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Introduction by the Organisers

Nonlinear waves and patterns arise in partial differential equations and in systems
posed on infinite lattices. While nonlinear waves and patterns are important in
many biological and physical applications, many of their properties are still poorly
understood from a mathematical viewpoint. Some outstanding problems in this
area are the long-time behavior and nonlinear stability of localized and nonlocal-
ized patterns on unbounded domains, the development of numerical algorithms to
compute patterns and to assess their stability, analytical and geometric approaches
for waves in lattice dynamical systems, and their control-theoretic aspects. Tech-
niques range from dynamical systems, the analysis of nonlinear partial and func-
tional differential equations including multiscale problems, to spectral analysis and
numerical methods for patterns. It is the pattern aspect which unifies these widely
separate technical aspects and provides substantial links between the proposed key
topics. Over the past few decades, dynamical-systems techniques and bifurcation
theory have helped tremendously in extending our understanding of the formation
and dynamics of nonlinear waves on spatially extended domains. Most of these
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efforts, however, are restricted to structures that respect an underlying periodic
spatial lattice.
The goal of the workshop on ”Dynamics of Patterns”, which was organized by
W.-J. Beyn (Bielefeld), B. Fiedler (FU Berlin), and B. Sandstede (Brown), was to
bring together researchers from the aforementioned diverse areas to bridge existing
gaps and to facilitate interaction. The formal scientific program consisted of 5
longer talks, 24 shorter talks, and 4 brief talks given by participating graduate
students. No talks were scheduled in the afternoons on Tuesday, Thursday and
Friday: instead, participants were encouraged to form small groups and discuss
open problems in order to facilitate informal interaction. This worked very well,
and several groups met to talk about a wide range of topics from new software
tools to theoretical questions. Some specific topics were blow-up problems, lattice
dynamical systems, front propagation, interaction of multi-dimensional patterns,
delay equations, and functional-analytic tools in stability problems.
Despite much progress over the past decades, our understanding of when nonlinear
waves exist and when they are stable under small perturbations is still limited.
The talks by Ghazaryan, Hoffman, Hupkes, McCalla, Rademacher, and Veerman
addressed a wide range of topics related to these questions. Some of these talks
focused on studying models for combustion processes and chemical reactions that
involve small parameters which affect the dynamical properties of fronts and pulses.
Also discussed were existence and stability problems of planar fronts in lattice
dynamical systems, which involved the development of new techniques suited to
deal with the essential spectrum.
Since it is often difficult to prove the existence of waves rigorously in a given model,
the development of efficient and accurate algorithms that can be used to find such
structures numerically is important for applications. The talks by Hochbruck,
Latushkin, Otten, and Rottmann-Matthes focused on recent developments in ex-
ponential integrators, which can be used for fast direct numerical simulations, and
on techniques for analyzing methods that allow one to ”freeze” a traveling wave
to find its profile and determine its stability. Among the new results that were
presented were approaches that deal with waves in hyperbolic PDEs.
Another area of considerable interest are generalized patterns and waves which
arise when long-lived structures exhibit a complicated irregular spatial and/or
temporal form. Among these structures are time-periodic breather solutions in
wave equations, composite front solutions, generalized fronts that arise in systems
with inhomogeneities or noise, turbulent patterns in pipe flow, and quasi-periodic
as well as transient patterns in Faraday experiments. Recent progress in this area
was presented in the talks by Barkley, Chirilus–Bruckner, Mallet–Paret, Matano,
Nishiura, Pego, Rucklidge, and Tuckerman.
Multiscale problems provide a rich source of interesting patterns that are often
difficult to analyze: examples are patterns that arise in ferromagnetic materials
or in media with periodic imperfections that occur on small scales, and long-wave
frequency and amplitude modulations of large-scale periodic structures. The talks
by Matthies, Mielke, Otto, and G. Schneider addressed various challenges in this
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area, including the use of homogenization methods, the analysis of domain wall
structures, and the derivation and validity of reduced modulation equations for
wave structures.
Another topic that was of significant interest to participants is the dynamics and
control of structures involving delay equations and networks. The talks by Atay,
Luecken, I. Schneider, Schöll, Walther, and Wolfrum focused on synchronization,
chimera solutions, and control of structures in coupled oscillator systems with
delay, and on the dynamics of delay differential equations with state-dependent
delays.
For several classes of systems, it is possible to describe not just certain nonlinear
wave structures but, in fact, all long-lived solutions on the attractor. The talks
by Beck, Ben–Gal, Gurevich, Krisztin, and Rocha outlined recent progress on the
dynamics of metastable patters in the 2D Navier–Stokes equations, the dynamics
of reaction-diffusion systems with hysteresis, and the surprising analogies of global
attractors in one-dimensional reaction-diffusion equations and in delay differential
equations.
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Abstracts

Propagating terrace in one-dimensional semilinear diffusion equations

Hiroshi Matano

(joint work with Thomas Giletti, Arnaud Ducrot)

My talk is a summary of our recent work [1] and an ogoing work [3] concerning the
front propagation in one-dimensional semilinear diffusion equations of the form

(1) ut = uxx + f(x, u) (x ∈ R).

We consider a large class of spatially periodic nonlinearities f – including multi-
stable ones – and study the asymptotic behavior of solutions with Heaviside type
initial data. More precisely, f is a smooth function satisfying

f(x, 0) = 0 (∀x ∈ R), f(x+ L, u) = f(x, u) (∀x ∈ R, ∀u ≥ 0)

for some constant L > 0, and we assume that there exists a positive stationary
solution p(x):

p′′ + f(x, p) = 0 (x ∈ R), p(x+ L) ≡ p(x) > 0.

We first discuss the existence of the propagating terrace, following the paper [1].
For this, we need a rather mild stability assumption on p ; there exists a solution
0 ≤ u(x, t) < p(x) such that its initial data u0(x) := u(x, 0) is compactly supported
and that u(x, t) converges to p(x) as t→ ∞. Such an assumption is satisfied by a
large class of nonlinearities f and we do not need any further assumption.

Our analysis reveals some new dynamics where the profile of the propagation is
not characterized by a single front, but by a layer of several fronts which we call
a “propagating terrace”. More precisely, a propagating terrace connecting 0 to
p is a pair of finite sequences (pk)0≤k≤N and (Uk)1≤k≤N such that:

• Each pk is an L-periodic stationary solution of (1) satisfying

p = p0 > p1 > ... > pN = 0.

• For each 1 ≤ k ≤ N , Uk is a pulsating traveling wave solution of (1)
connecting pk to pk−1.

• The speed ck of each Uk satisfies 0 < c1 ≤ c2 ≤ · · · ≤ cN .

Furthermore, a propagating terrace T = ((pk)0≤k≤N , (Uk)1≤k≤N ) connecting 0
to p is said to be minimal if it also satisfies the following:

• For any propagating terrace T ′ = ((qk)0≤k≤N ′ , (Vk)1≤k≤N ′ ) connecting 0
to p, one has that {pk | 0 ≤ k ≤ N} ⊂ {qk | 0 ≤ k ≤ N ′}.

• For each 1 ≤ k ≤ N , the traveling wave Uk is steeper than any other
traveling wave connecting pk to pk−1.
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Figure 1. A three-step terrace

Roughly speaking, a propagating terrace can be pictured as a layer of several
traveling fronts going at various speeds, the lower the faster (Figure 1). In the
special case where N = 1, a propagating terrace is nothing but a traveling wave.

In [1], we have shown that, for any a ∈ R, the solution of (1) with a Heaviside
function type intial data u0(x) = p(x) (x ≤ a), = 0 (x > a) converges as t→ ∞ to
a minimal propagating terrace. This convergence result automatically implies
the existence of a propagating trerrace for equation (1).

Note that the meaning of convergence here is a bit nonstandard. Indeed, since
the traveling waves U1, U2, . . . , UN , which comprise the terrace, have different
propagation speeds, we need multiple frames to define the convergence. Further-
more, the speeds c1, c2, . . . , cN are not a priori known, nor even the number N ,
therefore, one should use a rather flexible notion of generalized ω-limit points, as
we did in [1]. The proof in [1] depends largely on the intersection number argu-
ment, without much relying on standard linear analysis. This allows us to deal
with even highly degenerate type of nonlinearities.

Early analysis of such phenomena is found in Fife and McLeod [2], who studied
propagating terraces (under different terminology) for a certain class of spatially
homogeneous multistable nonlinearities f . However, it should be emphasized that
we are not giving just another example of propagating terraces but are showing
that convergence to a propagating terrace is a universal phenomenon for a very
large class of nonlinearities, even with periodic heterogeneity.

Our second work [3] is concerned with the uniqueness of the propagating terrace.
For this, we no longer need the stability assumption on p, but we instead need a
mild nondegeneracy assumption on f .

References

[1] A. Ducrot, T. Giletti and H. Matano, Existence and convergence to a propagating terrace
in one-dimensional reaction-diffusion equations, to appear in Trans. Amer. Math. Soc.

[2] P.C. Fife, J. McLeod, The approach of solutions of nonlinear diffusion equations to traveling
front solutions, Arch. Rational Mech. Anal. 65 (1977), 335–361.

[3] T. Giletti and H. Matano, Uniqueness of propagating terraces, in preparation.
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Negative Diffusion in High Dimensional Lattice Systems - Travelling

Waves

Hermen Jan Hupkes

(joint work with E. S. Van Vleck)

We consider bistable reaction diffusion systems posed on rectangular lattices in
two or more spatial dimensions. The discrete diffusion term is allowed to have
positive spatially periodic coefficients and the two spatially periodic equilibria are
required to be well-ordered. We establish the existence of travelling wave solutions
to such pure lattice systems that connect the two stable equilibria. In addition,
we show that these waves can be approximated by travelling wave solutions to
systems that incorporate both local and non-local diffusion. In certain special sit-
uations our results can also be applied to reaction diffusion systems that include
(potentially large) negative coefficients. Indeed, upon splitting the lattice suitably
and applying separate coordinate transformations to each sublattice, such systems
can sometimes be transformed into a periodic diffusion problem that fits within
our framework. In such cases, the resulting travelling structure for the original
system has a separate wave profile for each sublattice and connects spatially pe-
riodic patterns that need not be well-ordered. There is no direct analogue of this
procedure that can be applied to reaction diffusion systems with continuous spatial
variables.

On the existence of breathers in nonlinear wave equations: An

approach via inverse spectral theory

Martina Chirilus-Bruckner

(joint work with C. E. Wayne)

Consider the nonlinear wave equation

s(x)∂2t u(x, t) = ∂2xu(x, t) + q(x)u(x, t) + γu(x, t)3,(1)

where x, t, u(x, t) ∈ R, s, q are real-valued, 1-periodic, even coefficients that are
bounded from below by a positive constant and γ ∈ R. We investigate the existence
of solutions that are time-periodic and spatially localized, so-called breathers (see
Figure 1). For constant coefficients this equation is not known to support such so-
lutions, unless the nonlinearity is changed to turn it into the Sine-Gordon equation
for which explicit formulas for breathers are known. In the setting of (1), a more
common solution type related to breathers are generalized modulating pulses – as
described in [4] for constant coefficients and [3] for periodic coefficients – featuring
oscillating tales (see Figure 1). In this sense, breathers are a rare phenomenon.

We explore a new construction mechanism (already proposed in [1]) leading
to a surprisingly large class of coefficients for which (1) supports breathers. In
[1] a combination of spatial dynamics, center manifold reduction, bifurcation and
averaging theory was used in order to construct small amplitude breathers. In
contrast to breathers for the Sine-Gordon equation, whose existence seems to be
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Figure 1. Left panel: Generalized modulating pulse and correspond-
ing spectral picture with infinitely many eigenvalues on and off the
imaginary axis. Right panel: Breather and corresponding spectral pic-
ture with all eigenvalues – except two creating a bifurcation – uniformly
bounded away from the imaginary axis.

related to the special algebraic structure of the nonlinearity, the new mechanism
for breather creation for (1) uses the degrees of freedom coming from the spatially
periodic coefficients to tailor the linear part appropriately. The key idea is to
tune s such that the band structure (whose evaluation at integer multiples of
the breather frequency ω∗ ∈ R yields the spectral picture for the center manifold
reduction) features uniformly open gaps at the locations n2ω2

∗, n ∈ Nodd, for some
ω∗ ∈ R and the band edges are uniformly bounded away from n2ω2

∗, n ∈ Nodd, such
that the spectral picture for the center manifold reduction yields only eigenvalues
that are uniformly bounded away from the imaginary axis. The coefficient q is
then used to create a bifurcation while leaving the asymptotic behavior of gaps
untouched.

In general, it is not possible to derive explicit formulas for the band structure
of the linear part of (1). However, in [1] this was achieved for the special choice
of coefficients

s(x) = 1 + 15χ[6/13,7/13) mod(1), q(x) = (q0 − ε2)s(x), ω∗ =
13

16
π,(2)

where q0 is some explicitly defined number and 0 < ε ≪ 1 is a small bifurcation
parameter that is used to construct the small amplitude breather. Note, however,
that the direct tuning of coefficients and breather frequency in (2) is very sensitive,
any arbitrary deviation will destroy the spectral picture and, hence, the breather
construction. Moreover, other choices of coefficients lead to tedious computations
involving special functions, hence, inhibiting a clean tuning as was possible for
(2). Therefore, we pursue a different strategy for adjusting the band structure by
formulating an inverse spectral problem for (the distance between) eigenvalues of
specific boundary value problems. It is well-known (see for instance [2]) that the
gap edges are given by a pair λn, λn+1 of either periodic or anti-periodic eigenvalues
for the second order ODE

y′′(x) + [s(x)λ − q(x)]y(x) = 0, x ∈ [0, 1],(3)
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Figure 2. Band structure associated with the linear part of (1) and
location of eigenvalues related to its evaluation at multiples of the
breather frequency: Landing in gaps gives eigenvalues off the imag-
inary axis while hitting the band structure gives eigenvalues on the
imaginary axis.

and that the corresponding Dirichlet and Neumann eigenvalues µn, νn are always
situated in gaps, so λn ≤ µn, νn ≤ λn+1, n ∈ N, which indicates that the distance
of Dirichlet and Neumann eigenvalues gives a lower bound for the gap lengths.
There is a vast amount of literature on inverse spectral theory for (3) (mostly
for s = 1). We refrain from giving a complete list and simply highlight the most
relevant references for the special setting we have in mind. The strategy for solving
the inverse problem related to the special band structure set-up is inspired by the
book [6] which deals with the inverse Dirichlet problem for (3) with s = 1 and
q ∈ L2(0, 1). Classic results in Sturm-Liouville theory show that the smoother
the coefficients s, q the faster the asymptotic decay of gaps. More specifically, the
possiblity for asymptotically open gaps is given if, for instance, s or s′ feature jumps
(cf. citeeastham), or, expressed in terms of function spaces, in case s = 1, we need
q ∈ Hm(0, 1),m ∈ [−1,−1/2), which – in the spirit of the Liouville transformation
– corresponds to s ∈ Hr(0, 1), r ∈ [1, 3/2) (although the transformation is not well-
defined here). The Schrödinger case (i.e. (3) with s = 1) with singular potential
q has been discuss in numerous recent articles, amoung the most relevant for our
case being [5] and [7]. We follow estimation strategies from [5] in order to compute
a refined eigenvalue estimate for Dirichlet and Neumann eigenvalues for the case
s ∈ Hr(0, 1), r ∈ [1, 3/2), q = 0, which is the backbone of the solution of the inverse
problem. Our next step is to explore how q can be used to create the bifurcation
and adapt the breather construction via center manifold theory as carried out in
[1] to this new class of coefficients.

The problem of finding breathers for (1) is inspired by applications in photonics,
the ultimate goal being the designing of a material (whose properties are encoded
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by the coefficient s) that can be used as optical storage system based on standing
light pulses, which – in the language of nonlinear wave equations – are breathers.
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Freezing traveling waves with application to a hyperbolic

Hodgkin-Huxley system

Jens Rottmann-Matthes

In this talk we analyze the method of freezing for traveling waves [1]. Our main
focus is on semilinear hyperbolic systems. The analysis for this class of systems is
quite different from the analysis of the pure parabolic case done in [4] and which
makes use of the strong results of analytic semigroup theory. Moreover, many
of the technical difficulties that show up when analyzing the freezing method for
coupled hyperbolic-parabolic problems already appear in the simpler hyperbolic
case considered here.

The class of semilinear hyperbolic systems is of relevance not only from an
academic point of view. As motivation consider the spatially extended Hodgkin-
Huxley model. Recall that the change of the membrane potential ∂

∂tV (x, t) is
made up of ionic currents Iionic, given by ions passing through channels in the
membrane, and a current qx along the axon:

Vt + qx = Iionic.

Typically one assumes that the flux q is given by Fourier’s law, i.e. q = −kVx.
This implies that the flux instantaneously depends on the gradient Vx and that
the resulting system has infinite speed of information. We follow an approach of
Cattaneo [2] to face these unphysical properties and replace Fourier’s law by the
Maxwell-Cattaneo law τqt + q = −kVx. Using this constitutive relation, the full
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Hodgkin-Huxley system becomes

(1)

Vt + qx = −gKn4(V − VK)− gNam
3h(V − VNa)− gl(V − Vl),

τqt + q = −kVx,
nt = αn(V )(1− n)− βn(V )n,

mt = αm(V )(1 −m)− βm(V )m,

ht = αn(V )(1− h)− βh(V )h.

The system develops a traveling wave solution. We then consider the Cauchy
problem for abstract semilinear hyperbolic systems

(2) vt = Bvx + f(v), v(x, 0) = v0, v(x, t) ∈ R
m, x ∈ R, t ≥ 0.

System (1) can be written in this form. Note that it is neither strictly hyperbolic
(all eigenvalues of B are simple and distinct) nor is it a simple transport (B is a
multiple of the identity. We impose on (2)

H1: B is real diagonalizable,
H2: f ∈ C3(Rm,Rm),
H3: there exists a traveling wave solution v(x, t) = v(x − λt) of (2) with

profile v ∈ C1
b , vx ∈ H2, f(v) ∈ L2, and velocity λ.

In [3] it is shown that if the linear operator Bvx + Cv := (B + λI)vx + fv(v)v
satisfies the spectral assumptions

S1: B is invertible,
S2: let C± := limx→±∞ C(x), there is δ > 0 so that s ∈ σ(iξB + C±) for

some ξ ∈ R implies Re(s) < −δ < 0,
S3: zero is an algebraically simple eigenvalue of P and σpt∩{Re(s) ≥ −δ} =

{0},
nonlinear stability of the traveling wave with asymptotic stability follows. The
proof is based on a nonlinear change of coordinates. Namely, one uses the ansatz

(3) v(·, t) = ṽ(·, t) + v(· − Λ(t)), 0 = Ψ(ṽ),

for the solution v of (2). This leads to a partial differential algebraic equation for

Λ, λ = Λ̇, and ṽ:

(4)
ṽt = Bṽx + fv(v)ṽ + λvx +Qhen(Λ, λ, ṽ),

0 = Ψ(ṽ).

Here Qhen is a quadratic function of its arguments. Stability is then proved by
deriving linear stability using energy and resolvent estimates for the linear part.
A bootstrap argument closes the argument for nonlinear stability.

In the special case of traveling waves for (2), the freezing method can be derived
from the ansatz v(x, t) = u(x−Λ(t), t), where u is a time dependent profile and Λ
is a time dependent location of the profile. Similar to (3) one requires a constraint
Ψ(u − û) = 0. The method then leads to a partial differential algebraic equation
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for the unknowns u and λ = Λ̇:

(5)
ut = Bux + λux + f(u), u(0) = u0,

0 = Ψ(u− û). (phase condition)

On the phase condition we impose

Ph1: Ψ ∈
(
L2(R,Rm)

)′
,

Ph2: v − v̂ ∈ H1 and Ψ(v − v̂) = 0,
Ph3: Ψ(vx) 6= 0.

Under these conditions we can prove that stability with asymptotic phase for the
original system (2) becomes stability in the sense of Lyapunov for the freezing
system (5):

Theorem 1. Impose H1–H3, S1–S3, Ph1–Ph3. Then for all 0 < δ0 < δ there
exists ρ0 > 0 so that for all consistent initial data (u0, λ0) of the freezing equation
(5) with ‖u0 − v‖H2 ≤ ρ0 hold exists a unique global solution (u, λ) of (5) and
u− v ∈ C([0, T ];H1)∩H1(0, T ;L2), λ ∈ C([0, T ];R for all T > 0. Moreover, there
is C = C(δ0) so that for all t ≥ 0 holds

(6) ‖u(t)− v‖2H1 + |λ(t) − λ|2 ≤ C‖u0 − v‖2H2e−2δ0t.

The theorem is proved by using the result on asymptotic stability with asymp-
totic phase. To use the asymptotic stability with asymptotic phase for the proof
limits the applicability to the all-line problem. But the freezing method is of
particular interest on finite intervals and, therefore, a direct proof is sought.

In the talk we show that (5) leads to a system of the form

(7)
ũt = Bũx + fv(v)ũ+ λux +Qfreeze(λ, ũ, ũx),

0 = Ψ(ũ).

The linear parts of (4) and (7) are precisely the same and the linear analysis for
(4), outlined above, identically applies to (7). But because of a term λũx appearing
in Qfreeze the linear estimates are not strong enough to close the argument and
derive nonlinear stability. This term comes from the term λux in (5) which is a
perturbation of the principal part and cannot be discussed as a small perturbation
as in the parabolic case [4].
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Reaction-diffusion equations with hysteresis

Pavel Gurevich, Sergey Tikhomirov

1. Hysteresis

Hysteresis operators arise in mathematical description of various physical, chem-
ical and biological processes: thermocontrol, chemical reactors, ferro-magnetism,
etc. (see the monographs [6, 7, 1]). It also appears as a formal limit in systems
with different time scales.

We consider reaction-diffusion equations involving a hysteretic discontinuity
defined at each spatial point. In particular, such problems describe chemical reac-
tions and biological processes in which diffusive and nondiffusive substances inter-
act according to hysteresis law. This leads to various spatial and spatio-temporal
patterns. We concentrate on existence and uniqueness theory, connection with free
boundary problems, and pattern formation. We treat both spatially continuous
and spatially discrete systems.

Figure

1. Hysteresis H

Hysteresis H(g)(t) for a real-valued func-
tion g(t) is defined as follows (cf. [6, 7] and
Fig. 1). One fixes two thresholds α < β and
two outputs H1 > H−1. If g(t) ≤ α, then
H(g)(t) = H1; if g(t) ≥ β, thenH(g)(t) = H−1;
if g(t) is between α and β, then H(g)(t) takes
the same value as “just before.”

2. Model problem

As a model problem, consider a growth of
a colony of bacteria (Salmonella typhimurium)
on a petri dish (see [2]). Let Q ⊂ Rn be a
bounded domain, B(x, t) denote the density of
nondiffusing bacteria in Q, while u(x, t) and v(x, t) denote the concentrations of
diffusing buffer (pH level) and histidine (nutrient) in Q, respectively. These three
unknown functions satisfy the following equations in Q:




Bt = aHB,

ut = D1∆u− a1HB,

vt = D2∆v − a2HB

supplemented by initial and no-flux (Neumann) boundary conditions. Here
D1, D2, a, a1, a2 > 0 are given constants and the function H = H(x, t) corresponds
to the growth rate of bacteria and is defined by hysteresis law. In the simplest
case, H(x, t) takes value 1 if u(x, t) and v(x, t) are large enough, 0 if u(x, t) and
v(x, t) are small enough, and remains constant in between (see Fig. 2, left image).
Due to hysteresis (see [2]), concentric rings formed by B(x, t) as t → ∞ appear
(see Fig. 2, right image).

3. Well-posedness

Due to discontinuity of hysteresis, well-posedness is not trivial. In [4, 3, 5],
we found a broad class of initial data (transverse functions) for which a solution
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Figure 2. Left image: hysteresis depends on a region: H = 1
in Mon, H = 0 in Moff , H is constant in Mon-off . Right image:
density of bacteria.

exists, is unique, and continuously depends on initial data. As far as we know,
this is the first uniqueness result for such systems with hysteresis. The approach is
based on tracking free boundaries which define the hysteresis topology. The main
advantage of this approach is that one gets necessary information on the precise
form of emerging spatio-temporal patterns.

4. Rattling

The transversality condition is typically satisfied at the initial moment, but it
can fail as the solution evolves. To understand mechanisms of pattern formation,
we need to consider nontransverse initial data as well. The simplest equation
where complications arise is

ut = uxx +H(u(x, ·))(t),
where u(x, t) ∈ R, x ∈ R, t > 0, and the initial condition is u(x, 0) = −cx2 with
c > 0. Hysteresis H is defined as in Fig. 1 with H1 > 0 and H−1 < 0. Its spatially
discretized version reads

(1) u̇n =
un−1 − 2un + un+1

h2
+H(un), n ∈ Z,

with the initial condition un(0) = −c(hn)2, where un(t) = u(hn, t) and h > 0
is the grid size. Numerical simulation of (1) indicated that the hysteresis spatial
profile is a step-like function continuous on intervals of length of order h (see
Fig. 3). This phenomenon might have been a result of numerical errors, but we
have proved that it is not. Further, analyzing results of numerical simulations, we
conjecture that

#switched points

#not switched points
≈

∣∣∣∣
H1

H−1

∣∣∣∣ .

Situation becomes even more interesting in multidimensional domains. Spatial
profile of hysteresis now depends on a type of lattice in the discretization scheme
(see Fig. 4). This is a subject of future work.



Dynamics of Patterns 3567

Figure 3. Spatial profile of H at a fixed time moment

Figure 4. Hysteresis pattern depending on lattice for
|H1/H−1| = 1.
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Radially symmetric spot solutions for the Swift–Hohenberg equation

Scott Gregory McCalla

(joint work with Björn Sandstede)

We are interested in the formation and parameter dependence of localized station-
ary radial solutions u(x, t) = u(|x|) of the variational Swift–Hohenberg equation

(1) ut = −(1 + ∆)2u− µu+ νu2 − u3, x ∈ R
n,

that are bounded as |x| → 0 and with lim|x|→∞ u(|x|) = 0. These solutions satisfy

(2) −
(
∂2r +

n− 1

r
∂r + 1

)2

u− µu+ νu2 − u3 = 0, r > 0

with the boundary conditions ur(0) = urrr(0) = 0 and limr→∞ u(r) = 0, where
r := |x|. We treat the dimension n as a continuous parameter and discuss the
bifurcation structure of these localized solutions for varying n, as well as rigorous
existence results for localized spots at onset in two and three dimensions.

This equation was first derived by Swift and Hohenberg [6] to describe the
effects of random thermal fluctuations on fluid convection just below onset. More
generally, the Swift–Hohenberg equation serves as a paradigm for bistable pattern-
forming systems. As shown in [5], the steady Swift–Hohenberg equation is also the
normal-form equation for small-amplitude radial solutions at Turing bifurcations
in reaction-diffusion systems. In [2], localized solutions of (2) were studied. For
each fixed ν > 0, it was shown there that (2) admits a spot (a localized solution
whose amplitude is maximal at the core r = 0) for each 0 < µ ≪ 1 and for each

fixed ν > ν∗ :=
√
27/38 two ring solutions (localized solutions whose amplitude

is maximal away from the core) for each positive µ close to zero. The amplitude
of the spots and rings constructed in [2] scale like

√
µ as µ goes to zero. In the

subsequent work [3], we numerically found a second family of spots that exists in

(2) for ν > ν∗ and whose amplitude appears to scale like µ
3
8 as µ goes to zero;

in particular, their amplitude is larger than that expected from the asymptotic
Ginzburg–Landau equation. We remark that this second family was also found
numerically in [1, Figure 11(c)] but the amplitude scaling was not investigated
there. To distinguish this family from the one found earlier in [2], we refer to the

spots with amplitudes of order O(µ
1
2 ) as spot A and to those with amplitudes of

order O(µ
3
8 ) as spot B.

In equation (2), we can consider n as a continuous parameter and examine the
dependence of localized patterns on the continuous dimension parameter n. We
are particularly interested in solution profiles u(r) that exist for µ > 0 and are
composed of stable roll structures. In one space dimension, these radial profiles
resemble stable rolls with a localized envelope superimposed on them, so that
they can be thought of as localized rolls. In two dimensions, the radial profiles are
localized target patterns.

As we follow spot A up on its bifurcation curve, the curve eventually turns
around, and the L2-norm of the spots begins to decrease again. At this point,
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the profile of the underlying pattern transforms from a spot to a ring. Similarly,
spot B broadens for a while, but eventually transforms into a different ring and
follows the ring bifurcation curve downwards. In particular, spots and rings are
pairwise connected in parameter space. Above these two connected curves lies a
family of stacked isolas of localized structures, which also terminates for a large
enough value of the L2-norm. Above these stacked isolas, there is a connected
U -shaped solution curve that seems to extend up to infinite L2-norm and exhibits
defect-mediated snaking. Both of the two branches of this curve snake and the
associated profiles cycle through spot A and B solutions. These branches seem
to continue indefinitely towards increasing L2-norm, but the width of the snaking
regions in the µ-direction decreases.

We also discuss the proofs of the following theorems from [4] on the existence of
two and three dimensional spot solutions in the region 0 < µ≪ 1 and explain the
origin of the anomalous amplitude scaling using geometric blow-up techniques.
The geometric blow-up analysis produces the exponent 3

8 that appears in the
amplitude scaling in 2D. For the planar result, we need to make the following
assumption.

Hypothesis 1. The equation

(3) Ass = −As

s
+

A

4s2
+A−A3, A ∈ R

has a bounded nontrivial solution A(s) = q(s) on [0,∞). In addition, the lineariza-
tion of (3) about q(s) does not have a nontrivial solution that is bounded uniformly
on R+.

Theorem 1. Fix ν > ν∗ :=
√
27/38 and assume that Hypothesis 1 is met; then

there is a µ0 > 0 such that equation (1) with n = 2 has a stationary localized radial

solution u(x, t) = uB(|x|) of amplitude O(µ
3
8 ) for each µ ∈ (0, µ0). More precisely,

there is a constant d > 0 such that uB(|x|) has the expansion

uB(r) = −dµ 3
8J0(r) + O(

√
µ)

uniformly on bounded intervals [0, r0] as µ→ 0, where J0 is the Bessel function of
the first kind of order zero.

Theorem 2. First, fix ν > 0; then there is a µ0 > 0 such that equation (1) with
n = 3 has a stationary localized radial solution u(x, t) = uA(|x|) of amplitude

O(µ
1
2 ) for each µ ∈ (0, µ0): there is a constant dA > 0 such that

uA(r) = dAµ
1
2
sin r

r
+O(µ)

uniformly on bounded intervals [0, r0] as µ → 0. Second, fix ν > ν∗ =
√
27/38;

then there is a µ0 > 0 such that equation (1) with n = 3 has a stationary localized

radial solution u(x, t) = uB(|x|) of amplitude O(µ
1
4 ) for each µ ∈ (0, µ0): there is

a constant dB > 0 such that

uB(r) = −dBµ
1
4
sin r

r
+ O(

√
µ)
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uniformly on bounded intervals [0, r0] as µ→ 0.
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Pulses in singularly perturbed reaction-diffusion equations

Frits Veerman

(joint work with Arjen Doelman)

In the context of a general, singularly perturbed two-component system of reaction-
diffusion equations {

Ut = Uxx + F (U, V )

Vt = ε2Vxx +G(U, V )

with x ∈ R, t > 0, U, V ∈ R and 0 < ε ≪ 1 asymptotically small, it is possible
to construct singular stationary pulse solutions using geometric singular perturba-
tion theory; only mild regularity assumptions on the model functions F and G are
needed. The pulse is constructed to be asymptotic to the (stable) homogeneous
background state (Ū , V̄ ) for which F (Ū , V̄ ) = G(Ū , V̄ ) = 0. Due to the singularly
perturbed nature of the system – the diffusivity of the V -component is asymptoti-
cally small compared to that of the U -component – the existence problem exhibits
a slow-fast structure, which allows for the use of geometric singular perturbation
theory to prove the existence of a homoclinic pulse; see [1, 2] and the references
therein.

The pulse stability can be investigated using Evans function techniques; in that
way, a nonlocal eigenvalue problem (NLEP) is obtained. The Evans function can
be decomposed in a fast and slow part, allowing the use of Sturm-Liouville theory
for the slow and fast eigenvalue problems seperately. An explicit leading order
expression for the (slow part of the) Evans function is obtained, reducing the sta-
bility analysis to finding the (complex) zeroes of that function. Here, the influence
of the possible nonlinear slow dynamics (see [2]) becomes clear; new (in)stability
results are obtained by studying certain parameter limits of the explicit part of the
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Figure 1. Direct numerical simulations of the stationary pulse
solution to (1) near a Hopf bifurcation. The pulse oscillates with
a quasiperiodically/chaotically modulated amplitude.

Evans function. In the context of the explicit slowly nonlinear Gierer-Meinhardt
system studied in [2],

(1)

{
Ut = Uxx −

(
µU − ν1 U

d
)
+ ν2

ε V
2

Vt = ε2Vxx − V + V 2

U

it is possible to go beyond the instability results obtained for the general system
and prove pulse stability for certain parameter regions.

Direct numerical simulation of the stationary pulse corraborates the analytical
results; moreover, as yet unexplained quasiperiodic/chaotic behaviour is observed
near Hopf bifurcations, see Figure 1.

Current research focuses on understanding this behaviour, using center manifold
reduction near the Hopf bifurcation and analysing the resulting normal form, by
calculating the corresponding Lyapunov coefficients to leading order. The analyti-
cal grip on these pulse solutions opens the door to future research: using the same
techniques, multipulses and wavetrains can be constructed and analyzed; more-
over, the dynamic interaction of these pulse solutions is yet to be understood.
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Spatial decay of rotating waves in parabolic systems

Denny Otten

Consider a reaction diffusion system

ut(x, t) = A△u(x, t) + f(u(x, t)), t > 0, x ∈ R
d, d > 2,

u(x, 0) = u0(x) , t = 0, x ∈ R
d.

(1)



3572 Oberwolfach Report 60/2012

with diffusion matrix A ∈ R
N,N , nonlinearity f ∈ C2(RN ,RN ), initial data

u0 : Rd → RN and solution u : Rd × [0,∞[→ RN .
A rotating wave of (1) is a special solution u⋆ : Rd × [0,∞[→ RN of the form

u⋆(x, t) = v⋆(e
−tSx),

where v⋆ : Rd → RN is the profile (pattern) and 0 6= S ∈ Rd,d is a skew-symmetric
matrix. Examples of rotating waves are spiral waves, scroll waves, spinning soli-
tons, etc.
If u solves (1) then the function v(x, t) = u(etSx, t), transformed into a rotating
frame, solves

vt(x, t) = A△v(x, t) + 〈Sx,∇v(x, t)〉 + f(v(x, t)), t > 0, x ∈ R
d, d > 2,

v(x, 0) = u0(x) , t = 0, x ∈ R
d.

(2)

The linear operator is of Ornstein-Uhlenbeck type with an unbounded drift term
containing angular derivatives

〈Sx,∇v(x)〉 :=
d∑

i=1

d∑

j=1

Sijxj
∂

∂xi
v(x) =

d−1∑

i=1

d∑

j=i+1

Sij

(
xj

∂

∂xi
− xi

∂

∂xj

)
v(x).

Observe that v⋆ is a stationary solution of (2), meaning that v⋆ solves

A△v(x) + 〈Sx,∇v(x)〉 + f(v(x)) = 0, x ∈ R
d, d > 2.(3)

Investigating steady state problems of this type is motivated by the stability theory
of rotating patterns in several space dimensions, [1]. Equation (3) determines the
shape and the angular speed of a rotating wave.
In this talk, we prove under certain conditions that every classical solution of
(3) which falls below a certain threshold at infinity, must decay exponentially
in space, meaning that the pattern is exponentially localized. This guarantees an
exponentially small cut-off error if we restrict (3) to a bounded domain and justifies
the numerical computation of rotating waves from boundary value problems on
bounded domains.
We require f(v∞) = 0 and Reσ (Df(v∞)) < 0 for some v∞ ∈ R

N . In addition to
Reσ(A) > 0 we impose the cone-condition

|Imλ| |p− 2| 6 2
√
p− 1Reλ ∀λ ∈ σ(A) for some 1 < p <∞

and assume that A, Df(v∞) ∈ RN,N are simultaneously diagonalizable over C.
Further, we choose constants a0, b0, amax > 0 such that

a0 6 Reλ, |λ| 6 amax ∀λ ∈ σ(A), Reµ 6 −b0 < 0 ∀µ ∈ σ(Df(v∞)).

Following [6], we call a positive function θ ∈ C(Rd,R) a weight function of expo-
nential growth rate η > 0 provided that

∃Cθ > 0 : θ(x + y) 6 Cθθ(x)e
η|y| ∀x, y ∈ R

d.
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Finally, the exponentially weighted Sobolev spaces for 1 6 p 6 ∞, k ∈ N0 are
defined by

Lp
θ(R

d,RN ) :=
{
v ∈ L1

loc(R
d,RN ) | ‖θv‖Lp <∞

}
,

W k,p
θ (Rd,RN ) :=

{
v ∈ Lp

θ(R
d,RN ) | Dβu ∈ Lp

θ(R
d,RN ) ∀ |β| 6 k

}
.

Under these assumptions the following statement holds:

Theorem 1. For every 1 < p <∞, 0 < ϑ < 1 and for every radially nondecreasing
weight function θ ∈ C(Rd,R) of exponential growth rate η > 0 with

0 6 η2 6 ϑ
2

3

a0b0
a2maxp

2

there exists K1 = K1(A, f, v∞, d, p, θ, ϑ) > 0 with the following property:
Every classical solution v⋆ of equation (3) such that v⋆ − v∞ ∈ Lp(Rd,RN ) and

sup
|x|>R0

|v⋆(x) − v∞| 6 K1 for some R0 > 0

satisfies

v⋆ − v∞ ∈ W 1,p
θ (Rd,RN ).

In this talk we present the main idea of the proof based upon a linearization at
infinity, also known as far-field linearization. Our investigations of the associated
Ornstein-Uhlenbeck operator generalizes the results of [3], [4]. We determine the
maximal domain of the operator in Lp(Rd,CN ), analyze its constant and variable
coefficient perturbations and derive resolvent estimates.
We apply the theory to the cubic-quintic complex Ginzburg-Landau equation

ut = α△u+ u
(
µ+ β |u|2 + γ |u|4

)
, u = u(x, t) ∈ C,

where u : Rd × [0,∞[→ C, d ∈ {2, 3}. For the parameters

α =
1

2
+

1

2
i, β =

5

2
+ i, γ = −1− 1

10
i, µ = −1

2

this equation exhibits so called spinning soliton solutions, [2], see Figure 1. The

(a) d = 2 (b) d = 3

Figure 1. Spinning solitons of the Ginzburg-Landau equation
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solitons are localized in the sense of Theorem 1 with the bound

0 6 η2 6 ϑ
1

3p2
<

1

3p2
for 2 6 p 6 6.

Details of the results may be found in the preprint [5] which forms the core of the
authors’ PhD thesis.
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Reduction of delays in networks

Leonhard Lücken

(joint work with Jan Philipp Pade, Kolja Knauer and Serhiy Yanchuk)

Delayed interactions are a common property of coupled natural systems. For
instance, signals in neural or laser networks propagate at finite speed giving rise
to delayed connections. Such systems are often modeled by equations of the form

(1)
dxj(t)

dt
= fj(xj(t), x1(t− τj,1), ..., xN (t− τj,N )), j = 1, ..., N.

By a componentwise timeshift transformation (CTT)

(2) yj(t) := xj(t+ ηj), ηj ≥ 0,

it is often possible to reduce the number of different delays considerably. The
transformed solutions fulfill

(3)
dyj(t)

dt
= fj(yj(t), y1(t− τ̃j,1), ..., yN (t− τ̃j,N )), j = 1, ..., N.

with altered delays τ̃j,k = τj,k − ηj + ηk. For example, a unidirectional ring

dxj(t)

dt
= fj(xj(t), xj+1(t− τj+1)),

can always be reduced to a system with only one delay (either the same delay
on all connections or zero delays on all but one connection) by choosing adequate
timeshifts ηj [1, 2]. Thereby, the CTT may simplify the analysis of the system.
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We show that a similar reduction is possible for arbitrary networks [3]. More
precisely, there exists always a spanning tree S (a set of N−1 links which contains
no cycles) and timeshifts ηj ≥ 0 such that the transformed system has instanta-
neous connections on all links within S, i.e., τ̃(ℓ) = 0 for all ℓ ∈ S.

The CTT has evoked interest as well because it serves as a strikingly simple
mechanism for pattern generation [1, 2] – see fig. 1. However, previous studies

Figure 1. Pattern generation by componentwise timeshifts.
Panel (a) shows a synchronous solution in a unidirectionally cou-
pled ring of six identical Mackey-Glass Oscillators with homo-
geneous interaction delays and panel (b) shows the transformed
solution in the system where the delay is concentrated on a sin-
gle connection. The states of the different components are color
coded in the different horizontal bands

didn’t note a subtle difference between the semidynamical systems (1) and (3),
which should be mentioned. They are not dynamically equivalent in the classical
sense of topological conjugacy nor orbitally equivalent. This is due to the fact,
that (2) is not invertible, since the possible inverse,

(4) xj(t) = yj(t− ηj),

is not defined if the solution y(t) of (3) is not defined for all t < 0. However, there
exist inverse timeshifts η̃j = η̄ − ηj ≥ 0, η̄ = maxj{ηj}, which transform (3) into
(1). To state this more clearly, consider semiflows

Φ : R×X → X of (1), and Ψ : R× X̃ → X̃ of (3),

where X and X̃ are product spaces of continuous history functions. Then, (1) and
(3) are equivalent in the sense that there exist mappings

T : X → X̃ and T̃ : X̃ → X,

which fulfill

T ◦ Φ = Ψ ◦ T, and T̃ ◦Ψ = Φ ◦ T̃ ,
and

T ◦ T̃ = Ψη̄, and T̃ ◦ T = Φη̄.

This type of equivalence implies that there exists a natural one-to-one correspon-
dence between invariant and strongly invariant sets of (1) and (3) and, given the

Lipschitz-continuity of T and T̃ , corresponding sets have the same type of stability.
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Stabilization of symmetrically coupled oscillators by time-delayed

feedback control

Isabelle Schneider

Consider a ring of identical oscillators in Hopf normal form with symmetric nearest-
neighbour coupling. The system possesses a Dn × S1 - symmetry. The aim is
to stabilize the inherently unstable periodic orbits with discrete rotating wave
symmetry. These orbits emerge from a symmetric Hopf-bifurcation. Time-delayed
feedback control (Pyragas control, [1]) is introduced.

Going beyond previous results by Fiedler et al. [2, 3], the spatio-temporal sym-
metry of the system is used to establish a noninvasive control method. The control
term can also include multiple symmetry elements with distinct time-delays.

Due to a suitable control term the symmetric Hopf bifurcation splits into simple
Hopf bifurcations with a two dimensional central manifold. As a consequence
standard exchange of stability in two dimensions is now applicable.

As a result, it is for the first time possible to state explicit analytic conditions
for the stabilization of the unstable periodic orbit with discrete rotating wave
symmetry. These conditions are necessary and sufficient. It has to be distinguished
between the sub- and supercritical cases and within the subcritical case between
hard and soft springs.

The focus has mainly been on the case of three oscillators [4] as the simplest
example admitting nontrivial symmetry, but the work has recently been extended
to systems with n oscillators.
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Non-compact Global Attractors for Slowly Non-dissipative

Reaction-Diffusion Equations

Nitsan Ben-Gal

(joint work with Kristen S. Moore, Juliette Hell)

We study the asymptotic shape profiles and global attractor structure of a class
of asymptotically asymmetric scalar reaction-diffusion equations

(1)

ut = uxx + b+u+ − b−u− + g(u)︸ ︷︷ ︸
f(u)

, x ∈ [0, π], u(0) = u(π) = 0

u+ = max{u, 0}, u− = max{−u, 0},
where g(u) is uniformly bounded and f(u) ∈ C2. For b+ ≥ 1 and/or b− ≥ 1,
such equations are slowly non-dissipative, i.e. some solutions undergo infinite-
time blow-up but none undergo finite-time blow-up. Reaction-diffusion equations
with jumping nonlinearities, as in Equation (1), arise in the study of suspension
bridge dynamics. For the special case where b+ = b−, one can obtain explicit
decompositions of the non-compact global attractor structure [1]. The focus of
this work is to extend these results to the asymmetric case, where b+ 6= b−.

Theorem 1. The non-compact global attractor for Equation (1) is the union of its
classical equilibria, their connecting heteroclinics, its equilibria at infinity, trans-
finite heteroclinics connecting classical equilibria to equilibria at infinity, and the
intra-infinite heteroclinics which connect equilibria at infinity to each other. For
the near-symmetric form of Equation (1), the entire non-compact attractor can be
decomposed explicitly. For stronger asymmetry and a given equilibrium v of (1)
(either classical or at infinity), all classical equilibria and a subset of equilibria at
infinity to which v possesses heteroclinic connections are determined.

We refer to the set of classical equilibria and bounded heteroclinics as the
bounded attractor, and the set of equilibria at infinity and intra-infinite hete-
roclinics as the attractor at infinity. Thus, Theorem 1 states that we are able to
decompose the bounded attractor explicitly, as well as a subset of the attractor
at infinity. We use time map analysis to determine that for generic choices of b+,
b−, and g(u) fulfilling our restrictions, we have a finite discrete set of classical
equilibria contained within a bounded region in the Hilbert space. These equilib-
ria lie on bifurcation surfaces in the three-dimensional bifurcation diagram, which
we generate using a shooting method with Newton update and pseudoarclength
continuation. The bifurcation surfaces are perturbations of the extensions of the
classical Fučik spectrum curves into 3D, determined by g(u).

As in both the dissipative case and the symmetric slowly non-dissipative case,
we are able to use time map analysis, phase plane analysis, and nodal property
methods to determine the set of classical equilibria and their zero numbers and
Morse indices. We extend the y-map to the case of asymptotically asymmetric
grow-up equations such as (1), which in conjunction with Matano’s Principle [3]
allows us to determine all possible asymptotic nodal behaviors of solutions to
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(1). We apply this together with a quartet of blocking lemmas based on the
zero numbers, Morse indices, and relative locations of stationary solutions in the
bifurcation diagram, allowing us to obtain the complete set of bounded heteroclinic
connections between classical equilibria.

Using a Poincaré compactification and the Conley index at infinity [2], we are
able to determine that projections of the Fučik eigenfunctions to infinite norm
compose a subset of the equilibria at infinity. We are able to uniquely determine a
subset of both the transfinite heteroclinics and intra-infinite heteroclinics, specif-
ically those connecting classical equilibria to the Fučik eigenfunctions at infinity,
and the latter to each other. For δ << 1 and b+ = b− ± δ, we are further able
to use these techniques, the results from the symmetric case [1], and genericity
arguments to show that the Fučik eigenfunctions are the only equilibria at infinity,
and obtain the complete set of equilibria at infinity, transfinite heteroclinics, and
intra-infinite heteroclinics.

The major open question for this problem is the ability to obtain the entirety
of the attractor at infinity when δ is not small, i.e. in the far-from-symmetric
case. The symmetry breaking removes numerous advantages which allowed us to
obtain these results in [1], most notably the fact that the operator at infinity was
linear (it is only half-linear for Equation (1)) and its eigenfunctions formed an
orthonormal basis for the Hilbert space. Yet, our ability to obtain the complete
non-compact global attractor decomposition in the near-symmetric case provides
encouragement that these difficulties may be circumvented.
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Control of delay-coupled network dynamics

Eckehard Schöll

Time delays arise naturally in many complex systems, for instance in neural net-
works or coupled lasers, as delayed coupling or delayed feedback due to finite signal
transmission and processing times. Such time delays can either induce instabili-
ties, multistability, and complex bifurcations, or suppress instabilities and stabilize
unstable states. Thus, they can be used to control the dynamics [1]. Time delayed
feedback [2] has been applied as a versatile and simple control method in many vari-
ants including spatio-temporal patterns [3, 4] and distributed feedback [5, 6]. Here
we study synchronization in delay-coupled oscillator networks [7], using a master
stability function approach, and show that for large coupling delays synchroniz-
ability relates in a simple way to the spectral properties of the network topology,
allowing for a universal classification [8, 9]. As illustrative examples we consider
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synchronization and desynchronization transitions in neural networks, in partic-
ular small-world networks with excitatory and inhibitory couplings [10, 11], and
group synchronization in coupled chaotic lasers [12]. Within a model of Stuart-
Landau oscillators, which represents a generic expansion of any system near a
Hopf bifurcation into a normal form, we demonstrate that by tuning the coupling
parameters one can easily control the stability of different synchronous periodic
states, i.e., zero-lag, cluster, or splay states [13]. We show that adaptive algo-
rithms of time-delayed feedback control can be used to find appropriate value of
these parameters [14, 15, 16], and one can even self-adaptively adjust the network
topology to realize a desired cluster state. Our results are robust even for slightly
nonidentical elements of the network. Chimera states, where a network of identical
oscillators splits into distinct coexisting domains of coherent (phase-locked) and
incoherent (desynchronized) behaviour, have also gained much attention recently
[17, 18, 19].

In summary, the master stability function of delay-coupled networks has a sim-
ple universal structure in the limit of large delay: it is rotationally symmetric
around the origin and either positive and constant (if it is positive at the origin),
or monotonically increasing and becomes positive at a minimum radius r0. As a
result, network structures can be classified into three types depending on the mag-
nitude of the maximum transversal eigenvalue of the coupling matrix in relation
to the magnitude of the row sum, resulting in distinct synchronization properties
[8]. The rotational symmetry of the master stability function in delay-coupled
networks of FitzHugh-Nagumo excitable systems has been established numerically
and analytically even if the delay time τ is not large [10]. So the symmetry prop-
erties of the master stability function seem to be valid in even more general cases.

Furthermore, the master stability function approach can be extended to more
general patterns of synchrony, i.e., cluster synchronization, and these can be sta-
bilized by tuning the coupling parameters such as the coupling phase, coupling
strength, and delay time [13, 12]. Adaptive control of these various synchronous
states can be achieved by the speed gradient method. Choosing an appropriate
goal function, a desired state of generalized synchrony can be selected by the self-
adaptive automatic adjustment of a control parameter, i.e., the coupling phase.
This goal function, which is based on a generalization of the Kuramoto order
parameter, vanishes for the desired state, e.g., in-phase, splay, or cluster states,
irrespectively of the ordering of the nodes [15]. The speed gradient method can
also be applied to simultaneously tune the coupling phase, strength, and the time
delay. In this way control of cluster and splay synchronization is possible with-
out any a priori knowledge of the coupling parameters. Given the paradigmatic
nature of the Stuart-Landau oscillator as a generic model, one may expect broad
applicability, for instance to synchronization of networks in medicine, chemistry
or mechanical engineering.
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classification of networks, Phys. Rev. Lett. 105, 254101 (2010)
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[14] J. Lehnert, P. Hövel, V. Flunkert, P. Y. Guzenko, A. L. Fradkov, and E. Schöll: Adaptive
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Patterns of synchrony in networks of coupled oscillators

Fatihcan M. Atay

(joint work with Özge Erdem)

The behavior of coupled oscillators are perhaps best known from synchronization
studies; however, several other unique phenomena arise when one takes into ac-
count the signal transmission delays in the network. One of these is the complete
cessation of oscillations, leading to the so-called oscillator death [1, 2]. Another
example is the co-existence of multiple in-phase and anti-phase synchronous oscil-
lations of different frequencies on bipartite graphs of simple phase oscillators [3].
In fact, the spatial arrangement of such solutions can be quite complicated, as
manifested by chimera states, where the oscillators form regions of phase-locked
solutions that are in anti-phase relation with the neighboring regions and separated
from them by regions of incoherence [4].

The existence of such solutions leads to the question whether one can combine
them in a graph in interesting ways. We are particularly interested in the case
when the effect of a pair of oscillators in anti-phase cancel each other locally so as
to produce an equilibrium at an intermediate node, schematically shown as

General network configurations would then consist of nodes displaying one of the
patterns from the set {+,−, 0}, whereby all nodes with symbol “+” oscillate in
perfect synchrony with each other, but with a phase difference of π radians with
the other group of synchronized nodes having symbol “−”, and the nodes with
symbol “0” have their oscillations quenched to an equilibrium.

The question is studied here in the setting of phase-amplitude oscillators and
conditions for the stability of such patterns are derived. The combinatorial part
of the problem consists of finding graphs allowing {+,−, 0} configurations in the
above sense, subject to appropriate constraints (for example a “0” node should
have the same number of “+” and “−” neighbors to ensure cancellation). Checking
the stability of these patterns forms the dynamical part of the problem. As an
example, we prove that the star graphs and some other graph types allow stable
{+,−, 0} configurations:
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Thus, in general the questions of interest are: (1) Which graphs support stable
{+,−, 0} patterns? (2) Can a graph support several such patterns (which are not
related by trivial symmetries)?
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Multidimensional stability of traveling waves in lattice differential

equations

Aaron Hoffman

(joint work with Hermen Jan Hupkes, Erik Van Vleck)

Consider a system of lattice differential equations with nearest-neighbor coupling
on the lattice Z2:

u̇ij = f(ui+1,j, ui−1,j , ui,j+1, ui,j−1, uij); (i, j) ∈ Z
2; uij(t) ∈ R

d

Assume that the system admits a smooth traveling wave which travels in a rational
direction and connects two stable equilibria u± ∈ Rd:

uij(t) = Φ(iσ1 + jσ2 + ct); Φ ∈ C3(R,Rd); (σ1, σ2) ∈ Z
2; Φ(±∞) = u±.

Moreover impose strong spectral assumptions which guarantee that this wave is
stable to perturbations that are constant in the transverse direction:

uij(0) = Φ(iσ1 + jσ2) + viσ1+jσ2
.

We show that under additional mild spectral assumptions, the wave is stable to
perturbations which are ℓ1 in the transverse direction and ℓ∞ in the wave direction:

uij(0) = Φ(iσ1 + jσ2) + vij ; sup
iσ1+jσ2=n

∑

jσ1−iσ2=l

|vij | < ǫ.

Moreover, we establish algebraic rates of decay for the perturbation. Note however,
that the wave itself does not exhibit any spatial decay in the transverse direction
while we require ℓ1 decay for the perturbation. In light of recent work in the PDE
case [7], we expect that fronts would not be asymptotically stable (with or without
asymptotic phase) to perturbations which are ℓ∞-small in the transverse direction.

In spirit, our theorem says that so long as the linearization about the traveling
wave is as nice as possible given that we are studying planar fronts in Z2, then
the wave is nonlinearly stable. As such it may be regarded as a two-dimensional
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version of [3, Theorem A] and also as a lattice version of [6]. Candidates for our
result include the discrete Nagumo equation

u̇ij = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij + f(uij)

the discrete Fitzhugh-Nagumo equation
{
u̇ij = α(ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij) + g(uij)− wij

ẇij = ǫ(uij − γwij)

and the Vaintchein-VanVleck equation
{

ẋij = de(yi+1,j + yi−1,j + yi,j+1 + yi,j−1 − 4xij) + ge(xij)
ẏij = do(xi+1,j + xi−1,j + xi,j+1 + xi,j−1 − 4xij) + go(yij)

as the one-dimensional versions of these problems all have sufficiently tame spec-
tra [3, 4, 5]. However, line-solitons in planar Hamiltonian lattices and multidi-
mensional systems of semi-discrete conservation laws are not candidates for our
theorem, despite being stable in one space dimension [1, 8] because the spectrum
for the one-dimensional problem is too complicated for our extension to the two-
dimensional setting.

The strategy of proof is to separate the slowly decaying long-wave modulations
of the interface from the rapidly decaying part of the perturbation via the ansatz

uij(t) = Φ(n+ ct+ θl(t)) + vnl(t); n = iσ1 + jσ2, l = jσ1 − iσ2

At the linear level, the coefficients are constant in l and thus can be reduced via
Fourier Transform from an evolution equation in two space dimensions to a family
of decoupled evolution equations in one space dimension, each of which can be
analyzed using the tools of spatial dynamics, in particular as developed in [1, 2].
One now Fourier synthesizes the linear estimates obtained in the frequency domain
and writes the nonlinear evolution as a fixed point equation in duhamel form. The
most troublesome term arises, as expected, from the slow decay of the long-wave
modulations of the interface. It can be captured in a toy model by the discrete
Burgers equation:

θ̇l = θl+1 + θl−1 − 2θl + θl(θl+1 − θl)

The linear part is a discrete heat equation, hence generates a semigroup that
decays like t−1/4 when regarded as acting from ℓ1 initial data to ℓ2. As is typical
the quadratic nonlinearity can be measured in ℓ1 in terms of the ℓ2 norms of
the factors via Cauchy-Schwartz, but under the bootstrapping assumptions these
factors decay like t−1/4 and t−3/4 respectively. The extra half-power in the second
term arises because a spatial difference of a heat kernel decays faster than the
heat kernel itself. This equation is critical because of the logarithmic factor in the
integral estimate

∫ t

0

(t− t0 + 1)−1/4(t0 + 1)−1dt0 ∼ (t+ 1)−1/4 log(t+ 1)

which prevents the fixed point equation from closing.
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However, upon using the identity

θl+1 − θl =
1

2

(
(θ2l+1 − θ2l ) + (θl+1 − θl)

2
)

which can be regarded as a discrete form of uux =
(
1
2u

2
)
x
and summing by parts

in the first term, we can improve our estimate to
∫ t

0

(t− t0 + 1)−3/4(t0 + 1)−1/2dt0 ∼ (t+ 1)−1/4

which closes. We remark that this critical term vanishes (or rather is pushed to
higher order) in the special case that the wave direction is chosen to align with the
lattice direction σ = (1, 0). A significant open question regards the role of planar
fronts and anisotropic effects of the lattice in the evolution of general initial data
far from a planar front.
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Finding eigenvalues of holomorphic Fredholm operator pencils using

boundary value problems and contour integrals

Yuri Latushkin

(joint work with W.-J. Beyn and J. Rottmann-Matthes)

Investigating the stability of nonlinear waves often leads to linear or nonlinear
eigenvalue problems for differential operators on unbounded domains.

We propose to detect and approximate the point spectra of such operators (and
the associated eigenfunctions) via contour integrals of solutions to resolvent equa-
tions. The approach is based on Keldysh’ theorem [4] and extends a recent method
[1] for matrices depending analytically on the eigenvalue parameter. We show that
errors are well-controlled under very general assumptions when the resolvent equa-
tions are solved via boundary value problems on finite domains further developing
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[2]. Two applications are presented: an analytical study of Schrödinger opera-
tors on the real line as well as on bounded intervals and a numerical study of the
FitzHugh-Nagumo system.

We also relate the contour method to the well-known Evans function and show
that our approach provides an alternative to evaluating and computing its zeroes.

A detailed exposition of the results can be found in [3].
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Rapid convergence to quasi-stationary states of the 2D Navier-Stokes

equation

Margaret Beck

(joint work with C. Eugene Wayne)

It has been observed, numerically and experimentally, that solutions to the nearly-
inviscid two-dimensional incompressible Navier-Stokes equation on the torus will
rapidly approach certain long-lived quasi-stationary states. Evidence also suggests
that these quasi-stationary, or metastable, states are connected with stationary so-
lutions of the inviscid Euler equations. In [6], it is argued that certain maximum
entropy solutions, determined using numerical and analytical techniques, of the in-
viscid Euler equation are the most probable quasi-stationary states that one would
observe. They refer to these as dipole and bar states and confirm their predictions
by numerically analyzing the Navier-Stokes equation and demonstrating that most
solutions do indeed converge rapidly to one of these two classes of states. Further-
more, in [2], the authors consider a stochastically forced Navier-Stokes equation,
and observe both the dipole and the bar states as statistical equilibria.

In this work, we provide analytical results indicating that there is a class of
initial data for which solutions to the linearized equation rapidly converge to the
bar states. More precisely, for small viscosity 0 < ν ≪ 1, we prove that for a nat-
ural approximation to the linearized operator, there exists an invariant subspace
in which solutions converge to the bar states at a rate that is O(e−

√
νt), which is

much faster than the decay of the bar states themselves, which is O(e−νt).
Consider the 2D incompressible Navier-Stokes equation on the torus,

∂tu = ν∆u− u · ∇u+∇p, ∇ · u = 0,
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where −π < x < π, −π < y < π, u : T2 → R
2 with periodic boundary conditions.

The pressure p(x, y, t) is a scalar valued function that also satisfies the periodic
boundary conditions, and the viscosity ν is assumed to be small: 0 < ν ≪ 1. The
fluid vorticity ω is defined to be ω = ∇×u = ∂xu2 − ∂yu1. Taking the curl of the
above equation, we find the two-dimensional vorticity equation

(1) ∂tω = ν∆ω − u · ∇ω,
where the scalar-valued function ω also satisfies periodic boundary conditions. The
periodic boundary conditions for u imply that ω has zero mean,

∫
T2 ω = 0. In this

case, one can determine the velocity from the vorticity using the Biot-Savart law

u = (−∂y∆−1w, ∂x∆
−1w).

The bar states and dipoles are given explicitly by

ωbar(x, y, t) = e−νt cos(x), ωdipole(x, y, t) = e−νt(cos(x) + cos(y)),

and they are party of an infinite family of slowly-varying states given by

ωslow(x, y, t) = e−νm2t(a1 cos(mx) + a2 sin(mx) + a3 cos(my) + a1 sin(my)).

We will focus on the bar states. Due to incompressibility and periodic boundary
conditions, for any solution of (1) we have

d

dt

1

2

∫

T2

ω2(x, y)dxdy = −ν
∫

T2

|∇ω(x, y)|2dxdy ≤ −Cν
∫

T2

ω2(x, y)dxdy,

where we have used Poincaré’s inequality to obtain the final inequality. Thus, the
slow decay rate of the bar states occurs on what is arguably the natural timescale
for the system, determined by the viscosity ν.

Using the Ansatz ω = ωbar + v, we see a perturbation of the bar state satisfies

∂tw = L(t)w − u · ∇w(2)

L(t)w = ν∆w − e−νt[sinx∂y(1 + ∆−1)]w,(3)

where u is the velocity corresponding to w via the Biot-Savart law. Asymptotic
analysis in [4] of the eigenvalues of the approximate operator ν∆−sinx∂y suggests

that solutions to the above equation should decay at the rapid rate O(e−
√
νt).

In order to provide some rigorous justification for this, we will focus on the
linear evolution and use the theory of hypocoercive operators developed by Villani
[5]. This is motivated by a similar application of that theory in [3]. However,
we must first overcome two main difficulties. First, the presence of the above-
mentioned infinite family of slowly decaying solutions means that we cannot expect
all perturbations to decay rapidly. Therefore, we construct two invariant subspaces
of solutions, effectively a center and a stable subspace, and then focus on the
behavior within the stable subspace. Second, the above linear operator does not
have the structure required in the abstract set-up of Villani. More precisely, it is
not of the form A∗A+B, where B∗ = −B. To overcome this, we employ a suitable
change of variables.
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To exploit the fact that the bar state is independent of y, we expand the per-
turbation in a Fourier series in that variable only: v(x, y) =

∑
l v̂l(x)e

ily . The
above linear equation then becomes

∂tv̂l = ν∆lv̂l − ile−νt sinx(1 + ∆−1
l )v̂l, ∆l = ∂2x − l2.

Within the invariant stable-like subspace, whose details can be found in [1], the

change of variables u =
√
(1 + ∆−1

l )v̂l is well-defined, and u satisfies

∂tu = ν∆lu− ile−νt
√
(1 + ∆−1

l ) sinx
√
(1 + ∆−1

l )u

In order to apply Villani’s framework to the above linear operator, it would be

natural to define A = ∂x, B = −ile−νt
√

(1 + ∆−1
l ) sinx

√
(1 + ∆−1

l ), and C :=

[A,B]. The problem with this is that [B,C] 6= 0. In principle, this is not a problem,
as one can consider higher order commutators: [C,B], [[C,B], B], . . . . However, to
close the argument one typically needs to eventually have good control over the
higher order terms, which we have not been able to obtain in our setting.

Therefore, we consider the approximate linearized equation

(4) ∂tu = ν∆lu− ile−νt sinxu,

where we have neglected the nonlocal and typically higher-order term ∆−1. For
this operator, we set A = ∂x, B = −ile−νt sinx, C = [A,B] = −ile−νt cosx, and
note that [B,C] = 0. We can now use the functional, suggested in [5],

Φ[u](t) = (u, u) + α(Au,Au)− 2βRe(Au,Cu) + γ(Cu,Cu)

for suitably chosen α, β, γ > 0, to carry out energy estimates and obtain the
following result. Define the Banach space

X =
{
w ∈ L2(T2) : ŵ0 = 0,

∑

l 6=0

[
‖ŵl‖2 +

√
ν

|l| ‖∂xŵl‖2 +
1√

ν|l|3/2 ‖Cŵl‖2
]
=: ‖w‖2X <∞



 .

Theorem [1] Given any constant τ and T ∈ [0, τ/ν], there exist constants
K and M that are O(1) with respect to ν such that the following holds. If ν is
sufficiently small, then solutions to (4) with initial data u0 ∈ X satisfy

‖u(t)‖2X ≤ Ke−M
√
νt‖u0‖2X , ∀t ∈ [0, T ].

The result is only valid on the long, but finite, interval [0, τ/ν]. This is due to
the time-dependence of the operator. In particular, if the “B” term is producing
the rapid decay, we can only expect that decay to exist when B is O(1). This is
sufficient to imply that perturbations decay rapidly to the bar states. When t =
1/ν, the bar states are O(e−1), while the perturbations are O(e−M/

√
ν) ≪ O(e−1).

Directions for future research include obtaining a similar result for the full linear
operator (3) and the nonlinear equation (2), as well as for the related equation
obtained by linearization about a dipole. A long-term goal is to understand the
transitions between bars and dipoles observed under stochastic forcing in [2].
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Multiscale gradient systems and their amplitude equations

Alexander Mielke

1. Introduction. We propose a new method for deriving amplitude equations in
the case that the original model is a gradient system (X,Fε,Rε), i.e. the evolution
is defined by the abstract balance between the viscous force and the potential
restoring force:

0 = Du̇Rε(u, u̇) + DFε(u) ∈ X∗.

The state space X is a Hilbert space, and Fε : X → R∞ := R∪{∞} denotes the
energy functional. In general, the dissipation potential is such that Rε(u, ·) : X →
[0,∞] is a lower semicontinuous convex function satisfying Rε(u, 0) = 0. Here, we
will restrict to the simplified setting that Rε is independent of u and quadratic in
u̇, viz. Rε(u, u̇) =

1
2 〈Vεu̇, u̇〉.

The small parameter ε characterizes the ratio between the microscopic and the
macroscopic length scale. The main question in evolutionary Γ-convergence is to
identify conditions for the convergence of the pair (Fε,Rε) to a limit (F0,R0)
such that the solutions uε : [0, T ] → X for (Fε,Rε) converge to the solutions
u0 : [0, T ] → X of (X,F ,R). We will use ideas of the recently derived suffi-
cient conditions for evolutionary Γ-convergence for gradient systems [SaS04, Ste08,
Ser10, MRS13, Mie13] and for rate-independent systems [MRS08, MiS11].

As an application we consider the Swift-Hohenberg equation (SHe)

(1) vτ = −(1+∆)2v + µv + γv2 − v3 with |γ| < γ∗.

We will consider the one-dimensional case under the assumption that we are in
the weakly unstable regime, i.e. µ = ε2. It was shown formally in [Eck65] that the
typical solutions can be approximated by a modulated role pattern in the form
u(τ, y) = Re

(
A(ε2τ, εy)eiy

)
and that the amplitude function A(t, x) ∈ C satisfies

the Ginzburg-Landau equation (GLe)

(2) At = 4Axx +A− ρ|A|2A, where ρ = 3
8 (1−

γ2

γ2
∗

) > 0.
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While τ and y denote the microscopic time and space scale, the variables t = ε2τ
and x = εy denote the macroscopic time and space scale.

First mathematical justification of this approximation was given in [vHa91,
Sch94]. We refer to [Mie02] for a survey and to [KSM92] for a 4-page proof of the
result in the case of cubic nonlinearities, i.e. γ = 0. We also will see that the case
γ 6= 0 is substantially different. The comparison of the global attractors and the
inertial manifolds of (1) and (2) are done in [MiS96] and [MSZ00], respectively.

2. Gradient systems and Γ-convergence. We highlight two different results
on evolutionary Γ-convergence that are relevant for the Swift-Hohenberg equation.
In both cases we consider the gradient system (X,Fε,Rε), where X is a Hilbert
space and Rε(v) = 1

2 〈v,Vεv〉. We always assume that Rε is bounded uniformly
by the norm in X , namely

(3) ∃C ≥ 1 ∀ ε ∈ [0, 1] ∀ v ∈ X : 1
C ‖v‖2 ≤ Rε(v) ≤ C‖v|2.

Second we assume that the functionals Fε have uniformly compact sublevels:

(4) ∀E ∈ R ∃K ⊂ X compact ∀ ε ∈ [0, 1] ∀u ∈ X : Fε(u) ≤ E ⇒ u ∈ K.

The following result is a special case of the much more general upper semicon-
tinuity result of the solution sets for nonsmooth generalized gradient systems in
[MRS13, Thm. 4.4].

Theorem 1. Given suitable natural conditions on (X,Fε,Rε) including (3) and

(4) assume the Mosco convergences Fε
M→ F0 and Rε

M→ R0. Then, the solutions

uε : [0, T ] → X of (X,Fε,Rε) satisfy

uε(0)⇀ u0(0) in X and Fε(uε(0)) → F0(u0(0))

=⇒ ∀ t ∈ [0, T ] : uε(t)⇀ u0(t) in X and Fε(uε(t)) → F0(u0(t)).

A second result is based on the concept of evolutionary variational inequalities
(EVI), which was introduced in [AGS05] for gradient systems with geodesically λ-
convex functionals. In our simplified setting, the family (X,Fε,Rε)ε∈[0,1] is called
uniformly geodesically λ-cconvex, if

(5) ∀ ε ∈ [0, 1] : u 7→ Fε(u)− λRε(u) is convex.

Then, uε : [0, T ] → X is a solution of 0 = DRε(u̇) + DFε(u) if and only if

∀w ∈ X :
d+

dt
Rε(uε(t)−w) + λRε(uε(t)−w)

≤ Fε(w) −Fε(u(t)) for a.a. t ∈ [0, T ].
(EVIλ)

As a special case of the results in [Sav11] we obtain the following:

Theorem 2. Given suitable natural conditions on (X,Fε,Rε) including (3),

(4), and (5) assume the Γ-convergence Fε
Γ→ F0 and the continuous convergence

R(wε) → R0(w0) whenever wε ⇀ w0 and supε∈[0,1]Fε(wε) < ∞. Then, the

solutions uε : [0, T ] → X of (X,Fε,Rε) satisfy

uε(0)⇀ u0(0) and sup
ε∈]0,1[

Fε(uε(0)) <∞ =⇒ ∀ t ∈ [0, T ] : uε(t) → u0(t).
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3. The Ginzburg-Landau equation as evolutionary Γ-limit. By Sℓ we de-
note the macroscopic interval [0, ℓ]per = R/(ℓZ) with periodic boundary conditions

and use X := L2(Sℓ) as the underlying the Hilbert space. The rescaled Swift-
Hohenberg equation (1) is a gradient system (X,FSH

ε ,RSH) with

FSH
ε (u) :=

∫ ℓ

0

1

2ε2
(
u(x)+ε2u′′(x)

)2
+
µ

2
u(x)2 +

γ

3ε
u(x)3 +

1

4
u(x)4 dx

and RSH(v) = 1
2‖v‖2. Since the solutions behave like u(t, x) = Re(A(t, x)Eε(x)

with Eε(x) := eix/ε, we choose ε = ℓ/(2πN) for N ∈ N and let N → ∞. Moreover,
we consider the transformed (but still equivalent) gradient system (X,Fε,Rε) for
A given by Fε(A) := Fε(Re(AEε)) if A ∈ XN and Fε(A) = ∞ else. Also Rε can

be defined such that Rε(Ȧ) = R(Re(ȦEε)). For γ2 < γ2∗ it can be shown that

Fε
M→ F0 = FGL and Rε

M→ R0 = RGL with

FGL(A) =

∫ ℓ

0

2|A′|2− 1

2
|A|2+ ρ

4
|A|4 dx and RGL(V ) = ‖V ‖22 with ρ = 3

8

(
1−γ2

γ2
∗

)

We obtain evolutionary convergence via Theorem 1 for all γ with γ2 < γ2∗ . The-
orem 2 is only applicable in the case γ = 0, since uniform geodesic λ-convexity fails
for γ 6= 0. These convergence results greatly weakens the necessary convergence
of the initial data (the so-called well-preparedness). Moreover, the results can be
generalized to localized perturbations as well, see [Mie13].

Acknowledgment: Research partially supported by DFG under SFB910 Subproject A5.

References

[AGS05] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the
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About the validity of Whitham’s equation

Guido Schneider

(joint work with Kourosh, Sanei Kashani)

Whitham’s approximation is a multiple scaling ansatz which allows to describe
slow modulations in time and space of periodic wave trains in general dispersive
wave systems. We prove the validity of Whitham’s equations for a Boussinesq
equation coupled with a Klein-Gordan equation. The proof is based on an infinite
series of normal form transforms and an energy estimate. We expect that the
steps persuaded will be a part of a general approximation theory for Whitham’s
equations. In detail, we consider the system of partial differential equations

∂2t v = ∂2xv − v + u2 + 2uv + v2,(1)

∂2t u = ∂2xu+ ∂2t ∂
2
xu+ ∂2x(u

2 + 2uv + v2),(2)

with u = u(x, t), v = v(x, t), x, t ∈ R. Then we make the ansatz

(3) ψWhitham
u (x, t) = U(εx, εt) and ψWhitham

v = V (εx, εt),

with 0 < ε≪ 1 a small perturbation parameter, and find

Resu = −∂2t u+ ∂2xu+ ∂2x∂
2
t u+ ∂2x(u

2 + 2uv + v2)

= ε2(−∂2TU + ∂2XU + ∂2X(U2 + 2UV + V 2)) + ε4∂2T ∂
2
XU,

Resv = −∂2t v + ∂2xv − v + v2 + 2uv + v2

= −V + U2 + 2UV + V 2 + ε2(−∂2TV + ∂2XV ).

Hence equating the coefficient in front of ε0 in Resv to zero yields

−V + U2 + 2UV + V 2 = 0
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and so V = H(U) = U2 +O(U3) due to the implicit function theorem for U and
V of order O(1), but sufficiently small. Equating the coefficient in front of ε2 in
Resu to zero gives

(4) −∂2TU + ∂2XU + ∂2X(U2 + 2UV + V 2) = 0.

By substituting V = H(U) into (4) we find

(5) −∂2TU + ∂2XU + ∂2X(U2 + 2UH(U) +H(U)2) = 0.

We prove the following approximation result.
Theorem. There exists a C1 > 0 such that the following is true. Let U ∈

C([0, T0], H
6(R,R)) be a solution of (5) with supT∈[0,T0] ‖U(·, T )‖H6 ≤ C1 and let

V = H(U). Then there exist ε0 > 0 and C2 > 0 such that for all ε ∈ (0, ε0) we
have solutions (u, v) of (1)-(2) such that

sup
t∈[0,T0/ε]

sup
x∈R

|(u, v)(x, t)− (U, V )(εx, εt)| ≤ C2ε
3/2.

The scaling used in the ansatz (3) is the same scaling as it is used for the
derivation of Whitham’s equations. They are derived from the Lagrangian of the
underlying problem leading to a system of conservation laws. Our system (5) can
be rewritten in conservation law form as

∂TU = ∂XW,

∂TW = ∂X(U + U2 + 2UH(U) +H(U)2).

The resonance structure of our system is the same as it occurs for the situation
one is really interested in, namely the description of slow modulations in time
and space of a periodic traveling wave in a dispersive wave system by Whitham’s
equations, cf. [3, 1].

Whitham’s equations belongs to a set of famous amplitude equations containing
the Ginzburg-Landau equation, the KdV equation, the NLS equation, Burgers
equation, and so called phase diffusion equations. They play an important rôle in
the description of spatially extended dissipative or conservative physical systems.
For all other amplitude equations there exists a satisfying mathematical theory
showing that the original system behaves as predicted by the associated amplitude
equation. For Whitham’s equations, so far only one approximation result has been
established, namely the validity of Whitham’s equations for the NLS equation as
original system which however has a much simpler resonance structure [2].

The proof is based on the following ideas. System (1)-(2) can be written as first
order system

∂tW = ΛW +B(W,W ),

with Λ a linear skew symmetric operator and B a bilinear symmetric mapping.
The error function R defined through W = ψ + εβR fulfils

∂tR = ΛR+ 2B(ψ,R) + εβB(R,R) + ε−βRes(W ).

We have to prove an O(1)-bound for R on an O(ε−1)-time scale. In order to do so
we have to control the terms on the right hand side on this long time scale. The first
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term is skew-symmetric and will lead to oscillations, but to no growth rates. The
last two term can be O(ε)-bounded on the required time scale easily. However, the
second term 2B(ψ,R) is only O(1)-bounded. One approach to control this term is

its elimination by a near-identity change of variables R = R̃+M(ψ, R̃) with M a
suitable chosen bilinear mapping. It turns out that only parts of this term can be
eliminated and so the terms splits into a resonant and a non-resonant part, i.e.,

B(ψ,R) = Br(ψ,R) +Bnr(ψ,R).

After the transform the relevant part of the equation for the new error function R̃
is of the form

∂tR̃ = ΛR̃+Br(ψ, R̃) +Br(ψ,M(ψ, R̃) +O(ε).

Hence with the transform new terms of order O(1), namely Br(ψ,M(ψ, R̃), are
created. They can be split again into resonant and non-resonant terms. Another
normal form transform is necessary to eliminate these resonant terms, but again
terms of order O(1) are created. However, they are cubic w.r.t. ψ. This goes ad
infinum and so the convergence of the composition of these infinitely many trans-
formations has to be proven. Since the n-th transformation is of order O(‖ψ‖n)
the convergence finally can be established for ‖ψ‖ = O(1), but sufficiently small.
After all these transformations the equations for the error are of the form

∂tR = ΛR+ F (ψ,R) +O(ε)

where F is a function which is linear w.r.t. R and which contains infinitely many
resonant terms. Since all these terms have a long wave character w.r.t t a suitable
chosen energy E(R) satisfies

∂tE(R) = O(ε),

and so an O(1)-bound for the error R can be established on the O(ε−1)-time scale.
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Exotic behavior of hexagonal Faraday waves

Laurette S. Tuckerman

(joint work with Nicolas Périnet, Damir Juric)

The Faraday instability [1] describes the generation of surface waves between two
superposed fluid layers subjected to periodic vertical vibration. Although these
waves usually form crystalline patterns, i.e. stripes, squares, or hexagons, they can
form more complicated structures such as quasicrystals or superlattices [2, 3]. The
first detailed spatio-temporal experimental measurements of the interface height
z = ζ(x, y, t) were undertaken by [4]. We have recently carried out the first
three-dimensional nonlinear simulations of the Faraday instability [5] using the
same experimental parameters, but in the minimal domain that can accomodate
a hexagonal pattern.
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Figure 1. Instantaneous realization of hexagaonal Faraday
waves in computational domain with periodic horizontal dimen-
sions 2λc/

√
3 × 2λc, where λc = 13.2 mm is the critical wave-

length determined by Floquet analysis [6], Physical parameters,
taken from [4], are ρ1 = 1346 kgm−3, ν1 = 5.35 × 10−6 m2 s−1,
h1 = 1.6 mm and ρ2 = 949 kgm−3, ν2 = 2.11×10−5 m2 s−1, h2 =
8.4 mm for the density, kinematic viscosity, and height of the lower
and upper fluids, respectively, surface tension σ = 35 mNm−1,
and imposed vibrational frequency and amplitude f = 12 Hz and
a = 38.0 m s−2.

Starting from an initial random perturbation, our simulations produced a sub-
harmonically oscillating hexagonal pattern. The subsequent evolution is shown in
figure 2 via the instantaneous maximum height and its envelope, surrounded by
sets of instantaneous visualizations of the interface over one subharmonic period
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Figure 2. Maximum interface heights maxx,y ζ(x, y, t) (rapidly
oscillating curve) and maxx,y,[t,t+T ] ζ(x, y, t) (smooth envelope).
Surrounding visualizations show instantaneous contour plots of
ζ(x, y, t) at times ti+ jT/4, j = 0, 1, 2, 3, indicated by black dots.
Visualizations show hexagons at t1, symmetric and nonsymmetric
beaded stripes at t2 and t4 and quasi-hexagons at t3 and t5.

Figure 3. Time-filtered spatial Fourier spectra ζmn(ti):
hexagons at t1, beaded stripes at t2, quasi-hexagons at t3 and
t5, nonsymmetric beaded stripes at t4 and t6.

T . At times t1 + jT/4 the pattern has hexagonal symmetry. These are succeded
by the patterns at t2 + jT/4, which we call beaded stripes. They satisfy:

(1) ζ(x, nλc − y) = ζ(x, y) = ζ(mλc/
√
3 + x̃0 − x, y + nλc)

which describe the crystallographic group isomorphic to Z2 × Z2 called pmg or
p2mg [7]. The patterns which occur later are less symmetric; we call those which
appear at t3 and t5 quasi-hexagons, and those which appear at t4 and t6 nonsym-
metric beaded stripes. These each appear in two forms, which are related by the
spatio-temporal symmetry:

(2) ζ(mλc/
√
3 + x0 − x, y + y0, t3,4 + T/2) = ζ(x, y, t5,6)
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Figure 4. a) Spatial Fourier grid of the domain. b) Phase por-
trait of temporal evolution of modes from an extended simulation.

To quantify this behavior, we define the time-filtered spatial Fourier transform:

(3)
ζ(x, t)

λc
=

∑

m,n

eikmn·xζ̂mn(t) , ζmn(t) ≡ max
[t,t+T ]

|ζ̂mn(t)|

for the wavenumbers kmn ≡
(√

3mex + ney
)
kc/2 allowed by our domain. Fig. 3

shows that the spectrum for the hexagonal pattern at time t1 consists primarily
of (m,n) = (±1,±1) and (0,±2), with k/kc = 1, but also higher-order hexagonal
modes. The spectrum at t2 is dominated by modes (0,±2) and (±1, 0), which com-
bine to form the beaded striped patterns – with one bead over Lx and two stripes
over Ly – seen in Fig. 2 at t2. The spatio-temporal symmetry (2) is manifested by
ζ−m,n(t3,4) = ζmn(t5,6). Note that the amplitudes of modes ±(1, 1) exceed those
at ±(1,−1) at t3, t6 and vice versa for t4, t5.

Figure 4b projects the dynamics onto the coordinates ζ11+ζ−1,1, ζ11−ζ−1,1 and
ζ10. The concentration of points indicate that the hexagonal pattern at time t1 and
the beaded striped pattern at t2 are saddles. Afterwards, the trajectory consists of
two crossed loops connecting t3, t4, t5 and t6. Several dynamical-systems scenarios
lead to limit cycles which visit symmetrically related sets, e.g. Hopf bifurcations
[8] or heteroclinic cycles [9].
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Three-Wave Interactions, Quasipatterns and Spatiotemporal Chaos

Alastair Rucklidge

(joint work with Gérard Iooss, Anne Skeldon, Mary Silber)

Three-wave interactions play a key role in 2D pattern formation problems where
there are quadratic nonlinearities, such as the Faraday wave experiment. These
experiments have produced exotic patterns such as quasipatterns and spatiotem-
poral chaos. We consider first the question of existence of quasipattens as solutions
of a pattern-forming PDE, and point out the difficulties caused by small divisors.
We then turn to the stability of quasipatterns, and show how three-wave interac-
tions between two circles of wavevectors could stabilise quasipatterns. However,
this only occurs when the ratio of wavenumber is 2 cos 75◦ = 1

2 (
√
6 −

√
2). For

other values of the wavenumber ratio, complex patterns are expected, and indeed
are found in simlations of model PDEs.

Quasipatterns (two-dimensional patterns that are quasiperiodic in any spatial
direction) remain one of the outstanding problems of pattern formation. As with
many problems involving nonlinearity and quasiperiodicity, there is a small divisor
problem. We consider 8-fold, 10-fold, 12-fold, and higher order quasipattern solu-
tions of the Swift–Hohenberg equation, and prove that a formal solution, given by
a divergent series, may be used to build a smooth quasiperiodic function which is
an approximate solution of the pattern-forming PDE up to an exponentially small
error [2].

Quasipatterns can be stabilised by the interaction of two linearly unstable (or
weakly stable) length scales with a wavenumber ratio of q, with 1

2 < q < 1 [3]. In
two dimensions, with two critical circles having a radius ratio within a factor of two,
nonlinear interactions can occur between two waves on the outer circle and one on
the inner (figure 1a), or between two waves on the inner circle and one on the outer

(figure 1b). For the special wavelength ratio of 2 cos 75◦ = 1
2 (
√
6−

√
2) = 0.5176,

the angle between two waves on the inner circle is 30◦ and the angle between two
waves on the outer circle is 150◦. This combination allows 12 waves on each circle
to interact with each other through three-wave resonances, and form a 12-fold
quasipattern, without having to invoke additional waves (figure 1c). Any other
ratio between the two circles leads potentially to an infinite number of interacting
waves (figure 1d). This distinguishes 12-fold quasipatterns from all others [4], and
may be the reason that 12-fold quasipatterns are the most commonly observed, in
the Faraday wave experiments and indeed in soft-matter quasicrystals.

As well as wavelength ratios, it is important to consider the nature of the
nonlinear three-wave interaction in the regime where both are excited. There are
two main possibilities: either the waves mutually reinforce each other, leading to
steady patterns with waves from both circles, or the waves compete with each
other, leading to one circle or the other dominating, or the interesting possibility
of spatio-temporal chaos (STC). The two cases are distinguished by the signs of
the quadratic coefficients in the dynamical equations that describe the three-wave
interaction. We have recently [4] shown that changes in sign of these coefficients,
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Figure 1. Three-wave interactions between two wavenum-
bers [4]. (a) With k1 + k2 = q1, two long wavevectors can in-
teract with a short one; (b) similarly, with q2 + q3 = k1, two
short can interact with a long one. (c) With a wavenumber ratio

q = 1
2 (
√
6−

√
2) = 0.5176, twelve short waves interact with twelve

long ones, resulting in 12-fold QPs. (d) For any other value of q,
the set of waves generated by three-wave interactions does not
close, resulting in complex patterns.

computed from the Navier–Stokes equations for the Faraday wave experiment, line
up very well with experimentally observed changes from quasipatterns to STC,
giving confidence that quantitative connections can be made between theory and
experiment.

In order to explore the role of three-wave reinforcement or competition, we have
been working with a Swift–Hohenberg-like PDE [4]:

(1)
∂U

∂t
= L(µ, ν)U +Q1U

2 +Q2U∇2U +Q3 |∇U |2 − U3,

where Q1, Q2 and Q3 are parameters that control the three-wave interactions, and

(2) L(0, 0)U =
σ0
q4

(1 +∇2)2(q2 +∇2)2U,

with µ and ν parameters that control the growth rates of modes with k = 1 and
k = q respectively, and σ0 controls the depth of the minimum between k = q
and k = 1. This PDE readily produces quasipatterns (for the wavenumber ratio

q = 1
2 (
√
6−

√
2) = 0.5176) and STC (figure 2).
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Figure 2. Quasipattern (left) and spatio-temporal chaos (right)
in (1); see [4] for details. Fourier transforms are inset.

Coagulation dynamics for random fronts and branching processes

Robert L. Pego

(joint work with G. Menon, B. Niethammer, G. Iyer, N. Leger)

Smoluchowski’s coagulation equations are oversimplified rate equations (a kind of
kinetic equation) for the evolution of the size distribution of objects that cluster.
They are related in remarkable ways to models of random shock clustering, the
merging of ancestral trees, and the fundamental limit theorems in probability
related to Levy-stable laws and infinite divisibility. We reviewed results obtained
over the last several years that concern dynamic scaling limits and self-similar
behavior:

(1) in ‘solvable’ cases for which the classical Smoluchowski equation may be
solved by transformation into simple PDEs.

(2) for a ‘min-driven’ coagulation model that roughly describes the merging
of domains in the Allen-Cahn equation, and

(3) of size distributions of ‘clans’ of related individuals in critical continuous-
state branching processes (CSBPs).

1. The classical Smoluchowski coaguation equation governs the evolution of a
size-distribution measure νt(dx) on E = (0,∞), and takes the weak form

d

dt

∫

E

f(x)νt(dx) =
1

2

∫

E

∫

E

(f(x + y)− f(x)− f(y))K(x, y)νt(dx)νt(dy)

where f is an arbitrary test function on E. With rate kernel K(x, y) = 2, x + y
or xy, the Laplace transform makes the equation equivalent to simple nonlinear
PDE. Following earlier work that characterized all self-similar solutions and their
domains of attraction for these kernels, [4] studies the scaling attractor and the
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dynamics on it. For definiteness consider the additive kernel K = x+ y. Then the
scaling attractor is the set of cluster points of arbitrarily rescaled mass distributions
Ft(dx) = xνt(dx) for solutions:

Definition. A probability measure F̂ (dx) on [0,∞] is a point in the scaling
attractor A if there exist a sequence of positive numbers bn → ∞ and a sequence
of solutions all defined for t ∈ (0,∞) such that the corresponding mass distribution

functions satisfy F
(n)
tn (bndx) → F̂ (dx) weakly as n→ ∞.

Points in the scaling attractor are the values at t = 0 of eternal solutions
defined for all t ∈ (−∞,∞). In turn (due to a result of Bertoin) eternal solutions
are parametrized in terms of a family of “Lévy-Khintchine” measures G∗ that
arise in the backward-time limit t → −∞ from the rescaled measures Gt(dx) =
xe−tFt(e

tdx). The LK-measures G∗ are characterized by the property that (1 ∧
x−1)G∗(dx) is a finite measure on on [0,∞]. Every such measure corresponds to
a unique enternal solution in this way.

Remarkably, the nonlinear dynamics on the scaling attractor becomes purely
dilational in terms of the representing LK-measure: the time-t map F̂0 7→ F̂t on
the scaling attractor corresponds to the map

G∗(dx) 7→ e2tG∗(e
−tdx)

on LK-measures. By consequence, the time dynamics is conjugate to continous-
time shift dynamics, and we can exhibit a number of signatures of chaotic dynamics
(sensitivity to the initial tails of the size distribution): a dense set of scaling-
periodic solutions; a single solution trajectory with scaling limits dense in the
scaling attractor; and an asymptotic shadowing result for solutions with similar
initial tails. Many of these results and their proofs are strongly analogous to
classical limit theorems concerning infinitely divisibility in probability theory.

2. On a large scale, a cartoon that models the very slow dynamics in the 1D
Allen-Cahn PDE is a “1D bubble bath.” Points on the line separate “bubbles”
(domains) whose pattern evolves by two simple rules: (i) the smallest bubble
“pops” and joins with its two neighbors; (ii) repeat. Simulations show that the
bubble size distribution approaches a common self-similar form for a variety of
initial distributions.

A kind of coagulation equation arises as a continuous-time model for the evolu-
tion of the size distribution of bubbles. A remarkable solution procedure for this
equation was found by Gallay and Mielke [1], and used to establish a number of
strong results involving rates of convergence to self-similar form. In [3] we revis-
ited this model using methods developed for solvable Smoluchowski equations. We
(i) extended well-posedness theory to handle size distributions that are arbitrary
measures with support bounded away from 0; (ii) established necessary and suffi-
cient conditions on initial data for solutions to have a single proper scaling limit as
t→ ∞; and (iii) provided a Lévy-Khintchine representation formula for the eternal
solutions in this model. The criterion for a scaling limit is that the first-moment
distribution function is regularly varying (i.e., power law up to a factor that is
slowly varying at infinity). The proofs involve simple scaling rigidity arguments
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as one finds in Feller’s book, combined with the delicate exponential Tauberian
theorem of de Haan. One curious point involves multiple collisions: k clusters can
coalesce with probability pk. When Σpkk log k = ∞, the scaling symmetry of the
model is broken, up to a slowly varying factor, which can nevertheless be dealt
with.

3. A family of coagulation models with multiple collisions appear in a very
natural way in critical continuous-state branching processes (CSBPs), as pointed
out a few years ago by Bertoin and Le Gall. These equations have the weak form

(1) ∂t

∫

E

f(x) νt(dx) =

∞∑

k=2

Rk(t) Ik(f, νt),

Ik(f, νt) =

∫

Ek

(
f(x1 + · · ·+ xk)−

k∑

j=1

f(xj)
) k∏

j=1

νt(dxj)

〈1, νt〉
.

where νt(dx) is a measure on E = (0,∞) that as a continuum limit of size distribu-
tion of “clans” of individuals descended from a common ancestor in time t. Here
Ik describes the effect of k clans conjoining on the generalized moment 〈f, νt〉, and
the rates have a special form given by

Rk =

∫ ∞

0

e−yyk

k!
π

(
dy

〈1, νt〉

)
=

(−1)kΨ(k)(〈1, νt〉)
k!

,

in terms of the branching measure π(dy) and the branching mechanism Ψ:

Ψ(u) =

∫

(0,∞)

(
e−ux − 1 + ux

)
π(dx).

With f = 1− e−qx the dynamics for ϕ(t, q) = 〈1− e−qx, νt〉 become equivalent to

∂tϕ(t, q) = −Ψ(ϕ(t, q)).

We assume
∫∞
1

Ψ(u) du < ∞, which means the branching process becomes
extinct almost surely. Then the coagulation equation has a fundamental solution
µt(dx), whose Laplace exponent Φ(t, q) = 〈1− e−qx, µt〉 satisfies

∂tΦ = −Ψ(Φ), Φ(0, q) = q.

The critical CSBP is determined by the measure µt, and we have the following
result [2] that characterizes when the long-time limit is self-similar:

Theorem The following are equivalent:
(i) there exist a probability measure µ̃t and λ(s) > 0 such that for some t > 0,

µ
(s)
t (dx) :=

µst(λ(s)dx)

〈1, µs〉
s→∞−−−→ µ̃t(dx).

(ii) Ψ is regularly varying at 0 with index 1 < γ ≤ 2, and µ̃t is self-similar, with
generalized Mittag-Leffler profile

∫ x

0

µ̃1(dy) = Fr,s(βx) =

∞∑

k=1

1

kB(k, r)
· (−1)k+1(βx)sk

Γ(1 + sk)
,



3602 Oberwolfach Report 60/2012

where r = (γ − 1)−1, s = γ − 1, β = 〈x, µ̃1〉−1. Furthermore, λ(s) ∼ β〈1, µ̃s〉−1.
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Exponential integrators for parabolic problems

with time dependent coefficients

David A. Hipp, Marlis Hochbruck, Alexander Ostermann

1. Introduction

In this note, we outline the numerical solution of linear parabolic problems with
time dependent coefficients. We focus on exponential integrators, which constitute
a class of efficient methods for stiff problems [5]. In the time invariant case, expo-
nential integrators represent quadrature rules with operator-valued weights, and
their implementation requires the evaluation of the action of certain matrix func-
tions. A natural extension to nonautonomous problems are Magnus integrators [1].
They are particulary efficient in the hyperbolic case (e.g., Schrödinger equations
with time dependent potential), where high oscillations are present [4]. In the par-
abolic case, however, they often suffer from a strong order reduction [7]. Therefore,
we consider a new class of high-order exponential integrators for such situations.
We restrict our attention here to the description of a third-order method for the
homogeneous problem. The full error analysis and the extension to inhomoge-
neous problems will be reported elsewhere. Our construction of the integrator is
strongly motivated by the construction of the corresponding evolution system (see,
e.g., [6]), which we recall below. As an application, we solve a 2d heat equation on
an evolving domain and compare our result with those obtained by other methods.

2. Nonautonomous parabolic problems

We consider the time discretization of an abstract nonautonomous parabolic
initial value problem

(1)
d

dt
u(t) +A(t)u(t) = 0, u(0) = u0, 0 ≤ t ≤ T,

stated in a Banach space X . We study this problem in the framework of [6, Sec-
tion 5.6] with Lipschitz continuous t 7→ A(t)A(σ)−1. The construction of our
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numerical method for solving (1) is strongly motivated by the corresponding con-
struction of the evolution system in [6, Section 5.6]. We start from the ansatz

(2) u(t) = e−tA0u0 +

∫ t

0

e−(t−s)A(s)R(s, 0)u0 ds,

where A0 = A(0), and R(t, 0) is the solution of the integral equation

R(t, 0) =
(
A0 −A(t)

)
e−tA0 +

∫ t

0

R1(t, s)R(s, 0)ds

with kernel R1(t, s) =
(
A(s) − A(t)

)
e−(t−s)A(s). Under appropriate smoothness

assumptions, it can be shown that

(3) ũ(τ) = e−τA0u0 +

∫ τ

0

e−(τ−s)A1R1(s, 0)u0 ds

is a fourth-order approximation to u(τ) for τ sufficiently small.

3. A third-order exponential integrator

In order to obtain a practical scheme from the approximation (3), we write
down the general step starting from an approximation un ≈ u(tn) and replace the
integrand R1(tn + s, tn) by its quadratic interpolation polynomial, interpolating
R1(tn + θτ, tn) at the nodes θ = 0, 1

2 , and 1. Carrying out the integration gives
us the numerical scheme

(4a) un+1 = Tnun,

which is a recurrence relation with the discrete evolution operator

(4b)
Tn = e−τAn + 4τ

(
ϕ2(−τAn+1)− 2ϕ3(−τAn+1)

)(
An −An+ 1

2

)
e−

τ
2
An

+ τ
(
4ϕ3(−τAn+1)− ϕ2(−τAn+1)

)(
An −An+1

)
e−τAn ,

where Ak = A(kτ). The entire functions ϕk(z) are defined by the recursion

ϕk+1(z) =
ϕk(z)− 1/k!

z
, ϕ0(z) = ez, k ≥ 0.

Under appropriate smoothness assumptions, the exponential integrator (4) is a
third-order method. Details of the proof and an extension to inhomogeneous
problems will be reported elsewhere.

4. Application: Parabolic problems on evolving domains

As an application, we model a diffusion problem on a temporally evolving do-
main. The derivation of the equation and the choice of the finite element method
is motivated by [2, 3]. Let Ω0 ⊂ R2 be an open, bounded set and let Xt be a
diffeomorphism between Ω0 and its image Ωt for all t ∈ [0, T ]. Let NT be the
union of all sets {t} × Ωt, t ∈ [0, T ]. We denote the material time derivative of a
function v : NT → R by v̇ and define the function space

V =
{
v : NT → R ; v(t, ·) ∈ H1(Ωt), v̇(t, ·) ∈ L2(Ωt) for all t ∈ [0, T ]

}
.
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The weak formulation of a diffusion equation on the evolving domain Ωt can be
stated as follows: Find u ∈ V such that for all t ∈ (0, T ] and all v ∈ V it holds

(5)
d

dt

∫

Ωt

uv dx+ α

∫

Ωt

∇u · ∇v dx =

∫

Ωt

uv̇ dx,

subject to the initial condition u(0, ·) = u0 and to homogeneous Dirichlet boundary
conditions u(t, x) = 0 for all x ∈ ∂Ωt. Here α denotes the diffusion constant.

For the spatial discretization of (5), we consider a triangulation of Ω0 with
nodes a1, . . . , aK and corresponding nodal basis functions φ1, . . . , φK . We then
define the basis functions Φi ∈ V by Φi(t, x) = φi(X

−1
t (x)). They satisfy in

particular Φ̇i = 0. The function spaces Vh = span{Φ1, . . . ,ΦK} and

Uh =
{
u ∈ V ; u(t, ·) = ∑K

i=1 Ui(t)Φi(t, ·), Ui ∈ C1
(
[0, T ],R

)}

fulfill Vh ⊂ Uh ⊂ V . In general, a transformed triangulation is not again a
triangulation. Thus we use a linearized transformation Xt,h ≈ Xt instead. This
also simplifies the computation of the mass and stiffness matrices.

For the spatial discretization of (5) we use a Petrov–Galerkin method: find
uh ∈ Uh such that for all t ∈ (0, T ] and all vh ∈ Vh:

(6)
d

dt

∫

Ωt

uhvh dx+ α

∫

Ωt

∇uh · ∇vh dx =

∫

Ωt

uhv̇h dx = 0,

and uh(0, ·) = u0 ∈ V . From (6) we obtain the stiff ODE

(7)
d

dt

(
M(t)U(t)

)
= −S(t)U(t)

with mass matrix M and stiffness matrix S, which can be transformed to a stan-
dard form for V (t) =M(t)U(t), if necessary.

5. Numerical tests

For a first numerical test, we choose Ω0 = [0, 1] × [0, 32 ] and t ∈ [0, 1]. We
consider a nonlinear transformation mapping the rectangle Ω0 into a bottle-like
domain Ωt, cf. Fig. 1. Since the actual transformation is quite complicated to
write down, we omit the formulas here. A Matlab file containing the details can
be obtained from the authors. We consider problem (5) with initial value

u0(x) = g(x1)χ[0,1/3](x1) + g(1− x1)χ[2/3,1](x1), g(ξ) = sin
(
6πξ − π

2

)
+ 1

and diffusion constant α = 0.01. Some snapshots of the solution on a refined mesh
with 1.871 nodes are presented in Fig. 1.

In Fig. 2, we plotted error versus time steps for different numerical integrators
on the refined mesh. The error is computed with respect to a reference solution
computed by the RadauIIA method of order 5 with step size τ = 0.001. We
compare the exponential integrator (4) with the exponential midpoint rule, two
fourth-order Magnus integrators (one of them uses Gauss nodes [1, eq. (254)], the
other one ist based on Simpson’s rule [1, eq. (256)]), and the RadauIIA method
of order 3. The numerically observed order of both the exponential integrator (4)
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Figure 1. Above: the domain Ωt for t = 0, t = 0.37, and t = 0.74
on a coarse mesh with 131 nodes; below: the solution for t = 0,
t = 0.37, and t = 0.74 on a refined mesh with 1.871 nodes.
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Figure 2. Errors of various integrators plotted over different
time steps τ = 2−j, j = 1, . . . , 5 at t = 1 in the maximum norm.
For comparison, we added dotted lines with slopes two and three.

and the RadauIIA method is about three, while the Magnus integrators suffer from
order reduction.
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Waves in lattices with imperfections

John Mallet-Paret

(joint work with Shui-Nee Chow, Kening Lu, and Wenxian Shen)

We study wave motion in lattice differential equations, specifically, in systems of
the form

u̇i = αi(ui+1 − ui) + βi(ui−1 − ui)− fi(ui), i ∈ Z. (1)

This system is a spatially discrete Allen-Cahn equation with spatial variations (or
imperfections). The coupling constants αi and βi are positive (diffusive coupling)
and bounded, but need not be large; that is, the system need not be near the
continuum limit. The nonlinearities fi typically are of bistable type. For the
spatially independent case

u̇i = α(ui+1 − ui) + β(ui−1 − ui)− f(ui), i ∈ Z, (2)

the existence of a traveling wave front u : R → ℓ∞, where ui(t) = ϕ(i − ct) joins
the two equilibria ϕ(−∞) = 0 and ϕ(∞) = 1, is known [2], [3]. The wave speed c
may either be nonzero, or zero (a standing wave).

In the present work, for the spatially varying system (1), we consider three
cases.

(A) Small perturbations from the spatially independent system: Here |αi − α|
and |βi − β| are small, with each fi near f , and where the unperturbed system
(2) has a wave moving with speed c 6= 0. Using the moving coordinate system
developed in [1], the existence of a generalized traveling wave is shown, namely, a
solution u : R → ℓ∞ to (1) with ‖u(t)− u(t)‖ small for all t. (The norm is in ℓ∞.)

(B) Large perturbations in the coupling constants: Here we take αi = βi a
bounded sequence, and bounded away from zero, with all fi = f the same. For
the spatially periodic case αi+p = αi there is either a traveling wave with nonzero
speed, or else a maximal ordered collection of standing waves joined by monotone
connecting orbits. In any case these compose an invariant set Γ ⊆ ℓ∞, which can be
regarded as a generalized traveling wave. For the case of general (nonperiodic) αi,
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one makes approximations by periodic coefficients with spatial periods pn → ∞,
and takes the limit Γn → Γ∗ of the resulting invariant sets. The limiting set Γ∗ is
shown to be nondegenerate, namely it is composed of elements u ∈ ℓ∞ for which
limi→−∞ ui = 0 and limi→∞ ui = 1. Extensions to certain cases when αi 6= βi can
be made.

(C) Large perturbations in the nonlinearities: Here αi = α and βi = β for all i.
Further, fi = f for i ≤ 0, but in general fi 6= f for i > 0. It is assumed that c > 0
for the unperturbed system (2), that is, the wave moves to the right. Then the
existence of a solution u : R → ℓ∞ to (1) which approaches the unperturbed wave

u(t) as t → −∞ is shown using upper and lower solutions. Further, if fi = f for
all but finitely many i, then one of the following four possibilities holds as t → ∞:

(a) Transmission: ‖u(t)− u(t+ σ(t))‖ → 0 for some phase shift σ(t).
(b) Blockage: ‖u(t) − v‖ → 0 for some v ∈ ℓ∞ with limi→−∞ vi = 0 and

limi→∞ vi = 1.
(c) Residue: ‖u(t)− u(t+ σ(t)) − v‖ → 0 where the “residue” v ∈ ℓ∞ satisfies

limi→±∞ vi = 0, and thus is small as i→ ±∞.
(d) Large Residue: Here limt→∞ ui(t) = vi for every i, where limi→−∞ vi = 0

but limi→∞ vi = a; here a ∈ (0, 1) is the unstable zero of f , so f(a) = 0. The
case of Large Residue is not generic (and in a sense is of codimension one), and in
many cases can be ruled out (for example, when α = β).
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Chaos via Variable Delay

Hans-Otto Walther

Making a constant delay in a differential equation variable can change the solution
behaviour considerably. We give an example where the introduction of a state-
dependent delay in a hyperbolic linear equation creates a homoclinic loop [5].
Close to the homoclinic loop complicated motion is expected, similar to Shilnikov’s
example [3] in R4.

We begin with the simplest differential equation for negative feedback with a
time lag, namely,

(1) x′(t) = −αx(t− 1)

with a parameter α > 0. The initial value problem given by Eq. (1) for t > 0
and initial data x|[−2, 0] = φ ∈ C = C([−2, 0],R) defines a strongly continuous
semigroup T of solution operators on the Banach space C. For π

2 < α < 5π
2

the state 0 ∈ C is hyperbolic with 2-dimensional unstable space, and without
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real spectrum (of the generator of the semigroup T ). For such α close to 5π
2 we

construct a continuously differentiable delay functional d : U → (0, 2), U ⊂ C
open, with d(φ) = 1 close to 0 ∈ C, so that the (nonlinear) equation

(2) x′(t) = −αx(t− d(xt))

(with xt = x(t + ·)) has a solution h : R → R which is homoclinic to zero, with
the minimal intersection property

dim D2F (t+ − t−, ht−)Tht
−

Wu ∩ Tht+
W s = 1

for t− close to −∞ and t+ large. Here Wu and W s are the local unstable and
stable manifolds of the stationary state φ = 0 of the semiflow F of Eq. (2) on the
solution manifold

X = {φ ∈ U ∩ C1 : φ′(0) = −αφ(−d(φ))}.
In fact, X is a continuously differentiable submanifold of codimension 1 in the
Banach space C1 = C1([−2, 0],R), each initial value φ ∈ X defines a maximal
solution of Eq. (2) which has all segments xt in X , and the curves t 7→ xt define
a continuous semiflow on X with continuously differentiable solution operators
F (t, ·), which in turn yields continuously differentiable local invariant manifolds,
among others [4, 1].

The delay functional d is not of the simple form d(φ) = d̃(φ(0)), along a solution
of Eq. (2) the delay is not everywhere monotonically increasing, and along the
homoclinic solution the oscillation frequency (a modified count of sign changes per
interval of length 2) is increasing. Moreover, the construction does not carry over
to the case

(3) x′(t) = β x(t− 1), β > 0,

of positive feedback with a constant time lag because here modifications of the
delay obviously do not destroy positivity, that is, positive invariance of the cone
of non-negative functions. This precludes homoclinics with minmal oscillation
frequency as t → −∞; complicated motion as in Shilnikov’s simpler scenario [2]
in R3 can not be achieved by making the delay in the positive feedback equation
(3) variable.

A proof that close to the homoclinic loop of Eq. (2) chaotic motion does exist
is in preparation (joint work with Bernhard Lani-Wayda).
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Attractor Spindles for Delay Differential Equations

Tibor Krisztin

(joint work with Gabriella Vas, Hans-Otto Walther, Jianhong Wu)

The delay differential equation

ẋ(t) = −µx(t) + f(x(t− 1))

with µ > 0 and smooth monotone nonlinearity f : R → R appears in several
applications. For example, in the study of neural networks f(ξ) = α tanh(βξ)
with α > 0 and β > 0.

The natural phase space is C = C ([−1, 0] ,R) equipped with the supremum
norm. For any ϕ ∈ C, there is a unique solution xϕ :[−1,∞) → R. For each
t ≥ 0, xϕt ∈ C is defined by xϕt (s) = xϕ (t+ s), −1 ≤ s ≤ 0. The map F :
[−1,∞)×C ∋ (t, ϕ) 7→ xϕt ∈ C is a continuous semiflow. Very much is known about
the global dynamics of F . A discrete Lyapunov functional, as a key technical tool,
combined with several other dynamical system methods makes is possible to prove
a Poincaré–Bendixson type result [6], and to obtain a lot of information about the
structure of the global attractor [1,2,4,7]. For some particular nonlinearities like
f (x) = α tanh (βx) or f (x) = α tan−1 (βx) with α 6= 0 and β > 0, a complete
picture is available [2,3,4]. However, for most of the nonlinearities such a nice
description is not known.

We assume f(0) = 0 and a dissipativity condition: |f(ξ)| < µ|ξ| outside a
bounded neighbourhood of 0. Then R ∋ ξ 7→ −µξ + f(ξ) ∈ R has at least 3
zeros, one is 0; denote ξ−1 and ξ1 the largest negative and the smallest positive
zeros, respectively. These zeros determine equilibrium points of F , denoted also by
ξ−1, 0, ξ1. Under these hypotheses the semiflow F has a global attractor A ⊂ C.

The derivatives D2F (t, 0), t ≥ 0, form a strongly continuous semigroup, and
the spectrum of the generator of the semigroup consists of simple eigenvalues. The
number of eigenvalues in the open right half plane depends on µ and f ′(0), and can
be given explicitly. Assume that 0 is hyperbolic, and there are 2N +1 eigenvalues
with positive real parts for some integer N ≥ 0.

LetWu
loc(0) denote a local unstable manifold of the equilibrium 0. DefineW2N+1

as the global forward extension ofWu
loc(0) under the semiflow F . Clearly,W2N+1 ⊂

A. Under some additional minor concavity and symmetry conditions on f , it was
shown in [2,3] that W2N+1 = A.

The geometric and topological structures of the closure W3 of W3 and the
dynamics of the restricted flow of F on W3 are fully described in [1,2]. It was
shown that the set W3 consists of 3 stationary points 0, ξ−1, ξ1 and a unique
periodic orbit O; there exists a smooth disk in W3 bordered by this periodic orbit
and consists of all connecting orbits from the stationary solution 0 to the periodic
orbit; this disk seperates W3 into two halves each of which belongs to the domain
of attraction of ξ−1 and ξ1, respectively.
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There is a similar complete description of the structure of W2N+1 for general
N . To state our results precisely we define a discrete Lyapunov functional V :
C \ {0} → {0, 2, 4, . . .} ∪ {∞}. V (φ) denotes the number of sign changes of φ ∈ C
in the interval [−1, 0] if this number is even or infinity; V (φ) is the number of sign
changes plus 1 if φ has odd number of sign changes.

Our result on the structure of W2N+1 is as follows:

(i) W2N+1 and W2N+1 are invariant under F , and W2N+1 is compact;
(ii) W2N+1 is a (2N + 1)-dimensional C1-submanifold of C;
(iii) ξ−1, ξ1 and 0 are the only stationary points in W2N+1;
(iv) For each k ∈ {1, . . . , N} there exists a periodic solution p2k : R → R with

V (p2kt ) = 2k for all t ∈ R and O2k = {p2kt : t ∈ R} ⊂W2N+1;
(v) O2,O4, . . . ,O2N are the only periodic orbits in W2N+1;
(vi) O2k has exactly 2k− 1 Floquet multipliers outside the unit circle, 1 ≤ k ≤

N ;
(vii) For each k ∈ {1, 2, . . . , N} the set

{φ ∈ W2N+1 \ {0} : V (xφt ) = 2k for t ∈ R} ∪ {0} ∪ O2k

is a 2-dimensional C1-submanifold of C with boundary;
(viii) For each k ∈ {1, . . . , N} the set

{φ ∈W2N+1 : ω(φ) = O2k}
is a (2N − 2k + 2)-dimensional C1-submanifold of W2N+1;

(ix) W2N+1 =W2N+1 ∪ {ξ−1, ξ1} ∪Wu
str(O2) ∪Wu

str(O4) . . . ∪Wu
str(O2N ).

Here, for a nontrivial periodic orbit O, the Floquet multipliers of O outside the
unit circle of C determine a local unstable manifold ofO, and the forward extension
of such a local unstable manifold is called the strong unstable set Wu

str(O) of O.
Remark that the hyperbolicity of the periodic orbits, stated in (iv), is not known.
However, there are at most 2 Floquet multipliers with absolute value 1; one of
them is trivially 1.

Now, in addition, we assume the following:
There exist ξ2 and ξ3 such that ξ−1 < ξ0 := 0 < ξ1 < ξ2 < ξ3 are 5 consecutive
zeros of R ∋ ξ 7→ −µξ + f (ξ) ∈ R with f ′ (ξj) < µ < f ′ (ξk) for j ∈ {−1, 1, 3}
and k ∈ {0, 2}. We denote the corresponding equilibrium points of F also by ξj
for j ∈ {−1, 0, 1, 2, 3}. Then ξ−1, ξ1, ξ3 are stable, and ξ0, ξ2 are unstable. By the
monotone property of f , the subsets

Cj,k = {φ ∈ C : ξj ≤ φ (s) ≤ ξk, −1 ≤ s ≤ 0}
of the phase space C with j ∈ {−1, 1} and k ∈ {1, 3} are positively invariant
under the semiflow F . The structures of the global attractors A−1,1 and A1,3 of
the restrictions F |[0∞)×C−1,1

and F |[0∞)×C1,3
, respectively, are (at least partially)

well understood, as described above. In particular cases, A−1,1 and A1,3 have
spindle-like structures described in [1,2,3,4], A−1,1 is the closure of the unstable
set of ξ0 containing the equilibrium points ξ−1, ξ0, ξ1, periodic orbits in C−1,1 and
heteroclinic orbits among them; and analogously for A1,3.
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Let B denote the global attractor of the restriction F |[0∞)×C−1,3
. It is easy to

see that if ξ−1, 0, ξ1, ξ2, ξ3 are the only zeros of −µξ + f (ξ), then B = A. The
problem, whether under these hypotheses

A = A−1,1 ∪ A1,3

holds or not, arose in [1].
The main result of [5] is that A can be more complicated. We constructed

examples so that there exist periodic orbits inA\(A−1,1 ∪ A1,3), and also decsribed
the dynamics in A \ (A−1,1 ∪A1,3).

We remark that Fiedler, Rocha and Wolfrum [8] studied scalar semilinear par-
abolic equations of the form

ut = uxx + f(x, u, ux)

defined on the interval 0 ≤ x ≤ 2π with periodic boundary conditions u(t, 0) =
u(t, 2π), ux(t, 0) = ux(t, 2π). Under suitable regularity and dissipativity assump-
tions on the nonlinearity f they obtained a description of the global attractor.
Surprisingly, the structures of the attractors obtained for the delay differential
equation and for the above parabolic equation are similar. It would be interesting
to describe the analogy between these two different types of equations.
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Connection Graphs for Sturm Attractors of S1-Equivariant Parabolic

Equations

Carlos Rocha

(joint work with Bernold Fiedler, Matthias Wolfrum)

We consider semilinear parabolic equations of the form

ut = uxx + f(u, ux)
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defined on the circle x ∈ S1 = R/2πZ. For a dissipative nonlinearity f the
equation generates a dissipative semiflow in the appropriate function space, and
the corresponding global attractor Af is called a Sturm attractor. For Neumann
boundary conditions there is a purely combinatorial characterization of the Sturm
attractor in terms of a permutation σf – the Sturm permutation. We use this
permutation to obtain a characterization of Sturm attractors Af in our case of
periodic boundary conditions. With this characterization we obtain in [1] the
connection graphs Gf corresponding to the heteroclinic connecting orbits of Af .
In this talk we present these results and survey the method that supports their
proofs. An example of the type of (directed acyclic) graphs Gf that we obtain
is shown in Figure 1 in the case of permutations σf in S(9). Here the (spatially
homogeneous) equilibria correspond to the edges represented by black dots, and
the periodic orbits (i.e. rotating waves) correspond to the edges represented by
white dots.

Figure 1. The 10 connection graphs Gf corresponding to the Sturm
attractors Af with m hyperbolic equilibria and q hyperbolic periodic
orbits such that m+ 2q = 9.
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Combustion fronts in a gasless combustion model with heat loss

Anna Ghazaryan

(joint work with Stephen Schecter, and Peter Simon)

We consider a model for gasless combustion with heat loss,

∂tu1 = ∂xxu1 + u2ρ(u1 − ū1)− δu1,

∂tu2 = κ∂xxu2 − βu2ρ(u1 − ū1),

with β > 0, δ ≥ 0, κ ≥ 0, and ρ(u) = e−
1
u if u > 0, and 0 otherwise. Here u1

is temperature, u2 is reactant concentration, u1 = ū1 is the ignition temperature,
ρ is the unit reaction rate, β is the exothermicity parameter, and κ describes
diffusivity of the fuel. The term δu1 represents heat loss from the system to
the environment, formulated according to Newton’s law of cooling. Two of the
parameters, the diffusion coefficient κ for the fuel and a heat loss parameter δ, are
assumed to be small.

It is known from numerical simulations [5] and topological arguments [2, 4]
that the system supports two traveling fronts that lead to the unburned state.
We use geometric singular perturbation theory to construct the faster one of these
fronts and prove that as the heat loss parameter goes to 0, the speed of this front
approaches the speed of the front in the system with zero diffusion and no heat loss.
Further, we study the stability of this front in the regimes where the front does
not have unstable discrete spectrum but possesses marginally unstable essential
spectrum [3, 5]. For these regimes we rigorously prove that the instability of the
front is convective on the nonlinear level, in other words, that the perturbations
to the front lag further and further behind the interface of the front.
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Singularities and intrinsic front dynamics of FitzHugh-Nagumo type

systems

Jens D. M. Rademacher

(joint work with (in part) M. Chirilus-Bruckner, P. van Heijster, A. Doelman)

This talk concerned existence, stability and bifurcation of ‘front’ interface solutions
to certain perturbations of the prominent Allen-Cahn model for phase separation
on the line x ∈ R. As in the FitzHugh-Nagumo equations, we couple the Allen-
Cahn equation to linear equations. Specifically, a seemingly weak coupling is
considered that on ‘small’ ξ and ‘large’ x = ξ/ε spatial scales gives the systems

Ut = Uξξ + U − U3 − εg(V,W ;µ) Ut = ε2Uxx + U − U3 − εg(V,W ;µ)

τVt = Vξξ + ε2(U − V )
τ

ε2
Vt = Vxx + (U − V )

θWt = D2Wξξ + ε2(U −W )
θ

ε2
Wt = D2Wxx + U −W,

which are equivalent for ε > 0. Here µ is a set of parameters.
The large spatial scale x = ξ/ε highlights the spatial scale separation for slowly

travelling waves when 0 < ε ≪ 1. The question we adress is the impact of
the slowly varying components V,W on the stable stationary Allen-Cahn fronts
connecting ±1. The system falls into the category of second order semi-strong
interaction models [6] and indeed it turns out that front motion with velocity of
order ε2 arises; much faster than the metastable Allen-Cahn front interaction of
exponentially small order [1, 2]. We illustrate that this occurs already due to the
interaction of a single front with the spatially slowly varying ‘fields’ V,W .

For the linearly coupled, and thus minimally nonlinear case

µ = (α, β, γ), g(V,W ;µ) = αV + βW + γ(1)

the above system is a special parameter regime of a phenomenological gas-discharge
model [7] and the existence, stability as well as interaction of multi-fronts has been
studied already in [3, 4, 5]. However, the detailed analysis especially of the present
regime of τ, θ becomes quite involved for multi-fronts. Here we present a complete
picture of the stability of single fronts and the organizing center for existence: a
butterfly catastrophe, which requires coupling to both V and W . Moreover, we
prove a singularity imbedding when allowing general nonlinear coupling g(V ;µ)
already with only one additional component V (or W ).

The existence of fronts near the Allen-Cahn fronts is a singular perturbation
problem, which may be summarized as follows.

Theorem 1. For any bounded set of µ, τ, θ,D, c there is ε0 and an open neigh-
borhood U ⊂ R6 of the singular heteroclinic solution for ε = 0 connecting −1 to
+1 (or vice versa) such that for all 0 < ε < ε0 solutions to

Γ := g

(
cτ√

c2τ2 + 4
,

cθ√
c2θ2 + 4D2

;µ

)
= 0(2)
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are in one-to-one correspondence to front solutions with velocity ε2c that lie in U
and connect the perturbed homogeneous states U = V = W = ±1. These solu-
tions form a smooth family, which converges uniformly to the singular heteroclinic
solution as εց 0.

In addition, for γ = c = 0 there is one smooth subfamily of odd functions of ξ.

Based on this result we prove that in the minimally nonlinear case (1), the
front existence problem is organized by a butterfly catastrophe, that is Γ = O(c5).
Specifically, this occurs if and only if

γ = 0, 2
√
2/3 = ατ + βθ/D, αD3τ3 + βθ = 0.(3)

In particular, αβ < 0 is required so that both V andW are involved; otherwise the
organizing center is a cusp. However, the unfolding is incomplete since Γ is an odd
function of c and adding further linearly coupled linear equations do not complete
the unfolding. A nonlinear symmetry breaking term such as ηV 2 in g is required
to provide a versal unfolding. More generally, we prove that any singularity can
be imbedded into the existence problem by suitable choice of g already when W
is absent.

In addition to this existence analysis, we study stability of the fronts for the
minimally nonlinear case, and derive via an Evans-function approach the following
result.

Theorem 2. Consider the case (1) and choose a parameter curve µε so that a
front exists for 0 < ε < ε0 as in Theorem 1. Then the critical eigenvalues of the

linearization in the front are of the form λ = ε2λ̂+O(ε5/2), where λ̂ is a root of

E(λ̂) :=−
√
2

6
λ̂+ α


 1√

c2τ2 + 4
− 1√

c2τ2 + 4(λ̂τ + 1)


(4)

+ β


 1√

c2θ2 + 4D2
− 1√

c2θ2 + 4D2(λ̂θ + 1)


 .

Moreover, E possesses at most two complex roots in addition to λ̂ = 0. At a

butterfly catastrophe (3), E has a double root at λ̂ = 0 and the third (real) root
has negative real part if and only if βD3 > −α.

Notably, the (slightly rewritten) existence problem Γ = 0 depends on θ/D,
while the (slightly rewritten) E depends on β/D. However, the joint existence
and stability problem depends on β, θ and D individually.

Based on Theorem 2, for βD3 > −α, we further prove a center manifold re-
duction to a scalar ODE whose steady states correspond to fronts connected by
heteroclinic orbits. The stable equilibria correspond to stable fronts in the PDE
and the heteroclinic connections describe accelerating, decelerating or even direc-
tion reversing fronts. Due to Theorem 1 the organization of equilibria can be
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Figure 1. τ = 1, θ = 2, β = −0.3. (a) Graph of Γ(c) for
γ = 0.0015, α = 1.53 with flow on center manifold illustrated by
arrows; (b) curves of folds, bullet marks the location of (a).

directly read off the graph of Γ as a function of c. More importantly, the na-
ture of velocity changes can be read off the graph of Γ directly: the vector field is
topologically given by ż = Γ(z). See Figure 1 for an illustration.

More generally, the two nonzero eigenvalues of a front can also cross the imag-
inary axis and we thus expect a Hopf bifurcation, which is numerically corrob-
orated. However, our computation of the normal form coefficients of the center
manifold reduction is so far incomplete. In fact, the unfolding of the possible triple
root of the Evans function is expected to contain a Bogdanov-Takens bifurcation
with symmetry, which would provide a rich set of solutions.

The manuscripts with full details are in preparation for publication.

References

[1] J.Carr and R.Pego, Metastable patterns in solutions of ut = ε2uxx − f(u), Comm. Pure
Appl. Math, 42 (1989), 52–576 .

[2] G. Fusco, J.K. Hale. Slow-Motion Manifolds, Singular Perturbations Dormant Instability,
and Singular Perturbations. J. Dyn. Diff. Eq. 1 (1989), 75–94.

[3] A. Doelman, P. van Heijster, T.J. Kaper. Pulse dynamics in a three-component system:
existence analysis. J. Dyn. Diff. Eq. 21 (2009), 73–115.

[4] P. van Heijster, A. Doelman, T.J. Kaper. Pulse dynamics in a three-component system:
stability and bifurcations. Physica D 237 (2008), 3335–3368.

[5] P. van Heijster, A. Doelman, T.J. Kaper, K. Promislow. Front interactions in a three-
component system. SIAM J. Appl. Dyn. Sys. 9 (2010), 292–332.

[6] J.D.M. Rademacher. First and second order semi-strong interaction in reaction-diffulsion
systems. SIAM J. Appl. Dyn. Sys. (to appear)

[7] C.P. Schenk, M. Or-Guil, M. Bode, H.-G. Purwins. Interacting pulses in three-component
reaction-diffusion systems on two-dimensional domains. PRL 78(19) (1997), 3781–3784.



Dynamics of Patterns 3617

Heterogeneity-induced pulse generators

Yasumasa Nishiura

(joint work with Masaki Yadome and Takashi Teramoto)

1. Introduction

Pulse wave is the main careers of information and the effect of heterogeneity
in the media is of great importance for the understanding of signaling processes
in biological and physiological systems. The role of heterogeneity in the media
does not remain a perturbative effect, in fact it influences a lot over the concerned
system and even produces a qualitatively new dynamics. It is known that hetero-
geneities produce various types of ordered patterns called heterogeneity-induced
patterns [1, 2], which sometimes work as blockers for propagation waves. There
is, however, another aspect of heterogeneity-induced dynamics, namely it creates
a spontaneous generator of pulses without any triggers and external forces. We
present a representative example of such a pulse generator (PG) and try to clar-
ify the underlying mathematical mechanism from dynamical system view point.
More detailed discussions are found in [3, 4]. Our model takes the following 1D
three-component reaction diffusion (RD) system:





ut = duuxx + f(u)− k3v − k4w + k1,
τvt = dvvxx + u− v,
θwt = dwwxx + u− w,

(1)

where du, dv, dw > 0 are diffusion coefficients. We specify the nonlinearity as
f(u) = k2u − u3, which allows us to regard (1) as a generalized version of the
FitzHugh-Nagumo equations by adding the second inhibitor w. Here we employ
the following parameters: k1 = −5.7, k2 = 2.0, k3 = 1.0, k4 = 8.5, (du, dv, dw) =
(0.9 × 10−4, 1.0 × 10−3, 0.6 × 10−2), τ = 52, θ = 1. The model (1) is a typical
example of one-activator-two-inhibitor system, which was first proposed as a qual-
itative model of gas discharge phenomena [5]. The heterogeneity is introduced to
the controllable parameter k1 that corresponds to the applied voltage or external
stimulus in neural tissues.

A precise form for the spatial heterogeneity of jump type for k1 is given by

k1 = k1L + ǫχ(x), χ(x) =
1

1 + e−γx
.

The height of jump ǫ is taken as the bifurcation parameter. The parameter γ
controls the steepness of the slope around the jump point, but we fix it to be
100. Due to the jump from k1L to k1L + ǫ, we lose the translation invariance and
constant homogeneous state.

From this jump heterogeneity traveling pulses can be produced spontaneously
without any triggers or external forces. Note that our PG is quite different from the
pulse emission phenomena reported in [6, 7] in the sense that our PGs are robust,
exist on intervals, and have variety of generating manners. On the other hand the
pulse-emission discussed in [8] is close to ours, however its underlying structures
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for the onset and generating mechanism remains completely open. Here we report
on how such a PG emerges depending on the height and try to understand the
generating mechanism from bifurcational view point.

The pulse generators (PGs) can be regarded as time-periodic heteroclinic orbits
of (1) connecting the left homogeneous state to the wave train far right, in fact
the emitted pulses eventually could form a wave train far from the jump point.

2. Results

Pulse generators (PGs) can display a variety of spatio-temporal patterns de-
pending on the jump height ǫ ranging from time-periodic to even chaotic emission
of pulses (see [3, 4]). For the onset of PGs, it is closely related to the ”disappear-
ance regime” of stable heterogeneity-induced ordered patterns, namely PGs start
to emerge in the region where all the stable patterns induced by the heterogene-
ity, including standing pulses (SPs) and breather (SB), disappear. In fact such a
regime exists in between ǫ = 0.2960 and ǫ = 0.3025. The SPs lose their stabilities
via Hopf bifurcations and the period-doubling (PD) bifurcation occurs on the SB
branch as shown in [4]. It is remarked here that we found a new type of unstable
standing pulse named by SP2, which turns out to be the destination of PGs as its
period goes to infinity.

We trace the PG branch as a periodic solution and find that it persists robustly
for the wide range of ǫ values. As ǫ is increased or decreased, the PG branch turns
back via saddle-node (SN) bifurcations. It is numerically suggested that both arms
of unstable branches are eventually terminated at the homoclinic orbits of SP2 as
the period T → ∞. In fact each periodic orbit spends most of time around SP2
and approaches into the homoclinic orbit.

Moreover, an intensive numerical global bifurcation analysis shows that the PG
behaviors emerge almost exactly at the point where the stable SP and SB cease
to exist. It is worth noting that all the unstable branches of PGs terminate at
homoclinic bifurcations of SP2. This implies that the onset of various types of
PGs could be characterized via unfoldings of multi-homoclinic-loop structure of
SP2. It is conjectured that it is a double-homoclinic point of butterfly type.

3. Discussion

We present 1D heterogeneity-induced pulse generators arising in the three-
component RD system. The simplest jump heterogeneity is employed here and
the resulting PGs are robust against the change of the height. The traveling
pulses are produced spontaneously around the jump point and they are emitted
in one direction. The pulse-sink boundary condition allows us to reduce the PGs
to periodic solutions so that we can trace their global behaviors as the height of
the jump varies. Exploring the parameter space, we find various types of PGs,
i.e., pulse-emitting manner has a variety as shown in [4]. Nevertheless there seems
to exist a hidden organizing center producing those PGs inspired by the common
features shared among the global behaviors of PG branches. For instance the
PG branches terminate at the same unstable stationary pattern SP2 when PG’s
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periods tend to infinity. These observations indicate that there exists a hierarchi-
cal structure of bifurcating branches of PGs originated in a multi-homoclinic-loop
structure at SP2 of butterfly type. For this purpose we are currently investigating
the orientabilities for homoclinic center manifolds and searching for singularities
of higher codimension in the extended parameter space.
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Existence and Homogenisation of Travelling Waves Bifurcating from

Resonances of Diffusion and Reaction in Periodic media

Karsten Matthies

(joint work with Adam Boden)

The existence of travelling wave type solutions is studied for a reaction diffu-
sion equation in R2 with a nonlinearity which depends periodically on the spatial
variable:

(1) ut = div (A∇u) + f
(x
ε
, u

)
,

where A is a real symmetric positive definite matrix, ε > 0 and the nonlinearity
f(ξ, u) is periodic in ξ with periodic cell [0, 2π]2, i.e.

f(ξ1 + ξ2, u) = f(ξ1, u) for all ξ2 ∈ (2πZ)
2
.

We treat the coefficient of the linear term as a parameter, i.e.

(2) f(ξ, u) = −µu+ p(ξ)q(u),

where µ ∈ R, p ∈ H2
(
T 2

)
the periodic Sobolev space on [0, 2π]2 and q ∈ C2(R)

with q(0) = 0, q′(0) = 0 and q′′(0) 6= 0.
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We look for generalised travelling wave solutions of the form

(3) u(x, t) = vε
(
x · k − ct,

x

ε

)
,

where the profile function vε = vε(τ, ξ) is periodic in ξ with periodic cell [0, 2π]2.
This type of travelling wave solution has a profile which varies as it moves over
the periodic cells and therefore is able to incorporate the effects of the periodic
dependence in the nonlinearity into the solution.

We formulate the problem of finding solutions of type (3) as an infinite spatial
dynamical system. Using a centre manifold reduction we obtain a finite dimen-
sional dynamical system on the centre manifold with fully degenerate linear part
of dimensions 1 and 2. Firstly if the parameter µ in the nonlinearity is close to
zero then the problem reduces to a one dimensional centre manifold. For which we
can study the dynamics directly to find conditions for the existence of generalised
travelling wave solutions.

The other case we consider is when the parameter µ is close to a non-zero eigen-
value which leads to a two dimension centre manifold. in this case we use Conley
index to obtain conditions on the nonlinearity for the existence of generalised
travelling wave solutions.

The analysis provides an approach to the homogenisation problem for µ near
0 as the period of the periodic dependence in the nonlinearity tends to zero, then
we obtain

vε(τ, ξ) = v0(τ) +O(ε) as ε→ 0

uniformly on R, where the limiting profile v0 is a heteroclinic connection between
equilibria which satisfies the ordinary differential equation

v0τ = −δv
0 + p0q(v

0)

c
,

which interestingly is a first order equation, while a formal homogenisation would
lead to a second-order equation.

The reported work is based on the paper [2] and the PhD thesis of Boden [1].
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Domain and wall pattern in ferromagnets

Felix Otto

Ferromagnetic materials are characterized by a non-vanishing spontaneous mag-
netization. On a mesoscopic level, it can be thought of as a unit-length vector
field m(x) defined on the sample x ∈ Ω. Experiments show that this vector field
features “domains”, i. e. subregions of Ω where it is nearly constant, separated
by comparatively sharp transition layer, so-called walls. There is a well-accepted
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variational model: Experimentally observed magnetization configurations should
be (stable) stationary points of an energy functional. This variational problem
is non-convex (because of the unit-length constraint) and non-local (because of
the long-range magnetostatic interaction). Moreover, it features widely separated
length scales: On the one hand, a material parameter, the exchange length, which
is of the order of a few nanometer and on the other hand, the length scale given
by the sample Ω (e. g. thickness and width of the cross section if Ω is a thin film
element). Hence the energy landscape features many local minimizers and is not
well-accessible to brute-force numerical simulation.

In my talk, I focussed on a specific, but ubiquitous pattern, the so-called con-
certina pattern. It is a periodic domain and wall structure arising in thin-film fer-
romagnets with an elongated cross-section. This pattern is a local (not a global)
minimizer that arises from a subcritical bifurcation and undergoes a cascade of
secondary bifurcations. We developed an understanding of these bifurcation and
thus the hysteresis of the sample. Actually, the secondary bifurcations are a conse-
quence of a side band instability. Our understanding arises from a combination of
the rigorous derivation of suitably reduced model, and numerical simulation and
qualitative analysis of this more tractable reduced model.

The relevant experiments and a condensed description of our analysis (both
theoretical and by numerical simulation) can be found in [1]. I recommend to
have a glance over this paper as a motivation, especially Sections 1 A, 1 E to I,
and Sections II and III, but don’t get frustrated if you are not used to the applied
jargon.

I now address our work in more detail. We started by identifying the appropri-
ate parameter regime (as it turns out: one of four in a two-dimensional parameter
space), by identifying the scaling law of the critical external magnetic field at
which the uniform magnetization becomes unstable. This is done by deriving
matching upper and lower bounds on the Rayleigh quotient of the Hessian — a
linear analysis, which nonetheless is not-trivial because the Hessian is not explicitly
diagonalizable. The proof can be found in [2, Theorem 1], which is a cute appli-
cation of the idea of establishing upper and lower bounds on the minimal energy
of a variational problem that match in terms of scaling; where upper bounds are
obtained via physically motivated constructions and “Ansatz-free” lower bounds
follow from suitable interpolation inequalities. The form of the unstable mode can
be explicitly identified in the regime of interest; its period agrees well with the
experimentally observed period of the concertina [1, I.G].

As a next step, we rigorously derived a “reduced” variational model that zooms
in on the bifurcation. It is much simpler than the original one in the sense that it
is dimensionally reduced and that it only has a single non-dimensional parameter
(the strength of the external field) — and thus is numerically well-tractable. The
derivation is a nice application of the concept of Γ-convergence; the analytically
more challenging part consists in the fact that we take a weak underlying topology
and that we need to establish (compensated) compactness. The proof can be found
in [3, Theorem 3].
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We finally analyzed the secondary bifurcations of the solutions to the reduced
problem. We started be establishing a non-obvious coercivity of the reduced vari-
ational problem: It implies that the average period of the minimizer increases
linearly (modulo a logarithm) as a function of the external field. You will find the
proof of this in [4, Theorem 1]. It boils down to a somewhat non-standard analysis
of Burgers’ equation.

We then related the numerically observed secondary instabilities that lead to
an increase of the period to a side band instability, see Section III in [1]. In this
variational context, the side band instability is a consequence of the concavity
of the energy per period in the length w of the period [1, III.B]. The fact that
this concavity indeed leads to a long wave-length instability is a consequence of a
Bloch wave analysis [1, III.C]. This instability can also be heuristically understood
close to (slightly subcritical) bifurcation [1, III.D] and is confirmed on the level of
domain theory (where walls are replaced by sharp discontinuities).

All the references below refer on the preprints that can be downloaded from
my homepage http://www.mis.mpg.de/applan/members/felix-otto/publications/
micromagnetics.html.

References

[1] Jutta Steiner, Jeff McCord, Rudolf Schäfer, Holm Wieczoreck, Felix Otto. Formation and
coarsening of the concertina magnetization pattern in elongated thin-film elements. Phys.
Rev. B 85, 104407 (2012). See MPI MIS Preprint 40/2011

[2] Ruben Cantero-Alvarez and Felix Otto. Critical fields in ferromagnetic thin films: Identifi-
cation of four regimes. J. Nonlinear Sci. 16(4), 351-383, (2006).

[3] Ruben Cantero-Alvarez, Felix Otto, and Jutta Steiner. The concertina pattern: A bifurca-
tion in ferromagnetic thin films. J. Nonlinear Sci. 17(3), 221-281 (2007).

[4] Felix Otto and Jutta Steiner. The concertina pattern - from micromagnetics to domain
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Chimera states: patterns of coherence and incoherence in coupled

oscillator systems

Matthias Wolfrum

Chimera states are particular trajectories in systems of coupled phase oscillators
that display a spatio-temporal pattern consisting of regions with coherent and
incoherent motion that emerge spontaneously in a system of identical units. They
constitute a new paradigm of dynamical behavior that can serve as a prototype
for various physical phenomena including e.g. the coexistence of synchronous and
asynchronous neural activity in the brain. For their mathematical investigation,
one has to employ concepts from the field of pattern formation, deterministic
chaos, and statistical physics.

The simplest system, where chimera states can be observed consists of N iden-
tical phase oscillators that are arranged in a ring structure where each oscillator
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is coupled to R closest neighbors on both sides:

(1)
dϑj
dt

= ω − 1

N

R∑

k=−R

sin(ϑj − ϑj+k + α), j = 1 . . .N

Here j = 1, . . .N is the number of the oscillator and all indices have to be con-
sidered modulo N . The parameter ω denotes the natural frequency an the α is
a phase-lag in the coupling. The appearance of chimera states (cf. Fig 1) does
not depend on the specific structure of Eq. (1). Necessary ingredients for the
numerical observation of chimera states are: (i) a discrete oscillatory medium; (ii)
a non-local coupling, i.e. some interaction providing an average over local sub-
populations; (iii) a well tuned balance between attraction and repulsion, in Eq.
(1) controlled by choosing α sightly smaller than π/2.
Scaling invariance and thermodynamic limit description: As demonstrated in Fig.
2, the numerically observed chimera states show a scaling invariance, when the
coupling range is considered as a macroscopic quantity r := R/N . This motivates
the formulation of a limit equation for N −→ ∞ of the form of a continuity
equation

(2)
∂f

∂t
+

∂

∂ϑ
(fv) = 0

for a probability density f(ϑ, x, t) where the flux

v(ϑ, x, t) = ω −
∫ 1

−1

G(x − y)

∫ 2π

0

f(ϑ′, y, t) sin(ϑ− ϑ′ + α)dϑ′dy

is defined here with a general 2-periodic coupling function that has to be chosen
as G(x) = 1

2r for |x| < r and zero elsewhere, in order to recover an integral version
of Eq. (1). Due to the purely sinusoidal interaction function, this equation can be
further simplified. Indeed, it turns out that solutions of the form

f(ϑ, x, t) =
1− |z|2

2π(1− 2|z| cos(ϑ− arg(z) + |z|2)
where the complex local mean field z(·, t) : R → Cper([−1, 1],C) satisfies the
equation

dz

dt
= iωz +

1

2
e−iαGz + 1

2
eiαz2Gz̄

with |z| ≤ 1 and

(Gw) (x) :=
∫ 1

−1

G(x− y)w(y)dy

form an invariant manifold for Eq. (2). Chimera states appear for this equation as
periodic solutions of the form z(x, t) = a(x)eiΩt and the complex local mean field
can be interpreted as follows: In the coherent region, we have |z(x, t)| = 1 and
arg(z(x, t)) indicates the phase of the synchronized oscillators; |z(x, t)| = 0 implies
complete incoherence and a uniform distribution of the oscillator phases. For
0 < |z(x, t)| < 1 we have an incoherent motion with non-uniform distribution of the
oscillators, where arg(z(x, t)) indicates the phase of the peak of the distribution.
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Figure 1. Snapshot of a chimera state, numerical solution of Eq.
(1) with N = 200, R = 70, α = 1.46, ω = 0

Figure 2. Chimera states in a two-dimensional array of N =
25× 25 and N = 100× 100, respectively. Other parameters α =
1.54, R/N = 0.4

After this preparation, we are able to perform a stability and bifurcation analysis of
chimera states in the limit of N −→ ∞ . Finite size effects: In the original system
(1) with finite N , chimera states turn out to be chaotic transients that collapse
after a finite time of existence. Their average life time grows exponentially with
respect to the system size N . We can relate their properties to the thermodynamic
limit results in the following two points:

• Stability boundaries: Approaching the the parameter values of a stability
boundary in the thermodynamic limit system, the average life time of a
corresponding finite N chimera state decreases to zero; i.e. the finite N
chimera state disappears without a bifurcation.

• Lyapunov spectrum: The Lyapunov spectrum of a finite N chimera state
consists of a weakly chaotic part and a stable part. At the other hand, in
the thermodynamic limit system we obtain continuous spectrum that lies
partially on the imaginary axis. It turns out that this continuous spectrum
can be obtained as the limit of the Lyapunov spectra for finite N .

Details can be found in the references below.
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Death, life, and afterlife in shear turbulence

Dwight Barkley

This work explores the connection between the transition to turbulence in pipe flow
and the dynamics of excitable media, as exemplified by nerve cells. The primary
goal is to leverage years of extensive analysis of excitable media to understand the
dynamics of pipe flow. There are several active areas of research in pipe flow that
can be analyzed in this context [1, 2].

Figure 1 conveys the essential message and serves to motivate this work. Two
very different physical systems are shown. The first is pipe flow, Fig. 1(a). In the
quiescent, or unexcited state, flow through the pipe is laminar and individual fluid
parcels move in straight lines parallel to the pipe axis. The second system is the
axon of a nerve cell, Fig. 1(b). Here in the quiescent state, or resting state, the cell
membrane is polarized with the inside of the cell at a lower voltage potential than
the outside. In both systems the quiescent state is stable to small, sub-threshold
perturbations and hence the systems remain in the quiescent state indefinitely
unless perturbed sufficiently.

Consider now the response of these systems to large, super-threshold, pertur-
bations. For pipe flow, a localized patch of turbulence can be created which moves
down the pipe at approximately constant speed. Such a patch of turbulence is
called a puff. A typical experimental measurement of a puff would be the fluid
pressure near the pipe wall for example. Likewise, a resting nerve axon can be
stimulated by the injection of current. The response is a pulse of depolarization,
known as an action potential, which travels down the axon. The standard mea-
surement is the membrane potential, i.e. the voltage difference between the inside
and outside of the cell. As with the puff, the shape and speed of the action po-
tential are dictated by properties of the medium and not the stimulus initiating
it.

While Fig. 1 is only a cartoon, the shape of the pressure and voltage signals
shown are representative of those of real systems [3, 4]. The two signals share the
same features apart from the fact that they are approximately the mirror images
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Figure 1. Cartoon illustrating the analogy between pipe flow
and a nerve axon. In the absence of stimulation, both systems
remain in the quiescent state: (a) flow through the pipe is laminar
and (b) the axon is negatively polarized. Following an appropriate
stimulation at some time t0, a localized patch of turbulence moves
down the pipe (c) and an action potential propagates down the
axon (d).

of one another. This is not an coincidence, but rather a manifestation of the fact
that pipe flow is an excitable medium, similar in many respects to a nerve axon.

Two models for pipe flow are presented. These are given in terms of two quanti-
ties, the turbulence intensity q and the axial (streamwise) velocity u, as a function
of distance x on the pipe axis.

The first is the continuous model

qt + Uqx = q
(
u+ r − 1− (r + δ)(q − 1)2

)
+ qxx,(1)

ut + Uux = ǫ1(1− u)− ǫ2uq − ux,(2)

where r plays the role of Reynolds number. U accounts for downstream advection
by the mean velocity. The model includes minimum derivatives, qxx and ux, needed
for turbulent regions to excite adjacent laminar ones and for left-right symmetry
breaking.

While the continuous model capture the basic properties of puffs and slugs, the
turbulence model is too simplistic to show puff decay and puff splitting. Evidence
suggests that pipe turbulence is locally a chaotic repeller [5]. Hence a more realistic
model is obtained by replacing the turbulent branches in the continuous model with
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Figure 2. Regimes of transitional pipe flow. Left column is from
full DNS. (a) Puff at Re = 2000 that will decay at a later time.
(b) Puff splitting at Re = 2275. The downstream (right) puff
split from the upstream one at an earlier time. (c) Expanding
slug flow at Re = 3200. Right column shows corresponding states
from the simple one-dimensional discrete model.

a wedged-shaped region of transient chaos. The discrete model is

qn+1
i+1 = F (qni + d(qni−1 − 2qni + qni+1), u

n
i ),(3)

un+1
i+1 = uni + ǫ1(1− uni )− ǫ2u

n
i q

n
i − c(uni − uni−1),(4)

where qni and uni denote values at spatial location i and time n. This model
is essentially a discrete version of Eqs. (1)-(2), except with chaotic q dynamics
generated by the map F . Details of the tent map F are given in [1].

With these models puff decay (death), puff splitting (life) and slug formation (af-
terlife) can be effectively studied. Comparison with full simulation of the Navier-
Stokes equations is shown in Fig. 2.
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