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Abstract. The geometry of convex domains in Euclidean space plays a cen-
tral role in several branches of mathematics: functional and harmonic anal-
ysis, the theory of PDE, linear programming and, increasingly, in the study
of other algorithms in computer science. High-dimensional geometry is an
extremely active area of research: the participation of a considerable number
of talented young mathematicians at this meeting is testament to the fact
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Introduction by the Organisers

The meeting Convex Geometry and its Applications organised by Keith Ball,
Martin Henk and Monika Ludwig, was held from December 9 to December 15,
2012. It was attended by some 55 participants working in all areas of high-
dimensional geometry. Of these 20% were female and about one third were younger
participants. The programme involved 10 plenary lectures of one hour’s duration
and about 20 shorter lectures. Some highlights of the program were as follows.

Assaf Naor spoke about joint work with Lafforgue on a striking new isoperimet-
ric principle for maps from the Heisenberg group into uniformly convex spaces,
which has applications to embedding problems and algorithms. Among other
things it shows that the ball of radius n in the Heisenberg group cannot be em-
bedded in Hilbert space with a distortion less than

√
logn.

Emanuel Milman described delicate new isoperimetric principles for manifolds
with more general conditions on curvature than the standard positivity condition.
The isoperimetric principles are sharp and are expressed by means of model spaces
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in which the worst behaviour occurs. The main subtlety occurs because each
situation now requires a one parameter family of model spaces rather than a single
space.

Alexander Barvinok gave a delightful and entertaining talk about a magical
new way to approximate convex domains by polytopes. The proof depends upon
using Fritz John’s theorem on the ellipsoid of minimal volume for a convex set
in a high-dimensional tensor power of the original space and then applying the
conclusion to linear forms on this space built from Chebyshev polynomials.

Alexander Litvak gave a remarkable lecture based on joint work with Adamczak,
Guédon, Lata la, Oleszkiewicz, Pajor and Tomczak-Jaegermann which provides a
short and very clear proof of Paouris’ Theorem on the distribution of mass in a
convex domain. The crucial ingredient is Gordon’s Minimax Theorem for Gaussian
processes. Paouris’s Theorem is one of the most striking results in the area to
have been found during the last half dozen years: so a clear new argument can be
expected to have a wide variety of applications.

There were several excellent talks by young researchers. Susanna Dann gave an
interesting plenary lecture on her solution of the Busemann-Petty problem in com-
plex hyperbolic space building on the existing results in real and complex Hilbert
spaces. Luis Rademacher gave a clear and very surprising talk on extremal do-
mains for the slicing problem showing that they must possess a rich symmetry:
the key was to find a usable modification of a domain so as to exploit the ex-
tremality. Louise Jottrand was one of several student participants. She gave a
very poised lecture on her recent joint work with Larman and Mani proving a con-
jecture of McMullen concerning the finiteness of shadow boundaries. The proof
depends principally upon using geometric mesaure theory to generalise the Cauchy
formula. Daniel Dadush spoke about a new integer programming algorithm found
jointly with Peikert and Vempala. Integer programming is provably a computa-
tionally hard problem but existing algorithms do not even run in exponential time
(as a function of the dimension). The new algorithm reduces the run time in n
dimensions from n2n to nn and would achieve almost exponential time (namely
(logn)n) subject to the conjecture of Lovász et al. on the spectral gap for convex
domains. Peter Pivovarov discussed his joint work with Paouris and Zinn on a
central limit theorem for random projections of the cube. This is in the spirit
of central limit theorems for Gaussian chaos because the volume is a multilinear
expression in the projection map but the proof involves geometric considerations
as well. Manuel Weberndorfer presented remarkable new results on polar bodies
of asymmetric bodies, which contain results of Lutwak, Yang and Zhang as well
as Campi and Gronchi for origin-symmetric bodies as special cases. Judit Abardia
spoke about her complete classification of Minkowski valuations in complex vector
spaces. Lukas Parapatits discussed his joint work with Haberl on the classifaction
of SL(n) invariant valuations. Whereas previously only homogeneous valuations
were classified, they succeeded in dropping this assumption completely and obtain
as an application a general affine Hadwiger theorem.
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Abstracts

Difference bodies in a complex vector space

Judit Abardia

Let V denote a real vector space of dimension n and K(V ) the space of compact
convex bodies in V . An operator Z : K(V ) → (A,+) with (A,+) an abelian
semi-group is called a valuation if it satisfies the following additivity property

Z(K ∪ L) + Z(K ∩ L) = Z(K) + Z(L),

for all K,L ∈ K(V ) such that K ∪L ∈ K(V ). If (A,+) is the set of convex bodies
with addition the Minkowski sum, then Z is called Minkowski valuation. They
have been largely studied, see for instance [4, 5, 9, 10, 11, 12, 14, 15].

Two important properties of Minkowski valuations are the covariance and the
contravariance with respect to the special linear group SL(V,R). A valuation
Z : K(V ) → K(V ∗) is SL(V,R)-contravariant if

Z(gK) = g−∗Z(K), ∀g ∈ SL(V,R),

where V ∗ denotes the dual space of V and g−∗ denotes the inverse of the dual
map of g.

A valuation Z : K(V ) → K(V ) is SL(V,R)-covariant if

Z(gK) = gZ(K), ∀g ∈ SL(V,R).

An example of a continuous, translation invariant Minkowski valuations which
is SL(V,R)-contravariant is the projection body operator. For K ∈ K(V ) the
projection body ΠK of K has support function

h(ΠK,u) =
n

2
V (K, . . . ,K, [−u, u]), u ∈ V,

where V (K, . . . ,K, [−u, u]) denotes the mixed volume with (n − 1) copies of K
and one copy of the segment joining u and −u. Ludwig proved in [9, 10] that
the projection body operator is the only (up to a constant factor) continuous,
translation invariant SL(V,R)-contravariant Minkowski valuation.

For the covariant case, Ludwig proved in [10] that the difference body is the
unique (up to a positive constant) continuous Minkowski valuation which is trans-
lation invariant and SL(V,R)-covariant. In fact, she classified the continuous,
SL(V,R)-covariant Minkowski valuations (not necessarily translation invariant).
The difference body of a convex body K ∈ K(V ) is defined by

DK = K + (−K),

where −K denotes the reflection of K at the origin.
In this work, we are interested in obtaining a classification result for the Min-

kowski valuations in a complex vector space W which are continuous, transla-
tion invariant and SL(W,C)-covariant. A classification result for the SL(W,C)-
contravariant case was given in [2]. Some other results concerning convex bodies
in a complex vector space as ambient space can be found in [6, 7, 8].



3480 Oberwolfach Report 59/2012

The classification result we have proved is the following.
Let W be a complex vector space of complex dimension m ≥ 3. A map Z :

K(W ) → K(W ) is a continuous, translation invariant and SL(W,C)-covariant
Minkowski valuation if and only if there exists a convex body C ⊂ C such that
Z = DC , where DCK ∈ K(W ) is the convex body with support function

h(DCK, ξ) =

∫

S1

h(αK, ξ)dS(C,α), ∀ξ ∈W ∗,

where dS(C, ·) denotes the area measure of C, and αK = {αk : k ∈ K ⊂ W}
with α ∈ S1 ⊂ C. Moreover, C is unique up to translations.

In the case dimCW = 2 the previous result is not true, since there exists also
Minkowski valuations satisfying those properties which are not homogenouos of
degree 1 but 3.

The main techniques used to prove the classification result are based in using the
McMullen decomposition theorem for real-valued valuations [13] and then study
each degree of homogeneity by itself. Using the SL(W,C)-covariance, it can be
proved that, if dimCW ≥ 3 then Z has homogeneity degree 1. In order to compute
its support function, it is used a characterization result of Goodey and Weil [3]
which, as a particular case, expresses all 1-homogeneous real-valued valuations in
terms of distributions in a certain class of functions. From this result and using
the three properties that Z has to satisfy, we get the result.
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Random polytopes, Orlicz norms and the central limit theorem

David Alonso-Gutiérrez

(joint work with Joscha Prochno)

A convex body K ⊆ Rn is called isotropic if it has volume 1 and verifies the
following two conditions:

•
∫

K
〈x, θ〉dx = 0 for every θ ∈ Sn−1

•
∫

K〈x, θ〉2dx = L2
K for every θ ∈ Sn−1.

The number LK , independent of the direction θ ∈ Sn−1, is called the isotropic
constant of the body K and it is a major problem in high-dimensional convex
geometry to know whether it is or bounded from above by an absolute constant
independent of the convex body and the dimension or it is not.

One possible approach to this problem consists in relating the value of LK to
the value of some parameters of a random polytope in K so that getting good
upper bounds for such parameters would imply upper bounds for LK .

By Steiner’s formula, for every convex body L ⊆ Rn, the volume of L+ tBn2 is
a polynomial in t of degree n

|L+ tBn2 | =
n
∑

k=0

(

n

k

)

Wk(L)tk.

The coefficients Wk(L) in this polynomial are the quermaßintegrals of the body L.

Calling Qk(L) =
(

Wn−k(L)
|Bn

2 |

)
1
k

we have, by Alexandrov-Fenchel inequalities, that

these normalized quermaßintegrals Qk(L) are decreasing in k.
In [1] the authors studied the value of these quermaßintegrals for random poly-

topes in an isotropic convex body K ⊆ Rn. Denoting by

KN = conv{±X1, . . . ,±XN},
where X1, . . . , XN are independent random vectors uniformly distributed in an
isotropic convex body K ⊆ Rn the authors showed that if cn ≤ N ≤ e

√
n

c1

√

log
N

n
LK ≤ EQn(KN ) ≤ EQ1(KN ) ≤ c2

√

logNLK ,

where c1, c2 are absolute constants. Consequently, if n2 ≤ N ≤ e
√
n, we have that

EQk(KN) ∼
√

logNLK

for every 1 ≤ k ≤ n.
We close the gap left when n ≤ N ≤ n2 in the study of EQ1(KN) = 1

2w(KN ),
where w(KN ) denotes the mean width of KN , showing that also in this range of
N

Ew(KN ) ∼
√

logNLK .
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The main tools we use to do that are the central limit theorem for convex
bodies, proved by Klartag in [2], that shows that for many directions θ ∈ Sn−1 the
one dimensional marginals of a random vector uniformly distributed in K behave
like Gaussian in some interval, and the representation of the support function of
KN in each direction θ as an Orlicz norm of the vector (1, . . . , 1), which follows
from [3]:

hKN
(θ) = max

1≤i≤N
|〈Xi, θ〉| = inf{s : Mθ

(

1

s

)

≤ 1

N
},

where

M(s) =

∫ s

0

∫

{ 1
t
≤|X1|}

|X1|dPdt.

The use of this Orlicz function M also allows us to prove that the average of the
distribution function of the 1-dimensional marginals of a random vector uniformly
distributed in K behave in a subgaussian and in a supergaussian way in a larger
interval than what it was known. Namely, if

F (t) =

∫

Sn−1

|{x ∈ K : |〈x, θ〉| ≥ tLK}|dµ(θ),

• If 1 ≤ t ≤
√
n
c

F (t) ≥ e−c
2t2 .

• If 1 ≤ t ≤ n
1
4

F (t) ≤ e−c
′2t2 .
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Thrifty approximations of convex bodies by polytopes

Alexander Barvinok

Let B ⊂ Rd be a convex body containing the origin in its interior and let τ > 1 be
a real number. We want to construct a polytope P with as few vertices as possible
such that P ⊂ B ⊂ τP . Our first result concerns bodies B symmetric about the
origin, B = −B.

Theorem 1. Let k be a positive integer such that

(

τ −
√

τ2 − 1
)k

+
(

τ +
√

τ2 − 1
)k

≥ 6

(

d+ k

k

)1/2

.
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Then, for any convex body B ⊂ Rd such that B = −B there is a polytope P with

at most 8

(

d+ k

k

)

vertices such that P = −P and P ⊂ B ⊂ τP .

Letting τ = 1 + ǫ for a small ǫ > 0 we conclude that for any origin-symmetric
convex body B ⊂ Rd there is an origin-symmetric polytope P ⊂ Rd with at most

(

γ√
ǫ

ln
1

ǫ

)d

vertices such that P ⊂ B ⊂ (1+ ǫ)P , where γ > 0 is an absolute constant. In fact,
one can choose any

γ >
e

4
√

2
≈ 0.48

for all sufficiently small 0 < ǫ < ǫ0(γ). This is the first improvement, uniform over
all dimensions d and all origin-symmetric convex bodies B, of the classical volu-
metric bound of (3/ǫ)d for the number of vertices of the approximating polytope.
We note that results of Dudley [4] and of Bronshtein and Ivanov [3] on approxima-
tions convex bodies in the Hausdorff metric imply that one can choose P with at
most γ(d)ǫ−(d−1)/2 vertices with γ(d) of the order of dd/4. For C2-smooth origin-
symmetric convex bodies Gruber obtains an approximating polytope with at most
(γ/ǫ)(d−1)/2 vertices, where γ > 0 is an absolute constant, and ǫ < ǫ0(B) for some
ǫ0(B) > 0 depending on the approximated convex body B [5]. Moreover, it is
proved in [5], see also [2], that the Euclidean ball requires the largest number of
vertices of the approximating polytope as ǫ −→ 0+ in the class of origin symmetric
C2-smooth convex bodies. No such results appear to be known for non-smooth
convex bodies.

Choosing k in Theorem 1 to be constant, we conclude that for any fixed ǫ > 0
and any origin-symmetric convex body B ⊂ Rd of a sufficiently high dimension
d > d0(ǫ), one can find an origin-symmetric polytope P ⊂ Rd with at most dγ/ǫ

vertices such that P ⊂ B ⊂
√
ǫdP , where γ > 0 is an absolute constant. In

other words, to achieve τ =
√
ǫd for any fixed ǫ > 0 in Theorem 1, one can use

approximating polytopes with the number of vertices polynomial in the dimension.
The example of the Euclidean ball shows that if we want to keep the number of
vertices of P polynomial in the dimension, we cannot improve the bound for τ by
more than a logarithmic in d factor.

In the case of a general (that is, not necessarily origin-symmetric) convex body,
the quality of approximation depends on the symmetry coefficient, that is, on the
smallest µ ≥ 1 such that −B ⊂ µB.

Theorem 2. For τ, µ ≥ 1 let us define

λ = λ(τ, µ) =
2τ

µ+ 1
+
µ− 1

µ+ 1
≥ 1.

Let k be a positive integer such that

(

λ−
√

λ2 − 1
)k

+
(

λ+
√

λ2 − 1
)k

≥ 6

(

d+ k

k

)1/2

.
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Then, for any convex body B ⊂ Rd containing the origin in its interior and such

that −B ⊂ µB, there is a polytope P with at most 8

(

d+ k

k

)

vertices such that

P ⊂ B ⊂ τP .

As a function of the symmetry coefficient µ, the number of vertices of P grows
roughly as µd/2 as long as the ratio τ/µ stays small enough. This is the first
improvement, uniform over all dimensions d and all convex bodies B, over the
straightforward µd estimate. We note that results of Gruber [5] imply that if B
is C2-smooth then for all sufficiently small 0 < ǫ < ǫ0(B) one can construct a
polytope P with not more than µd/2(γ/ǫ)(d−1)/2 vertices approximating B within
a factor of τ = 1 + ǫ, where γ > 0 is an absolute constant. No such results appear
to be known for non-smooth convex bodies. It is an interesting question how the
bounds of Theorem 2 can be improved if we are allowed to choose the origin inside
B. Approximating B by the inscribed simplex of the maximum volume produces
τ = d and P with d+ 1 vertices, but not much is known beyond that.

The proofs of Theorems 1 and 2 are found in [1].
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[2] K. Böröczky, Approximation of general smooth convex bodies, Adv. Math. 153 (2000), 325–
341.

[3] E.M. Bronshtein and L.D. Ivanov, The approximation of convex sets by polyhedra (Russian),
Sibirsk. Mat. Zh. 16 (1975), 1110–1112; translation in Siberian Math. J. 16 (1975), no. 5,
852–853.

[4] R.M. Dudley, Metric entropy of some classes of sets with differentiable boundaries, J. Ap-
proximation Theory 10 (1974), 227–236.

[5] P.M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies.
I, Forum Math. 5 (1993), 281–297.

The variance conjecture on some polytopes

Jesús Bastero

(joint work with David Alonso-Gutiérrez)

This talk is based on the paper [1] that will appear in the the Proceedings of the
Asymptotic Geometric Analysis Program in the Fields Institute.

The variance conjecture states that there exists an absolute constant C such
that for every isotropic log-concave vector X , if we denote by |X | its Euclidean
norm, Var |X |2 ≤ Cn.

This conjecture was considered by Bobkov and Koldobsky (see [4]) in the context
of the Central Limit Problem for isotropic convex bodies. It was conjectured before
by Antilla, Ball and Perissinaki (see [2]) that for an isotropic log-concave vector X,
|X | is highly concentrated in a “thin shell” and in this paper the authors proved
that a vector X uniformly distributed on the unit balls Bnp , 1 ≤ p ≤ ∞ satisfies
the variance conjecture. Wojtaszczyk extended in [11] the result the the Orlicz
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balls. Klartag proved the conjecture for random vectors uniformly distributed
on isotropic unconditional convex bodies (see, [9]). The best known (dimension
dependent) bound for general log-concave isotropic random vectors was proved
by Guédon and Milman with a factor n1/3 instead of C (see [7]). Very recently
Eldan, ([5]) obtained a breakthrough showing that the variance conjecture implies
the stronger Kannan, Lovász and Simonovits spectral gap conjecture (see [8])
with an extra polylogarithmic factor. It is also known (see [3], [6]) that these
conjectures are stronger than the hyperplane conjecture, which states that every
convex body of volume 1 has a hyperplane section of volume greater than some
absolute constant.

Our purpose in this lecture is to consider the general variance conjecture: there
exists an absolute constant C such that for every centered log-concave vector X

Var |X |2 ≤ Cλ2XE|X |2

(given a centered log-concave random vector X in Rn, we will denote by λX the
highest eigenvalue of its covariance matrix and if the random vector is isotropic
the covariance matrix is the identity).

The main results are the following

Theorem 1. Let θ ∈ Sn−1 and let K = PHB
n
∞ be the projection of Bn∞ on the

hyperplane H = θ⊥. If X is a random vector uniformly distributed on K then, for
any two orthonormal vectors η1, η2 ∈ H, we have

E〈X, η1〉2〈X, η2〉2 ≤ E〈X, η1〉2E〈X, η2〉2.
Consequently, X satisfies the negative square correlation property with respect to
any orthonormal basis in H and, moreover, the vectors X and TX for all T ∈
GL(n) satisfy the variance conjecture.

Theorem 2. There exists an absolute constant C such that for every hyperplane
H, if X is a random vector uniformly distributed on PHB

n
1 , X verifies the variance

conjecture with constant C, i.e.

Var |X |2 ≤ Cλ2XE|X |2.

Notice that since the general variance conjecture is not invariant under lin-
ear maps it cannot easily be reduced to the isotropic case. We will study how
this conjecture behaves under linear transformations presenting two more results.
We will sketch the proof of the second one here since it does not appear in the
aforementioned paper [1].

Proposition 3. Let X be a centered isotropic, log-concave random vector in Rn

verifying the variance conjecture with constant C1. Let T ∈ GL(n) be any linear
transformation. If U is a random matrix uniformly distributed in O(n) then

EUVar |T ◦ U(X)|2 ≤ CC1‖T ‖2op‖T ‖2HS = CC1λ
2
T◦u(X)E|T ◦ u(X)|2

for any u ∈ O(n), where C is an absolute constant.
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For a non-singular linear map T we introduce the parameter

α(T ) =

(
∑n
i=1 λ

4
i

)1/4

(
∑n
i=1 λ

2
i )

1/2
=

‖T ‖4
‖T ‖HS

where the {λi}n1 are the singular values and ‖T ‖4 is the Schatten norm ‖T ‖4 =
(∑n

i=1 λ
4
i

)1/4
. It is clear that n−1/4 ≤ α(T ) < 1. The next proposition will prove

that, whenever n−α ≤ α(T ) < 1, for 0 < α < 1/4, or even more, α(T )−1 = o(n1/4),
the corollary above is true with high probability

Proposition 4. Let X be an isotropic log-concave random vector in Rn verifying
the variance conjecture with constant C1. There exists an absolut constant C such
that the measure of the set of orthogonal operators U for which the random vector
T ◦ U(X) verifies the variance conjecture with constant CC1 is greater than

1 − C2 exp(−C3nα(T )4)

whenever α(T )4n ≥ 2.

Proof. We consider the function F (U) = Var|T ◦ U(X)|2, the Lipschitz costant is
bounded for above by

L ≤ C

(

∑

i

λ2i

)





∑

j

λ4j





1/2

= Cα(T )2‖T ‖4HS.

Also we bound from below the expected value

EF (U) ≥ 2
‖T ‖4HS
n+ 2

(

nα(T )4 − 1
)

So
EF (U)

L
≥ Cα(T )2

(

1 − 1

nα(T )4

)

> Cα(T )2

whenever α(T )4n ≥ 2. The result follows by using the concentration of measure
phenomena on the group SO(n) (see [10])

P

{

U ∈ SO(n); |F (U) − EF (U)| > 1

2
EF (U)

}

≤ C1 exp

(

−C2n

(

EF

L

)2
)

and we get the result (we note that computing EUF (U) in O(n) or in SO(n) gives
the same result by symmetry). �
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A duality of isoperimetric problems

Andreas Bernig

A definition of volume gives a way to measure volumes on Finsler manifolds.
Roughly speaking, a definition of volume µ associates to each finite-dimensional
normed space (V, ‖·‖) a norm on ΛnV , where n = dimV . We refer to [1, 7] for more
information. The best known examples of definitions of volume are the Busemann
volume µb which equals the Hausdorff measure, the Holmes-Thompson volume µht

which is related to symplectic geometric and Gromov’s mass* µm∗, which thanks
to its convexity properties is often used in Geometric Measure Theory.

To each definition of volume µ may be associated a dual definition of volume
µ∗. For instance, the dual of Busemann’s volume is Holmes-Thompson volume
and vice versa. The dual of Gromov’s mass* is Gromov’s mass, which however
lacks good convexity properties and is less used.

Given a definition of volume and a compact convex set K ⊂ V in a finite-
dimensional normed vector space, we let

Aµ(K) :=

∫

∂K

µ

be the surface area of K, measured with µ. Note that when K has a smooth
boundary, then ∂K is a Finsler manifold. More precisely, each tangent space
Tp∂K ⊂ V carries the induced norm.

The definition of µ is called convex, if for compact convex bodies K ⊂ L, we
have Aµ(K) ≤ Aµ(L). There are many equivalent ways of defining convexity of
volume definitions, we refer to [1] for details. The above mentioned three examples
are convex.

Given a convex definition of volume and an n-dimensional normed space V with
unit ball B, there is a unique (up to translations) compact convex body IµB such
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that

Aµ(K) = nV (K[n− 1], IµB), K ∈ K(V ).

Here V denotes the mixed volume and K(V ) stands for the space of compact
convex bodies in V . IµB is called the isoperimetrix [1].

As its name indicates, the isoperimetrix is related to isoperimetric problems.
More precisely, among all compact convex bodies of a given, fixed volume, a ho-
mothet of the isoperimetrix has minimal µ-surface area.

The isoperimetrices of the above mentioned examples of definitions of volumes
are related to important concepts from convex geometry. For Busemann’s defini-
tion of volume, we have IµbB = ωn(IB)◦, where IB ⊂ V ∗ is the intersection body
of B, (IB)◦ ⊂ V its polar body, and ωn the volume of the (Euclidean) unit ball.
For the Holmes-Thompson volume, we have IµhtB = 1

ωn
Π(B◦), where Π denotes

the projection body. The isoperimetrix for Gromov’s mass* is a dilate of the wedge
body of B.

We introduce a dual isoperimetrix which belongs to the dual Brunn-Minkowski
theory. Recall that in the dual Brunn-Minkowski theory, the natural setting is
that of star bodies (i.e. compact, star shaped bodies, with continuous radial
function). The Minkowski sum of convex bodies is replaced by the radial sum and
mixed volumes by dual mixed volumes. The dual Brunn-Minkowski theory was
developed by Lutwak [4, 5] and plays a prominent role in modern convexity.

Let us describe our main results. The space of star bodies with smooth radial
function in a vector space V is denoted by S∞(V ). Let S ∈ S∞(V ), where V is
a finite-dimensional normed space V . Given a point p ∈ ∂S, the tangent space
Tp∂S is naturally identified with the quotient space V/〈p〉 and inherits the quotient
norm. Therefore ∂S is in a natural way a Finsler manifold. This Finsler metric
was (to the best of our knowledge) first studied in a recent paper by Faifman [3].

We denote by

Ãµ(S) :=

∫

∂S

µ

the surface area of S with respect to a definition of volume µ.
Let us now formulate our main theorem.

Theorem. Let µ be a definition of volume, and V an n-dimensional normed space
with unit ball B.

(1) There exists a star body ĨµB ⊂ V such that

Ãµ(S) = nṼ (S[n− 1], ĨµB), S ∈ S∞(V ).

Here Ṽ denotes the dual mixed volume [4]. We call ĨµB the dual isoperi-
metrix.

(2) Dual isoperimetric problem: Among all smooth star bodies of a given vol-
ume, a dilate of the dual isoperimetrix has maximal surface area.
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(3) Suppose that the dual definition of volume µ∗ is convex. Then the usual
isoperimetrix for the dual definition of volume µ∗ and the dual isoperi-
metrix are related by

ĨµB = (Iµ∗B◦)
◦
.

Corollary. The dual isoperimetrix for Busemann’s definition of volume µb is

Ĩµb(B) = ωn−1Π
◦(B).

while for the Holmes-Thompson volume µht, we have

Ĩµht(B) =
1

ωn−1
I(B◦).

Our second main theorem is an affinely invariant inequality.

Theorem (Surface area of the unit sphere). Let µb be Busemann’s definition
of volume, µht the Holmes-Thompson definition of volume. Let (V,B) be an n-
dimensional normed space. Then

(1)
√
nωn < Ãµht(B) ≤ Ãµb (B) ≤ nωn,

Equality on the right hand side is attained precisely for centered ellipsoids.

The upper bound of this theorem was conjectured (in the two-dimensional case)
by Faifman [3], who gave the non-optimal upper bound of 8. He also gave a lower
bound of 4 and conjectured that 8 log 2 is the optimal lower bound. Our lower
bound is

√
2π ≈ 4.4, which is not optimal.

As a corollary, we prove an upper bound for the quotient girth. Recall that the
girth of a normed space is the length of the shortest symmetric curve on the unit
sphere, measured with the Finsler metric induced by the norm. Analogously, the
quotient girth is the length of the shortest symmetric curve on the unit sphere,
measured with the quotient Finsler metric.

Corollary. In any dimension, the quotient girth is bounded from above by 2π,
with equality precisely for ellipsoids.
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[1] J. C. Álvarez Paiva and A. C. Thompson. Volumes on normed and Finsler spaces. In A
sampler of Riemann-Finsler geometry, volume 50 of Math. Sci. Res. Inst. Publ., pages

1–48. Cambridge Univ. Press, Cambridge, 2004.
[2] Andreas Bernig The isoperimetrix in the dual Brunn-Minkowski theory. Preprint.
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Convergence in shape of Steiner symmetrizations

Gabriele Bianchi

(joint work with A. Burchard, P. Gronchi and A. Volčič)

Steiner symmetrization is often used to identify the ball as the solution to
geometric optimization problems. Starting from any given body, one can find
sequences of iterated Steiner symmetrals that converge to the centered ball of the
same volume as the initial body. If the objective functional improves along the
sequence, the ball must be optimal.

Recently, several authors have studied how a sequence of Steiner symmetriza-
tions can fail to converge to the ball. This may happen, even if the sequence
of directions is dense in Sn−1. Steiner symmetrizations of a convex body along
any dense sequence of directions can be made to converge or diverge just by re-
ordering [3], and any given sequence of Steiner symmetrizations (convergent or not)
can be realized as a subsequence of a non-convergent sequence [4, Proposition 5.2].

In contrast, a sequence of Steiner symmetrizations that uses only finitely many
distinct directions always converges [6]. The limit may be symmetric under all
rotations or under a non-trivial subgroup, depending on the algebraic properties
of those directions that appear infinitely often.

A number of authors have studied Steiner symmetrizations along random se-
quences of directions. If the directions are chosen independently, uniformly at
random on the unit sphere, then the corresponding sequence of Steiner symme-
trals converges almost surely to the ball simultaneously for all choices of the initial
set [8, 9, 10]. Others have investigated the rate of convergence of random and non-
random sequences [2, 4, 5, 7].

In this talk we address several questions that were raised in these recent pa-
pers. The examples of non-convergence presented there use sequences of Steiner
symmetrizations along directions where the differences between successive angles
are square summable. Our main result says that such sequences will converge
if the Steiner symmetrizations are followed by suitable isometries. We call this
convergence in shape.

Theorem 1 ([1]). Let (um) be a sequence in Sn−1 with um−1 · um = cosαm,
where (αm) is a sequence in (0, π/2) that satisfies

∑∞
m=1 α

2
m <∞. There exists a

sequence of rotations (Rm) such that for every non-empty compact set K ⊂ Rn,
the rotated symmetrals

(1) Km = RmSum
. . .Su1K

converge in Hausdorff distance and in symmetric difference to a compact set L.

The proof of the theorem poses two technical challenges: to show convergence
of a sequence of symmetrals to an unknown limit, rather than a ball; and to show
convergence in Hausdorff distance for an arbitrary compact initial set. This is more
delicate than convergence in symmetric difference, because Steiner symmetrization
is not continuous and Lebesgue measure is only upper semicontinuous on compact
sets.
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Next lemma may be of independent interest. The symbols λn, ∆ and Lδ denote
respectively Lebesgue measure, symmetric difference and the Minkowski sum of L
and of a ball centered at o and of radius δ.

Lemma 2 ([1]). Let L and Km, m ≥ 1, be non-empty compact sets.

(1) The sequence (Km) converges in Hausdorff distance to L if and only if

lim
m→∞

λn((Km)δ△Lδ) = 0

for each δ > 0.
(2) If (Km) converges in Hausdorff distance to L and each Km is obtained from

a compact set K via finitely many Steiner symmetrizations and Euclidean
isometries, then

lim
m→∞

λn(Km△L) = 0 .

In particular, λn(L) = λn(K).

To address the geometric problem of identifying the limits of convergent subse-
quences, we use functionals of the form

Ip(K) =

∫

Rn

φ(|x− p|)ψ(dist(x,K)) dx ,

where K is a compact set, p a point in Rn, the function φ is increasing, and ψ is
decreasing. Then Ip(K) decreases under simultaneous Steiner symmetrization of
K and p. Note that by setting p = o, φ(t) = t2 for all t, ψ(0) = 1, and ψ(t) = 0
for t > 0, we recover the classical inequality for the moment of inertia.

We consider the special case where φ and ψ are the characteristic functions
of [r,∞) and [0, δ], respectively. Lemma 3.2 in [1] implies that for every pair of
strictly monotone functions φ and ψ, the functional decreases strictly unless K and
p agree with their Steiner symmetrals up to a common translation. By allowing
p 6= o, we obtain information about the intersection of the limiting shape with a
family of non-centered balls and half-spaces. Lemma 3.3 in [1] implies that these
intersections uniquely determine the shape.

The previous lemmas are also useful for establishing convergence of Steiner sym-
metrals in Hausdorff distance in other situations, without the customary convexity
assumption on the initial set. We illustrate this with two more examples.

We consider Steiner symmetrization in the plane along non-random sequences
of directions that are uniformly distributed (in the sense of Weyl) on S1, a property
more restrictive than being dense. Theorem 5.1 in [1] shows that a sequence of
Steiner symmetrals along a Kronecker sequence of direction always converges to a
ball. In the opposite direction, we give examples where convergence to a ball fails
for certain uniformly distributed sequences.

Finally, we strengthen a recent result of Klain [6] on Steiner symmetrization
along sequences chosen from a finite set of directions. Klain proves that when K
is a convex body the sequence of Steiner symmetrals always converges. We extend
this result to compact sets.
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Theorem 3 ([1]). Let (um) be a sequence of vectors chosen from a finite set
F = {v1, . . . , vk} ⊂ Sn−1. Then, for every compact set K ⊂ Rn, the symmetrals

Km = Sum
. . .Su1K

converge in Hausdorff distance and in symmetric difference to a compact set L.
Furthermore, L is symmetric under reflection in each of the directions v ∈ F that
appear in the sequence infinitely often.

We conclude with two open problems. Here C∗ denotes the centered ball of the
same volume as C.

Problem 4. Do iterated Steiner symmetrals Sum
. . .Su1K always converge in

shape, without any assumptions on the sequence of directions?

Problem 5. Assume that a sequence of directions (um) is such that (Sum
. . .Su1C)

converges to C∗ for each convex body C. Is it true that (Sum
. . .Su1K) converges

to K∗ for each compact set K?
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Towards a logarithmic Brunn-Minkowski theory

Károly J. Böröczky

(joint work with Erwin Lutwak, Deane Yang, Gaoyong Zhang)

The fundamental Brunn-Minkowski inequality for convex bodies (compact convex
subsets with nonempty interiors) states that for convex bodies K,C in Euclidean
n-space, Rn, and for λ ∈ (0, 1), the volume of the bodies and of their Minkowski
combination (1 − λ)K + λC = {(1 − λ)x+ λy : x ∈ K and y ∈ C}, are related by

(1) V ((1 − λ)K + λC) ≥ V (K)1−λV (C)λ,
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with equality if and only if K and C are homothetic. The Brunn-Minkowski
inequality exposes the crucial log-concavity property of the volume functional (see
Gardner [6], Gruber [7] or Schneider [16] for in-depth discussion).

We write hK to denote the support function of K in Rn, and SK to denote
the surface area measure of K on Sn−1. An equivalent formulation of the Brunn-
Minkowski inequality is the Minkowski inequality for mixed volumes, which we
write now in the form

(2) if V (K) = V (C), then

∫

Sn−1

hC dSK ≥
∫

Sn−1

hk dSK ,

with equality if and only if K and L are translates.
According to the solution of the Minkowski problem, a non-trivial Borel measure

µ is the surface area measure of some convex body K if and only if
∫

Sn−1

u dµ(u) = o, and

µ(L ∩ Sn−1) < µ(Sn−1) for any linear (n− 1)-subspace L.(3)

The solution is homothetic to a convex body minimizing
∫

Sn−1 hC dµ under the
condition V (C) = 1. It follows from the equality conditions for the Minkowski
inequality (2) that SK = SC implies that K and L are translates. We observe that
if µ is even, then the only condition is (3) on µ, and there is unique o-symmetric
solution.

We note that an Lp version of the Brunn-Minkowski theory has been developed
by Lutwak, Yang and Zhang, where p = 1 is the classical case above. Here we
discuss only the case of o-symmetric convex bodies. The Lp surface area measure is

defined by dSK,p = h1−pK dSK for p > 0 by Lutwak [12], and the even Lp Minkowski
problem is solved by Lutwak, Yang and Zhang [13]. For p > 0 and λ ∈ (0, 1), the
Lp Minkowski combination is defined by Firey in the 1960’s (see [12]) by

(1 − λ)K +p λC = {x ∈ Rn : 〈x, u〉p ≤ (1 − λ)hK(u)p + λhC(u)p ∀u ∈ Sn−1}.
For p > 1, the Lp Brunn-Minkowski inequality follows from the classical one.

Recently, Böröczky, Lutwak, Yang and Zhang considered an L0, or logarithmic
Brunn-Minkowski theory in a series of papers. The L0 surface area measure of an
o-symmetric convex body K is the cone-volume measure VK on Sn−1, which is
defined by dVK = (hK/n)dSK . Its study was initiated by Gromov and Milman [8]
(see for example Naor [14], and Paouris and Werner [15] for recent results).

THEOREM 1 (Even logarithmic Minkowski problem, BLYZ [3]). For an even
Borel measure µ on Sn−1, µ = VK for some o-symmetric convex body K iff

(1) µ(L ∩ Sn−1) ≤ dimL
n µ(Sn−1) for any linear subspace L 6= {o},Rn

(2) in the case of equality for some L, we have suppµ ⊂ L ∪ L′ for some
complementary L′.

The solution is obtained via minimizing
∫

Sn−1 log hC dµ assuming V (C) = 1. In
the case of polytopes, the planar case of Theorem 1 was obtained by Stancu [17]
and [18], and the necessity of (1) is proved independently by Henk, Schürmann
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and Wills [10] and He, Leng and Li [9]. The properties in Theorem 1 are linked
to an isotropic position of a measure.

THEOREM 2 (BLYZ). For a non-trivial Borel measure µ on Sn−1, (1) and (2)
in Theorem 1 hold iff there exists A ∈ GL(n) such that

∫

Sn−1

Au

‖Au‖ ⊗ Au

‖Au‖ dµ(u) = 1
n Idn.

Theorem 2 for discrete measures is due to Carlen, Lieb and Loss [4] in their
study of the equality case of the Brascamp-Lieb inequality. The sufficiency when
strict inequality holds in (1) for any linear subspace L is due to Klartag [11].

Concerning uniqueness of the cone volume measure, we conjecture that VK =
VC for o-symmetric convex bodies K and C with V (K) = V (C) iff K and C have
dilated direct summands; namely, K = K1 ⊕ . . . ⊕ Km and C = C1 ⊕ . . . ⊕ Cm
with Ki = λiCi for λ1, . . . , λm > 0. This conjecture would follow from

Conjecture 1 (Logarithmic Minkowski inequality, BLYZ [2]). If K and C are
o-symmetric convex bodies with V (K) = V (C), then

∫

Sn−1

log hC dVK ≥
∫

Sn−1

log hK dVK ,

with equality iff K and C have dilated direct summands.

To logarithmic analogue of the Minkowski linear combination for λ ∈ (0, 1) is

(1 − λ)K +0 λC = {x ∈ Rn : 〈x, u〉 ≤ hK(u)1−λhC(u)λ ∀u ∈ Sn−1}.
The following conjecture is equivalent with Conjecture 1.

Conjecture 2 (Logarithmic Brunn-Minkowski inequality, BLYZ [2]). If λ ∈ (0, 1),
and K, C are o-symmetric convex bodies, then

V ((1 − λ)K +0 λC) ≥ V (K)1−λV (C)λ,

with equality iff K and C have dilated direct summands.

Conjecture 2 is naturally stronger than the Brunn-Minkowski inequality for o-
symmetric convex bodies. It is proved in the plane by [2], and for unconditional
convex bodies (without the case of equality) by Bollobás, I. Leader [1]. Conjec-
ture 2 (without the case of equality) also makes sense if the Lebesgue measure in
Rn is replaced by any even log-concave measure. For unconditional convex bod-
ies, this generalized conjecture was proved by Cordero-Erausquin, Fradelizi and
Maurey [5]. If the log-concave measure is the Gaussian measure, and K and C
are dilates, then the conjectured inequality was popularized as (B)-conjecture, and
proved in [5].
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Integer Programming via Thin Lattice Projections

Daniel Dadush

(joint work with Christopher Peikert, Santosh Vempala)

Given a polyhedron P = {x ∈ Rn : Ax ≤ b}, the Integer Programming Problem
(IP) is to decide whether P ∩Zn = ∅, where Zn is the n-dimensional integer lattice.

The IP problem has found many applications in Computer Science, and is con-
sidered a fundamental problem in Operations Research. The first theoretically

efficient algorithm for IP was developed by Lenstra [Len83], who gave a 2O(n3)

time and poly(n) space algorithm for the problem based on ideas from the ge-
ometry of numbers. Lenstra’s result was greatly improved by Kannan [Kan87],
who reduced the complexity to 2O(n)n2.5n, and most recently by Hildebrand and
Köppe [HK10], who further improved the complexity to 2O(n)n2n.

Improving on previous algorithms, we give a new 2O(n)nn time and 2n space
algorithm. Our main technical contribution is a new method for decomposing an
IP into subproblems based on thin lattice projections. We also show that assuming
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a conjecture of Kannan and Lovász [KL88], our algorithmic strategy could yield a
2O(n)(logn)n time algorithm for IP, providing a way to overcome the nO(n) barrier
of previous approaches.
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The Busemann-Petty Problem in the Complex Hyperbolic Space

Susanna Dann

The Busemann-Petty problem asks the following question. Given two origin sym-
metric convex bodies K and L in Rn such that

Voln−1(K ∩H) ≤ Voln−1(L ∩H)

for every hyperplane H in Rn containing the origin, does it follow that

Voln(K) ≤ Voln(L)?

The answer is affirmative for n ≤ 4 and negative for n ≥ 5. This problem, posed
in 1956 in [1], was solved in the late 90’s as a result of a sequence of papers
[2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 12, 10], see [15], p. 3-5, for the history of the
solution. Since then the Busemann-Petty problem was studied on other spaces as
were its numerous generalizations.

In this talk we discuss the Busemann-Petty problem in the complex hyperbolic
n-space. For ξ ∈ Cn with |ξ| = 1, denote by

Hξ := {z ∈ Cn : (z, ξ) =

n
∑

k=1

zkξk = 0}

the complex hyperplane through the origin perpendicular to ξ. We identify Cn

with R2n via the mapping

(1) (ξ11 + iξ12, . . . , ξn1 + iξn2) 7→ (ξ11, ξ12, . . . , ξn1, ξn2) .

Under this mapping the hyperplane Hξ turns into a (2n−2)-dimensional subspace
of R2n orthogonal to the vectors

ξ = (ξ11, ξ12, . . . , ξn1, ξn2) and ξ⊥ = (−ξ12, ξ11, . . . ,−ξn2, ξn1) .

A convex body K in R2n is called Rθ-invariant, if for every θ ∈ [0, 2π] and every
ξ = (ξ11, ξ12, . . . , ξn1, ξn2) ∈ R2n

‖ξ‖K = ‖Rθ(ξ11, ξ12), . . . , Rθ(ξn1, ξn2)‖K ,
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where Rθ stands for the counterclockwise rotation by an angle θ around the origin
in R2.

An origin symmetric body K in Hn
C

is called convex if under the mapping (1)
it corresponds to an Rθ-invariant body in R2n contained in the unit ball such
that for any pair of points in K ⊂ R2n the geodesic segment with respect to the
Bergman metric on Hn

C
joining them also belongs to K. Bodies in R2n contained

in the unit ball and satisfying the latter condition will be called h-convex. While
it is not true in general that a convex body contained in the unit ball is h-convex,
one can dilate a convex body with strictly positive curvature to make it h-convex.
We denote the volume element on Hn

C
by dµn and the volume of a body K in R2n

with respect to this volume element by HVol2n(K).
Now the Busemann-Petty problem in Hn

C
can be posed as follows. Given two

Rθ-invariant h-convex bodies K and L in R2n such that

HVol2n−2(K ∩Hξ) ≤ HVol2n−2(L ∩Hξ)

for any element ξ of the unit sphere S2n−1 of R2n, does it follow that

HVol2n(K) ≤ HVol2n(L)?

Analytic solutions of the Busemann-Petty problem in different settings are based
on establishing a connection between a certain distribution and the problem. In
the following two propositions we describe the connection between the Busemann-

Petty problem in Hn
C

and the distribution
‖x‖−2

K

1−(|x|‖x‖−1
K )

2 .

Proposition 1. Let K be an Rθ-invariant star body in R2n, contained in the open

unit ball, such that
‖x‖−2

K

1−(|x|‖x‖−1
K )2 is a positive definite distribution on R2n. And let

L be an Rθ-invariant star body in R2n, contained in the open unit ball, so that

HVol2n−2(K ∩Hξ) ≤ HVol2n−2(L ∩Hξ)

for every ξ ∈ S2n−1. Then

HVol2n(K) ≤ HVol2n(L) .

Proposition 2. Suppose there is an infinitely smooth complex convex body K in

Bn with strictly positive curvature so that
‖x‖−2

K

1−(|x|‖x‖−1
K )2 is not a positive definite

distribution on R2n. Then one can perturb the body K to construct another in-
finitely smooth complex convex body L with strictly positive curvature, so that for
every ξ ∈ S2n−1

HVol2n−2(L ∩Hξ) ≤ HVol2n−2(K ∩Hξ) ,

but

HVol2n(L) > HVol2n(K) .

Next we construct counterexamples to the Busemann-Petty problem in Hn
C

for
n ≥ 4.
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Theorem 1. There exist Rθ-invariant h-convex bodies K and L in R2n with n ≥ 4
satisfying

HVol2n−2(K ∩Hξ) < HVol2n−2(L ∩Hξ)

for every ξ ∈ S2n−1, but

HVol2n(K) > HVol2n(L) .

In view of Theorem 1, we only have to find out what happens in dimensions
one, two and three. The case of the complex dimension one is trivial. For the case
of complex dimension two we prove:

Lemma 1. For any Rθ-invariant star body K in R4, contained in the unit ball,

the distribution
‖x‖−2

K

1−(|x|‖x‖−1
K )2 is positive definite.

And for complex dimension three we show:

Lemma 2. There is an infinitely smooth Rθ-invariant convex body K in R6 con-

tained in the unit ball for which the distribution
‖x‖−2

K

1−(|x|‖x‖−1
K )

2 is not positive defi-

nite.

Combining the above result we conclude:

Theorem 2. The answer to the Busemann-Petty problem in the complex hyper-
bolic n-space, Hn

C
, is affirmative for n ≤ 2 and negative for n ≥ 3.
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On the concavity of entropy power in the Brunn-Minkowski theory

Matthieu Fradelizi

(joint work with Arnaud Marsiglietti)

Elaborating on the similarity between the entropy power inequality and the Brunn-
Minkowski inequality, Costa and Cover conjectured in [4] the 1

n -concavity of the
(outer) parallel volume of measurable sets as an analogue of the concavity of
entropy power. We investigate this conjecture and study its relationship with
known geometric inequalities.

Costa and Cover [4] noticed the similarity between the entropy power and the
Brunn-Minkowski inequalities: for every independent random vectors X , Y in Rn,
with finite entropy and for every compact sets A and B in Rn one has

N(X + Y ) ≥ N(X) +N(Y ) and |A+B| 1
n ≥ |A| 1

n + |B| 1
n ,

where

N(X) =
1

2πe
e

2
n
H(X)

denotes the entropy power of X , H(X) = −
∫

f ln f is the entropy of X with
density f and where | · | denote the n-dimensional Lebesgue measure. Applying
the Brunn-Minkowski inequality to B = εBn2 and letting ε tend to 0 one gets the
classical isoperimetric inequality

|∂A|
|A|n−1

n

≥ n|Bn2 |
1
n =

|∂Bn2 |
|Bn2 |

n−1
n

,

where the outer Minkowski surface area is defined by

|∂A| = lim
ε→0

|A+ εBn2 | − |A|
ε

,

whenever the limit exists. In the same way, Costa and Cover applied the entropy
power inequality to Y =

√
εG, where G is a standard Gaussian random vector

(the
√
ε comes from the homogeneity of entropy power N(

√
εX) = εN(X)) and by

letting ε tend to 0, they obtained the following ”isoperimetric entropy inequality”

N(X)I(X) ≥ n, where I(X) =

∫ |∇f |2
f

is the Fisher information of X , thanks to de Bruijn’s identity

d

dt
H(X +

√
tG) =

1

2
I(X +

√
tG),
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which states that the Fisher information is the derivative of the entropy along the
heat semi-group. Notice that this ”isoperimetric entropy inequality” is equivalent
to the Log-Sobolev inequality for the Gaussian measure, see [1] chapter 9.

This analogy between the results of the Information theory and the Brunn-
Minkowski theory was later extended and further explained and unified through
Young’s inequality by Dembo [5] and later on by Dembo, Cover and Thomas [6].
Each of these theories deal with a fundamental inequality, the Brunn-Minkowski
inequality for the Brunn-Minkowski theory and the entropy power inequality for
the Information theory. The objects of each theories are fellows: to the compact
sets in the Brunn-Minkowski theory correspond the random vectors in the Infor-
mation theory, the Gaussian random vectors play the same role as the Euclidean
balls, the entropy power N corresponds to the 1/n power of the volume | · |1/n and,
taking logarithm, the entropy H is the analogue of the logarithm of the volume
log | · |. Hence one can conjecture that properties of one theory fit into the other
theory.

Thus, Costa and Cover [4], as an analogue of the concavity of entropy power
with added Gaussian noise, which states that

t 7→ N(X +
√
tG)

is a concave function (see [3] and [8]), formulated the following conjecture:

Let A be a bounded measurable set in Rn then the function t 7→ |A+ tBn2 |
1
n is

concave on R+.
They also showed using the Brunn-Minkowski inequality that this conjecture

holds true if A is a convex set.

In this talk, we investigate this conjecture and study its relationship with known
geometric inequalities. We prove that the conjecture holds true in dimension 1 for
all measurable sets and in dimension 2 for connected sets. In dimension n ≥ 3, we
establish that the connectivity hypothesis is not enough and that the conjecture
is false in general. We then discuss additional hypotheses which ensure its valid-
ity: we conjecture that it holds true for sufficiently large t and we establish it for
special sets A.

Notice that Guleryuz, Lutwak, Yang and Zhang [7] also pursued these analogies
between the two theories and more recently, Bobkov and Madiman [2] established
an analogue in Information theory of the Milman’s reverse Brunn-Minkowski in-
equality.
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[1] C. Ané, S. Blachère, D. Chafäı, P. Fougères, I. Gentil, F. Malrieu, C. Roberto, G. Scheffer
with a preface by D. Bakry, and M. Ledoux, Sur les inégalités de Sobolev logarithmiques, (in
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Addition

Richard J. Gardner

(joint work with Daniel Hug, Wolfgang Weil, Lukas Parapatits, Franz
E. Schuster)

The talk gave an overview of some of the results in three papers, representing joint
work with Daniel Hug and Wolfgang Weil of the Karlsruhe Institute of Technol-
ogy [1], [2] and Lukas Parapatits and Franz Schuster of the Vienna University of
Technology [3].

In [1], an investigation is launched into the fundamental characteristics of opera-
tions between sets, with a focus on compact convex sets and star sets (compact sets
star-shaped with respect to the origin) in Rn. It is proved that if n ≥ 2, with three
trivial exceptions, an operation between origin-symmetric compact convex sets is
continuous in the Hausdorff metric, GL(n) covariant, and associative if and only
if it is Lp addition for some 1 ≤ p ≤ ∞. It is also demonstrated that if n ≥ 2, an
operation ∗ between arbitrary compact convex sets is continuous in the Hausdorff
metric, GL(n) covariant, and has the identity property (i.e., K∗{o} = K = {o}∗K
for all compact convex sets K, where o denotes the origin) if and only if it is Min-
kowski addition. These results are obtained via characterizations of operations
that are projection covariant, meaning that the operation can take place before
or after projection onto subspaces, with the same effect. For example, projection
covariant operations ∗ between origin-symmetric compact convex sets are precisely
those given by the formula

hK∗L(x) = hM (hK(x), hL(x)) ,

for all x ∈ Rn and some 1-unconditional compact convex set M in R2. This turns
out to be equivalent to

K ∗ L = K ⊕M L,

where the operation ⊕M , called M -addition and first introduced by V. Protasov,
is defined by

K ⊕M L = {ax+ by : x ∈ K, y ∈ L, (a, b) ∈M}.
In [3], the goal is to obtain a characterization of Blaschke addition ♯. The

main result is that if n ≥ 3, then an operation ∗ between origin-symmetric convex



3502 Oberwolfach Report 59/2012

bodies in Rn is uniformly continuous in the Lévy-Prokhorov metric (i.e., the usual
Lévy-Prokhorov metric between the surface area measures) and GL(n) covariant
if and only if K ∗ L = aK ♯ bL, for some a, b ≥ 0 and all origin-symmetric convex
bodies K and L. Along the way, it is shown that if n ≥ 3, then an operation
∗ between origin-symmetric zonoids in Rn is continuous in the Hausdorff metric
and GL(n) covariant if and only if K ∗ L = aK + bL, for some a, b ≥ 0 and all
origin-symmetric zonoids K and L.

A full set of examples is provided in [1] and [3] showing that none of the various
properties assumed in these results can be omitted.

The Orlicz-Brunn-Minkowski theory, introduced by Lutwak, Yang, and Zhang,
is a new extension of the classical Brunn-Minkowski theory. It represents a gen-
eralization of the Lp-Brunn-Minkowski theory, analogous to the way that Orlicz
spaces generalize Lp spaces. For a convex function ϕ : [0,∞) → [0,∞) with
ϕ(0) = 0 and ϕ(1) > 0, an appropriate way of combining arbitrary sets in Rn

is introduced in [2]. This new operation, called Orlicz addition, has several de-
sirable properties, but is not associative unless ϕ(t) = tp for some p ≥ 1. It is
shown that Orlicz addition is very closely related to M -addition. Inequalities of
the Brunn-Minkowski type are obtained, both for M -addition and Orlicz addition.
The new Orlicz-Brunn-Minkowski inequality implies the Lp-Brunn-Minkowski in-
equality. An Orlicz-Minkowski inequality is also obtained, involving a new Orlicz
mixed volume equal to the first variation of volume with respect to Orlicz addition,
that generalizes the Lp-Minkowski inequality. This has connections with the con-
jectured log-Brunn-Minkowski inequality of Lutwak, Yang, and Zhang, and in fact
these two inequalities together are shown to split the classical Brunn-Minkowski
inequality.

References

[1] R. J. Gardner, D. Hug, and W. Weil, Operations between sets in geometry, J. Europ. Math.
Soc., to appear.

[2] R. J. Gardner, D. Hug, and W. Weil, Orlicz addition, M-addition, and Orlicz inequalities,
preprint.

[3] R. J. Gardner, L. Parapatits, and F. E. Schuster, A characterization of Blaschke addition,
preprint.



Convex Geometry and its Applications 3503

Geometry of the Lq-centroid bodies of an isotropic log-concave
measure

Apostolos Giannopoulos

(joint work with Pantelis Stavrakakis, Antonis Tsolomitis, Beatrice-Helen
Vritsiou)

Given a convex body K of volume 1 or a log-concave probability measure µ on
Rn, we define the Lq-centroid bodies Zq(K) or Zq(µ), q ∈ (0,+∞), through their
support function hZq(K) or hZq(µ), which is defined as follows: for every y ∈ Rn,

(1) hZq(K)(y) := ‖〈·, y〉‖Lq(K) =

(∫

K

|〈x, y〉|qdx
)1/q

,

hZq(µ)(y) := ‖〈·, y〉‖Lq(µ) =

(∫

Rn

|〈x, y〉|qdµ(x)

)1/q

.

These bodies then incorporate information about the distribution of linear func-
tionals with respect to the uniform measure on K or with respect to the probability
measure µ. The Lq-centroid bodies were introduced, under a different normaliza-
tion, by Lutwak, Yang and Zhang in [6], while in [7] for the first time, and in [8]
later on, Paouris used geometric properties of them to acquire detailed information
about the distribution of the Euclidean norm with respect to the uniform measure
on isotropic convex bodies. An asymptotic theory for the Lq-centroid bodies has
since been developed in the context of isotropic measures and it seems to advance
in parallel with all recent developments in the area.

Recall that a convex body K in Rn is called isotropic if it has volume 1, it is
centered, i.e. its barycenter is at the origin, and if its inertia matrix is a multiple
of the identity matrix: there exists a constant LK > 0 such that

(2)

∫

K

〈x, θ〉2dx = L2
K

for every θ in the Euclidean unit sphere Sn−1. Similarly, a log-concave probability
measure µ on Rn is called isotropic if its barycenter is at the origin and if its inertia
matrix is the identity matrix; in that case the isotropic constant of the measure is
defined as

(3) Lµ := sup
x∈Rn

(

fµ(x)
)1/n

,

where fµ is the density of µ with respect to the Lebesgue measure. One very
well-known open question in the theory of isotropic measures is the hyperplane
conjecture, which asks if there exists an absolute constant C > 0 such that

(4) Ln := max{LK : K is isotropic in Rn} ≤ C

for all n ≥ 1. Bourgain proved in [1] that Ln ≤ c 4
√
n logn, while Klartag [5]

obtained the bound Ln ≤ c 4
√
n.
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A motivation for our work is a recent reduction [4] of the hyperplane conjecture
to the study of geometric properties of the Lq-centroid bodies, and in particular
to the study of the parameter

(5) I1
(

K,Z◦
q (K)

)

:=

∫

K

‖x‖Z◦
q (K)(x)dx =

∫

K

hZq(K)(x)dx.

The main result of [4] is, in a sense, a continuation of Bourgain’s approach to
the problem and, roughly speaking, can be formulated as follows: Given q ≥ 2
and 1

2 ≤ s ≤ 1, an upper bound of the form I1(K,Z◦
q (K)) ≤ C1q

s
√
nL2

K for all
isotropic convex bodies K in Rn leads to the estimate

(6) Ln ≤ C2
4
√
n logn

q
1−s
2

.

Bourgain’s estimate may be recovered by choosing q = 2, however, clarifying the
behaviour of I1(K,Z◦

q (K)) might allow one to use much larger values of q. This
behaviour is most naturally related to the geometry of the bodies Zq(K), and
especially how this geometry is affected by or affects the geometry of the body
K. This is not yet fully understood and, in view of (6), we believe that its deeper
study would be very useful.

In the range 2 ≤ q ≤ √
n some basic global parameters of the bodies Zq(µ) are

completely determined: the volume radius and the mean width of Zq(µ) are of
the same order

√
q. We provide new information on the local structure of Zq(µ),

which in turn has some interesting consequences. Our first main result concerns
proportional projections of the centroid bodies.

Theorem 1. Let µ be an isotropic log-concave measure on Rn. Fix 1 ≤ α < 2.
For every 0 < ε < 1 and any q ≤ √

εn there are k ≥ (1 − ε)n and F ∈ Gn,k such
that

(7) PF
(

Zq(µ)
)

⊇ c(2 − α)ε
1
2+

2
α
√
q BF ,

where c > 0 is an absolute constant (independent of α, ε, the measure µ, q or n).
Moreover, for any 2 ≤ q ≤ εn there are k ≥ (1 − ε)n and F ∈ Gn,k such that

(8) PF
(

Zq(µ)
)

⊇ c1(2 − α)ε
1
2+

2
α

Lεn

√
q BF ⊇ c2(2 − α)ε

1
4+

2
α

4
√
n

√
q BF ,

where c1, c2 > 0 are absolute constants.

Let us mention that the dual result is a direct consequence of the low M∗-
estimate, since the mean width of Zq(µ) is known to be of the order of

√
q: if

2 ≤ q ≤ √
n and if ε ∈ (0, 1) and k = (1 − ε)n, then a subspace F ∈ Gn,k satisfies

(9) PF (Z◦
q

(

µ)
)

⊇ c1
√
ε√
q
BF

with probability greater than 1 − exp(−c2εn), where c1, c2 > 0 are absolute con-
stants.
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Next. we discuss bounds for the covering numbers of a Euclidean ball by Zq(µ).
It was proved in [2] and [3] that if µ is an isotropic log-concave measure on Rn

then, for any 1 ≤ q ≤ n and t ≥ 1,

(10) logN
(

Zq(µ), c1t
√
qBn2

)

≤ c2
n

t2
+ c3

√
qn

t
,

where c1, c2, c3 > 0 are absolute constants. Using Theorem 1 we obtain regular
entropy estimates for the dual covering numbers.

Theorem 2. Let µ be an isotropic log-concave measure on Rn. Assume 1 ≤ α < 2.
Then, for any q ≤ √

n and any

1 ≤ t ≤ min
{√

q, c1(2 − α)−1(n/q2)
α+4
2α

}

we have

(11) logN
(√
qBn2 , tZq(µ)

)

≤ c(α)
n

t
2α

α+4

max

{

log
2q

t2
, log

1

(2 − α)t

}

,

where c(α) ≤ C(2 − α)−2/3 and c1, C are absolute constants. Moreover, for any
2 ≤ q ≤ n and any

1 ≤ t ≤ min

{√
q, c2(2 − α)−1Ln

(

n

q

)
α+4
2α
}

we have

(12) logN
(√
qBn2 , tZq(µ)

)

≤ c(α)L
2α

α+4
n

n

t
2α

α+4

max

{

log
2q

t2
, log

Ln
(2 − α)t

}

,

where c(α) is as above and c2 is an absolute constant.

Note that, since Zq(µ) ⊇ Bn2 , we are interested in bounds for the above covering
numbers when t is in the interval [1,

√
q]. An analysis of the restrictions in Theorem

2 shows that, given any q ≤ n3/7, (11) holds true with any t in the “interesting”
interval, while the same is true for (12) as long as q ≤ √

Lnn
3/4. Although all these

estimates are most probably not optimal, we can still conclude that Zq(µ), with

q ≤ n3/7 or q ≤ √
Lnn

3/4, is a β-regular convex body for some concrete positive
value of β. As a consequence of this fact we get an upper bound for the parameter

M
(

Zq(µ)
)

=

∫

Sn−1

‖x‖Zq(µ) dσ(x).

Recall that the dual Sudakov inequality of Pajor and Tomczak-Jaegermann pro-
vides 2-regular entropy estimates for the numbers N(Bn2 , tC) in terms of M(C),
namely it shows that

logN(Bn2 , tC) ≤ cn

(

M(C)

t

)2

for every t ≥ 1. We use in a converse manner the entropy estimates of Theorem 2
to obtain non-trivial upper bounds for M(Zq(µ)).
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Theorem 3. Let µ be an isotropic log-concave measure on Rn. For every 1 ≤ q ≤
n3/7,

(13) M
(

Zq(µ)
)

≤ C
(log q)5/6

6
√
q

.

Moreover, for every q such that L2
n log2 q ≤ q ≤ √

Ln n
3/4,

(14) M
(

Zq(µ)
)

≤ C
3
√
Ln(log q)5/6

6
√
q

.

Observe now that, if K is an isotropic convex body in Rn with isotropic constant
LK , then the measure µK with density fµK

(x) := LnK1K/LK
(x) is isotropic and,

for every q > 0, it holds that Zq(K) = LKZq(µK). Using also the fact that
M(K) ≤M(Zq(K)) for every symmetric convex body K and every q > 0, we can
use the above bounds for M(Zq(µK)) to obtain an upper bound for M(K) in the
isotropic case.

Theorem 4. Let K be a symmetric isotropic convex body in Rn. Then,

M(K) ≤ C
4
√
Ln(log n)5/6

LK 8
√
n

.

This is a question that until recently had not attracted much attention. Valet-
tas, using a slightly different approach, has shown that

M(K) ≤ C(log n)1/3

12
√
nLK

for every symmetric isotropic convex body K in Rn, where C > 0 is an absolute
constant. Note that, on the other hand, there are many approaches concerning the
corresponding question about the mean width that give the best currently known
estimate:

w(K) ≤ Cn3/4LK

for every isotropic convex body K in Rn. Nevertheless, this problem as well
remains open (for a discussion about it, see [3] and the references therein).
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On the roots of the Wills functional

Maŕıa A. Hernández Cifre

(joint work with Jesús Yepes Nicolás)

For convex bodies K,E ∈ Kn (compact and convex sets in Rn) and a non-negative
real number λ, the well-known Steiner formula states that the volume of the
Minkowski addition K+λE can be expressed as a polynomial of degree (at most)
n in the parameter λ,

vol(K + λE) =

n
∑

i=0

(

n

i

)

Wi(K;E)λi;

here the coefficients Wi(K;E) are called the relative quermassintegrals of K with
respect to E, and they are a special case of the more general defined mixed volumes
(see e.g. [5, s. 5.1]). In particular, W0(K;E) = vol(K) and Wn(K;E) = vol(E).

In [6] Wills introduced and studied the functional

W (λK) =

n
∑

i=0

(

n

i

)

Wi(K;Bn)

κi
λn−i

due to a possible relation with the lattice-point enumerator G(K) = #(K ∩ Zn),
and conjectured that W (K) was an upper bound for G(K). Here Bn denotes the
n-dimensional unit ball and κn = vol(Bn). Although Hadwiger showed that Wills’
conjecture was wrong, the Wills functional turned out to have many interesting
properties. For instance, in [1] Hadwiger proved, among others, the following
useful integral representation of W (K):

(1) W (K) =

∫

Rn

e−πd(x,K)2dx,

where d(x,K) denotes the Euclidean distance between x ∈ Rn and K. Recently,
Kampf [2] has shown that an analogous formula remains true when the ‘distance’
dE(x,K), between x ∈ Rn and K, relative to a convex body E with 0 ∈ intE, is
considered, i.e.

∫

Rn

e−πdE(x,K)2dx =
n
∑

i=0

(

n

i

)

Wi(K;E)

κi
.

Moreover, this functional can be defined in a more general setting replacing the

function e−πt
2

by another one G(t) properly associated to a measure µ on the
nonnegative real line R≥0:

∫

Rn

G
(

dE(x,K)
)

dx with G(t) = µ
(

[t,+∞)
)

, t ≥ 0.
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Then it can be proved that, if the moments mi(µ) =
∫ +∞
0 tidµ(t) exist and are

finite, it holds

(2) Wµ(K;E) =

∫

K+linE

G
(

dE(x,K)
)

dx =
n
∑

i=0

(

n

i

)

Wi(K;E)mi(µ).

Clearly the classical Wills functional (1) is obtained from (2) when G(t) = e−πt
2

and E = Bn. Thus, the following question arises in a natural way: can the Steiner
functional

∑n
i=0

(

n
i

)

Wi(K;E) be obtained as a particular case of the generalized
Wills functional? We prove the following result:

Theorem 1. Let K,E ∈ Kn with 0 ∈ relintE. Then

n
∑

i=0

(

n

i

)

Wi(K;E) = lim
σ→0+

∫

K+linE

(

∫ +∞

dE(x,K)

1√
2πσ

e−
(t−1)2

2σ2 dt

)

dx.

Moreover, such an expression for the Steiner functional, in which a non-discrete
measure µ on R≥0 is considered, is only possible through a ‘pass to the limit’
process.

Motivated by the previous works of Henk, Hernández Cifre and Saoŕın [3, 4] on
the roots of the Steiner polynomial, if we take the corresponding generalized Wills
polynomial

gµK;E(z) =

n
∑

i=0

(

n

i

)

Wi(K;E)mi(µ)zi

(cf. (2)) considered as a formal polynomial in a complex variable z ∈ C, we are
interested in studying the structure and properties of its roots; more precisely we
ask whether there are common properties not depending on the measure µ. To
this end, let C+ = {z ∈ C : Im(z) ≥ 0} be the set of complex numbers with
non-negative imaginary part, and for any dimension n ≥ 2, let

(3) Rµ
W (n) =

{

z ∈ C+ : gµK;E(z) = 0 for some K,E ∈ Kn, dim(K + E) = n
}

be the set of all roots of all (non-trivial) generalized Wills polynomials in the upper
half-plane. Moreover, let fK;E(z) =

∑n
i=0

(

n
i

)

Wi(K;E)zi and let

R(n) =
{

z ∈ C+ : fK;E(z) = 0 for some K,E ∈ Kn, dim(K + E) = n
}

be the set of all roots of all Steiner polynomials (in the upper half-plane). We
prove the following results.

Theorem 2.

i) Rµ
W (2)  

{

z ∈ C+ : Re(z) ≤ 0
}

.
ii) Rµ

W (n) is a convex cone containing the non-positive real axis.
iii) Rµ

W (n) is closed.
iv) Rµ

W (n)  Rµ
W (n+ 1) for all n ≥ 2.

v) Rµ
W (n) ! R(n) for all n ≥ 2.
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We notice that some of these properties do not hold if discrete or signed mea-
sures are allowed in the definition of our functional (2).

Moreover, from the fact that the cone of roots of Steiner polynomials is always
contained in the cone of roots of generalized Wills functionals with the same di-
mension (item (v) in Theorem 2), several additional properties can be obtained
from the known results for the Steiner polynomial (see [4]):

Corollary 3.

i) R≤0  Rµ
W (2).

ii) If n ≥ 10 then
{

z ∈ C+ : Re(z) ≤ 0
}

 Rµ
W (n).

iii) Let γ ∈ C+ \ R>0. Then there exists nγ ∈ N with γ ∈ Rµ
W (n) for all

n ≥ nγ .
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Almost all shadow boundaries have finite measure

Louise Jottrand

(joint work with David Larman, Peter Mani)

If C is a convex body in Rn and X a k-dimensional linear subspace of Rn, we
denote by S(C,X) the shadow boundary of C over X which is defined as the
collection of all points which belong to C and to one of its tangent (n − k)-flats
orthogonal to X .

Definition 1. S(C,X) = {p ∈ C : (p+X⊥)∩int(C) = ∅} = C∩π−1
X [rel bd(πXC)]

is the shadow boundary of C over X.

Following up on a research problem of 1957, Klee asked if the boundary of a
d-dimensional convex body could contain line segments in all directions [1]. In
1960 McMinn [2] answered this question by showing that:

The setD of directions of line segments lying on the boundary of a 3-dimensional
convex body is contained in the union of the ranges of a countable family of
Lipschitz functions each on the 1-dimensional closed unit ball B1 to the surface
of the 2-dimensional unit sphere S2. By virtue of the Lipschitz nature of these
functions, they possess total differentials (Lebesgue measure) almost everywhere
and their ranges are compact and have finite one dimensional measure.
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Besicovitch followed with a simplification of his proof in 1963 [3]. Finally Ewald,
Larman and Rogers generalised the result to n dimensions in their 1970 publica-
tion [4]. Specifically, they proved:

Theorem (Ewald, Larman and Rogers [4])
If 1 ≤ r ≤ n − 1 and K a convex body in En, the points ±G(F ), corresponding
to the r-flats F in En meeting the boundary of K in a set of linear dimension r,
form a set on Inr of σ-finite r(n− r − 1)-dimensional Hausdorff measure.

The shadow boundary of a convex body over a subspace X of Rn is the set of
points of its boundary which project onto the boundary of its shadow on X . We
call a shadow boundary sharp if its projection is injective.

From Ewald, Larman and Rogers’ result we know that almost all shadow bound-
aries are sharp.

We have proved a further property of these sharp shadow boundaries which
was first suggested at a workshop in Siegen in 1974 by Peter McMullen. He asked
whether sharp shadow boundaries also have finite “length”.

This was answered in the affirmative by Peter Steenaerts in 1985 [6] for the
cases where X is an l-dimensional subspace of En and l = 1 or n− 1.

Our result generalises this to shadow boundaries over subspaces of any dimen-
sion l, where 1 ≤ l ≤ n.

For simplicity, we shall only give the proof of this result for polytopes. The
proof for general convex bodies requires rectifiability and other geometric measure
theory concepts mostly taken from the works of Federer.

Notation:

• Γ(k) is the set of all k-dimensional linear subspaces of Rn.
• The measures γ(k) on Γ(k) is given by:

γ(k)[M ] = On{r ∈ O(n) : r[Rk] ∈M} where M ⊂ Γ(k).

• H n is the n-dimensional Hausdorff measure.
• Wi(C) denotes the ith Minkowski Quermass integral of the convex body
C in Rn. Quermass integrals are related to the concept of mixed volumes.
See Chapter 4 in R. Schneider [7] for more information.

Definition 2. P(C, k) = {X ∈ Γ(k) : πX |S(C,X) is injective} is the set of subsets
X in Γ(k) for which the shadow boundary S(C,X) is sharp.

Theorem 1. For any integer k with 1 ≤ k < n there is a number α(k, n) > 0
such that the equation

∫

H
k−1
(

S(P,X)
)

dγ(k)[X ] = α(k, n)Wn−k+1(P )

holds for each n-polytope P ⊂ Rn.
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Proof. Consider the set F (P ) of all (k − 1)-dimensional faces of the polytope P .
Let α(P,G) be the exterior angle of P at G ∈ F (P ). The incidence function
εP : Γ(k) × F (P ) → {0, 1} is given by

εP (X,G) = 1, if [affG+X ] ∩ relint
(

P
)

= ∅ and

εP (X,G) = 0, otherwise.

Using Fubini’s Theorem, the definition and properties of εP (X,G) and the
relation between the exterior angle α(P,G) and the Quermassintegral Wn−k+1(P )
[7], we establish

∫

Γ(k)

H k−1 [S(P,X)] dγ(k)(X)

=

∫

P(P,k)

H
k−1[S(P,X)] dγ(k)(X)

=
∑

G∈F (P )

H
k−1(G)

∫

Γ(k)

εP (X,G) dγ(k)[X ]

=
∑

G∈F (P )

H
k−1(G)α(P,G)

= a(k, n)Wn−k+1(P ),

where a(k, n) > 0 do not depend on the polytope P . �

For convex bodies: We go on to show:

Theorem 2. If C is a convex body in Rn and l an integer with 1 ≤ l ≤ n − 1,
then

∫

H
l−1
(

S(C,X)
)

dγ(l) = α(l, n)Wn−l+1(C)

holds.

Proof. (vague outline)

• use concept of rectifiability studied at length by Federer for sets and in-
troduce the concept of a rectifiable map.

• We approximate our convex body by a sequence of polytopes.
• Define the maps ϕ(C, l) : Γ(l) → [0,∞], for l ∈ {1, ... , n− 1}, by

ϕ(C, l)[X ] = H
l−1
(

S(C,X)
)

.

• Suffices to show:

(1) ϕ(C, l)|P is lower semicontinuous and

(2) ϕ(C, l)[X ] ≤ lim inf
j→∞

ϕ(Qj , l)[X ], for every X ∈ P.

�
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Stability and separation in volume comparison problems

Alexander Koldobsky

A typical volume comparison problem asks whether inequalities

fK(ξ) ≤ fL(ξ), ∀ξ ∈ Sn−1

imply |K| ≤ |L| for any K,L from a certain class of origin-symmetric convex
bodies in Rn, where fK is a geometric characteristic of K. One can have in mind
the section function fK(ξ) = |K ∩ ξ⊥| or the projection function fK(ξ) = |K|ξ⊥|,
where |K| stands for volume of proper dimension and ξ⊥ is the central hyperplane
perpendicular to ξ ∈ Sn−1.

In the case where the answer to a volume comparison problem is affirmative,
one can ask the following stability question. Suppose that ǫ > 0 and

(1) fK(ξ) ≤ fL(ξ) + ǫ, ∀ξ ∈ Sn−1.

Does there exist a constant c such that for every ǫ > 0

(2) |K|n−1
n ≤ |L|n−1

n + cǫ?

Stability results are related to hyperplane inequalities as follows. Suppose sta-
bility holds for both pairs K,L and L,K with the same constant c. Interchanging
K and L in the stability result, one gets a volume difference inequality:

(3)
∣

∣

∣|K|n−1
n − |L|n−1

n

∣

∣

∣ ≤ c max
ξ∈Sn−1

|fK(ξ) − fL(ξ)| .

Suppose now that the function fL converges to zero uniformly with respect to ξ
when L = βBn2 is a multiple of the unit Euclidean ball and β → 0. Then, when
L = βBn2 and β → 0, the inequality (3) turns into a hyperplane inequality:

(4) |K|n−1
n ≤ c max

ξ∈Sn−1
fK(ξ).
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One can also consider a separation problem. Suppose that ǫ > 0 and

(5) fK(ξ) ≤ fL(ξ) − ǫ, ∀ξ ∈ Sn−1.

Does there exist a constant c such that for every ǫ > 0

(6) |K|n−1
n ≤ |L|n−1

n − cǫ?

In the case where the answer is affirmative we get another kind of a volume dif-
ference inequality:

(7) |L|n−1
n − |K|n−1

n ≥ c min
ξ∈Sn−1

(fL(ξ) − fK(ξ)) .

Again, if fβBn
2

converges to zero uniformly in ξ when β → 0, we get the following
version of a hyperplane inequality:

(8) |L|n−1
n ≥ c min

ξ∈Sn−1
fL(ξ).

This strategy was applied in [1] to several functions fK including the section and
projection functions. In [2] similar inequalities were proved for arbitrary measure
with continuous density in place of volume. Sections of lower dimensions were
considered in [5], and stability and hyperplane inequalities for complex convex
bodies were proved in [3, 6]. For more results of this kind, along with a survey,
see [4].

For example, the following stability result was proved in [2]. Let f be an even
non-negative continuous function on Rn, let µ be the measure with density f, let
K and L be origin-symmetric star bodies in Rn, and let ǫ > 0. Suppose that K is
an intersection body and that for every ξ ∈ Sn−1,

µ(K ∩ ξ⊥) ≤ µ(L ∩ ξ⊥) + ǫ.

Then

µ(K) ≤ µ(L) +
n

n− 1
cn|K|1/nǫ,

where cn = |Bn2 |
n−1
n /|Bn−1

2 | < 1. The corresponding hyperplane inequality is as
follows. If K is an intersection body in Rn, then

µ(K) ≤ n

n− 1
cn max

ξ∈Sn−1
µ(K ∩ ξ⊥) |K|1/n.

The constant in the latter inequality is sharp.
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A short proof of Paouris’ theorem

Alexander E. Litvak

(joint work with R. Adamczak, O. Guédon, R. Lata la, K. Oleszkiewicz, A. Pajor,
N. Tomczak-Jaegermann)

A random vector in Rn is called log-concave if it has a log-concave distribution.
It is called isotropic if it is centered and its covariance matrix is the identity.

In [3] G. Paouris proved the following theorem.

Theorem 1. For any log-concave isotropic random vector X in Rn and any t ≥ 1

P
(

|X | ≥ Ct
√
n
)

≤ exp(−t√n),

where |X | denotes the Euclidean length of X.

In fact, he obtained a more general result. Denote the weak Lp-norm by

σp(X) = sup
|z|=1

(E|〈z,X〉|p)1/p.

Theorem 2. For any log-concave random vector X in Rn and any p ≥ 1

(E|X |p)1/p ≤ C (E|X | + σp(X)) .

Note that the second theorem implies the first one by the Chebyshev inequality.

In our talk we provide a short proof of the Theorem 2. This is done in 5 steps.

Step 1. We pass to the expectation of a norm of the standard Gaussian vector
G = (g1, g2, ..., gn) in Rn, by noticing that

EX |X |p = α−p
p EXEG|〈G,X〉|p = α−p

p EG|||G|||p,
where |||z||| = (E|〈z,X〉|p)1/p and αp = (E|g1|p)1/p ≈

√

p/e as p→ ∞.

Step 2. Using the concentration of the Gaussian process |||G|||, we obtain

(EX |X |p)1/p ≤ α−1
p (EG|||G||| + αpσp(X)) .

Step 3. Applying Gordon’s minimax theorem we observe

(E|X |p)1/p ≤ α−1
p

(

EΓ min
|z|=1

|||Γz||| + (αp +
√
d)σp(X)

)

,

where Γ = {gi,j} is n× d Gaussian matrix (later we choose d ≈ p).

Step 4. On this step we prove the following proposition.

Proposition 3. Let Y be a log-concave symmetric d-dimensional random vector.
Then

min
|z|=1

(

EY |〈z, Y 〉|d
)1/d ≤ C E|Y |.
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Step 5. Denote by d the integer satisfying p ≤ d < p+1. Applying Proposition 3,

min
|z|=1

|||Γz||| = min
|z|=1

(EX |〈Γz,X〉|p)1/p = min
|z|=1

(EX |〈z,Γ∗X〉|p)1/p ≤ C EX |Γ∗X |.

Taking expectation with respect to Γ, we observe

EΓ min
|z|=1

|||Γz||| ≤ C EΓEX |Γ∗X | ≤ C
√
dEX |X |.

Combining with the previous inequalities, we obtain

(E|X |p)1/p ≤ Cα−1
p

(√
dEX |X | + (αp +

√
d)σp(X)

)

,

which implies the result for symmetric random vectors (since αp ∼ √
p ∼

√
d).

The general case follows by the symmetrization (passing to vector X −X ′, where
X ′ is an independent copy of X).

We would also like to mention that the log-concavity was used only in Propo-
sition 3. Thus our proof extends to the class of random vectors satisfying the
following H(p, λ) assumption.

Definition. Let p > 0, m = ⌈p⌉, and λ ≥ 1. We say that a random vector X
in E satisfies H(p, λ) assumption if for every linear mapping A : E → Rm such
that Y = AX is non-degenerate in Rm there exists a gauge ‖ · ‖ on Rm such that
E‖Y ‖ <∞ and

(E‖Y ‖p)1/p ≤ λE‖Y ‖.

More precisely we have.

Theorem 4. Let p > 0 and λ ≥ 1. If a random vector X in a finite dimensional
Euclidean space satisfies H(p, λ), then

(E|X |p)1/p ≤ C(λE|X | + σp(X)).

Finally we prove that the class of so-called κ-concave probability measures sat-
isfies this assumption if −1 < κ ≤ 0 < p < −1/κ.

Recall here that the notion of a κ-concave measure was introduced by C. Borell
as follows: a measure µ on Rn is called κ-concave if for every measurable A,B and
every θ ∈ [0, 1],

µ(θA+ (1 − θ)B) ≥ (θµ(A)κ + (1 − θ)µ(B)κ)1/κ.

The case κ = 0 corresponds to a log-concave measure.

The talk is based on the papers [1, 2].
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Sharp Isoperimetric Inequalities and Model Spaces for
Curvature-Dimension-Diameter Condition

Emanuel Milman

Let (Mn, g) denote an n-dimensional (n ≥ 2) complete oriented smooth Rie-
mannian manifold, and let µ denote a probability measure on M having density
Ψ with respect to the Riemannian volume form volg.

Definition (Generalized Ricci Tensor). Given q ∈ [0,∞] and assuming that Ψ > 0
and log(Ψ) ∈ C2, we denote by Ricg,Ψ,q the following generalized Ricci tensor:

(1) Ricg,Ψ,q := Ricg −∇2
g log(Ψ)− 1

q
∇g log(Ψ)⊗∇g log(Ψ) = Ricg − q

∇2
gΨ

1/q

Ψ1/q
.

Note that Ricg,Ψ,∞ = Ricg − ∇2
g log(Ψ) and that Ricg,Ψ,0 = Ricg when Ψ is

constant. Here as usual Ricg denotes the Ricci curvature tensor and ∇g denotes
the Levi-Civita covariant derivative.

Definition (Curvature-Dimension-Diameter Condition). (Mn, g, µ) is said to sat-
isfy the Curvature-Dimension-Diameter Condition CDD(ρ, n + q,D) (ρ ∈ R,
q ∈ [0,∞], D ∈ (0,∞]), if µ is supported on the closure of a geodesically con-
vex domain Ω ⊂M of diameter at most D, having (possibly empty) C2 boundary,
µ = Ψ · volg|Ω with Ψ > 0 on Ω and log(Ψ) ∈ C2(Ω), and as 2-tensor fields:

Ricg,Ψ,q ≥ ρg on Ω .

When Ω = M and D = +∞, the latter definition coincides with the celebrated
Bakry–Émery Curvature-Dimension condition CD(ρ, n+ q). Indeed, the general-
ized Ricci tensor incorporates information on curvature and dimension from both
the geometry of (M, g) and the measure µ, and so ρ may be thought of as a
generalized-curvature lower bound, and n + q as a generalized-dimension upper
bound.

Let (Ω, d) denote a separable metric space, and let µ denote a Borel proba-
bility measure on (Ω, d). The Minkowski (exterior) boundary measure µ+(A) of

a Borel set A ⊂ Ω is defined as µ+(A) := lim infε→0
µ(Ad

ε)−µ(A)
ε , where Adε :=

{x ∈ Ω; ∃y ∈ A d(x, y) < ε}. The isoperimetric profile I = I(Ω, d, µ) : [0, 1] →
R+ ∪ {+∞} is defined as I(v) := inf {µ+(A);µ(A) = v}. In our manifold-with-
density setting, we will always assume that the metric d is given by the in-
duced geodesic distance on (M, g), and write I = I(M, g, µ). When (Ω, d) =
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(R, | · |), we also define I♭ = I♭(R, |·| , µ) : [0, 1] → R+ ∪ {+∞} by I♭(v) :=
inf {µ+(A);µ(A) = v , A = (−∞, ξ) or A = (ξ,∞)}.

When ρ > 0, sharp isoperimetric inequalities under the CD(ρ, n+ q) condition
are known and well understood, thanks to the existence of comparison model
spaces on which equality is attained. The first such result was obtained by M.
Gromov, who identified the n-Sphere as the extremal model space in the constant
density case (q = 0), thereby extending P. Lévy’s isoperimetric inequality on
the sphere. The case when q = +∞ was treated by Bakry and Ledoux (and
later Morgan), who showed that the corresponding model space is the Real line
equipped with a Gaussian density. An extension of these results to q ∈ (0,∞) was
subsequently obtained by Bayle.

However, in all other cases, none of previously known results (by Croke, Bérard,
Besson, Gallot and others) yield sharp isoperimetric inequalities for all v ∈ (0, 1).
The purpose of this work is to fill this gap, providing a sharp isoperimetric inequal-
ity under the CDD(ρ, n + q,D) condition in the entire range ρ ∈ R, q ∈ [0,∞],
D ∈ (0,∞] and v ∈ (0, 1), in a single unified framework. In particular, for each
choice of parameters, we identify the model spaces which are extremal for the
isoperimetric problem. Our results seem new even in the classical constant-density
case (q = 0) when ρ ≤ 0 and D <∞ or when ρ > 0 and D < π

√

(n− 1)/ρ.

1. Results

Given δ ∈ R, set as usual:

sδ(t) :=











sin(
√
δt)/

√
δ δ > 0

t δ = 0

sinh(
√
−δt)/

√
−δ δ < 0

, cδ(t) :=











cos(
√
δt) δ > 0

1 δ = 0

cosh(
√
−δt) δ < 0

.

Given a continuous function f : R→ R with f(0) ≥ 0, we denote by f+ : R→ R+

the function coinciding with f between its first non-positive and first positive roots,
and vanishing everywhere else.

Definition. Given H, ρ ∈ R and m ∈ (0,∞], set δ := ρ/m and define:

JH,ρ,m(t) :=

{

(

cδ(t) + H
msδ(t)

)m

+
m ∈ (0,∞)

exp(Ht− ρ
2 t

2) m = ∞
.

Remark. Observe that JH,ρ,m coincides with the solution J to the following second
order ODE, on the maximal interval containing the origin where such a solution
exists:

−(log J)′′ − 1

m
((log J)′)2 = −m (J1/m)′′

J1/m
= ρ , J(0) = 1 , J ′(0) = H .

Lastly, given a non-negative integrable function f on a closed interval L ⊂ R, we
denote for short I(f, L) := I(R, |·| , µf,L), where µf,L is the probability measure

supported in L with density proportional to f there. Similarly, we set I♭(f, L) :=
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I♭(R, |·| , µf,L). When
∫

L f(x)dx = 0 we set I♭(f, L) = I(f, L) ≡ +∞, and when
∫

L
f(x)dx = +∞ we set I♭(f, L) = I(f, L) ≡ 0.

Theorem 1.1. Let (Mn, g, µ) satisfy the CDD(ρ, n+ q,D) condition with ρ ∈ R,
q ∈ [0,∞] and D ∈ (0,+∞]. Then:

(2) I(M, g, µ) ≥ inf
H∈R,a,b≥0,a+b≤D

I♭ (JH,ρ,n+q−1, [−a, b]) ,

where the infimum is interpreted pointwise on [0, 1]. In fact, the infimum above is
always attained (when D = ∞ at a = b = ∞), one can always use b = D− a, and
the I♭ may be replaced by I, leading to the same lower bound.

The bound (2) was deliberately formulated to cover the entire range of values
for ρ, n, q and D simultaneously, indicating its universal character, but it may be
easily simplified as follows:

Corollary 1.2. Under the same assumptions and notation as in Theorem 1.1,
and setting δ := ρ

n+q−1 :

Case 1 - q <∞, ρ > 0, D < π/
√
δ:

I(Mn, g, µ) ≥ inf
ξ∈[0,π/

√
δ−D]

I♭
(

sin(
√
δt)n+q−1, [ξ, ξ +D]

)

.

Case 2 - q <∞, ρ > 0, D ≥ π/
√
δ:

I(Mn, g, µ) ≥ I♭
(

sin(
√
δt)n+q−1, [0, π/

√
δ]
)

.

Case 3 - q <∞, ρ = 0, D <∞:

I(Mn, g, µ) ≥ min(inf
ξ≥0

I♭(tn+q−1, [ξ, ξ +D]), I♭(1, [0, D])).

Case 4 - q <∞, ρ < 0, D <∞:

I(Mn, g, µ) ≥ min







infξ≥0 I♭(sinh(
√
−δt)n+q−1, [ξ, ξ +D]) ,

I♭(exp(
√
−δ(n+ q − 1)t), [0, D]) ,

infξ∈R I♭(cosh(
√
−δt)n+q−1, [ξ, ξ +D])







.

Case 5 - q = ∞, ρ 6= 0, D <∞:

I(Mn, g, µ) ≥ inf
ξ∈R

I♭(exp(−ρ
2
t2), [ξ, ξ + D]).

Case 6 - q = ∞, ρ > 0, D = ∞: I(Mn, g, µ) ≥ I♭(exp(− ρ
2 t

2),R).

Case 7 - q = ∞, ρ = 0, D <∞: I(Mn, g, µ) ≥ infH≥0 I♭(exp(Ht), [0, D]).

In all the remaining cases, we have the trivial bound I(Mn, g, µ) ≥ 0.

Note that when q is an integer, I♭(sin(
√
δt)n+q−1, [0, π/

√
δ]) coincides (by test-

ing spherical caps) with the isoperimetric profile of the (n + q)-Sphere having
Ricci curvature equal to ρ, and so Case 2 with q = 0 recovers the Gromov–Lévy
isoperimetric inequality; for general q <∞, Case 2 was obtained by Bayle. Case 6
recovers the Bakry–Ledoux isoperimetric inequality. To the best of our knowledge,
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all remaining cases are new. To illuminate the transition between Cases 1 and 2,
note that if (Mn, g, µ) satisfies the CD(ρ, n+q) condition with ρ > 0, the diameter

of M is bounded above by π/
√
δ: when q = 0 this is the classical Bonnet-Myers

theorem, which was extended to q > 0 by Bakry–Ledoux and Qian. As for the
sharpness, we have:

Theorem 1.3. For any n ≥ 2, ρ ∈ R, q ∈ [0,∞] and D ∈ (0,∞], the lower bounds
provided in Corollary 1.2 (or equivalently, the one provided in Theorem 1.1) on
the isoperimetric profile of (Mn, g, µ) satisfying the CDD(ρ, n + q,D) condition,
are sharp, in the sense that they cannot be pointwise improved.

We conclude that with the exception of Cases 2 and 6 above, there is no single
model space to compare to, and that a simultaneous comparison to a natural
one parameter family of model spaces is required, nevertheless yielding a sharp
comparison result.

Vertical versus horizontal Poincaré inequalities on the Heisenberg
group

Assaf Naor

(joint work with Vincent Lafforgue)

The discrete Heisenberg group, denoted H, is the group generated by two elements
a, b ∈ H, with the relations asserting that the commutator [a, b] = aba−1b−1 is in
the center of H. Thus H is given by the presentation

H = 〈a, b | a[a, b] = [a, b]a ∧ b[a, b] = [a, b]b〉 .
Write c = [a, b] and let eH denote the identity element ofH. The left-invariant word
metric on H induced by the symmetric generating set {a, b, a−1, b−1} is denoted
dW (·, ·). For n ∈ N let Bn = {x ∈ H : dW (x, eH) ≤ n} denote the corresponding
closed ball of radius n.

A Banach space (X, ‖ · ‖X) is said to be uniformly convex if for every ε ∈ (0, 1)
there exists δ ∈ (0, 1) such that every x, y ∈ X with ‖x‖X = ‖y‖X = 1 and
‖x − y‖X ≥ ε satisfy ‖x + y‖X ≤ 2(1 − δ). The supremum over those δ ∈ (0, 1)
for which this holds true is denoted δ(X,‖·‖X)(ε), and is called the modulus of
uniform convexity of (X, ‖ · ‖X). An important theorem of Pisier asserts that
every uniformly convex Banach space (X, ‖ · ‖X) admits an equivalent norm ‖ · ‖
for which there exist q ∈ [2,∞) and η ∈ (0, 1) such that δ(X,‖·‖)(ε) ≥ (ηε)q for all
ε ∈ (0, 1). For concreteness we recall that if p ∈ (1,∞) then ℓp satisfies such an
estimate with q = max{p, 2}.

Theorem 1 (Vertical versus horizontal Poincaré inequality). For every η ∈ (0, 1)
and q ∈ [2,∞) there exists K = K(η, q) ∈ (0,∞) with the following property.
Suppose that (X, ‖ ·‖X) is a Banach space satisfying δ(X,‖·‖X)(ε) ≥ (ηε)q for every
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ε ∈ (0, 1). Then for every n ∈ N and every f : H→ X we have

(1)

n2
∑

k=1

∑

x∈Bn

‖f(xck) − f(x)‖qX
k1+q/2

≤ K
∑

x∈B21n

(

‖f(xa) − f(x)‖qX + ‖f(xb) − f(x)‖qX
)

.

The constant 21 appearing in the range of the summation on the right hand side
of (1) is an artifact of our proof and is not claimed to be sharp. The important
point here is that the summation on the right hand side of (1) is over x ∈ Bλn
for some universal constant λ ∈ N. One can clearly make the same statement for
word metrics induced by other finite symmetric generating sets of H: the choice
of generating set will only affect the value of λ.

An inspection of our proof of Theorem 1 reveals that K1/q . 1/η, but we will
not explicitly track the value of such constants in the ensuing discussion. Here,
and in what follows, we use A . B and B & A to denote the estimate A 6 CB
for some absolute constant C ∈ (0,∞). If we need C to depend on parameters,
we indicate this by subscripts, thus e.g. A .α B means that A 6 CαB for some
Cα ∈ (0,∞) depending only on α. We shall also use the notation A ≍ B for
A . B ∧ B . A, and similarly A ≍α B stands for A .α B ∧ B .α A.

We call (1) a “vertical versus horizontal Poincaré inequality” for the following
reason. The right hand side of (1) is the ℓq norm of the discrete horizontal gradient
of f : it measures the “local” variation of f along the edges of the Cayley graph
of H (a.k.a. the horizontal edges in H). The left hand side of (1) measures the
“global” variation of f along the center of H (a.k.a. the vertical direction in H).
Theorem 1 asserts that the global vertical variation of f is always bounded by its
local horizontal variation. Thus, if the right hand side of (1) is small then f must
collapse distances along the center of H.

The (bi-Lipschitz) distortion of a finite metric space (M,dM ) in a Banach space
(X, ‖ · ‖X), denoted cX(M,dM ) ∈ [1,∞), is the infimum over those D ∈ [1,∞) for
which there exists an embedding f : M → X that satisfies dM (x, y) ≤ ‖f(x) −
f(y)‖X ≤ DdM (x, y) for all x, y ∈ M . When X = ℓp for some p ∈ [1,∞) it is
customary to write cℓp(M,dM ) = cp(M,dM ). The quantity c2(M,dM ) is known
as the Euclidean distortion of (M,dM ). Suppose that (X, ‖ · ‖X) satisfies the
assumption of Theorem 1 and that f : H → X satisfies dW (x, y) ≤ ‖f(x) −
f(y)‖X ≤ DdW (x, y) for all x, y ∈ B22n. Since dW (ck, eH) ≍

√
k for every k ∈ N

and |Bm| ≍ m4 for every m ∈ N, Theorem 1 applied to f yields the following
estimate.

(2) n4 logn .

n2
∑

k=1

n4 kq/2

k1+q/2
.X n4Dq.

We therefore obtain the following corollary of Theorem 1.

Corollary 2 (Sharp nonembeddabilty of balls in H). Fix η ∈ (0, 1) and q ∈ [2,∞).
Suppose that (X, ‖ ·‖X) is a Banach space satisfying δ(X,‖·‖X)(ε) ≥ (ηε)q for every
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ε ∈ (0, 1). Then for every n ∈ N we have

cX (Bn, dW ) &η (log n)1/q.

Corollary 2 yields an estimate on cX(Bn, dW ) in terms of the modulus of uniform
convexity of (X, ‖·‖X) which is asymptotically best possible, up to constant factors
that are independent of n. The following corollary states this explicitly for the
case of special interest X = ℓp, though one could equally well state such results for
a variety of concrete spaces for which the modulus of uniform convexity has been
computed (e.g., the same conclusion holds true with ℓp replaced by the Schatten
class Sp).

Corollary 3. For every integer n ≥ 2 we have

p ∈ (1, 2] =⇒ cp(Bn, dW ) ≍p
√

logn,

and

p ∈ [2,∞) =⇒ cp(Bn, dW ) ≍p (log n)1/p.

Random points in a convex body and the Log-Concave Ensemble of
random matrices

Alain Pajor

In a paper on the algorithmic complexity of computing volume in high dimensions,
Kannan, Lovász and Simonovits asked for the following question (1996):

Question (KLS [3]) Let K be a convex body in Rn. Given ε > 0, how many
independent points Xi uniformly distributed on K are needed for the empirical
covariance matrix to approximate the covariance matrix up to ε with overwhelming
probability?

In other words, let X ∈ Rn be a random vector with the identity as covariance
matrix – such a vector is called isotropic– we would like that with high probability,

(1 − ε)|θ|2 ≤ 1

N

N
∑

1

|〈Xi, θ〉|2 ≤ (1 + ε)|θ|2, for all θ ∈ Rn.

In this talk, we will survey recent results of R. Adamczak, A. E. Litvak, A. Pajor
and N. Tomczak-Jaegermann [1] and [2]. We discuss in particular the following
result which answers completely KLS question.

Let X1, . . . , XN ∈ Rn be independent centered random vectors with log-concave
distribution and with the identity as covariance matrix. We show that with over-
whelming probability one has

sup
x∈Sn−1

∣

∣

∣

1

N

N
∑

i=1

(

|〈Xi, x〉|2 − E|〈Xi, x〉|2
)

∣

∣

∣ ≤ C

√

n

N
,

where C is an absolute positive constant. This result is valid in a more general
framework when the linear forms (〈Xi, x〉)i≤N,x∈Sn−1 and the Euclidean norms
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(|Xi|/
√
n)i≤N exhibit uniformly a sub-exponential decay. As a consequence, if A

denotes the random matrix with columns (Xi), then with overwhelming proba-
bility, the extremal singular values λmin and λmax of AA⊤ satisfy the inequalities
1 − C

√

n
N ≤ λmin

N ≤ λmax

N ≤ 1 + C
√

n
N which is a quantitative version of Bai-Yin

theorem known for random matrices with i.i.d. entries.
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The Centro-Affine Hadwiger Theorem

Lukas Parapatits

(joint work with Christoph Haberl)

Let Kn denote the set of convex bodies, i.e. nonempty compact convex subsets of
Rn. A valuation µ is a map from Kn to R that satisfies

(1) µ(K ∪ L) + µ(K ∩ L) = µ(K) + µ(L)

whenever K ∪L is convex. The best known theorem in the theory of valuations is
Hadwiger’s [2] classification of all rigid motion invariant continuous valuations.

Theorem 1. A map µ : Kn → R is an SO(n) invariant translation invariant
continuous valuation if and only if there are constants c0, c1, . . . , cn ∈ R such that

µ = c0V0 + c1V1 + . . .+ cnVn.

Here, Vi, i = 0, . . . , n are the intrinsic volumes. In particular, Vn is the volume
and V0 is the Euler characteristic.

We can also consider valuations which are defined on subsets of Kn and satisfy
(1). Let Knoo denote the set of convex bodies which contain the origin in their
interiors. The following theorem is a new result [1] which strengthens a previous
classification of homogeneous valuations by Ludwig [3].

Theorem 2. Let n ≥ 2. A map µ : Knoo → R is an SL(n) invariant continuous
valuation if and only if there exist constants c−n, c0, cn ∈ R such that

µ(K) = c−nVn(K∗) + c0V0 + cnVn(K)

for all K ∈ Knoo.
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Here, K∗ := {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ K} denotes the polar body of K.
Another interesting type of valuations are Minkowski valuations. These are

maps from (a subset of) Kn to Kn which satisfy (1) where + is Minkowski addi-
tion, i.e. K + L := {x+ y : x ∈ K, y ∈ L}. A Minkowski valuation is called SL(n)
covariant if µ(φK) = φµ(K) for all φ ∈ SL(n). Ludwig [4] already classified all
homogeneous SL(n) covariant continuous Minkowski valuations. With the tech-
niques used in the proof of the above theorem on real valued valuations, we hope
to proof the following result.

Conjecture 3. Let n ≥ 3. A map µ : Knoo → Kn is an SL(n) covariant continuous
Minkowski valuation, if and only if there exist constants c1, . . . , c4 ≥ 0 and c5 ∈ R
such that

µ(K) = c1K + c2(−K) + c3 Π(K∗) + c4 M(K) + c5 m(K)

for all K ∈ Knoo.

Here, Π, M and m are the projection body operator, the moment body operator
and the moment vector operator, respectively.
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A central limit theorem for projections of the cube

Peter Pivovarov

(joint work with Grigoris Paouris and Joel Zinn)

In this talk, I discussed a central limit theorem for the volume of projections of
the cube BN∞ = [−1, 1]N onto a random subspace of dimension n, when n is fixed
and N → ∞. To fix the notation, let n ≥ 1 be an integer and for N ≥ n, let GN,n
denote the Grassmannian manifold of all n-dimensional linear subspaces of RN .
Equip GN,n with the Haar probability measure νN,n, which is invariant under
the action of the orthogonal group. Suppose that (E(N))N≥n is a sequence of
random subspaces with E(N) distributed according to νN,n. Consider the random
variables

(1) ZN := |PE(N)B
N
∞|,

where PE(N) denotes the orthogonal projection onto E(N) and |·| is n-dimensional
volume. Then ZN satisfies the following central limit theorem.



3524 Oberwolfach Report 59/2012

Theorem 1.

(2)
ZN − EZN
√

var(ZN )

d→ N (0, 1) as N → ∞.

Here
d→ denotes convergence in distribution and N (0, 1) a standard Gaussian

random variable with mean 0 and variance 1.
Gaussian random matrices play a central role in the proof of Theorem 1, as is

often the case with results about projections onto random subspaces E ∈ GN,n.
Specifically, let G be an n×N random matrix with independent columns g1, . . . , gN
distributed according to standard Gaussian measure γn on Rn, i.e.,

dγn(x) = (2π)−n/2e−‖x‖2
2/2dx.

View G as a linear operator from RN to Rn. If C ⊂ RN is any convex body, then

(3) |GC| = det (GG∗)
1
2 |PEC|,

where E = Range(G∗) is distributed uniformly on GN,n; moreover, det (GG∗)
1/2

and |PEC| are independent. The latter fact underlies the Gaussian representation
of intrinsic volumes, as proved by B. Tsirelson in [2] (see also [4]). Our proof
involves two main steps, first analyzing asymptotic normality of |GBN∞| and then

dealing with the quotient |GBN∞|/ det (GG∗)
1/2

.
Setting XN := |GBN∞| and applying the well-known zonotope volume formula,

we have

(4) XN = 2n
∑

1≤i1<...<in≤N
|det [gi1 · · · gin ]|,

where det [gi1 · · · gin ] is the determinant of the matrix with columns gi1 , . . . , gin .

Similarly, we set YN := det (GG∗)
1
2 and apply the Cauchy-Binet formula:

(5) YN =





∑

1≤i1<...<in≤N
|det [gi1 · · · gin ]|2





1
2

.

Then XN = YNZN , where YN and ZN are independent.
The proof employs several ingredients including W. Hoeffding’s central limit

theorem for U-statistics [5], as well as its application to mixed volumes of random
convex sets by R. A. Vitale [6]. The latter implies that XN is asymptotically nor-
mal. On the other hand, it is well-known that Y 2

N satisfies a central limit theorem
(using, e.g., [5]). The proof then rests on careful analysis showing that asymptotic
normality of ZN arises from two contributing terms XN and Y 2

N . Randomization
inequalities for U-statistics from [1] play an important role in the proof. A key
proposition is the following:

Proposition 2. Let XN , YN and ZN be as defined above. Then

(6)
ZN − EZN
N

n−1
2

= αN,n
XN − EXN

Nn− 1
2

− βN,n
Y 2
N − EY 2

N

Nn− 1
2

− δN,n,
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where (αN,n), (βN,n) and (δN,n) are sequences of random variables that converge
almost surely to constants, i.e.,

(i) αN,n
a.s.→ 1 as N → ∞;

(ii) βN,n
a.s.→ βn > 0 as N → ∞;

(iii) δN,n
a.s.→ 0 as N → ∞.

The fact that Nn− 1
2 appears in both of the denominators on the right-hand side

of (6) indicates that both XN and Y 2
N must be accounted for in order to capture

the asymptotic normality of ZN . We refer the reader to [3] for the details.
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Simplicial polytopes that maximize the isotropic constant are highly
symmetric

Luis Rademacher

The slicing constant LK is an affine-invariant measure of the spread of a con-
vex body K. For a d-dimensional convex body K, LK can be defined by L2d

K =
det(A(K))/(vol(K))2, where A(K) is the covariance matrix of the uniform distri-
bution on K. It is an outstanding open problem to find a tight asymptotic upper
bound of the slicing constant as a function of the dimension. It has been con-
jectured that there is a universal constant upper bound. The conjecture is know
to be true for several families of bodies, in particular, highly symmetric bodies
such as bodies having an unconditional basis. It is also know that maximizers
cannot be smooth. In this work we show progress towards reducing to a highly
symmetric case among non-smooth bodies. More precisely, we show that if a sim-
plicial d-polytope K is a maximizer of the slicing constant among d-dimensional
convex bodies, then when K is put in isotropic position it must be isohedral, that
is, its symmetry group acts transitively upon facets. In particular, all facets are
congruent.
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The Disk Graph: Recent Developments

Matthias Reitzner

Let ηt be a Poisson point process in Rd of constant intensity t > 0. This Poisson
point process consists of infinitly many random points, ηt = {x1, x2, . . . }, with
the property that the number of points |ηt ∩W | in a convex body W is Poisson
distributed with parameter tVd(W ).

To define the disk graph G(ηt, δt) we take all points of ηt to be the vertices of
G(ηt, δt) and connect two points x, y ∈ ηt by an edge if

‖x− y‖ ≤ δt.

The resulting graph G(ηt, δt) is a random geometric graph, called disk graph, or
sometimes Gilbert graph, interval graph (for d = 1) or distance graph. The disk
graph is the maybe most natural construction of a random geometric graph, see
e.g. the book by Penrose [2].

We are interested in the local behaviour of the disk graph within a convex body
W , when t→ ∞ and δt → 0. Define the number of edges of G(ξ, δ) in the window
W given by

Nt = N(ηt, δt) =
1

2

∑

(x,y)∈(ηt∩W )26=

1(‖x− y‖ ≤ δt)

and the total edge length by

Lt = L(ηt, δt) =
1

2

∑

(x,y)∈(ηt∩W )26=

1(‖x− y‖ ≤ δt)‖x− y‖.

Classical results are the expectations of these quantities which are proved using
the Slivnyak-Mecke theorem,

ENt =
t2

2

(

V (W )κd δ
d
t +O(δd+1

t )
)

and

ELt =
t2

2

(

V (W )
d κd
d+ 1

δd+1
t +O(δd+2

t )
)

for δt → 0. More recently Schulte [4] investigated the asymptotic covariance
structure of the suitable rescaled number of edges and total edge length,

Ñt = Nt/
√

t2δdt max{tδdt , 1}, L̃t = Lt/

√

t2δd+2
t max{tδdt , 1}

and proved

lim
t→∞

(

VÑt C(Ñt, L̃t)

C(Ñt, L̃t) VL̃t

)

=



























Σ2, lim
t→∞

t δdt = 0

cΣ1 + Σ2, lim
t→∞

t δdt = c ∈ (0, 1]

Σ1 + 1
c Σ2, lim

t→∞
t δdt = c ∈ (1,∞)

Σ1, lim
t→∞

t δdt = ∞
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with covariance matrices

Σ1 = V (W )

(

κ2d d κ2d/(d+ 1)
d κ2d/(d+ 1) (d κd/(d+ 1))2

)

,

Σ2 =
V (W )

2

(

κd d κd/(d+ 1)
d κd/(d+ 1) d κd/(d+ 2)

)

.

This allows to deduce limit theorems. It was proved in [3] [4] that Nt and Lt
satisfy a central limit theorem.

A deeper understanding of the behaviour of the disk graph can be obtained by
ordering all distances between two points in the convex body W . This yields the
point set

ξt = {‖x1 − x2‖ : (x1, x2) ∈ (ηt ∩W )26=}
on the positive real line. It was proved by Schulte and Thäle [5] that

(a) t2/dξt converges in distribution to a Poisson point process on R+ with in-
tensity measure

µ(B) =
κd
2
V (W )d

∫

B

ud−1 du,B ⊂ R+;

(b) and that for t ≥ 1 the shortest distance G
(1)
t satisfies

∣

∣

∣P (t2/dG
(1)
t > x) − e−

κd
2 V (W )xd

∣

∣

∣ ≤ C(x)t−min{ 2
d
, 12}.

As an application we present a connection to a question concerning empty
triangles. Given a finite point set X in the plane, the degree of a pair {x, y} ⊂ X
is the number of empty triangles t = conv{x, y, z}, where empty means t ∩ X =
{x, y, z}. Define degX as the maximal degree of a pair in X .

Here we take X to be the intersection of a Poisson point process with the
convex body W . Observe that for any pair (x, y) ∈ (ηt ∩W )26= the degree is clearly

bounded by the number of points ηt ∩W which has expectation tVd(W ). It turns
out that the degree of X is close to this trivial upper bound. It is proved in Bárány,
Marckert and Reitzner [1] that for X = ηt ∩W there is a constant c > 0 such that

E(degX) ≥ c

ln t
t.

The proof uses essentially a large deviation inequality for the length of the disk
graph.
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On approximation by projections of polytopes with few facets

Mark Rudelson

(joint work with Alexander Litvak, Nicole Tomczak-Jaegermann)

This is a report on paper [4].
One of the standard ways to describe a convex body in computational geom-

etry is the membership oracle. The membership oracle of a body K ⊂ Rn is an
algorithm, which, given a point x ∈ Rn, outputs whether x ∈ K, or x /∈ K. If such
oracle is constructed, and if the body K has a relatively well-conditioned position,
meaning that rBn2 ⊂ K ⊂ RBn2 with R/r ≤ nC , then one can construct efficient
probabilistic algorithms for estimating the volume of K, its inertia ellipsoid, and
other geometric characteristics (see e.g. [3] and [8]). Yet, constructing an efficient
membership oracle for a given convex body may be a hard problem [2]. Because
of this, it is important to know whether a convex body can be approximated by
another body, for which the membership oracle can be efficiently constructed. One
natural class of convex bodies for which the construction of the membership oracle
is efficient is the projections of a polytope with a few faces. Such polytopes can
be realized as projections of sections of a simplex in a dimension comparable to n.
This construction is discussed in details in [2]. In particular, the following problem
was posed (Problem 4.7.2 in [2]).

Problem. Let K ⊂ Rn be a symmetric convex body and let P ⊂ Rn be a projection
of a polytope with N facets, which approximates K within a factor of 2. Is it true
that in the worst case the number N should be at least exponential in d: N ≥ ecd

for some absolute constant c > 1?

If K = Bnp is the unit ball of ℓnp , then this approximation requires only propor-
tional dimension. Moreover, even the existence of an n-dimensional convex body,
which cannot be approximated by a projection of a section of a simplex ∆N with
N proportional to n has been an open problem.

Our result provides an affirmative solution to the Barvinok problem above.
Furthermore, we prove a lower estimate for the minimal Banach–Mazur distance
between a certain convex symmetric body and a projection of a polytope with N
facets. This estimate is optimal for all N > n up to logarithmic terms.

Theorem. Let n ≤ N . There exists an n-dimensional convex symmetric body
B, such that for every n-dimensional convex body K obtained as a projection of a
section of an N -dimensional simplex one has

d(B,K) ≥ c

√

n

ln 2N ln(2N)
n

,

where c is an absolute positive constant.

Any projection of a section of a simplex can be realized as a section of a pro-
jection of a simplex. Thus, the Theorem above holds for bodies K obtained as a
section of a projection of a simplex as well.



Convex Geometry and its Applications 3529

To see that the estimate of the Theorem is close to optimal, recall that Barvinok
proved in [1] that for every N ≥ 8n and every symmetric convex body B in Rn

there exists a section K of an N -dimensional simplex such that

d(B,K) ≤ C max

{

1,

√

n

lnN
· ln

n

lnN

}

.

Comparison of these two bounds shows that working with projections of sections
of a simplex, as opposed to using sections alone, does not significantly improve
the approximation. This is in stark contrast with the situation described in the
Quotient of a Subspace Theorem. Recall that the Quotient of a Subspace Theorem
of Milman ([5], see also [6] and [7] for the non-symmetric case) states that given
θ ∈ (0, 1) and an n-dimensional convex body K there exists a projection of a section
of K whose dimension is greater than θn and whose Banach-Mazur distance to
the Euclidean ball of the corresponding dimension does not exceed C(θ) (moreover,
C(θ) can be chosen such that C(θ) → 1 as θ → 0+). On the other hand, it is
well-known by a volumetric argument that any n-dimensional section of the N -
dimensional cube (or simplex) is at the distance at least c

√

n/ ln (2N/n) from
the n-dimensional Euclidean ball. Thus, in the case of the cube (or simplex) and
proportional subspaces/projections, taking just sections leads to c

√
n distance to

the Euclidean ball, while adding one more operation – taking a projection – yields
the distance bounded by an absolute constant.

Our result also shows that Quotient of a Subspace Theorem cannot be extended
much beyond the Euclidean setting. Even if we start with the simplest (in terms
of complexity) convex body – simplex – we cannot obtain an arbitrary convex set
by taking a projection of a section.

Research of Mark Rudelson partially supported by NSF grant DMS 1161372.
Research of Alexander Litvak partially supported by the E.W.R. Steacie Memorial
Fellowship. Nicole Tomczak-Jaegermann holds the Canada Research Chair in
Geometric Analysis.

References

[1] A. Barvinok, Thrifty approximations of convex bodies by polytopes, preprint,
arXiv:1206.3993, 2012.

[2] A. Barvinok, E. Veomett, The computational complexity of convex bodies Surveys on Dis-
crete and Computational Geometry, Contemporary Mathematics, 453 (2008), 117–137.

[3] R. Kannan, L. Lovász, M. Simonovits, Random walks and O∗(n5) volume algorithm for
convex bodies, Random structures and algorithms, 2 (1997), 1–50.

[4] A.E. Litvak, M. Rudelson, N. Tomczak-Jaegermann, On approximation by projections of
polytopes with few facets, arXiv:1209.6281.

[5] V.D. Milman, Almost Euclidean quotient spaces of subspaces of a finite-dimensional normed
space, Proc. Amer. Math. Soc. 94 (1985), 445–449.

[6] V.D. Milman, A. Pajor, Entropy and asymptotic geometry of non-symmetric convex bodies,
Adv. Math. 152 (2000), 314–335.

[7] M. Rudelson, Distances between non-symmetric convex bodies and the MM∗-estimate, Pos-
itivity 4 (2000), 161–178.

[8] S.S. Vempala, Recent progress and open problems in algorithmic convex geometry, 30th In-
ternational Conference on Foundations of Software Technology and Theoretical Computer



3530 Oberwolfach Report 59/2012

Science, 42–64, LIPIcs. Leibniz Int. Proc. Inform., 8, Schloss Dagstuhl. Leibniz-Zent. In-
form., Wadern, 2010.

Non-uniqueness of convex bodies with prescribed volumes of sections
and projections

Dmitry Ryabogin

(joint work with Fedor Nazarov, Artem Zvavitch)

As usual, a convex body K ⊂ Rd is a compact convex subset of Rd with non-
empty interior. We assume that 0 ∈ K. We consider the central section function
AK :

(1) AK(u) = vold−1(K ∩ u⊥), u ∈ Sd−1,

the maximal section function MK :

(2) MK(u) = max
t∈R

vold−1(K ∩ (u⊥ + tu)), u ∈ Sd−1,

and the projection function PK :

(3) PK(u) = vold−1(K|u⊥), u ∈ Sd−1.

Here u⊥ stands for the hyperplane passing through the origin and orthogonal to
the unit vector u, K∩(u⊥+tu) is the section of K by the affine hyperplane u⊥+tu,
and K|u⊥ is the projection of K to u⊥. Observe that AK ≤MK ≤ PK . It is well
known, [Ga], that for origin-symmetric bodies each of the functions MK = AK
and PK determines the convex body K ⊂ Rd uniquely. More precisely, either of
the conditions

MK1(u) = MK2(u) ∀u ∈ Sd−1,

and

PK1(u) = PK2(u) ∀u ∈ Sd−1,

implies K1 = K2, provided K1, K2 are origin-symmetric and convex.
In this talk, we address the (im)possibility of analogous results for not neces-

sarily symmetric convex bodies.
It is well known, [BF], that on the plane there are convex bodies K that are

not Euclidean discs, but nevertheless satisfy MK(u) = PK(u) = 1 for all u ∈ S1.
These are the bodies of constant width 1.

In 1929 T. Bonnesen asked whether every convex body K ⊂ R3 is uniquely
defined by PK and MK , (see [BF], page 51). We note that in any dimension
d ≥ 3, it is not even known whether the conditions MK ≡ c1, PK ≡ c2 are
incompatible for c1 < c2.

In 1969 V. Klee asked whether the condition MK1 ≡ MK2 implies K1 = K2,
or, at least, whether the condition MK ≡ c implies that K is a Euclidean ball, see
[Kl1].
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Recently, R. Gardner and V. Yaskin, together with the first and the third
named authors constructed two bodies of revolution K1, K2 such that K1 is origin-
symmetric, K2 is not origin-symmetric, but MK1 ≡MK2 , thus answering the first
version of Klee’s question but not the second one (see [GRYZ]).

The main results we will present in this talk are the following.

Theorem 1. If d = 4, there exists a convex body of revolution K ⊂ Rd satisfying
MK ≡ const that is not a Euclidean ball.

Theorem 2. If d = 4, there exist two essentially different convex bodies of revo-
lution K1, K2 ⊂ Rd such that AK1 ≡ AK2 , MK1 ≡MK2, and PK1 ≡ PK2 .

Theorem 1 answers the question of Klee in R4, and Theorem 2 answers the
analogue of the question of Bonnesen in R4.

Remark 1. Theorem 1 is actually true in all dimensions, but the construction for
d 6= 4 is long and rather technical, [NRZ1]. Theorem 2 is true, provided d ≥ 4 is
even, [NRZ2]. The case of odd dimensions remains open.

The general idea of the construction of the bodies K1 and K2 in Theorem 2
is borrowed from [RY], which attributes it to [GV] and [GSW]. It can be easily
understood from the following illustration.

Figure 1. Two small-eared round faces in a cap

Here the ”ears” and the ”cap” will be made very small in order not to destroy
the convexity of the bodies.

References

[BF] T. Bonnesen and Fenchel, Theory of convex bodies, Moscow, Idaho, 1987.
[Ga] R.J. Gardner, Geometric tomography, Second edition. Encyclopedia of Mathematics and

its Applications, 58, Cambridge University Press, Cambridge, 2006.
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Decomposition of polytopes through their inner parallel bodies

Eugenia Saoŕın Gómez

(joint work with Eva Linke)

Let P = {x ∈ Rn : 〈x, ui〉 ≤ bi, 1 ≤ i ≤ m} ⊂ Rn be a polytope with unit
outer normal vectors ui, 1 ≤ i ≤ m. The inner parallel body of P at distance |λ|
is the polytope Pλ = {x : 〈x, ui〉 ≤ bi − |λ|, 1 ≤ i ≤ m}. In order Pλ not to be
empty, it is necessary to ask for 0 ≤ |λ| ≤ r(P ), where r(P ) is the classical inradius
of P , i.e., the radius of one of the largest balls fitting inside P .
Pλ is a summand of P if and only if it does exist another polytope Q, such that

P = Pλ +Q, where the sum here is the usual Minkowski sum. In 1969, Shephard
proved that for given polytopes P,Q, in order Q to be a summand of P , the follow-
ing two conditions are necessary and sufficient: i) for every unit vector u and the
corresponding faces of P , F (P, u), and Q, F (Q, u), built as the intersection with a
supporting hyperplane with outer normal vector u, dimF(P, u) ≥ dimF(Q, u); ii)
for every edge of P , F (P, u), vol1(F (P, u)) ≥ vol1(F (Q, u)).

In this talk we address the following question: When is Pλ a summand of P ,
for 0 ≤ |λ| ≤ r(P )? More in particular, we are interested in the polytopes P for
which all their inner parallel bodies Pλ, 0 ≤ |λ| ≤ r(P ) are summands of them.

In 1978, Sangwine-Yager provided necessary conditions for a general convex
body to have all its inner parallel bodies as summands, however no sufficient
conditions are known. Using these results together with the mentioned Shephard’s
criterion, we prove that for polytopes something else can be said.

In dimension 2 the situation is clear: it is not difficult to prove that for any
convex polygon P , Pλ is a summand of P for all 0 ≤ |λ| ≤ r(P ). In higher
dimension, the situation changes drastically. We provide examples of polytopes
none of whose inner parallel bodies are summands, as well as, only, some of them.

For a polytope P , we say that Pλ is a nested summand of P , if Pλ is not just
a summand of P but also a summand of all Pµ with |λ| < |µ| ≤ 0. In this talk,
we provide a characterization of the polytopes all whose inner parallel bodies are
nested summands of them. Furthermore, for such a polytope P we provide a
complete description of the summand(s) which complete the decomposition of P .
Indeed, it turns out that this is the case for all polygons in R2. In this particular
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case we prove also that for any convex body K ⊆ R2, all its inner parallel bodies
are nested summands of it.
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On the distribution of the ψ2-norm of linear functionals and mean
width in isotropic position

Petros Valettas

(joint work with A. Giannopoulos, G. Paouris)

A convex body K in Rn is called isotropic if it has volume 1, it is centered (i.e. it
has its center of mass at the origin), and there exists a constant LK > 0 such that

∫

K

〈x, θ〉2 dx = L2
K

for every θ ∈ Sn−1. It is known (see [10]) that for every convex body K in
Rn there exists an invertible affine transformation T such that T (K) is isotropic.
Moreover, this isotropic position of K is uniquely determined up to orthogonal
transformations; this implies that the isotropic constant LK is an affine invariant
of K.

We say that θ ∈ Sn−1 is a subgaussian direction for K with constant r > 0 if
‖〈·, θ〉‖ψ2 6 r‖〈·, θ〉‖1, where

‖f‖ψ2 = inf

{

t > 0 :

∫

K

exp
(

(|f(x)|/t)2
)

dx 6 2

}

.

V. Milman asked if every centered convex body K has at least one “subgaussian”
direction (with constant r = O(1)). By the formulation of the problem, it is
clear that one can work within the class of isotropic convex bodies. Affirmative
answers have been given in some special cases. Bobkov and Nazarov (see [1] and
[2]) proved that if K is an isotropic 1–unconditional convex body, then ‖〈·, θ〉‖ψ2 6
c
√
n‖θ‖∞ for every θ ∈ Sn−1; a direct consequence is that the diagonal direction is

a subgaussian direction with constant O(1). In [11] it is proved that every zonoid
has a subgaussian direction with a uniformly bounded constant. Another partial
result was obtained in [12]: if K is isotropic and K ⊆ (γ

√
nLK)Bn2 for some γ > 0,

then

σ
(

θ ∈ Sn−1 : ‖〈·, θ〉‖ψ2 > c1γtLK
)

6 exp(−c2
√
nt2/γ)

for every t > 1, where σ is the rotationally invariant probability measure on Sn−1

and c1, c2 > 0 are absolute constants.
The first general answer to the question was given by Klartag who proved in

[8] that every isotropic convex body K in Rn has a “subgaussian” direction with
a constant which is logarithmic in the dimension. An alternative proof with a
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slightly better estimate was given in [4]. The best known estimate, which appears
in [5], follows from an upper bound for the volume of the body Ψ2(K) with support
function

hΨ2(K)(θ) := sup
26q6n

‖〈·, θ〉‖q√
q

.

It is known that ‖〈·, θ〉‖ψ2 ≃ sup26q6n
‖〈·,θ〉‖q√

q , and hence, hΨ2(K)(θ) ≃ ‖〈·, θ〉‖ψ2 .

The main result in [5] states that

(∗)
c1√
n
LK 6 |Ψ2(K)|1/n 6

c2
√

logn√
n

LK ,

where c1, c2 > 0 are absolute constants. A direct consequence of the right hand
side inequality in (∗) is the existence of subgaussian directions for K with constant
r = O(

√
log n).

The approach in [8], [4] and [5] does not provide estimates on the measure of
directions for which an isotropic convex body satisfies a ψ2-estimate with a given
constant r. Klartag obtains some information on this question, but for a different
position of K. In [6] we pose the problem of the distribution of the ψ2-norm of
linear functionals on isotropic convex bodies and we provide some first measure
estimates. To this end, we introduce the function

ψK(t) := σ
(

{θ ∈ Sn−1 : hΨ2(K)(θ) 6 ct
√

lognLK}
)

.

The problem is to give lower bounds for ψK(t), t > 1. A general estimate is
presented in the next theorem:

Theorem 1. Let K be an isotropic convex body in Rn. For every t > 1 we have

(1.9) ψK(t) > exp(−cn/t2),
where c > 0 is an absolute constant.

For the proof of Theorem 1 we first obtain, for every log2 n 6 k 6 n, some in-
formation on the ψ2-behavior of directions in an arbitrary k-dimensional subspace
of Rn. Then, this is combined with a simple argument which is based on the fact
that the ψ2-norm is Lipschitz with constant O(

√
nLK), and hence, it is stable on

a spherical cap of the appropriate radius.
It is known (for example, see [9]) that every isotropic convex bodyK is contained

in [(n+ 1)LK ]Bn2 , and hence, we have ψK(t) = 1 if t > c
√

n/ logn. Therefore, the

bound of Theorem 1 is of some interest only when 1 6 t 6 c
√

n/ logn. Actually,
if t > c 4

√
n then we have much better information:

Proposition 2. Let K be an isotropic convex body in Rn. For every

t > c1
4
√
n/
√

logn

one has

ψK(t) > 1 − e−c2t
2 log n,

where c1, c2 > 0 are absolute constants.
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The problem of bounding from above the mean width in isotropic position is
central in the asymptotic theory of convex bodies. There are several approaches
that lead to the best (presently) estimate: for every isotropic convex body K in
Rn one has

w(K) 6 cn3/4LK ,

where c > 0 is an absolute constant. The first one appeared in the PhD Thesis of
M. Hartzoulaki [7] and was based on a result from [3] regarding the mean width
of a convex body under assumptions on the regularity of its covering numbers.
The second one is more recent and is due to P. Pivovarov [14]; it relates the
question to the geometry of random polytopes with vertices independently and
uniformly distributed in K and makes use of the concentration inequality of [13].
A third – very direct – proof of this bound can be based on the “theory of Lq–
centroid bodies” which was developed by the second named author (see [6]). In
[6] we propose one more approach, which can exploit our knowledge on ψK(t) and
provide a dichotomy argument in terms of some global parameter ρ∗ ≡ ρ∗(K) of
the body K. In particular we have the following:

Theorem 3. Let K be an isotropic convex body in Rn. Then, one has

w(K) 6 C
√
nmin{√ρ∗,

√

n logn/ρ∗}LK ,

where C > 0 is an absolute constant.

Note that from this Theorem we recover the best known estimate, up to some
logarithmic in dimension term.

References

[1] S. G. Bobkov and F. L. Nazarov, On convex bodies and log-concave probability measures

with unconditional basis, Geom. Aspects of Funct. Analysis (Milman-Schechtman eds.),
Lecture Notes in Math. 1807 (2003), 53–69.

[2] S. G. Bobkov and F. L. Nazarov, Large deviations of typical linear functionals on a convex

body with unconditional basis, Stochastic Inequalities and Applications, Progr. Probab. 56,
Birkhauser, Basel (2003), 3–13.

[3] A. Giannopoulos and V. D. Milman, Mean width and diameter of proportional sections of

a symmetric convex body, J. Reine Angew. Math. 497 (1998), 113–139.
[4] A. Giannopoulos, A. Pajor and G. Paouris, A note on subgaussian estimates for linear

functionals on convex bodies, Proc. Amer. Math. Soc. 135 (2007), 2599–2606.
[5] A. Giannopoulos, G. Paouris and P. Valettas, On the existence of subgaussian directions for

log-concave measures, Contemporary Mathematics 545 (2011), 103–122.
[6] A. Giannopoulos, G. Paouris and P. Valettas, On the distribution of the ψ2-norm of linear

functionals on isotropic convex bodies, Geometric Aspects of Functional Analysis, Lecture
Notes in Mathematics 2050 (2012).

[7] M. Hartzoulaki, Probabilistic Methods in the Theory of Convex Bodies, PhD Thesis, Uni-
versity of Crete, 2003.

[8] B. Klartag, Uniform almost sub-gaussian estimates for linear functionals on convex sets,
Algebra i Analiz (St. Petersburg Math. Journal), 19 (2007), 109–148.

[9] R. Kannan, L. Lovasz and M. Simonovits, Isoperimetric problems for convex bodies and a

localization lemma, Discrete Comput. Geom. 13 (1995), 541–559.



3536 Oberwolfach Report 59/2012

[10] V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit

ball of a normed n-dimensional space, Geom. Aspects of Funct. Analysis (Lindenstrauss-
Milman eds.), Lecture Notes in Math. 1376 (1989), 64–104.

[11] G. Paouris, Ψ2-estimates for linear functionals on zonoids, Geom. Aspects of Funct. Analysis,
Lecture Notes in Math. 1807 (2003), 211–222.

[12] G. Paouris, On the Ψ2-behavior of linear functionals on isotropic convex bodies, Studia
Math. 168 (2005), no. 3, 285–299.

[13] G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (2006), 1021–
1049.

[14] P. Pivovarov, On the volume of caps and bounding the mean-width of an isotropic convex

body, Math. Proc. Cambridge Philos. Soc. 149 (2010), 317–331.

On the inverse Klain map

Thomas Wannerer

(joint work with Lukas Parapatits)

The Klain map is a useful tool in the theory of even valuations. While the
Klain map is continuous and monotone, we show that its inverse is in general
neither continuous nor monotone. More precisely, in a joint work with Parap-
atits [1] we characterize the class of those centrally symmetric convex bodies at
which every i-homogeneous valuation depends continuously on its Klain function.
A similar characterization regarding the monotonicity of the inverse Klain map is
also presented. We explain how this result can be used to show that McMullen’s
decomposition is not possible in the class of translation-invariant, continuous, pos-
itive valuations. This implies that there exists no McMullen decomposition for
translation-invariant, continuous Minkowski valuations, which solves a problem
first posed by Schneider and Schuster [2].
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On the volume of polars of convex bodies

Manuel Weberndorfer

The Blaschke-Santaló inequality is one of the most famous isoperimetric in-
equalities. It states that the volume of the polar of a convex body is bounded
from above by the reciprocal of the volume of the convex body K itself. More
precisely,

V (K∗) ≤ w2
n

1

V (K)
,

where K∗ denotes the the polar body with respect to the Santaló point, and wn
denotes the volume of the Euclidean unit n-ball.
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The dual problem to find a corresponding sharp lower bound for V (K∗) is
now open for around 80 years. This is not due to a lack of interest and, in
fact, substantial inroads have been made recently (see e.g. [4, 5, 7, 10, 15]). For
instance, sharp lower bounds for the volume of polars of convex bodies in terms of
the volume of the John ellipsoid JK, and the dual Legendre ellipsoid L2K, have
been obtained: Barthe [2] has established that

(1) V (K∗) ≥ wn(n+ 1)(n+1)/2

nn/2n!

1

V (JK)
,

and Lutwak, Yang, and Zhang [13], have proved the inequality

(2) V (Ko) ≥ wn(n+ 1)(n+1)/2

nn/2n!

1

V (L2K)
,

where Ko denotes the polar body with respect to the origin. Moreover, Reisner
has obtained the sharp lower bound for V (K∗) in terms of the volume of K under
the additional assumption that K is a zonoid [8, 16]. In this talk we present two
theorems: The first of these theorems has inequalities (1) and (2) as special cases,
and the second theorem extends Reisner’s result for zonotopes.

First, we consider Wulff shapes

Wν,f = {x ∈ Rn : x · u ≤ f(u) for all u ∈ supp ν}

generated by positive continuous functions f on the sphere and isotropic f -centered
measures ν on the sphere. Here, a measure ν is called isotropic if

∫

Sn−1

|x · u|2 dν(u) = |x|2 for every x ∈ Rn,

and f -centered if the centroid of fdν lies at the origin. In a joint work with F. E.
Schuster, we have obtained a sharp lower bound for the volume of polars of Wulff
shapes that immediately implies inequalities (1) and (2). The proof uses ideas
of Ball [1], Barthe [3], and Lutwak, Yang, and Zhang [13]. We remark that the
corresponding result in the origin-symmetric setting has been obtained by Lutwak,
Yang, and Zhang [12].

Theorem 1 (F. E. Schuster and W. [17]). Suppose f is a positive continuous
function on Sn−1 and ν is an isotropic f -centered measure. Then

V (W o
ν,f ) ≥ (n+ 1)(n+1)/2

n!
‖f‖−nL2(ν)

with equality if and only if conv supp ν is a regular simplex inscribed in Sn−1 and
f is constant on supp ν.

Next we move on to generalizations of Reisner’s result for zonotopes. Recently,
Campi and Gronchi [6] have considered the volume of polars of Lp zonotopes ZpΛ
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associated with finite spanning sets Λ ⊆ Rn. For p ≥ 1, these are defined by their
support function

h(ZpΛ, u) = p

√

∑

v∈Λ

|v · u|p.

Campi and Gronchi have obtained the inequality

V (Z∗
pΛ) ≥ cp,n

1

V (Z1Λ)
,

where cp,n = V (Z∗
pΛ⊥)V (Z1Λ⊥) for the canonical basis Λ⊥. To extend their

result in the spirit of the asymmetric Lp Brunn-Minkowski theory (see [9, 11]), we
consider asymmetric Lp zonotopes Z+

p Λ defined by their support function

h(Z+
p Λ, u) = p

√

∑

v∈Λ

max{v · u, 0}p.

Using ideas and results of Campi, Gronchi, Meyer, and Reisner [6, 14], we have
established a sharp lower bound for the polars of these asymmetric Lp zonotopes

in terms of V (Z+
1 Λ), along with its equality conditions. Note that it contains

Reisner’s result for zonotopes as a special case.

Theorem 2 (W. [18]). Suppose p ≥ 1 and Λ ⊆ Rn \ {o} is finite and spanning.
Then

V (Z+,∗
p Λ) ≥ c+p,n

1

V (Z+
1 Λ)

,

where c+p,n = V (Z+,∗
p Λ⊥)V (Z+

1 Λ⊥). Equality holds for p > 1 if and only if Λ is a

linear image of the canonical basis. If p = 1, then equality holds if and only if Z+
1

is a parallelepiped.
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Mean Section Bodies and Surface Area Measures

Wolfgang Weil

(joint work with Paul Goodey)

For 2 ≤ k ≤ d − 1, the k-th mean section body, Mk(K), of a convex body K
in Rd, was introduced in [2] as the Minkowski sum of all sections of K by k-
dimensional flats. Here, we show that the characterization of these mean section
bodies is equivalent to the solution of the general Minkowski problem, namely
that of giving the characteristic properties of those measures on the unit sphere
which arise as surface area measures (of arbitrary degree) of convex bodies. This
equivalence arises from an analysis of Berg’s [1] solution of the Christoffel problem.
Using the functions introduced by Berg, we give an integral representation of the
support function of Mk(K) in terms of the (d + 1 − k)-th surface area measure
of K. Our results are based on Fourier transform techniques from [3] which also
yield a stability version of the fact that Mk(K) determines K uniquely.
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Divergence inequalities for log concave functions

Elisabeth Werner

(joint work with Umut Caglar, Carsten Schütt)

There is a general approach to extend invariants and inequalities of convex bod-
ies to the corresponding invariants and inequalities for functions. Among the best
known affine isoperimetric inequalities is the Blaschke Santaló inequality ([4, 7, 8].
The corresponding inequalities for log concave functions were proved by Ball [3]
and Artstein, Klartag and Milman [1] (see also [5, 6]). A stronger inequality than
the Blaschke Santaló inequality is the affine isoperimetric inequality for convex

bodies. It involves the affine surface area as1(K) =
∫

∂K
κ(x)

1
n+1 dµ(x). Here, κ is

the Gauss curvature and µ the usual surface measure on the boundary ∂K. Then

as1(K)

as(Bn2 )
≤
( |K|
|Bn2 |

)
n−1
n+1

,

with equality if and only if K is an ellipsoid.
The equivalent of this inequality for log concave functions was established in

[2]: For every log-concave function ϕ : Rn → [0,∞) with enough smoothness and
integrability properties,

∫

supp(ϕ)

ϕ ln

(

det (Hess (− lnϕ))

)

dx ≤ 2 Ent(ϕ) + ‖ϕ‖L1 ln(2πe)n,(1)

where, for ϕ ∈ L1(Rn, dx), the Lebesgue integrable functions on Rn, ‖ϕ‖L1 =
∫

Rn ϕdx, Hess(ϕ) =
(

∂2ϕ
∂xi∂xj

)

i,j=1,...,n
is the Hessian of ϕ, and

Ent(ϕ) =

∫

supp(ϕ)

ϕ lnϕdx− ‖ϕ‖L1 ln ‖ϕ‖L1(2)

is the entropy of ϕ.
Thus, the affine isoperimetric inequality corresponds to a reverse log Sobolev

inequality for entropy.
The characterization of equality in inequality (1) remained an open problem.

Here, we not only settle the equality characterization, but also strengthen and
generalize inequality (1) and prove the following entropy inequality for log concave
functions.

Theorem 1. Let f : (0,∞) → R be a convex function. Let ϕ : Rn → [0,∞) be an
upper semi-continuous log-concave function with 0 ∈ int (supp(ϕ)) which belongs to

C2(supp(ϕ))∩L1(Rn, dx) and is such that ϕ◦ and ϕf

(

e
〈∇ϕ,x〉

ϕ

ϕ2 det (Hess (− lnϕ))

)
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are in L1(supp(ϕ), dx). Then
∫

supp(ϕ)
ϕ f

(

e〈
∇ϕ
ϕ
,x〉ϕ−2 (det (Hess (− lnϕ)))

)

dx

≥ f

(
∫

ϕ◦dx
∫

ϕdx

)

(

∫

supp(ϕ)
ϕdx

)

.(3)

If f is concave, the inequality is reversed. If f is linear, equality holds in (3).
Moreover, if f is strictly convex resp. concave, equality holds in (3) iff ϕ(x) =

Ce−〈Ax,x〉, where C is a positive constant and A is an n × n symmetric positive
definite matrix.

Here, ∇ϕ denotes the gradient of ϕ and ϕ◦ = infy∈Rn

[

e−〈x,y〉

ϕ(y)

]

[1] is the dual

function of ϕ.

The characterization of the equality case is obtained as a consequence of the
uniqueness of the solution of a certain Monge Ampere differential equation.

If we let f(t) = ln t in Theorem 1, we obtain the following corollary.

Corollary 1. Let ϕ : Rn → [0,∞) be an upper semi-continuous log-concave func-
tion with 0 ∈ int (supp(ϕ)) which belongs to C2(supp(ϕ))∩L1(Rn, dx) and is such
that ϕ◦ and ϕ ln (det (Hess (− lnϕ))) ∈ L1(supp(ϕ), dx). Then

∫

supp(ϕ)
ϕ ln

(

det (Hess (− lnϕ))

)

dx

≤ 2 Ent(ϕ) + ‖ϕ‖L1 ln

[

en
(∫

ϕ

)(∫

ϕ◦
)]

,(4)

with equality iff ϕ(x) = Ce−〈Ax,x〉, where C is a positive constant and A is an
n× n symmetric positive definite matrix.

Inequality (4) is stronger than (1): inequality (1) follows from inequality (4)
with the functional form of the Blaschke Santaló inequality [1, 3, 5, 6].
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347, (2009), 55–58.

[7] M. Meyer and A. Pajor, On the Blaschke Santaló inequality, Arch. Math. (Basel) 55,
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Detecting symmetry in star bodies

Vlad Yaskin

(joint work with D. Ryabogin)

Let K be a convex body in Rn, i.e. a compact convex set with a non-empty
interior. We say that K is origin-symmetric if K = −K. The presence of origin-
symmetry is an essential assumption in various problems. Many results that hold
for origin-symmetric convex bodies fail in the absence of the symmetry condition.
For example, origin-symmetric convex bodies are uniquely determined by the vol-
umes of their projections or central sections, while this is not true for general
convex bodies; see [1]. Thus, detecting symmetry in convex bodies is one of the
fundamental questions in convex geometry and geometric tomography.

In [4] we suggest a new method of detecting symmetry. Let K be a star body
and let C(ξ, z) be the cone {x ∈ Rn : x · ξ = |x|z}, where ξ ∈ Sn−1, z ∈ (−1, 1),
and x · ξ = x1ξ1 + x2ξ2 + ... + xnξn is the usual inner product in Rn. In this
notation, z is the cosine of the angle between x and ξ. For z ∈ (−1, 1), we define
the conical section function CK,ξ(z) by

CK,ξ(z) = voln−1(K ∩ C(ξ, z)).

Clearly, if K is an origin-symmetric star body, then for each ξ the function
CK,ξ(z) is an even function of z, and therefore has a critical point at z = 0. In [4]
we show that the converse statement is also true.

Theorem 1. Let K be a C1 star body in Rn. Assume that for each ξ ∈ Sn−1

the function CK,ξ(z) has a critical point at z = 0. Then the body K is origin-
symmetric.

This theorem is an analog of the result by Makai, Martini and Ódor [3], which
can be stated as follows.

Theorem 2. Let K be a C1 star body in Rn. If for every ξ ∈ Sn−1 the function
AK,ξ(t) has a critical point at t = 0, then K is origin-symmetric.

Here, AK,ξ(t) is the parallel section function defined by

AK,ξ(t) = voln−1(K ∩ (ξ⊥ + tξ)), t ∈ R,
and ξ⊥ = {x ∈ Rn : x · ξ = 0} is the hyperplane passing through the origin and
orthogonal to the vector ξ.
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Makai, Martini and Ódor proved Theorem 2 in the class of convex bodies,
in which case the C1-smoothness assumption can be dropped. Using the same
reasoning, it can be shown that Theorem 1 also holds true for convex bodies
without the smoothness assumption.

The techniques that we use to prove our results were developed by Koldobsky
(see [2]) and are based on the Fourier transform of distributions. Using these
methods we also give a new proof of Theorem 2.
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Université Paul Sabatier
31062 Toulouse Cedex 9
FRANCE

Prof. Dr. Alexander Barvinok

Department of Mathematics
University of Michigan
2074 East Hall
530 Church Street
Ann Arbor, MI 48109-1043
UNITED STATES

Prof. Dr. Jesus Bastero

Depto. de Matematicas
Universidad de Zaragoza
Facultad de Ciencias
c/Pedro Cerbuna 12
50009 Zaragoza
SPAIN

Prof. Dr. Andreas Bernig

Institut für Mathematik
Goethe-Universität Frankfurt
Robert-Mayer-Str. 6-10
60325 Frankfurt am Main
GERMANY

Prof. Dr. Gabriele Bianchi

Dipto. di Matematica e Informatica
”U.Dini”
Universita degli Studi
Viale Morgagni, 67/A
50134 Firenze
ITALY

Prof. Dr. Karoly Böröczky, Jr.
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