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Abstract. The nomenclature “data assimilation” arises from applications in
the geosciences where complex mathematical models are interfaced with ob-
servational data in order to improve model forecasts. Mathematically, data
assimilation is closely related to filtering and smoothing on the one hand
and inverse problems and statistical inference on the other. Key challenges of
data assimilation arise from the high-dimensionality of the underlying models,
combined with systematic spatio-temporal model errors, pure model uncer-
tainty quantifications and relatively sparse observation networks. Advances
in the field of data assimilation will require combination of a broad range
of mathematical techniques from differential equations, statistics, probabil-
ity, scientific computing and mathematical modelling, together with insights
from practitioners in the field. The workshop brought together a collection
of scientists representing this broad spectrum of research strands.
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Introduction by the Organisers

The workshop Mathematical and Algorithmic Aspects of Atmosphere-Ocean Data
Assimilation, organised by Andreas Griewank (Berlin), Sebastian Reich (Pots-
dam), Ian Roulstone (Surrey), and Andrew Stuart (Warwick) was held 2 December
– 8 December 2012. The meeting was attended by over 45 participants represent-
ing a broad range of mathematical subject areas as well as practical aspects of
atmosphere-ocean data assimilation.
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A total of 23 talks were presented during the workshop. The talks were selected
both to cover novel mathematical developments and to point towards practical
advances and challenges in atmosphere-ocean data assimilation. Talks relating to
mathematical developments include those on, e.g., Lagrangian data assimilation
(Chris Jones, Amin Apte), particle filters (Chris Snyder, Dan Crisan, Wilhelm
Stannat), ensemble Kalman filters (Georg Gottwald, Lars Nerger, Tijana Janjic-
Pfander, Roland Potthast), statistical inference (Youssef Marzouk, Andreas Hense,
Illia Horenko), variational techniques (Eldad Haber, Philippe Toint, Jim Purser,
Arnd Rösch, Michael Hinze), model/representativity errors (Nancy Nichols, Al-
berto Carrassi) and mathematical fluid dynamics (Edriss Titi). Talks relating to
practical advances and challenges in atmosphere-ocean data assimilation include
those by Chris Jones, Roland Potthast, Andreas Hense, Chris Snyder, Hendrik
Elbern, Georg Craig, Alberto Carassi, Patrick Heimbach). A poster session was
held on Tuesday evening which gave the attending PhD students and postdocs the
opportunity to present and discuss their work.

Throughout the workshop a large number of spontaneous discussion groups
arose triggered by the many different facets of data assimilation presented dur-
ing the talks. The following discussion groups in the central lecture hall of the
MFO shall be mentioned in particular: (i) filter stability (inspired by the talks by
Wilhelm Stannat and Roland Potthast), (ii) Bayesian inference and optimal trans-
portation (inspired by the talk by Youseff Marzouk), and (iii) high-dimensional
particle filters (inspired by the talks by Chris Snyder and Dan Crisan). These
examples also reflect the actuality and broad scientific appeal of data assimilation.
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Abstracts

Challenges of Lagrangian data assimilation

Christopher K.R.T. Jones

Lagrangian data come from observations of the ocean using instruments that,
at least in part, move with the ocean flow. These instruments have two great
advantages over other ocean measuring instruments: they open up the sub-surface
to observations, which is otherwise opaque to satellite based measurements, and
they can increase data coverage by virtue of their ability to move. The data
have, however, not been systematically nor properly assimilated into ocean models.
Part of the reason comes from the technical issues associated with these non-
standard measurements. We have addressed these challenges with a scheme known
as Lagrangian Data Assimilation (LaDA), see [1, 2].

Much recent progress has been made in understanding LaDA more deeply, mak-
ing it effective and using it for observational design that optimizes the information
content of the Lagrangian data obtained. In particular, recent work has focused on
the vertical propagation of information, see [3], integrating and optimizing vehicle
control with the assimilation of data obtained by that vehicle, see [4],.

The scheme can be challenged if the observational frequency is not high enough.
The result is that the nonlinear character of the Lagrangian dynamics can cause
filter divergence. In [5], it is shown that a particle filter can effectively correct this,
but it is also pointed out that this does not rescue LaDA from the challenges of
dimensionality and these remain to be resolved completely.
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Performance bounds for particle filters using the optimal proposal

Chris Snyder

Particle filters may be cast in the form of sequential importance sampling and
thus allow the choice of a proposal density. This choice is known to be crucial to
the performance of the algorithm. In particular, the proposal density influences
a phenomenon known as “degeneracy,” in which the maximum of the particle
weights approaches 1. Degeneracy can occur spuriously when Ne, the number of
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particles, is too small and in that case the quality of estimates obtained from the
particle filter will be poor.

Often, the proposal is taken to be p(xk|xk−1), which we will term the standard
proposal, where xk is the state vector at time tk. For that choice, Bengtsson et al.
(2008) and Snyder et al. (2008) have given asymptotic arguments that quantify,
under mild assumptions, when degeneracy occurs.

To summarize those asymptotic results, let

V i
k = − log(wi

k/w
i
k−1),

where wi
k is the weight of the ith particle xi

k at time tk. For the standard proposal,
wi

k/w
i
k−1 = p(yk|xi

k), where yk are noisy observations related to xk. Bengtsson
et al. (2008) and Snyder et al. (2008) show that, when the components of xk are
sufficiently independent (under the proposal distribution) and the dimension Nx of
xk is large, then V is approximately Gaussian when considered as a function of the
random variable xk with yk known. Since the maximum weight corresponds to the
minimum of V i

k over i, known properties of the sample minimum from a Gaussian
and for the tails of the Gaussian density and cumulative distribution function can
then be used to show that the maximum weight, w(Ne), behaves according to

E(1/w(Ne)) ∼ 1 +

√
2 logNe

τ
, (1)

for Ne, τ large and
√
logNe/τ ≫ 1, where τ2 = var(V i

k ). This means that the
maximum weight approaches 1 (and degeneracy occurs) when τ2 is large, unless Ne

increases as exp(τ2/2). As discussed in Snyder et al. (2008), this puts considerable
restrictions on the problems that can be tackled using the particle filter with the
standard proposal.

As already noted, the performance of a particle filter can depend strongly on the
choice of proposal. A preferred choice is the “optimal” proposal, p(xk|xk−1,yk),
which differs from the standard proposal through the additional conditioning on
the most recent observations yk; not only the weights but also the new particles
at time tk depend on yk. For the optimal proposal,

V i
k = − log(wi

k/w
i
k−1) = − log(p(yk|xk−1)). (2)

This proposal is optimal in the sense that it minimizes the variance of wi
k over

possible draws for xi
k from the proposal. In fact, the variance is zero, since wi

k

depends on xi
k−1 but not on xi

k.
Use of the optimal proposal does not prohibit degeneracy, however. This can be

seen in the special case of a linear, Gaussian system, where the asymptotic result
(1) can be easily extended to the optimal proposal. We write the system as

xk = Mxk−1 + ηk, yk = Hxk + ǫk, (3)

with ηk ∼ N(0,Q) and ǫk ∼ N(0,R). Equation (3) implies that

yk = HMxk−1 +Hηk + ǫk = H̃xk−1 + ε̃k,

where H̃ = HM and ε̃k = Hηk + ǫk. Because ηk and ǫk are Gaussian, ε̃k is also
Gaussian: ε̃k ∼ N(0,HQHT + R). This means that p(yk|xk−1) has the same
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form (as a function of yk and xk−1) as p(yk|xk) but with H replaced by H̃ and
R replaced by HQHT +R.

Thus, the results of section 5 of Snyder et al. (2008) may also be applied to the

optimal proposal and p(yk|xk−1) but again with H replaced H̃ and R replaced by
HQHT +R. This yields

τ2 = var(V i
k ) =

Ny∑

j=1

λ2j (λ
2
j/2 + ỹ2k,j), (4)

where ỹk,j is the jth component of ỹk = (HQHT +R)−1/2yk and λ2j are eigen-
values of

A = cov
(

(HQHT +R)−1/2HMxk−1

)

.

In order for the asymptotic relation (1) between the maximum weight, τ and Ne

to hold, V i
k must be approximately Gaussian, which in turn requires that τ and

Ne are large and that for each j

λ2j
∑Ny

i=1 λ
2
i

≪ 1.

The last condition ensures that no single direction dominates the variability of
yk|xk−1.

A simple example provides further insight and helps quantify the difference in
the performance of the two proposals. Consider the system

xk = axk−1 + ηk−1, yk = xk + ǫk, (5)

where xk−1 ∼ N(0, I), ηk−1 ∼ N(0, q2I) and ǫk ∼ N(0, I). Equation (4) can
now be applied, either following Snyder et al. (2008) for the standard proposal or
the manipulations following (4) for the optimal proposal. [Covariances for yk|xk,
yk|xk−1 and xk−1 are necessary and can be calculated directly from (5), along
with E(ỹ2k,j).] This gives

τ2 = var(V ) =







Ny(a
2 + q2)

(
3
2a

2 + 3
2q

2 + 1
)
, standard proposal

Nya
2
(
3
2a

2 + q2 + 1
)
/(q2 + 1)2, optimal proposal.

The benefits of using the optimal proposal are clear in this example. First, τ2 is
always greater for the standard proposal than for the optimal proposal. The two
proposals give the same τ2 only in the limit that system dynamics has no noise,
q2 = 0. As q increases (or a decreases, also increasing the relative importance of
the system noise), the difference in τ2 between the two proposals increases. For
a = q = 1/2, which makes the prior variance of xk equal to the observation-error
variance, τ2 from the standard proposal is 5 times that from the optimal proposal.
Since the sample size Ne must grow as exp(τ2/2), reducing τ2 by a factor of 5 can
mean a reduction of Ne by orders of magnitude.

This brief report has outlined how asymptotic arguments of Bengtsson et al.
(2008) and Snyder et al. (2008) can be extended to the optimal proposal. This
demonstrates that the optimal proposal does not avoid the exponential increase
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of the required ensemble size as the system dimension grows. The asymptotic
result (1) also serves as a quantitative measure of how much the optimal proposal
improves over the standard proposal. In essence, use of the optimal proposal
reduces the factor in the exponent in the relation between the ensemble size and
the state dimension and so can dramatically reduce the required ensemble size.
[Note that (1) does not actually involve the state dimension Nx directly, but rather
τ2. The variance τ2 is proportional to the state dimension in the example given
here but may have a more complicated relation to Nx in the general case when
there is dependency among the components of xk.] The optimal proposal should
thus permit the use of particle filters for systems of moderate effective dimension
(a few tens or hundreds), even though it does not immediately provide a path to
a truly high-dimensional particle filter.

References
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Particle versus Gaussian Approximations: What is the difference?

Dan Crisan

(joint work with Alex Beskos, Ajay Jasra, Nick Kantas, Kai Li, Salvador
Ortiz-Latorre and Joaquin Miguez)

The filtering problem involves the estimation of the current state of an evolving
dynamical system based on partial observation. The evolution of the dynamical
system is modelled by a stochastic process X = {Xt, t ≥ 0} called the signal. The
signal process X can not be measured directly. However, a partial measurement of
the signal can be obtained. This measurement is modelled by another continuous
time process Y = {Yt, t ≥ 0} which is called the observation process. The
observation process is a function ofX and a measurement noise. The measurement
noise is modelled by a stochastic process W = {Wt, t ≥ 0}. Hence,

Yt = ft(Xt,Wt) t ∈ [0,∞).

Let Y = {Yt, t ≥ 0} be the filtration generated by the observation process Y ;
namely, Yt = σ (Ys, s ∈ [0, t]) , for t ≥ 0. Then the filtering problem consists
in computing πt, the conditional distribution of Xt given Yt. The process π =
{πt, t ≥ 0} is a Yt-adapted probability measure valued process, so that

E [ϕ(Xt) | Yt] =

∫

ϕ(x)πt(dx),

for all statistics ϕ for which both terms of the above identity make sense.
Generally speaking the filtering problem can not be solved analytically: An

explicit formula cannot be obtained for the conditional distribution πt. Only in
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specific cases such as the Kalman-Bucy filter and the Benes filter (see, eg Chapter
6 in [1]) is this not true. Numerical methods are thus employed to obtain approx-
imations to the solution of the filtering problem. The description of a numerical
approximation for the solution of the filtering problem should contain three parts:

1. The method of recording the approximation. The following table contains
a succinct description of such a method for particle and respectively, Gaussian
approximations:

particle approximations Gaussian approximations

(aj (t)
︸ ︷︷ ︸

weight

, v1j (t) , . . . , v
d
j (t)

︸ ︷︷ ︸

position

)nj=1 (aj (t)
︸ ︷︷ ︸

weight

, v1j (t) , . . . , v
d
j (t)

︸ ︷︷ ︸

mean

, ω11
j (t) , . . . , ωdd

j (t)
︸ ︷︷ ︸

covariance matrix

)nj=1

πt ; πn
t =

∑n
j=1 aj (t) δvj(t) πt ; πn

t =
∑n

j=1 aj (t)N (vj (t) , ωj (t))

2. The law of evolution of the approximation:

particle approximations Gaussian approximations

πn
t

mutation
︷︸︸︷−→
model

π̄n
t+δ

selection
︷︸︸︷−→

{Ys}s∈[t,t+δ]

πn
t+δ πn

t

forecast
︷︸︸︷−→
model

π̄n
t+δ

assimilation
︷︸︸︷−→

{Ys}s∈[t,t+δ]

πn
t+δ

3. The measure of the approximating error:

sup
{ϕ∈Cb, ‖ϕ‖≤1}

E [|πn
t (ϕ) − πt(ϕ)|] , π̂t − π̂n

t , ‖πn
t − πt‖TV .

In effect, an approximation can be seen as a way to quantize the information
available at the current time. The quantized information is modelled by n sto-
chastic processes

{pi(t), t > 0} i = 1, ..., n, pi(t) ∈ R
N .

Typically N > d, where d is the dimension of the state space. We think of the pro-
cesses pi as the trajectories of n (generalized) particles. Then the approximation
will be a function of {pi(t), t > 0} i = 1, ..., n, pi(t) ∈ R

N . That is

πn
t = Λn

t (pi(t), t > 0 i = 1, ..., n).

Examples of generalized particle filters include classical particle filters, Gaussian
approximations, wavelets, grid based methods. In this talk I will discuss a number
of results pertaining to the first two categories of generalized particle filters.

In the first part of the talk, I will introduce a class of Gaussian approximations
(GAs) for which rigorous convergence rates are deduced. Numerical experiments
confirm that for small number of generalized particles, GAs outperform particle
filters. I also discuss a class of particle filters based on cubature methods1, see [4]
for details.

In the second part of the talk, I discuss a number of results where particle
filters can be adapted to produce an approximation of the posterior density and
functions of the posterior density, including the posterior entropy. The adaptation
involves a (possibly Gaussian) smoothing procedure, for details see [5]

1These methods where originally developed to replace Gaussian measure with discrete mea-
sure by matching their moments, see, e.g. [6] and the references therein.
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Finally, I look at the filtering problem for high dimensional systems and present
a stability result as the dimension of the underlying state space tends to infinity
for a class of particle approximations with fixed number of particles, for details
see [2] and [3]. I conclude with an application of these results to the observed
Navier-Stokes equation.
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Geophysical imaging and reservoir history matching

Eldad Haber

Managing hydrocarbons reservoirs is an important field of reservoir engineering
as it aids in more efficient recovery of oil and gas. In principle, the dynamics
of the reservoir is governed by the flow in porous media equations. Given the
reservoir parameters and the initial conditions, these equations can predict the
time evolution of the reservoir and therefore aid in its management.

The challenge in this field stems from the large number of unknown parameter
functions in the flow equations. Quantities such as porosity, hydraulic conductivity,
mobility functions and capillary pressure functions are, in many cases, specially de-
pendent and unknown. There parameter functions are typically sampled sparsely
in space and have a multi-scale structure. To alleviate this problem, historic flow
data can be used in order to estimate the unknown parameters. Such a process is
often refers to as history matching.

The basic idea of history matching is to intelligently modify the physical prop-
erties of the reservoir such that simulated flow data fits the measured one. Tech-
nically, the process is rather challenging as it involves with the solution of the
forward problem (reservoir simulation), the computation of the gradients of the
simulator with respect to the parameters and solving a regularized optimization
problem for the coefficients.

However, even though it is possible to estimate some physical properties that fit
the flow data these physical properties can be a highly inaccurate representation
of the reservoir. The reason being the large null space associated with the inverse
problem that is associated with a highly sparse sampling of the reservoir in space.
To overcome this problem subspace techniques have been used. In these techniques
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one restricts the physical properties to ”live” in a small subspace spanned by a
(relatively) small number of vectors. This approach decreases the variance in the
recovery by increasing the bias of the estimated physical properties.

A different approach to reduce the variance of the recovered earth models is to
simply add data and further sample the reservoir. While this is clearly one of the
better ways to reduce the uncertainty in the recovery, it is not a practical one as
it is unlikely that more wells are drilled just to improve the simulation capability.
However, while direct measurements are difficult and expensive to obtain, indirect
measurements of reservoir properties are cheap and relatively easy to get. Such
measurements include time laps seismic and electromagnetic imaging data. Our
interest is give to electromagnetic data as it is sensitive to fluids in the reservoir
and has a better likelihood to estimate the flow.

The field of reservoir monitoring using electromagnetic (EM) methods is rather
new and it presents a few technological challenges. The main question is how
should we fuse the EM monitoring data with standard history matching data? In
this work we suggest a new framework to achieve such a goal. We show that the
problem of recovery of reservoir parameters can be treated as a joint inversion
problem that can be solved by making ”reasonable” assumptions on the electro-
magnetic and reservoir parameters. This in turns, lead to a recovery algorithm
where the EM and reservoir parameters are jointly estimated and substantially
better recovery is obtained.

Krylov methods in the observation space for data assimilation

Philippe Toint

(joint work with Serge Gratton, Selime Gürol, Jean Tshimanga, Anthony
Weaver)

The numerical solution of data assimilation problems in oceanography or weather
prediction is often obtained by solving, for a given time widow, the well-known
4DVAR problem [5], which leads to minimizing the nonlinear least-squares function
given by

(1) min
x0

‖x0 − xb‖2B−1 +

p
∑

i=1

‖H(M(x0, ti))− di‖2R−1 ,

where the state x of the dynamical system under study is described at time t by a
dynamical model M(x0, t) whose initial condition is given by x0, where H is the
observation operator, xb is the so-called ”background state”, di is the observation
at time ti, and the matrices B and R are suitable covariance matrices. This
minimization attempts, by a suitable choice of initial condition, to balance fitting
the evolution of the dynamical system to observed data and the distance of the
associated inital condition x0 from the background state. In the case of interest
in this paper, we make the assumption that p, the dimension of the observation
space, is much smaller (by orders of magnitude) than that of the space containing
the state x.
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The nonlinear least-squares problem 1 is usually algorithmically tackled by us-
ing a truncated version of the standard Gauss-Newton method, which itself pro-
ceeds by solving a sequence of successive linearized subproblems. After suitable
transformations, the subproblem solution boils down to computing an approximate
solution to a set of equations of the form

(2) (I +KLT )x = b,

where b is a suitable right-hans side,often but necessarily belonging to the range
space of K, where I is the identity matrix and where the matrices K and L have
a number of columns given by the observation space dimension (the case where
L = K is of particular interest). This suggests that the term KLT may be inter-
preted as a ”low rank” modification of the identity (the notion of ”low rank” is of
course relative, since this rank can be as high as 106). Unfortunately, a simple so-
lution consisting in using the Sherman-Morrison-Woodbury formula on the linear
system and then applying an Krylov-space iterative method on the resulting p× p
linear system (or variants thereof such as the PSAS method [1, 3] or the equivalent
“representer” technique [2]) may often be problematic (see [4, 7]) in the sense that
they does not preserve the monotonicity of the local quadratic approximation to
1, a crucial property if one wishes to truncate the solution of the linear system
while, at the same time, maintaining global convergence of the overall nonlinear
Gauss-Newton process. As it turns out, the structure of 2 may be exploited by a
new “observation-space based” family of iterative solvers exploiting Krylov spaces
structure (see [7, 6], whose numerical recurrences also involves short (dimension
p) vectors. The corresponding variants of conjugate-gradients (CG), full orthogo-
nalization method (FOM), MINRES or GMRES may in particular be derived and
may be very elegantly interpreted in terms of a non-standard inner product on the
observation space. One crucial property is that the iterates produced by these new
variants are mathematically equivalent to those generated by the corresponding
standard full state-space Krylov method. As a consequence the new observation-
space CG algorithm (RPCG) does maintain the desired monotonicity property of
the full space original, even when truncated. The lower iteration costs of the new
methods makes them attractive in the context of data assimilation applications.

Preconditioning RPCG, the observation-space version of CG, is also possible
while remaining in this space. In particular, limited-memory quasi-Newton pre-
conditioners are shown to have low-dimensional equivalents which satisfy varia-
tional properties similar to those of their full-space counterparts. Moreover, their
analysis in the observation space provides sharper bounds than those obtained in
the full state space. These preconditioners extract information from one iteration
of the Gauss-Newton process for use in the next one, which may sometimes be
problematic when strong nonlinearity is present. Indeed, the change in the under-
lying Jacobian matrices over a single iteration may cause loss of symmetry with
respect to the non-standard inner product, and strategies must (and can) then be
designed to overcome this difficulty while maintaining good performance.

While these new Krylov methods are definitely of interest, their existence sug-
gests the question of whether their dominant cost, the necessary matrix-vector
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products typically involving model integration (as is the case for all Krylov based
techniques), can be made less expensive, possibly by giving up somme accuracy
in the computation of this very product. Such an idea was already explored for
general Krylov methods by Simoncini and Szyld [8] and van den Eschof and Slei-
jpen [9], but it is refined in that formal bounds on residual error evolution are
presented, which allow distinguishing between forward error and backward error
models for the product. In the first model, the error on the product is interpreted
as an error of the result of this calculation, while it is interpreted as a perturba-
tion on the data (the matrix/operator) in the second. It is shown that constant
nonzero accuracy threshold can be accommodated in this context, and that the
forward error model allows a looser accuracy criterion to be used. It is also argued
that Krylov methods with long recurrences (FOM, GMRES) might be preferable
to methods using short recurrences, such as CG and MINRES. Finally, the formal
bounds on residual convergence for inexact product also ensure numerical stability
of the new methods in the presence of round-off errors and resulting errors in the
definition of the observation space itself.
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Constraining overestimation of error covariances in ensemble Kalman
filters

Georg A. Gottwald

(joint work with Andy Majda, Lewis Mitchell, Sebastian Reich)

We consider the problem of an ensemble Kalman filter when only partial observa-
tions are available. For small ensemble sizes this may lead to an overestimation of
the error covariances. We show that by incorporating climatic information of the
unobserved variables the variance can be controlled and superior analysis skill is
obtained. We then apply this Variance Controlling Kalman Filter to

• sparse observational networks
• balance
• model error
• controlling catastrophic filter divergence

We assume that we have access to proper (noisy) observations are available for
some variables (observables) but not for other unresolved variables, for which only
their statistical climatic behaviour such as their variance and their mean is avail-
able (pseudo-observables). Observations xobs(ti) = Hz(ti) + robs(ti) are taken at
equidistant observation times tn = n∆tobs. Here H : RN → R

n is the observation
operator, and the the observational noise is assumed to be Gaussian with error
covariance matrix Robs. For the pseudo-observables we assume climatic knowledge
about the mean atarget and variance Atarget. We introduce the pseudo-observation
operator h : RN → R

m and the error covariance matrix Rw associated with the
pseudo-observables. By requiring that the projected analysis error covariance as-
sumes climatology, we can determine Rw.

The algorithm for the filter is as follows:

Step 1: Forecast step

Zf = F (Zb)

Pf =
1

k − 1
Z′
f (t)[Z

′
f (t)]

T

Step 2: Analysis step

z̄a = z̄f −Kobs(Hz̄f − xobs)−Kw(hz̄f − atarget)

Kobs = PfH
T (HPfH+Robs)

−1 , Kw = Pfh
T (hPfh+Rw)

−1

R−1
w = A−1

target − (hPah
T )−1 .

To assure that Rw is positive definite, we diagonalize and project onto the over-
estimating subspace.
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Step 3: Update of the ensemble
The ensemble needs to be consistent with

Pa = [I−KobsH−Kwh] Pf =
1

k − 1
Z′
a [Z

′
a]

T

using ensemble square root filters.

Step 4: Update of the forecast
Set Zb = Za to propagate the ensemble forward again with the full dynamics to
the next observation time.

We have shown in simulations of the Lorenz-96 model that using this filter better
skill in the data assimilation procedure is obtained compared to the classical ETKF
in sparse observational networks for small observation intervals ∆tons ≤ 6hrs, and
for sufficiently large observational noise. For large observational intervals the en-
semble of ETKF will have acquired climatological covariance and our constraint
is not needed.

Furthermore we have presented results on a genesis for catastrophic filter di-
vergence in the situation of sparse observations with small observational noise.
Machine-infinity blow-up of the forecast model was explained by the finite-size
sampling effect of large cross-covariances pushing the analysis off the attractor
with subsequent rapid attraction back to the attractor. The associated stiffness
causes the numerical integrator to blow-up.
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Practical aspects of ensemble-based Kalman filters

Lars Nerger

In real applications, ensemble-based Kalman filters are applied to large-scale nu-
merical models. Due to their high computing cost, one has to operate with very
small ensembles of model states. In the application, there is some freedom in
the design of the different parts of ensemble Kalman filters. There are different
techniques for the initial ensemble sampling, like second-order exact sampling [11]
or breeding [12]. In the forecast phase, several possibilities to simulate model
error can be included. For the analysis step in which the state estimate is cor-
rected, there are different formulations acting either in the observation space, like
the original ensemble Kalman filter (EnKF) [3] or more efficiently in the space
spanned by the ensemble, like the ensemble transform Kalman filter (ETKF) [2],



3432 Oberwolfach Report 58/2012

or the singular evolutive interpolated Kalman filter (SEIK) [10]. Finally, there are
different possibilities to resample the ensemble to represent the analysis state and
its corresponding error covariance matrix estimates. Here, either mean-preserving
random transformations or deterministic transformation are possible. The ETKF
usually applies a minimum transformation, in which the transformation matrix is
closest to the identity matrix in the Frobenius norm. As pure filter formulations
fail for large-scale systems, e.g. due to the computational cost that limits the us-
able ensemble size is limited to O(100), ‘fixes’ like inflation [1] or the forgetting
factor [10] as well as localisation methods (see [6]) are commonly applied. All
these methods need tuning by running several numerical experiments for optimal
performance.

To this end, the aim is to find the filter formulation that needs the least compu-
tational cost and tuning, while delivering the most accurate state and correspond-
ing error estimates. My talk focuses on the analysis step. Here, the introduction
of ensemble square-root Kalman filters (like the ETKF) already led to a significant
reduction of the computational complexity. This also holds for the SEIK filter,
which computes the state correction in the error subspace spanned by the state
ensemble (see [7]) and only recently has been classified as an ensemble square-root
Kalman filter [8]. The SEIK filter has a slightly lower computational complexity
than the ETKF, which is today one of the most widely used algorithms. However,
when a deterministic ensemble transformation is applied, the SEIK filter does not
yield the minimum transformation, which is desirable in order to minimise possi-
ble violations of physical balances in the analysis model state. In particular, we
show that the transformation used with the SEIK filter depends on the order in
which the ensemble members are stored in the ensemble matrix. While the statis-
tics (mean and covariance matrix) are correct, the ensemble transformations show
small deviations when the ensemble order is changed. This issue is related to in-
consistent projections between the state space and the error subspace (see [7]). A
new projection is derived, which avoids the dependence on the ensemble ordering.
The new algorithm, termed Error Subspace Transform Kalman Filter (ESTKF,
[8]) provides the unique minimum transformation, while exhibiting a slightly lower
computational cost than the ETKF.

Common choices for the localisation of the analysis step are the covariance
localisation [4], which modifies the forecast state error covariance matrix, and ob-
servation localisation [5], which modifies the observation error covariance matrix.
The localisation effect of both methods is different when the same localisation
function is used. Observation localisation results in a wider effective localisation
length. The widening is a function of the ratio of the estimated errors int he
state and the observations. A new localisation function is derived that results in
the same effective localisation length scale for both covariance and observation
localisation and improves the performance of the filter with observation localisa-
tion. The new regulated localisation function [9] counters the spurious widening
of the localisation that would occur in situations, when the ensemble spread es-
timates a large error in the state estimate, e.g. due to nonlinear dynamics when
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some ensemble members develop small-scale features, like ocean eddies at distinct
locations.
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[6] T. Janjić, L. Nerger, A. Albertella, J. Schröter, and S. Skachko, On domain localization in
ensemble based Kalman filter algorithms, Mon. Wea. Rev. 139 (2011) 2046–2060.
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Preservation of physical properties with ensemble based Kalman filter
algorithms

Tijana Janjic

(joint work with Dennis B. McLaughlin, Stephen E. Cohn)

One of the principles used in developing discretization schemes for geophysical
fluid dynamics is to maintain conservation properties that characterize the flow.
The most basic of these integral constraints is the conservation of total mass. In
this work we focus on ensemble-based sequential data assimilation algorithms and
show that even for linear dynamics preservation of the physical properties can not
be guaranteed. For example, total mass is changed for positive scalar quantity if an
estimate (analysis) is produced that has negative values. The new approach is de-
veloped that ensures conservation of two basic properties during data assimilation,
the positivity and total mass, without resorting to a posteriori adjustments. We
examine the extent to which imposing mass conservation requirements in data as-
similation algorithms changes the assimilation results and demonstrate the impact
of imposing mass conservation on prediction in simple experiments.
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1. Introduction

In this talk we will show that if the physical conditions, that characterize the un-
derlying geophysical fluid dynamics, are included as additional constraints within
ensemble based Kalman filter algorithm, we will be a) able to preserve some ba-
sic physical properties of the estimate, a prerequisite for a valid model initial
condition and b) improve predictions in case of perfect and non perfect model
experiments. Constraints that we will be imposing on the estimate are both
equality and inequality constraints and present the important source of informa-
tion about the system. Two properties that we chose in this paper to preserve
during the data assimilation are positivity and the total mass. Both of these prop-
erties have been important for design of numerical weather prediction schemes
[Arakawa(1972), Arakawa and Lamb(1977), Lin and Rood(1996)] and have not
been discussed thus far as such for analysis updates.

In order to preserve both mass and positivity we introduce a new ensemble
based Kalman filter algorithm. The new algorithm imposes strictly equality and
inequality constraints for each ensemble member. In order to show possible benefits
of the new algorithm on prediction we consider linear dynamics and the impact of
imposing conservation constraints on prediction within solid body rotation setup,
an often used example for testing numerical schemes.

2. Problem Formulation

The dynamics that we consider will not have any source and sink terms, as well
as no fluxes through the boundaries. Total mass will not be considered a stochastic
quantity. The change in mass (if it happens) will happen in analysis or resampling
steps of ensemble based Kalman filter algorithm. The ensemble transform Kalman
filter (ETKF) algorithm will be considered as a prototype of square root ensemble
Kalman filters and will be used for comparison. In the rest of what follows, we will
assume that our numerical model, not necessarily perfect, will have a numerical
scheme that conserves global integral of quantity to be estimated w.

We require that the error covariance function P a(x1, x2, t) of continuous version,
wa(x, t) =< w|wo > of an estimate wa

k

(1) P a(x1, x2, t) ≡ 〈(w(x1, t)− wa(x1, t))(w(x2, t)− wa(x2, t))〉
satisfy

(2)

∫

D

P a(x1, x2, t) dx1 = 0.

Such an error covariance will be called mass conserving. In discrete case, the
analysis error covariance matrix Pa

k will be mass conserving if

(3) Pa
ke = 0

and e = en×1 = [1 1 . . .1]T . The form of e is chosen for simplicity. The exact form
of the definition (3) will depend on the grid of our numerical model and quadrature
chosen in (2).
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We show that ETKF algorithm conserves mass as defined above if no local-
ization is applied. In case localization is applied on the ensemble derived error
covariance, by Schur multiplication of ensemble derived covariance and pre cho-
sen covariance matrix, mass will not be conserved. In this case, following simple
transformation I− eeT/n can be applied to localized covariance in order to make
it mass conserving.

3. Problem Solution

The ETKF equations can be derived by minimization of the cost function that
takes into the account inverse of ensemble derived forecast error covariance and the
observation error. Additional added constraints to the cost function will ensure
analysis that satisfies physical conditions needed. To ensure that each ensemble
member has desired properties same algorithm will be used for every ensemble
member. Therefore each member of the analysis ensemble is constructed from the
corresponding forecast ensemble member, perturbed observations and the anal-
ysis error covariance. The minimization with constraints can be done using the
quadratic programming algorithm for both equality and inequality constraints as
strong constraints. This method will be called QPEns.

In order to estimate the effect through time and on the prediction, we use two
dimensional solid body rotation experiment. The initial ensemble was specified in
the form of a cone with the basis with the radius of 100 km, and the height of
100 arbitrary units. Eight member ensemble is generated around the solution by
uniformly perturbing the central location of the cone. The initial forecast is then
computed as average over ensemble members, producing the field with maximum
value of 42.7 and minimum value of zero. We note that although every ensemble
member is the perfect cone with the desired properties, due to the averaging over
the ensemble with uncertainty in the location of the disturbance, the structure of
the cone is not seen in the initial conditions. Seven analysis were performed with
observations that are true solution perturbed by normally distributed noise.

The computational dispersion even for numerically conservative schemes will
produce field that does not perfectly maintain the initial condition. We will use
the second order accurate scheme for the advection of the cone [Janjić et al.(2011)].
The RMS error after second full revolution is 4.1, minimum and maximum value
are -14 and 81 without any data assimilation. The ETKF algorithm would slow
down the drift of the numerical model, but would not be able to correct the neg-
ative values, leading to the solution with the minimum -11, maximum 78 and
RMS value of 2.54 after second rotation. Even in the case of imperfect model,
the QPEns algorithm produces positive and mass conservative analysis and in this
way significantly improves the forecast result. The experimental results show that
even in the case of non perfect model experiments incorporating the constraints on
positivity and mass significantly reduces the error of the analysis. Therefore, if ap-
propriate data assimilation scheme is chosen, the drift of the numerical model due
to numerical errors will be reduced, indicating the importance of the constraints
that we are imposing for prediction.



3436 Oberwolfach Report 58/2012

References

[Arakawa(1972)] Arakawa, A., 1972: Design of the UCLA general circulation model. Technical
report, Department of Meteorology, University of California, Los Angeles, tech. Report No.
7.

[Arakawa and Lamb(1977)] Arakawa, A. and V. R. Lamb, 1977: Computational design of the
basic dynamical processes of the UCLA general circulation model.Methods of Computational
Physics, 17, 173–265.
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Finite Number of Determining Parameters for the Navier-Stokes
Equations with Applications in Data Assimilation and Feedback

Control

Edriss S. Titi

(joint work with Abderrahim Azouani and Eric Oslon)

Dissipative evolutionary equations, such as the Navier-Stokes equations and cer-
tain reaction-diffusion systems, are known to posses finite number of determining
parameters and finite-dimensional global attractors (cf. [3, 4, 6, 7, 10, 11, 12, 15]
and references therein). In [9, 13, 14] (see also [8]) we take advantage of this
finite-dimensional long-term dynamics and use the notion of finite number of de-
termining modes to design an algorithm to recover the unknown infinitely many
high Fourier modes (fine scales) of the exact solution of the Navier-Stokes equa-
tions from the given finitely many low Fourier modes (coarse grid measurements).
This algorithm fits within the scope and strategy of data assimilation. Recently,
we have extended this result and designed a new algorithm (cf. [2]) for recovering
the exact solutions of the Navier-Stokes equations from their nodal values on finite,
but fine enough, spatial grid. Our algorithm is general enough to cover the most
general approximate interpolants, in the spirit of finitely many determining pa-
rameters/prjections as it is reported in [3, 7, 10, 11, 12] and references therein. Our
algorithm also provides a finite-dimensional feedback control strategy to stabilize
solutions of the Navier-Stokes equations and reaction-diffusion systems (cf. [1]).

On the more theoretical dynamical systems aspect of dissipative evolution equa-
tions, the determining modes for the two-dimensional incompressible Navier-Stokes
equations can also be shown (cf. [5]) to satisfy an ordinary differential equation of
the form dv/dt = F (v), in the Banach space, X , of all bounded continuous func-
tions of the variable s ∈ R with values in certain finite-dimensional linear space.
This new evolution ODE, named determining form, induces an infinite-dimensional
dynamical system in the space X which is noteworthy for two reasons. One is that
F is globally Lipschitz fromX into itself. The other is that the long-term dynamics
of the determining form contains that of the Navier-Stokes equations; the traveling
wave solutions of the determining form, i.e., those of the form v(t, s) = v0(t + s),
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correspond exactly to initial data v0 that are projections of solutions of the global
attractor of the Navier-Stokes equations onto the determining modes. The deter-
mining form is also shown (cf. [5]) to be dissipative; an estimate for the radius
of an absorbing ball is derived in terms of the number of determining modes and
the Grashof number (a dimensionless physical parameter which behaves like the
square of Reynolds number). Finally, a unified approach inspired by the algorithm
given in [2, 1] is outlined for an ODE satisfied by a variety of other determining
parameters such as nodal values, finite volumes, and finite elements.
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Accounting for model error in data assimilation

Alberto Carrassi

(joint work with Stephane Vannitsem)

The prediction problem in geophysical fluid dynamics typically relies on two com-
plementary elements: the model and the data. The mathematical model, and its
discretized version, embodies our knowledge about the laws governing the system
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evolution, while the data are samples of the system’s state. They give comple-
mentary information on the same object. The sequence of operations that merges
model and data to obtain a possibly improved estimate of the flow’s state is usually
known as data assimilation. The physical and dynamical complexity of geophysical
systems makes the data assimilation problem particularly involved.

The different information entering the data assimilation procedure, usually the
model, the data and a background field representing the state estimate prior to
the assimilation of new observations, are weighted according to their respective
accuracy. Data assimilation in geophysics, particularly in numerical weather pre-
diction, has experienced a long and fruitful stream of research in the last decades
which has led to a number of advanced methods able to take full advantages of
the increasing amount of available observations and to efficiently track and reduce
the dynamical instabilities. As a result the overall accuracy of the Earth’s system
estimate and prediction, particularly the atmosphere, has improved dramatically.

Despite this trend of improvement, the treatment of model error in data assim-
ilation procedures is still, in most instances, done following simple assumptions
such as the absence of time correlation [7]. The lack of attention on model error is
in part justified by the fact that on the time scale of numerical weather prediction,
where most of the geophysical data assimilation advancements have occurred, its
influence is reasonably considered small as compared to the initial condition er-
ror that grows in view of the chaotic nature of the dynamics. Nevertheless, the
improvement in data assimilation techniques and observational networks on the
one hand, and the recent grow of interest in seasonal-to-decadal prediction on the
other, has placed model error, and its treatment in data assimilation, as a main
concern and a key priority. A number of studies have appeared, in the context of
sequential and variational schemes (see e.g. [6, 9, 8]).

Two main obstacles are the huge size of the geophysical models and the wide
range of possible model error sources. The former problem implies the need to
estimate large error covariance matrices on the basis of a limited amount of avail-
able observations. Then, given that modelling errors can arise from a number
of causes including incorrect parametrisation, numerical discretization, the lack
of description of some relevant scale of motion, it is difficult to outline a general
model error dynamical framework.

In the present contribution we describe a new approach, referred to as determin-
istic model error treatment, in which the deterministic evolution of the model error
is described based on a short-time approximation suitable for realistic applications
and used to estimate the model error contribution in the state estimate, i.e. based
on covariances and correlations. We have distinguished two situations: first as-
suming that model error originates only from a misspecification of the parameters,
and second from the presence of unresolved scales. This deterministic formulation
has been applied in the context of sequential and variational approach, for state
and parameter estimation. The duration of the short-time approximation depends
on the type and size of the model error. In the case of uncertain parameters, it
scales with the parametric error but also with the functional dependence of the
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model dynamics on the uncertain parameters. When the error comes from the
presence of unresolved scales, the short-time model error evolution in the resolved
scales depends on the difference between the truth (unknown) velocity field and
the modeled one: a solution to estimate this term in practice has been proposed
[3].

It is the difference between the truth and modelled advection fields that regu-
lates its evolution when model error comes from the presence of unresolved scales.

The deterministic model error treatment has been proven competitive in a num-
ber of different applications with prototypical chaotic dynamics, in the framework
of sequential [1, 3] and variational schemes [2] as well as for parameter estimation
[4, 5]. Research is currently undergone for the application of this approach in soil
data assimilation where the soil temperature and moisture content is estimated on
the basis of atmospheric observations close to the ground.
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Bayesian inference and data assimilation with optimal maps

Youssef M. Marzouk

(joint work with Tarek A. El Moselhy)

Predictive simulation of complex physical systems increasingly rests on the inter-
play of experimental observations with computational models. Indeed, the assim-
ilation of observational data has become an essential task in fields ranging from
weather prediction to subsurface modeling. In this context, Bayesian statistics
provides a natural framework for quantifying uncertainty in parameter estimates
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and model predictions, for fusing heterogeneous sources of information, and for op-
timally selecting experiments or observations. Yet the computational expense and
convergence issues associated with rigorous Bayesian methods present significant
bottlenecks in large-scale problems.

We present a new approach to Bayesian inference that entirely avoids Markov
chain simulation or sequential importance resampling, by constructing a map that
pushes forward the prior measure to the posterior measure [1]. Consider a prior
probability measure µ on R

n and a posterior probability measure ν on R
n, related

according to a Bayesian inference problem where the likelihood function is pro-
portional to dν/dµ. Then we seek a deterministic coupling or map f : Rn → R

n

such that ν = f♯µ. For simplicity, suppose that both the prior and posterior have
densities with respect to Lebesgue measure, denoted by p and πd/β, respectively.
In most inference problems of interest, the normalizing constant β is not known.
We define T (f) ≡ log

(
πd ◦ f

)
+ log |detDf | − log p and show that satisfying the

measure transformation condition is equivalent to finding a monotone f such that
T is a constant. It is straightforward to show that the value of the constant thus
attained is in fact log β.

Now consider the problem

min
f

E ‖X − f(X)‖2 s.t. ν = f♯µ(1)

with X ∼ µ. The seminal work of Brenier and McCann (see [2]) shows that,
under relatively weak conditions on µ and ν, this problem has a solution f that
is uniquely determined µ-a.e and is the gradient of a convex scalar function. We
relax this problem somewhat and instead solve

(2) min
f

{

VT (f ;X) + λE ‖X − f(X)‖2
}

,

with appropriate control on λ. Alternatively, we can look for a Knothe-Rosenblatt
re-arrangement by restricting the ith component of the map to depend only on
the first i inputs, zi = fi(x1, . . . , xi), i = 1 . . . n; we say this map has “triangular”
structure. Then the optimization problem becomes:

min
f

VT (f ;X) s.t. f has triangular structure.(3)

Additional ways of formulating the optimization problem are given in [1].
These optimization problems are the point of departure for numerical schemes.

Note that V[T ] involves an expectation with respect to the prior measure, which
we can approximate using a fixed set of samples, thus addressing the stochastic op-
timization problem via a sample average approximation (SAA) approach. Sample
average approximation allows one to apply the full machinery of deterministic op-
timization; in particular, we employ gradient information from the forward model
in a quasi-Newton method.

Another numerical issue centers on how to represent the map f . There is a great
deal of latitude in the choice of representation, but in our current work we choose to
parameterize the map using polynomials orthogonal with respect to the reference
(prior) measure, so that posterior moments may be computed analytically from
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the polynomial coefficients. A polynomial representation also allows for a natural
enrichment strategy, where first we solve the minimization problem using a linear
map, then enrich as needed to polynomials of degree three, and so on—monitoring
the distance of V[T ] from zero to assess convergence.

The resulting inference scheme overcomes many of the computational bottle-
necks associated with Markov chain Monte Carlo (MCMC). With a map in hand,
one can generate arbitrary numbers of independent and uniformly weighted pos-
terior samples without additional posterior or model evaluations. The approach
also provides clear convergence criteria for posterior approximation, and facilitates
model selection through automatic evaluation of the marginal likelihood. Com-
parisons on elliptic inverse problems and inference in spatial statistical models
show meaningful gains in performance and accuracy over current state-of-the-art
MCMC methods.

We also discuss extensions of the map to problems of sequential data assim-
ilation, i.e., filtering and smoothing. First, we demonstrate how a sequence of
low-order maps may be composed to capture the transition from prior to poste-
rior; this construction allows a complex change of measure to be captured more
economically than with a single map. Then we discuss filtering with nontrivial
transition dynamics, e.g., some nonlinear dynamical model (potentially stochas-
tic) giving rise to a state transition distribution µt+1|t(A) = P (Xt+1 ∈ A|Xt). For
the latter problems, one scheme involves pushing forward a fixed reference measure
to each filtered state distribution, while an alternative scheme computes maps that
push forward the filtering distribution from one stage to the other. The “reference
measure” approach is generally superior, though the essential challenge now in-
volves approximating the prior distribution at each assimilation step. To this end,
we propose a scheme that involves a nonlinear mapping from the forecast distri-
bution (e.g., with density p(xt+1|y1:t)) to a reference Gaussian, then performing
the Bayesian update on this Gaussian space.
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Statistical modelling in meteorological DA beyond the normal, some
ideas

Andreas Hense

(joint work with Jessica Keune, Andreas Röpnack, Daniel Simonis, Christoph
Gebhardt, Tanja Zerenner)

1. Introduction

The aim of the presentation is to present three topic to the meteorological
data assimilation community which are studied in other areas of meteorological
and climatological research. These points could be of potential interest in data
assimilation applications. The following three topics will be covered

(1) Verification, ensemble postprocessing, proper scores and optimisation
(2) Paleo climate reconstruction from binary information of presence/absence

of vegetation
(3) Sparse (inverse, non-singular) covariance matrices

We will shortly describe these topics and summarise the presentation with sugges-
tions how the results could be applied in data assimilation (DA).

2. Verification of probabilistic forecasts

Running a meteorological or climate ensemble system no matter if this is an
ensemble based data assimilation system or a system for free runs unaffected by
observations, the outcome has to be interpreted as a statistical sample drawn from
the ergodic measure of the underlying model attractor. A necessary condition is
that the initial conditions are sufficiently independent. To obtain an estimate
of the probability density a postprocessing is inevitable. This even holds when
working with the original, raw simulations. A nonparametric order statistics is
implied when univariate realisations e.g. of the forecasted temperature at one
point in space and time are sorted and quantiles are estimated. But also methods
of fitting Gaussian densities of univariate and multivariate structures can be done
with the information on the location parameter mean and uncertainty parameter
(co-)variance. Note that the presentation of the ensemble mean is not a sufficient
information because the mean is not a realisation (”weather”). The fitted density
is referred to as the predictive probability density function (pdf).

This is the information which has to be verified by observations.Note that the
assimilation step in sequential ensemble data assimilation approach is essentially
also such a confrontation of a predictive density produced by the forward model
with the newly available observations A review paper by [1] shows that so called
proper scores form the basis of such a verification. The definition of a proper
score is based

• on a score function or scoring rule which evaluates a specific predictive
density or distribution fM (m) in view of the data b as s(fM (m), b)
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• Then taking the expectation with respect to B defines the score
S(fM (m), fB(b)) = EB[s(fM (m), b)], which is also called a generalised
entropy

• the score and its associate score function is called proper if
S(fM (m), fB(b)) ≤ S(fB(b), fB(b)) meaning that the highest values of
the score is obtained if the predicted probability density is equal to the
(unknown) probability density of the observations.

• here we have agreed on the convention ”the higher the better” which is a
reasonable choice if the prediction is coupled to the income of the predictor
such that

• a proper score can not be cheated by freak forecasts to obtain for wrong
reasons a higher income

This convexity allows to optimize the (estimated) score if parameters of the
predictive pdf can be identified such that the relation between the predictive pdf
and the observations can be improved.

3. Paleo climate reconstruction

Paleo climate reconstruction of e.g. near surface temperature is often forced
to rely on highly non-Gaussian variables like binary data of the absence/presence
of climate sensitive plant species. One way of using such a type of data is based
on a probabilistic interpretation of the binary data e.g. in terms of conditional
probability densities ([2]). This allows the construction of a likelihood function
for a second step: the spatial aggregation of data from different paleo proxy sites
provided that they are dated to have occurred at approximately the same time in
the past. In [3] a simple two dimensional advection diffusion model is used as a
weak constraint to regularise the pure vegetation based spatial aggregation. The
actual reconstruction is done in the modal space of the singular modes of the sim-
plified model. This defines a spatial filter which makes the spatial reconstruction
compatible to the scales which are simulated by global climate models.

4. Precision matrices

Discrete Gaussian Markov random fields can be interpreted as a Gaussian ran-
dom process on a graph of spatially distributed vertices connected edges or grid
lines. E.g. in [4] it is presented that such Gaussian random fields are charac-
terised by their expectation and more important by the invers covariance matrix
the precision matrix. This is a direct consequence of the Hammersley - Clifford
theorem which establishes a relation between Gaussian Markov random fields and
Gibbs measures. Therefore the hotly debated localisation of the covariance matrix
should actually be done on the precision matrix. The precision matrix itself can be
estimated from the data by various recently developed methods. One of the new
methods is the GLASSO estimator. The standard maximum likelihood estimator
(MLE) for the precision matrix is extended by an L1 penalty term which selects
the sparsest precision matrix which inverse is best compatible with the standard
MLE covariance matrix.
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5. Summary

Based on the results related to the above three topics the following points
summarise the suggestion to the DA community

• Verification of predictive densities also for the multivariate case is possible
using proper scores

• Suggestion to DA: Apply proper scores to ensemble based sequential filters
and use the option for optimisation

• Paleo climate research forces the use of highly non-Gaussian variables. Use
a probabilistic descriptions

• Suggestion to DA: assimilation of binary data is possible
• The relevant matrix in treating Gaussian random fields is the precision
matrix and not the covariance matrix

• Suggestion to DA: do localisation on the precision matrix.
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Nonstationarity and nonhomogeneity in GFD: data analysis, model
discrimination beyond the standard probabilistic framework and

missing data assimilation

Illia Horenko

Results of mathematical/statistical analysis and assimilation of the weather/climate
data are inherently biased by the implicit assumptions about the underlying pro-
cesses. These assumptions are imposed by the respective analysis methods: e.g.,
Bayesian learning approaches impose the strong implicit probabilistic assumptions
like Gaussianity (for Gaussian Mixture Models) and homogenous Markovianity
(for Hidden Markov Models and related approaches). More generally, all of the
standard learning approaches involve in some form implicit assumptions about the
memory in the data, about the probabilistic model formulation (usually in form
of the parametric probability distribution function or the parametric stochastic
model), some form of sequential statistical independence (in time and space) and
stationarity/homogeneity assumptions (i.e., the assumption that the inferred prob-
abilistic model parameters, e.g. the mean value and the variance, are not changing
significantly for the whole available data set).
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Generic scenarios where these implicit assumptions of available methods may
become violated will be discussed and some alternative approaches to numerical
data modeling and model discrimination beyond the standard probabilistic frame-
work will be described. Computational framework for nonstationary identification
and assimilation of the joint missing data impact on resolved variables will be
given and compared to the popular methods of machine learning on generic data
examples. The comparison will be given in terms of: (i) the character of math-
ematical/statistical assumptions involved, (ii) numerical/computational cost, and
(iii) the quality of the obtained online predictions.
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Stability of the optimal filter - a variational approach

Wilhelm Stannat

We consider the problem of estimating a Markovian signal (Xt) on R
d, in discrete

or continuous time, observed with independent additive noise. Denote by (Yt) the
observation process, so that

πY0:t
t (A) := P [Xt ∈ A | Y0:t]

is the conditional distribution of the state Xt of the signal, also called the posterior
distribution in the following, based on the observations Y0:t = {Ys | s ∈ [0, t]} up to

time t. We are interested in the stability of πY0:t
t w.r.t. the initial distribution µ0 of

the signal. This problem is of central importance in real applications, since the true
state of the unobserved signal, let alone its true distribution, are unknown. Because
of its importance, the problem has attracted the attention of many researchers
during the last decade and a detailed account on the state of the art can be found
in Part III of the monograph [1].

Roughly speaking the stability properties of πY0:t
t depend on the one hand on the

mixing properties of the signal (Xt) and on the other hand on the precision of
the measurement leading to the observations (Yt). Note that the two mechanisms
have opposite effects on the posterior. Whereas the mixing properties of the sig-
nal distribute the mass throughout the whole state space, the measurement has
the tendency to concentrate the mass of the posterior distribution in some neigh-
borhood of the observation. It is therefore in particular difficult to quantify the
stability of πY0:t

t . With our variational approach, outlined below, we can provide a

way to measure stability of πY0:t
t w.r.t. the initial condition explicitely in the total

variational distance taking into account both ingredients.
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Let us first illustrate the approach in discrete time for the Kalman filter of a linear
signal and linear observation

Xn = BXn−1 + CWn−1 , Yn = GXn + Γen

with (Wn) (resp. (en)) independent N(0, I)-distributed on R
d (resp. R

p) and
matrices B, C , G and Γ with appropriate dimensions. The main feature of the
optimal filter in this special case is the well-known fact that a Gaussian initial

condition µ0 = N (m0, E0) implies that πY0:n
n = N

(

m
Y1:n+1

n+1 , En+1,n+1

)

, where

the mean and the covariance matrix are determined by the well-known recursive
Kalman filtering equations. However, if the initial distribution of the true signal,
denoted by µ̃0 in the following, is not Gaussian, one would like to estimate the error
between the optimal filter π̃Y0:n

n of the true signal and its Kalman approximation

πY0:n
n = N

(

m
Y1:n+1

n+1 , En+1,n+1

)

.

To answer this question, suppose that the true initial distribution µ̃0 is absolutely
continuous w.r.t. the Gaussian distribution, dµ̃0 = h0 dµ0. This implies that
dπ̃Y0:n

n = hn dπ
Y0:n
n , where the density hn is defined recursively as

hn(x) =

∫

hn−1

(

Q∗
n

(

BTQ−1x+ En1,n−1m
Y1:n
n−1

)

+ x′
)

N(0, Q∗
n)(dx

′)

with Q∗
n +

(
E−1

n−1,n−1 +BTQ−1B
)−1

. This implies immediately the following re-
cursive control on the density

‖hn‖Lip ≤ ‖Q∗
nB

TQ−1‖op‖hn−1‖Lip

w.r.t. the Lipschitz norm ‖f‖Lip = supx1 6=x2

|f(x1)−f(x2)|
‖x1−x2‖ . Here, ‖·‖op denotes the

usual operator norm. From this one can deduce the following results on asymptotic
stability of the optimal filter in the total variational norm ‖ · ‖tv (cf. [4]):

Theorem 0.1. Under the above assumptions:

‖πY0:n
n − π̃Y0:n

n ‖tv ≤ 1 + tr (Q∗
n)

2
∫
hn dπ

Y1:n
n

(
n∏

k=1

‖Q∗
nB

TQ−1‖op
)

‖h0‖Lip , n = 1, 2, . . .

Corollary 0.2. Assume in addition that (C,B) is controllable and (G,B) observ-
able. Then

lim
n→∞

1

n
log ‖πY0:n

n − π̃Y0:n
n ‖tv ≤ logχ∗ < 0 ,

where χ∗ = max {|λ| | λ eigenvalue of B (I −K∞G)} and

K∞ = lim
n→∞

En,n−1G
T
(
GEn,n−1G

T + ΓΓT
)−1

is the limiting Kalman gain matrix.

The main idea for a generalization of the above theorem to nonlinear signals is to
replace the Gaussian distribution by the family of uniformly strictly log-concave
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probability measures dµ = e−V dx and to use the following Brascamp-Lieb in-
equality

Vare−V dx(h) ≤
∫

〈∇h, V −1
xx ∇h〉 e−V dx

to quantify the stability properties of the posterior distribution.

As a typical example in continuous time consider a signal driven by the following
stochastic differential equation

(S) dXt = B(Xt) dt+ CdWt on R
d

where the drift B admits the representation

B(x) = B1x+Q∇ logϕ(x) with Q = CCT > 0

for some matrix B1 and some smooth polynomially bounded potential ϕ > 0.
Here (Wt) is a d-dimensional Brownian motion. Suppose that (Xt) is observed
with independent additive noise

(O) dYt = GXt dt+ Γdet , Y0 = 0 on R
p ,

where (et) is a p-dimensional Brownian motion and suppose that R := ΓΓT > 0.
The Kallianpur-Striebel formula provides the following path-space representation

∫

F dπY0:t
t =

E
[

F (Xt) exp
(∫ t

0 R
−1GXsdYs − 1

2

∫ t

0 〈R−1GXs, GXs〉 ds
)]

E
[

exp
(∫ t

0
R−1GXsdYs − 1

2

∫ t

0
〈R−1GXs, GXs〉 ds

)]

of the conditional expectation E [F (Xt) | Y0:t] and a robust regular conditional

distribution πy0:t

t of πY0:t
t can be constructed for Hölder-continuous paths y· with

Hölder-exponent 1
3 . The stability result can then be formulated as follows (see

[4]):

Theorem 0.3. Assume that

(1) V (x) = 〈∇ logϕ(x), B1x〉+
1

2

tr (Qϕxx(x))

ϕ(x)
+

1

2
〈R−1Gx,Gx〉

is uniformly strictly convex with Vxx ≥ K for some positive definite symmetric

matrix K. Let dµ0 =
(∫
m̂0 dx

)−1
m̂0 dx with ϕ−1m̂ uniformly log-concave with

lower bound > K∗, where K∗ is the unique positive definite symmetric solution of

K∗QK∗ +BT
1 K∗ +K∗B1 −K = 0 .

Suppose that the initial condition µ̃0 of the true signal has a Lipschitz continuous
density h0 w.r.t. µ0, bounded away from zero by δ > 0. Then

‖πy0:t

t − π̃y0:t

t ‖tv ≤ 1 + tr(
√

Q−1K−1
∗
√

Q−1)

2δ
e−χ∗t‖h0‖Lip√

Q−1

for any Hölder-continuous path y· with Hölder-exponent 1
3 . Here,

χ∗ := min

{

λ | λ eigenvalue of
√

QK∗
√

Q+
1

2

(
B1 +BT

1

)
}
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The Theorem identifies a criterion for a pathwise asymptotic stability of the op-
timal filter in terms of convexity properties of the potential V (see (1)). Note
that V incorporates both mechanisms, mixing properties of the signal implied by

convexity properties of the first two terms 〈∇ logϕ(x), B1x〉 + 1
2
tr(Qϕxx(x))

ϕ(x) , and

precision of the measurement, encoded in the third term 1
2 〈R−1Gx,Gx〉.
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Stability and Error Analysis for Variational and Ensemble Data
Assimilation

Roland Potthast

(joint work with África Periáñez, Hendrik Reich, Alexander Moodey, Peter Jan
van Leeuwen, Amos Lawless, Boris Marx,)

In our first part of the talk, we investigate the error dynamics for cycled data
assimilation systems, such that the inverse problem of state estimation is solved at
tk, k = 1, 2, 3, . . . with a first guess given by the state propagated via a dynamical
system modelMk from time tk−1 to time tk. In particular, for nonlinear dynamical
systems Mk that are Lipschitz continuous with respect to their initial states, we

provide deterministic estimates for the development of the error ‖ek‖ := ‖x(a)
k −

x
(t)
k ‖ between the estimated state x(a) and the true state x(t) over time.
Clearly, observation error of size δ > 0 leads to an estimation error in every

assimilation step. These errors can accumulate, if they are not (a) controlled in the
reconstruction and (b) damped by the dynamical systemMk under consideration.
A data assimilation method is called stable, if the error in the estimate is bounded
in time by some constant C.

The key task of this work is to provide estimates for the error ‖ek‖, depending on
the size δ of the observation error, the reconstruction operator Rα, the observation
operator H and the Lipschitz constants K(1) and K(2) on the lower and higher
modes of Mk controlling the damping behaviour of the dynamics. We show that
systems can be stabilised by choosing α sufficiently small, but the bound C will
then depend on the data error δ in the form c‖Rα‖δ with some constant c. Since
‖Rα‖ → ∞ for α → 0, the constant might be large. Numerical examples for
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this behaviour in the nonlinear case are provided using simple models in dynamic
magnetic tomography and by a (low-dimensional) Lorenz ‘63 system.

In the second part of the talk we study ensemble data assimilation systems.
They provide a flexible alternative to large-scale variational systems. Many dif-
ferent versions of ensemble filters have been suggested and tested over the last
years.

However, although Ensemble-DA has high potential, its theoretical justification
is still under development, both on the application side testing the development
and operational setup of EnKF systems for different data types as well as the
mathematical analysis looking into approximation properties of ensembles with
ensemble-size small compared to the total number of degrees of freedom in the
model. It is very common to use space localization in order to reduce the effect of
spurious long range correlations.

It is the goal of our analysis to understand the basic properties of localization.
We derive deterministic error estimates for the EnKF and study its dependence on
localization. In particular, we investigate the convergence of the localized EnKF
when the localization radius tends to zero.

Then, we demonstrate the practical meaning of the analysis by derivation of
a formula for an optimal localization radius depending on the observation density
and the observation error. The validity of the formula is also demonstrated by
numerical experiments for some simple assimilation systems.
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Incorporating Representativity Error in Data Assimilation

Nancy K. Nichols

(joint work with J.A. Waller, S.L. Dance, A.S. Lawless and J.R. Eyre)

Observations used in combination with model predictions for data assimilation
can contain information at smaller scales than the model can resolve. Errors of
representativity are the result of small scale observational information being in-
correctly represented in the model. In previous work, error correlations in satellite
observations from various instruments have been identified that may be caused by
representativity error [7]. A better understanding of these errors would allow them
to be incorporated into the observation error statistics to provide more accurate
analyses and enable us to make better use of available observations. The aims
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of the research described here are to investigate the structure and properties of
representativity errors and to incorporate and assess the impact of these errors in
data assimilation.

Initially we have used a method first proposed by Daley [1] and then by Liu and
Rabier [4] to diagnose static representativity error covariances. In this method it is
assumed that the observations can be written as the mapping of a high resolution
state into observation space and that the model state is a truncation of the high
resolution state. We have applied this technique to determine the structure of
representativity errors in a nonlinear advection-diffusion model with multi-scale
chaotic behaviour (the Kuromoto-Sivashinsky equation [6, 3]) and to analyse time
independent forward errors for different types of observation. The procedure has
also been implemented with temperature and humidity data from the Met Office
high resolution (UKV) system, as part of a co-operative PhD project. The data
is taken from the system under different atmospheric conditions where small scale
features can be identified in the humidity fields.

The results from these experiments have shown that errors of representativity

• are correlated and are state and time dependent;
• are reduced where the resolution of the model is increased or where the
observation length scale is increased;

• vary with height throughout the atmosphere;
• are more significant for humidity than temperature.

The magnitude and structure of the covariance is, however, dependent only on the
distance between observations and not the number of observations available [5].

From this work we have concluded that although the diagnostics of Liu and
Rabier can be used to reveal the structure of forward observation errors, the results
are not readily applicable in data assimilation due to the underlying assumptions
that the errors are static and are determined through a non-invertible transform
and truncation operator.

We are now developing a new method for diagnosing and incorporating time-
dependent representativity error in an ensemble data assimilation system. The
method is based on the diagnostics of Desroziers et al. [2], together with a
symmtrization and localization technique, and has been investigated using the
Kuromoto-Sivashinsky multi-scale model. The procedure provides an estimate of
the correlated forward error covariance, from which the representativity error co-
variance can be obtained by removing the uncorrelated instrument error from the
result.

Using this approach we have been able to recover the true observation error
covariance in cases where the initial error covariance used is incorrect, and also
to follow time-varying observation error covariances where the length scale of the
true covariance is changing slowly in time. We have also shown that including the
estimated representativity error in the assimilation improves the analysis. [8].
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Decadal ocean (and ice) state estimation for climate research: What
are the needs?

Patrick Heimbach

(joint work with Carl Wunsch)

The advent of the World Ocean Circulation Experiment (WOCE) and satellite
altimetry in the early 1990s called for a method for synthesizing the new, globally
distributed yet sparse observations of very diverse types into a coherent dynamical
framework, one that would enable the calculation of accurate budgets of heat,
freshwater, momentum, vorticity, their exchange with the atmosphere, and their
evolution through time. A major goal was understanding the mechanistic processes
underlying large-scale (multi-)decadal climate variability and change.

In contrast to the practice of data assimilation (DA) in numerical weather
prediction (NWP) where the problem is one of optimal forecasting or filtering (ex-
trapolation), we are faced in ocean climate research with a smoothing or state and
parameter estimation problem (interpolation). A serious consequence is that tech-
niques used in NWP cannot be readily adopted. However, most so-called ocean
“reanalysis” projects are relying on just such filtering methods. The states they
produce face the same problems as the atmospheric reanalyses where assimila-
tion increments incur unphysical sources or sinks in the conservation equations.
Such artificial sources or sinks of heat or mass at the analysis time severely limit
their utility for climate research. Although attention has been called to this issue
repeatedly, it is being ignored by a large part of the ocean/atmosphere/climate
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research and DA community. Examples are atmosphere-to-ocean global net fresh-
water flux imbalances of the order of 5 to 10 cm per year, in stark conflict with
satellite altimetric observations which place an upper bound on such global mean
fluxes of roughly 3 mm per year (the satellite-altimetric estimate of global mean
sea level rise since 1992). Similar conflicts exist between net surface heat flux
imbalances in atmospheric reanalysis products of the order of 10 W/m2 compared
to roughly 1 (±1) W/m2 inferred from independent radiation balance estimates.
Such violation of global and local conservation of properties are of little concern
to weather prediction, but they are central to the global climate problem [14].

Over the last decade a consortium called “Estimating the Circulation and Cli-
mate of the Ocean” (ECCO) has developed a smoother approach for synthesizing
much of the available oceanographic (and more recently sea ice) observations into
a dynamical framework represented by the Massachusetts Institute of Technology
general circulation model (MITgcm) [1]. Estimates have been produced both for
the global problem [12, 17] as well as for regional domains, such as an Arctic sub-
domain coupled ocean-sea ice state [3] and the Southern Ocean [11]. The GCM is
fit in a least-squares sense to the observations by means of the Lagrange multiplier
or adjoint method [18]. A major algorithmic breakthrough that has made this ap-
proach computationally tractable is the rigorous use of automatic differentiation
(AD) to generate and exact, efficient, scalable, and up-to-date adjoint model of
the nonlinear forward model [7].

The adjoint computes the gradient of the least-squares model-data misfit cost
function with respect to a very high-dimensional (107 to 109) space of independent,
uncertain, adjustable control variables, consisting of three-dimensional ocean (and
sea ice) initial conditions and two-dimensional time-varying corrections to the at-
mospheric boundary conditions, which are known to contain significant errors that
are spatially and temporally inhomogeneous. Including three-dimensional (time-
mean) model parameters to the control space as well, such as vertical diffusivity
and eddy-induced mixing parameters, provides a significant step forward toward
dealing with internal model (or parameterization) errors in a way that does not
introduce artificial source or sink terms [4, 13]. The state estimates produced by
ECCO, covering the satellite altimetric record (1992-present) have enabled accu-
rate budget calculations for various applications, such as understanding the causes
of the strong regional variations in sea level trends over the last two decades [19], or
the spatio-temporal structure of the Global and Atlantic Meridional Overturning
Circulation (MOC) [16, 15].

As a by-product of the estimation project, the availability of the adjoint or dual
state (i.e., elements of the model’s co-tangent space) has enabled detailed sensi-
tivity studies of climate-relevant indices to the time-evolving state and boundary
values (examples include Atlantic poleward volume and heat transport [10, 8, 5],
sensitivity of Drake Passage volume transport to changes in bottom topography
[9], Arctic sea ice export sensitivities to changes in atmospheric state [6], and ocean
biological productivity sensitivity to nutrient supply [2]).
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Challenges facing the community today are (1) improving the accuracy of these
smoother-based state estimates for use in climate research, (2) the provision of for-
mal error estimates (posterior uncertainties) on these state estimates and derived
quantities in the presence of a high-dimensional uncertainty space, (3) the need to
improve physical consistency through a coupled atmosphere/ocean/ice estimation
system which involves highly disparate time scales, (4) the move towards improved
horizontal resolution with its own issues (observed versus represented scales, non-
linear regime of the flow field, poor sampling). At least for the climate estimation
problem (i.e. for the purpose of understanding the evolution of the climate state
over the past few decades), filtering approaches borrowed from DA as practiced in
NWP will likely be of limited use for the forseeable future.
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Challenges Associated with the Efficient Synthesis and Normalization
of Gridded Anisotropic Covariances by Line Filters

R. James Purser

Recursive spatial numerical filters can be used to spread information along grid
lines in emulation of a rank-1 Gaussian convolution. The Gaussian shape is signifi-
cant, being the only shape for which, under sequential applications in the sufficient
transversal directions, there is no imprint of the grid’s orientation upon the final
smooth result (which is then a Gaussian convolution of full rank). An efficient
sequence of such line filters is easily made positive and self-adjoint, and therefore
serves as a model for a scalar error field’s spatial covariance. Realistic covariances
of a scalar error field may not have a purely Gaussian profile, but a large repertoire
of realistic covariances can be built up by linear superpositions of Gaussians in a
systematic way, a process that resembles a discrete inverse Laplace transformation.

The characteristics of spatial dispersion for a purely Gaussian filtering sequence
can be represented by the aspect tensor which, in spatially homogeneous condi-
tions, generalizes to the local diffusivity for a simulated diffusion process of du-
ration t = 1/2. The diffusion model for covariances was made explicit by Derber
and Rosati [1] and by Weaver and Courtier [6] for ocean data assimilation.

In a smooth gridding of n ≥ 2 spatial dimensions it can be shown that the rank-
1 aspect tensors associated with the set of minimal grid generators has a convex
hull in the C(n + 1, 2)-dimensional aspect space whose boundary is a polyhedral
shell containing all the images of these generators at its boundary. Moreover, it
is complete in the sense that all proper aspect tensors centrally-project into this
shell. Therefore, it is always possible to linearly resolve any desired aspect tensor
into rank-1 components associated with a set of only C(n + 1, 2) generators. In
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n = 2 and n = 3 dimensions this results in a unique triad or hexad of line filters
respectively. In both cases, we avoid numerical conflicts during the execution of the
associated triad or hexad of line filters that cross the same physical grid point by
labelling each of the possible lines with what we shall call a color uniquely matching
one of the non-null elements of the Galois (finite) fields GF (4) or GF (8), where
these elements are mapped periodically onto the two- or three-dimensional lattice
containing the grid generators. Thus, in two dimensions where there are three
colors, the filtering over the entire physical grid is performed in three sweeps; in
three dimensions, seven sweeps are performed, and it is guaranteed then that there
is no interference between mutually oblique line filters, however much the choice of
these lines changes geographically. The fact that the Galois fields’ multiplicative
operations each form a cyclic group is also exploited to simplify and accelerate
the algorithms used in the iterative search for a target aspect tensor’s correct
triad/hexad and, in the 3D case, where the set of paths passing between adjoining
hexads is not simply connected, the elements of GF (8) allow each hexad to be
consistently oriented.

In more sophisticated blended versions of the algorithm for finding the smooth-
ing intensities, or weights, for a given aspect tensor we can alleviate the problem of
numerically spurious roughness that sometimes accompanies the transition from
one triad/hexad to the next by replacing the weights implied by the single tar-
get aspect tensor in the basic algorithm by a linear accumulation of weights that
emerges from an integration of those basic weights over an averaging kernel spec-
ified as a ball with convenient radial generalized distribution of mass centered
on the target aspect tensor. The radius of the support of this kernel depends
continuously on its position within the aspect cone, and the averaging effected by
integration of neighboring aspect tensors accumulated in proportion to the kernel’s
mass implies the accumulation of the corresponding line filter weights since, in the
appropriate local metric, these weights vary linearly within each triad/hexad. In
general this blending of piecewise-linear contributions from the local tight cluster
of triads/hexads that are overlapped by the kernel leads to a successful elimination
of roughness in the modelled covariance, but it necessarily involves a larger set of
line filters at each physical grid point, and therefore a larger set of distinguishing
colors than in the respective basic triad/hexad algorithms in two/three physical
dimensions if numerical conflicts are still to be avoided. A sufficient degree of
blending requires the larger palettes of 4 or 13 colors respectively that emerge
naturally from the central collineations of pairs of the non-null elements of GF (9)
or GF (27) mapped onto the lattices containing the grid generators in two or three
physical dimensions.

The representation of covariances by these efficient approximations of diffu-
sion involve a fundamental ambiguity relating to how the amount of dispersion
is partitioned into a contribution coming from the diffusivity tensor itself and a
contribution coming from the metric of an implied Riemannian geometry in which
the diffusivity tensor is separately represented. We can choose to resolve this am-
biguity in the most natural way by declaring the diffusivity tensor itself to be the
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identity, so that the entire contribution to the filter’s dispersion is controlled by
the choice of metric (which thereby effectively becomes the aspect tensor).

A major advantage of this convention is that an estimate for the point-wise am-
plitude, or variance in the difficult case of an inhomogeneous diffusion is provided
as the modulation of the standard Gaussian amplitude by a parametrix function,
A(x), expressed as an asymptotic expansion in the curvature and its derivatives
only [4], [2], [5]. For example, to a second order in an expansion parameter and
for general n ≥ 2:

A(x) = 1 +
R

12
+

1

1440

(
12∇2R+ 5R2 − 2RijR

ij + 2RijklR
ijkl
)
.

For n ≤ 3 the Riemann-Christoffel curvature is not independent of the Ricci, so
we gain the simplification:

A(x) = 1 +
R
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and for n = 2, where the Gaussian curvature κ = R/2, we gain the further
simplification,

A(x) = 1 +
κ
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+

1
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(
∇2κ+ κ2

)
.

Being asymptotic, we are not surprised that this expansion, implemented di-
rectly to achieve our amplitude approximation, exhibits a problematic divergence
reminiscent of that seen in applications of the Gram-Charlier expansion of clas-
sical Statistics, by which a nearly-Gaussian probability density is approximately
recovered by the simplest expansion in its successive diagnosed cumulants [3]. In
the statistical context, the alternative Edgeworth expansion, though less intuitive
and appearing to contain, at each order, extra terms that seem unnecessary, is
actually a much more robust approximation in most practical cases. Thus, we
conclude with the analogous challenge: what, in the context of estimating the lo-
cal parametrix function, A(x), is the robust expansion of it that we can consider to
correspond to the ‘Edgeworth-type’ expansion for this Riemannian-space diffusion
model?
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Parameter Identification and Optimal Control of a Chemotaxis
Problem

Arnd Rösch

(joint work with Hendrik Feldhordt, Michael Winkler)

Chemotaxis describes a directed movement of cells caused by the concentration
gradient of a chemical substance. We consider the following simplified model:

ut = ∆u−∇ · {f(u)∇v}
vt = ∆v − v + u

∂nu = 0 ∂nv = g

u(0) = u0 v(0) = v0

In this quasilinear system u describes the concentration of bacteria and v stands
for the concentration of a chemoattractant. The quasilinearity of the system is
caused by the cross diffusion term −∇ · {f(u)∇v}.

Several publications in the last years discussed a possible blow up behavior of
the solution for specific choices of the function f and for g ≡ 0. We are interested
in controlling the chemotaxis system via the function g and in identifying the
function f .

Theorem 0.4. Let f ∈ C1(R) be a globally bounded and globally Lipschitz function
of class C1 and g ∈ L∞((0, T );Lp(∂Ω)). Then the chemotaxis system has a unique
solution. Moreover, the a priori estimate

‖u‖C0([0,T ];C0(Ω)) + ‖v‖L∞((0,T );W 1,p(Ω))

≤ C
(

‖u0‖C0(Ω) + ‖v0‖W 1,p(Ω) + ‖g‖L∞((0,T );Lp(∂Ω))

)

is valid.

The proof uses semigroup theory and combines techniques from Horstmann and
Winkler [1] and Tröltzsch [2].

Let us consider the following minimization problem:

min J (g; (u, v)) :=
µ

2
‖u− uQ‖2L2(Q) +

ν

2
‖v − vQ‖2L2(Q) +

λ

2
‖g‖2L2(Σ)

with µ, ν ≥ 0 and λ > 0 over the set

Gad := {g ∈ L∞((0, T );Lp(∂Ω)), ga ≤ g ≤ gb}.

Theorem 0.5. The minimization problem posesses at least one optimal control
g ∈ Gad with corresponding state (u, v).
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One can show that the mapping g 7→ (u, v) is Fréchet differentiable. Conse-
quently the following optimality system is obtained:

ut = ∆u−∇ · f(u)∇v
vt = ∆v − v + u

∂nu = 0 ∂nv = g

u(0) = u0 v(0) = v0

−pt −∆p = f ′(u)∇v∇p+ q + µ(u − uQ)

−qt −∆q + q = −∇ · {f(u)∇p}+ ν(v − vQ)

∂np+ f ′(u)pg = 0

∂nq − f(u)∂np = 0

p(T ) = 0 q(T ) = 0

〈−f(u)p+ q + λg, g − g〉L2(Σ) ≥ 0 ∀g ∈ Gad.

Similar results can be derived for a modified system. The modified boundary
condition

∂nu− f(u)∂nv = 0

is motivated by a no flux condition for u.
Another interesting minimization problem is the parameter identification for

the function f . We minimize the functional

min J (f ; (u, v)) :=
µ

2
‖u− uQ‖2L2(Q) +

ν

2
‖v − vQ‖2L2(Q) +R(f)

with µ, ν ≥ 0 over f ∈ Fad where Fad is a closed, convex, and bounded set in
C1,ν(R). Here, R(f) is a suitably chosen regularization term. For simplicity we
set g ≡ 0.

Let us mention that this parameter identification problem has a non-standard
form since the parameter f depends on the solution u of the chemotaxis problem.
This structure leads to specific difficulties in analysis, optimization and numerics.
Nevertheless, one can derive an adjoint equation

−pt −∆p = f ′(u)∇v∇p+ q + µ(u− uQ)

−qt −∆q + q = −∇ · {f(u)∇p}+ ν(v − vQ)

∂np = 0 ∂nq = 0

p(T ) = 0 q(T ) = 0.

The adjoint equation is one part of the optimality system. Another part of the
system is a variational inequality depending on the choice of the regularization
term R(f).
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Reconstruction of matrix parameters from noisy measurements

Michael Hinze

(joint work with Klaus Deckelnick)

For an open bounded domain Ω ⊂ R
n with boundary Γ we consider the recon-

struction of the diffusion matrix A ∈ L∞(Ω,Rn,n) in the ellipitc

(PDE) − div (A∇y) = g in Ω, y = 0 on Γ

from noisy measurements z ∈ Z. Here, g ∈ H−1(Ω) is given and fixed, and Z is
L2(Ω) or H1(Ω).

For given A ∈ M, g ∈ H−1(Ω) let T (A, g) denote the unique weak solution to
(PDE). For the reconstrunction of A we consider the minimization problem

(P ) min
A∈M

1

2
‖y − z‖2Z s.t. y = T (A, g),

where for 0 < a < b <∞
M := {A ∈ L∞(Ω)n,n |A(x) ∈ K a.e. in Ω},

with

K := {A ∈ Sn | a ≤ λi(A) ≤ b, i = 1, . . . , n}.
Here, Sn denotes the set of all symmetric n × n matrices endowed with the

inner product A ·B = trace(AB), and λ1(A), . . . , λn(A) denote the eigenvalues of
A. This optimal control problem is not convex, and admits nonstandard control
constraints.

Due to a theorem of Murat and Tartar [5] M is H–compact, i.e. every sequence
(Ak)k∈N in M contains a subsequence (Ak′ )k′∈N converging to an element A ∈ M
in the sense that for every g ∈ H−1(Ω)

T (Ak′ , g)⇀ T (A, g) in H1
0 (Ω) and Ak′∇T (Ak′ , g)⇀ A∇T (A, g) in L2(Ω)n.

(Ak′ )k′∈M is then said to be H–convergent to A (Ak′

H→ A). This directly delivers

Theorem 0.1. (P ) admits a solution A ∈ M with corresponding state y =
T (A, g).

For γ > 0 the Tikhonov regularization of problem (P ) is

(P )γ min
A∈M

Jγ(y,A) :=
1

2
‖y − z‖2Z +

γ

2
‖A‖2

L2(n,n) s.t. y = T (A, g).
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Then (P )γ admits a solution, which follows from the fact that Ak
H→ A and

Ak
∗
⇀ A0 in L∞(Ω,Rn,n) imply A(x) ≤ A0(x) a.e. in Ω, and

‖A‖2 ≤ ‖A0‖2 ≤ lim inf
k→∞

‖Ak‖2,

see also [5].
Let (a ⊗ b)kl :=

1
2 (akbl + albk), k, l = 1, . . . , n and let A ∈ M be a solution of

(P )γ . From [2] we have for every λ > 0 the optimality condition

A(x) = PK (A(x) − λ (γA(x)−∇y(x)⊗∇p(x))) a.e. in Ω,

where

PK(A) = Stdiag
(
P[a,b](λ1(A)), . . . , P[a,b](λn(A))

)
S,

if A = Stdiag(λ1(A), . . . , λn(A))S.
For the discretization of (P )γ (γ ≥ 0) we use variational discretization [4] and

consider

(Ph)γ min
A∈M

1

2
‖yh − z‖2Z +

γ

2
‖A‖2

L2(n,n) s.t. yh = Th(A, g),

where Th denotes the c(1) FE discretization of T . Let us note that the matrix
parameter is not discretized in this problem. In [2] we prove that (Ph)γ for every
h > 0 admits a solution Ah ∈ M, where we use the following concept of Hd–
convergence adapted from Eymard/Galouët [1]; let (Ah)h>0 be a sequence in M.
Then there exists a subsequence (Ah′)h′>0 and A ∈ M such that for every g ∈
H−1(Ω)

Th′(Ah′ , g)⇀ T (A, g) in H1
0 (Ω) and Ah′∇Th′(Ah′ , g)⇀ A∇T (A, g) in L2(Ω)n.

This means (Ah′)h′∈M Hd–converges to A, i.e. Ah′

Hd→ A. Moreover, any solution
Ah of (Ph)γ satisfies

Ah(x) = PK (Ah(x)− λ (γAh(x) +∇yh(x)⊗∇ph(x))) a.e. in Ω.

Convergence: Given z, g, let us suppose that

S := {A ∈ M| z = T (A, g)} 6= ∅
and set ‖A∗‖L2 = minA∈S ‖A‖L2 . Let us consider

(P h
δ ) min

A∈M
Jh
δ (A) =

1

2
‖yh − zδ‖2Z +

γ

2
‖A‖2L2 s.t. yh = Th(A, gδ).

In [2] we prove

Theorem 0.2. Let Ah
δ ∈ M be a solution of (P h

δ ) and suppose that ‖zδ−z‖L2 ≤ δ,
‖gδ − g‖H−1 ≤ δ. Furthermore, with

ρh := inf
vh∈XH

‖z − vh‖H1 ,

let us suppose that γ → 0, δ√
γ → 0, and ρh√

γ → 0 as h, δ → 0. Then

‖Ah
δ −A∗‖L2 → 0 as δ, h→ 0.
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Moreover, in [3] we under further assumptions are able to derive an error bound.
For this purpose let us assume that Ω ⊂ R

2 is a bounded polygonal, convex domain.
Furthermore, let us assume that with some p > 2

(A1) z = T (A, g) ∈ H1
0 (Ω) ∩W 2,p(Ω), and that

(A2) there exists ψ ∈ H1
0 (Ω) ∩W 2,p(Ω) such that

A(x) = PK (∇z ⊗∇ψ) a.e. in Ω (source condition).

Then we have

Theorem 0.3. Theorem. Let Ah
δ ∈ M be a solution of (P h

δ ) and suppose that

‖zδ − z‖L2 ≤ δ, ‖gδ − g‖H−1 ≤ δ. If h >
√
δ and γ ∼ h2, then

‖Ah
δ − A‖L2 ≤ Ch, and ‖yh − z‖L2 + h‖∇(yh − z)‖L2 ≤ Ch2,

where yh = Th(A
h
δ , gδ).

The proofs of these theorems are technical and rely on the fact that a solution
to (Pγ) is feasible as comparison matrix for the discrete problems (P h

δ ), and that
a matrix A satisfying (A2) represents the norm-minimal element in S = {A ∈
M| z = T (A, g)}.
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Challenges in Atmospheric Chemistry Data Assimilation

Hendrik Elbern

(joint work with Nadine Goris, Jörg Schwinger, Elmar Friese, Lars Nieradzik)

A novel challenge for climate research is the assimilation of trace gases, which
aims to optimally exploit remote sensing data from costly space borne sensors. Tar-
get models for data assimilation in atmospheric chemistry are chemistry-transport
models (CTMs). The need for chemistry data assimilation increased rapidly in re-
cent years due to demands of GMES (Global Monitoring for Environment and Se-
curity) activities, and sophisticated scientific field mission analyses. Also advanced
weather forecast models are expecting more precise radiative transfer calculations.
With atmospheric water in all its physical conditions becoming increasingly impor-
tant in general data assimilation, meteorological and chemical data assimilation
converge in some domains.
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The underlying model equation is an advection-diffusion-reaction equation.
Omitting aerosol and aqueous phase the differential equation can be written as
[2]:

∂ci
∂t

+∇ · (~vci)−∇ · (ρG∇ci
ρ
)−

R∑

r=1



k(r) (si(r+)− si(r−))
U∏

j=1

c
sj(r−)
j



 = Ei +Di(1)

where ci is the concentration of species i, ~v is the wind velocity, s ∈ IN0 is the
stoichiometric coefficient, k(r) is the reaction rate of reaction r, either productive
(r+) or destructive (r−) for species i, U is the number of species in the mechanism,
Ei is the emission rate of species i, Di is the deposition rate of species i, the air
density is denoted by ρ, and G is the symmetric eddy diffusivity tensor. Upon
application of the variational calculus, the adjoint formulation of (1) reads

−∂δc∗i
∂t − ~v∇δc∗i − 1

ρ∇ · (ρK∇δc∗i ) +
∑R

r=1

(

k(r) si(r−)
ci

∏U
j=1 cj

sj(r−)
∑U

n=1 (sn(r+)− sn(r−)) δc∗n

)

= 0(2)

with δc∗i the adjoint variable of ci, while Di is held fixed.
The presentation detailed open problems of chemisty data assimiltion, which

differ from both the meteorological and oceanographic situation
From Data assimilation to Generalized Inversion: Until very recently, optimi-

sation in meteorological data assimilation remains confined to optimal initial value
estimation. Here, it is tacitly assumed that a suitably defined product of paucity
of knowledge of initial values times their impact on forecast skill is maximal in
comparison to model parameters other than initial values. This assumption is not
any more valid in atmospheric chemistry, where other parameters like trace gas
emission rates and their sinks (uptake) at surfaces are, especially in critical regions,
of higher influence. Therefore, the data assimilation problem evolves to a general-
ized inversion task, where a set of heterogeneous parameters are to be estimated.
Special challenges in this context are (i) different charachteristic time scales of the
different parameters involved, and (ii) the typical assumption of white noise error
characteristics being invalid. A solution based on the 4-dimensional variational
assimilation techniques was presented, where the adjoint integration backward in
time by (2) allows for the optimisation of emission rates, simultaneously to initial
values.

Degree of underdetermination and covariance modelling:
In further contrast to meteorological conditions, the number of variables per grid
point is equal or more than O(100) rather than O(10), where only a very small
fraction of trace gases is observed, however. In today’s “real world applications”
the ill posedness of the assimilation problem induced by this condition needs to be
solved by proper preconditioning of the forecast error covariance matrix (typically
B ∈ R

7 × R
7), enforcing the calculation of its square root. While purely spatial
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univariate covariances can be solved by the diffusion paradigm ([4]), where the co-
variance matrix is replaced by a diffusion operator providing equivalent statistical
properties, this is not the case for multivariate (chemical, that is cross-species)
covariances. The calculation of related covariance matrices will be feasible by en-
semble simulations. In practice, no chemical consistent estimate across all reactive
trace gases is as yet provided in a numerically efficient way. Despite the fact that
emission error characteristic are not adequately modelled by white noise, temporal
covariances are as yet not included, due to the exceptionally high computational
demands. The efficient numerical treatment is still an open problem.

The a posteriori validation of the analyses is essential in estimating the valid-
ity of observation and forecast error covariances. The approach devised by [1]
is applied to validate a balanced weighting between model skill and observation
quality in observation space. This application was presented for a stratospheric
dta assimilation application ([3]).

“Unexpected events”: wild fires, mineral dust outbreaks, volcanic eruptions:
While in ”ordinary” cases it is assumed that the difference between the back-
ground and analysis does not significantly violate the tangent-linear assumption,
this cannot be expected in case of unexpected events. Critical parameters are emis-
sion strengths and injection heights, while the emission location is often known.
Particle filtering techniques are a candidate solution method.
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Simple models of convective clouds for data assmilation experiments

George C. Craig

(joint work with George Craig, Michael Würsch, Heiner Lange, Mylène
Haslehner)

Assimilation of high-resolution observations of cumulus convection, such as radar
reflectivities, is challenging. Convective clouds evolve quickly and nonlinearity
becomes significant on timescales that are comparable to the intervals at which
observations are available. A common example is the so-called late detection prob-
lem. Meteorological radars can only detect relatively large precipitation particles
that do not develop until at least a quarter of an hour after the cloud initiates,
by which time the air flow in the cloud has become fully developed. A second
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challenge is the intermittency of the convective cloud field. The observable pre-
cipitation features often occupy a small fraction of the domain, and errors in the
background forecast tend to take the form of large spatial displacements or false
alarms and missed events. As a result the background error distributions may be
highly non-Gaussian.

This talk presents three idealised models designed to capture the nonlinearity
and non-Gaussianity of cumulus convection, which may be more suitable for ex-
ploring data assimilation algorithms than some of the simple models traditionally
used.

A minimal representation of spatial intermittency and the late detection prob-
lem can be obtained by allowing clouds to appear randomly on a lattice, then
persist for a finite but also random lifetime. The first model is therefore simply
a spatial birth-death process, with clouds appearing and disappearing stochasti-
cally at specified rates. A full description of the model, and some results of data
assimilation experiments using a Local Ensemble Transform Kalman Filter and a
simple Sequential Importance Resampling particle filter are given by [1], and will
not be repeated here.

The main limitation of the simple stochastic model described in the the prevous
paragraph is the use of a single variable which has no spatial correlations. As a
result there are no dynamical balances relating the components of the state vector,
in contrast to a model based on the equations of fluid motion. The mass and
temperature perturbations that cumulus clouds introduce into their environment
are communicated in space by radiation of gravity waves. Neighbouring clouds may
be initiated or enhanced by uplift, or suppressed by downward motion associated
with the waves.

The primary importance of gravity waves suggests a model base around shallow
water equations:

(1)
∂u

∂t
+ u

∂u

∂x
+
∂φ

∂x
= K

∂2u

∂x2

(2)
∂H

∂t
+
∂(uH)

∂x
= K

∂2H

∂x2
,

where u is the fluid velocity, and the geopotential φ = g(H − H0) is defined as
the difference between the fluid depth H and its mean value H0, multiplied by the
gravitational acceleration g. A diffusion term with constant K has been included
in both equations.

To provide a representation of cumulus convection, the shallow water equations
must be extended to include conditional instability, i.e. positive buoyancy due
to latent heat release in ascending, saturated air. This will be accomplished by
modifying the geopotential φ. The standard definition of φ is based on the gradient
of the height of the fluid surface H , and provides a momentum forcing away from
regions of increased surface height. This will be altered when height exceeds
a threshold Hc, representing the level of free convection, with the geopotential
replaced by a fixed negative value −φc. The gradient of geopotential will thus
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force fluid into the region of negative geopotential, increasing the fluid depth there.
Once such a ”cloud” forms, the width of the negative geopotential region will
collapse until limited by diffusion, as occurs for cumulus clouds in simulations
with kilometre-scale weather prediction models.

Once a cloud is formed, the fluid level would continue to rise until the height gra-
dient becomes so strong that diffusion prevents further gowth. This is less realistic,
because in nature the lifetime of a cumulus cloud in an unsheared environment is
limited by the formation of heavy precipitation particles that eventually overcome
the postive buoyancy and turn the updraft into a downdraft. This effect will be
mimicked by adding a rain water mass mixing ratio r, with units of kg of water
per kg of air, to the geopotential. A separate conservation equation for r is then
added, with source and sink terms. Rainwater is produced when the fluid level
exceeds a threshold value Hr, and is rising (u has positive convergence). The rain
production threshold is set higher than the threshold for buoyancy to ensure that
rain production is delayed relative to the onset of the cloud circulation. Removal
of rain by precipitation is modelled by a simple linear relaxation towards zero.

The modified shallow water equations are:

(3)
∂u

∂t
+ u

∂u

∂x
+
∂(φ+ r)

∂x
= K

∂2u

∂x2
,

where

(4) φ =

{
−φc, H > Hc

g(H −H0), otherwise

The continuity equation is

(5)
∂H

∂t
+
∂(uH)

∂x
= K

∂2H

∂x2
,

and the equation for rain water is

(6)
∂r

∂t
+ u

∂r

∂x
= K

∂2r

∂x2
− αr −

{
β ∂u

∂x , H > Hr and ∂u
∂x < 0

0, otherwise

Note that the equations are written for a single horizontal dimension x, but can
be trivially extended to two horizontal dimensions.

Values for the various parameters are chosen to produce realistic space and
time scale for the model clouds. The following list suggests values based on their
primary effect on the resulting simulations:

• H = 90 m is chosen to give a gravity wave speed of 30 m/s, typical for the
gravest internal mode in the troposphere,

• Hc = 90.2 m and φc/g = 0.1 m give a reasonable cloud fraction of a few
percent, and a time for the cloud to develop to full height of about 0.5 hr,

• Hr = 90.3 m and β = 0.0005 imply a lag to rain formation of about 15 min,
and a cloud lifetime of about 2 hr, and

• α = 0.0012 s−1 gives persistence of rain and associated negative buoyancy
after collapse of the height perturbation.
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The value of K is chosen mainly for numerical smoothness and depends on the
resolution of the discretized equations.

To produce a cloud field for data assimilation experiments, it is necessary to
provide some kind of trigger to initiate clouds by lifting the fluid surface across
the threshold Hc. The talk will include results for a baseline experiment where
spatially-localised convergent perturbations were applied randomly to u through-
out the simulation. Alternatively, clouds could be triggered by including a bottom
topography in the shallow water equations that would produce uplift as the fluid
flowed over. When the continuous random triggering is applied, realistic interac-
tions between clouds are seen, with strong clouds suppressing weaker neighbours.
The rain produced by a cloud outlives the positive height perturbation, leaving a
region of negative buoyancy that forces gravity waves that can trigger new clouds.
For data assimilation synthetic observations can be produced for rain or wind, or
wind conditioned on presence of rain as observed by Doppler radar.

The final level in the heirarchy of idealised convection models proposed here is
the use of a full numerical weather prediction mode in a simplified configuration.
In particular, assimilation experiments have been carried out using the COSMO
model, which is run operationally by the Deutsche Wetterdienst (DWD) with a
2.8 km horizontal resolution, allowing the explicit simulation of cumulus clouds.
Ordinarily experiments must be repeated over a large number of events to obtain
reliable results about the performance of a data assimilation system, which is
computationally expensive. To allow shorter test periods, the model has been
configured to used periodic boundary conditions and a uniform land surface. This
results in an ensemble of clouds that are statistically identical. Of course this
framework does not allow the data assimilation system to be evaluated over the
full range of weather conditions that would be encountered in operational use,
and eventually tests must be carried out using the full system. However, it is
anticipated that a hierarchy of models of increasing realism will enable new ideas
to be more efficiently investigated.

References
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Lagrangian and en-route data assimilation

Amit Apte

(joint work with Elaine Spiller, Christopher K.R.T. Jones)

Assimilation of data collected by Lagrangian or pseudo-Lagrangian instruments
such as drifters, gliders, or floats is of great interest, especially for understanding
ocean dynamics. In particular, assimilation of subsurface data such as temper-
ature or salinity is of special importance because of paucity of such data. The
main difficulty in using such data is that the positions at which the subsurface
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measurements are taken in unknown. Our recent work introduces an observation
operator which allows us to express these observations as a function of the state
vector of the model at the measurement time. This is possible using the augmented
state space introduced by Ide et al. [1, 2] for assimilation of the position data of
these Lagrangian instruments. We call this proposed methodology en-route data
assimilation.[3] Once the subsurface measurements are expressed as function of
state space, any existing data assimilation scheme can be used to assimilate these
data. We show the efficacy of the en-route data assimilation scheme using Markov
Chain Monte Carlo sampling method and also using a particle filter (with resam-
pling). Our numerical results with the linear shallow water (LSW) model[4] show
that incorporation of these subsurface data is highly informative for estimating the
velocity flow and the height field of the LSW model. We also discuss the particular
property of the en-route data assimilation, namely the highly nonlinear nature of
the observation operator we propose. In the second half of the talk, I discuss our
recent work [5] on understanding the effects of the two most basic features of many
dynamical systems: (i) the nonlinear shear, i.e., the differential rotation of trajec-
tories around a stable fixed point, and (ii) the nonlinear differential divergence of
trajectories near a saddle or hyperbolic fixed point. These two basic features lead
to presence of non-Gaussian distribution functions in the assimilation process, in
particular, non-Gaussian prior distributions. We illustrate that this leads to fail-
ure of methods such as ensemble Kalman filter. We also discuss two main ways in
which these nonlinear effects are less pronounced: (i) by taking a more informative
prior distribution, or (ii) by increasing the frequency of observations.
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Fakultät für Mathematik
Universität Duisburg-Essen
Campus Duisburg
Forsthausweg 2
47057 Duisburg
GERMANY

Prof. Dr. Ian Roulstone

Department of Mathematics
University of Surrey
Guildford
Surrey GU2 7XH
UNITED KINGDOM

Dr. Seoleun Shin

Institut für Mathematik
Universität Potsdam
Am Neuen Palais 10
14469 Potsdam
GERMANY

Prof. Dr. Chris Snyder

NCAR-National Center for
Atmospheric Research
Foothill Lab
1850 Table Mesa Drive
Boulder CO 80305-3000
UNITED STATES

Dr. Matthias Sommer

Institut für Meteorologie
Universität München
Theresienstraße 37
80333 München
GERMANY

Prof. Dr. Wilhelm Stannat

Fachbereich Mathematik
Technische Universität Berlin
Straße des 17. Juni 136
10623 Berlin
GERMANY

Nikolai Strogies

Fachbereich Mathematik
Humboldt Universität Berlin
Unter den Linden 6
10099 Berlin
GERMANY

Prof. Dr. Andrew Stuart

Mathematics Institute
University of Warwick
Gibbet Hill Road
Coventry CV4 7AL
UNITED KINGDOM

Prof. Dr. Edriss S. Titi

Faculty of Mathematics & Computer Sc.
The Weizmann Institute of Science
PO Box 26
Rehovot 76100
ISRAEL

Prof. Dr. Philippe L. Toint

Department of Mathematics
The University of Namur
FUNDP
61, rue de Bruxelles
5000 Namur
BELGIUM

Sebastian Vollmer

Mathematics Institute
University of Warwick
Gibbet Hill Road
Coventry CV4 7AL
UNITED KINGDOM




