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Abstract. Computational electromagnetics and acoustics revolve around a
few key challenges, among which are the non-local nature of the underlying
phenomena and resonance effects. The bulk of the contributions to the work-
shop addressed mathematical and numerical approaches meant to grapple
with these two difficulties.

Frequency domain integral equation methods continue to receive much
attention, with a particular focus on (i) frequency robust matrix compression
algorithms through so-called directional schemes or “butterfly algorithms”,
and (ii) domain decomposition approaches. Time domain integral equation
methods still enjoy rapid development and much progress was made in their
numerical analysis. Of course, efficient and accurate absorbing boundary
conditions remain a persistent topic and were covered in a few contributions.

Resonance induced phenomena in a broad sense affect the analytical and
numerical model for meta-materials, periodic structures, and micro-structured
media. There is a lot left to be explored in this field in terms of analysis and
algorithm development and a few presentations were devoted to such issues.
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Introduction by the Organisers

“There is life in the old dog yet” (in German, “Totgesagte leben länger”) and
so the series of Oberwolfach Workshops on Computational Electromagnetism and
Acoustics, which was announced to come to its end in the 2010 report, saw another
event taking place in 2013. It was attended by 52 researchers in the field, and,
after a bumpy start due to large scale disruptions in European air traffic, it pro-
vided a splendid demonstration that this field of mathematical and computational
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research is well and thriving. Maybe surprisingly so, because Computational Elec-
tromagnetism and Acoustics have matured and, with essentially linear problems
in their focus, may not be counted among the new and fashionable areas in applied
mathematics.

A total of 26 presentations were given at the workshop, their topics providing a
glimpse of major current directions of investigation in the field of Computational
Electromagnetism and Acoustics. To some extent at least, because, firstly, only
a fraction of eligible researchers could finally be invited to join this event, and,
secondly, abiding by a request made by the institute’s director, only half of the
52 participants were “lucky” and had the opportunity to present. Thus, many an
important development might not be covered in this report and the range of topics
can be regarded as partly random.

The general flavor of the presentations was distinctly theoretical this time. We
guess that quite a few participants welcomed the opportunity to discuss funda-
mental mathematical ideas or specific research problem, which may not be that
appropriate for other settings. Moreover, we encouraged the speakers to do exactly
this and even asked them to make use of the blackboards. The schedule was also
kept flexible. As a result, the participants could enjoy excellent talks that dwelt
on ideas and made a big effort to convey them.

Now, let us survey the subjects chosen by the speakers. Throughout the years
integral equations methods in frequency domain were always covered promi-
nently, this time in the presentations, but with new twists: A Mortar Element
Method for the Electric Field Integral Equation proposed a domain decomposi-
tion approach, which was also the objective in A Discontinuous Galerkin Surface
Integral Equation Method for Time-harmonic Maxwell’s Equations, whereas Re-
cent Advances in Well-conditioned EM Integral Equations proposes a cure for the
notorious low-frequency instability of EM integral equations. Integral equation
methods for periodic settings were treated in New tools for the high-order so-
lution of frequency-domain wave scattering problems at high frequencies and in
periodic geometries and Efficient solutions of three dimensional periodic scatter-
ing problems. Related coding issued were addressed in Solution of electromagnetic
problems using BEM++. Integral equations for scattering at complicated screens
were considered in Scattering by Arbitrary Planar Screens. Another contribution
of a theoretical nature was On the inf-sup constant of the divergence alias LBB
constant, which examined the norm of the inverse divergence operator.

Very interesting new results concerned the compression and inversion of dis-
crete boundary integral operator at medium frequencies via “directional mul-
tipole”/“butterfly” techniques, see Wideband Nested Cross Approximation for
Helmholtz problems, Aide-mémoire: fast multipole and butterfly algorithms, In-
terpolation based Directional Fast Multipole Method, and On MLMDA/Butterfly
Compressibility of Inverse Integral Operators. Recent progress in understanding of
discrete time-domain boundary integral equations was covered in A mathe-
matical toolkit for TDBIE.
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Of course, volume mesh based methods for the discretization of wave prop-
agation problems are still an active area of research. A profound analysis of poly-
nomial Galerkin methods was given in hp-FEM and hp-DGFEM for Helmholtz
problems, whereas DPG Method, an Overview. Global Properties of DPG Test
Spaces introduced a new class of schemes, same as A sign-definite formulation
of the Helmholtz impedance problem. Stabilized Galerkin for Magnetic Advection
was dedicated to transport dominated problems for electromagnetic fields. This
time Fast iterative solvers for volume discretization were addressed by only one
speaker in A parallel space-time multigrid method.

Issues connected with novel absorbing boundary conditions for wave prop-
agation problems in the frequency domain were discussed in Hardy space method
for exterior Maxwell problems, stability issues were the focus of Stability Analy-
sis of Time-Domain PML, whereas an analysis for periodic structures case was
presented in On the far field of the solutions of Helmholtz equations in periodic
waveguide. This latter topic also touched upon models for complex media, some
of which are advertised as meta-materials with exotic properties, and a mathemati-
cal analysis of related interface problems was the subject of Negative materials and
corners in electromagnetism. Numerical methods that deal with wave propagation
in complex materials were discussed in Finite Element Heterogeneous Multiscale
Method for the Wave Equation: Long Time Effects.

Of course, inverse problems and wave propagation are intimately connected,
though topics from inverse problems have never been strongly represented in this
series of workshops. Also this time only a few presentations belonged to this
category, namely Acoustic Reverse Time Migration for Extended Obstacles, Inverse
Problems with Poisson Data, and, in a loose sense, Selective Focusing for Time
Dependent Waves.
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Abstracts

Recent Advances in Well-conditioned EM Integral Equations

Francesco P. Andriulli

(joint work with Ignace Bogaert, Kristof Cools, and Eric Michielssen)

Integral equation solvers are widely used for simulating electromagnetic scatter-
ing and radiation from arbitrarily shaped, Perfect Electrically Conducting (PEC)
objects. Long popular in academic circles, these solvers recently have been incor-
porated into several commercial electromagnetic analysis and design tools, after
the advent of fast multipole and related algorithms [15, 18, 19].

Among the many available alternatives, the surface Electric Field Integral Equa-
tion (EFIE) plays a dominant role. Although the EFIE initially was developed
for simulating scattering and radiation from PEC surfaces, its underlying Electric
Field Integral Operator (EFIO) also is used in integral equations applicable to re-
sistive, surface impedance, and penetrable surfaces. This explains the large effort
of the scientific community, currently underway, to stably discretize and invert
the EFIO, a process that is plagued by numerous problems. When the EFIO is
discretized with boundary elements with average diameter h, the resulting matrix
has a condition number that grows as (kh)−2, where k is the wavenumber. As
a result, when k approaches zero, the EFIE becomes increasingly difficult and
sometimes impossible to solve. This so-called low frequency breakdown phenom-
enon traditionally has been remedied by using Loop-Star/Tree (quasi-Helmholtz,
or Hodge) decompositions [23, 22, 26, 17, 12]. When using these decompositions
with the EFIO and after appropriate matrix scaling with suitably chosen powers of
(kh), the low frequency breakdown is solved; that is, in the limit of k going to zero,
the matrix condition number is constant. That said, these methods do not cure
the undesirable scaling of the matrix condition number with h. Following their
application, the matrix condition number scales as h−1, h−2, or h−3 (depending
on the formulation). This h-breakdown phenomenon is due to the combined effect
of the spectral properties of the EFIO and the instability of the Loop-Star/Tree
bases [2].

To protect an EFIE against both low frequency and h-dependent breakdown, a
simple rescaling of the EFIO does not suffice. Instead, a more invasive procedure
aimed at modifying its spectrum is called for. This can be achieved by using
hierarchical quasi-Helmholtz decompositions [4, 16] and/or Calderón techniques
[10, 11, 1, 5, 21, 24], or the Epstein-Greengard method based on generalized Debye
sources [14].

In addition to suffering from an h-breakdown, Loop-Star/Tree decompositions
also require the detection of global loops when the surface is a non-simply con-
nected geometry. Existing general-purpose algorithms for finding global loops
exhibit quadratic complexity. Their cost therefore scales worse than that of fast
integral equation solvers, which exhibit quasi-linear complexity.
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Finally, several of the above schemes are susceptible to very low frequency
cancelations in the solution vector. In fact, even if the equations are made well-
conditioned, for plane wave scattering problems the non-solenoidal and solenoidal
components of the current scale as k and are frequency independent, respectively.
If these two components are not separated during the solution process, numerical
cancelations that deteriorate the accuracy of the far field computation ensue. This
phenomenon has been first pointed out in [25], and further studied in [9, 20] and
[7] and [6] as well as in [13].

This talk, after surveying the issues of the EFIO and some of their above men-
tioned solutions, has presented a new integral equation [3] for simulating scattering
and radiation from arbitrarily shaped, perfect electrically conducting objects that:
(i) gives rise to well-conditioned systems when the frequency is low (ii) and/or when
the discretization density is high, (iii) it does not require a search for topological
loops, (iv) it is immune from numerical cancelations in the solution when the fre-
quency is very low. The new formulation is obtained starting from a Helmholtz
decomposition of two discretizations of the electric field integral operator obtained
by using Raviart-Thomas and dual bases [8] respectively. The new decomposition
does not leverage Loop and Star/Tree basis functions, but projectors that derive
from them. Following the decomposition, the two discretizations are combined in
a Calderon-like fashion resulting in a new overall equation that is shown to ex-
hibit self-regularizing properties without suffering from the limitations of existing
formulations.
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New tools for the high-order solution of frequency-domain wave
scattering problems at high frequencies and in periodic geometries

Alexander Barnett

(joint work with Leslie Greengard, Zydrunas Gimbutas, Andreas Klöckner, Mike
O’Neil, and Adrianna Gillman)

Abstract. Boundary integral equation methods are efficient for frequency-domain
wave scattering problems in piecewise-homogeneous media. A correct choice of
representation leads to a 2nd-kind equation which can be solved by the Nyström
method in a well-conditioned manner. We present a simple new scheme, called
“quadrature by expansion” (QBX), for high-order Nyström quadratures of weakly-
singular kernels on curves in 2D and surfaces in 3D. This exploits local expansions
at centers near the surface, and avoids singularities altogether. We demonstrate its
performance for sound-soft scattering from a torus 30 wavelengths in size. We also
sketch new schemes for periodizing the integral equations that rely on free-space
Green’s functions alone, without the need for lattice sums, which are high-order
accurate and robust at Wood’s anomalies.

Introduction. The aim of this report is to summarize the key ideas in some
recent progress in numerical algorithms. For simplicity we consider the sound-
soft (Dirichlet boundary condition) case. Let Ω be the complement of a bounded
obstacle in R2 or R3, and ∂Ω be its smooth boundary. An incident plane wave
ui(x) = eiωx·d, where ‖d‖ = 1 is a direction vector, impinges on the obstacle. We
care about the case of frequency ω large. The total field ut = ui + u satisfies
the physical zero boundary condition on ∂Ω, where u is the scattered field which
solves the boundary value problem,

(∆+ ω2)u = 0 in Ω

u = −ui on ∂Ω

u radiative as ‖x‖ → ∞ .

The standard indirect “combined field” integral equation (IE) approach [6] sets
u = (D − iωS)τ in Ω, with unknown density τ ∈ C(∂Ω), where S and D are the
single- and double-layer representations based on the free-space Green’s function,

e.g. Φ(x, y) = i
4H

(1)
0 (ω‖x − y‖) in 2D [6]. Evaluating u+ (the exterior limit of u

on ∂Ω) using the jump relations gives the 2nd-kind IE,

(12 +D − iωS)τ = −ui|∂Ω
which is approximated in the Nyström method [14] by the linear system

Aτ = b

by the use of an N -node quadrature scheme (nodes xj , weights wj) on ∂Ω, for
instance a composite Legendre (panel-based) rule in 2D, or high-order patches in
3D. For largeN the system can only be solved iteratively, for instance via GMRES,
applying A via the fast multipole method (FMM) [5]. The rule for matrix elements
of A is trivial for “distant” (non-touching) panels (this can be applied via FMM),
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but is difficult for neighboring panels or the self-interaction of a panel, due to the
singular kernel (this part must be applied as a local correction to the FMM). For
global quadratures on curves in 2D, a variety of methods exist [13, 11, 1], reviewed
in [9]; for panels the generalized Gaussian approach due to Rokhlin or analytic
method of Helsing [10] are excellent. However, these schemes do not generalize
well to 3D.

Figure 1. Left: Scattering from a torus 30 wavelengths across,
computed using QBX quadratures, FMM and GMRES (full field
shown on slice). Right: Scattering from a doubly-periodic infinite
array of tori (full field shown on slices; diffracted fluxes inset).

f

Quadrature by expansion. Our recent scheme, QBX [2, 12], was invented
with 3D in mind. Notice the following: applying the matrix A to a vector τ is
equivalent to evaluating u+ at the nodes for the potential generated by the inter-
polating function of τ . Thus we have a close evaluation problem at a target point
x which approaches ∂Ω; this is hard because the integrand becomes nonsmooth.
Howeve, for τ and ∂Ω analytic, u continues as a Helmholtz solution some distance
beyond ∂Ω (i.e. inside the obstacle). Let x0 ∈ Ω be a “center” point sufficiently
near ∂Ω (typically around 3h distance, where h is the local node spacing), then
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the local expansion (expressing x in local polar coordinates (r, θ) = x− x0)

u(x) =
∑

n∈Z

cnJn(ωr)e
inθ local expansion (LE)

converges uniformly in a ball which includes some target nodes on ∂Ω. Fixing an
order p (e.g. 10), the recipe for evaluating u+ is then:

(i) Compute cn for |n| < p via Graf’s addition theorem [15, (10.3.7)], e.g. for
the single-layer case,

(1) cn =
i

4

∫

∂Ω

H(1)
n (ω‖x0 − y‖)e−inθx0−yτ(y)dsy

where θx denotes the angle of vector x. This integral is evaluated on a
set of “fine” nodes that are a factor β finer (typically 2 ≤ β ≤ 6) in each
dimension than the N original quadrature nodes, and τ is interpolated to
high order onto these fine nodes.

(ii) Evaluate the LE to give u+ on the sufficiently nearby target nodes on ∂Ω.

This scheme (“global QBX”) is proven to be exponentially convergent in p and β
in the 2D Laplace case [2], and high-order convergent in Helmholtz in 2D and 3D
[7]. In practice we often do not use the whole of ∂Ω in (1), only the 3 (in 2D) or
9 (in 3D) self and neighboring panels for each target panel; the remaining distant
elements of A are applied via the FMM. The latter is called “local QBX”, and
introduces errors (as in any local quadrature-correction scheme) which can be made
arbitrarily small by increasing p. The above two steps can be expressed as formulae
for all near-diagonal elements of A involving small matrix-matrix products.

We implement QBX in 3D for the first time, using product q × q Legendre
patches covering a parametrized surface, and the local (spherical harmonic) ex-
pansion

u(r, θ, φ) =
∑

|n|≤p

n∑

m=−n

cnmjn(ωr)Y
m
n (θ, φ)

for which there is an addition formula. We precompute near-diagonal elements of
A via QBX, then use these and the FMM to apply A in each GMRES iteration.
Fig. 1 (left side) shows a result for a high-frequency scattering problem to 5 digit
accuracy, achieved via N = 145000, q = 8, p = 10, β = 4.5, 1 hour for QBX, and
1 hour for 57 GMRES iterations (on a quad-core i7 laptop CPU).

Periodic scattering problems. The periodic scattering problem is also effi-
ciently solved with IEs [16, 4], but the usual method involves handling the quasi-
periodic Green’s function ΦQP. Our recent scheme [3] uses only free-space Green’s
kernels combined with a small extra “periodizing” basis set, i.e. the representation

u =
∑

−1≤j≤1

αj(Dj − iωSj)τ +
M∑

m=1

cmϕm ,

where Sj ,Dj denote layer representations living on the jth copy of ∂Ω in the
grating, and α ∈ S1 is the Bloch phase. The basis functions ϕm must solve
the Helmholtz equation in the unit cell (e.g. a local expansion). Enforcing the
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boundary condition, and quasi-periodicity on the unit cell walls, gives a linear
system with block structure,

(2)

[
A B
C Q

] [
τ
c

]
=

[
−ui|∂Ω

0

]
.

See [3] for interpretations of the blocks. At so-called Wood’s anomalies ΦQP does
not exist, and Q is singular, but one may solve (2) directly to get a robust scheme.
On the other hand, if ΦQP exists, we propose as an IE the Schur complement,

(3) (A−BQ†C)τ = −ui|∂Ω .

The matrix Q†C is in practice backwards-stably computed via MATLAB’s back-
slash. Either approach is compatible with FMM, and needs only free-space kernels.
(3) is a low-rank update to the free-space scattering problem, which we exploit in
a direct solver 600× faster than the state-of-the-art FMM and GMRES iterative
solution [8].

Finally, we may drop the Fourier Sommerfeld scheme of [3, 8], in favor of simply
matching on the four walls of a finite “box” to construct the above operator blocks.
This cleanly handles the case of half-space periodic Green’s functions, which exist
even at Wood’s anomalies. Combining these techniques in the case of scattering
from a bi-periodic array of tori in 3D (with QBX quadrature), we get preliminary
results shown in Fig. 1 (right side): 5 digit accuracy with N = 4032, M = 1339,
in 31 GMRES iterations, in 1 minute (20 s to construct QBX quadratures).
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Wideband Nested Cross Approximation for Helmholtz problems

Mario Bebendorf

(joint work with Christian Kuske, Raoul Venn)

In this talk, the efficient numerical solution of Helmholtz problems

−∆u− κ2u = 0 in Ωc,(1a)

u+ α∂νu = u0 on Γ := ∂Ω(1b)

used to model acoustics and electromagnetic scattering will be considered. Herein,
κ denotes the wave number and Ωc := R3 \ Ω the exterior domain of the ob-
stacle Ω ⊂ R3. The paramter α and the right-hand side u0 appearing in the
impedance condition (1b) are given. A convenient way to solve exterior problems
is the reformulation as an integral equation [7, 10, 9] over the boundary Γ of
the scatterer Ω. The Galerkin discretization leads to large-scale fully populated
matrices A ∈ CM×N ,

(2) aij =

∫

Γ

∫

Γ

K(x, y)ϕi(x)ψj(y) dsy dsx, i ∈ I := {1, . . . ,M}, j ∈ J := {1, . . . , N},

with test and ansatz functions ϕi, ψj , having supports Xi := suppϕi and Yj :=
suppψj , respectively. We consider kernel functions K of the form

(3) K(x, y) := f(x, y) exp(iκ|x− y|)
with an arbitrary asymptotically smooth (with respect to x and y) function f , i.e.,
there are constants cas,1, cas,2 > 0 such that for α,β ∈ N3

|∂αx ∂βy f(x, y)| ≤ cas,1c
p
as,2α!β!

|f(x, y)|
|x− y|p , p := |α+ β|.

An example is K(x, y) = S(x − y) used in the single layer ansatz, where S(x) =
exp(iκ|x|)/(4π|x|) denotes the fundamental solution. Notice that the double layer
potential K(x, y) = ∂νyS(x − y) is of the form (3) only if Γ , i.e. the unit outer
normal ν, is sufficiently smooth.

Depending on the application, low or high-frequency problems are to be solved.
For low-frequency problems, i.e. for κ diamΩ ≤ 1, the treecode algorithm [4] and
fast multipole methods (FMM) [26, 19, 18, 20] were introduced to treat A with
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log-linear complexity. The panel clustering method [23] is directed towards more
general kernel functions. All previous methods rely on degenerate approximations

(4) K(x, y) ≈
k∑

i=1

ui(x)vi(y), x ∈ X, y ∈ Y,

using a short sum of products of functions ui and vi depending on only one of the
two variables x and y chosen from a pair of domains X × Y which satisfies the
far-field condition

(5) ηlow dist(X,Y ) ≥ max{diamX, diamY }

with a given parameter ηlow > 0. Since replacing the kernel function K in the inte-
grals (2) with degenerate approximations (4) leads to matrices of low rank, a more
direct approach to the efficient treatment of matrices (2) are algebraic methods
such as mosaic-skeletons [29] and hierarchical matrices [21, 22]. These methods
also allow to define approximate replacements for the usual matrix operations such
as addition, multiplication, inversion, and LU factorization; cf. [17]. An efficient
and comfortable way to construct low-rank approximations is the adaptive cross
approximation (ACA) method [5]. The advantage of this approach compared with
explicit kernel approximation is that significantly better approximations can be
expected due the quasi-optimal approximation properties; cf. [6]. Furthermore,
ACA has the practical advantage that only few of the original entries of A are
used for its approximation. A second class are wavelet compression techniques [1],
which lead to sparse and asymptotically well-conditioned approximations of the
coefficient matrix.

It is known that the fundamental solution S (and its derivatives) of any elliptic
operator allows for a degenerate approximation (4) on a pair of domains (X,Y )
satisfying (5); see [6]. This applies to the Yukawa operator −∆ + κ2 for any κ,
because the decay of S benefits from the positive shift κ2. However, the negative
shift −κ2 in the Helmholtz operator introduces oscillations in S. Hence, for high-
frequency Helmholtz problems, i.e. for κ diamΩ > 1, the wave number κ enters
the degree of degeneracy k in (4) in a way that k grows linearly with κ. In addition
to this difficulty, the mesh width h of the discretization has to be chosen such that
κh ∼ 1 for a sufficient accuracy of the solution. We assume that

hκ := κh <
1

4
, h := max{diamXi, diamYj , i ∈ I, j ∈ J} ∼ 1/

√
N,

which implies that κ ∼
√
N ∼

√
M . Notice that the recent formulation [12] allows

to avoid the previous condition and hence leads to significantly smaller N . For
high-frequency Helmholtz problems, one- and two-level versions [27, 28] were pre-
sented with complexity O(N3/2) and O(N4/3), respectively. Multi-level algorithms
[14, 2] are able to achieve logarithmic-linear complexity. The previous methods
are based on an extensive analytic apparatus that is tailored to the kernel func-
tion K. To overcome the instability of some of the employed expansions at low
frequencies, a wideband version of FMM was presented in [13]. The H2-matrix
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approach presented in [3] is based on the explicit kernel expansions used in [2, 27]
for two-dimensional problems.

A well-known idea from physical optics is to approximate K(·, y) in a given
direction e ∈ S2 by a plane wave; cf. Figure 1. The desired boundedness of k with
respect to κ when approximating

K̂(x, y) := K(x, y) exp(−iκ(x− y, e))

can be achieved if (5) is replaced by a condition which depends on κ and which is
directionally dependent. This is exploited by the fast multipole methods presented

-10

-5

0

5

10
-10

-5

0

5

10

-0.04

-0.02

0

0.02

0.04

-10

-5

0

5

-10

-5

0

5

10
-10

-5

0

5

10

-0.04

-0.02

0

0.02

0.04

-10

-5

0

5

Figure 1. Re K(x1, x2, 0) and Re K̂(x1, x2, 0) with e = (0, 1, 0)T .

in [8, 15, 16, 24] and the so-called butterfly algorithm [25, 11]. The aim of this
paper is to combine this approach with the ease of use of ACA, i.e., our aim is
to construct approximations to A with complexity kN logN using only few of the
original entries of A. In this sense, this paper generalizes ACA (which achieves log-
linear complexity only for low-frequencies) to high-frequency Helmholtz problems.
An interesting and important property of the new method is that it will allow
a continuous and numerically stable transition from low to high wave numbers
κ by a generalized far-field condition that fades to the usual condition (5) if the
wave number becomes small. Since we approximate the operator rather than
just its application to a vector, this paper is expected to lay ground to future
work related to the definition of approximate arithmetic operations and hence to
efficient preconditioners for high-frequency problems.
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Solution of electromagnetic problems using BEM++

Timo Betcke

(joint work with Simon Arridge, Joel Phillips, Martin Schweiger and Wojciech

Śmigaj)

BEM++ (www.bempp.org) is a novel open source boundary element library for
complex boundary element simulations of problems in three space dimensions. The
first official version of BEM++, 1.0, was released in October 2012. The library lets
the user construct Galerkin discretisations of all standard boundary integral oper-
ators (single-layer potential, double-layer potential, adjoint double-layer potential,
hypersingular operator) for Laplace, Helmholtz and modified Helmholtz problems
in three dimensions. These operators can be represented either as dense matrices
or, if the library is linked against the AHMED library by M. Bebendord [2], as
H-matrices [1]. In the latter case, the adaptive cross approximation (ACA) algo-
rithm is used to accelerate the assembly. On shared-memory multicore machines,
matrix assembly can be done in parallel.

The library makes it easy to combine the standard integral operators into ar-
bitrary integral equations or systems of integral equations. It also provides wrap-
pers to a wide range of iterative solvers from the Trilinos library. On systems
with AHMED, preconditioners based on approximate H-LU decompositions of
operators stored in the H-matrix format can be constructed to accelerate solver
convergence.

A distinctive feature of BEM++ is its dual, C++/Python interface. The library
is implemented principally in C++, and all its features can be used from this
language. To facilitate rapid development, however, BEM++ provides also Python
bindings for most of its high-level features. The possibility of interactive work in a
Python shell is very convenient in practice. More details about BEM++ are given
in [4].

The highlight of the upcoming 2.0 release of BEM++ is support for the solution
of Maxwell equations in three dimensions. In this contribution we will briefly
discuss the implementation of the features necessary for this purpose and present
the results of some test calculations.

The treatment of Maxwell equations in BEM++ closely follows that of [3].
Thus, it is based on two integral operators only: the single-layer potential operator
ΨSL and the double-layer potential operator ΨDL. The action of the single-layer
potential operator is defined as

(1) (ΨSLv)(x) ≡ ik

∫

Γ

G(x,y)v(y)Γ(y) − 1

ik
∇x

∫

Γ

G(x,y)(∇Γ · v)(y)Γ(y),
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where

(2) G(x,y) ≡ exp(ik|x− y|)
4π|x− y|

is the Green’s function of the Helmholtz equation with wave number k and v(x) is
a vector-valued function defined on a surface Γ . This definition is almost identical
to eq. (27) in [3]; compared to that equation, we include an additional factor i to
make the operator real-valued for purely imaginary values of k. The action of the
double-layer potential operator, in turn, is defined by

(3) (ΨDLv)(x) ≡ ∇x ×
∫

Γ

G(x,y)v(y)Γ(y),

identically as in eq. (28) from [3]. In the Python interface of BEM++, the opera-
tors defined above can be constructed using functions

createMaxwell3dSingleLayerPotentialOperator()

and
createMaxwell3dDoubleLayerPotential-Operator().

Taking the interior and exterior Dirichlet and Neumann traces of the Stratton-
Chu representation formula [3, theorem 6] for the solutions of Maxwell equations
with wave number k in a bounded domain Ω with boundary Γ , one arrives at the
following boundary integral equations:

(− 1
2I +C)γD,intu+ SγN,intu = 0(4)

−SγD,intu+ (− 1
2I +C)γN,intu = 0.(5)

Here, u can denote either the electric or the magnetic field. The interior Dirichlet
trace γD,intu at a point x ∈ Γ is defined as

(6) (γD,intu)(x) ≡ u|Γ,int(x)× n(x),

where n is the outward unit vector normal to Γ at x and u|Γ,int(x) is the limit
of u(y) as y approaches x from within Ω. The interior Neumann trace γN,intu at
x ∈ Γ is defined as

(7) (γN,intu)(x) ≡ (ik)−1(∇ × u)|Γ,int(x)× n(x).

Compared to Buffa and Hiptmair, we include an additional i factor in the de-
nominator of the Neumann trace. The exteror Dirichlet and Neumann traces are
defined analogously, with the relevant quantities assumed to approach the point x
from within the complement of Ω. The interior single-layer boundary operator S

and double-layer boundary operator C denote the averages of the interior and ex-
terior traces of the corresponding potential operators with wavenumber k, and
I stands for the identity operator.

Galerkin discretisations of the above equations involve the weak forms of op-
erators S and C. Following [3], the weak forms are defined with respect to the
antisymmetric pseudo-inner product

(8) 〈u,v〉τ ,Γ ≡
∫

Γ

u∗ · (v × n)dΓ,
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where ∗ denotes complex conjugation. Explicit expressions for the weak forms
of S and C are given in eqs. (32) and (33) from [3] (the former needs to be
multiplied by i to adapt it to the convention used in BEM++). Boundary op-
erators with those weak forms are most easily constructed in BEM++ using
the createMaxwell3dSingleLayerBoundaryOperator() and createMaxwell3d-

DoubleLayerBoundaryOperator() functions. In addition, the function create-

Maxwell3dIdentityOperator() yields an identity operator with weak form de-
fined under the above pseudo-inner product.

Maxwell equations in an exterior domain R3 \Ω, with the Silver-Muller bound-
ary conditions imposed at infinity, can be reduced to the following boundary inte-
gral equations:

(12I +C)γD,extu+ SγN,extu = 0(9)

−SγD,extu+ (12I +C)γN,extu = 0.(10)

The exterior traces of u are defined in the obvious way.
Both the Dirichlet and Neumann traces of the electric and magnetic field, as de-

fined in eqs. (6) and (6), belong to the Sobolev spaceH
−1/2
× (divΓ , Γ ) defined in [3].

Currently BEM++ provides a single discrete approximation of H
−1/2
× (divΓ , Γ ),

the space of lowest-order Raviart-Thomas functions. It is represented with the
class RaviartThomas0VectorSpace.

A common application of BEM in electromagnetics is the solution of scattering
problems. These can involve both perfectly conducting and permeable objects. As
a particular example, we consider the scattering of a plane wave from a dielectric
hexagonal column with relative permittivity ǫ = 3.2, approximately corresponding
to that of ice at microwave frequencies. The ratio of column height to base di-
ameter is set to 1.25. The problem is solved using the so-called CTF formulation,
which has been found [5] to yield good accuracy at the price of sometimes poor
conditioning. The equations take the form

(11)

[
Sext + Sint −(12 (1 − ρ−1)I +Cext + ρ−1Cint)

1
2 (1− ρ)I +Cext + ρCint Sext + Sint

] [
γD,extE

γN,extE

]

=

[
−γN,extEinc

γD,extEinc

]
,

where the operators with subscripts int and ext corresspond to wave numbers
k0
√
ǫint and k0

√
ǫext, with ǫint and ǫext denoting the relative permittivities of the

scatterer and the medium in which it is embedded and k0 standing for the wave
number in vacuum. The symbol Einc is the electric field of the incident wave.

An approximate H-LU decomposition of the weak form of the block-diagonal
part of the operator above was used as a preconditioner. The accuracy of the
LU decomposition was chosen as 1E−2, and the ACA tolerance ǫ as 1E−5. The
remaining parameters were identical to those from the first example. Table 1 lists
the time and memory consumption for increasing problem sizes. A somewhat un-
welcome feature is the increasing fraction of time spent in the construction of the
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Table 1. Benchmarks for the calculation of field scattered by
a hexagonal ice column. The memory use of the operator Sint

is given in megabytes and in percent of the memory use of an
equivalent dense operator. The memory and time requirements
of Cint are very similar and those of Sext and Cext, lower.

Sint Preconditioner Solver
H/λ #Elem. Mem. (MB / %) t (s) Mem. (MB) t (s) #It. t (s)

1 638 9.9 (100 %) 0.5 4.66 0.75 44 0.4
2 2718 123.6 (57 %) 7.5 49.1 8.6 116 12.0
4 10740 986.7 (25 %) 45.7 471.9 91.6 192 93.1
8 46016 7541 (11 %) 325.6 4605.6 1293.2 472 1463.0

Figure 1. Magnitude of the electric field generated by a plane
wave impinging on a hexagonal column with permittivity 3.2 sur-
rounded by vacuum. The free-space wavelength λ of the wave is 8
times smaller than the height of the column. The arrow indicates
the direction of the incident wave.

preconditioner. This is partly due to the serial nature of the current implemen-
tation of the H-LU decomposition routine, as opposed to matrix assembly and
matrix-vector multiplication, which are done in parallel.

Figure 1 shows a cross-section of the field generated in the highest-k case. The
ACA algorithm was used in the evaluation of off-surface potentials, reducing the
time used to evaluate the field at the chosen 400 × 400-point grid by a factor of
four with respect to standard brute-force quadrature.
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Selective Focusing for Time Dependent Waves

Maxence Cassier

(joint work with Christophe Hazard and Patrick Joly)

Abstract

We are concerned with focusing effects for time-dependent waves using an ar-
ray of pointlike transducers. We consider a two-dimensional problem which models
acoustic wave propagation in a medium which contains several unknown pointlike
scatterers. Spatial focusing properties have been studied in the frequency domain
in the context of the DORT method (“Decomposition of the Time Reversal Op-
erator”). This method consists in doing a Singular Value Decomposition of the
scattering operator, that is, the operator which maps the input signals sent to
the transducers to the measure of the scattered wave. We show how to construct
a wave that focuses in space and time near one of these scatterers, in the form
of a superposition of time-harmonic waves related to the singular vectors of the
scattering operator. Numerical results will be shown.

Introduction

We consider a reference medium, possibly inhomogeneous, filling the whole
plane R2. We denote by G the time-dependent Green function of the acoustic
wave equation, that is the causal solution to

1

c2(x)

∂2G(x, y; t)

∂t2
−∆xG(x, y; t) = δ(x − y)⊗ δ(t)

where c is the wave speed function of the medium (e.g., G(x, y; t) = −H(t −
|x− y|)/(2π(t2 − |x− y|2)) 1

2 for c ≡ 1, where H is the Heaviside function). We
assume that the reference medium is perturbed by the presence of a family of P
pointlike scatterers whose positions s1, . . . , sP are unknown. Using an array of N
point-like transducers located at xn for n = 1, . . . , N (with N ≥ P ), our aim is to
generate a wave that focuses in space and time on one of the scatterers. Such a
wave is defined by

(1) w(x, t) =

N∑

n=1

(
G(x, xn; ·)

t
⋆ qn

)
(t)
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where qinp(t) := (q1(t), . . . , qN (t))⊤ represents the input signals applied to the

transducers and
t
⋆ denotes the time convolution. The question is to find signals

qinp(t) for which most part of the energy of the wave will be concentrated near one
obstacle at a given time. In the present paper, we show how to deduce such signals
from the only knowledge of the scattering operator S : qinp 7→ qmes where qmes

represents the measures at points x1, . . . , xN of the scattered wave associated with
the incident wave (1), that is, the perturbation of this incident wave due to the
presence of the unknown scatterers. The idea is to take advantage of the so-called
DORT method (see, e.g., [2, 4]) whose spatial focusing properties in the frequency
domain are well known.

1. Space focusing in the frequency domain

Let Ĝ denote the time-harmonic Green function of the reference medium which
is related to the time-dependent Green function G by the Fourier transform:

G(x, y; t) =
1

π
Re

(∫ +∞

0

Ĝ(x, y;ω) e−iωt dω

)
.

At a fixed frequency ω, the array of transducers emits a time-harmonic incident
wave defined by

ŵ(x) =

N∑

n=1

q̂n Ĝ(x, xn;ω),

for a given q̂inp := (q̂1, . . . , q̂N )⊤ ∈ CN (complex amplitudes of the input signals at
the N transducers). Then, the array measures the scattered wave q̂mes. This yields

the time-harmonic scattering operator Ŝω : q̂inp 7→ q̂mes which can be written here
as a product of three matrices:

Ŝω = Ĝ⊤
ω︸︷︷︸

back propagation

Σ̂ω︸︷︷︸
reflection

Ĝω︸︷︷︸
direct propagation

,

where Ĝω is a P × N matrix defined by (Ĝω)pn := Ĝ(xn, sp;ω) and Σ̂ω is a

P × P symmetric matrix (Σ̂⊤
ω = Σ̂ω) which represents the reflections on the

scatterers. The latter matrix depends on the choice of an asymptotic model for
the scatterers. In the simplest case (no interaction between the scatterers), this
is a diagonal matrix composed of the reflection coefficients of the scatterers. The
more elaborate Foldy–Lax model [1] takes into account isotropic interactions.

The DORT method consists in a Singular Value Decomposition (SVD) of Ŝω:

(2) Ŝω = P̂ω D̂ω Q̂
⊤
ω ,

where D̂ω, P̂ω, Q̂ω are respectively the diagonal matrix of singular values, the
matrices of the left and right singular vectors. It is now well understood ([2, 4])
that in a homogeneous medium, for distant enough scatterers, the number of

nonzero singular values of Ŝω coincide with the number of scatterers. Moreover if
such a singular value λp(ω) is simple, the associated right singular vector q̂p(ω)
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(pth column of Q̂ω) generates a wave which focuses selectively on one scatterer,
say sp.

2. Space-time focusing

Suppose that in a given frequency band [ω1, ω2] (imposed by the physical prop-
erties of our array), we know a right singular vector q̂p(ω) ∈ CN associated with
the pth obstacle and a simple singular value λp(ω). How can one choose a func-
tion A(ω) defined on the frequency band such that the superposition of the time-
harmonic input signals:

qp(t) = Re

∫ ω2

ω1

A(ω) q̂p(ω) e
−iωt d!(3)

generates an incident wave which focuses not only in space near sp, but also in
time?

We look for a function A as a product A(ω) = χ(ω)eiφ(ω) with χ a given real
cutoff function and φ an unknown phase. This is a problem of frequency phase
synchronization. The phase choice that we propose is based on a particular SVD

of the scattering operator related to its symmetry. Ŝω is a symmetric operator,
therefore up to a change of sign, there exists a unique φsym ∈ [−π, π[ such that

(4) Ŝω e
iφsym(ω)q̂p(ω) = λp(ω) eiφsym(ω)q̂p(ω),

eiφsym(ω)q̂p(ω) is then a right singular vector of a symmetric SVD of Ŝω : UωD!U
⊤
ω

(see [3] for more details). Does this signal yield an optimal focusing? We did not
succeed in finding a mathematical functional representing the focusing quality
which would be maximal for this particular choice. But several arguments are
pointing in that direction.

The first one is heuristic. As the time reversal operation J : f(t) 7→ f(−t)
becomes a complex conjugation in the frequency domain, we see with (4) that at
each frequency, the measure of the scattered field is (up to a positive real factor
λp(ω)) the time reversed emitted signal. This temporal symmetry synchronizes
the spectral components of the emitted wave at the focusing time t = 0. The
mathematical counterpart of this property lies in the following proposition. We
denote for a function φ ∈ L∞([ω1, ω2]),

qp[φ] := Re

(∫ ω2

ω1

χ(ω) eiφ(ω) q̂p(ω) e
−iω· dω

)
.

Proposition 1. φsym satisfies the following optimization problem:

inf
ν∈R+∗,φ∈L∞([ω1,ω2]

‖(S− νJ)qp[φ]‖L2(R,CN )

As J is an isometry, roughly speaking this proposition says that the input signal
qp[φsym] is close (for the L2 norm) to an eigenfunction of the operator JS associated
to a positive eigenvalue.

The second one is related to the well-known time-reversal experiment: a time-
reversed wave back-propagates towards the source. In this sense, the time-reversed
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Green function G emmited at sp is some kind of optimal space-time focusing wave.
We have checked that for high ω, the phases φsym given by (4) become close to
those of the frequency components of the measures of the time-reversed Green
function.

The last arguments are numerical experiments which confirm these focusing
properties. In particular, we measured the focusing quality of (3) by means of an
energy criterion. We compute the ratio of the local acoustic energy contained in a
box which surrounds the obstacle sp by the total energy sent by the transducers
during the emission. In Figure 1 we compare this ratio for input signals qp con-
structed with the time reversed Green function emitted at sp (these signals require
also the position of the pth obstacle) with those constructed with φsym.
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Figure 1. Two scatterers in a diffusive medium
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Scattering by Arbitrary Planar Screens

Simon N. Chandler-Wilde

(joint work with Dave Hewett)

This talk is concerned with the classical problem of time harmonic acoustic scat-
tering by an infinitely thin, finite planar screen. We work in d dimensions, with
d = 2 or 3, and, without loss of generality, suppose that the screen Γ is some
bounded subset of Γ∞ := {x = (x1, ..., xd) ∈ Rd : xd = 0} (which we identify with
Rd−1). We restrict attention throughout to the case that Γ is either a closed or
an open subset of Γ∞, and set D := Rd \ Γ . We suppose that an incident wave ui

that is a linear combination of plane waves, i.e.,

(1) ui(x) =

N∑

m=1

am exp(ikx · dm),

where am ∈ C and the dm are unit vectors, is incident on the screen Γ . This
incident wave is a solution of the Helmholtz equation

(2) ∆u+ k2u = 0

for wavenumber k > 0. The two scattering problems, SPD and SPN, that we
consider, corresponding to a sound soft and a sound hard screen, respectively, are
the following:

Given ui having the form (1), find u ∈ C2(D) ∩W 1,2
loc (D) such that (2) holds in

D, us := u− ui satisfies the standard Sommerfeld radiation condition, and u = 0
on Γ (scattering problem SPD) or ∂u/∂n = 0 on Γ (scattering problem SPN).

Our focus in this talk is on integral equation formulations of these two screen
problems. This is hardly a new topic. Indeed, already Stephan [9] derives well-
posed boundary integral equation formulations, for both planar and non-planar
screen problems, under the assumption that Γ is a C∞ relatively open subset of the
boundary of some smooth domain. More recently this smoothness requirement has
been relaxed, but, to the best of our knowledge, all previous studies of boundary
integral equation methods for screen problems assume that the screen is a Lipschitz
domain or, at least, satisfies a uniform cone condition.

This is to some extent surprising, in particular in the electromagnetics (EM)
context given the large interest there in the design of fractal antennae, requiring
the computation of radiation from objects that, to a good approximation, are
planar screens occupying a fractal subset of the plane (e.g., a Cantor-type set [8]).
On the other hand, it is only relatively recently that the correct formulations and
trace spaces for EM screen problems of regular (i.e., Lipschitz) shape have been
elucidated [2].

The focus in this talk is to develop a theory of integral equations for the prob-
lems SPD and SPN in the case that Γ occupies an arbitrary (e.g., fractal) subset
of Γ∞. Our Sobolev space notations are those of [7], and we identify Hs(Γ∞)
with Hs(Rd−1) in the obvious way. In particular, for a closed set C ⊂ Γ∞, Hs

C

is the set of those φ ∈ Hs(Γ∞) with support in C and, for an open set O ⊂ Γ∞,
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H̃s(O) ⊂ Hs(Γ∞) is the closure of C∞
0 (O) in the Hs(Γ∞) norm. Both Hs

C and

H̃s(O) are closed subspaces of Hs(Γ∞); further Hs
O
= H̃s(O) if O is C0 [7].

As a first step let us recall the case when the screen Γ = Ω, where Ω is some
C∞ open subset of Γ∞. Then it is well-known [9] that u satisfies SPD iff

(3) u(x) = ui(x) −
∫

Γ

Φ(x, y)

[
∂u

∂n

]
(y)ds(y), x ∈ D,

and S[∂u/∂n] = ui|Ω . Here [∂u/∂n] ∈ H
−1/2
Γ = H̃−1/2(Ω) is the jump in the

normal derivative across Γ∞ and S is the standard acoustic single-layer potential

operator on Γ , which is an isomorphism from H
−1/2
Γ = H̃−1/2(Ω) to H1/2(Ω).

We note that the behaviour of [∂u/∂n] near ∂Ω is well understood when Ω is C∞

[9], and in particular [∂u/∂n] ∈ L1(Ω) so that (3) is well-defined. Similarly [9], u
satisfies SPN iff

(4) u(x) = ui(x) +

∫

Γ

∂Φ(x, y)

∂n(y)
[u](y)ds(y), x ∈ D,

and T [u] = −(∂ui/∂n)|Ω. Here [u] ∈ H
1/2
Γ = H̃1/2(Ω) is the jump in the trace of

u across Γ∞ and T is the standard acoustic hypersingular integral operator on Γ ,

an isomorphism from H
1/2
Γ = H̃1/2(Ω) to H−1/2(Ω).

S and T are both isomorphisms. It is less well appreciated, though the more
difficult hypersingular case is shown already in [5], that S and T have the stronger
property that they are both coercive. In particular, in the case that Ω = ΩR :=
{x = (x̃, 0) : |x̃| < R} and Γ = ΓR := ΩR, it holds that

(5) |〈Sφ, φ〉| ≥ CR‖φ‖2H−1/2(Γ∞) and |〈Tψ, ψ〉| ≥ cR‖ψ‖2H1/2(Γ∞),

for φ ∈ H
−1/2
ΓR

, ψ ∈ H
1/2
ΓR

, where 〈·, ·〉 is the usual extension of the inner product

on L2(Γ∞) to a sesquilinear form on Hs(Γ∞)×H−s(Γ∞) and CR, cR are positive
constants depending only on k and R. This implies, of course, by the Lax-Milgram
lemma, that the variational forms of these integral equations have exactly one

solution. These variational forms are to find [∂u/∂n] ∈ H
−1/2
ΓR

and [u] ∈ H
1/2
ΓR

,
respectively, such that
(6)

〈S[∂u/∂n], φ〉 = 〈ui, φ〉, ∀φ ∈ H
−1/2
ΓR

and 〈T [u], ψ〉 = −〈∂ui/∂n, ψ〉, ∀ψ ∈ H
1/2
ΓR

.

These observations immediately give us well-posedness of variational formula-
tions of integral equations on arbitrary bounded open or closed subsets of Γ∞.
For any such subset Γ is contained in ΓR for some R > 0. These variational
formulations are (6) with Hs

ΓR
replaced by Hs

Γ ⊂ Hs
ΓR

in the case that Γ ⊂ ΓR is

closed, and (6) with Hs
ΓR

replaced by H̃s(Γ ) ⊂ Hs
ΓR

in the case that Γ ⊂ ΓR is
open. It is immediate from (5) and the Lax-Milgram lemma that these variational
formulations are well-posed. This gives the proof of most of the following theorem.
In this theorem γ+u and γ−u denote traces of u on Γ∞, the traces taken from the
upper and lower half-spaces respectively, and similarly ∂±n u are normal derivatives
of u on Γ∞ taken from above and below.
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Theorem 1. In the case that Γ ⊂ ΓR is closed, the variational formulations

(6), with H
±1/2
ΓR

replaced by H
±1/2
Γ , have exactly one solution, and u given by (3)

satisfies SPD, with the boundary condition understood in the sense that γ±u ∈
H̃1/2(Γ∞ \ Γ ), while u given by (4) satisfies SPN, with the boundary condition

understood in the sense that ∂±n u ∈ H̃−1/2(Γ∞ \ Γ ). In the case that Γ ⊂ ΓR

is open, the variational formulations (6), with H
±1/2
ΓR

replaced by H̃±1/2(Γ ), have
exactly one solution, and u given by (3) satisfies SPD, with the boundary condition
understood in the sense that γ±u = 0 on Γ , while u given by (4) satisfies SPN,
with the boundary condition understood in the sense that ∂±n u = 0 on Γ .

We note that, in general, the integral in the representation (3) has to be in-
terpreted as a duality pairing. The proof that (3) and (4) satisfy the boundary
conditions in the sense indicated depends on the following characterizations of dual
spaces, that, if Γ is open, then

(H̃s(Γ ))∗ = H−s(Γ ), (Hs(Γ ))∗ = H̃−s(Γ ),

in the sense that the natural embeddings are unitary isomorphisms. Similarly,

(Hs
Γ )

∗ = H̃−s(Γ∞ \ Γ )⊥,
(
H̃s(Γ∞ \ Γ )⊥

)∗
= H−s

Γ ,

where here the superscript ⊥ denotes the orthogonal complement. In the case
that Γ is C0 the first of these identifications is known, e.g., [7], but otherwise
these results may be new.

To illustrate the application of the theorem to a fractal scatterer, choose α > 2,
and let ℓk = α−k, for k = 0, 1, .... Set E0 := [0, ℓ0]. Let E1 be the set obtained by
removing an open interval from the middle of E0 to leave two closed intervals of
length ℓ1, E2 the set obtained by removing an open interval from the middle of the
two intervals comprising E1 to leave 4 closed intervals of length ℓ2, and similarly
define E3, E4, ..., so that Ek is a union of 2k disjoint closed intervals of length
ℓk. Finally, let E := ∩∞

k=0Ek, so that E is the classic “middle third” Cantor set
in the case α = 3. Clearly Ek has Lebesgue measure m(Ek) = (2/α)k, so that
m(E) = 0. A more refined measure of the size of E is given by computing its
Hausdorff dimension which is [4] dimH(E) = log 2/ logα.

We will consider first scattering in 3D (d = 3) by the closed screen Γ that
is the “Cantor dust”, Γ = {(x1, x2, 0) : xj ∈ E, j = 1, 2}, which has Hausdorff
dimension [4] dimH(Γ ) = 2 log 2/ logα. The relevance of the Hausdorff dimension
is the following result [1, 6].

Lemma 1. Suppose C is a closed subset of Rm, for some m ∈ N. If 0 < s ≤ m/2
and H−s

C = {0}, then dimH(C) ≤ m − 2s. Conversely, if 0 < s < m/2 and

dimH(C) < m− 2s, then H−s
C = {0}. If s ≥ 0 and m(C) = 0 then Hs

C = {0}.
It might be thought that the screen Γ , which has zero surface Lebesgue measure,

is invisible to the incident field, i.e., that us = 0. For our variational formulation,

in which we look for a solution [u] ∈ H
1/2
Γ , this is the case for SPN as, by the above

lemma, H
1/2
Γ = {0}. For SPD the situation is more subtle. The above lemma,
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plus other arguments specific to the Cantor set [1], show that H
−1/2
Γ = {0} iff

dimH(Γ ) ≤ 1. This is the proof of most of the following result.

Corollary 1. In the case that Γ is the Cantor dust screen, which has m(Γ ) = 0
and dimH(Γ ) = 2 log 2/ logα, the solution to our variational formulation of SPN
is u = ui; if α ≥ 4 this is also the solution to our variational formulation of SPD.
If 2 < α < 4 there are incident fields ui for which us 6= 0 so that u 6= ui.

We note that, in particular, in the case SPD with 0 < α < 2, us 6= 0 when-
ever ui given by (1) is such that γui has a component in H̃1/2(Γ∞ \ Γ )⊥. Since

H̃1/2(Γ∞ \ Γ )⊥ ⊂ H
1/2
ΓR

and the traces of the incident fields of the form (1) are

dense in H
1/2
ΓR

, there are many such incident fields.
As a final example let us consider the variational formulation of SPN for the

cases: Γ = Γ1 := [0, 1]2; Γ = Γ2 := (0, 1)2; Γ = Γ3 := (0, 1)2 \ E2. Clearly Γ1 is
closed and Γ2 and Γ3 are open, with Γ2 = Γ3 = Γ1. Let uj denote the solution to
our integral equation variational formulation of SPN when Γ = Γj . Then, since

H
1/2
Γ1

= H̃1/2(Γ2) (since Γ2 is C0) it follows that u1 = u2. The question as to
whether u2 = u3 is answered by the following result.

Theorem 2. Suppose Γa ⊂ Γb are bounded open subsets of Γ∞, let C = Γb \ Γa,
and let ua and ub denote the solutions to our variational formulation of SPN for
Γ = Γa and Γb, respectively. Then the following are equivalent: (i) H̃1/2(Γa) =

H̃1/2(Γb); (ii) H
−1/2
C = {0}; (iii) for every incident field (1) it holds that ua = ub.

This theorem and the observations in and immediately above Corollary 1 imply
that u2 = u3 for every incident field (1) iff α ≥ 4. Thus, if 2 < α < 4, there are
incident fields for which u3 6= u1 although Γ3 = Γ1 and m(Γ1 \ Γ3) = 0.

We refer the reader to [3] for further details.
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Acoustic Reverse Time Migration for Extended Obstacles

Zhiming Chen

(joint work with Junqing Chen, and Guanghui Huang)

We propose and study an imaging algorithm to find the support of an unknown
obstacle embedded in a known background medium from a knowledge of scattered
acoustic waves measured on a given acquisition surface which is assumed to be far
away from the obstacle.

Let the obstacle occupy a bounded Lipschitz domain D ⊂ R2 with ν the unit
outer normal to its boundary ΓD. We assume the incident wave is emitted by a
point source located at xs on a closed surface Γs away from the obstacle. For pen-
etrable obstacles D, the measured wave u is the solution of the following acoustic
scattering problem:

∆u+ k2n(x)u = −δxs(x) in R2,(1)

√
r

(
∂u

∂r
− iku

)
→ 0 as r → ∞, r = |x|,(2)

where k > 0 is the wave number, n(x) ∈ L∞(D) is a positive scalar function
supported in D, δxs is the Dirac source located at xs. The condition (2) is the
well-known Sommerfeld radiation condition. For non-penetrable obstacles D, the
measured wave u is the solution of the following scattering problem:

∆u+ k2u = −δxs(x) in R2,(3)

u = 0 or
∂u

∂ν
+ ikλ(x)u = 0 on ΓD,(4)

√
r

(
∂u

∂r
− iku

)
→ 0 as r → ∞, r = |x|,(5)

where λ(x) ≥ 0 is a bounded function on ΓD. The Dirichlet boundary condition
u = 0 on ΓD corresponds to the sound soft obstacle. The second condition on
ΓD in (4) is the impedance condition and it reduces to the sound hard obstacle
when λ(x) = 0. The existence and uniqueness of the problem (1)-(2) such that
us = u−ui inH1

loc(R
2) and the problem (3)-(5) such that us = u−ui inH1

loc(R
2\D̄)

is well-known [11, 18, 6], where ui(x) = i
4H

(1)
0 (k|x − xs|) is the fundamental

solution of the Helmholtz equation, H
(1)
0 (z) is the Hankle function of the first

type and order zero.
The direct methods for solving inverse scattering problems have drawn consid-

erable interests in the literature in recent years. We refer to the MUltiple SIgnal
Classification (MUSIC) method in [21, 13, 5, 1], the linear sampling method [10],
the factorization method [16], and the point source method [19]. The reverse time
migration (RTM) or the closely related depth migration methods are nowadays
are widely used in exploration geophysics [2, 9]. The analysis of the migration
method is usually based on the high frequency assumption [3] or small inclusion
assumption [14].
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We provide a new mathematical understanding of the RTMmethod for extended
obstacles without the assumption of geometric optics approximation. We study the
resolution of the RTM method for both penetrable and non-penetrable obstacles.
As the outcome of our resolution analysis we propose to use the imaginary part of
the cross-correlation RTM functional. We show that this new imaging functional
enjoys the nice feature that it is always positive and thus may have better stability
properties.

Now we introduce the RTM method for inverse scattering problems. We assume
that there are Ns transducers uniformly distributed on Γs = ∂Bs and Nr trans-
ducers uniformly distributed on Γr = ∂Br. Bs and Br are the circles of radius Rs

and Rr, respectively. We denote by Ω the sampling domain in which the obstacle
is sought. We assume the obstacle D ⊂ Ω and Ω is inside in Ωs, Ωr.

Let G(x, y) be the fundamental solution of the Helmholtz equation

∆G(x, y) + k2G(x, y) = −δy(x) in R2.

Let ui(x, xs) = G(x, xs) be the incident wave and u
s(xr, xs) = u(xr, xs)−ui(xr , xs)

be the scattered field measured at xr, where u(x, xs) is the solution of the problem
either (1)-(2) or (3)-(5).

Algorithm 1. (Reverse time migration algorithm)
Given the data us(xr , xs) which is the measurement of the scattered field at xr
when the source is emitted at xs, s = 1, . . . , Ns and r = 1, . . . , Nr.
1◦ Back-propagation: For s = 1, . . . , Ns, compute the solution vb of the following
problem:

∆vb(x, xs) + k2vb(x, xs) =
|Γr|
Nr

Nr∑

r=1

us(xr , xs)δxr(x) in R2,(6)

√
r

(
∂vb
∂r

− ikvb

)
→ 0 as r → ∞.(7)

2◦ Cross-correlation: For z ∈ Ω, compute

I(z) = k2 · Im
{
|Γs|
Ns

Ns∑

s=1

ui(z, xs)vb(z, xs)

}
.(8)

The imaging functional I(z) is a good trapezoid quadrature approximation of
the following continuous functional:

Î(z) = −k2 Im
∫

Γr

∫

Γs

G(z, xs)G(z, xr)us(xr, xs)ds(xs)ds(xr) ∀z ∈ Ω.(9)

Theorem 3. For any z ∈ Ω, let ψ(x, z) be the radiation solution of the Helmholtz
equation with penetrable scatterer D:

∆ψ + k2n(x)ψ = −k2(n(x)− 1) ImG(x, z) in R2.(10)



160 Oberwolfach Report 03/2013

Then if the measured field us = u − ui with u satisfying the problem (1)-(2), we
have

Î(z) = k

∫

S1

|ψ∞(x̂, z)|2dx̂+ wÎ(z) ∀z ∈ Ω,

where ψ∞(x̂, z) is the far field pattern of the solution ψ(x, z) and ‖wÎ‖L∞(Ω) ≤
C(R−1

s +R−1
r ).

Theorem 4. For any z ∈ Ω, let ψ(x, z) be the radiation solution of the Helmholtz
equation

∆ψ(x, z) + k2ψ(x, z) = 0 in R2\D̄,
ψ(x, z) = − ImG(x, z) on ΓD.

Then if the measured field us = u − ui with u satisfying the problem (3)-(5) with
the Dirichlet condition in (4), we have

Î(z) = k

∫

S1

|ψ∞(x̂, z)|2dx̂+ wÎ(z) ∀z ∈ Ω,

where ψ∞(x̂, z) is the far field pattern of the solution ψ(x, z) and ‖wÎ‖L∞(Ω) ≤
C(R−1

s +R−1
r ).

We refer to [7] for the proof of the theorems and extensive numerical experiments
and [8] for the extension of the algorithm to electromagnetic waves.

References

[1] Ammari H. and Kang H., Reconstruction of Small Inhomogeneities from Boundary Mea-
surements, Lecture Notes in Mathematics, Vol. 1846, Springer Verlag, Berlin, 2004.

[2] Berkhout A.J., Seismic Migration: Imaging of Acoustic Energy by Wave Field Extrapolation,
Elsevier, New York, 1984.

[3] Bleistein N., Cohen J.K., and Stockwell, Jr. J.W., Mathematics of Multidimensional Seismic
Imaging, Migration, and Inversion, Springer, New York, 2001.

[4] Bojarski N.N., Inverse Scattering, Naval Air Systems Command Report N00019-73-C-0312,
Washington, D.C., October 1973.

[5] Bruhl M., Hanke M., and Vogelius M., A direct impedance tomography algorithm for locat-
ing small inhomogeneities, Numer. Math. (2003), 635-654.

[6] Cakoni F., Colton D., and Monk P., The direct and inverse scattering problems for partially
coated obstacles, Inverse Problems 17 (2001), 1997-2015.

[7] Chen J., Chen Z., and Huang G., Reverse Time Migration for Extended Obstacles: Acoustic
Waves, 2012, submitted.

[8] Chen J., Chen Z., and Huang G., Reverse Time Migration for Extended Obstacles: Electro-
magnetic Waves, 2012, submitted.

[9] Claerbout J.F., Imaging The Earth’s Interior, Blackwell Scientific Publication, Oxford, 1985.

[10] Colton D. and Kirsch A., A simple method for solving inverse scattering problems in the
resonance region, Inverse Problems, 12 (1996), 383-393.

[11] Colton D. and Kress R., Inverse Acoustic and Electromagnetic Scattering Problems, Springer
, Heidelberg, 1998.

[12] Colton D. and Kress R., Using fundamental solutions in inverse scattering, Inverse Problems
22 (2006), R49-R66.

[13] Devaney A.J., Super-resolution processing of multi-static data using time-reversal and MU-
SIC, J. Acoust. Soc. Am., in press.



Computational Electromagnetism and Acoustics 161

[14] Garnier J., Sensor array imaging in a noisy environment, in NIMS Lecture Note Series
TP1003, National Institute for Mathematical Sciences, South Korea, 2010.

[15] Hou S., Solna K., and Zhao H., A direct imaging algorithm for extended targets, Inverse
Problems 22 (2006), 1151-1178

[16] Kirsch A., Characterization of the shape of a scattering obstacle using the spectral data of
the far field operator, Inverse Problems 14 (1998), 1489-1512

[17] Kirsch A. and Grinberg N., The Factorization Method for Inverse Problems, Oxford Uni-
versity Press, Oxford, 2008.

[18] McLean W., Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Uni-
versity Press, Cambridge, 2000.

[19] Potthast R., A fast new method to solve inverse scattering problems, Inverse Problems, 12
(1996), 731-742.

[20] Potthast R., Point Sources and Multipoles in Inverse Scattering Theory, Chapman &
Hall/CRC, Boca Raton, 2001.

[21] Schmidt R., Multiple emitter location and signal parameter estimation, IEEE Trans. An-
tennas. Propag. 34 (1986), 276-280.

Negative materials and corners in electromagnetism

Lucas Chesnel

(joint work with Anne-Sophie Bonnet-Ben Dhia, Camille Carvalho, Patrick
Ciarlet, Xavier Claeys and Sergei Nazarov)

In electromagnetism, recent years have seen a growing interest in the use of
negative materials in technologies. Negative materials are materials that can be
modeled for certain ranges of frequencies, neglecting the dissipation, by real neg-
ative physical parameters (permittivity ε and/or permeability µ). To summarize,
there are two major families of negative materials. The negative metamaterials
are complex structures made of small resonators, chosen so that the macroscopic
medium behave as if its physical parameters were negative. For a mathematical
justification of the homogenization process, we refer the reader for example to
[6]. Among these materials, we distinguish the double negative metamaterials,
also called the left-handed materials for which we have both ε < 0 and µ < 0.
Metals in visible range constitute the second family of negative materials. They
are used especially in plasmonic technologies [1, 7, 14, 10] which would allow im-
portant advances in miniaturization. In this context, a key issue is to be able to
manipulate light and in particular, to focus energy in specific areas of space. To
do this, physicists use metallic devices with corners and edges [13, 2, 12]. This
process raises challenging questions in the theoretical and numerical study of time
harmonic Maxwell’s equations. In this note, we investigate the behaviour of the
electromagnetic field for a slightly rounded corner. We work on a rather simple
setting but it foreshadows the general case. We highlight an unusual instability
phenomenon for this problem in some configurations: when the interface between
the two materials presents a rounded corner, it can happen that the solution de-
pends critically on the value of the rounding parameter.



162 Oberwolfach Report 03/2013

O

O′

π/4

δ

Ω
δ
−

Ω
δ
+

Figure 1. Domain Ωδ.

1. Numerical observations

Let us denote (r, θ) the polar coordinates centered at the origin O. Consider
δ ∈ (0; 1) and define (see Figure 1) the domains:

Ωδ
+ :={(r cos θ, r sin θ) | δ < r < 1, π/4 < θ < π};

Ωδ
− :={(r cos θ, r sin θ) | δ < r < 1, 0 < θ < π/4};

Ωδ :={(r cos θ, r sin θ) | δ < r < 1, 0 < θ < π}.
We define the function σδ : Ωδ → R by σδ = σ± in Ωδ

±, where σ+ > 0 and σ− < 0
are constants. We shall focus on the problem:

(1)
Find uδ ∈ H1

0(Ω
δ) such that

−÷ (σδ∇uδ) = f,

where H1
0(Ω

δ) := {v ∈ H1(Ωδ) s.t. v|∂Ωδ = 0}. Notice that problem (1) is not
standard because the sign of σδ changes on Ωδ. We choose a source term f ∈
L2(Ωδ) whose support does not meet O and we try to approximate the solution of
problem (1), assuming it is uniquely defined, by a classical finite element method.
Concerning the discretization of problem (1), we refer the reader to [5, 11, 8].
We call uδh the numerical solution and we make δ tends to zero. The results are
displayed on Figure 2. For a contrast κσ := σ−/σ+ = −1.0001, the sequence
(‖uδh‖H1

0(Ω
δ))δ is relatively stable with respect to δ, for δ small enough. For κσ :=

σ−/σ+ = −0.9999, it looks that there exists of sequence of values of δ, which
accumulates in zero, such that problem (1) is not well-posed. In other words, it
seems that the solution of problem (1) is not stable with respect to δ when δ tends
to zero. The goal of the present note is to understand these two observations.

2. Properties of the problem for δ = 0

We associate with problem (1) the continuous linear operator Aδ : H1
0(Ω

δ) →
H−1(Ωδ) defined by 〈Aδu, v〉Ωδ = (σδ∇u,∇v)Ωδ , ∀u, v ∈ H1

0(Ω
δ). As it is known

from [3], Aδ is a Fredholm operator of index 0 if and only if κσ := σ−/σ+ 6= −1,

as the interface Σδ := Ω
δ

+ ∩Ωδ

− is smooth and meets ∂Ωδ orthogonally.

For δ = 0 though, the interface no longer meets ∂Ωδ perpendicularly. In the
sequel, we write A, Ω and σ instead of A0, Ω0 and σ0. As shown in [3], there
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Figure 2. Evolution of ‖uδh‖H1
0(Ω

δ) w.r.t. 1− δ. On the left, we
take σ+ = 1 and σ− = −1.0001. On the right, we take σ+ = 1
and σ− = −0.9999.

exist values of the contrasts κσ = σ−/σ+ for which the operator A fails to be
of Fredholm type. More precisely, for the chosen configuration, A is a Fredholm
operator (and actually, an isomorphism) if and only if, κσ < 0 does not belong to
the critical interval [−1;−1/3].

⋆ When κσ = −1.0001 /∈ [−1;−1/3], A is an isomorphism (c.f. [3]). In this case,
we can prove that Aδ is an isomorphism for δ small enough. Moreover, defining
uδ = (Aδ)−1f and u = A−1f , we can show that the sequence (uδ) converges to u
for the H1 norm. This explains the left curve of Figure 2.

⋆ When κσ = −0.9999 ∈ [−1;−1/3], A is not of Fredholm type (c.f. [3]). In
this configuration, there is a qualitative difference between problem (1) for δ > 0,
and problem (1) for δ = 0. In [4], we define a new functional framework to
restore Fredholmness for the limit problem. More precisely, we prove that, for
κσ ∈ (−1;−1/3) the operator A+ : V+

β → V1
β(Ω)∗ defined by 〈A+u, v〉Ω =

(σ∇u,∇v)Ω , ∀u ∈ V+
β , v ∈ C∞

0 (Ω), is an isomorphism for all β ∈ (0; 2). In

this notation, V+
β := span{s+}⊕V1

−β(Ω), where s+ ∈ L2(Ω) \H1(Ω) is a singular

function at O and V1
−β(Ω) is the completion of C∞

0 (Ω) for the weighted norm

‖ · ‖V1
−β

(Ω) = (‖r−β∇ · ‖2L2(Ω) + ‖r−β−1 · ‖2L2(Ω))
1/2.

3. Asymptotic expansion of the solution inside the critical interval

For a contrast inside the critical interval, the exotic functional framework intro-
duced for the limit problem leads to two surprising phenomena in the asymptotic
expansion of the solution of problem (1). First, when we proceed to a usual
matched asymptotic expansion method, we observe that we can define an asymp-
totic expansion of the solution uδ only for

δ ∈ Sadm := (0; 1) \ Sforb with Sforb :=
⋃

k∈N

δk⋆δ0,
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δ⋆, δ0 being two numbers of (0; 1). Notice that 0 is an accumulation point for
Sforb. For α ∈ (0; 1/2), we define I(α) :=

⋃
k∈N[δ

k+1−α
⋆ δ0; δ

k+α
⋆ δ0] ⊂ Sadm. In

[9], we prove the following result:

Proposition 1. Let β ∈ (0; 2) and f ∈ V1
β(Ω)∗. There exists δ0 such that

problem (1) is uniquely solvable for all δ ∈ (0; δ0) ∩ I(α), with α ∈ (0; 1/2). More-
over, we can build an approximation ûδ ∈ H1

0(Ω
δ) of uδ such that, for all ε in

(0;β), ∀δ ∈ (0; δ0) ∩ I(α), there holds

‖uδ − ûδ‖H1
0(Ω

δ) ≤ c δβ−ε‖f‖V1
β(Ω)∗ ,

where c > 0 is a constant independent of δ and f .

The second original phenomenon in this asymptotic expansion concerns the ap-
proximation ûδ introduced in Proposition 1. The function ûδ depends on δ and its
far field does not converge to the far field of (A+)−1f when δ → 0, even for the
L2 norm . This proves that the solution of problem (1), when it is well-defined, is
unstable with respect to δ.

4. Discussion

In this note, we have considered a special geometry for Ωδ because it simplifies
the numerical calculations of the first paragraph. However, we observe exactly the
same curiosities for a rounded corner: when the contrast lies inside the critical
interval, the solution of problem (1), which is defined except for a sequence of
values of δ which tends to 0, depends critically on the rounding parameter. From
a physical point of view, one may wonder what happens in a neighbourhood of the
corner...
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A Mortar Element Method for the Electric Field Integral Equation

Kristof Cools

(joint work with Francesco P. Andriulli, Eric Michielssen)

Boundary element methods are a very versatile and powerful modeling tool for the
scattering of time-harmonic electromagnetic waves by perfect electrical conductors
[8]. Their increase in popularity is due to the availability of fast algorithms such as
the fast multipole algorithm [7], the multilevel matrix decomposition or butterfly
algorithm [10], and the adaptive integral method [3], which reduce the solution
process to a series of matrix vector multiplication requiring almost linear order
computations on one hand, and preconditioning methods such as multi-resolution
techniques (e.g. [2]), and Calderon preconditioning (see e.g. [5, 4, 1]), which
minimize the number of matrix vector multiplication required to reach a solution
on the other hand.

To optimally refine simulations based on a posteriori error analysis (see e.g. [11])
and to parallelize the computations in the most flexible way [6], it would be advan-
tageous to be able to construct the mesh separately on all subcomponents of the
scatterer. The thus constructed global mesh would be non conforming. Recently,
non-overlapping domain decomposition methods for boundary integral equations
have been introduced. In [12], a method for scattering from non-penetrable closed
conductors was put forward. For scattering problems in acoustics, mortar element
based algorithms have been shown to exhibit near (quasi-)optimal convergence
properties [9]. In this contribution, a boundary mortar element method for the
electric field integral equation (EFIE) is introduced that allows to find the solu-
tion of the scattering problem on a non-conforming mesh. The algorithm is fit to
deal with junctions, i.e. curves where three or more PEC sheets meet. Until now,
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junctions have been dealt with in an ad hoc fashion. For the most general case
that can be handled, see e.g. [13].

Consider a perfectly electrically conducting object with surface Γ that can be
partitioned in a set of B surfaces or sheets Γi. The boundary of each blade Γi

comprises Ji curves or junctions γij . Two sheets are either disjunct, or they meet
at the union of a number of junctions γij . The junctions can be enumerated after a
suitable labeling resulting in the so called skeleton of the decomposition (γi)

J
i=1 in

which each junction occurs only once. The structure is embedded in a background
medium characterized by a permittivity ε, a permeability µ, and the corresponding
wave number k = ω

√
εµ and impedance η =

√µ
ε .

Solving the electric field integral equation, which models scattering of ei by Γ ,
amounts to finding the current j defined on Γ that radiates a scattered field es

such that the total field e = ei + es has vanishing tangential components on Γ .
The solution j is searched for in the space X of currents k that are divergence
conforming on each sheet, that have vanishing normal components at ∂Γ , and that
have continuous normal components at each of the junctions, i.e.

(1)

B∑

i=1

m̂i · k = 0,

where mi is the unit vector field defined on ∂Γi, tangential to Γi and normal to
∂Γi, pointing outwards with respect to Γi.

The scattered field on Γ should cancel the incident field ei:

(2)
1

ik
gradS div j − ikSj = −1

η
ei(r), ∀r ∈ Γ

with

(3) S(j)r =

∫

Γ

e−ik|r−r′|

4π|r − r′|j(r
′) dr′

Equation (2) is tested with all k in X . Because of (1), partial integration does
not generate junction terms and the following variational formulation for the EFIE
results: find j in X , such that for any k in X :

(4) t(k, j) = − 1

ik
〈div k, S div j〉Γ − ik 〈k, Sj〉Γ = −1

η

〈
k, ei

〉
Γ
,

In the setting of mortar element methods, the continuity constraints on j and
k are relaxed. Partial integration now does lead to junction terms:

(5) t(k, j) + b(φ,k) = −1

η

〈
k, ei

〉
Γ
,

with

(6) b(φ,k) =

〈
φ,

B∑

i=1

m̂i · ki

〉

γ

,
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(a) (b)

Figure 1. (a) Basis for the Raviart-Thomas space defined on
Γi. DoFs are associated to internal and junction edges, not to
boundary edges. (b) Basis for the mortar finite element space.
The functions are continuous, piecewise linear and defined sub-
ordinate to the dual mesh. Their value on the outer segments of
the barycentric refinement of the mesh is chosen such that the
constant function is included in the set.

where φ = 1
ikS div j. The continuity of j is explicitly imposed by requiring that

(
¯
ψ,

B∑

i=1

m̂i · ki) = 0(7)

for all ψ in the space Y of functions continuous on all γij . This leads to the
following saddle point formulation: find (j, φ) in X × Y such that




t(k, j) + b(φ,k) = −1

η

〈
k, ei

〉
Γ
,

b(ψ, j) = 0,
(8)

for all (k, ψ) in X × Y .
Equation (8) is discretized by constructing a triangular mesh Ti,h for each of

the sheets Γi. The trial and testing functions j,k are chosen to be in the finite
element space of Raviart-Thomas functions on each of the sheets. The normal
components are forced to zero on the boundary of Γ , but not on the the junctions
γj (Fig. 1(a)). The traces of Ti on γij are denoted τij . For a given γj only the
finest trace mesh is retained and is denoted τj . The dual of this mesh as realized
by its barycentric refinement is denoted τ ′j . The trial and testing functions φ, ψ
are chosen in the space Yj,h of continuous piecewise linear functions on the dual
mesh τi. The degrees of freedom are attached to the vertices of the dual mesh
(i.e. the segments of the primal mesh), and the value of the functions on the outer
segments of the barycentric refinement is chosen in such a way that the constant
function is contained is the finite element space (Fig. 1(b)).

As an example, scattering of the electric field

(9) ei(r) = ŷe−i 2πλ x
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Figure 2. Classic EFIE.
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Figure 3. Mortar EFIE.

by a metallic square sheet will be considered. This case is of interest because the
exact solution for the current density exhibits a singularity at the boundary of Γ .
The mortar element methods allows to refine the mesh in the neighbourhood of
the boundary without refining the interior of the sheet. In Fig. 2 and Fig. 3 it can
be seen that the local refinement has the desired effect: the current distribution
on the boundary is refined, while the values in the interior of the sheet remain
virtually unchanged.
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On the inf-sup constant of the divergence alias LBB constant

Monique Dauge

(joint work with Martin Costabel)

Note: This presentation is mainly based on our paper [9]. It is also related with
the survey (in preparation) “About the inf-sup constant of the divergence” by C.
Bernardi, V. Girault and the authors.

1. The constant of interest and some elementary properties

Here we only consider bounded connected domains Ω of Rd, d ≥ 1. Elements of
Rd are denoted by x = (x1, . . . , xd). For such a domain Ω, the inf-sup constant
of the divergence associated with Dirichlet boundary conditions, also called LBB
constant after Ladyzhenskaya, Babuška [2] and Brezzi [5], is defined as

(1) β(Ω) = inf
q∈L2

◦(Ω)

sup
v∈H1

0 (Ω)d

〈
div v, q

〉
Ω

|v|
1,Ω

‖q‖
0,Ω

.

Here L2
◦(Ω) stands for the space of square integrable scalar functions q with

zero mean value in Ω endowed with its natural norm ‖ · ‖
0,Ω

and natural scalar

product 〈·, ·〉, and H1
0 (Ω)d is the standard H1 Sobolev space of vector functions

v = (v1, . . . , vd) with square integrable gradients and zero traces on the boundary,

endowed with its natural semi-norm |v|
1,Ω

defined as (
∑d

k=1

∑d
j=1 ‖∂xjvk‖

2

0,Ω
)1/2.

Since Ω is bounded, by virtue of the Poincaré inequality, the above semi-norm is
equivalent to the usual norm in H1(Ω)d.

We list some elementary properties of β(Ω):

(a) In any dimension d ≥ 1, β(Ω) ≥ 0,
(b) In any dimension d ≥ 1, β(Ω) ≤ 1, because of the identity

∀v ∈ H1
0 (Ω)d, |v|2

1,Ω
= ‖ curlv‖2

0,Ω
+ ‖ div v‖2

0,Ω

(c) If d = 1, Ω is a finite interval and β(Ω) = 1,
(d) In any dimension d ≥ 1, using a Piola transform it is easy to show that

β(Ω) is invariant by translations, dilations, symmetries and rotations. In
other words, β(Ω) depends only on the shape of Ω.
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2. Positiveness of the LBB constant

The constant β(Ω) is positive for Lipschitz domains [20], weakly Lipschitz do-
mains (see [17, §1.2.1] for the distinction between Lipschitz and weakly Lipschitz),
and John domains [1] (which include some domains with a fractal boundary). The
proof is based on various constructions of a right inverse for the divergence op-
erator, see [4, 15, 1]. In contrast, domains with an external cusp (or thin peak)
satisfy β(Ω) = 0, see [24].

3. Relation with the Schur complement of the Stokes operator

The Schur complement S of the Stokes operator is defined as

S : L2
◦(Ω) −→ L2

◦(Ω)
q 7−→ div ∆−1 ∇q .

Here ∆−1 is the inverse of the Dirichlet vector Laplacian ∆ acting from H1
0 (Ω)d

onto H−1(Ω)d. The operator S is bounded self-adjoint, non-negative. But it is
not compact, nor its resolvent. It is of order 0. Let σ(Ω) be the bottom of its
spectrum. There holds

(2) σ(Ω) = β(Ω)2.

The associated eigenvalue problem can be phrased as a spectral Stokes problem—
with v ∈ H1

0 (Ω)d and p ∈ L2
◦(Ω),

(3)

{
−∆v +∇p = 0 ,

div v = σp .

Let S(S) and Sess(S) be the spectrum and the essential spectrum of S.

4. Relation with the Cosserat spectrum

Let us introduce the family of operators σ 7→ Lσ

L : H1
0 (Ω)d −→ H−1(Ω)d

v 7−→ σ∆v −∇ div v

The Cosserat spectrum (after Cosserat brothers [7, 8]) S(L) [essential spectrum
Sess(L)] is the set of σ ∈ R such that Lσ is not invertible [Lσ is not Fredholm].
There holds

(4) S(L) = S(S) ∪ {0} and Sess(L) = Sess(S) ∪ {0}.
The operator L has non empty essential spectrum: The points 0, 1

2 and 1 always
belong to Sess(L) [19]. If the domain Ω has a smooth boundary, these are the
only elements of Sess(L). If Ω is a polygonal domain of R2, Sess(L) is an interval
of the form [ 12 − b, 12 + b] with a positive b depending on the corner openings of Ω
[10].

A consequence is that for any domain Ω

β(Ω)2 ≤ 1

2
.
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Explicit calculations show that β(Ω)2 = 1
2 for the disc Ω ⊂ R2, and more generally

β(Ω)2 = 1
d if Ω is a ball in Rd [10].

5. Relation with the Friedrichs constant (dimension d = 2)

Let F(Ω) denote the space of complex valued L2(Ω) holomorphic functions and
let F◦(Ω) be its subspace of functions with mean value 0. After [14] the Friedrichs
constant Γ (Ω) ∈ R∪{∞} is the smallest constant Γ such that for all h+ig ∈ F◦(Ω)

‖h‖2

L2(Ω)
≤ Γ‖g‖2

L2(Ω)
.

Theorem 1 ([18], hypotheses fixed in [9]). Let Ω be any bounded connected domain
in R2. The LBB constant β(Ω) is positive if and only if Γ (Ω) is finite and

Γ (Ω) + 1 =
1

β(Ω)2
.

6. Relation with the Horgan-Payne angle (dimension d = 2)

LetΩ be strictly star-shaped, which means that there is an open ball B ⊂ Ω such
that any segment with one end in B and the other in Ω, is contained in Ω. Let O
be the center of B and (r, θ) be polar coordinates centered at O. Let θ 7→ r = f(θ)
be the polar parametrization of the boundary ∂Ω, defined on R/2πZ =: T. Since
Ω is strictly star-shaped, f belongs to W 1,∞(T). We assume without restriction
that maxθ∈T f(θ) = 1. After [18], we introduce the function P of θ ∈ T and of a
parameter α ∈ (0, 1) aimed at optimizing an upper bound for Γ (Ω)

(0, 1)× T ∋ (α, θ) 7−→ P (α, θ) =
1

αf(θ)2

(
1 +

f ′(θ)2

f(θ)2 − αf(θ)4

)
.

We denote by m(Ω) the original bound of [18]

(5) m(Ω) = sup
θ∈T

{
inf

α∈
(
0, 1

f(θ)2

)P (α, θ)
}

and by M(Ω) our modified Horgan-Payne like bound

(6) M(Ω) = inf
α∈(0,1)

{
sup
θ∈T

P (α, θ)
}

The quantity M(Ω) is always larger than m(Ω).
Let ω(Ω) be the “Horgan-Payne angle” introduced by [23]

ω(Ω) = arccos

(
m(Ω)− 1

m(Ω) + 1

)
.

This angle has a simple geometrical interpretation as the minimal angle between
radius [OA] and tangent along ∂Ω at A, for A running in ∂Ω. It is easy to see

that sin ω(Ω)
2 = (m(Ω) + 1)−1/2. Then, by virtue of Theorem 1, Γ (Ω) ≤ m(Ω) if

and only if β(Ω) ≥ sin ω(Ω)
2 .
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Theorem 2 ([9]). Any strictly star-shaped domain Ω satisfies the bounds

(7) Γ (Ω) ≤M(Ω) and β(Ω) ≥ 1√
M(Ω) + 1

.

If Ω is an ellipse, a triangle, a rectangle or a regular polygon, then m(Ω) coincides
with M(Ω). Therefore

(8) Γ (Ω) ≤ m(Ω) and β(Ω) ≥ 1√
m(Ω) + 1

= sin
ω(Ω)

2
.

As a matter of fact, there exist strictly star-shaped domains such that m < M .
And even more:

Theorem 3 ([9]). There exists a strictly star-shaped domain Ω ⊂ R2 such that

(9) Γ (Ω) > m(Ω) i.e. β(Ω) < sin
ω(Ω)

2
.

Counterexamples are provided by symmetric domains with a narrow pass for
which we have proved an upper bound for β(Ω) (this can be related to the fact
that elongated domains have a small β [6, 21, 11, 12]). This proves that the
original result of [18] stating that (8) is valid for any strictly star-shaped domains
is erroneous. Nevertheless our positive result of Theorem 2 is still in the spirit of
[18] and allows to prove a general simple bound from below for β(Ω) that realizes
an improvement of [13] for strictly star-shaped two-dimensional domains.

Though related, discrete inf-sup conditions are a rather different story. Now
the choice of distinct discrete spaces for scalar and vector unknowns comes into
play, see [16, 3, 22] among many others...
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[8] E. Cosserat, F. Cosserat, Sur la déformation infiniment petite d’un ellipsoide élastique,

Note aux C.R.A.S., Paris 127 (1898), 315–318.
[9] M. Costabel, M. Dauge, On the inequalities of Babuška–Aziz, Friedrichs and Horgan–Payne,
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DPG Method, an Overview. Global Properties of DPG Test Spaces

Leszek Demkowicz

(joint work with Jesse Chan and Jay Gopalakrishnan)

DPG is a minimum residual method. The presented abstract is an abbrevi-
ated version of [3]. Consider any variational problem,
{
u ∈ U
b(u, v) = l(v) v ∈ V

⇔ Bu = l
B : U → V ′ 〈Bu, v〉 = b(u, v), u ∈ U, v ∈ V

where U, V are two Hilbert spaces, and sesquilinear form b(u, v) and l ∈ V ′ satisfy
the usual conditions for the problem to be well posed.

The original idea behind the Discontinuous Petrov-Galerkin Method with Op-
timal Test Functions proposed in [1] was to employ special test functions that
realize the supremum in the inf-sup condition:

sup
v 6=0

|b(u, v)|
‖v‖V

≥ γ‖u‖U
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or, equivalently, solve the auxiliary variational problem (inversion of Riesz operator
RV : V → V ′), {

vδu ∈ V
(vδu, δv)V = b(δu, δv) δv ∈ V .

We named the operator T : U → V, δu → vδu, the trial-to-test operator, and
the Petrov-Galerkin (PG) method with test space Vh = TUh, the PG method
with optimal test functions. The main point of the idea is that such a method
automatically inherits the stability from the continuous level. If form b(u, v) sat-
isfies the continuous inf-sup condition with constant γ on the continuous level
(u ∈ U, v ∈ V ), it satisfies it also on the discrete level for u ∈ Uh, v ∈ Vh. The
method has remarkable properties, it generates a hermitian and positive-definite
stiffness matrix and delivers the best approximation error in the so-called energy
norm implied by the form and the test norm ‖v‖V ,

‖u‖E := sup
v

|b(u, v)|
‖v‖V

= ‖Bu‖V ′ .

The method needs no a-posteriori error estimation, it comes with an a-posteriori
error evaluation built-in. The Galerkin error measured in the energy norm equals
residual and so it is available for an unknown exact solution u,

‖uh − u‖E = ‖B(uh − u)‖V ′ = ‖Buh − l‖V ′ = ‖R−1
V (Buh − l)‖V ,

provided we can invert the Riesz operator RV .
All of these properties become less surprising once we realize that the proposed

method is equivalent to the minimum residual method minimizing the residual in
the dual test norm, ‖Buh− l‖V ′ → minuh∈Uh

. The perhaps philosophical message
of the story is that the minimum residual method is the most stable version of a
Petrov-Galerkin discretization scheme.
Use of discontinuous test functions makes (an approximate) inversion
of the Riesz operator possible. What makes the whole idea practical is the
use of broken test spaces. Whereas this is possible within classical functional
settings, the idea of ultraweak variational formulation is especially attractive. We
review now quickly the main algebraic points for two important model problems:
convection-dominated diffusion (left) and linear acoustics (right).

Rewrite the problem as a system of first order equations, multiply the individ-
ual equations with test functions, integrate over each element K, integrate both
equations by parts.

{
−ǫ∆u+ div(βu) = f in Ω

u = u0 on Γ

{
−∆p− ω2p = 0 in Ω

∂p
∂n + iωp = iωg on Γ




− 1
ǫσ −∇u = 0 /τ,

∫
K , by parts

−div(σ − βu) = f /v,
∫
K
, by parts

u = u0 on Γ




iωp+ divu = 0 /q,
∫
K , by parts

iωu+∇p = 0 /v,
∫
K
, by parts

un − p = g on Γ
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Sum up over all elements in the mesh. As usual, index h next to operators ∇ and
div below, is supposed to remind us that the operators are applied elementwise.
The brackets indicate integrals over the mesh skeleton. The trace and flux variables
are declared to be independent unknowns, as indicated by placing “hats” over them.

(σ, 1ǫ τ +∇hv) + (u, divhτ − β∇hv)

+〈−̂u, τn〉+ 〈 ̂−σn + βnu, v〉
= (f, v)

(p, iωq + divhv) + (u, iωv +∇hq)

+〈ûn−p, q〉+ 〈p̂, vn+q〉
= 0

Im-

pose boundary conditions by using extension of boundary data to the whole skele-
ton and introducing a new unknown w.

u = ũ0 + w w = 0 on Γ un − p = g̃ + w w = 0 on Γ

(σ, 1ǫ τ +∇hv) + (u, divhτ − β∇hv)

+〈−̂w, τn〉+ 〈 ̂−σn + βnu, v〉
= (f, v)+〈ũ0, v〉

(p, iωq + divhv) + (u, iωv +∇hq)
+〈ŵ, q〉+ 〈p̂, vn + q〉

= 〈g̃, q〉
Both discussed cases can be written in a concise form using the abstract notation:

(1) (u,A∗
hv) + 〈ŵ, v〉︸ ︷︷ ︸

=:b((u,ŵ),v)

= (f, v) + 〈ũ0, v〉︸ ︷︷ ︸
=:l(v)

where u is a group variable, A∗
h is the formal adjoint applied elementwise, and ŵ

is the group trace/flux unknown satisfying the homogeneous boundary conditions.
Functional setting is as follows. The field variable u ∈ L2(Ω). The unknown (ab-

stract) traces come from the trace of graph space for the (global) strong operatorA
defined by the system of first order PDEs, and are measured with the minimum en-
ergy norm extension. Finally, the test functions come from broken graph space for
the adjoint operator, for both discussed examples equal to H1(Ωh)×H(div, Ωh).
One can prove that the ultraweak variational formulation is well-posed. Moreover,
if the original operator is bounded below in the L2 sense, ‖Au‖ ≥ β‖u‖, then the
inf-sup constant for the sesquilinear form b((u, ŵ), v) in (1) is O(β). In particular,
if β is independent of the perturbation parameter (ǫ or ω), so is the inf-sup con-
stant for the ultraweak formulation. This implies a uniform stability of the DPG
method.

Global properties of the optimal broken test spaces. DPG is not a
single method but a methodology. For different test norms we obtain different
corresponding energy norms (in which the DPG method delivers the best approx-
imation). It is natural to ask the question whether we can construct a test norm
to which the corresponding energy norm would coincide with the norm we want,
say the original norm ‖u‖U . The answer is provided by Banach Closed Range
Theorem, the optimal norm is given by reversing the order of spaces in the inf-sup
condition:

‖v‖ = sup
u6=0

|b(u, v)|
‖u‖U

.

In context of the ultraweak formulation, the optimal test norm is unfortunately
non-localizable (it cannot be represented as a sum of norms over elements) and we



176 Oberwolfach Report 03/2013

cannot compute with it. However, the proof of well-posedness for the ultraweak
formulation establishes an O(1) equivalence with the adjoint operator graph norm.
It is for that reason that we initially used the term of the quasi-optimal test norm
[2]. Thus the test (scaled) graph norm:

(2) ‖v‖2V,α := ‖A∗v‖2 + α‖v‖2

and the corresponding trial-to-test operator,

(up, ŵp) → v = T (up, ŵp){
v ∈ V
(A∗

hv,A
∗
hδv) + α(v, δv) = (up, A

∗
hδv) + 〈ŵp, δv〉 ∀δv ∈ V

emerge as an optimal choice of the test norm and the resulting optimal test spaces.
Above, index p indicates order of trial element spaces Up, Ŵp for both field variable
u and trace ŵ.

In practice, the inversion of the Riesz operator must be done approximately
using an enriched test space V r ⊂ V . This results in an approximate trial-to-test
operator T r:

(up, ŵp) → v = T r(up, ŵp){
v ∈ V r ⊂ V
(A∗

hv,A
∗
hδv) + α(v, δv) = (up, A

∗
hδv) + 〈ŵp, δv〉 ∀δv ∈ V r

Unfortunately, for neither of the discussed problems that seems to be satisfactory.
For convection-dominated diffusion, the optimal test functions corresponding to
the graph norm develop boundary layers and are very difficult to resolve, see [4]
for a detailed discussion. For acoustics the situation is different. With a fixed
number of elements per wavelength and a moderate r, the resolution of optimal
test functions seems to be easy but the theory does not explain the pollution-free
behavior of the method.

This motivates a different interpretation of the DPG method. We begin by in-
troducing the weakly conforming enriched test space for the ultraweak formulation
with continuous test functions:

V r
p := {v ∈ V r : 〈ŵp, v〉 = 0 ∀ŵp} ⊂ V r

and the corresponding approximate global trial-to-test operator:

up → v = T r
pup{

v ∈ V r
p

(A∗
hv,A

∗
hδv) + α(v, δv) = (up, A

∗
hδv) ∀δv ∈ V r

p

One can prove [3, 4] that

T r
pUp ⊂ T r(Up × Ŵp) .

Consequently, both globally (impractical) and locally (practical) computed test
functions deliver the same solution up.
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The punchline is that DPG can be viewed as a localization technique for com-
puting approximation to globally optimal test functions:

{
v satisfies adjoint BC
(A∗v,A∗δv) + α(v, δv) = (up, A

∗δv) ∀δv : δv satisfies adjoint BC .

In the global setting we can pass with α → 0 in the graph norm (2). The graph
norm is equivalent with ‖v‖V,0 norm with equivalence constants approaching unity
as α → 0. Exact optimal test functions corresponding to the ‖v‖V,0 norm deliver
simply L2-projection. The quasi-conforming approximate optimal test functions
realized implicitly by the DPG method represent a (nonconforming) least-squares
approximation to these pollution-free test spaces. You might say that the least
squares are working backstage for the DPG method.

The bottom line for the wave propagation problems is the possibility of a new
avenue for trying to explain and possibly improve the performance of the DPG
method through the theory of non-conforming Petrov-Galerkin methods (work in
progress).
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Aide-mémoire: fast multipole and butterfly algorithms

Laurent Demanet

This note is an overview of the interpolative framework in which both the fast
multipole method and the butterfly algorithm can be explained. The question
of interest is the fast computation of (a discretization of) integrals of the form
u(x) =

∫
G(x, y)q(y)dy, where G(x, y) is a kernel such 1/||x − y|| (3D Laplace)

and eik||x−y||/||x− y|| (3D Helmholtz).
Consider a dyadic tree partitioning of the domain into target boxes A and

sources boxes B. This construction is standard, see [14]. Two boxes are said
to be well-separated if they are sufficiently far apart in view of their diameter.
What “sufficiently far” means is kernel-dependent, and is a linear-algebraic notion
rather than a geometrical one: A and B are well-separated when the restriction
of G(x, y) to x ∈ A and y ∈ B has a low numerical rank. In what follows we do
not keep track of the various truncation errors. Throughout, we assume that G is
symmetric.
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1. Low-frequency interpolative fast multipole method (FMM)

In the Laplace of low-frequency Hemholtz case, two boxes A and B are well-
separated when the distance d(A,B) is larger than a small multiple of their side-
length. In that case we say that they are in the far-field of one another: B ∈ far(A)
if and only if A ∈ far(B).

For each source box B, we define

(1) uB(x) =

∫

B

G(x, y)q(y)dy, x ∈ far(B).

For each target box A, we define

(2) ufar(A)(x) =

∫

far(A)
G(x, y)q(y)dy, x ∈ A.

• An interpolation rule in the x variable,

(3) G(x, y) =
∑

n

PA
n (x)G(xAn , y), x ∈ A, y ∈ far(A),

generates a notion of local expansion. Consider check potentials uAn at the
nodes xAn ,

(4) uAn =

∫

far(A)
G(xAn , y)q(y)dy.

The interpolation rule in x allows to switch from potentials at xAn to po-
tentials everywhere in A: combine (2), (3), (4) to get

(5) ufar(A)(x) =
∑

n

PA
n (x)uAn , x ∈ A.

This results in an L2L operation (“translation”), to be used in a downward
pass:

uAn+=
∑

n′

P
Ap

n′ (xAn )u
Ap

n′ .

The symbol += indicates that these check potentials are to be added to
those resulting from the M2L operation, see below.

• An interpolation rule in the y variable,

(6) G(x, y) =
∑

m

G(x, yBm)PB
m (y), x ∈ far(B), y ∈ B,

generates a notion of multipole (interpolative) expansion. Consider equiv-
alent densities qBm at the nodes yBm, so that

(7) uB(x) =
∑

m

G(x, yBm)qBm, x ∈ far(B).

The interpolation rule in y allows to switch from densities in B to equiv-
alent densities qBm: combine (1), (6), (7) to get

(8) qBm =

∫

B

PB
m (y)q(y)dy.



Computational Electromagnetism and Acoustics 179

In turns, this implies an M2M operation, to be used in an upward pass:

qBm =
∑

c

∑

m′

PB
m (yBc

m′ )q
Bc

m′ .

• An M2L conversion rule is

uAn+=
∑

m

G(xAn , y
B
m)qBm.

The symbol += indicates that these check potentials are to be summed
over all B in the interaction list of A (boxes at the same level as A, in its
far-field, and which are not descendants of boxes in the far-field of Ap),
and added to the check potential resulting from the L2L operation.

Notice how (5) and (8) are transpose equations of one another, provided the
interpolation rule is the same in x and in y.

Notice also that (3) and (6) are particular ways of generating separated ex-
pansions of blocks of G(x, y), on A × far(A) in the former case, and far(B) × B
in the latter case. The accuracy of these interpolation schemes depend on the
separability properties of blocks of G, and how well the collection of PAB

n over n
approximates the alive eigenvectors of G.

2. High-frequency interpolative butterfly

The separation condition is much more restrictive in the high-frequency case,
prompting the introduction of a different “butterfly” algorithm:

• The check potentials are split into different contributions coming from
different sources boxes, and denoted uAB

n ; and
• The equivalent densities are split into different contributions generating
potentials in different target boxes, and denoted qAB

m .

The interpolation rules are now valid only for x ∈ A and y ∈ B. The interpo-
lation basis functions depend both on A and on B, and are denoted PAB

n (x).

• An interpolation rule in the x variable,

(9) G(x, y) =
∑

n

PAB
n (x)G(xAn , y), x ∈ A, y ∈ B,

generates a notion of local expansion. Consider check potentials uAB
n at

the nodes xAn ,

(10) uAB
n =

∫

B

G(xAn , y)q(y)dy.

The interpolation rule in x allows to switch from potentials at xAn to po-
tentials everywhere in A: combine (1), (9), (10) to get

(11) uB(x) =
∑

n

PAB
n (x)uAB

n , x ∈ A.



180 Oberwolfach Report 03/2013

• An interpolation rule in the y variable,

(12) G(x, y) =
∑

m

G(x, yBm)PAB
m (y), x ∈ A, y ∈ B,

generates a notion of multipole (interpolative) expansion. Consider equiv-
alent densities qAB

m at the nodes yBm, so that

(13) uB(x) =
∑

m

G(x, yBm)qAB
m , x ∈ A.

The interpolation rule in y allows to switch from densities in B to equiv-
alent densities qBm: combine (1), (12), (13) to get

(14) qAB
m =

∫

B

PAB
m (y)q(y)dy.

For high-frequency scattering and other oscillatory kernels, we have good sep-
aration if

diam(A) × diam(B) . d(A,B) × λ,

where d(A,B) is the distance between box centers, and λ = 2π/k is the wavelength.
The condition on the admissibility of couples of boxes determines the form of

an L2L operation:

uAB
n +=

∑

c

∑

n′

P
ApBc

n′ (xAn )u
ApBc

n′ .

An M2M operation is

qAB
m =

∑

c

∑

m′

PAB
m (yBc

m′ )q
ApBc

m′ .

An M2L conversion is

uAB↑

n +=
∑

m

G(xAn , y
B
m)qA

↑B
m ,

where B is in the interaction list of A. There is no sum to perform over the
interaction list. The notationA↑ refers to some ancestor ofA; this precaution arises
from the fact that we want A and B on the same level for the M2L translation,
but the uAB

n and qAB
m are usually available only for boxes at different levels (B at

a higher level than A for u and B at a lower level than A for q).
The choice of interpolation scheme may be dictated by the particular kernel.

An all-purpose choice is to use translated copies of the kernel itself:

PAB
n (x) =

∑

m

G(x, yBm)dAB
mn .

A substitution in (9) reveals that the d coefficients are obtained as the middle
factor of a skeleton decomposition of the (A,B) block of G,

G(x, y) =
∑

m,n

G(x, yBm)dAB
mnG(x

A
n , y).
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On the far field of the solutions of Helmholtz equations in periodic
waveguide

Sonia Fliss

(joint work with Patrick Joly)

The model problem that we consider in this paper is the propagation of a time
harmonic scalar wave in a perfect 2D periodic waveguide. More precisely, we shall
assume that the geometry Ω ⊂ R × (0, 1) as well as the material properties of
the medium (typically the refractive index) np ∈ L∞(Ω) - with np ≥ c > 0 - are
periodic in one direction (without loss of generality, we will suppose the period
equal to 1) :

• Ω =
⋃

p∈Z Cp where Cp = C + (p, 0) and C ⊂ (−1/2, 1/2)× (0, 1)

• np(x1 + 1, x2) = np(x1, x2), ∀(x1, x2) ∈ Ω.
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Figure 1. Example of waveguide Ω with its periodic geometry
(its boundary is drawn with black lines) and level set of the re-
fractive index (typically np = 1 in the gray regions and np = 2 in
the white regions) .

We consider then the outgoing solution of

(1)

{
−△u− ω2 n2

p u = f in Ω

∂νu = 0 on ∂Ω

where ν is the exterior normal of Ω and the source term f is supposed to be of
compact support in Ω.

In order to define what ”outgoing” means in a periodic waveguide, we use the
limiting absorption principle and define the solution u as the limit, if it exists and
in a sense to be precised, when ε tends to 0+ of uε, unique solution in H1(Ω) of

(2)

{
−△uε − (ω2 + ıεω)n2

p uε = f in Ω

∂νuε = 0 on ∂Ω

Using the Floquet modes of the periodic medium, we are able to give a semi-
analytic expression of uε, show in which sense uε has a limit when ε tends to 0
and deduce a semi-analytical expression of this limit, which is by definition the
”outgoing” solution. We investigate then the asymptotic behavior of the solution,
when x1 tends to ±∞. This enables us to define a radiation condition and show
well-posedness of the Helmholtz equation set in a periodic waveguide.

1. Limiting absorption principle

Using the Floquet Bloch Transform in the x1-direction and the well posedness
in H1(Ω) of problem (2), it is easy to show that

∀(x1, x2) ∈ C, ∀p ∈ Z,

(3) uε(x1 + p, x2) =
1

2π

∑

n∈N

∫ π

−π

Pn(f)(x1, x2; ξ)

λn(ξ)− (ω2 + ıεω)
eıpξ dξ
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where, for all ξ ∈ (−π, π), λn(ξ) is the n-th eigenvalue and ϕn(·; ξ) an associated
eigenvector of the self-adjoint and positive operator

A(ξ) = − 1

n2
p

△

D(A(ξ)) = {u ∈ H2(C), such that ∂νu|∂C∩∂Ω = 0

u(1/2, x2) = eıξu(−1/2, x2) and ∂x1u(1/2, x2) = eıξ∂x1u(−1/2, x2)}.

We can easily show that for all n ∈ N and ξ ∈ (−π, π)

(4) λn(ξ) = λn(−ξ).

In (3), Pn(f) is a projector defined by

∀n ∈ N, ∀ξ ∈ (−π, π), ∀(x1, x2) ∈ C,

(5) Pn(f)(x1, x2; ξ) =
(
f̂(·; ξ), ϕn(·; ξ)

)
L2(C)

ϕn(x1, x2; ξ)

where f̂ is the Floquet-Bloch transform of f .

Let us define the finite sets

I(ω) = {n ∈ N, ∃ ξ ∈ (−π, π), λn(ξ) = ω2}

and for n ∈ I(k)

Ξn(ω) = {ξ ∈ (−π, π), λn(ξ) = ω2}.
Because of (4), we deduce that if ξ is in Ξn(ω), −ξ is too.

Using the abstract result of [2], or the more explicit result of [1], the limiting
absorption principle can be shown except for a countable set of frequencies

σ0 =
{
ω ∈ R+, ∃n ∈ I(ω), ∃ ξ ∈ Ξn(ω), λ

′
n(ξ) = 0

}

Theorem 1. For all ω /∈ σ0,

∀p ∈ Z, lim
ε→0

‖u− uε‖H1(Cp) = 0

where u is a solution of (1) and defined by
∀(x, y) ∈ C, ∀(p, q) ∈ Z,

(6) u(x1 + p, x2) =
1

2π

∑

n/∈I(ω)

∫ π

−π

Pn(f)(x1, x2; ξ)

λn(ξ)− ω2
eıpξdξ

+
1

2π

∑

n∈I(ω)

[
p.v.

∫ π

−π

Pn(f)(x1, x2; ξ)

λn(ξ)− ω2
eıpξdξ + ıπ

∑

ξ∈Ξn(ω)

Pn(f)(x1, x2; ξ)

|λ′n(ξ)|
eıpξ

]
.
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2. Asymptotic behaviour of the Green function

In the following k /∈ σ0. To prove the asymptotic behavior of the Green function,
the main property is the C∞-regularity of the eigenvalues ξ 7→ λn(ξ) and of the
eigenvectors ξ 7→ ϕn(ξ) with respect to ξ for n ∈ I(k). Using [3], such property
holds except for a countable set of frequencies

σ̃0 = {ω ∈ R+, ∃n,m ∈ I(ω), ∃ξ, λn(ξ) = λm(ξ)}.
Then the proof relies on

• analyticity arguments to deal with the first sum, denoted ũ, in the right
hand side of (6). More precisely, one shows that for all x ∈ C, p ∈ Z and
N ∈ N

ũ(x1 + p, x2) = OH1

(
p−N

)
;

• non stationary phase theorem to deal with each principal value, denoted
u(n), of the second sum in the right hand side of (6). More precisely, one
shows that for all n ∈ I(k), x ∈ C, p ∈ Z and N ∈ N

u(n)(x1 + p, x2) = ıπ sign(p)
∑

ξ∈Ξn(ω)

Pn(f)(x1, x2; ξ)

λ′n(ξ)
eıpξ + OH1

(
p−N

)

Theorem 2. Suppose in the following ω /∈ σ0 ∪ σ̃0. For all x ∈ C and N ∈ N

For p > 0

u(x1+p, x2) = ı
∑

n∈I(ω)

∑

ξ∈Ξn(ω)

λ′
n(ξ)>0

(
f̂(·; ξ), ϕn(·; ξ)

)
L2(C)

|λ′n(ξ)|
ϕn(x1, x2; ξ)e

ıpξ+OH1

(
p−N

)

For p < 0

u(x1+p, x2) = ı
∑

n∈I(ω)

∑

ξ∈Ξn(ω)

λ′
n(ξ)<0

(
f̂(·; ξ), ϕn(·; ξ)

)
L2(C)

|λ′n(ξ)|
ϕn(x1, x2; ξ)e

ıpξ+OH1

(
p−N

)

The solution of problem (1) behaves when x → +∞ (resp. x → −∞) as a linear
combination of the Floquet modes ϕn(·, ξ) which propagate to the right (resp. to
the left) as λ′n(ξ) > 0 (resp. λ′n(ξ) < 0). Let us remark that because (4), if ξ is in
Ξn(ω), −ξ is too and if λn(ξ) > 0, we have λn(−ξ) < 0. Then for any propagative
Floquet mode which is ξ-quasi periodic and propagates to the right, it corresponds
a propagative Floquet mode which is −ξ-quasi-periodic and propagates to the left.

3. Radiation condition and uniqueness of the solution

We use the last result to define a radiation condition and establish, thanks
to arguments used in [4], the well-posedness of the Helmholtz equation set in a
periodic waveguide.
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Definition 1. We say that u satisfies the outgoing radiation condition if and only
if there exist (u±n )n such that ∀x ∈ C, p ∈ N, N ∈ N

u(x1 ± p, x2) =
∑

n∈I(ω)

∑

ξ∈Ξn(ω)

±λ′
n(ξ)>0

u±n ϕn(x; ξ) e
ıpξ + OH1

(
p−N

)

Theorem 3. Suppose ω /∈ σ0 ∪ σ̃0. Let u be a solution of
{
−△u− ω2 n2

p u = 0 in Ω

∂νu = 0 on ∂Ω

which satisfies the outgoing radiation condition. Then u = 0.

4. Conclusions

This analysis is one of the main tool to solve inverse problems in locally per-
turbed periodic waveguide when the data are far field measurements of scattering
problems.

One challenging perspective of this work is to extend these results to periodic
problems in domains which are periodic and infinite in at least 2 directions.
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Finite Element Heterogeneous Multiscale Method for the Wave
Equation: Long Time Effects

Marcus J. Grote

(joint work with Assyr Abdulle, and Christian Stohrer)

1. Introduction

For limited time the propagation of waves in a highly oscillatory medium is
well-described by the non-dispersive homogenized wave equation. With increasing
time, however, the true solution deviates from the classical homogenization limit,
as a large secondary wave train develops unexpectedly. Here, we propose a new
finite element heterogeneous multiscale method (FE-HMM), which captures not
only the short-time macroscale behavior of the wave field but also those secondary
long-time dispersive effects.
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2. Long-Time Wave Propagation

Let Ω ⊂ Rn be a domain and T > 0. We consider the wave equation

(1)





∂ttu
ε −∇ · (aε∇uε) = F in Ω × (0, T ),

uε(x, 0) = f(x) in Ω,

∂tu
ε(x, 0) = g(x) in Ω,

where aε(x) ∈ (L∞(Ω))d×d is symmetric, uniformly elliptic, and bounded. Here
ε > 0 represents a small scale in the problem, which we cannot afford to fully
resolve and thus characterizes the multiscale nature of aε(x). With appropriate
Dirichlet or periodic boundary conditions, the solution uε is uniquely determined
for every ε > 0.

2.1. Classical homogenization. According to classical homogenization theory,
uε converges to the solution u0 of the “homogenized” wave equation as ε→ 0,

∂ttu
0 −∇ · (a0∇u0) = F,

yet the homogenized tensor (or squared velocity field) a0 can only rarely be com-
puted explicitly. Although u0 approximates uε for short times in the L2-norm, it
becomes increasingly inadequate at later times T ∼ ε−2, since it neglects micro-
scopic dispersive effects that accumulate over time, as shown in Figure 1. Here
we consider (1) in Ω = (−1, 1) with periodic boundary conditions, let u(x, 0) be a
Gaussian pulse with zero initial velocity and set

(2) aε =
√
2 + sin

(
2π
x

ε

)
with ε =

1

50
.

In Figure 1, the reference solution of (1)–(2) corresponds to a direct numerical
simulation (DNS), where the micro-scale is fully resolved. After one revolution
(T = 2), the homogenized and the DNS solution coincide. After fifty revolutions
(T = 100), however, the DNS displays dispersive effects, which the homogenized
solution fails to capture.

2.2. Effective dispersive equation. Various formal asymptotic arguments were
derived to elucidate that peculiar inherently dispersive long-time behavior of waves
propagating through a strongly heterogeneous periodic medium [1]. An effective
equation that captures those dispersive effects was recently derived in [2] for the
one-dimensional case when aε is ε-periodic:

(3) ∂tt(u
eff − ε2 b ∂xxu

eff)− a0∂xxu
eff = F.

Again, a0 denotes the homogenized effective coefficient from classical homogeniza-
tion theory whereas b > 0 denotes a distinct constant. As shown in Figure 1, uε

and ueff essentially coincide both at early and later times.
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Figure 1. Reference (ref.), homogenized (hom.) and effective
(eff.) solution: short-time T = 2 (left), and long-time T = 100
(right).

3. FE Heterogeneous Multiscale Method

In [3], the FE-HMM for elliptic problems [4] was extended to the time dependent
wave equation. It was shown to converge to u0 at finite times, yet it also fails to
capture long-time dispersive effects in the true solution. To incorporate those
dispersive effects, we not only need an effective bilinear form but also an effective
inner product, akin to the weak formulation of (3). Both require the numerical
solutions of micro problems on sampling domains Kδ of size δ proportional to ε.
An alternative HMM scheme, based on the finite difference approximation of an
effective flux, was proposed in [5]. Since it is based on an effective model [2], which
is ill-posed, appropriate regularization techniques need to be implemented.

We now give a brief description of our new FE-HMM scheme. First, we generate
a macro triangulation TH and choose an appropriate macro FE space S(Ω, TH).
By macro we mean that H ≫ ε is allowed. Within each macro element K ∈ TH we
choose two quadrature formulas {xK,j , ωK,j} and {xLK,j , ω

L
K,j}. The HMM solution

uH is given by the following variational problem:

(4)





Find uH : [0, T ] → S(Ω, TH) such that

(∂ttuH , vH)Q +BH(uH , vH) = (F, vH)

for all vH ∈ S(Ω, TH) and,

uH(0) = fH , ∂tuH(0) = gH in Ω,

where the initial data fH and gH are suitable approximations of f and g in
S(Ω, TH) whereas the effective bilinear form BH and the effective inner product
(·, ·)Q are defined as follows. The FE-HMM bilinear form is given by

BH(vH , wH) =
∑

K∈TH

J∑

j=1

ωK,j

|Kδ|

∫

Kδ

aε(x)∇vh(x) · ∇wh(x) dx,
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and the FE-HMM inner product by

(vH , wH)Q = (vH , wH)H + (vH , wH)M .

Here,

(vH , wH)H =
∑

K∈TH

JL∑

j=1

ωL
K,jvH(xLK,j)wH(xLK,j).

Note that (·, ·)H corresponds to a standard approximation of the L2-inner product
by numerical quadrature, whereas the long-time correction is given by

(vH , wH)M =
∑

K∈TH

J∑

j=1

ωK,j

|Kδ|

∫

Kδ

(vh(x)− vH,lin(x))(wh(x)− vH,lin(x)) dx.

In the above, the micro solution vh (resp. wh) is given by

(5)





Find vh such that (vh − vH,lin) ∈ S(Kδ, Th) and∫

Kδ

aε(x)∇vh(x) · ∇zh(x) dx = 0,

for all zh ∈ S(Kδ, Th).
Here S(Kδ, Th) is a micro FE space on the sampling domain Kδ with micro tri-
angulation Th, and vH,lin denotes the linearization of vH at the quadrature point
xK,j ,

vH,lin(x) = vH(xK,j) + (x− xK,j) · ∇vH(xK,j).

Since BH is elliptic and bounded and (·, ·)Q is a true inner product, the FE-HMM
is well-defined for all H,h > 0.

For every quadrature node xK,j , we must solve the associated micro problem
(5) whose solution is then used both for BH and (·, ·)Q. By choosing two different
quadrature formulas for (·, ·)H and (·, ·)M , the number of micro problems required,
and hence the computational cost, remains the same as for the FE-HMM from[3].

4. Numerical Experiments

We again apply our FE-HMM, defined in (4), to (1)–(2) as in Figure 1. We
use cubic FE at the macro- and the micro-scale, with mesh sizes H = 1/75 and
h = ε/20 = 1/1000. Note that linear or quadratic finite elements could also be
used. For time-stepping we use a standard Leap-Frog scheme, with ∆t = H/10. As
shown in Figure 2, the new FE-HMM succeeds in capturing, the long-time effects
in the true solution. In contrast, the solution of the FE-HMM of [3] is unable to
capture those dispersive effects, since this solution was proven to converge to the
homogenized solution, u0, as ε→ 0 on finite time intervals.
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Stabilized Galerkin Methods for Magnetic Advection

Holger Heumann

(joint work with Ralf Hiptmair)

The behavior of electromagnetic fields in the stationary flow field of a conducting
fluid can be modelled by the (non-dimensional) advection-diffusion equation [9,
Section 5]

curl ν curlA︸ ︷︷ ︸
diffusion

+ αA︸︷︷︸
dissipation

+ curlA× β + grad (A · β)︸ ︷︷ ︸
advection

= f in Ω .(1)

Here Ω ⊂ R3 is a bounded domain scaled such that diam(Ω) ≈ 1, and the vec-
tor field A = A(x) stands for the magnetic vector potential. The fluid velocity
is β = β(x), of which we assume β ∈ W 1,∞ (Ω) and a scaling that achieves
max
x

|β(x)| ≈ 1. The coefficient ν = ν(x) ≥ 0 controls the strength of magnetic

diffusion, whereas the conductivity of the fluid enters through the bounded scalar
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function α = α(x). The model underlying (1) is known as quasi-magneto-static
with temporal gauge.

We are keen to obtain methods that are robust with respect to the singular
perturbation limit ν → 0. Necessarily, these methods must remain viable even
if ν = 0. Therefore, we confine the presentation to the pure magnetic advection
boundary value problem

(2)
αA+ Lβ A = f in Ω ,

A|Γin
= g on Γin ,

with magnetic advection operator or Lie-derivative

(3) Lβ u := grad(β · u) + curl u× β .

We impose Dirichlet boundary conditions on the inflow boundary Γin, i.e. that
part of the domain with β · n < 0, with n the outward normal on ∂Ω.

Our derivation of a stabilized Galerkin methods for the magnetic advection
boundary value problem (2) runs parallel to that of the discontinuous Galerkin
method for scalar advection [4]. The key tool is the Leibniz rule for the advection
operator and the corresponding integration by parts formula

(4) (Lβ u,v)Ω − (u,Lβ v)Ω =

∫

f

(β · nf )(u · v) dS ,

with the formal adjoint advection operator

(5) Lβ u := curl(β × u)− β divu .

Piecewise polynomial trial spaces are used for the Galerkin discretization of the re-
sulting variational problems. As magnetic advection falls into the class of Friedrichs
symmetric operators [7], e.g.

Lβ u = DβTu+
3∑

i=1

βi∂iu

we could just appeal to the abstract convergence theory for discontinuous Galerkin
approximation from [5, 15, 6].

But, our main interest here is in the use of H (curl, Ω)-conforming piece-
wise polynomial trial spaces that feature tangential continuity across interelement
boundaries. Meanwhile such spaces have become well established and they are
known as discrete 1-forms or (higher order) edge elements [18, 19, 11]. There
are several reasons for insisting on tangential continuity: Firstly, since A is a
magnetic vector potential we want its curl to be a well-defined square integrable
magnetic flux field. Secondly, H (curl, Ω)-conforming trial and test spaces pave
the way for a stable Galerkin discretization of the magnetic diffusion operator
curl ν curl. This is important, because we always regard the discretization of
the pure advection problem as a mere building block in schemes for the more
general advection-diffusion problem (1). Of course, totally continuous (H1(Ω))3-
conforming trial spaces are an option in principle. However, they usually fail to
provide stable Galerkin discretization of the diffusion operator [1, 2].
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Our main result [10] reveals that the stabilized Galerkin method with H (curl, Ω)-
conforming approximation spaces enjoys the same rates of convergence as the
stabilized Galerkin methods with globally discontinuous approximation spaces
[20, 16, 12]. Thus, it suffices to aim stabilization at the discontinuous normal
components. In particular, we do not need introduce additional stabilization such
as the residual-based techniques [21, Chapter 3.2] [13] [14] for stabilizing Galerkin
methods with continuous approximation spaces.

There exists other stabilizing methods based on ad-hoc approaches to upwinding
[3, 8, 17], but to the best of our knowledge, hardly any convergence results are
available.
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Inverse Problems with Poisson Data

Thorsten Hohage

(joint work with Frank Werner)

Summary. We study inverse problems in the form of ill-posed operator equa-
tions in Banach spaces with data described by an inhomogeneous Poisson process.
Such problems appear in many applications involving imaging with electromag-
netic waves at low energies. Using recent progress in variational regularization
methods and concentration inequalities we present convergence rates in expecta-
tion.

Introduction. In many imaging problems a time-harmonic electromagnetic wave
E interacts with an unknown object of interest u†, and one measures a diffraction
pattern y† = |E|2 = F (u†) on a measurement manifold M. The inverse problem
consists in finding u† given y†, i.e. solving

F (u†) = y†.

For small energy densities the wave-particle duality of electromagnetic waves be-
comes important. Here we focus on data consisting of (random) positions of N
photons {x1, . . . , xN} ⊂ M. The density of these photons is y†.

After binning, practical data typically consist of vectors or arrays of nonnegative
integers. Binning induces a deterministic discretization error. For simplicity we
neglect it here as it often small compared to the stochatic errors in applications
(see [12] for estimates of this error).

Applications include electromagnetic scattering at low energies and/or high
frequencies (recall Planck’s relation Ephoton = hν), coherent x-ray imaging, scan-
ning fluorescence microscopy (e.g. standard confocal, 4Pi or STED microscopy),
Positron Emission Tomography (PET), and astronomical imaging.

The mathematical setup will be as follows: Let X be a Banach space, B ⊂ X
closed and convex, and F : B → L1(M) injective with F (u) ≥ 0 for all u ∈ B.
u† ∈ B will denote the exact solution and y† := F (u†) the exact data. Measured
data are described by a realization {x1, . . . , xN} of a Poisson process with density
ty†. The parameter t > 0 can often be interpreted as exposure time. Our aim
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is to construct estimators of u† and study their expected errors in the limit t =
cE [N ] → ∞. We refer to [1] for results in the linear case.

Poisson processes. A point process on an open setM ⊂ Rd can either be thought
of as a random collection of points {x1, . . . , xN} ⊂ M (we only consider the case

that the set is finite a.s.) or as a random counting measure Y =
∑N

i=1 δxi . A point
process Y on M is called a Poisson process with density y ∈ L1(M), y ≥ 0 if

(i) For any disjoint, measurable subsets A1, ..., An ⊂ M the random numbers
Y (A1) , ..., Y (An) are stochastically independent.

(ii) E [Y (A)] =
∫
A
y dx for any measurable subset A ⊂ M.

It can be shown that for a Poisson process Y (A) is a Poisson distributed random
variable with parameter λ =

∫
A y dx for any measurableA ⊂ M, i.e. P [Y (A) = n] =

e−λ λn

n! . Moreover, if Y is a Poisson process with density y and ψ : M → R is mea-
surable, then

E
[ ∫

M

ψdY
]
=

∫

M

ψy dx, Var
[ ∫

M

ψdY
]
=

∫

M

ψ2y dx

whenever the integrals on the right hand sides exist (see e.g. [14]).

Let Ỹt, t > 0 be a Poisson processes with intensity ty†, and Yt := Ỹt/t. t
has the role of an exposure time and is proportionalto the expected total number
of photons. Then E

[∫
M
ψ dYt

]
=

∫
M
ψy† dx and Var[

∫
M
ψ dYt] =

1
t

∫
M
ψ2y† dx .

As the standard deviation for estimating a functional
〈
ψ, y†

〉
of the density is

proportional to 1√
t
, this can be interpreted as noise level. However, there is no

pointwise noise level or norm bound.
The negative log-likelihood of a Poisson process is given by

S (Yt; y) =

∫

M

y dx −
∫

M

ln(y) dYt

if y ≥ 0 and ∞ else. Using the convention ln(x) := −∞ for x ≤ 0, its expectation
is given by E [S (Yt; y)] =

∫
M

[
y − y† ln(y)

]
dx . The minimum of y 7→ E [S (Yt; y)]

is attained at y = y†. The Kullback-Leibler divergence is given by

KL
(
y†; y

)
= E [S (Yt; y)]− E

[
S
(
Yt; y

†)] =
∫

M

[
y − y† − y† ln

(
y
y†

) ]
dx .

Convergence of regularzation methods. Let X be a Hilbert space, F : B ⊂
X → Y a forward operator mapping to some Banach space Y and yobs some
data which are accessed only via some proper, convex, lower-semicontinuous data
misfit functional S

(
yobs; ·

)
: Y → (−∞,∞]. We first study generalized Tikhonov

regularization with some initial guess u0 ∈ X :

(1) ûα ∈ argminu∈B

[
S
(
yobs;F (u)

)
+ α‖u− u0‖2X

]

Here X can be replaced by a Banach space and ‖u−u0‖2X by more general convex
penalty functionals R(u) such as lp or Lp norms or entropy functionals. Then
one obtains convergence with respect to the Bregman distance of R (see [3, 6, 4].
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The qualitiy of the data is assessed by the following assumption involving an error
parameter err > 0 which will tend to 0:

Assumption N: There exists an ideal data misfit functional T : F (B) ×
F (B) → [0,∞] with T

(
y†; y

)
= 0 if and only if y† = y and constants Cerr, err > 0

such that for all u ∈ B

C−1
err T

(
y†;F (u)

)
− err ≤ S

(
yobs;F (u)

)
− S

(
yobs;F (u†)

)
.

Note that for the standard deterministic noise model yobs ∈ Y, ‖yobs−y†‖Y ≤ δ
and S (y1; y2) = T (y1; y2) = ‖y1 − y2‖pY , Assumption N holds true with Cerr =

2p−1 and err = 2δp. Based on a concentration inequality in [15] the following can
be shown ([16]):

Proposition: Let M ⊂ Rd be a bounded Lipschitz domain, s > d/2, and assume
that supu∈B ‖F (u)‖Hs < ∞. Choose T

(
y†; y

)
:= KL

(
y† + σ; y + σ

)
with some

σ > 0 and S (Yt; y) =
∫
Ω
(y−σ ln(y+σ)) dx−

∫
ln(y+σ) dYt. Then there exists C >

0 such that Assumption N holds true with err = ρ√
t
with probability ≥ 1−exp

(
− ρ

C

)

for all t, ρ ≥ 1 .
Since [11] it has become popular in regularization theory to express relative

smoothness of solutions in terms of variational source conditions:

Assumption SC: There exists β ∈ (0, 1] and a concave, increasing function ϕ :
[0,∞) → R with ϕ(0) = 0 such that for all u ∈ B

β‖u− u†‖2 ≤ ‖u− u0‖2 − ‖u† − u0‖2 + ϕ
(
T
(
F (u†);F (u)

))
.

A classical Hölder source condition u† ∈ ran((T ∗T )ν) with ν ∈ (0, 1/2] for a
bounded linear operator T in Hilbert spaces implies a variational source condition

with ϕ(t) = ct
2ν

2ν+1 . For further relations, see [8]. For linear operators in Hilbert
spaces variational source condition turn out to be necessary and sufficient for a
given rate of convergence (see [9]). In particular, this shows that variational souce
conditions yield sharper results than classical ones where optimality holds only for
a supremum over a smoothness class, but not for individual elements. Nevertheless,
more work is necessary to interpret such conditions for interesting problems.

The following deterministic error estimate from [16] is interesting in its own
right (see [2, 7], and in particular [10] for related results):

Theorem: Suppose Assumptions N and SC holds true and the Tikhonov func-
tional has a global minimizer.

(1) Let (−ϕ)∗(s) := supt≥0[ts+ ϕ(t)] denote the Fenchel conjugate. Then

β‖ûα − u†‖2 ≤ err

α
+ (−ϕ)∗

(
− 1

Cerrα

)
.

(2) If we choose −1
Cerrα

∈ ∂(−ϕ)(Cerrerr), then

β‖ûα − u†‖2 ≤ Cerrϕ(err) .

Note that this theorem in connection with the proposition immediately gives a
convergence in probability result. With some more work it is not difficult to show
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even convergence in expectation (see [16]):

Corollary: Under the assumptions of the proposition and Assumption SC and
with a-priori parameter choice rule −1

α ∈ ∂(−ϕ)(t−1/2) generalized Tikhonov reg-
ularization fulfills the error estimate

E
[
‖û− u†‖2

]
= O

(
ϕ
(
t−1/2

))
t→ ∞.

So far we have chosen the regularization parameter α based on ϕ, but in practice ϕ
is usually unknown. We showed in [16] that Lepskĭı’s balancing principle leads to
the same rates (up to a | log t| factor in the stochastic setting) without knowledge
of ϕ if not only ϕ, but also ϕ1+ǫ is concave for some ǫ > 0.

The functional in (1) is non-convex in general, and no general algorithms with
guaranteed convergence to a global minimum are known. Therefore, as an alter-
native we studied Newton-type methods

(2) uk+1 ∈ argminu∈B

[
S
(
yobs;F ′[uk](u − uk) + F (uk)

)
+ αk‖u− uk‖2

]

with αk = α0ρ
k and ρ ∈ (0, 1). We used algorithms in [5] with guaranteed conver-

gence to solve the (strongly) convex minimization problems (2).
Under an additional assumption on the local approximation quality of F ′ (a

tangential cone condition) local analogues of the above convergence results for
Tikhonov regularization were shown in [12] (see also [13]).

Numerical results. We tested the method (2) for acoustic and electromagnetic
inverse obstacle scattering problems without phase and for a phase retrieval prob-
lem in x-ray diffraction. Our experiments showed considerable improvements com-
pared to least squares data misfit terms ([12]).
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Stability Analysis of Time-Domain PML

Manfred Kaltenbacher

(joint work with Barbara Kaltenbacher)

One of the great challenges in computational science is the efficient and stable
calculation of waves in unbounded domains. The crucial point for these computa-
tions is that the numerical scheme avoids any reflections at the boundaries, even
in case the diameter of the computational domain is just a fraction of a wave-
length. One of the most used techniques is to surround the computational domain
by an additional damping layer and guarantee within the formulation, that no
reflections occur at its interface with the computational domain. This so-called
perfectly matched layer (PML) technique was first introduced by Berenger [7] us-
ing a splitting of the physical variables and considering a system of first order
partial differential equations (PDEs) for electromagnetics. Since then, there has
been much research work on this technique which subsequently was applied to
different PDEs [2, 4, 9, 16, 18, 3, 20, 23, 25]. In the framework of time-harmonic
wave propagation, the PML can be interpreted as a complex-valued coordinate
stretching [24]. Therewith, a PML formulation for a linear PDE in frequency do-
main can be considered as a straightforward approach. However, in time domain
most PML formulations require a first order hyperbolic system, e.g., [26, 16, 8, 18].
The difficulty arising for the second order wave equation in time domain is, that
an inverse Fourier transform of its frequency representation will lead to convolu-
tion integrals, see e.g. [21]. A method to avoid convolution integrals is the use
of auxiliary variables as demonstrated, e.g., in [23, 3, 17]. E.g., in [17] a PML
method for the second-order elastodynamic equations has been formulated. The
basic idea of the formulation is to decompose the gradient operator in terms of
components perpendicular and parallel to the interface, and then split the me-
chanical displacement in four variables. However, as noticed in [17] the resulting
equations need special treatment for the time stepping and additional memory is
needed for the split-field variables. Furthermore, such split-field PML methods
suffer from numerical instability, see e.g. [22, 6].
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Once a PML formulation has been obtained, the question of stability arises,
which is a topic of strong ongoing research. A stability analysis is not trivial and
in general it has to be performed for each new formulation. Several works have
analyzed the properties of the PML technique, such as [1, 5, 2, 10, 15, 11, 12] among
others. E.g., in [10] a time-domain analysis of PML methods for wave equations in
2D by using the Cagniard-de Hoop method has been presented. The main result
is to validate the modified fundamental solution extended to the absorbing layers.
This method is easily applicable to the wave equation with any time-dependent
point souce. However, the evaluation is not easy for general initial value problems
of the wave equation, because those in general include not only propagating but
also evanescent waves [14].

Our stability analysis investigates the evolution of the energy over time and we
are able to show decay of an upper bound on the energy for our formulation, thus
achieving long term stability.

The PML formulation, we are investigating, has been first published in [13],
and reads as follows (for details see [19])

1

c2
∂2p

∂t2
+ α

∂p

∂t
+ βp+ γv −∇ · ∇p−∇ · ~u = 0(1)

∂~u

∂t
+A~u+B∇p− C∇v = 0(2)

∂v

∂t
= p(3)

with

(4) α =
σx + σy + σz

c2
; β =

σx σy + σx σz + σy σz
c2

; γ =
σxσyσz
c2

A =




σx 0 0
0 σy 0
0 0 σz


 ; C =




σyσz 0 0
0 σxσz 0
0 0 σxσy


(5)

B =




σx − σy − σz 0 0
0 σy − σx − σz 0
0 0 σz − σx − σy


 .(6)

In (1) - (6) σx, σy , σz denote the damping coefficients and ~u, v the introduced
auxiliary variables. For deriving boundedness of solutions (p, v, ~u) of (1)–(3) in an
appropriate norm (related to the acoustic energy) we proceed as follows:
(1) Test the system with appropriate multipliers to derive energy estimates; in
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detail, these are

ϕ = ∂p(s)/∂t in (1),

ϕ = δp(s) in (1) (with some possibly space dependent factor 0 ≤ δ ≤ c2α),

~ψ = ∇p(t) in (2),

~ψ = F~u(t) in (2) (with some possibly space dependent diagonal matrix 0 ≤ F ) .

(2) Combine these estimates to assess the time evolution of a scalar valued func-
tion η(t), more precisely, to show that η(t) is nonincreasing over time; η can be
interpreted as a Lyapunov function for the system (1)–(3).

(3) Prove that by a proper choice of the parameters defining η, the energy can be
bounded by a fixed multiple of η.

In the course of this derivation, it turns out that the Lyapunov function for the
system is

η(t) :=
1

2

(
‖1
c

∂p

∂t
(t)‖2 + ‖∇p(t)‖2 + ‖F 1/2 ~u(t)‖2

+‖
√
β + αδ p(t)‖2 + ‖

√
γδ v(t)‖2 − ‖C1/2∇v(t))‖2

+2〈γv(t), p(t)〉+ 2〈~u(t),∇p(t)〉+ 2〈 δ
c2
∂p

∂t
(t), p(t)〉

)

Here we wish to point out that the sixth term on the right hand side suggests
that it is favorable to set C = 0 from a stability point of view. Thus we will end
up with considering a reduced PML (rPML) where we just set C ≡ 0. Further-
more, we want to state that the rPML is a true PML in case of 1D as well as
2D computations. In these cases, we do not need the additional scalar auxiliary
variable v and so C is not present. E.g., in 2D we just need the auxiliary vector
variable ~u = (ux, uy)

t leading to a total number of just three unknowns in the
PML region. This can be also seen by analyzing (1)-(3), e.g., assuming waves in
the xy−plane. Then γ and C get zero (σz = 0) resulting in just three scalar equa-
tions for p , ux, uy. So an error just occurs in 3D, when waves propagate towards
corners, where all three damping coefficients are active.

There are strong indications that the function η is indeed decreasing for a proper
choice of the parameters, see [19] namely

0 ≤ δ ≤ c2α ; βδ − γ ≥ 0 ; δI +B ≥ 0

4FA(δI +B)− (δI +A+ FB)2 ≥ 0 .

However, the spatial variation of σ (smooth or piecewise constant) generates a
term that cannot be controlled so far, so this remains an open problem. The
authors thank Patrick Joly for pointing them to this fact.
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hp-FEM and hp-DGFEM for Helmholtz problems

J. M. Melenk

(joint work with S. Esterhazy, A. Parsania, S. Sauter)

Model problem and regularity. We consider, on a bounded Lipschitz domain
Ω ⊂ Rd, d ∈ {2, 3}, the Helmholtz equation

(H) −∆u− k2u = f in Ω ⊂ Rd, d ∈ {2, 3}, k > 1.

Properties of the solution (and the performance of numerical methods) depend on
the geometry and the type of boundary conditions. For Robin boundary conditions

(BC) ∂nu− iku = g,

well-posedness is given with a priori bounds of the form ‖u‖1,k := ‖∇u‖L2(Ω) +

k‖u‖L2(Ω) ≤ Ckθ(‖f‖L2(Ω) + ‖g‖L2(∂Ω)) for some θ ∈ [0, 5/2], which depends
on the geometry of Ω, [5, Thm. 2.4], [13, 3, 10]. For the analysis of numerical
methods, the following regularity result is useful (for details see [14] and [6]):
Theorem 1: (regularity by decomposition) Let ∂Ω be analytic and s ≥ 0. Then,
for f ∈ Hs(Ω) and g ∈ Hs+1/2(∂Ω), the solution u can be written as u = uHs+2 +
uA where uHs+2 ∈ Hs+2(Ω), uA is analytic, and for C, γ independent of k > 1

‖uHs+2‖Hs+2(Ω) + ks+2‖uHs+2‖L2(Ω) ≤ C
[
‖f‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω)

]
,

‖∇n+2uA‖L2(Ω) ≤ Ckθ−1γnmax{k, n}n+2
[
‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

]
∀n ∈ N0.

Conforming hp-FEM. The performance of high order FEM (hp-FEM) based
on the (standard) H1-conforming discretization of (H), (BC) is analyzed in [15, 16,
5] for piecewise smooth geometries. The numerical analysis is based on a G̊arding
setting and requires a scale resolution condition. A typical result is:
Theorem 2: Let ∂Ω be analytic and VN ⊂ H1(Ω) be the space of (mapped)
polynomials of degree p on mesh T (mesh size h; see [16] for precise conditions
on the element maps). Let s ≥ 0, f ∈ Hs(Ω), g ∈ Hs+1/2(∂Ω). Then there exist
constants c1, c2 > 0 such that under the scale resolution condition

(SRC)
kh

p
≤ c1 and p ≥ c2 log k

the hp-FEM approximation uN exists and, for some C, σ > 0 indep. of k, h, p,

(C) ‖u− uN‖1,k ≤ C

[(
h

p

)s+1

+ kθ
(
kh

σp

)p
]
.
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The different way in which h and k enter the a priori estimate (C) is visible in the
following numerical example of the h-FEM for the problem:

−u′′ − k2u = xα on (0, 1), u(0) = 0, u′(1)− iku(1) = 0.

Taking α = −1/2 (corresponding to s = 0 in (C)), we show |u− uN |H1(0,1) versus
the number of degrees of freedom for the h-FEM for p = 1 (left) and p = 2 (right).
Since θ = 0 and s = 0 in the present 1D example, the k-dependence in (C) should
differ markedly for the cases p = 1 and p = 2, which is indeed visible.
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DG-formulation. Stable methods that yield some approximation (and even
best approximation) without a scale resolution condition exist: Least Squares
Methods (e.g., [17]) and related methods such as the Ultra Weak Variational For-
mulation, [2, 12], plane wave DG methods ([9, 11]), and the DPG method, [4].
While these methods are stable in some (possibly method-dependent) norm, the
performance in standard norms such as L2(Ω) is less obvious and often requires
a good understanding of regularity properties of the solution or suitable adjoint
problems (see, e.g., [17] and also [6] for more details).

A DG-formulation that is closely related to the UWVF is formulated in [1, 9, 11];
further related DG-formulations can be found in [7, 8]. This DG-formulation reads
as follows for an arbitrary space VN ⊂ ∏

K∈T H
2(K) of piecewise H2-functions

based on a mesh T :
Find uN ∈ VN such that aN (uN , v) = l(v) :=

∑
K∈T

∫
K fv ∀v ∈ VN , where

aN(uN , v) =
∑

K∈T

∫

K

∇uN · ∇v − k2uNv

+

∫

∂K

(ûN − uN )∇v · n− ik

∫

∂K

σ̂N · nv.

The numerical traces ûN and the numerical fluxes σ̂N have the following form on
the skeleton S = SI∪̇SB, where SI and SB denote the faces in Ω and on the
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boundary ∂Ω, respectively:

on SI (interior faces): σ̂N =
1

ik
{{∇T u}} − α[[u]], ûN = {{u}} − β

1

ik
[[∇T u]]

on SB (boundary faces): σ̂N =
1

ik
∇T u− 1− δ

ik
(∇T uN − ikuNn− gn)

ûN = uN − δ
1

ik
(∇T uN · n− ikuN − g)

Here, the jumps [[·]] and the averages {{·}} are defined as follows: for a scalar
quantity u on a face e = K1 ∩ K2, we set [[u]] = uK1nK1 + uK2nK2 and {{u}} =
(uK1 + uK2)/2, where n is an outer normal vector and the subscript Ki indicates
the element on which the trace is taken. For a vectorial quantity σ the jump and
average is given by [[σ]] = σK1 · nK1 + σK2nK2 and {{σ}} = (σK1 + σK2)/2. The
functions α, β, δ are positive functions on the skeleton S with δ ∈ (0, 1/2). This
DG-formulation is conveniently analyzed with the aid of the following norms, [9]:

‖v‖2DG :=‖∇T v‖2L2(Ω) + k−1‖β1/2[[∇T v]]‖2L2(SI) + k‖α1/2[[v]]‖2L2(SI)

+ k−1‖δ1/2∇T v · n‖2L2(SB) + k‖(1− δ)1/2v‖2L2(SB) + k2‖v‖2L2(Ω),

‖v‖2DG+ :=‖v‖2DG + k−1‖α−1/2{{∇T v}}‖2L2(SI).

hp-DGFEM on general meshes. Let T be a mesh, possibly with hanging
nodes; the mesh should be shape regular in the sense that certain polynomial
inverse estimates hold true. The coefficient functions α, β, δ on S are chosen as

α = a
p2

h
, β = b

h

p
, δ = d

h

p
,

where h = h(x) denotes the minimal mesh size of the elements sharing the point
x ∈ S. Let VN consist of piecewise (mapped) polynomials of degree p. Then we
have the following result (see [14] for the precise conditions on the element maps):

Theorem 3: Let ∂Ω be analytic. Then there are c1, c2 > 0 independent of
k ≥ 1 such that for fixed a, b, d > 0 with a sufficiently large the condition

(SRC-DG)
kh√
p
≤ c1 and p ≥ c2 log k

implies existence of the hp-DGFEM solution uN and

‖u− uN‖DG ≤ C inf
v∈VN

‖u− v‖DG+.

hp-DGFEM on conforming meshes. Constrasting (SRC-DG) with (SRC),
we note a loss of p1/2, which which is typical of p-version DG-methods on rather
general meshes. For spaces VN admitting an H1(Ω)-conforming subspace that is
sufficiently rich, this scale resolution condition can be relaxed to take the form
(SRC) familiar from the conforming setting:

Theorem 4: Let ∂Ω be analytic and let T be regular. Then there are constants
c1, c2 > 0 independent of k ≥ 1 such that for

(SRC-DG-II)
kh

p
≤ c1 and p ≥ c2 log k
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the hp-DGFEM satisfies

‖u− uN‖DG ≤ C inf
v∈VN

‖u− v‖DG+.

The key ingredient of the proof of Theorem 4 is the construction of an interpola-
tion operator on triangles/tetrahedra that leads to a globally H1(Ω)-conforming
approximation with good approximation properties in the broken H2-norm. The
basic step is:

Lemma 5: Let K̂ ⊂ Rd be the reference triangle or tetrahedron. Let s > 5/2
for d = 2 and s > 5 for d = 3. Then, for p sufficiently large, there exists a

polynomial approximation operator Ip : Hs(K̂) → Pp such that

2∑

j=0

p−j‖u− Ipu‖Hj(K̂) ≤ Cp−s‖u‖Hs(K̂)

with the following boundary behavior: For each vertex V we have (Ipu)(V ) = u(V ),
for each edge e, the restriction (Ipu)|e depends solely on u|e, and for each face f
(for d = 3), the restriction (Ipu)|f depends solely on u|f .
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Interpolation based Directional Fast Multipole Method

Matthias Messner

(joint work with Martin Schanz, Olivier Coulaud and Eric Darve)

Since the invention of the FMM [4] extensive research has been done on algo-
rithms which reduce the cost of matrix-vector products like

(1) fi =

N∑

j=1

K(xi, yj)wj for all j = 1, . . . , N,

fromO(N2) toO(N) orO(N logN) depending on the type of the underlying kernel
function K. Most FMMs have been developed and optimized for specific kernel
functions. However, some have also been formulated so the FMM is independent of
the kernel function. We address the optimization of one of these formulations, the
so called black-box FMM introduced in [3]. It works for all kernel functions that
are asymptotically smooth, such as 1/|x − y| and is based on the approximation
of the kernel function by means of a Chebyshev interpolation scheme as

(2) K(x, y) ∼
∑

|α|≤ℓ

Sℓ(x, x̄α)
∑

|β|≤ℓ

K(x̄α, ȳβ) Sℓ(y, ȳβ),

with the interpolation polynomial Sℓ of interpolation order ℓ. The multi-indices
α and β identify the interpolation points x̄α and ȳβ which are constructed via the
tensor-product rule from the roots of the Chebyshev polynomial of first kind Tℓ.
This formulation has been extended to the directional FMM for oscillatory kernels
in [9] and is suitable for any kernel function of the type

K(x, y) = G(x, y)eık|x−y|.

Here, G is an asymptotically smooth function, ı2 = −1 the imaginary unit and k
the wave-number. In [2], the two admissibility criteria

separation O(kw2) and cone-aperture O(1/kw)

have been developed for such kernels in the high-frequency regime. The criteria say
that a cluster-pair X and Y , centered at cX and cY and of width w, is admissible
(part of the far-field) if their distance |c| with c = cX − cY satisfies the separation
criterion and if |c/|c| − u| satisfies the cone-aperture criterion. The authors of [2]
proved that if these criteria hold the kernel function K is low-rank. This is not
sufficient in our case. We require the interpolation error to decay exponentially
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fast with ℓ and and to be independent on k. We proof this by using the idea of
directional smoothness (see [1])

Ku(x, y) = K(x, y)e−ıku·(x−y),

where u is a directional unit vector. As long as the two admissibility criteria hold,
the directional kernel Ku is bounded in the complex domain, and the proof is
completed [6] and [9]. Once w approaches the size of a wavelength (threshold
between low- and high-frequency regime) these two criteria descend to the usual
criterion of well separateness. We use these criteria to separate near- and far-field.
Finally, the near-field is evaluated directly by using Eqn. (1) and in the FMM
notation it corresponds to the P2P operation. The far-field is evaluated efficiently
by using the following fast summation scheme. We interpolate Ku (see Eqn. (2),
plug it into Eqn. 1 and obtain

fi ∼ eıku·xi

∑

|α|≤ℓ

Sℓ(xi, x̄α)e
−ıku·x̄α

∑

|β|≤ℓ

K(x̄α, ȳβ)e
ıku·ȳβ

N∑

j=1

Sℓ(yj , ȳβ)e
−ıku·yj wj .

With that, we construct the three-stage fast summation scheme for oscillatory
kernels in the high-frequency regime.

(1) Particle to moment (P2M) or moment to moment (M2M) operator: equiv-
alent source values are anterpolated at the interpolation points ȳβ ∈ Y by

Wu
β = eıku·ȳβ

N∑

j=1

S(yj , ȳβ) e
−ıku·yj wj for |β| ≤ ℓ.

(2) Moment to local operator (M2L): target values are evaluated at the inter-
polation points x̄α ∈ X by

Fu
α =

∑

|β|≤ℓ

K(x̄α, ȳβ)W
u
β for |α| ≤ ℓ.

(3) Local to local (L2L) or local to particle (L2P) operator: target values are
interpolated at final points xi ∈ X by

fi ∼ eıku·xi

∑

|α|≤ℓ

S(xi, x̄α) e
−ıku·x̄α Fu

α for i = 1, . . . ,M.

Even though the above scheme is presented as a single-level scheme, it is imple-
mented as a multilevel scheme. In the following, we have a closer look at the
directional scheme. Only the P2M, M2M operators from step (1) and the L2L,
L2P operators from step (3) are directional, the M2L operator from step (2) is not.
Unlike in the low-frequency regime, in the high-frequency regime, the far-field is
split into cones by means of the cone-aperture criterion O(1/kw). The aperture
of these cones at the parent level is half their aperture at the child level. Due
to a nested cone construction along octree levels, we preserve the accuracy of the
Chebyshev interpolation within the multilevel scheme. For a detailed description
of all operators we refer to [9]).
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The overall complexity of the directional FMM is dominated by the M2L oper-
ator. The difference between this (and [2]) and the classical FMM for oscillatory
kernels is the following. In the former case, the number of far-field interactions
grows but the work per interaction remains constant as we climb up the tree. In
the latter case the number of far-field interactions remains constant but the work
per interaction increases. Nevertheless, in both cases the product of the number
of interactions and the work per interaction grows like O(N) and with O(logN)
levels the overall complexity results in the expected O(N logN).

In [8] we introduce optimizations of the M2L operator and perform detailed
studies. Initially, we investigate the approach presented in [3] and [9]. Its weakness
is that many M2L operators end up having suboptimal low-rank approximations.
A recompression leads to optimal low-ranks and to the variant with the least
computational cost. However, the main bottleneck, the expensive precomputation,
is not tackled yet. A new family of optimizations, which exploits symmetries in
the arrangement of the M2L operators, does that. Let us sketch the idea. An

M2L operator corresponds to a matrix Kt ∈ Cℓ3×ℓ3 whose entries are computed
as (Kt)ij = K(x̄i, ȳj). We associate each M2L operator to a transfer-vector t =
(cX − cYt)/w which describes the relative position of the far-field interaction Yt.
The full set of transfer-vectors is given by T ⊂ Z3. By exploiting axial and

e1

e2
e3

Figure 1. The cone Z3
sym (t1 ≥ t2 ≥ t3 ≥ 0) is obtained by

combining axial and diagonal symmetries.

diagonal symmetries we can reduce T . In Fig. 1 we show the cone Z3
sym and with

Tsym = T ∩ Z3
sym we are given the subset of M2L operators to precompute and

store. The remaining ones are obtained via permutations thereof. Each reflection
p : T → Tsym of a transfer-vector corresponds to a permutation of the respective
M2L operator like

Kt = PtKp(t)P
⊤
t .

There are two applications of the FMM as a numerical scheme to perform fast
matrix-vector products; 1) quick precomputations for single matrix-vector prod-
ucts, and 2) fast operator applications for multiple matrix-vector products (itera-
tive solvers). The presented optimizations raise the efficiency for both applications.
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On one hand, the exploitation of symmetries cuts down the memory requirement
and reduces the precomputation time by a factor larger than 1000. On the other
hand, the individual approximation of the M2L operators leads to optimal low-
rank approximations and paves the road for blocking schemes. Thus, by means of
highly optimized matrix-matrix product implementations, such as Intel’s MKL [5]
we achieve very high performances due to better cache reuse and data locality. In
[8] we present various comparisons of these optimizations.

The directional FMM (dFMM) is implemented in C++ and is freely available
via http://github.com/burgerbua/dfmm under the BSD 2-Clause license. The
scheme has been developed, studied and validated and optimized in [9]and [8] and
has been applied in [7] to accelerate the simulation of sound radiation and acoustic
scattering problems by means of the boundary element method.
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On MLMDA/Butterfly Compressibility of Inverse Integral Operators

Eric Michielssen

(joint work with Han Guo, Yang Liu and Jun Hu)

We study the compressibility of inverse integral operators by the MLMDA [1].
Specifically, we apply the MLMDA to blocks of block LU-factorized discretized
electric field integral equations (EFIE) for analyzing scattering from both 2D and
3D surfaces. Invariably, we find that the MLMDA realizes compression beyond
that provided by low rank (LR) compression schemes. Furthermore, by bypassing
all costly LR compression steps, we develop a MLMDA based fast direct solver
that exhibits O(N log2N) storage requirements while consuming O(N2) CPU time.
Specifically, our method is designed to solve linear systems of the form

Z · I = V ,(1)
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obtained by discretizing the EFIE using Green’s functions of the form H
(2)
0 in 2D

and e−jkr/4πr in 3D. Both kernels result in the impedance matrix Z in (1) hav-
ing rank deficit or MLMDA-compressible submatrices. The proposed direct solver
involves two steps.

D1: Construction of a hierarchical LR approximation to block-LU decomposition;
This step is similar to the procedure described in [2]. We begin by geometrically

decomposing the scatterer into subscatterers. Initially, the scatterer is divided into
two level-1 subscatterers of roughly equal size, resulting in two level-1 sets of un-
knowns. This procedure is repeated Nl − 1 times. At level 1 ≤ l ≤ Nl, there
are 2l subscatterers, each containing approximately N/2l unknowns. We assume
unknowns in each subscatterer are numbered consecutively. We next identify near-
and far-field group pairs: two same-level subscatterers form a far-field pair if the
distance between their geometric centers exceeds 2 < χ < 4 times the sum of
their circumscribing radii (admissibility criterion) and none of their respective an-
cestors form a far-field pair. Two level-Nl groups form a near-field pair if they
do not satisfy the admissibility criterion. We next construct a compressed repre-
sentation of Z using hierarchical H-matrix techniques [3], i.e. by approximating
all interactions between far-field pairs in terms of LR products (or combinations
thereof), while storing those between near-field pairs classically. Finally, we invert
the Z matrix by hierarchical (H-) block LU decomposition. Consider the block
LU decomposition of the level-1 partitioned Z matrix:

Z =

[
Z11 Z12

Z21 Z22

]
=

[
L11

L21 L22

] [
U11 U12

U22

]
(2)

In principle, the blocks of Z’s LU factors can be computed as follows: (i) L11 and
U11: LU decompose Z11 = L11U11; (ii) U12 : solve Z12 = L11U12; (iii) L21 :
solve Z21 = L21U11; (iv) L22 and U22 : LU decompose Z22 − L21U12 = L22U22.
In practice, procedures (i) and (iv) are executed recursively, optimally leverag-
ing these blocks’ hierarchical LR approximation along the way and terminating
only when blocks in L and U size-wise match those in the original hierarchical
decomposition of Z. Procedures (ii) and (iii) (and similar operations in the hier-
archical execution of (i) and (iv)) are performed via partitioned forward/backward
substitution for hierarchical lower/upper triangular matrices [4]. The resulting hi-
erarchically block LU-decomposed Z comprises a collection of submatrices/blocks
{B}, the majority of which is stored in LR form, and can be used to solve (2) us-
ing a process akin to conventional forward/backward substitution. For scatterers
that are small or comparable to the wavelength, the CPU/memory requirements
of this procedure provably scale almost linear in N . For scatterers spanning many
wavelengths, blocks of Z representing interactions between electromagnetically
large far-field subscatterers are not LR and the memory requirements of the above
procedure have never been shown to scale any better than O(N2).

D2: Recompression of the LR blocks in LU factors by MLMDA.
Consider a block in {B} that maps to a block in Z describing the interactions
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between a level-l far-field subscatterer pair. Assuming B is stored in LR form, we
attempt to recompress it by a d(= Nl − l)-level butterfly. First B is split column-
wise into ∼ 2d subblocks matching the unknowns in the corresponding level-Nl

subscatterers modeled by B’s columns. Each subblock is approximated by a LR
product B = P (0)R(0). Next we pair subblocks in P (0), while splitting them
row-wise into upper (+) and lower (-) parts. The pairing and splitting operations
go along with the unknowns in the level-(Nl − 1) and level-(l + 1) subscatterers
modeled by B’s columns and rows, respectively. These newly formed subblocks
are once again approximated by LR products P (0) = P (1)R(1). This process is
repeated d times, resulting in decompositions P (k−1) = P (k)R(k), k = 1, ..., d.
Generally speaking, P (k−1) contains 2k− 1 column and 2d−k+1 row blocks that
match the unknowns in the level-(l + k − 1) and level-(Nl − k + 1) subscatterers
modeled by B’s columns and rows, respectively. Therefore P (k−1) contains ∼ 2d

subblocks P
(k−1)
i,j , (i = 1, . . . , 2k−1; j = 1, . . . , 2d−k+1). To construct P k and Rk,

each P
(k−1)
i,j is split into upper (+) and lower (-) blocks as

P (k−1)

i,j =

(
P

(k−1)+
i,j

P
(k−1)−
i,j

)
,(3)

and pairs of column-wise blocks for both P
(k−1)+
i,j and P

(k−1)−
i,j are approximated

by LR products as

(4) (P (k−1)+or−

i,jodd
, P (k−1)+or−

i,jodd+1
) = P2i−1(+)or2i(−),⌊(jodd+1)/2⌋R2i−1(+)or2i(−),⌊(jodd+1)/2⌋

Here which jodd = 2j − 1 and ⌊•⌋ rounds downward. After d steps, we obtain

B = P (d) ·R(d) · ... ·R(1) ·R(0)(5)

When this type of butterfly decomposition is applied to blocks B of Z, it can be
rigorously shown that the (numerical) rank r of all LR products implicit in (5)
is of O(1) and approximately constant. In other words, each E(i), 1 ≤ i ≤ d,
contains ∼ 2d subblocks of approximate dimension r×2r, while P (d) and R(0) are
composed of 2d subblocks of approximate dimensions (m/2d) × r and r × (n/2d)
with m and n the number of rows and columns in B. The total memory costs for
storing all of Z via decompositions (5) scales as O(N log2N). Interestingly, our
numerical experiments indicate that blocks B of Z’s LU factors behave similarly.

Bypassing the LR compression steps of D2, we obtain a true MLMDA based
fast direct solver. Moreover, the high compression ratios observed in 2D persist
3D. Fig. 2(a) shows that for a perfect electriccally conducting sphere, the storage
requirements scale as O(N log2N), while the solver’s CPU cost asymptotically
scales as O(N2). Fig. 2(b) shows that the bistatic RCS of a sphere modeled
using over a million unknowns agrees well with the Mie series. The solver also
performs well for more complex scatterers, e.g. the airplane modeled using 438, 333
unknowns shown in fig. 2(c).
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Figure 1. D1(left matrix partition) and D2 (right matrix partition)
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Figure 2. 3D results of the MLMDA-based fast direct solver
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A sign-definite formulation of the Helmholtz impedance problem

Andrea Moiola

(joint work with Euan A. Spence)

One of the main aims of computational electromagnetic and acoustics is the nu-
merical solution of the Helmholtz equation:

(1) −∆u− k2u = f in Ω ⊂ Rd, k > 0, f ∈ L2(Ω).

Despite its wide use in applications and the simplicity of its expression, the numer-
ical solution of this equation at high frequencies (k ≫ 1) can be extremely costly.
This fact is usually ascribed to several reasons: the presence of small oscillations
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in the solutions which make the approximation expensive; the “numerical disper-
sion” which causes the “pollution effect”; the high indefiniteness of the operator.
While the first two points are clear, the meaning of the frequently encountered
statement “the Helmholtz equation is highly sign-indefinite” is not obvious. We
argue that the sign-indefiniteness is a property of most variational reformulations
of the Helmholtz equation rather than of the equation itself. In particular, we
devise a new sign-definite (continuous and coercive) variational formulation for
Helmholtz impedance problems and for sound-soft scattering problems in star-
shaped domains. This is obtained by slightly modifying the derivation of the
standard formulation with the use of a Morawetz-type multiplier as a test func-
tion in the integration by parts. More details and the complete proofs can be
found in [7].

Variational problems. A boundary value problems (BVP) is often written as
variational formulation (VF):

(2) find u ∈ V such that a(u, v) = F (v) ∀v ∈ V ,
where V is a Hilbert space, a(·, ·) a bilinear (or sesquilinear) form, F (·) a con-
tinuous linear (or antilinear) functional. This allows the formulation of Galerkin
discretisations:

(3) find uN ∈ VN such that a(uN , vN ) = F (vN ) ∀vN ∈ VN ,

where VN ⊂ V is a finite-dimensional space. If a(·, ·) is continuous, i.e.
∃Cc > 0 such that |a(u, v)| ≤ Cc‖u‖V‖v‖V ∀u, v ∈ V ,

and sign-definite (often called coercive) i.e.

(4) ∃α > 0 such that |a(v, v)| ≥ α‖v‖2V ∀v ∈ V ,
then the variational problem (2) enjoys several desirable properties: (i) it is well-
posed; (ii) every Galerkin discretisation (3) is well posed; (iii) every Galerkin
discretisation satisfies an explicit quasi-optimality bound

(5) ‖u− uN‖V ≤ Cc

α
inf

vN∈VN

‖u− vN‖V ,

which is independent of the specific Galerkin space VN chosen; and (iv) its Galerkin
matrix inherits similar continuity and positivity properties.

The Helmholtz impedance problem. We consider the Helmholtz equation (1)
posed in a bonded domain Ω ⊂ Rd (d = 2, 3) with impedance boundary conditions:

(6)
∂u

∂n
− iku = g on ∂Ω, g ∈ L2(∂Ω).

It is well-known that the Helmholtz impedance BVP (1) and (6) is well-posed,
but, for large frequencies k ≫ 1, the sesquilinear form of its standard VF

find u ∈ H1(Ω) such that(7)
∫

Ω

(∇u · ∇v̄ − k2uv̄)dx− ik

∫

∂Ω

uv̄ds =

∫

Ω

f v̄dx+

∫

∂Ω

gv̄ds ∀v ∈ H1(Ω),
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is continuous in H1(Ω)-norm and sign-indefinite (i.e., not sign-definite). The same
can be said for most available formulations.

This fact does not give the sign-indefiniteness of the Helmholtz equation (which
we did not define), but only the sign-indefiniteness of some VFs. Thus it is natural
to ask the question: is it possible to find a sign-definite formulation for this BVP?

In order to answer, we recall that the standard formulation (7) can easily be
obtained in four steps:

(I) multiply the Helmholtz operator Lu := ∆u+ k2u by a test function v;
(II) use Green’s first identity (∆u)v̄ = div[(∇u)v̄]−∇u · ∇v̄;
(III) integrate by parts, transforming the divergence term into a term integrated

on ∂Ω;
(IV) impose the data, i.e., substitute the term Lu with −f and ∂u/∂n with

iku+ g, and move the terms containing f and g to the right-hand side.

A novel sign-definite formulation. To obtain the desired formulation we
mimic steps (I–IV) of the standard derivation above including a Morawetz-type
multiplier. To this purpose, in step (I) we multiply Lu with the special multiplier

(8) Mv := x · ∇v − ikβv +
d− 1

2
v,

where β > 0 is a parameter and d is the space dimension. Due to this choice, we
supplement Green’s identity in step (II) with a Rellich-type identity:

(∆u)(x · ∇v̄) = div
[
(∇u)(x · ∇v̄)

]
−∇u · ∇v̄ −∇u ·

(
(x · ∇)∇v̄

)
.

After some manipulations we obtain the identity

−LuMv =∇u · ∇v̄ + k2uv̄ +MuLv

− div
[
∇uMv +Mu∇v̄ + x(k2uv̄ −∇u · ∇v̄)

]
.

We add the term 1
3k2LuLv to both sides of this identity and perform steps (III) and

(IV) exactly as above. From this procedure we immediately obtain the sesquilinear
form b(·, ·) and the antilinear functional G(·):

b(u, v) :=

∫

Ω

(
∇u · ∇v̄ + k2uv̄ +

(
Mu+

1

3k2
Lu

)
Lv

)
dx−

∫

∂Ω

(
ikuMv

+
(
x · ∇Tu− ikβu +

d− 1

2
u
)∂v̄
∂n

+ (x · n)
(
k2uv̄ −∇Tu · ∇T v̄

))
ds,

G(v) :=

∫

Ω

f

(
Mv − 1

3k2
Lv

)
dx+

∫

∂Ω

gMvds,

where n is the outgoing normal. Both b(·, ·) and G(·) are continuous in the space

V :=
{
v : v ∈ H1(Ω), ∆v ∈ L2(Ω), ∇v ∈

(
L2(∂Ω)

)d}
,

equipped with the norm

‖v‖2V =k2‖v‖2L2(Ω)+ ‖∇v‖2L2(Ω)d+ k−2‖∆v‖2L2(Ω)+ Lk2‖v‖2L2(∂Ω)+ L‖∇v‖2L2(∂Ω)d ,
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where L :=diam(Ω), and they give a new consistent VF, in the sense that

(9) u ∈ V b(u, v) = G(v) ∀v ∈ V ⇐⇒
{
−∆u− k2u = f in Ω,
∂u
∂n − iku = g on ∂Ω.

We prove that, if the domain Ω is star-shaped with respect to the ball BγL, γ > 0,
(i.e. x ·n(x) ≥ γL for a.e. x ∈ ∂Ω) and β ≥ 3L/γ, then b(·, ·) is sign-definite in V :

(10) R{b(v, v)} ≥ γ

4
‖v‖2V ∀v ∈ V.

The explicit continuity and coercivity bounds allow a precise control of the
pollution effect in the discretisations of (9). Indeed, any conformal Galerkin dis-
cretisation is unconditionally well-posed and its quasi-optimality ratio (i.e., the
maximal ratio between Galerkin error and best approximation error as in (5),
both measured in ‖ · ‖V -norm) grows at most linearly in the wavenumber k.

On the other hand, since v ∈ V requires ∆v ∈ L2(Ω), any conformal discretisa-
tion that uses piecewise smooth functions (e.g., finite elements) must use C1(Ω)
functions. This is a severe constraint on the design of numerical schemes for (9).

The formulation in (9) can be generalised to BVPs posed in Ω \ D, where
D is a star-shaped sound-soft scatterer, i.e., Dirichlet boundary conditions are
imposed on ∂D; see [7, §4]. Also varying impedance boundary condition, i.e.
∂u/∂n− ikϑ(x)u = g, with 0 < ϑ ∈ L∞(∂Ω), are allowed.

The Morawetz multiplier Mv. The sign-definiteness (10) of the formulation
(9) can be proved by using only elementary results, as vector calculus identities
and the Cauchy–Schwarz inequality. Moreover, the derivation of (9) is extremely
similar to that of the standard formulation (7). Thus the sign-definiteness has
to be attributed to the only “exotic” ingredient used: the Morawetz multiplier
Mv defined in (8). This multiplier (in several variations) and the corresponding
calculus identities have previously been used in a wide variety of contexts.

A simpler multiplier (x ·∇v) was used by Rellich in [9] to express Laplace eigen-
values as boundary integrals and later by several authors in the context of spectral
analysis. A multiplier more similar to that of (8) has been used by Morawetz to
study the energy decay of wave equation solutions and the frequency dependence
of Helmholtz solution in the exterior of a scatterer, see e.g. [8]. Numerical ana-
lysts used this technique to prove k-explicit stability bounds for interior Helmholtz
BVPs, [6, 3, 4], and to investigate the coercivity of classic and new boundary in-
tegral operators, [11, 10]. More references are provided in [7].

Are there any other known sign-definite formulations? A few existing
variational formulation of the Helmholtz impedance BVP (1) and (6) satisfy (4),
but they are all very different from that in (9). In particular, they are either:

• boundary integral equations, see e.g. [11, 10];
• Trefftz formulations, i.e., posed on spaces of piecewise Helmholtz solutions,
e.g. the UWVF and the TDG of [1, 5];

• least squares schemes.
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A relevant difference between (9) and least squares formulations is that the former
can be used to prove k-explicit stability bounds on u, while the seconds requires
these bounds to be well-posed.

We note that, using an appropriate operator T : V → V , any well-posed for-
mulation in the form (2) can be translated in a sign-definite one: aT (u, v) :=
a(u, T v) = F (Tv) =: FT (v). However, the operator T is often not explicit or
its approximation by a Galerkin scheme requires some strict assumptions on the
discretisation (see [2]).
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Hardy space method for exterior Maxwell problems

Lothar Nannen

(joint work with Thorsten Hohage, Achim Schädle, Joachim Schöberl)

We consider scattering and resonance problems on connected, unbounded domains
Ω ⊂ R3, which are complements of compact sets. Scattering or source problems
for the time-harmonic Maxwell’s equations consist in finding an outgoing electric
field u ∈ Hloc(curl;Ω) satisfying

(1)

∫

Ω

curl u · curl v − ω2εu · v dx = l(v) for all v ∈ Hc(curl;Ω).
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for a given frequency ω > 0, the local permittivity ε and a linear form l(v) =∫
Ω
g·v dx+

∫
∂Ω

g∂Ω ·v dx with a compactly supported source term g and boundary
data g∂Ω. Here Hc(curl;Ω) denotes the space of all vector fields v which are
compactly supported in Ω and are square integrable together with the curl curl v.
Hloc(curl;Ω) denotes the space of vector fields v, which are square integrable on
any compact subset K ⊂ Ω together with curl v.

The radiation condition defining the term ”outgoing” is typically formulated
as Silver-Müller radiation condition. Then it is well-known that problem (1) is
well-posed (see e.g. [1]). For ω > 0 there exist other radiation conditions, which
are equivalent for solutions u to (1):

(i) A series representation u in terms of Hankel functions of the first kind
(e.g. [1]),

(ii) a boundary integral representation of u (e.g. [1]),
(iii) the condition that a holomorphic extension of u with respect to the radial

variable (e.g. a complex scaling) is exponentially decreasing (e.g. [2, 3])
and

(iv) the so called pole condition, which characterizes outgoing solutions via
the singularities of their Laplace transformed functions ([4] for Helmholtz
problems and [5] for Maxwell problems).

Based on these radiation conditions there are several numerical methods to solve
(1), e.g. classical infinite element methods [6], non-reflecting boundary conditions
[7], boundary integral approaches [8], local high order approximations [9], complex
scaling methods (known as perfectly matched layer methods) [10, 11, 12, 3] and
Hardy space infinite elements [13, 14, 5].

Except for the two latter these methods depend non-linearly on the frequency
ω, since this is the case for the radiation conditions (i) and (ii) on which they are
based. This is a severe drawback for resonance problems, where we are looking for
eigenpairs (u, ω2) consisting of an outgoing resonance function u ∈ Hloc(curl;Ω)\
{0} and the square of a resonance ω ∈ C such that

(2)

∫

Ω

curl u · curl v =

∫

Ω

ω2εu · v dx for all v ∈ Hc(curl;Ω).

The radiation conditions (iii) and (iv) are independent of the frequency ω.
Therefore methods based on these radiation conditions, namely complex scaling
methods and the Hardy space infinite element method, can be constructed such
that they lead to a generalized matrix eigenvalue problem of the form

(3) Su = ω2Mεu

with complex symmetric, non-hermitian matrices S and Mε. This problem can be
solved by a standard shift-and-invert Arnoldi method. Although it is possible to
solve the non-linear eigenvalue problem resulting e.g. from a boundary element
method ([15]), it is desirable to avoid it.

Therefore, currently complex scaling methods based on (iii) are the standard
methods for solving resonance problems (see e.g. [16, 17]). Usually, due to the
resulting exponential decay of the solution, the unbounded domain is truncated
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to a bounded domain consisting of the computational domain and a perfectly
matched layer with the artificial, anisotropic damping. The method can be easily
implemented in standard finite element codes, since only the bilinear forms have
to be changed.

Unfortunately, these methods give rise to spurious resonance modes. It is shown
in [17], that the spurious resonance modes arise from a discretization of an essential
spectrum. Moreover, several parameter of the complex scaling method like the type
of scaling, the thickness of the layer and the underlying finite element method have
to be optimized for each specific problem.

The Hardy space infinite element method also leads to spurious resonance
modes, but less parameters have to be chosen by hand. Moreover, numerical
tests indicate a super-algebraic convergence with respect to the number of degrees
of freedom in radial direction. On the other hand, the method is a tensor prod-
uct method of standard finite element basis functions with special infinite basis
functions in the Hardy space of the complex unit disk. Therefore, a non-standard
infinite element has to be included in a finite element code.

The numerical tests in [5] for Maxwell problems were made with the open source
finite element package Netgen/NGSolve from Joachim Schöberl together with the
open source module ngs-waves containing the routines for the infinite elements.
Numerical tests comparing a complex scaling method with the Hardy space infinite
element method can be found for Helmholtz problems in [14]. They indicate, that
the Hardy space infinite element method needs less computational effort than the
complex scaling method.
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A parallel space-time multigrid method

Martin Neumüller

(joint work with Olaf Steinbach)

As a model problem we consider the heat equation in a bounded domain Ω ⊂
Rd, d = 1, 2, 3 with boundary Γ := ∂Ω and a simulation interval [0, T ],

(1)

∂t u(x, t)−∆u(x, t) = f(x, t) for (x, t) ∈ Q := Ω × (0, T ),

u(x, t) = 0 for (x, t) ∈ Σ := Γ × (0, T ),

u(x, 0) = u0(x) for (x, t) ∈ Σ0 := Ω × {0}.
Subdividing the simulation interval [0, T ] in subintervals

0 = t0 < t1 < . . . < tN−1 < tN = T, with tn = n τ and τ =
T

N
,

and using a standard finite element discretization in space and a discontinuous
Galerkin approximation in time, this leads to the linear algebraic equations

[Kτ ⊗Mh +Mτ ⊗Kh]u
n+1 = fn+1 +Nτ ⊗Mhu

n.(2)

Here, Mh is the standard mass matrix and Kh is the standard stiffness matrix

Mh[i, j] :=

∫

Ω

ϕj(x)ϕi(x)dx, Kh[i, j] :=

∫

Ω

∇ϕj(x) · ∇ϕi(x)dx

for i, j = 1, . . . , Nx. The matrices with respect to the time discretization, where a
discontinuous Galerkin approximation is used, are given by

Kτ [k, ℓ] := −
∫ τ

0

ψℓ(t)∂tψk(t)dt+ ψℓ(τ)ψk(τ),

Mτ [k, ℓ] :=

∫ τ

0

ψℓ(t)ψk(t)dt, Nτ [k, ℓ] := ψℓ(τ)ψk(0)

for k, ℓ = 1, . . . , Nt. Moreover, the right hand side is given by

fn+1[ℓNx + j] :=

∫ tn+1

tn

∫

Ω

f(x, t)ϕj(x)ψℓ(t)dxdt
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for j = 1, . . . , Nx and ℓ = 1, . . . , Nt. On the time interval [tn, tn+1] we can therefore
define the approximation

un+1
h (x, t) =

Nt∑

ℓ=1

Nx∑

j=1

un+1
ℓ,j ϕj(x)ψℓ(t), with un+1

ℓ,j := un+1[ℓNx + j],

where un+1 is the solution of the linear system (2). Hence we have to solve

(3)




Aτ,h

Bτ,h Aτ,h

Bτ,h Aτ,h

. . .
. . .

Bτ,h Aτ,h







u1

u2

u3

...
uN




=




f1

f2

f3

...
fN



,

with

Aτ,h := Kτ ⊗Mh +Mτ ⊗Kh, Bτ,h := −Nτ ⊗Mh.

The linear system (3) is usually solved by a forward substitution within one time
interval, i.e. within one space-time slap. Instead, here we will consider a global
multigrid scheme for the solution of (3). For an easier notation we now write the
linear system (3) as

Lτ,h x = f .(4)

For a global multigrid scheme we need to define appropriate restriction and pro-
longation operators and a suitable smoother. Here we use the standard geometric
restriction and prolongation operators both in space and time. For the smoother
we apply a fixed number of damped block Jacobi iterations

xk+1 = xk + ωtD̃
−1
τ,h

[
f − Lτ,hx

k
]

where a block corresponds to one space-time slap. By D̃−1
τ,h we denote the approx-

imation of the inverse of the exact block diagonal matrix Dτ,h := diag {Aτ,h}Nn=1,
and for the approximation we use one space multigrid iteration for each space-
time slap. For the proposed space-time multigrid approach it is possible to use the
exact inverse of the block diagonal matrix Dτ,h, but the approximation is much
cheaper and it turns out, that we obtain almost the same results.

Next we consider the smoothing behavior of the proposed block Jacobi smoother
when we using the exact block diagonal matrix Dτ,h. The (k + 1)-th error of the
Jacbi iteration is given by

x− xk+1 =: ek+1 =
[
I − ωtD

−1
τ,hLτ,h

]
ek =: Sτ,he

k.

In what follows we apply the so called local Fourier mode analysis in the one
dimensional case, i.e. d = 1, for lowest order approximations in space and time.
Under the assumption of periodic boundary conditions in space and time we apply
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the smoothing operator Sτ,h onto the vector ϕ(θx, θt) with ϕk,ℓ(θx, θt) = eikθxeiℓθt ,
θx, θt ∈ [−π, π) and we obtain

Sτ,hϕ(θx, θt) = S̃τ,h(θx, θt)ϕ(θx, θt),

with

S̃τ,h(θx, θt) = 1− ωt − ωtατ,h(θx)e
−iθt ,

and

ατ,h(θx) :=
2 + cos(θx)

2 + 6 τ
h2 + (1 − 6 τ

h2 ) cos(θx)
.

Further calculations lead to

|S̃τ,h(θx, θt)|2 = (1 − ωt)
2 − 2ωt(1− ωt)ατ,h(θx) cos(θt) + ω2

t (ατ,h(θx))
2
.

For an efficient smoother we need to have a fast reduction of the error correspond-
ing to the high frequencies (θx, θt) ∈ Θhigh := [−π, π)2 \ (−π

2 ,
π
2 )

2. Hence we need
to ensure

|S̃τ,h(θx, θt)| ≤ q < 1, for (θx, θt) ∈ Θhigh.

Using standard arguments one can show that

min
ωt∈R

max
θx∈[0,π]

θt∈[π2 ,π]

|S̃τ,h(θx, θt)|2 =
1

2
,(5)

with the optimal choice for the damping parameter ω∗
t = 1

2 . Hence a good smooth-
ing behavior for the high frequencies in time is obtained, which is independent of
the discretization parameter λ := τ

h2 . Moreover, for the optimal choice of the

damping parameter ωt =
1
2 one can show that

max
θx∈[π

2
,π]

θt∈[0,π2 ]

|S̃τ,h(θx, θt)|2 ≤ 1

2
, if λ ≥

√
2

3
.(6)

Hence, if the discretization parameter λ is large enough, a good smoothing behavior
for high frequencies in space is obtained. With the two properties (5) and (6) we
conclude, that semi coarsening in time is always possible and in addition if the
discretization parameter λ is large enough it is possible to apply coarsening in
space and time.

One advantage of the presented space-time multigrid approach is that it can be
applied parallel in time. To show the parallel performance of this multigrid solver
we consider the spatial domain Ω = (0, 1)3 which is decomposed into 49 152 tetra-
hedra, and we consider a constant time step size τ = 10−1. For the discretization
in space we use piecewise linear continuous ansatz functions whereas for the dis-
cretization in time we use piecewise linear discontinuous ansatz functions. On each
space-time slap we apply one iteration of a standard geometric multigrid solver to
approximate the inverse of the block diagonal matrix Dτ,h. Further for the pre-
sented space-time smoother we use the damping parameter ωt =

1
2 where we apply
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(a) weak scaling results.

cores time steps dof iter time
1 4 59 768 9 6.8
2 8 119 536 9 8.1
4 16 239 072 9 9.2
8 32 478 144 9 9.2

16 64 956 288 9 9.2
32 128 1 912 576 9 9.3
64 256 3 825 152 9 9.1
128 512 7 650 304 9 9.4
256 1 024 15 300 608 9 9.4
512 2 048 30 601 216 9 9.4

1 024 4 096 61 202 432 9 9.4
2 048 8 192 122 404 864 9 9.5

(b) strong scaling results

cores time steps dof iter time
1 4 096 61 202 432 9 6 960.7
2 4 096 61 202 432 9 3 964.8
4 4 096 61 202 432 9 2 106.2
8 4 096 61 202 432 9 1 056.0

16 4 096 61 202 432 9 530.4
32 4 096 61 202 432 9 269.5
64 4 096 61 202 432 9 135.2
128 4 096 61 202 432 9 68.2
256 4 096 61 202 432 9 34.7
512 4 096 61 202 432 9 17.9

1 024 4 096 61 202 432 9 9.4
2 048 4 096 61 202 432 9 5.4

Table 2. Solving times in [s]

two pre- and post-smoothing steps. For the given setting we apply this space-time
multigrid solver until we have reached a relative error reduction of 10−8.

To show the parallel performance we first test the weak scaling behavior. To do
so we use a fixed number of time steps per core. In this example we use four time
steps for each core. In Table 1(a) the weak scaling results are given. We observe
that the number of required multigrid iterations is bounded independent of the
number of time steps which are used. Further we observe that the solving times
are almost constant, when we increase the number of cores. In Table 1(b) the
strong scaling results are presented. For a fixed number of time steps N = 4096
one can see that the computational costs can be reduced almost by a factor of 1

2
when we double the number of cores.

The idea to solve time dependent problems parallel in time is not new. In
[2, 4, 8] space-time multigrid approaches are presented where also the paralleliza-
tion in time is discussed. For example, the performance of a parallel space-time
multigrid solver for the unsteady Navier-Stokes equations is presented in [3]. The
main difference of this work is the different space-time smoother and the different
approximation in time. In [5, 1] the parareal algorithm is introduced and analyzed
which also allows to solve parallel in time. The approach in this work is motivated
by a general space-time discretization, which was studied in [6, 7].
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A Discontinuous Galerkin Surface Integral Equation Method for
Time-harmonic Maxwell’s Equations

Zhen Peng

(joint work with Jin-Fa Lee)

We present a discontinuous Galerkin surface integral equation method, herein
referred to as IEDG, for time harmonic electromagnetic wave scattering from non-
penetrable targets. The proposed IEDG algorithm allows the implementation of
the combined field integral equation (CFIE) using square-integrable, L2, trial and
test functions without any considerations of continuity requirements across element
boundaries. Due to the local characteristics of L2 basis functions, it is possible
to employ non-conformal surface discretizations of the targets. Furthermore, it
enables the possibility to mix different types of elements and employ different
order of basis functions within the same discretization. Therefore, the proposed
IEDG method is highly flexible to apply adaptation techniques.

Among the previous works addressing the abovementioned topic, we mention
recent works [1] and [2]. The former investigates the use of combined current
and charge integral equation for non-conforming meshes and a stabilization pro-
cedure is proposed for targets with geometrical singularities. The latter proposes
a Nitsche-based domain decomposition method for the solution of hypersingular
integral equation governing the Laplacian in R3.

We consider the solution of electromagnetic scattering problem. Denote the
time-harmonic electric and magnetic fields by E and H, respectively. We assume
an e−ıωt time dependence, where ω = 2πf is the radial frequency of operation and
the imaginary unit is represented by ı

(
≡

√
−1

)
. The free space wave number will

be denoted by k0 = ω
√
µ0ε0, where ε0 and µ0 are the permittivity and permeability

of the free space, respectively. The free space intrinsic impedance is given by
η0 =

√
µ0/ε0. Moreover, we shall introduce two surface trace operators on ∂Ω,

the tangential components trace operator πτ (•) and the twisted tangential trace
operator γτ (•), which are employed throughout our derivations. They are:

γτ (u) := n̂× u|∂Ω(1)

πτ (u) := n̂× (u× n̂)|∂Ω = γτ (u)× n̂(2)

The exterior region Ωext is homogeneous and assumed to be free space. Surface
integral equation method is a natural choice for such an electromagnetic scattering
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problem. An auxiliary variable j, which represents the surface electric current, is
introduced on ∂Ω, via:

(3) j =
1

ık0
γτ (∇×E) ∈ L2(∂Ω)

Specifically, we shall employ discontinuous piecewise polynomial vector functions
to approximate the auxiliary variable, j.

Subsequently, the scattered electric field and the scattered magnetic field in
Ωext can be obtained from the Stratton-Chu representation formulas as:

Es (j; ∂Ω) (r) =L (j; ∂Ω) (r) r ∈ Ωext(4)

Hs (j; ∂Ω) (r) =
1

η0
K (j; ∂Ω) (r) r ∈ Ωext(5)

where L and K are, respectively, the electric field integral operator (EFIO) and
magnetic field integral operator (MFIO), defined as,

L (f ; ∂Ω)(r) := ık0ΨA(f ; ∂Ω)(r) +
1

−ık0
∇∇ · ΨA(f ; ∂Ω)(r)(6)

K (f ; ∂Ω)(r) := p.v. (∇× ΨA(f ; ∂Ω) (r))(7)

where p.v. stands for principle value, and ΨA is the single-layer vector potential
and is defined by

ΨA (f ; ∂Ω) (r) =

∫

∂Ω

f(r′)G(r, r′)dr′(8)

and G(r, r′) := expık0|r−r
′|

4π|r−r′| is the free-space Green’s function. r and r′ denote the

observation point and the source point, respectively.
We proceed to discretize the surface ∂Ω into N non-overlapping elements Sm

such that ∂Ω = S1 ∪ S2 · · · ∪ SN and the subscript m ∈ I = {1, ..., N} denotes
the restriction of a quantity to Sm. In this work, we uplift the trial function space
to be square-integrable functions, L2(∂Ω), which allows us to construct the trial
function space completely independent for each element Sm. The approximation
of the current, j̃, can be written as

j̃(r) =

N⊕

m=1

jm(r)(9)

where jm(r) is the local approximation within each element. Since in the L2(∂Ω)
framework, the trial functions are defined with element-wise compact support, we
have the privilege to choose the trial function to best approximate the current
locally. Moreover, we denote Cmn and Cnm for the contour boundaries between
two adjacent elements Sm and Sn, with Cmn the contour line on Sm and Cnm the
contour line on Sn. Furthermore, associated with each element contour, Cmn, we
define a unit normal t̂mn, which points from element Sm toward element Sn.

The final Galerkin weak statement can be formally stated as:



Computational Electromagnetism and Acoustics 223

Find j =
⊕

m∈I jm, jm ∈ Wm such that

1

2
a 〈v, j〉 + 1

2
b 〈v, j〉

− 1

2ık0

∑

Cm∈C

∑

n∈I

〈
t̂m · vm, ΨF (∇′

τ · jn;Sn)
〉
Cm

− 1

2ık0

∑

m∈I

∑

Cn∈C

〈
∇τ · vm, ΨF

(̂
tn · jn; Cn

)〉
Sm

+
β

ık0

∑

Cm∈C

∑

Cn∈C

〈
t̂m · vm, t̂n · jn

〉
Cm

=
1

2

〈
v, einc

〉
∂Ω

+
1

2

〈
v, η̄jinc

〉
∂Ω

(10)

∀v =
⊕

m∈I vm,vm ∈ Wm.

where jinc = η0γτ
(
Hinc

)
and einc = πτ

(
Einc

)
, with Einc and Hinc being the

incident electric and magnetic fields on ∂Ω, respectively. In (10), Wm is taken as
the space spanned by the vector basis functions introduced in [3], however, with
the degrees of freedom (DOFs) defined independently for each element.

The two sesquilinear forms a 〈v, j〉 and b 〈v, j〉 in (10) are derived from the
electric field integral equation (EFIE) and magnetic field integral equation (MFIE)
surface penalty terms, defined by

a (v, j) :=
∑

m∈I

(

ık0
∑

n∈I

〈vm, πτ (ΨA (jn;Sn))〉Sm
+

1

ık0

∑

n∈I

〈

∇ · vm, ΨF

(

∇′ · jn;Sn

)〉

Sm

)

(11)

b (v, j) :=
∑

m∈I

(

1

2
〈vm, η̄mjm〉

Sm
+

〈

vm, η̄m
∑

n∈I

γτ (K (jn;Sn))

〉

Sm

)

The third and the fourth inner product terms in (10) are closely related to the
consistent symmetrization terms in discontinuous Galerkin (DG) literature. The
single-layer scalar potential ΨF is defined as:

ΨF (f ;S) (r) =
∫

S
f(r′)G(r, r′)dS(12)

which represents the electric potential generated by a charge distribution on the
surface S. Similarly, we have

ΨF (f ; C) (r) =
∫

C
f(r′)G(r, r′)dr′(13)

which corresponds to the electric potential contributed by the charge accumulation
on the line contour C.

The fifth inner product term is penalization term. In light of the interior penalty
method [4], the interior penalty stabilization function β is taken as β = αh−1,
where h is the mesh size of the discretization and the stabilization parameter α is
a positive number independent of h.
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A mathematical toolkit for TDBIE

Francisco-Javier Sayas

Time Domain Boundary Integral Equations are powerful tools for simulation
of transient phenomena related to scattering and propagation of acoustic, elastic
and electromagnetic waves. This talk attempts to be a review of old and new
techniques for analysis, mathematical and numerical, of TDBIE. This means, in
particular, that the wide world of their applications will be barely mentioned,
leaving relevant important names unmentioned in this note.

The Laplace domain approach: pure Galerkin. Analysis of the equations and
of Galerkin-in-space-and-time discretization methods using Laplace domain esti-
mates is the standard —and was, for quite some time, the only— approach to
study TDBIE and their discretizations. This is a sort of coercivity analysis: it de-
rives energy inequalities in the resolvent set and integrates back using a Plancherel
formula, providing time-domain estimates in norms that are not necessarily phys-
ical. Some relevant references are [2, 3, 12, 17]. Much of what was done in these
early years (see the survey [16]) was produced by the French school of Numeri-
cal Analysis, with a sizeable amount of doctoral theses supervised by Jean-Claude
Nédélec and Alain Bachelot. New ideas in the area of Galerkin methods are related
to the use of smooth temporal basis functions [28].

The Laplace domain approach: Convolution Quadrature. An alternative to full
Galerkin discretization is the use of Galerkin-in-space and Convolution Quadra-
ture. CQ is a technique to discretize causal convolutions, by mixing the Laplace
domain with the time domain in a clever way, allowing for the use of the resolvent
set in the time-stepping process. The analytical tools to study CQ-BEM were in-
tegrally developed in the Laplace domain, with time discretization analyzed using
the central theorems of [25]. (Previous work of Christian Lubich on his CQ scheme
is related to parabolic problems [23, 24].) Lubich himself detailed the analysis of
the discretization with CQ-BEM of the acoustic single layer operator. (The anal-
ysis for the Neumann problem based on the indirect representation with a double
layer potential can be found in [13].) Analysis of multistep-base CQ can thus be
approached with a decided black-box spirit, which shifts the emphasis towards
algorithms, solvers and applications [5, 10, 11, 14, 18, 19, 31]. However, it is much
more recent that the analysis of Runge-Kutta-based (multistage) CQ methods has
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been fully understood. As in the multistep case, the abstract analysis of CQ was
first derived for parabolic problems [26]. The corresponding results for RK-based
methods are only three years old [7, 8]. This was accompanied by extensive work
on implementation and applications [4, 9, 1]. Hyperbolic-CQ has been recently
extended to variable time-stepping [21, 22].

Galerkin semidiscretization as an exotic transmission condition. All Laplace
domain analysis of TDBIE is carried out in the following way: estimates are
given for the discrete or semidiscrete inverse of the integral operator, while any
postprocessing of the discrete solution (computing the retarded potential based
on the already approximated boundary quantities) is analyzed by throwing the
mapping properties of the potentials on top of the error estimates on the boundary.
While remaining in the Laplace domain, the analysis in [20] breaks with this
trend. The idea is quite simple: the conditions for Galerkin semidiscretization
(the unknown has to be in a given discrete space and the equation is tested with
the same space) can be read as transmission conditions on a problem set in free
space. This is actually what is done to get to any of the coercivity/stability
estimates, so the approach just incides in this variational point of view of BIE
by extending it to Galerkin semidiscretization-in-space. Apart from giving new
insights on more complicated formulations (boundary-field formulations prepared
for BEM-FEM discretization, direct BIE, etc), this approach has the advantage
that the potential postprocessing is analyzed at the same time as the boundary
unknowns and the bounds are much tighter.

Time domain analysis. A paper of Brian Rynne [27] seems to be the first at-
tempt at analysing TDBIE (in this case the time domain EFIE) using techniques
developed for hyperbolic equations, without any resort to the Laplace domain. The
paper in question uses a straightening of the boundary and results for hyperbolic
Cauchy problems (the initial value is set in time and on the flattened boundary of
the scatterer), and seems to be only applicable on smooth domains. However, in re-
cent years, we have been developing an approach based on C0-groups of isometries
applied to abstract differential equations of the second order in Hilbert spaces to
analyze all this family of operators and their Galerkin semidiscretizations-in-space.
As of this moment, this theory has seen three steps in its development:

• Study of the dynamical systems associated to the Galerkin semidiscretiza-
tion of a wide range of problems [29] with the goal of showing energy
conservation and well-posedness of the semidiscrete-in-space equations.

• Direct time domain analysis of the entire Calderón Calculus (all four in-
tegral operators, the two potentials, the inverses of the coercive operators
of the Calderón projector and the Dirichlet-to-Neumann and Neumann-
to-Dirichlet operators) using the same ideas [15].

• Extension of the previous technology to analyze a complete example with
semidiscretized TDBIE, including the action of a TDBIE on data, all po-
tential posprocessings and multistep-CQ discretization-in-time [6]. In this
case, even the effect of CQ for full discretization is analyzed in the time
domain.
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What can be learnt from these new approaches is that time-domain techniques pro-
vide much tighter (less pessimistic) estimates for operators, their discrete inverses,
postprocessing, etc. In particular, all new bounds seem to behave very reasonably
for long times, confirming what has been observed in practical applications. While
the techniques involved in the analysis are not particularly deep, these early steps
have to be taken with great care, making sure that several apparently equivalent
problems are effectively so.

In the forthcoming [30], I am trying to develop a streamlined approach to this
analysis, so that, when time arrives and we want to apply it to complicated situa-
tions, the artillery is ready and the focus can be set on what is new or important
in each new situation. These are the basic steps of the time domain analysis at
present time.

(1) Identify the problems (the forward operator or potential, a semidiscrete
Galerkin inversion of one of the operators, or the complementary of the
associated Galerkin projection) as an initial value problem in free space
with transmission conditions related to the space semidiscretization. Only
some transmission conditions are non-homogeneous.

(2) Cut-off the space sufficiently far from the boundary where potentials and
operators are defined. The distance to this artificial boundary has to be
taken into account, since the cut-off problem will coincide with the original
problem only for a finite time-interval.

(3) Identify the dynamical system associated to the cut-off problem. A check-
list of conditions is available, making this part of the analysis an easy game.
Transmission conditions have to be lifted in order to fit into traditional set-
tings of non-homogeneous Cauchy problems. Use results from C0-groups
of isometries (bounds related to the associated Duhamel principle and the
well-tuned machinery of the Hille-Yosida-Lumer-Philips theory) to prove
continuity of the solutions to the cut-off problem for all times.

(4) Show that the strong solutions in the cut-off domain are the same as the
weak distributional solutions of the original problem in free space and
transfer all results from one to the other.

(5) Finally, take advantage of the convolutional structure (the one that allows
to do all the analysis in the Laplace domain), to use shifting theorems to
obtain the final version of all bounds.

This work is part of an long term project including several collaborators: Antonio
Laliena (University of Zaragoza, Spain), Vı́ctor Domı́nguez (Public University of
Navarre, Spain), Lehel Banjai (Heriot-Watt University, UK), Christian Lubich
(University of Tübingen, Germany) and my students at the University of Delaware
(Sijiang Lu, Zhixing Fu, Tonatiuh Sánchez-Vizuet, Tianyu Qiu, and Matthew
Hassell). This research is partially funded by the NSF (Grant DMS 1216356).
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Efficient solutions of three dimensional periodic scattering problems

Catalin Turc

(joint work with Oscar Bruno, Stephen Shipman, and Stephanos Venakides)

We consider the problem of scattering of time-harmonic acoustic plane waves from
a sound-soft difraction grating. The diffraction grating is given by Γ = {(x, y, z) :
z = f(x, y)} where f is a smooth bi-periodic function of periods d1 and d2 re-
spectively, that is f(x + d1, y + d2) = f(x, y). Specificaly, we seek to solve the
scattering problem

∆u+ k2u = 0 in Γ+

u = −uinc on Γ(1)

where Γ+ = {(x, y, z) : z > f(x, y)} and the incidence is taken to be a plane wave
given by

(2) uinc(x) = exp(ikd · x) = exp[i(αx + βy − γz)]

where α = k sinψ cosφ, β = k sinψ sinφ, and γ = k cosψ. In order to ensure well-
posedness, we require that the field u be (α, β) quasi-periodic, i.e. u(x + d1e1 +
d2e2) = eiαd1+iβd2u(x), and radiative, that is

(3) u(x) =

∞∑

r=−∞

∞∑

s=−∞
Br,s exp(iαrx+ iβsy + iγr,sz), z > max f

where

(4) αr = α+
2πr

d1
, βs = β +

2πs

d2
, γr,s = (k2 − α2

r − β2
s )

1
2 .
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The last square root is chosen so that Im(γr,s) ≥ 0; the propagating modes core-
spond to indices in the set U = {(r, s) : Im(γr,s) = 0}. Equations (1) with the ra-
diation conditions (3) have a unique solution [3]. We present next a quasi-periodic
integral equation formulation of equations (1) based on quasi-periodic Green’s
functions. We look for scattered fields u which are solutions of equations (1) in
the form of a single layer potential

(5) u(x) =

∫

Γ

Gk(|x− x′|)µ(x′)ds(x′)

in terms of the unknown surface density µ and the outgoing Green’s function

Gk(|z|) = eik|z|

4π|z| . Using the continuity property of the single layer potentials and

the sound soft boundary conditions, the unknown density µ is a solution of the
integral equation

(6)

∫

Γ

Gk(|x − x′|)µ(x′)ds(x′) = −eikd·x, x ∈ Γ.

Equations (6) can be rewritten in a form that involves (a) a quasi-periodic Green’s
function G(x,x′) defined for points x and x′ on Γ per = {(x, y, z) : 0 ≤ x < d1, 0 ≤
y < d2, z = f(x, y)} as

(7) G(x,x′) =
∞∑

m=−∞

∞∑

n=−∞
Gk(x− x′ +md1, y− y′ + nd2, z− z′)e−iαmd1e−iβnd2

and (b) a smooth density µ defined on Γ per; the function G(x,x′) defined in equa-
tion (7) is referred to as the (α, β) quasi-periodic Green’s function. Specifically,
with the notations introduced above, the integral equation formulations for the
sound-soft case can be written in the form
(8)∫

Γper

G(x,x′)µ(x′)ds(x′) = −eik(αx+βy+γf(x,y)), (x, y), (x′, y′) ∈ [0, d1]× [0, d2].

The translation invariance of the radiation condition implies that G(x,x′) depends
only on x−x′, which allows one to write G(x,x′) = G(x−x′). The function G(x)
satisfies

G(x + (md1, nd2, 0)) = G(x)ei(αmd1+βnd2) for all m,n ∈ Z ,

∇2G(x) + k2G(x) = −
∑

m,n

δ(x−md1, y − nd2, z)e
i(αmd1+βnd2) .

Such a Green function G exists as long as the free-space wavenumber k does not

coincide with the wavenumber
(
(α+ 2πj/d1)

2 + (β + 2πℓ/d2)
)1/2

, (j, ℓ) ∈ Z2, of
any of the Fourier modes of the lattice. In this case, the pseudo-periodic Green
function can be written as the lattice sum

(9) G(x, y, z) =
1

4π

∑

m,n∈Z

eikrmn

rmn
e−i(αmd1+βnd2) ,
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in which
rmn = ((x+md1)

2 + (y + nd2)
2 + z2)

1
2 .

This sum is only conditionally convergent [2], and its convergence rate of ∼ C/r
is too slow to be computationally feasible. If the triple (k, α, β) admits a pair of
integers (j, ℓ) for which

(10) k2 =

(
α+

2πj

d1

)2

+

(
β +

2πℓ

d2

)2

, (Wood anomaly condition)

then no pseudo-periodic Green function exists, even if the problem of scattering
by a given periodic structure is uniquely solvable.

The very slow conditional convergence of the periodic Green function (7) has
been extensively discussed in the literature, and various methods to accelerate its
convergence, notably the Ewald’s method, have been proposed. We propose a
method for fast evaluation of quasi-periodic Green functions consisting of truncat-
ing the lattice sum by a smooth cutoff function χ with compact support that is
equal to unity in a neighborhood of the origin:

(11) G(x, y, z) ≈ Ga(x, y, z) :=
1

4π

∑

m,n∈Z

eikrmn

rmn
e−i(αmd1+βnd2) χ(d1m

a , d2n
a ) ,

in which rmn = ((x+md1)
2+(y+nd2)

2+z2)
1
2 and a is a large number. Typically,

χ will be either a radial function or one that is separable in x and y,

χ(s, t) = ψ(
√
s2 + t2) or χ(s, t) = ψ(s)ψ(t)

with ψ(u) being a smooth monotonic function equal to unity for |u| ≤ 1 and equal
to nullity for |u| ≥ 2. Theorem 4 establishes the super-algebraic convergence of
the smoothly cut off lattice sum to the periodic Green function.

Theorem 4 (Green function at non-Wood frequencies; super-algebraic conver-
gence). Let χ be a smooth function of two variables such that

χ(s, t) = 1,
√
s2 + t2 ≤ A,

0 < χ(s, t) < 1, A <
√
s2 + t2 < B,

χ(s, t) = 0, B ≤
√
s2 + t2,

for some positive numbers A and B. If γjℓ 6= 0 for all (j, ℓ) ∈ Z2, then the
functions

G
a(x, y, z) =

1

4π

∑

m,n∈Z

eik((x+md1)
2+(y+nd2)

2+z2)1/2

(

(x+md1)2 + (y + nd2)2 + z2
)1/2

e
−i(αmd1+βnd2) χ(md1

a
, nd2

a
)

converge to the radiating quasi-periodic Green function G(x, y, z) super-algebraically
as a → ∞. Specifically, for each compact set K ∈ R3, there exist constants
Cn = Cn(k) such that

|Ga(x, y, z)−G(x, y, z)| < Cn(k)

an

if a is sufficiently large and (x, y, z) ∈ K, (x, y, z) 6∈ d1Z× d2Z× {0}.
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At and around Wood anomalies we employ a combination of shifts in the z
variable of Gk(x), which introduces poles at several perpendicular shifts of the
integer lattice Z2,

Gp
k(x) =

p∑

q=0

apqGk (x+ (0, 0, qd)) .

The numbers apq are chosen to effect a pth-order difference in z, that is

apq = (−1)q
(
p

q

)
, 0 ≤ q ≤ p .

The use of the shifted free space Green’s functions Gp
k gives rise to quasi-periodic

Green’s functions Gp that converge even at Wood anomalies. However, for values
of the shift d so that eiγr,sd = 1 for some indices (r, s), these quasi-periodic Green’s
functions are not radiative. The remedy is to incorporate in the quasi-periodic
Green’s function the propagating modes that may have been annihilated by the
shifts. Thus, if d > 0 the function

(12) Gp(x) =
∑

m,n∈Z

Gp
k(rmn)e

−i(αmd1+βnd2) +
∑

j,ℓ∈U

bjℓ e
iαjx+iβℓy+iγjℓz,

is a quasi-periodic Green’s function in the domain {z > 0} that converges even at
Wood anomalies and is radiative for all but a finite number of values of coefficients
bjℓ. Furthermore, if we define functions Gp,a analogoulsy to the functions Ga

in equation (11), then Gp,a converge to Gp at an algebraic rate of a1/2−⌈p/2⌉

throughout the frequency domain. If we look for scattered fields u in terms of
single layer potentials with shifted quasi-periodic functions Gp defined in (12) and
densities µp we obtain the boundary integral equation
(13)∫

Γper

Gp(x,x′)µp(x′)ds(x′) = −eik(αx+βy+γf(x,y)), (x, y), (x′, y′) ∈ [0, d1]×[0, d2].

Theorem 5. For all d0 > 0 integral equations (13) are uniquely solvable in
L2([0, d1]×[0, d2]) provided that d 6∈ D, where D is a subset of R such that D∩[0, d0]
is finite for each d0.

We solved integral equations (13) using the high-order Nyström methods in-
troduced in [1] for a bisinusoidal grating whose height to period ratio equals to
1. We present in Table 3 numerical results for the first three Wood anomalies of
the periodic configuration at normal incidence, including the number of GMRES
iterations needed to reach a residual of 10−4, and errors ǫ1 in the coefficient B0,0

defined in equation (3) and energy balance errors ǫ.
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k Unknowns a iter ǫ1 ǫ
2π 24 × 24 20 14 1.9 × 10−2 3.9 × 10−2

2π 24 × 24 30 14 4.2 × 10−3 4.0 × 10−3

2
√
2π 24 × 24 30 31 1.6 × 10−2 4.1 × 10−2

2
√
2π 24 × 24 40 31 3.4 × 10−3 6.2 × 10−3

4π 32 × 32 30 280 4.6 × 10−2 4.9 × 10−2

4π 32 × 32 40 268 7.4 × 10−3 6.5 × 10−3

Table 3. Convergence of the solvers using Ga,p, p = 3, shift d = 2.4.

[3] Chen, X. and Friedman, A., Maxwell’s Equations in a Periodic Structure, Trans. Am.
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Université de Rennes I
Campus de Beaulieu
35042 Rennes Cedex
FRANCE

Prof. Dr. Monique Dauge

I.R.M.A.R.
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Institut für Analysis und
Scientific Computing
Technische Universität Wien
Wiedner Hauptstr. 8 - 10
1040 Wien
AUSTRIA

Dr. Euan Spence

Dept. of Mathematical Sciences
University of Bath
Claverton Down
Bath BA2 7AY
UNITED KINGDOM



Computational Electromagnetism and Acoustics 237

Prof. Dr. Olaf Steinbach

Institut für Numerische Mathematik
Technische Universität Graz
Steyrergasse 30
8010 Graz
AUSTRIA

Prof. Dr. Sebastien Tordeux
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