(ρv) + div (ρv ⊗ v)−
1

Re
div S(v)

+
1

Ma
2∇p(ρ) + Cv = ρ f in Ω× (0, T ),

∂tρ+ div (ρv) = 0 in Ω× (0, T ),

v = 0 on ∂S × (0, T ), v = V on ∂B × (0, T ),

ρ = ̺∞ on Σin,

v(x, 0) = V(x, 0) in Ω, ρ(y, 0) = ̺∞(y) in Ω,

where V, f : Rd × [0, T ] are given smooth vector fields, ̺∞ : Rd → R+ is a given
nonnegative bounded function, C is a skew-symmetric matrix,

Ω = B \ S, Σin = {(x, t) ∈ ∂B × (0, T ) : V(x, t) · n(y) > 0},

S(v) = ∇v + (∇v)⊤ + (λ− 1)div v I.

The peculiarity of this problem is that we deal with the boundary value problem
for the mass balance equations. We prove that for the adiabatic exponent γ > d/2,
the problem has a renormalized solution. We follow the multilevel regularization
scheme proposed by E. Feireisl, but with a different regularization technique. We
show that the solution admits the energy estimate and the pressure p(ρ) is locally
integrable with some exponent greater than 1.

Stability of solutions with respect to nonsmooth data and domain perturbations.

Propagation of rapid oscillations in compressible fluids. In compressible viscous
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flows, any irregularities in the initial and boundary data are transferred inside
the flow domain along fluid particle trajectories. We develop a new method for
the study of the propagation of rapid oscillations of the density, which can be
regarded as acoustic waves. The main idea is that any rapidly oscillating sequence
is associated with a parametrized family µxt of probability measures on the real line
named the Young measure. We establish that the distribution function f(x, t, s) =
µx,t(−∞, s] satisfies a differential relation named a kinetic equation. A remarkable
property of compressible Navier-Stokes equations is that in this particular case the
kinetic equation can be written in closed form as

∂tf + div (fv)− ∂s

(
sfdiv v +

s

λ+ 1

∫

(−∞,s]

(p(τ) − p) dτf(x, t, τ)

)
= 0.

The kinetic equation being combined with the momentum balance equations gives
a closed system of integro-differential equations which describes the propagation
of rapid oscillations in a compressible viscous flow. Notice that oscillations can
be induced not only by oscillations of initial and boundary data, but also by
irregularities of the boundary of the flow domain. We also prove that if the data
are deterministic and the function f satisfies some integrability condition, then
any solution to the kinetic equation satisfying some integrability conditions is
deterministic.

Domain dependance of solutions to compressible Navier-Stokes equations We
apply the kinetic equation method to the analysis of the domain dependence of
solutions to compressible Navier-Stokes equations. We restrict our considerations
to the problem of the flow around an obstacle placed in a fixed domain. Recall
that in this problem, the flow domain Ω = B\S is a condenser type domain, B is a
fixed hold all domain and S is a compact obstacle. We introduce the notion of the
Kuratowski-Mosco. To this end Denote by C∞

S (B) the set of all smooth functions

defined in B and vanishing on S ⊂ B. Let W 1,2
S (B) be the closure of C∞

S (B) in
the W 1,2(B)-norm. A sequence of compact sets Sn ⊂ B is said to converge to S
in the Kuratowski-Mosco sense if

• there is a compact set B′ ⊂ B such that Sn, S ⊂ B′;
• for any sequence un ⇀ u weakly convergent inW 1,2(B) with un ∈W 1,2

Sn
(B),

the limit element u belongs to W 1,2
S (B);

• whenever u ∈ W 1,2
S (B), there is a sequence un ∈ W 1,2

Sn
(B) with un → u

strongly in W 1,2(B).

We show that if a sequence Sn of compact obstacles converges to a compact ob-
stacle S in the Hausdorff and the Kuratowski-Mosco sense, then the sequence of
corresponding solutions to the in/out flow problem contains a subsequence which
converges to a solution to the in/out flow problem in the limiting domain. More-
over, we prove that the typical cost functionals, such as the work of hydrody-
namical forces, are continuous with respect to S-convergence. As a conclusion we
establish the solvability of the problem of minimization of the work of hydrody-
namical forces in the class of obstacles with a given fixed volume.
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Efficient Usage of the Shape Hessian in PDE Constrained Shape

Optimization and a Riemannian Perspective

Volker Schulz

Shape optimization is an industrially highly important subject of research. The
shape calculus is a very efficient way for the generation of shape derivatives cir-
cumventing computationally expensive mesh sensitivities. The resulting numerical
methods can be greatly accelerated by approximations of the shape Hessian. This
is demonstrated in practical applications from aerodynamics, thermoelastics and
acoustics. On the other hand, this success raises the natural question about a the-
oretical framework for the explanation of this effect. The standard framework in
shape calculus is not of much help since it lacks a Taylor series expansion and the
standard shape Hessian is not symmetric. A novel approach via shape manifolds
and the according Riemannian geometries is demonstrated based on the influential
work of Peter Michor. As a result, a Taylor series expansion for smooth shapes
is presented together with all results, one would like to have: quadratic Newton
convergence, second order sufficiency conditions. It remains to bridge the gap be-
tween C∞ for the shape manifold theory so far and the usual Sobolev spaces from
PDE constrained optimization.

A Non-Iterative Method for the Inverse Potential Problem Based on

the Topological Derivative

Antonio André Novotny

(joint work with Alfredo Canelas, Antoine Laurain)

Problem Formulation. Let Ω ⊂ R2 be an open and bounded domain, with
smooth boundary ∂Ω or convex. Define

(1) PCγ(Ω) := {b ∈ L∞(Ω), b = γ0χΩ\ω + γ1χω|ω ⊂ Ω measurable},

where χω denotes the indicator function of the set ω and γ = (γ0, γ1) ∈ R2 is given.
The inverse potential problem reads: given q∗ ∈ H−1/2(∂Ω) and u∗ ∈ H1/2(∂Ω),
find the source b∗ ∈ PCγ(Ω) such that there exists a solution to

(2)





−∆u = b∗ in Ω
u

−∂nu
=
=

u∗

q∗

}
on ∂Ω

,
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Let m > 0 be a given integer, and I = {1, ..,m}. We also assume that the sets ω
in PCγ(Ω) are of the form:

(3) ω =
⋃

i∈I

ωi with ωi ∩ ωj = ∅ for i 6= j .

with ωi measurable, star-shaped and simply connected sets. The system of equa-
tions (2) is over-determined and may have no solutions for any b∗, so that the
problem of reconstructing b∗ is not well-posed in general, especially for noisy data
q∗ and u∗. We look for an approximate solution by reformulating the inverse prob-
lem as a minimization problem. The idea is to penalize one of the two boundary
conditions on ∂Ω. To this end, we minimize the so-called Kohn-Vogelius func-
tional:

(4) min
b∈PCγ(Ω)

J(b) :=
1

2

∫

Ω

(
uD(b)− uN (b)

)2
,

where uD(b) and uN (b) are solutions to the following auxiliary problems:
(5)

{
−∆uD = b in Ω,

uD = u∗ on ∂Ω.
and





−∆uN = b+ c in Ω,
−∂nuN = q∗ on ∂Ω,∫

Ω

uN =

∫

Ω

uD.

The constant c = c(b) is introduced in order to satisfy the compatibility condition
for the Neumann problem. We obtain

c(b) =
1

|Ω|

(∫

∂Ω

q∗ −

∫

Ω

b

)

We observe that if b ∈ PCγ(Ω) satisfies J(b) = 0, then uD(b) = uN(b) which
implies c(b) = 0 and uD(b) = uN(b) then solves the over-determined problem (2).

Topological Asymptotic Analysis. The topological derivative [2, 3, 7] is the
first term of the asymptotic expansion of a given scalar-valued shape functional
J (Ω) with respect to a small parameter measuring the size of singular pertur-
bations, such as holes, inclusions, or cracks. The topological derivative has been
successfully applied in topology optimization, inverse problems and image pro-
cessing; see for instance [1, 4, 5], respectively. In order to introduce these ideas,
let us consider a non-smooth perturbation of Ω by removing a small set ωε,x̂ of
size ε > 0 and center x̂ ∈ Ω, or the union ω

e,x̂ := ∪i∈Iωεi,x̂i
of such sets, where

e := {εi}i∈I , x̂ := {x̂i}i∈I . Here, x̂i is an arbitrary point of Ω and εi > 0. Take
m = 1 for simplicity and assume we have the following topological asymptotic
expansion with respect to ε:

(6) J (Ω \ ωε,x̂) = J (Ω) + f1(ε)D
1
TJ (x̂) + f2(ε)D

2
TJ (x̂) +R(ε) ,

where f1(ε) and f2(ε) are positive functions such that

(7) lim
ε→0

f1(ε) = 0 and lim
ε→0

f2(ε)

f1(ε)
= 0 .
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We assume that the remainder satisfies R(ε) = o(f2(ε)). The terms D1
TJ (x̂) and

D2
TJ (x̂) are called first and second order topological derivatives of J and are used

to approximate J (Ω \ ωε,x̂). For our purposes, let us consider the particular case
ω
e,x̂ = ∪i∈IB(εi, x̂i), where B(εi, x̂i) is a disk of radius εi and center x̂i ∈ Ω. We

consider a perturbed source term of the form

(8) b
e,x̂ = γ0χΩ\ω

e,x̂
+ γ1

∑

i∈I

χB(εi,x̂i) , B(εi, x̂i) ∩B(εj , x̂j) = ∅ , i 6= j .

The topological asymptotic expansion of the shape functional reads

J (Ω \ ω
e,x̂) = J(b

e,x̂) =
1

2

∫

Ω

(uD(b)− uN(b))2

− π

∫

Ω

(uD(b)− uN(b))
∑

i∈I

ε2ihi +
π2

2

∫

Ω

(
∑

i∈I

ε2ihi

)2

,(9)

where the functions hi are solutions of

(10)





−∆hi =
γ0 − γ1
|Ω|

in Ω

−∂nhi = gi on ∂Ω∫

Ω

hi = 0

,

with gi := ∂nvi on ∂Ω and vi is the solution of

(11)

{
−∆vi = (γ1 − γ0) δi in Ω

vi = 0 on ∂Ω
,

where δi(x) = δ(x− x̂i) is used to denote the Dirac mass concentrated at x̂i.

Numerical Experiments. We optimize J (Ω \ ω
e,x̂) in (9) with respect to e, x̂.

Differentiating (9), the first order optimality conditions with respect to the vari-
ables ai := πε2i , i ∈ I lead to the following linear system:

(12) Hijaj = di for i, j ∈ I,

where di and Hij are given by

(13) di = (γ1 − γ0)
(
pD(x̂i) + pN(x̂i)

)
and Hij =

∫

Ω

hihj .

The adjoint states pD and pN satisfy similar equations as uD and uN , with uD−uN

as source terms. Once the above linear system is solved, we optimize with respect
to the locations {x̂i}i∈I of the objects. The problem is discretized using the finite
element method. The resolution of (12) is combinatorial in the number of balls
m so that m must stay small. In order to keep the computational cost tractable
we solve (12) on a sub-grid of the grid where the partial differential equations are
solved. In the examples we take Ω = (0, 1)× (0, 1), γ0 = 1 and γ1 = 10. To obtain
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noisy synthetic data, the true source term b∗ is corrupted with white gaussian
noise. The resulting level of noise in the boundary measurement is computed as

noise = ‖q∗ − q∗n‖L2(∂Ω)/‖q
∗‖L2(∂Ω) × 100,

where q∗n is the noisy boundary measurement used as the synthetic data. In Figures
1 to 3 some examples of reconstructions of b are plotted.

(a) true
source term

(b) recon-
struction

Figure 1. Two objects: true source term (left) and reconstruc-
tion using two balls (right) without noise in the data.

(a) true
source term

(b) recon-
struction

Figure 2. One object: true source term (left) and reconstruction
using three balls (right) without noise in the data.

(a) true
source term

(b) noisy data (c) recon-
struction

Figure 3. Four objects: true source term (left), noisy source
term b∗ (center) and obtained reconstruction using four balls with
4.04% of resulting noise on q∗ (right).

Acknowledgements. We would like to thank Bojan Guzina for helpful comments
on this paper.
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Applications of the Voronoi Implicit Interface Method

James A. Sethian

(joint work with Robert I. Saye)

Many problems involve the physics of multiply-connected moving interfaces.
Examples include liquid foams (e.g. soap bubbles, polyurethane and colloidal
mixtures), and solid foams, such as wood and bone. Manufactured solid foams lead
to lightweight cellular engineering materials, including crash absorbent aluminum
foams, and controlling foams is critical in chemical processing.

These problems have multiple domains which share common walls meeting in
multiple junctions. Boundaries move under forces which depend on both local and
global geometric properties, such as surface tension and volume constraints, as well
long-range physical forces, including incompressible flow, membrane permeability,
and elastic forces.

Producing good mathematical models and numerical algorithms that capture
the motion of these interfaces is challenging, especially at junctions where multi-
ple interfaces meet, and when topological connections change. Methods have been
proposed, including front tracking, volume of fluid, variational, and level set meth-
ods. It has remained a challenge to robustly and accurately handle the wide range
of possible motions of an evolving, highly complex, multiply-connected interface
separating a large number of phases under time-resolved physics.

We have recently developed [4, 5] a mathematical perspective and accompany-
ing numerical methodology for tracking interfaces in general multiphase problems.
Our “Voronoi Implicit Interface Method” (VIIM) has a variety of features, includ-
ing:

• Accuracy, consistency, efficiency: The method works in any number of di-
mensions, using a fixed Eulerian mesh, and a single function plus an indi-
cator function to track the entire multiphase system. Geometric quantities
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and constraints are accurately computed, and phases are coupled together
in a consistent fashion, with no gaps, overlaps, or ambiguities.

• Multiple junctions and topological change: Multiple junctions, such as
triple points, are all handled naturally and automatically, as well as break-
age, merger, creation, and disappearance of phases. No special attention
is paid to discontinuous topological change.

• Coupling with time-dependent physics: The method uses a physical time
step, which then allows coupling complex physics into the interface evolu-
tion. Feedback from the physics affects the interface, and changes to the
interface affects the physics.

Briefly, these Voronoi Implicit Interface Methods work as follows. Given a
collection of interfaces in an initial configuration, the unsigned distance function
φ is constructed on a background mesh. Thus, the zero level set of the unsigned
distance function corresponds to the interface. At each mesh point, both the
distance (which is a non-negative real number) and an indicator function (an
integer flag) are stored. Typical implementations have used a regular Cartesian
mesh, though unstructured non-rectangular meshes may also be used. The central
idea of the method is to then alternate between two steps:

• Advance this unsigned distance function on the background mesh, using
the level set initial value PDE [3, 7] of the form

φt + F |∇φ| = 0,

where F is the velocity, defined throughout the domain and determined
by solving the associated physics.

• Use the ǫ level sets of this advanced solution to reconstruct a new unsigned
distance function. This is done by first computing the Voronoi interface
from the ǫ level sets: this corresponds to the set of all points equidistant
from at least two of the ǫ level sets from different phases. This Voronoi
interface is then used to rebuild the unsigned distance function.

This is the most straightforward implementation of the method. More efficient
and sophisticated techniques include the use of narrow banding [1] to limit com-
putational labor to a small region near the interface, a fast Eikonal solver [6, 2] to
find the new unsigned distance from the ǫ level sets without explicitly constructing
the front, and careful data structures which allow any non-negative value for ǫ,
including ǫ = 0+. For details, see [4, 5].

As application, Figure 1 illustrates the results for a three-dimensional simula-
tion of a variable density fluid flow, computed on a 1283 grid with slip boundary
conditions, using ǫ = 0+. The simulation starts with 15 heavy phases and ap-
proximately 100 less dense phases. The incompressible Navier-Stokes equations
are solved, using a second order projection method, and coupled to the Voronoi
Implicit Interface Method. For all but the last snapshot in Figure 1, the heavier
phase is dark, while the other phases have been rendered mostly transparent, to-
gether with the triple line junctions as a network of curves. In the last snapshot,
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at time t = 1.8, we have rendered the bulk foam opaque, to make the structure of
the foam more obvious.

t = 0 t = 0.36 t = 0.72

t = 1.08 t = 1.44 t = 1.8

Figure 1. Results of a fluid flow simulation in three dimensions
with gravity, in which the orange colored phase is more viscous
and more dense than the other phases. The bulk foam is rendered
mostly transparent except for the last frame, where it is rendered
opaque to make the structure more prominent.
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On a Phase Field Approach to Topology Optimization

Dietmar Hömberg

(joint work with Michael Hintermüller, Kevin Sturm)

By definition, distortion means undesired alterations in workpiece size and
shape, which may happen as a side effect at some stage in the manufacturing
chain. Assuming that no rate effects occur during the heat treatment, i.e., neglect-
ing transformation-induced plasticity, one can tackle this problem mathematically
in a hybrid approach. In the first step the optimal microstructure for distortion
compensation is computed solving a shape design problem subject to a stationary
mechanical equilibrium problem. In the second step an optimal cooling strategy is
computed to realize this microstructure. While the latter has been studied exten-
sively, the goal of this presentation was to explain a novel approach to compute
an optimal microstructure or better phase mixture to compensate for distortion.

We assume that the workpiece domain D ⊂ R3 consists of a microstructure
with two phases in the domains Ω̄ ⊂ D and D \Ω, separated by a sharp interface
Γ. For instance one might think of these two phases as having been created from
one parent phase during a heat treatment. To distinguish between the subdomains
we introduce the characteristic function χ = χΩ of the set Ω, which is equal to 1
for x ∈ Ω and 0 otherwise.

Now, assume the workpiece to be in equilibrium. Then the stress tensor σ
satisfies

− div σ = 0, in D(1)

σn = 0, in ΓN(2)

u = 0, in Γ0(3)

with Γ̄N ∪ Γ̄0 = ∂D. According to Hooke’s law only elastic strains contribute to
the stress, so in the case of small deformations we obtain

(4) σ = A(ε(u)− ε̃),

with the stiffness tensor A, the internal strain ε̃ and the linearized overall strain

ε(u) =
1

2
(Du+ (Du)T ).

In general, the stiffness might be different in both subdomains, hence we make the
ansatz

(5) A = Aχ(x) := χ(x)A1 + (1− χ(x))A2.

The main reason for the occurrence of internal stresses lies in the different densities
of the two subdomains. Thus we make an analogous mixture ansatz, i.e.

ε̃ = ε̃χ(x) := χ(x)ε̃1 + (1− χ(x))ε̃2,

and assume in addition isotropy, i.e.

Aiε̃i = βi(x)I,
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where I is the identity matrix. Then the constitutive relation reads as

(6) σχ(x) = Aχε(u)− βχI,

with

(7) βχ(x) := χ(x)β1 + (1− χ(x))β2.

As the phases have different densities, we may expect internal stresses along the
interface Γ even if no external forces are performed, leading to a deformation of
the outer shape. Our aim is utilize this effect by changing the fractions of the two
phases or better by changing the interface Γ to achieve a desired outer shape. To
this end, we choose a generic cost functional

J(u, χ) =

∫

Σ1

L(u)ds =

∫

Σ1

|u− ud|2ds+ αPD(Ω)

with Σ1 ⊂ ΣN and

PD(Ω) = ‖∇χ
Ω
‖M1(D)n .

In [3] we investigated the resulting optimal shape design problem and derived
necessary optimality conditions. For the numerical computation of optimal subdo-
mains we proceed as in [1] and employ a phase field relaxation to the problem. This
means, we replace the perimeter term in the cost functional by a Ginzburg-Landau
term, i.e.,

∫

D

(γδ
2
|∇ϕ|2 +

γ

δ
ψ(ϕ)

)
dx,

with double-well potential ψ(ϕ) = c1(1−ϕ2)2, c1 > 0. We use an L2 gradient flow
dynamics for ϕ with an artificial time variable t. The resulting system, consisting of
a parabolic equation for the phase field variable ϕ coupled to two elliptic equations
for the state and its adjoint is studied in [2].
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Bits and Pieces Put Together to Present a Semblance of a Whole

Bojan Guzina

Abstract. This work examines the performance of topological sensitivity as a tool
for tackling the inverse scattering of scalar waves in the high-frequency regime,
when the wave length of the incident field is small relative to the remaining length
scales in the problem. To provide a focus in the study, it is assumed that the
obstacle is convex and impenetrable (of either Dirichlet or Neumann type), and
that the full-waveform measurements of the scattered field are taken over a sphere
whose radius is finite, yet large relative to the size of the sampling region. In
this setting, the formula for topological sensitivity is expressed a pair of nested
surface integrals – one taken the measurement sphere, and the other over the
surface of a hidden obstacle. By way of multipole expansion, the inner integral
(over the measurement surface) is reduced to a set of antilinear forms in terms
of the Green’s function and its gradient. The remaining expression is distilled by
evaluating the scattered field on the surface of the obstacle via Kirchhoff (physical
optics) approximation, and deploying the method of stationary phase to evaluate
the remaining integral. In this way the topological sensitivity is expressed as a
sum of the closed-form expressions, signifying the contribution of critical points on
the “illuminated” part of the surface of a hidden obstacle. Thus obtained result
explicitly demonstrates the localizing nature of the topological sensitivity and, via
numerical simulations, helps better understand some of the reconstruction patterns
observed in earlier works.
Introduction. Since its inception within the context of shape optimization [1],
the notion of topological sensitivity has been generalized and applied to deal with
inverse scattering problems in acoustics [2,3], electromagnetism [4], and elasto-
dynamics [5]. In the reconstruction approach the topological sensitivity, which
quantifies the perturbation of a given cost functional due to the nucleation of an
infinitesimal defect in the (reference) background medium, is used as an effective
obstacle indicator through an assembly of sampling points where it attains extreme
negative values. Typically, formulas for the topological sensitivity are amenable
to an explicit representation in terms of the wavefields computed exclusively for
the reference domain, which is the source of computational efficiency of this class
of inverse scattering solutions. However, with the exception of the treatment of
point-like scatterers [6], the justification for the performance of this class of in-
verse scattering solutions has been notably lacking. To help bridge the gap, this
work aims to expose the essence of the topological sensitivity (TS) indicator in
the high-frequency regime, when the scatterer extends many wavelengths of the
incident wavefield.
Approach. Consider the scattering of time-harmonic scalar waves by a convex
impenetrable obstacle D⊂B1⊂ R3 with smooth boundary S = ∂D and outward
normal n, where B1 is an open ball of radius R1 centered at the origin. On denoting
by ũ the scattered field generated by the action of an incident field ui on D, it is
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assumed that the total field

u(ξ) := ui(ξ) + ũ(ξ), ξ ∈ R
3\D̄

is monitored over a closed measurement surface Γobs = ∂B2, where B2 is an open
ball of radius R2 = α−1R1 (α≪1) centered at the origin, see Fig. 1. The reference

d

D

B1

R2

B2

R1

Figure 1. Obstacle D ∈ R3 illuminated by plane waves.

background medium is assumed to be homogeneous with wave speed c and mass
density ρ. Writing the germane time dependence as eiωt where ω denotes the
frequency of excitation, the incident field is for simplicity assumed in the form of
a plane wave, ui = e−ikξ·d, where k = ω/c.

On substituting the integral representation of the scattered field over Γobs into
the adjoint-field formula [3] for TS and reversing the order of integration over S
and Γobs, the expression for TS in the case of a sound-soft (Dirichlet) obstacle,
taken here as an example, can be written as

(1) T(xo, β, γ)

= 2Re

{
(1− β)∇ui(xo) ·A ·

∫

S

ui,n(ζ)

∫

Γobs

G(ξ, ζ, k)∇G(ξ,xo, k) dΓξ dSζ

− (1−βγ2) k2 ui(xo)

∫

Sf

ui,n(ζ)

∫

Γobs

G(ξ, ζ, k)G(ξ,xo, k) dΓξ dSζ

}
,

where G is the fundamental solution of the Helmholtz equation in R3, while β =
ρ/ρ⋆ and γ = c/c⋆ denote the material characteristics of a vanishing trial obstacle
at xo. When the latter is ball-shaped, A = 2/(3+β)I, where I is the second-order
identity tensor.

Representation (1) can further be reduced to a single surface integral with an
explicit kernel by way of the Helmholtz-Kirchhoff identity

(2)

∫

Γobs

G(ξ, ζ, k)G(ξ,xo, k) dΓξ ≃ −
1

k
Im
(
G(xo, ζ, k)

)
, xo, ζ ∈ B1, α ≪ 1,

its extension in terms of G∇G, and the Kirchhoff (high-frequency) approximation
of the scattered field over S which states that

(3) u = 0 on S = ∂D, u,n =

{
2ui,n on Sf

0 on Sb
,
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when the obstacle is sound-soft. Here Sf = {x∈ S : n(x)·d < 0} is the “front”
(i.e. illuminated) part of S, and Sb = {x ∈ S : n(x) ·d > 0} denotes its “back”
side.

The remaining surface integral is next evaluated explicitly via the method of
stationary phase [7] as a sum of contributions of the kernel in the neighborhood
of critical points on Sf, namely those where i) the tangential gradient of the ex-
ponential part of the kernel vanishes, and ii) the kernel fails to be differentiable.
In this way the TS indicator function is written in terms of basic transcendental
functions combined with their specialized counterparts such as the Airy, Fresnel,
and Pearcey integrals.
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Techniques for Topology Optimization under Constraints

Samuel Amstutz

The aim of this presentation is to provide some methods to deal with shape and
topology optimization problems of the form:

(1) min
Ω∈E

J (Ω) subject to G(Ω) ∈ −K,

where E is a set of admissible domains, K is a closed convex cone of a Banach
space Y , and

• J : E → R is the cost functional,
• G : E → Y is a given constraint functional.

In particular, problems with m scalar inequality constraints can be cast into this
framework by taking Y = Rm and K = Rm

+ , but the infinite dimensional case is
also of interest (structural optimization with infinitely many loads, pointwise con-
straints...). Most of the methods we will present rely on the concept of topological
sensitivity, which was mathematically introduced in [15, 16] and subsequently de-
veloped by many authors.
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1. Topological sensitivity

Let Ω be a domain of Rd, d = 2, 3. Given a reference domain ω ⊂ Rd (typically
the unit ball), the topological derivative J ′(Ω)(z) of the functional J (Ω) at a
point z ∈ Ω is defined through the asymptotic expansion:

J (Ω \ (z + ρω))− J (Ω) = f(ρ)J ′(Ω)(z) + o(f(ρ)) (ρ→ 0)

for an appropriate (nonnegative) scaling function f(ρ).
From a numerical point of view, the topological derivative can be used as a

descent direction to perform topology changes. It also provides optimality con-
ditions. In the unconstrained case, the obvious necessary optimality condition
J ′(Ω)(z) ≥ 0 ∀z ∈ Ω can by solved, for instance, by a fixed point method like in
[4, 8, 10]. Alternatively, it is possible to design material interpolation schemes in
order to reach the same optimality condition in the regions of extremal density,
see [6].

2. Optimality conditions and duality-based algorithms

Suppose that Ω is optimal for (1) with respect to topological perturbations
performed at points z ∈ T (Ω) ⊂ Ω, and that for such perturbations the func-
tionals J (Ω) and G(Ω) admit topological derivatives which are additive in the
perturbations. We prove in [9] that, under the constraint qualification condition

∃x0 ∈ T (Ω), t ≥ 0 s.t. G(Ω) + tG′(Ω)(x0) ∈ int(−K),

there exists µ ∈ K+ (the polar cone of K) such that:

J ′(Ω)(z) + 〈µ,G′(Ω)(z)〉Y ′,Y ≥ 0 ∀z ∈ T (Ω),
〈µ,G(Ω)〉Y ′,Y = 0.

These conditions can be complemented by a geometrical optimality condition on
∂Ω based on the shape derivative, involving the same Lagrange multiplier µ. We
further show [5] that optimal domains correspond to saddle points of the (possibly
augmented) Lagrangian L(Ω, µ) = J (Ω) + 〈µ,G(Ω)〉Y ′,Y . Uzawa-type algorithms
may be used to find these saddle points.

3. Pointwise state constraints

Let uΩ be a state variable, solution to an elliptic PDE associated with Ω. It is
often desired to impose a constraint of the form (for a symmetric positive definite
matrix B):

1

2
B∇uΩ.∇uΩ ≤M a.e. in Ω.

In such cases duality-based algorithms are inappropriate due to the very low reg-
ularity of the Lagrange multiplier. A penalty method for this kind of problems is
introduced in [1], and applied to particular damage criteria in structural mechanics
in [13, 14].
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4. Perimeter constraint

Perimeter constraints are of major interest in topology optimization due to
their regularizing effect (leading generally to the existence of optimal domains).
However, the perimeter is more sensitive to topological changes that the standard
cost functionals, and therefore it does not admit a topological derivative in the
usual sense. If u ∈ L∞(D, [0, 1]) we introduce the quantity

F̃ε(u) = inf
v∈H1(D)

{
1

2ε

(
‖v‖2L2(D) + 〈u, 1− 2v〉

)
+
ε

2
‖∇v‖2L2(D)

}
,

which is easily computable through the solution of a linear PDE. We prove in
[11] the following Γ-convergence result when ε → 0, which holds strongly in
L1(D, [0, 1]):

(2) F̃ε(u)
Γ
→ F̃ (u) :=

{
1
4TV (u) = 1

4PerD(Ω) if u = χΩ ∈ BV (D, {0, 1})
+∞ otherwise,

where PerD(Ω) is the relative perimeter of Ω in D. In addition, we show that the

functionals F̃ε are equicoercive for the same topology. This provides the ingredients
for a proper approximation of shape functionals including a perimeter term.

It also stems from (2) that another benefit of the functionals F̃ε is to penalize
the intermediate values of u. This allows for the use of relaxation methods to
solve the problem at ε fixed, while eventually retrieving a characteristic function
when ε → 0. This approach finds applications in compliance minimization by
homogenization [11] and image classification [7].

When a relaxed formulation is not available, one can use instead the topological
derivative, see [2], since F̃ε is especially constructed so as to admit a topological
derivative.

5. Newton type methods

Consider the model problem:

(3) min
u∈L∞(D,[0,1])

j(u) =
1

2

∫

D

(yu − y†)2dx+ ν

∫

D

udx with −∆yu = u.

In fact, under rather general assumptions, the solution u takes only 0− 1 values.
It is easily seen that a necessary and sufficient optimality condition for (3) can be
written:

F (u) := u|gu|+min(0, gu) = 0 with gu = ∇j(u).

The idea is to solve this equation by the semismooth Newton method, however
the generalized Jacobian of F is singular at the solution. Appropriate regular-
ization techniques, leading to superlinear convergence, are analyzed in [3] for the
unconstrained problem (3) and in [12] for a class of constrained problems.
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[8] S. Amstutz and H. Andrä. A new algorithm for topology optimization using a level-set
method. Journal of Computational Physics, 216(2):573–588, 2006.

[9] S. Amstutz and M. Ciligot-Travain. Optimality conditions for shape and topology optimiza-
tion subject to a cone constraint. SIAM J. Control Optim., 48(6):4056–4077, 2010.

[10] S. Amstutz, S.M. Giusti, A.A. Novotny, and E.A. de Souza Neto. Topological derivative for
multi-scale linear elasticity models applied to the synthesis of microstructures. International
Journal for Numerical Methods in Engineering, 84:733–756, 2010.

[11] S. Amstutz and N. Van Goethem. Topology optimization methods with gradient-free perime-
ter approximation. Interfaces and Free Boundaries, 14:401–430, 2012.

[12] S. Amstutz and A. Laurain. A semismooth Newton method for a class of semilinear optimal
control problems with box and volume constraints. Technical Report hal-00636063, 2011.

[13] S. Amstutz and A.A. Novotny. Topological optimization of structures subject to von Mises
stress constraints. Structural and Multidisciplinary Optimization, 41(3):407–420, 2010.

[14] S. Amstutz, A.A. Novotny, and E.A. de Souza Neto. Topological derivative-based topology
optimization of structures subject to Drucker-Prager stress constraints. Computer Methods
in Applied Mechanics and Engineering, 233–236:123–136, 2012.

[15] S. Garreau, Ph. Guillaume, and M. Masmoudi. The topological asymptotic for PDE systems:
the elasticity case. SIAM Journal on Control and Optimization, 39(6):1756–1778, 2001.
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Optimal Control of a Free Boundary Problem with Surface Tension

Effects

Harbir Antil

(joint work with Ricardo H. Nochetto, Patrick Sodré)

Free boundary problems (FBPs) are challenging due to their highly nonlinear
nature. Besides the state variables, the domain is also an unknown. FBP find a
wide range of applications from phase separation (Stefan problem, Cahn-Hilliard),
shape optimization (minimal surface area), optimal control problems with state
constraints, fluid dynamics (flow in porous media), crystal growth, biomembranes,
electrowetting on dielectric, to finance. For many of these problems there is a close
interplay between the surface tension and the curvature of the interface; see [1]
and references therein.
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Figure 1: Ωγ denotes a physical domain
with boundary ∂Ωγ = Σ ∪ Γγ . Here Σ in-
cludes the lateral and the bottom bound-
ary and is assumed to be fixed. Further-
more, the top boundary Γγ (dotted line) is
“free” and is assumed to be a graph of the
form (x1, 1 + γ(x1)), where γ ∈ W̊ 1

∞(0, 1)
denotes a parametrization. Γγ is further
mapped to a fixed boundary Γ = (0, 1) and
in turn the physical domain Ωγ is mapped
to a reference domain Ω = (0, 1)2, where
all computations are carried out.

Σ

Γγ = (x1, 1 + γ(x1))

Ωγ

Γ

Ω

Of particular interest to us is the control of a model FBP previously studied by
P. Saavedra and L. R. Scott in [9] and formulated in graph form; see Figure 1,
where the free boundary Γγ is the dotted line. The state equations (2b) involve a
Laplace equation in the bulk and a Young-Laplace equation on the free boundary
to account for surface tension. This amounts to solving a second order system
both in the bulk and on the interface. Below we give a detailed description of the
problem.

Let γ ∈ W̊ 1
∞(0, 1) denote a parameterization of the top boundary (see Figure 1)

of the physical domain Ωγ ⊂ Ω∗ ⊂ R2 with boundary ∂Ωγ := Γγ ∪ Σ, defined as

Ω∗ = (0, 1)× (0, 2),

Ωγ = {(x1, x2) : 0 < x1 < 1, 0 < x2 < 1 + γ(x1)},

Γγ = {(x1, x2) : 0 < x1 < 1, x2 = 1 + γ(x1)},

Σ = ∂Ωγ \ Γγ ,

Γ = {(x1, x2) : 0 < x1 < 1, x2 = 1}.

Here, Ω∗ and Σ are fixed while Ωγ and Γγ deform according to γ.
We want to find an optimal control u ∈ Uad ⊂ L2(Γ) so that the solution

pair (γ, y) of the FBP approximates a given boundary γd : Γ → R and potential
yd : Ω∗ → R. This amounts to solving the minimization problem

(2a) minJ (γ, y, u) :=
1

2
‖γ − γd‖

2
L2(Γ) +

1

2
‖y − yd‖

2
L2(Ωγ )

+
λu
2
‖u‖2L2(Γ),

subject to the state equations

(2b)





−∆y = 0 in Ωγ

y = v on ∂Ωγ

−κH[γ] + ∂νy = u on Γγ

γ(0) = γ(1) = 0,

,

the state constraints

|dx1
γ(x1)| ≤ 1 a.e. x1 ∈ Γ,(2c)



Mini-Workshop: Geometries, Shapes and Topologies 3399

with dx1
being the total derivative with respect to x1, and the control constraint

u ∈ Uad(2d)

dictated by Uad, a closed ball in L2(Γ). Here λu > 0 is the stabilization parameter;
v is a given data which in principle could act as a Dirichlet boundary control;

H[γ] := dx1
(

dx1
γ√

1 + |dx1
γ|2

)

is the curvature of γ; and κ > 0 plays the role of surface tension coefficient.
Optimal control of partial differential equations (PDEs) allows us to achieve a

specific goal (2a) with PDE (2b) and other constraints (2c)-(2d) being satisfied
and can be highly beneficial in practice (see [12] for more details). For example
using the reverse electrowetting i.e., by applying a control to change the shape
of fluid droplets, one can generate enough power to charge a cellphone [7], by
mere stroll in the park. There has been various attempts to solve optimal control
problems with a FBP constraint. We refer to [5, 6] for control of a two phase
Stefan problem in graph formulation and [2] for the same problem in level set
formulation. Paper [8] discusses optimal control of a FBP with Stokes flow. Even
though problem (2a)-(2d) is relatively simple, it captures the essential features
associated with surface tension effects found in more complex systems, and allows
us to develop a complete second order analysis in [1], based on [12]. Prior to [1],
this analysis was absent in the literature on FBP.

There are several methodologies to formulate FBP depending on the role of the
free boundary. We deal with a sharp interface method, written in graph form (see
Figure 1), for which the interface Γγ is governed by the explicit elliptic PDE

−κH[γ] + ∂νy = u.

A similar approach was used in [5, 6] for the optimal control of a Stefan problem,
but without the full accompanying theory developed here. Alternative approaches
to treat FBP are the level set method and the diffuse interface method [3, 2].

We use a fixed domain approach to solve the optimal control free boundary
problem (OC-FBP). In fact, we transform Ωγ to Ω = (0, 1)2 and Γγ to Γ =
(0, 1)× {1} (see Figure 1), at the expense of having a governing PDE with rough
coefficients. This avoids dealing with shape sensitivity analysis [10, 4]. We refer to
[13] for a comparison between these approaches applied to a FBP. Using operator
interpolation [11] we demonstrate how to improve the existing regularity of state
variables derived earlier in [9], which turns out to be instrumental to derive the
second order sufficient condition. One of the challenges of an OC-FBP is dealing
with possible topological changes of the domain by introducing state constraints.
Our analysis provides control constraints which always enforce the state constraints
i.e., we can simply treat OC-FBP as a control constrained problem. We conclude
by providing optimal a priori error estimates and a non trivial extension to Stokes
equations.



3400 Oberwolfach Report 57/2012

References
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Parametric Shape Optimization Revisited

Michael Stingl

(joint work with Bastian Schmidt)

A new flexible shape optimization concept for the optimization for multiple-
phase materials is described. Unlike in usual parametric shape optimization ad-
missible deformations of a reference configuration are considered as design vari-
ables. We show existence for a wide class of cost functionals and convergence of
an appropriate approximation scheme under standard assumptions.

Basic Setting and Existence of a Solution

Let Ω ∈ R
2 be a domain. Let Γk ∈ C([0, 1];R2), k = 1, . . . ,K be curves describing

the boundary of Ω (denoted by Γ = ∂Ω) and partitioning of Ω into I subdomains

Ωi with
⋃I

i=1 Ωi = Ω, Ωi ∩ Ωj = ∅, i 6= j = 1, . . . , I, see Figure 1. We require
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Ωi, i = 1, . . . , I to satisfy the uniform cone property[1] and additionally several
properties on the curves Γk:

Γk injective and Lipschitz, k = 1, . . . ,K

Γk1
(]0, 1[) ∩ Γk2

([0, 1]) = ∅, k1 6= k2 = 1, . . . ,K

Γk ({0, 1}) ⊂
K⋃

l=1
l 6=k

Γl ({0, 1}) or Γk closed, k = 1, . . . ,K

We choose L ∈ (0, 1) and come to the following definition for the set of admis-
sible deformations:

(1) Uad :=
{
ϕ1, . . . , ϕK ∈ C

(
[0, 1],R2

) ∣∣∣

‖ϕk1
(t1)− ϕk2

(t2)‖ ≤ L‖Γk1
(t1)− Γk2

(t2)‖∀k1, k2 = 1, . . . ,K ∀t1, t2 ∈ [0, 1]
}
.

Note that the condition

(2) ‖ϕk1
(t1)− ϕk2

(t2)‖ ≤ L‖Γk1
(t1)− Γk2

(t2)‖∀k1, k2 = 1, . . . ,K ∀t1, t2 ∈ [0, 1]

implies uniform Lipschitz continuity for each of the functions ϕ1, . . . , ϕK . For
simplicity we assume that ∂Ω is not allowed to deform, i.e. the associated ϕk are

assumed to be 0. We now define the set Γ̃ :=
⋃K

k=1 Γk ([0, 1]) and associate with
each tuple ϕ1, . . . , ϕK ∈ X a mapping

ϕ : Γ̃ → R
2, x 7→ ϕk(t), where t and k are defined by Γk(t) = x.

Note ϕ is well-defined due to condition (2).

Theorem 1 The transformation Φ : Γ̃ → R
2, x 7→ x + ϕ(x) is injective and

therefore topology preserving.

For a proof, we refer to [3].
For each ϕ = (ϕ1, . . . , ϕK) ∈ Uad we consider an associated boundary value

problem of linear elasticity in weak form:

find u := u(ϕ) ∈ V s.t.(Pϕ)

aϕ(u, v) = f(v) ∀v ∈ H1(Ω).

Here f ∈ H1(Ω)∗ is given, V := {u ∈ H1(Ω) | u|Γ0
= 0} with Γ0 ⊆ ∂Ω and

aϕ : H1(Ω)×H1(Ω) → R, aϕ(u, v) 7→
∫
Ω 〈Cϕ(x)e(u)(x), e(v)(x)〉 dx is a uniformly

elliptic, bounded and symmetric bilinear form. The material tensor Cϕ(x) :=
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Ci∀x ∈ Ωi(ϕ), i = 1, . . . , I represents a given material Ci on the subdomain Ωi(ϕ)

and ei,j(u) :=
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
is the small strain tensor.

Using the state problem (Pϕ), together with a lower semi-continuous objective
function J : V × Uad → R, we can consider the optimization problem

find ϕ∗ ∈ Uad s.t.(P)

J(u(ϕ∗), ϕ∗) ≤ J(u(ϕ), ϕ)∀ϕ ∈ Uad.

Theorem 2 The problem (P) admits a solution.

Proof (sketch): In [3] compactness of Uad is established. Using compactness,
existence is show precisely as in [2].

Approximation and Convergence

In order to solve (P) numerically, we have to discretize it. We begin by giving
a discretization for the set of admissible deformations Uad. This is done by ap-
proximating the curves ϕk by splines and applying condition (2) to control points
only:

(3) Ud
ad :=

{
ϕ1, . . . , ϕK ∈ Cd

spline

(
[0, 1],R2

) ∣∣∣
‖ϕk1

(t1)− ϕk2
(t2)‖ ≤ L‖Γk1

(t1)− Γk2
(t2)‖∀k1, k2 = 1, . . . ,K

∀t1, t2 a. w. control points of ϕk1
, ϕk2

}

The parameter d denotes the number of control points per curve. For simplicity,
we consider only piecewise linear splines here. As (3) is an outer approximation we
cannot assume the resulting transformations to be topology preserving anymore.
However we are able to show that for sufficiently large d0, where d0 depends only
on the cone constants of the reference configuration and the constant L, topology
is again preserved and the uniform cone property for the resulting subdomains
Ωi(ϕ) remains valid with constants modified by L [3]. Using this discretization,
we can proof the following theorem.
Theorem 3 The system

{
Ud
ad

}
d→∞

is compact in {Uad}.

Proof (sketch): It is easy to see that there exists a compact Ũ ⊃ Ud
ad ∀d > d0.

Existence of a converging subsequence in Ũ , Lipschitz continuity of the limit curves
and preservation of condition (2) due to uniform convergence complete the proof.

Using a standard Galerkin approach for the linear elasticity problem (Pϕ), we
have the following discretized optimization problem:

find ϕd,∗ ∈ Ud
ad s.t.(Pd,h)

J(u(ϕd,∗), ϕd,∗) ≤ J(u(ϕd), ϕd)∀ϕd ∈ Ud
ad.

Assuming the usual non-degeneration conditions for the finite element mesh to
hold, together with a continuous dependence of the mesh on the design parameters
and d→ ∞ ⇔ hց 0 for the mesh size parameter h, we are able to show:
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Theorem 4 Let Thn
be a sequence of regular triangulations with hn ց 0, dn → ∞

and let Udn

ad
∋ ϕdn,∗ =: ϕ∗

n and u∗n := uhn
(ϕ∗

n) be optimal pairs of (Pd,h).
Then there exist subsequences with

ϕ∗
n → ϕ∗

u∗n → u∗

where (ϕ∗, u∗) is an optimal pair for (P).
The proof is similar as in [2] and presented in detail in [3].
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Groups of Transformations for Geometrical Identification Problems:

Metrics, Geodesics

Michel C. Delfour

Introduction. When modelling, optimizing, controlling, or identifying with
respect to a family of subsets of an Euclidean space, say RN for convenience,
the nice vector space structure of the calculus of variations and control theory
is lost and definitions and tools have to be developed to effectively capture this
reality. Among the many examples in pattern recognition or shape identification,
the pattern matching in image analysis (cf., for instance, A. Trouvé [22]) and
the surface matching problem from a cloud of points (cf., for instance, S. Osher
and R. Fedkiw [19] and J. Barolet [4] for the follow up of face surgery by the 3D
portable hand scanner.

Group Structure. The set of all subsets P(D) of a fixed set D ⊂ RN (or hold
all) has a group structure for the algebraic operation called symmetric difference

of two sets. The family of the corresponding characteristic functions of measurable
sets with finite measure forms a complete metric group where the metric is given by
the Lp-norm of the difference of two characteristic functions. Hausdorff measures
can be used to deal with objects of lower dimensions in RN . Other set-parametrized

functions such as the distance function, the oriented distance function, or the
support function can be used to construct such complete metric spaces (cf. Delfour
and Zolésio [9]).

Another way to construct a family of variable domains is to consider the images
of a fixed subset Ω0 of RN by some family of transformations of RN . The natural
algebraic structure for spaces of transformations is again a group structure with
respect to composition ◦. It is then possible to construct a metric on the family of
transformations that will serve as a metric or distance between two images of Ω0.
There are many ways to do that, and specific constructions and choices are again
very much problem dependent.
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Courant metrics. In 1972 A.M. Micheletti [12] introduced what may be one of
the first complete metric topologies on a family of domains of class Ck that are the
images of a fixed open domain of class Ck through a family of Ck-diffeomorphisms
of RN . The natural underlying algebraic structure is the group structure for the
composition of transformations with the identity transformation as the neutral
element. Her analysis culminates with the construction of a complete metric on
the quotient of the group by the closed subgroup of transformations leaving the
fixed subset Ω0 unaltered. She called it the Courant metric because it is proved
in the book of Courant and Hilbert [7] that the n-th eigenvalue of the Laplace
operator depends continuously on the domain Ω, where Ω = (I + f)Ω0 is the
image of a fixed domain Ω0 by I + f and f is a smooth mapping. But there is
no notion of a metric in that book. Her constructions naturally extend to other
families of transformations of RN or of fixed holdalls D.

The next step in the construction is the choice of the closed subgroup of trans-
formations of RN that is very much problem dependent. Originally, she chose
the set of transformations that leave the underlying set or pattern unaltered. In
some applications such a cavity filled with fluid, one might want to work in that
subgroup and follow the paths of particles inside. One might think of the paper
of V. I. Arnold [1]. In some applications, it might be interesting to look at the
subgroup that leave the set unaltered up to a translation, a rotation, or a flip.

Going back to the set up of Micheletti, it is possible to show that the underlying
set Ω0 can be chosen closed or open without cracks. This includes closed submani-

folds of RN . As long as the subgroup is closed, we get a complete Courant metric
on the quotient group even if the group of Micheletti with its complete metric is
not a metric group. Those groups with a complete metric have as tangent spaces
a Banach space of smooth mappings from RN to RN and can be assimilated to
infinite dimensional Finsler manifolds. By specializing the above constructions, it
is possible to define a complete metric for all Ck-homeomorphisms or all diffeo-
morphisms of an open (but not necessarily bounded) subset of RN . With such
larger spaces, it now becomes possible to consider subgroups involving not only
translations but also isometries, symmetries, or flips in RN or D.

Transformations generated by velocity fields. A convenient way to gen-
erate transformations of RN is to introduce a family of time-dependent velocity
fields V (t) : RN → RN . By solving the differential equation x′(t) = V (t, x(t))
over a fixed interval [0, 1], we get a trajectory t 7→ Tt(V ) of transformations. If

Θ is a Banach space of mappings θ : RN → RN , say Θ ⊂ C0,1(RN ;RN ), choose
the family of transformations given by GΘ = {T1(V ) : V ∈ L1(0, 1;Θ)}. This
is a subgroup of the ones that can be obtained by the generic construction of
Micheletti.

One advantage is the ability to construct Tt(V ) from the solution of an ordi-
nary differential equation. The other advantage is that a simpler metric can be
constructed from the norm of V . Yet, since there is no uniqueness of the velocity
taking I to T1(V ), one has to introduce an infimum over all admissible velocities.
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But this is equivalent to introduce the geodesic between I to T1(V ) in the subgroup
GΘ.

This Velocity Method was adopted by J.P. Zolésio [33], [34] as early as 1973 and
considerably expanded in his thèse d’état in 1979. At that time most people were
using a simple perturbation of the identity to compute shape derivatives. The
first comprehensive book promoting the velocity method was published in 1992 by
Sokolowski and Zolésio [20].

In 1994, at a congress in Cortona on imaging, R. Azencott [3] floated the idea of
a deformation distance between two shapes constructed from geodesics in groups of
diffeomorphisms generated by a velocity field. His student A. Trouvé [23] [22] wrote
his thesis on this topic by integrating in infinite dimension ideas of differential
geometry (infinite dimensional group action and pattern recognition) in 1995 [21].
In order to get the completeness of the subgroup for the metric, he had to go to a
Hilbertian set-up and replace the L1-norm by an L2-norm and the Banach space

C0,1(RN ;RN ) by some Hilbertian subset H ⊂ C0,1(RN ;RN ). We explore the
connections between the constructions of Azencott and Micheletti who implicitly
uses a notion of geodesic path with discontinuities.

The reader is also referred to the differential geometric approach of P. W. Michor
and D. Mumford [13], [14], [15], and L. Younes, P. W. Michor, and D. Mumford,
[29].

Many issues and problems remain open and bridges have to be thrown between
specialists of different horizons.
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[16] M. I. Miller, A. Trouvé, and L. Younes, Computing large deformations via geodesic flows of
diffeomorphisms, Int. J. Comput. Vis. 61 (2) (2005), 139–157.
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mathématiques, Université de Nice, France, 1973.

[34] J.-P. Zolésio, Identification de domaines par déformation, Thèse de doctorat d’état, Uni-
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Minimization of the Ground State for Two Phase Conductors in Low

Contrast Regime

Antoine Laurain

(joint work with Carlos Conca, Rajesh Mahadevan)

Introduction. Let Ω be a bounded domain in R
d called the design region. Let

m be a given positive number, 0 < m < |Ω|, where |Ω| is the Lebesgue measure
of the design region Ω. Two materials with conductivities α and β (0 < α < β)
are distributed in arbitrary disjoint measurable subsets A and B, respectively, of
Ω so that A ∪B = Ω and |B| = m. Consider the two-phases eigenvalue problem:

− div(σ∇u) = λu in Ω,(1)

u = 0 on ∂Ω,(2)

with the conductivity σ = αχA+βχB. Let λ be the first eigenvalue of (1)-(2) and
u the associated eigenvector. The variational formulation for λ is

(3) λ = min
u∈H1

0
(Ω)

∫

Ω

σ|∇u|2

∫

Ω

u2
= min

u∈H1

0
(Ω),‖u‖2=1

∫

Ω

σ|∇u|2,

where ‖u‖2 denotes the L2-norm of u. Here Ω is fixed and we are interested in the
dependence of λ on A and B. Since A = Ω \ B we write λ = λ(B). We consider
the problem of minimizing λ(B) with the constraint that the two phases are to be
distributed in fixed proportions; see [2]:

minimize λ(B)(4)

subject to B ∈ B(5)

where

(6) B = {B ⊂ Ω, B measurable, |B| = m}

The existence of a solution to (4)-(6) remains an open question. In general, one
may evidence microstructural patterns in relation to minimizing sequences and
the original problem may have to be relaxed to include microstructural designs;
see [5]. However, the original problem (4)-(6) may still have a solution for par-
ticular geometries as is the case when Ω is a ball. When Ω = B(0, R) is a ball,
the existence of a radially symmetric optimal set has been proved in [1, 3]. Even
in this case an explicit solution to the problem is not known. It was conjectured
in [3, 4], for higher dimensions, that the solution B∗ to this problem is a ball
B(0, R∗) as in dimension one [6]. We prove that the conjecture is not true in
general. Indeed, the optimal domain B∗ cannot be a ball when α and β are close
to each other (low contrast regime) and m is sufficiently large. This result is
provided by an asymptotic expansion of the eigenvalue with respect to β − α as
β → α, which allows us to approximate (4)-(6) by a simpler optimization problem.
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Optimal sets for small conductivity gap. We assume that β = βε := α + ε
with ε > 0 converging eventually to zero. If the material with conductivity βε

occupies the sub-domain B of Ω, the conductivity coefficient is, in this case,

(7) σ = σε(B) := αχA + βεχB = α+ εχB.

Let λε(B) be the first eigenvalue in the problem

− div(σε(B)∇uε) =λε(B) uε in Ω,(8)

uε =0 on ∂Ω(9)

for the conductivity σε(B). It is well-known, from the Krĕın-Rutman theorem [7],
that the first eigenvalue of a linear elliptic operator is simple and the correspond-
ing eigenfunction is of constant sign. We choose the eigenfunction uε = uε(B)
corresponding to λε(B) to be positive and normalize it using the condition

(10)

∫

Ω

(uε)2 = 1,

For fixed B, λε(B) and uε(B) depend analytically on the parameter ε; see [8,
Theorem 3, Chapter 2.5]. This justifies the ansätze

λε(B) = λ0(B) + ελ1(B) + . . .(11)

uε(B) = v0(B) + εv1(B) + . . .(12)

The convergence of the series in (12) holds in H1
0 (Ω).

Proposition 1. In ansätze (11) and (12), λ0(B) and v0(B) are independent of

B. In fact, λ0(B) = λ0 is the first eigenvalue in the problem

−α∆v0 =λ0v0 in Ω,(13)

v0 =0 on ∂Ω .(14)

The function v0 is the positive eigenfunction corresponding to λ0 and satisfies the

normalization
∫
Ω
v20 = 1.

Proposition 2. In (11), λ1(B) is given explicitly as

(15) λ1(B) =

∫

B

|∇v0|
2 dx .

The following orthogonality relations hold true

(16)

∫

Ω

v0 v1(B) dx = 0 =

∫

Ω

∇v0 · ∇v1(B) dx .

Introduce λ̃ε(B) = λε(B)− λ0 − ελ1(B), the remainder in the ansatz (11). We
have the following uniform estimates with respect to B:

Theorem 1. For ε > 0 sufficiently small, there exists a constant C independent

of ε and B such that

(17) |λ̃ε(B)| ≤ C ε
3

2 ∀B ∈ B .
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Corollary 1. If B⋆
ε ∈ B is a minimizer of λε(·) then we have the following esti-

mate:

(18)

∣∣∣∣λ1(B
⋆
ε )− inf

B∈B
λ1(B)

∣∣∣∣ ≤ 2 Cε
1

2

where the constant C is as in Theorem 1, independent of ε and B ∈ B.

By the previous corollary we see that a minimizer for λε(·) is approximately a
minimizer for λ1(·) when ε is small. Using a similar argument, we can show that
if B∗ is a minimizer of λ1(·) then, for small ε > 0,

∣∣∣∣λ
ε(B∗)− inf

B∈B
λε(B)

∣∣∣∣ ≤ 2 Cε
3

2 .

Thus, minimizers for λ1(·) are nearly optimal for λε(·) in the above sense. The
minimization of λ1(·) follows from:

Theorem 2. There exists c∗ ≥ 0 such that whenever B measurable satisfy

{x : |∇v0(x)| < c∗} ⊂ B ⊂ {x : |∇v0(x)| ≤ c∗}

and |B| = m, then B is an optimal solution for the problem of minimizing λ1(B)
over B ∈ B.

Disproving the disk conjecture. Consider the particular case Ω = B(0, 1) ⊂
Rd. The solution v0 of (13)-(14) is then radial and smooth. By setting w0(|x|) :=
v0(x), equation (13)-(14) becomes, using the Laplacian in polar (r, θ) or spherical
(r, θ, ϕ) coordinates, for d = 2, 3

r2w′′
0 (r) + (d− 1)rw′

0(r) + r2
λ0
α
w0(r) = 0,(19)

w′
0(0) = 0, w0(1) = 0.(20)

where the boundary conditions (20) correspond to the continuity of the gradient at
the origin and the Dirichlet condition on the boundary, respectively. The solution
of this equation is

w0(r) = J0(ηdr) if d = 2,(21)

w0(r) = j0(ηdr) if d = 3,(22)

where J0 and j0 denote Bessel functions of the first and second kind, respectively
and ηd, (d = 2, 3) are their respective zeros; see Figure 1. Let ωd denote the
volume of the unit ball, i.e. we have ωd = π for d = 2 and ωd = 4π/3 for d = 3
and let r0d and r1d be as in Figure 1.

Proposition 3. Assume Ω = B(0, 1). The unique optimal domain B∗ solution of

the minimization problem for λ1(B) over B ∈ B is of two possible types

• Type I: If m ≤ ωd(r
0
d)

d then B∗ = B(0, (m/ωd)
1/d) or,

• Type II: If m > ωd(r
0
d)

d then there exists ξ0 and ξ1 with

(m/ωd)
1/d < ξ0 < ξ1 < 1

and B∗ = B(0, ξ0) ∪
(
B(0, 1) \ B(0, ξ1)

)
.
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Figure 1. Functions w0(r) (plain), and w1(r) = −w′
0(r)

(dashed) in dimensions d = 2 (left) and d = 3 (right). r1d is
such that w1 is increasing on [0, r1d] and decreasing on [r1d, 1], and
r0d is such that w1(r

0
d) = w1(1).

Finally we obtain

Theorem 3. When Ω = B(0, 1), for β = α + ε sufficiently close to α and given

an m > ωd(r
0
d)

d, the distribution of the materials wherein the material with the

higher conductivity β is placed in a concentric disk in the center of the domain is

not a solution of problem (4)-(5).
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Sensitivities for Graph Operations in Finite Element Meshes

Jan Friederich

(joint work with Günter Leugering, Paul Steinmann)

We consider h–refinement on finite element meshes based on sensitivies for con-
tinuous graph changes such as splitting nodes along edges. A possible scenario is
depicted in figure 1(a), where the continuous process of inserting the new node
xǫ along edge E = (x0,x+) is parametrized in the variable ǫ > 0. As a model
problem, we consider Poisson’s equation −∆u = f , u ∈ V := H1

0 (Ω) with Galerkin
solutions

uh ∈ Vh : a(uh, vh) = (f, vh)Ω ∀vh ∈ Vh,

uǫh ∈ V ǫ
h : a(uǫh, v

ǫ
h) = (f, vǫh)Ω ∀vǫh ∈ V ǫ

h

for piecewise linear finite elements on the mesh Th and the refined mesh T ǫ
h , re-

spectively. Then, we define the sensitivity for an objective functional J : V → R

for the topological mesh change by

DEJ(uh) = lim
ǫ→0

J(uǫh)− J(uh)

ǫ
.

For the computation of DEJ(uh) we rely on the analytical derivation of the first-
order asymptotic expansion of uǫh with respect to ǫ > 0. More precisely, one
obtains

uǫh = uh + ǫ(yh + ys) + o(ǫ)

where yh ∈ Vh is the finite element solution of a dual equation and ys ∈ BV (Ω) is
a singular contribution that includes jumps over edges. Finally, DEJ(uh) can be
calculated for an arbitrary edge E from given data, the current solution uh ∈ Vh
and, typically, an adjoint solution ph ∈ Vh.
In this context, a particular objective functional of interest is the total potential
energy of the given variational problem

J(u) =
1

2
a(u, u)− (f, u)Ω,

(a) (b) (c)

Figure 1. Mesh refinement scenarios: (a) Refinement of an edge. (b)
Refinement around a node. (c) Refinement on quadrilateral elements
with hanging nodes.
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minimization of which can be shown to decrease the approximation error ‖u−uh‖a
in the energy norm, cf. [1]. Hence, the corresponding sensitivies DEJ(uh) can be
employed as edge-wise indicators for adaptive h–refinement. It turns out that
in this case the sensitivies are related to the edge-wise residual-based refinement
indicators η2E , cf. [2, 3]. In particular, |DEJ(uh)| reveals the same orders of
element and edge measures, residual terms and jumps over edges, and one easily
obtains

|DEJ(uh)| ≤ C η2E .

A lower estimate seems to be more involved in general and remains the subject
of further study. Note that |DEJ(uh)| delivers an approximation for the decrease
of the error upon refinement rather than an upper estimate on the local error.
However, numerical tests suggest that refinement based on our approach is as
efficient as refinement based on residual-based error estimators, see figure 2 for an
example in 2d. More general results are currently prepared for publication, for a
study of our method in 1d we refer to [4].

Moreover, our concept is well-suited to be applied in goal-oriented refinement.
Considering an output functional J ∈ V ′, the sensitivies DEJ(uh) indicate the
responsive behaviour of J(uh) with respect to refinement and may serve as an
estimate for the decrease of the error |J(uh)− J(u)|, i.e.

|DEJ(uh)| ≈ c |J(uǫh)− J(uh)| ≥ c
∣∣|J(uǫh)− J(u)| − |J(uh)− J(u)|

∣∣

A more rigiourus mathematical treatment involving higher-order asymptotic anal-
ysis is currently in development. However, our intuition is indeed confirmed by
numerical experiments: As an example, we apply our concept to goal-oriented
refinement with respect to a point-value error, i.e. we choose the regularized func-
tional

J(u) :=
1

|Bδ(a)|

∫

Bδ(a)

u dx = u(a) +O(δ2)

for a given point a ∈ Ω, δ > 0. The resulting sensitiviy-based indicator is compared
to the standard DWR-estimator from [5], see figure 3.

(a)  
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Figure 2. Refinement indicators for minimization of the energy error
(logarithmic plot): −∆u = 1, u|∂Ω = 0 on an L-shaped domain. (a)
Indicator based on topological sensitivies |DEJ(uh)|. (b) Residual-
based error estimator η2

E .
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Future research on this subject will include higher-order asymptotic analysis for
graph changes, various applications in goal-oriented refinement and the extension
to higher-order elements as well as non-linear equations.
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Figure 3. Refinement indicators for point evaluation at the right
boundary (logarithmic plot): −∆u = 1, u|∂Ω = 0 on an L-shaped
domain. (a) Indicator based on topological sensitivies |DEJ(uh)|. (b)
DWR-based estimator ηDWR.
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