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Introduction by the Organisers

The aim of this workshop was to offer an exchange forum for graph theory and
related fields in pure mathematics. We had eight ‘main’ longer talks, 22 shorter
talks, seven informal workshops on topics suggested by the participants, and plenty
of further informal interaction.

Particular emphasis was given to fields that have seen particularly exciting
recent developments:

• Graph limits, either dense or sparse;

• Infinite matroids;

• Colouring graphs on surfaces;

• Graph minors, graph immersions, and tree-structure.

The theory of graph limits , initiated a few years ago by Borgs, Chayes, Lovász,
Sós, Szegedy and Vesztergombi, has been taken up and developed further by a
number of leading researchers. The original idea was to describe properties of dense
graphs by continuous objects, graphons , that occur as limit objects of sequences of
such graphs, so that analytical methods could be brought to bear on the study of
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such properties. In an independent development, Razborov proposed a theory of
flag algebras , whose applications to extremal graph homomorphism and induced
subgraph density problems have turned out to be interchangeable with those of
graph limits.

For (very sparse) graphs of bounded degree, such as Cayley graphs of finitely
generated groups, Benjamini and Schramm had earlier developed another limit
theory, also with probabilistic ingredients, but whose limits were essentially still
graphs (albeit infinite). Extending these ideas, Elek recently proposed a more
general notion of graphings as limit objects of sparse graphs.

Several of our talks were from this area, including the main talks by László
Lovász on Borel graphs, graphings, and limits of bounded-degree graphs , and by
Christian Reiher with a proof of The clique density theorem. This had been con-
jectured by Lovász and Simonovits in the 1970s.

Following the recent axiomatization of infinite matroids with duality by Bruhn,
Diestel, Kriesell, Pendavingh and Wollan, infinite matroid theory has seen a surge
of activity that has produced some deep results and conjectures, unifying some of
its major open problems, and relating it to both infinite graph theory and logic.

Nathan Bowler gave a main talk about these developments. He put an em-
phasis on newly emerging bonds between infinite matroids and graphs topologized
with their ends; these can be described elegantly in terms of the determinacy of
infinite games. A highlight of the talk was a new packing/covering conjecture for
infinite matroids, a central conjecture that unifies some of the main classical open
conjectures about infinite matroids, such as matroid intersection and union.

The area of colouring graphs on surfaces is a classical one dating back to Hea-
wood’s formula from 1890. One chapter of its development was completed by the
map color theorem of Ringel and Youngs in the 1960s. A modern approach to the
subject and a research programme was initiated by Thomassen in the 1990s.

We had a main talk by Luke Postle on Linear isoperimetric bounds for graph
colouring, a new technique in the area based on the recent discovery that many
colouring results are a direct consequence of the fact that the corresponding ‘criti-
cal’ graphs (those that are minimally uncolourable) satisfy a certain isoperimetric
inequality.

The theory of graph minors, initiated by Robertson and Seymour in the 1980s,
is both maturing and expanding. It is maturing in that its main structural results
are increasingly well understood: their assertions and proofs have been simplified
and strengthened in a long process of identifying the essentials, converging to a
leaner and more powerful theory that is now taking shape. It is also expanding:
in the direction of directed graphs (in particular, of tournaments), of matroids,
and of graph orderings stronger than that of minors, such as topological minors or
immersions. There is now a unifying theory establishing the existence of canonical
tree-decompositions of graphs and matroids that can distinguish their dense parts,
such as higher-order blocks or tangles. Finally, graph minor theory is increasingly
used in computer science, both for concrete algorithms and abstract complexity
theory issues such as fixed-parameter tractability.
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We had several talks on these topics, including main talks by Dániel Marx on
The k-disjoint paths problem in directed planar graphs , and by Paul Seymour on
Grid immersion and multicommodity flows .

Further main talks were given by János Pach on Geometric graph theory and
Lex Schrijver on The edge colouring model .

Finally, we had a number of informal workshops focused on a particular topic,
often initiated by the participants but open to all. Their topics were:

• Graph limits and flag algebras (convenor: Král)

• Ramsey goodness (convenor: Conlon)

• Infinite matroids (convenors: Bowler and Carmesin

• Sparse regularity (convenors: Conlon and Fox)

• Flows (convenor: Šámal)

• Colin de Verdière - type parameters (convenor: van der Holst)

• The Lovász theta function (convenor: Šámal)

Reinhard Diestel
Gábor Tardos
Robin Thomas
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Stéphan Thomassé (joint with Nicolas Bousquet, Aurélie Lagoutte)
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Abstracts

Borel graphs, graphings, and limits of bounded-degree graphs

László Lovász

We describe objects that can serve as limit objects of bounded degree graphs. We
fix a positive integer D, and consider graphs with all degrees bounded by D.

Let G be a graph with node set V (G) = [0, 1]. We call G a Borel graph, if its
edge-set is a Borel set in [0, 1] × [0, 1]. As an example, consider the graph Ca on
[0, 1) in which a node x is connected to x+ a (mod 1) and x− a (mod 1). If a is
irrational, we get a graph that consists of two-way infinite paths; if a is rational
the graph will consist of cycles.

There is a rather rich theory of Borel graphs (see e.g. Kechris and Miller [6]). In
the talk we state and prove only a few results. For example, Kechris, Solecki and
Todorcevic [7] proved an extension of Brooks’ Theorem to Borel graphs: Every
Borel graph has a node coloring with D + 1 colors in which nodes with any given
color form a Borel set.

Now we take the Lebesgue measure on [0, 1] into account. We say that a Borel
graph G on [0, 1] is a graphing, if it is Borel and for any two measurable sets A
and B, we have

(1)

∫

A

degB(x) dλ(x) =

∫

B

degA(x) dλ(x).

This condition makes it possible to do “double counting” arguments in graphings.
It is not quite trivial to prove that every Borel subgraph of a graphing is a

graphing [8]. From this it is easy to derive that the union and intersection of two
graphings are graphings.

Let Γ be a finitely generated group of measure preserving transformations acting
on [0, 1]. Connect every x ∈ [0, 1] to its images under the generators. The resulting
graph is a graphing. Conversely, every graphing arises this way.

As defined by Benjamini and Schramm [2], a sequence of graphs Gn with
|V (Gn)| → ∞ is called locally convergent if the distribution of the r-neighborhood
of a random node of Gn converges for every r. For every convergent sequence
there is a graphing in which the distribution of r-neighborhoods is the limit of
these distributions (Aldous-Lyons [1], Elek [4]).

It was proved by Hatami, Lovász and Szegedy [5] (see also [8]) that graphings
can represent the limit objects for a stronger notion of convergence, the “local-
global convergence” introduced by Bollobás and Riordan [3].
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The edge coloring model

Alexander Schrijver

Following de la Harpe and Jones [2], a vertex model, also called edge coloring model
(with n colors or states), is any linear function h : F[x1, . . . , xn] → F, where F is
a field. The partition function p(h) of h is defined by, for any undirected graph
G = (V,E),

p(h)(G) :=
∑

φ:E→[n]

∏

v∈V
h(

∏

e∈δ(v)
xφ(e)).

Here δ(v) is the set of edges incident with v. So p is a linear function, with

p : F[x1, . . . , xn]∗ → F
G ,

where G denotes the set of undirected graphs, including the ‘vertexless loop’ O (so
p(h)(O) = n).

The edge coloring model is dual to the “vertex coloring model” (called spin
model by de la Harpe and Jones), where the roles of vertices and edges are inter-
changed.

Recently, several studies of the vertex coloring model have been made, in par-
ticular characterizations of their partition functions where F = R or F = C, and
studies of the limit behaviour of these functions, whereF = C. In this talk we
consider similar questions for the edge coloring model.

The basic characterization, and a basic technique involving invariant theory,
was given by Szegedy [6], who characterized partition functions of edge coloring
models over the reals. It is the counterpart of a characterization of Freedman,
Lovász, and Schrijver [1] for partition functions of the vertex coloring model —
however, quite different techniques were needed.

We characterize such edge coloring partition functions for the case of the com-
plex numbers, by means of an exponential upper bound on the rank of the corre-
sponding ‘connection matrices’.

Define a k-fragment to be an undirected graph, with k of its vertices being
labeled 1, . . . , k, each having degree 1. Let Gk denote the collection of k-fragments.
If G,H ∈ Gk, let G · H be the graph obtained from the disjoint union of G and
H by identifying the two vertices labeled i, and joining the two edges incident
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with it to one edge, while deleting the vertex (for i = 1, . . . , k). (In this way, the
vertexless loop can arise.)

If f : G → F, the k-th connection matrix Cf,k of f is the Gk × Gk matrix with

(Cf,k)G,H := f(G ·H)

for G,H ∈ Gk. Szegedy [6] proved that any function f : G → R is the partition
function of some real edge coloring model if and only if f(∅) = 1, rank(Cf,0) = 1,
and Cf,k is positive semidefinite for each k. (Here ∅ is the graph with no vertices
and no edges.)

As a counterpart, we show in [5]:

Theorem 1. Let f : G → C and n ∈ N. Then f is the partition function of some
n-color edge coloring model over C if and only if f(∅) = 1, f(O) = n, and

rank(Cf,k) ≤ nk

for each k ∈ N.

Theorem 1 thus characterizes the image of p. Note that p is invariant under the
action of the complex orthogonal group O(n,C) on F[x1, . . . , xn]∗. Let, as usual ,

C[x1, . . . , xn]∗//O(n,C)

denote the corresponding closed orbit space (the variety made by the Zariski-closed
orbits of the action of O(n,C) on C[x1, . . . , xn]∗). It can be proved that this variety
is isomorphic to the variety of partition functions of n-color edge coloring models:

C[x1, . . . , xn]∗//O(n,C) ≈ {f ∈ C
G | ∃h ∈ C[x1, . . . , xn]∗ : f = p(h)}.

So for each fixed number n of colors, the partition functions form an affine variety.
Moreover, we show, in joint work with Guus Regts [4], that limits of (real)

edge coloring models do exist, which answers a question of Lovász [3]. To describe
it, consider the set R[x1, x2, . . .] of polynomials in infinitely many variables (each
polynomial uses only finitely many variables). Let B be the set of elements of
h ∈ R[x1, x2, . . .]

∗ with
∑

ψ∈Nd

h(xψ(1) · · ·xψ(d))2 ≤ 1

for each d. As before, the partition function p(h) of h ∈ B is defined by, for any
undirected graph G = (V,E),

p(h)(G) :=
∑

φ:E→N

∏

v∈V
h(

∏

e∈δ(v)
xφ(e)).

Theorem 2. Let h1, h2, . . . ∈ B be such that for each simple graph G, p(hi)(G)
converges as i→ ∞. Then there exists h ∈ B such that for each simple graph G,

lim
i→∞

p(hi)(G) = p(h)(G).
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This theorem is proved in the framework of Hilbert spaces, and is based on the
Alaoglu theorem of the weak compactness of the unit ball of Hilbert spaces. The
theorem also gives rise to approximating multi-variate homogeneous polynomials
by low-rank polynomials — the rank only depending on the degree of approxima-
tion required, and not on the number of variables in the polynomial.
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The clique density theorem

Christian Reiher

Suppose you are confronted with a graph on n vertices having at least γ ·n2 edges
(where γ denotes a real number from the half open interval [0, 1/2)) and based
on these data you want to give a lower bound on the number of its triangles as
large as possible. Here we consider γ as fixed whilst n is thought of as being very
large or even as tending to infinity. By the easy direction of Turán’s classical
theorem from [8] we know that no triangle needs to exist in case γ < 1/4. If
γ > 1/4, however, then an easy triangle removal argument shows that the number
of triangles is proportional to n3. So let us denote the largest number δ such that
any graph on n vertices having at least γ ·n2 edges contains at least δ ·n3 triangles
by F3(γ). It can be shown that this maximum really exists and that it is does not
“depend on small graphs”. Thus it is an interesting question to determine this
function F3.

Repeating the well known proof of Turán’s in which one compares the sum
of the squares of the degrees of the vertices with the square of the sum of the
degrees of the vertices by means of the Cauchy Schwarz Inequality, Goodman

proved F3(γ) ≥ γ(4γ − 1)/3 in [1]. A cursory inspection of this argument, how-
ever, reveals that equality only seems possible if γ belongs to the discrete set
{0, 1/4, 1/3, 3/8, 2/5, . . . , (s − 1)/2s, . . .}, and that in these cases equality holds
exactly at Turán graphs. This makes it plausible that for general values of γ
Goodman’s bound may be improved and e.g. that for γ ∈ [1/4, 1/3] a graph
where the true value of F3(γ) is achieved may be constructed by “interpolating”
between the complete bipartite and the complete tripartite Turán graph. Doing
some calculations one finds that writing γ = (1 − α2)/3 with α ∈ [0, 1/2] and
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imagining a complete tripartite graph the two bigger of whose vertex classes have
size (1 + α)n/3 whilst the remaining smaller vertex class contains the remaining
(1 − 2α)n/3 vertices has γ · n2 edges and (1 + α)2(1 − 2α)n3/27 triangles. Thus
(1 + α)2(1 − 2α)/27 is a reasonable candidate for the true value of F3(γ) in this
range. The easiest known proof of this fact is described in the fifth section of [5]
as an application of Razbrov’s “differential calculus for flag algebra homomor-
phisms”.

For larger values of γ the picture looks in some respects similar: To predict the
value of F3(γ) one commences by locating γ in an interval of the form [ s−1

2s ,
s

2(s+1) ],

where s ≥ 2 is integral, visualizes a complete (s+1)–partite graph with γ ·n2 edges
all of whose vertex classes except for one possibly smaller one are of equal size,
and counts the number of triangles that it contains. It has been conjectured by
Lovász and Simonovits in the 1970s that this procedure does indeed give rise
to the true value of F3(γ). Recently this has been proved by Razborov in [6]
using again his flag algebraic devices. It should be pointed out that the general
proof is by far more difficult than the corresponding argument in the special case
γ ∈ [1/4, 1/3]. A reasons for this is that after some calculations one reaches a point
where it would be helpful to know something about the least number of 4–cliques
such a graph can contain. This number is plainly zero if γ is smaller than 1/3, and
so the corresponding term can simply be thrown away in this case, whereas in the
general case some delicate analysis seems to be necessary to handle this term.

Now actually Lovász and Simonovits conjectured much more in [2], namely
that the same strategy leads to a true conjecture about the function Fr defined
similarly but using r–cliques instead of triangles, the minimum number of which
is, of course proportional to nr. The case r = 4 of this conjecture has recently been
proved by Nikiforov in [3], who also gave an alternative treatment of the case
r = 3. His proofs are easier to read than [6] for people unfamiliar with [5], for he
uses a finitary analytical language similar to the one occurring in the alternative
proof of Turán’s Theorem described by Motzkin and Strauss in [4] rather than
Razborov’s infinitary flag algebraic language.

The talk uses this elementary language of weighted graphs and sketches the
proof of the general version of Lovász’ and Simonovits’ clique density conjec-
ture obtained in November 2010, [7]. The argument is much closer in spirit to
Razborov’s original treatment of triangles than to Nikiforov’s approach, and
both languages could have been with equal ease. An additional difficulty encoun-
tered in the argument is that when thinking about the number of r–cliques one
arrives at an inequality involving the numbers of triangles, r–cliques, and (r+ 1)–
cliques that is difficult to analyze further.

To conclude this abstract, we would like to state the Clique Density Theorem:
If r ≥ 3 and γ ∈

[

0, 12
)

, then every graph on n vertices with at least γ · n2 edges
contains at least

1

(s+ 1)r

(

s+ 1

r

)

(1 + α)r−1 (1 − (r − 1)α) · nr
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cliques of size r, where s ≥ 1 is an integer for which γ ∈ [ s−1
2s ,

s
2(s+1) ], and α ∈ [0, 1s ]

is implicitly defined by γ = s
2(s+1) (1 − α2).
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Infinite matroids

Nathan Bowler

The results presented below are joint work with Hadi Afzali, Johannes Carmesin
and Robin Christian, in various constellations.

The talk begins with an overview of the recent rapid progress in the development
of the theory of infinite matroids. Although there was some early progress in this
field in the ’60s and ’70s [15], and the correct class of objects (called at the time B-
Matroids, and due to Higgs [13]) was known, it was only after the introduction by
Bruhn et al. of simpler axiomatisations for this class [10] that it became practical
to work with these objects. Developments since then include the extension to
infinitary matroids of many familiar concepts and theorems from finite matroid
theory, including connectivity and the linking theorem [11], tree decompositions
over 2-separations [4], representability [1, 6], graphic matroids [9, 7], and matroid
union [3] and intersection [5].

Next, I discuss a rich class of examples of infinite matroids with a close rela-
tionship to infinite graphs. Let G be a locally finite graph. We call the new limit
points in the Freudenthal compactification |G| of G the ends of G. For a given set
Ψ of ends of G, we consider the subsets of the ground set given by edge sets of
topological circles in |G| that don’t use any ends except those in Ψ. If Ψ is Borel,
these sets give the circuits of a matroid MΨ(G) [8]. The proof relies on Borel
determinacy [14], and the question of when such constructions give matroids is
closely linked to the question of which games are determined. This class of ex-
amples is rich enough to show that there are as many countably infinite matroids
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as there could possibly be (22
ℵ0

) and that the class of infinite planar matroids is
not wellquasiordered. We may also deduce that any connected subspace of |G|
meeting the ends in a Borel set is path-connected. It was previously known that
in general |G| may have subspaces that are connected but not path-connected [12].

Finally, I discuss the most important open problem in infinite matroid theory
- the packing-covering conjecture [5]. A packing for a family of matroids on the
same ground set consists of a disjoint family of bases, one from each matroid.
Similarly, a covering for such a family of matroids consists of a family of bases,
one from each matroid, whose union is the whole ground set. The packing-covering
conjecture states that for any family of matroids there is a partition of the ground
set into two parts, the packing side and the covering side, such that the family
obtained by contracting the matroids onto the packing side has a packing and the
family obtained by restricting the matroids to the covering side has a covering. I
explain how this conjecture provides a common unifying generalisation of several
key results of finite matroid theory: the matroid intersection theorem, the base
packing and covering theorems and the rank formula in the matroid union theorem.
It also would imply the Aharoni-Berger theorem [2], a deep result generalising
Menger’s theorem to infinite graphs.

References

[1] H. Afzali and N. Bowler, Thin sums matroids and duality, arXiv1204.6294 (2012).
[2] R. Aharoni and E. Berger, Menger’s theorem for infinite graphs Invent. math.. 176 (2009),

1-62.
[3] E. Aigner-Horev, J. Carmesin and J. Fr ohlich, Infinite matroid union, arXiv:1111.0602

(2011)
[4] E. Aigner-Horev, R. Diestel and L. Postle, The structure of 2-separations of infinite ma-

troids, arXiv:1201.1135 (2012).
[5] N. Bowler and J. Carmesin, Matroid intersection, base packing and base covering for infinite

matroids, arXiv:1202.3409 (2012).
[6] N. Bowler and J. Carmesin, An excluded minors method for infinite matroids,

arXiv:1212.3939 (2012).
[7] N. Bowler and J. Carmesin, Graph-like spaces and infinite matroids, in preparation.
[8] N. Bowler and J. Carmesin, Infinite matroids and determinacy of games, in preparation.

[9] H. Bruhn and R. Diestel, Infinite matroids in graphs, arXiv:1011.4749 (2010).
[10] H. Bruhn, R. Diestel, M. Kriesell, R. Pendavingh and P. Wollan, Axioms for infinite ma-

troids, arXiv:1003.3919 (2010).
[11] H. Bruhn and P. Wollan, Finite connectivity in infinite matroids Eur. J. Comb. 33, 8 (2012),

1900-1912.
[12] A. Georgakopoulos, Connected but not path-connected subspaces of infinite graphs, Combi-

natorica 27, 6 (2007), 317-328.
[13] D.A. Higgs, Matroids and duality, Colloq. Math. 20 (1969), 215–220.
[14] D.A. Martin, A purely inductive proof of Borel Determinacy, Proc. Sympos. Pure Math.

42, 303–308 (1985).
[15] J.G. Oxley, Infinite Matroids, Proc. London Math. Soc. 37 (1978), no. 3, 259–272.



80 Oberwolfach Report 02/2013

Linear isoperimetric bound for coloring graphs on surfaces

Luke Postle

The new results presented below are joint work with Robin Thomas.

1. Coloring Graphs on Surfaces

Mathematicians have long been interested in coloring maps. A natural question
is to ask what is the fewest number of colors so that the regions or countries of
a map that touch one another have different colors. For planar maps, it was
long conjectured that four colors suffices. The Four-Color Theorem, proved in the
1970s, settled this conjecture in the affirmative.

Let X be a nonempty set. We say that a function φ : V (G) → X is a coloring
of G if for all e = uv ∈ E(G), φ(u) 6= φ(v). We say that a coloring φ : V (G) → X
is a k-coloring if |X | = k. We say that a graph G is k-colorable if there exists a
k-coloring of G. The chromatic number of G, denoted by χ(G), is the minimum k
such that G is k-colorable.

Mathematicians have wondered what generalizations of the Four-Color Theorem
might be true. A natural class of graphs to determine the coloring properties for is
graphs embedded in a surface. A fundamental question in topological graph theory
is as follows: Given a surface Σ and an integer t > 0, which graphs embedded in Σ
are t-colorable? Heawood proved that if Σ is not the sphere, then every graph in
Σ is t-colorable as long as t ≥ H(Σ) := ⌊(7 +

√
24g + 1)/2⌋, where g is the Euler

genus of Σ.
Ringel and Youngs [9] proved that the bound is best possible for all surfaces

except the Klein bottle. Dirac [5] and Albertson and Hutchinson [2] improved
Heawood’s result by showing that every graph in Σ is actually (H(Σ)−1)-colorable,
unless it has a subgraph isomorphic to the complete graph on H(Σ) vertices.

Thus the maximum chromatic number for graphs embeddable in a surface has
been found for every surface. Yet the modern view argues that most graphs
embeddable in a surface have small chromatic number. To formalize this notion,
we need a definition. We say that a graph G is t-critical if it is not (t−1)-colorable,
but every proper subgraph of G is (t−1)-colorable. Using Euler’s formula, Dirac [6]
proved that for every t ≥ 8 and every surface Σ there are only finitely many t-
critical graphs that embed in Σ. By a result of Gallai [8], this can be extended to
t = 7. Indeed, this was extended to t = 6 by Thomassen 1.

Theorem 1. For every surface Σ, there are finitely many 6-critical graphs that
embed in Σ.

Furthermore, Theorem 1 yields an algorithm for deciding whether a graph on
a fixed surface is 5-colorable.

Corollary 1. There exists a linear-time algorithm for deciding 5-colorability of
graphs on a fixed surface.

This follows from a result of Eppstein which gives a linear-time algorithm for
testing subgraph isomorphism on a fixed surface. Hence if the list of 6-critical
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graphs embeddable on a surface is known, one need merely test whether a graph
contains one of the graphs on the list. The list is known only for the projective
plane, torus, and Klein bottle.

2. List-Coloring Graphs on Surfaces

There exists a generalization of coloring where the vertices do not have to be
colored from the same palette of colors. We say that L is a list-assignment for a
graph G if L(v) is a set of colors for every vertex v. We say L is a k-list-assignment
if |L(v)| = k for all v ∈ V (G). We say that a graph G has an L-coloring if there
exists a coloring φ such that φ(v) ∈ L(v) for all v ∈ V (G). We say that a graph
G is k-choosable, also called k-list-colorable, if for every k-list-assignment L for G,
G has an L-coloring. The list chromatic number of G, denoted by ch(G), is the
minimum k such that G is k-list-colorable.

Note that χ(G) ≤ ch(G) as a k-coloring is a k-list-coloring where all the lists
are the same. In fact, Dirac’s Theorem[5] has been generalized to list-coloring by
Bohme, Mohar and Stiebitz for most surfaces; the missing case, g(Σ) = 3, was
completed by Kral and Skrekovski. Nevertheless, list-coloring differs from regular
coloring. One notable example of this is that the Four Color Theorem does not
generalize to list-coloring. Indeed Voigt constructed a planar graph that is not
4-choosable.

Yet the list chromatic number of planar graphs is now well understood, thanks
to Thomassen [10]. He was able to prove the following remarkable theorem with
an outstandingly short proof.

Theorem 2. Every planar graph is 5-choosable.

If L is list assignment for a graph G, then we say that G is L-critical if G does
not have an L-coloring but every proper subgraph of G does. Similarly, we say
that G is k-list-critical if G is not (k− 1)-list-colorable but every proper subgraph
of G is. Thomassen [12] gave a simple proof that there are only finitely many
7-list-critical graphs on a fixed surface. Indeed, Thomassen proved the following
stronger theorem. Naturally then, Thomassen conjectured (see Problem 5 of [12])
that Theorem 1 generalizes to list-coloring, which we proved:

Theorem 3. [Postle and Thomas] If G is a 6-list-critical graph embedded on a
surface Σ of genus g, then |V (G)| = O(g). Hence for every surface, there exist
only finitely many 6-list-critical graphs that embed in Σ.

An immediate corollary of Theorem 3 is that we are now able to decide 5-list-
colorablity on a fixed surface in linear-time. Our proof also gives a new proof of
Theorem 1 as his techniques do not apply for list-coloring. In addition, we use
Theorem 7 to give an independent proof of a version of the following theorem of
DeVos, Kawarabayashi and Mohar while improving the bound on the necessary
edge-width from exponential in genus to logarithmic in genus.

Theorem 4. If G is 2-cell embedded in a surface Σ and ew(G) ≥ Ω(log g(Σ)),
then G is 5-list-colorable.
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3. Extending Precolored Subgraphs

An important technique in the proofs of Thomassen is to ask what colorings
of a graph are possible when a certain subgraph has already been precolored. To
that end if H is a subgraph of G and φ is a coloring of H and φ′ is a coloring of
G, we say that φ extends to φ′ if φ′(v) = φ(v) for all v ∈ V (H). We proved the
following.

Theorem 5. Let G be a 2-connected plane graph with outer cycle C and L a
5-list-assignment for G. Then G contains a connected subgraph H with at most
29|C| vertices such that for every L-coloring φ of C either

(i) φ cannot be extended to an L-coloring of H, or,
(ii) φ can be extended to an L-coloring of G.

This settles in the affirmative a conjecture of Dvorak et al. [7] who had improved
Thomassen’s version of this theorem with exponential bound to quadratic. The
fact that the bound is linear is crucial to proving many of the main results. Indeed
we prove the main results outline in a general setting about families of graphs
satisfying a more abstract version of Theorem 5.

Thomassen extended his version of Theorem 1 to the case when the precolored
subgraph has more than one component. He proved the following stronger version
of Theorem 1.

Theorem 6. For all g, q ≥ 0, there exists a function f(g, q) such the following
holds: Let G be a graph embedded in a surface Σ of Euler genus g and let S be
a set of at most q vertices in G. If φ is a 5-coloring of S, then φ extends to a
5-coloring of G unless there is a graph H with at most f(g, q) vertices such that
S ⊆ H ⊆ G and the 5-coloring of S does not be extend to a 5-coloring of H.

We generalize Theorem 6 to list-coloring. Indeed, we prove that f is linear,
which is best possible up to a multiplicative constant:

Theorem 7. Let G be a connected graph 2-cell embedded in a surface Σ, S ⊆ V (G)
and L a 5-list-assignment of G. Then there exists a subgraph H with |V (H)| =
O(|S| + g(Σ)) such that for every L-coloring φ of S either

(1) φ does not extend to an L-coloring of H, or
(2) φ extends to an L-coloring of G.

Furthermore, Thomassen wondered though whether the dependence of f on the
number of components in Theorem 6 could be dropped if certain conditions were
satisfied. Specifically, Thomassen conjectured [12] that if all the components of S
were just isolated vertices whose pairwise distance in the graph was large, then
any precoloring of S always extends. Albertson [1] proved this in 1997. He then
conjectured that this generalizes to list-coloring.

Conjecture 1. There exists D such that the following holds: If G is a plane graph
with a 5-list assignment L and X ⊂ V (G) such that d(u, v) ≥ D for all u 6= v ∈ X,
then any L-coloring of X extends to an L-coloring of G.
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Dvorak, Lidicky, Mohar, and Postle [7] recently announced a proof of Albert-
son’s conjecture. In addition, Albertson and Hutchinson [3] have generalized Al-
bertson’s result to locally planar graphs on surfaces. We prove the following com-
mon generalization about list-coloring locally planar graphs on surfaces:

Theorem 8. Let G be 2-cell embedded in a surface Σ, ew(G) ≥ Ω(log g) and L
be a 5-list-assignment for G. If X ⊂ V (G) such that d(u, v) ≥ Ω(log g(Σ)) for all
u 6= v ∈ X, then every L-coloring of X extends to an L-coloring of G.

In fact, we generalize the theorem to cycles of size at most four, which in turn
implies the following theorem:

Theorem 9. Let G be drawn in a surface Σ with a set of crossings X and L be
a 5-list-assignment for G. Let GX be the graph obtained by adding a vertex vx at
every crossing x ∈ X. If ew(GX) ≥ Ω(log g(Σ)) and d(vx, vx′) ≥ Ω(log g(Σ)) for
all vx 6= vx′ ∈ V (GX) \ V (G), then G is L-colorable.

4. Exponentially Many Colorings

Thomassen wondered whether a planar graph has many 5-list-colorings. He [13]
proved the following.

Theorem 10. If G is a planar graph and L is a 5-list assignment for G, then G
has 2|V (G)|/9 L-colorings.

Thomassen [11, 13] then conjectured that Theorem 10 may be generalized to
other surfaces. Of course not every graph on other surfaces is 5-list-colorable.
Hence, Thomassen conjectured the following.

Conjecture 2. Let G be a graph embedded in a surface Σ and L is a 5-list-
assignment for G. If G is L-colorable, then G has 2c|V (G)| L-colorings where c is
a constant depending only on g, the genus of Σ.

Indeed, we show that precoloring a subset of the vertices still allows exponen-
tially many 5-list-colorings where the constant depends only on the genus and the
number of precolored vertices. In fact, we show that the dependence on genus and
the number of precolored vertices can be removed from the exponent.

Theorem 11. For every surface Σ there exists a constant c > 0 such that following
holds: Let G be a graph embedded in Σ and L a 5-list-assignment for G. If G has
an L-coloring, then G has at least 2c|V (G)| L-colorings of G.
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The k-disjoint paths problem in directed planar graphs

Dániel Marx

The new results presented below are joint work with Marek Cygan, Marcin Pilipczuk
and Micha l Pilipczuk.

A classical problem of combinatorial optimization is finding disjoint paths with
specified endpoints:

k-Disjoint Paths
Input: A graph G and k pairs of vertices (s1, t1), . . . , (sk, tk).
Question: Do there exist k pairwise vertex-disjoint paths P1, . . . , Pk such that

Pi goes from si to ti?

This problem is NP-hard even on undirected planar graphs if the number k of
paths is part of the input. However, for every fixed k, Robertson and Seymour
showed that there is a cubic-time algorithm for the problem in general graphs [4].
Their proof uses the structure theory of graphs excluding a fixed minor. Obtaining
polynomial running time for fixed k is significantly simpler in the special case of
planar graphs; see for example the self-contained presentation of Adler et al. [1].

The problem becomes dramatically harder for directed graphs: it is NP-hard
even for k = 2 in general directed graphs [3]. Therefore, we cannot expect an
analogue of the undirected result of Robertson and Seymour [4] saying that the
problem is polynomial-time solvable for fixed k. For directed planar graphs, how-
ever, Schrijver gave an algorithm with polynomial running time for fixed k:

Theorem 12 (Schrijver [5]). The k-Disjoint Paths problem on directed planar
graphs can be solved in time nO(k).

The algorithm of Schrijver is based on enumerating all possible homology types
of the solution and checking in polynomial time whether there is a solution for a
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fixed type. Therefore, the running time is mainly dominated by the number nO(k)

of homology types. Our main result is improving the running time by removing k
from the exponent of n:

Theorem 13. The k-Disjoint Paths problem on directed planar graphs can be
solved in time f(k) · nO(1) for some computable function f .

In other words, we show that the k-Disjoint Paths problem is fixed-parameter
tractable on directed planar graphs.

Our first step is analogous to many undirected algorithms (e.g., of Adler et
al. [1]): we try to identify an irrelevant vertex whose deletion provably does not
change the problem. In particular, we show that if a vertex is surrounded by
a sequence of f(k) directed cycles of alternating orientation that do not enclose
any terminals, then the vertex can be safely removed. Next we show that if no
irrelevant vertex can be removed this way, then the graph has a decomposition
into a bounded number of “discs” and “rings” such that the edges connecting
these components can be grouped into a bounded number of unidirectional sets.
We show that given such a decomposition, we need to consider only a set of
homology types whose number is bounded by a function of f(k). This bound
requires, among other things, a careful understanding of routing directed paths
between the inside and the outside of a ring. Fortunately, this is in very close
connection to the existence of disjoint directed cycles of specified homotopy, which
is well understood by the results of Ding, Schrijver, and Seymour [2].
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Geometric graph theory

János Pach

A graph drawn in the plane with possibly crossing straight-line edges is called
a geometric graph. If the edges are not necessarily straight, but are represented
by any continuous Jordan arcs, then the drawing is called a topological graph. It
is usually assumed for simplicity that (1) no edge of a topological graph passes
through a vertex different from its endpoints, (2) no two edges touch each other
(i.e., have precisely one interior point in common, and at this point the two curves
do not cross properly), and (3) no three edges share an interior point.
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Given a set of n points in the plane with maximum distance 1, connect two of
them by a segment if their distance is precisely 1. The resulting geometric graph
is called the diameter graph associated with the point set. Following Hopf and
Pannwitz [3], Paul Erdős observed that the maximum number of edges that the
diameter graph of a set of n ≥ 3 points in the plane can have is n. A beautiful
possible generalization of this statement was conjectured by Schur [8].

Conjecture 1. (Schur) For every n ≥ d + 1, the maximum number of (d − 1)-
dimensional simplices in the graph of diameters of a set of n points in Rd is n.

Schur, Perles, Martini, and Kupitz [8] have proved this conjecture for d = 3,
but it is open for all other values.

Theorem 2. (P.-Morić [5]) If every pair of (d − 1)-dimensional simplices in the
graph of diameters induced by n points in Rd share at least d − 2 vertices, then
Schur’s conjecture is true.

It follows from a result of Dolnikov [2] that the condition in Theorem 2 holds for
d = 3, and it is possible that it is also true for every finite point set in d-dimensional
space and for every d ≥ 3. We cannot even prove the following weaker

Conjecture 3. [5] For any d ≥ 4, every pair of (d − 1)-dimensional simplices in
a graph of diameters in Rd share at least one vertex.

Erdős noticed that in the plane his theorem mentioned above can be strength-
ened as follows: Every geometric graph with n vertices, which contains no 2 disjoint
edges (that is, no 2 edges that do not even share an endpoint), has at most n edges.
Of course, this statement does not generalize to topological graphs, because it is
easy to draw a complete graph of n vertices in the plane so that no pair of its edges
are disjoint. However, the statement may remain true for topological graphs sat-
isfying the condition that every pair of edges have at most one point in common.
A topological graph with this property is said to be simple.

Conjecture 4. (Conway’s thrackle conjecture [11]) Every simple topological graph
with n vertices, which contains no 2 disjoint edges, has at most n edges.

Problem 5. Is it true that every simple topological graph with n vertices, which
contains no k disjoint edges, has at most O(kn) edges?

The answer is affirmative for convex geometric graphs, that is, for geometric
graphs whose vertices form the vertex set of a convex n-gon; see [4]. It was proved
by G. Tóth [10] that the maximum number of edges that a geometric graph of n
vertices can have without containing k disjoint edges is O(k2n). See [1] and [6] for
the first bounds linear in n.

Theorem 6. (P.-Tóth [7]) Every simple topological graph with n vertices, which

contains no k disjoint edges, has at most O(n log4k n) edges.

It is an easy consequence of Theorem 6 that every complete simple topologi-
cal graph with n vertices has at least (a positive) constant times log n/ log logn
pairwise disjoint edges. This was improved by A. Suk [9].
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Theorem 7. (Suk) Every complete simple topological graph with n vertices has at
least constant times n1/3 pairwise disjoint edges.

If the answer to Problem 5 is yes, the bound in Theorem 7 can be improved to
constant times n. A. Ruiz Vargas and R. Fulek have recently come up with an
alternative proof of Theorem 7. Their method offers some hope that the bound
in Theorem 7 can be improved to at least Ω(n1/2). It would be sufficient to prove
that the answer to Problem 5 is yes for simple topological graphs that can be
drawn on the surface of a circular cylinder with the property that every straight
line parallel to the axis of the cylinder intersects every edge at most once.
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Grid immersion and multicommodity flows

Paul Seymour

The multicommodity flow problem is, we are given k pairs (si, ti) of vertices of a
graph G, and we wish to determine whether there are k flows in G, where the ith
flow is between si and ti and has total value 1, and for every edge the sum of the
absolute values of the flows through the edge is at most 1. For fixed integer p, we
may also restrict the flow values on each edge to be rational with denominator p.
A problem is critical if it is not feasible, but contracting any edge makes it feasible.
We are concerned with whether (for fixed k, p) all critical instances have bounded
size.

For (p, k) = (1, 2) there is no bound. It turns out that for all fixed k, p with
p > 1 there is a bound. (This is a consequence of a theorem about immersing
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a grid in G, due to M. Chudnovsky, Z. Dvorak, T. Klimosova and the speaker.)
Since the talk, this has been improved; now I think I can prove that for all fixed
k, there is a bound for all p > 1 independent of p, and also the same bound holds
when no value of p is specified (ie we permit arbitrary values).

Groups and graph limits

Miklós Abért

Benjamini and Schramm introduced a convergence notion for sequences of finite
networks with an absolute degree bound. This notion turned out to be useful not
only in graph theory, but in group theory and geometry as well. Surprisingly, it
turned out that energy flows both ways, and group theory comes into the picture
when one aims to understand very large sparse networks. In the talk I introduced
the basic notions, surveyed the known results and discussed some of the major open
problems. In particular, I discussed how the Lück Approximation Theorem follows
from the fact that the normalized rank of the adjacency matrix is continuous in
the Benjamini-Schramm topology. A recent result of myself with Hubai about
the distribution of the roots of the chromatic polynomial, and its very recent
generalization by Cśıkvári and Frenkel were also discussed.

Canonical tree decomposition into highly connected pieces

Johannes Carmesin

(joint work with R. Diestel, F. Hundertmark, M. Stein)

Considering systems of separations in a graph that separate every pair of a given set
of vertex sets that are themselves not separated by these separations, we determine
conditions under which such a separation system contains a nested subsystem that
still separates those sets and is invariant under the automorphisms of the graph.

As an application, we show that the k-blocks – the maximal vertex sets that
cannot be separated by at most k vertices – of a graph G live in distinct parts of a
suitable tree decomposition of G of adhesion at most k, whose decomposition tree
is invariant under the automorphisms of G. This extends recent work of Dunwoody
and Krön and, like theirs, generalizes a similar theorem of Tutte for k = 2.

Under mild additional assumptions, which are necessary, our decompositions
can be combined into one overall tree decomposition that distinguishes, for all k
simultaneously, all the k-blocks of a finite graph.

We think that it is worth investigating how the existence of a k-block is related
to other properties of the graph. In particular, we want to know which average
degree d is needed to force a k-block. We can show that 2k − 1 ≤ d ≤ 3k but we
do not know what the precise value of d is.
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Excluding pairs of graphs

Maria Chudnovsky

(joint work with Alex Scott, Paul Seymour)

Let G be a graph. The complement Gc of G is the graph with vertex set V (G),
and such that two vertices are adjacent in G if and only if they are non-adjacent
in Gc. For a graph G and a set of graphs H, we say that G is H-free if no induced
subgraph of G is isomorphic to a member of H. Given an integer P > 0, a graphG,
and a set of graphs F , we say that G admits an (F , P )-partition if the vertex set of
G can be partitioned into P subsets X1, . . . , XP , so that for every i ∈ {1, . . . , P},
either |Xi| = 1, or the subgraph of G induced by Xi is {F}-free for some F ∈ F .

The main result of [2] is the following:

Theorem 14. For every pair (H, J) of graphs such that H is the disjoint union
of two non-null graphs H1 and H2, and J

c is the disjoint union of two non-null
graphs Jc1 and Jc2 , there exists an integer P > 0 such that every {H, J}-free graph
has an ({H1, H2, J1, J2}, P )-partition.

A clique in a graph is a set of pairwise adjacent vertices, and a stable set is a
set of pairwise non-adjacent vertices. 14 implies a number of previously known
theorems. One of the consequences is a famous theorem of Ramsey, that states
that every graph with no large clique and no large stable set has bounded size.
Another one is the main result of [3], which we describe next.

Let k > 0 be an integer, and say a graph is k-split if its vertex set is the union
of two sets A,B, where A contains no clique of size k+1, and B contains no stable
set of size k + 1.

Theorem 15. [3] For every graph H1 that is a disjoint union of cliques, and every
complete multipartite graph H2, there exists k such that every {H1, H2}-free graph
is k-split.

A cograph is a graph obtained from single vertices by repeatedly taking disjoint
unions and disjoint unions in the complement. For every cograph there is a pa-
rameter measuring its complexity, called its height. Given a graph G and a pair of
graphs H1, H2, we say that G is {H1, H2}-split if V (G) = X1∪X2, where the sub-
graph of G induced by Xi is {Hi}-free for every i ∈ {1, 2}. Another consequence
of 14 is that for every integer k > 0 and pair {H, J} of cographs each of height

k + 1, where neither of H, Jc is connected, there exists a pair of cographs (H̃, J̃),

each of height k, where neither of H̃c, J̃ is connected, such that every {H, J}-free

graph is {H̃, J̃}-split.
Let us now go back to 15. The interest in that stems from the attempt to

understand the so-called “heroic sets” in graphs. The co-chromatic number of a
graph G is the smallest number of cliques and stable sets with union V (G). Let us
say a set of graphs H is heroic if there exists k such that every H-free graph has
cochromatic number at most k. It is not difficult to see (and it is also a result of
[3]) that every finite heroic set of graphs contains a compelte multipartite graph,
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a graph which is the disjoint union of cliques, a forest, and the complement of a
forest. Thus 15 is a step on the way to proving the converse, which is a conjecture
in [3]:

Theorem 16. Conjecture A finite set of graphs is heroic if and only if it con-
tains a clique partition graph, a complete multipartite graph, a forest, and the
complement of a forest.

We remark that using 15 it is easy to see that 16 is equivalent to a well-known
old conjecture independently proposed by Gyárfás [4] and Sumner [5]) (which we
state here in the language of heroic sets):

Theorem 17. Conjecture: For every complete graph K and every tree T , the
set {K,T } is heroic.

Finally, let us mention another application of 14. A tournament is a complete
graph with directions on edges. A set X ⊆ V (G) is transitive if G|X has no
directed cycles. The chromatic number of G is the smallest integer k for which
V (G) can be partitioned into k transitive subsets. Given tournaments H1 and
H2 with disjoint vertex sets, we write H1 ⇒ H2 to mean the tournament H with
V (H) = V (H1) ∪ V (H2), and such that H |V (Hi) = Hi for i = 1, 2, and every
vertex of V (H1) is adjacent to (rather than from) every vertex of V (H2). Similarly
to graphs, a tournament H is a hero if there exists c (depending on H) such that
every H-free tournament has chromatic number at most c. One of the results of [1]
is a complete characterization of all heroes. An important and the most difficult
step toward that is the following:

Theorem 18. If H1 and H2 are heroes, then so is H1 ⇒ H2.

It turns out that translating the proof of 14 into the language of tournaments
gives a proof of 18 that is much simpler than the one in [1].
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Ramsey numbers of cubes versus cliques

David Conlon

(joint work with Jacob Fox, Choongbum Lee, Benny Sudakov)

For graphs G and H , the Ramsey number r(G,H) is defined to be the smallest
natural number N such that every red/blue edge-coloring of the complete graph
KN on N vertices contains a red copy of G or a blue copy of H .

One obvious construction, noted by Chvátal and Harary [11], which gives a
lower bound for these numbers is to take χ(H) − 1 disjoint red cliques of size
|G| − 1 and to connect every pair of vertices which are in different cliques by a
blue edge. If G is connected, the resulting graph contains neither a red copy of
G nor a blue copy of H , so that r(G,H) ≥ (|G| − 1)(χ(H) − 1) + 1. Burr [5]
strengthened this bound by noting that if σ(H) is the smallest color class in any
χ(H)-coloring of the vertices of H , we may add a further red clique of size σ(H)−1,
obtaining

r(G,H) ≥ (|G| − 1)(χ(H) − 1) + σ(H).

Following Burr and Erdős [5, 7], we say that a graph G is H-good if the Ramsey
number r(G,H) is equal to this bound. If G is a family of graphs, we say that G
is H-good if all sufficiently large graphs in G are H-good. When H = Ks, where
σ(Ks) = 1, we simply say that G or G is s-good.

The classical result on Ramsey goodness, which predates the definition, is the
theorem of Chvátal [10] showing that all trees are s-good for any s. On the other
hand, the family of trees is not H-good for every graph H . For example [9], a
construction of K2,2-free graphs due to Brown [4] allows one to show that there is
a constant c < 1

2 such that

r(K1,t,K2,2) ≥ t+
√
t− tc

for t sufficiently large. This is clearly larger than (|K1,t| − 1)(χ(K2,2) − 1) +
σ(K2,2) = t+ 2.

In an effort to determine what properties contribute to being Ramsey good,
Burr and Erdős [6, 7] conjectured that if ∆ was fixed then the family of graphs
with bounded maximum degree ∆ should be s-good for any s (and perhaps even
H-good for all H). This conjecture holds for bipartite graphs H [8] but is false
in general, as shown by Brandt [3]. He proved that for ∆ ≥ ∆0 almost every
∆-regular graph on a sufficiently large number of vertices is not even 3-good. His
result (and a similar result in [12]) actually prove something stronger, namely that
if a graph G has strong expansion properties then it cannot be 3-good.

On the other hand, it has been shown if a family of graphs exhibits poor expan-
sion properties then it will tend to be good [1, 12]. To state the relevant results,
we define the bandwidth of a graph G to be the smallest number ℓ for which there
exists an ordering v1, . . . , vn of the vertices of G such that every edge vivj satisfies
|i−j| ≤ ℓ. This parameter is known to be intimately linked to the expansion prop-
erties of the graph. In particular, any bounded-degree graph with poor expansion
properties will have sublinear bandwidth [2].
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The first such result, shown by Burr and Erdős [7], states that for any fixed
ℓ the family of connected graphs with bandwidth at most ℓ is s-good for any s.
This result was recently extended by Allen, Brightwell and Skokan [1], who showed
that the set of connected graphs with bandwidth at most ℓ is H-good for every
H . Their result even allows the bandwidth ℓ to grow at a reasonable rate with
the size of the graph G. If G is known to have bounded maximum degree, their
results are particularly strong, saying that for any ∆ and any fixed graph H there
exists a constant c such that if G is a graph on n vertices with maximum degree
∆ and bandwidth at most cn then G is H-good.

Many of the original problems of Burr and Erdős [7] have now been resolved
[12], but one that remains open is to determine whether the family of hypercubes
is s-good for every s. The hypercube Qn is the graph on vertex set {0, 1}n where
two vertices are connected by an edge if and only if they differ in exactly one
coordinate. This family of graphs has sublinear bandwidth but does not have
bounded degree, so the result of Allen, Brightwell and Skokan does not apply.

To get a first bound for r(Qn,K3), note that a simple greedy embedding implies
that any graph with maximum degree d and at least dn + 2n vertices has a copy
of Qn in its complement. Suppose now that the edges of a complete graph have
been 2-colored in red and blue and there is neither a blue triangle nor a red
copy of Qn. Then, since the blue neighborhood of any vertex forms a red clique,
the maximum degree in blue is at most 2n − 1. Hence, the graph must have
at most (2n − 1)n + 2n < 2n(n + 1) vertices. We may therefore conclude that
r(Qn,K3) ≤ 2n(n+ 1).

It is not hard to extend this argument to show that for any s there exists a
constant cs such that r(Qn,Ks) ≤ cs2

nns−2. This is essentially the best known
bound. We improve this bound, obtaining the first upper bound which is within
a constant factor of the lower bound.

Theorem 19. For any natural number s ≥ 3, there exists a constant cs such that

r(Qn,Ks) ≤ cs2
n.

The original question of Burr and Erdős [7] relates to s-goodness but it is natural
to also ask whether the family of cubes is H-good for any H . For bipartite H ,
this follows directly from a result of Burr, Erdős, Faudree, Rousseau and Schelp
[8]. Our result clearly implies that for any H , there is a constant cH such that
r(Qn, H) ≤ cH2n.
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Sampling limits of finite trees

Gábor Elek

(joint work with Gábor Tardos)

1. Convergence of finite graphs

Let G be a finite, simple graph and φ : [n] → V (G) be a map. Then V (Gφ) = [n]
and (i, j) ∈ E(Gφ) if (φ(i), φ(j)) ∈ E(G). Hence, we have a probability distribu-
tion µnG on Gn, the set of finite graphs with vertex set [n]. We say that {Gk}∞k=1

is a convergent sequence, if for any n ≥ 1, {µnGk
} converges in the weak topol-

ogy. Let W = [0, 1]2 → [0, 1] be a symmetric function (a graphon) (see [2]) Let
φ : [n] → [0, 1]. Then the random graph GnW is constructed the following way. The
vertex set is [n] and we draw the edge (i, j) with probability W (φ(i), φ(j)) . Hence
we define a probability measure µnW on Gn. We say that {Gk}∞k=1 converges to W ,
if for any n ≥ 1, limk→∞ µnGk

= µnW weakly.

2. Metrics on function spaces

Let us consider the space (up to zero measure perturbation) of bounded mea-
surable functions L∞([0, 1]2, λ2) taking values in [0, 1]. We define three metrics on
this space.

• �1(f, g) is defined as the supremal ǫ such that there exists Tǫ ⊂ [0, 1],
λ(Tǫ) ≤ ǫ, satisfying

|f(x, y) − g(x, y)| ≤ ǫ

almost everywhere, if (x, y) ∈ ([0, 1]\Tǫ) × ([0, 1]\Tǫ) .
• d1(f, g) =

∫ 1

0

∫ 1

0 |f − g|dxdy .
• d�(f, g) = supS,T⊂[0,1] |

∫

S

∫

T
(f − g)dxdy|

Clearly, d�(f, g) ≤ d1(f, g) ≤ 3�1(f, g).
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3. Distances of mm-spaces

By an mm-space (metric measure space) we mean a Polish (complete, separable)
space of diameter at most 1, equipped with a probability measure. We denote the
set of such spaces (up to isometry) by χ. We can define three metric structures
on χ using the distances of the previous section. Let (X,µX , dX), (Y, µY , dY ) ∈ χ.
We denote by MPM(X) the set of all measure preserving transformations from
([0, 1], λ) to X . Then

• �1(X,Y ) = infΨ∈MPM(X),Φ∈MPM(Y ) �1(Ψ−1(dX),Φ−1(dY ))

• δ1(X,Y ) = infΨ∈MPM(X),Φ∈MPM(Y ) d1(Ψ−1(dX),Φ−1(dY ))

• δ�(X,Y ) = infΨ∈MPM(X),Φ∈MPM(Y ) d�(Ψ−1(dX),Φ−1(dY ))

Note that we never used the fact that d is a distance function, so the same
way we can define the distances of arbitrary [0, 1]-valued measurable functions
on a probability measure space. Since any graph can be viewed as [0, 1]-valued
functions on a finite probability measure space, the graph distances

�1(G,H), δ1(G,H), δ�(G,H)

and even the distances from a graphon

�1(G,W ), δ1(G,W ), δ�(G,W )

are well-defined.

Theorem 20. [2][Lovasz-Szegedy] {Gk}∞k=1 converges to W if and only if
limk→∞ δ�(Gk,W ) = 0 .

Theorem 21. [4][Pikhurko] If limk→∞ δ1(Gk,W ) = 0 , then W is random-free,
that is, it takes only the values 0 and 1 (almost everywhere). Also, if {Gk}∞k=1

converges to W , and W is random-free then limk→∞ δ1(Gk,W ) = 0 .

4. Sampling mm-spaces

Let (X,µX , dX) ∈ χ. Pick a µX -random function φ : [n] → X . Let d̂(i, j) =
d(φ(i), φ(j). In this way, we obtain a probability measure µnX on Mn, where Mn

is the compact space of pseudo-metrics on [n] with diameter at most 1. Similarly
to graphs, we can talk about the (sampling) convergence of mm-spaces. We say
that {Xk} converges if the weak limit limµnXk

exists for any n ≥ 1. Note that a
finite graph G can be regarded as a metric space, where dG(x, y) = 1/2 if x, y is
adjacent vertices and dG(x, y) = 1 otherwise.

Theorem 22. [1][Gromov] µnX = µnY for any n ≥ 1 if and only if X and Y are
isomorphic, which is equivalent to �1(X,Y ) = 0.

5. The Gromov-Prohorov metric

Let µ, ν be probability measures on the mteric space (X, d). The Prohorov
distance is given as follows.

dPR(µ, ν) := inf(ǫ > 0 | µ(A) ≤ ν(Aǫ) + ǫ, for any Borel-set A)
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where Aǫ is the ǫ-neighborhood of the set A. The Gromov-Prohorov metric on χ
is defined as

dGP (X,Y ) := inf
f,g

dPR(f⋆(µ1), g⋆(µ2)) ,

where the infimum is taken for all isometries of X and Y to a common metric
space.

Theorem 23. [3] [Löhr] dGP ≤ �1 ≤ 2dGP

6. Sampling finite trees

6.1. Metric sampling. We consider the finite tree T as a connected metric space
with normalized diameter and the natural uniform measure.

Result 1. {Tn}∞n=1 is convergent in sampling if and only if it converges in the
δ1-metric.

Result 2. The limit objects of metric samplings are Polish trees with decorations.
That is

• A Polish tree T .
• The direct product T × (0, 1] (hanging lines for each point of T ).
• A probability measure on the set (T × [0, 1]).
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Chromatic number, clique subdivisions, and the conjectures of Hajós

and Erdős-Fajtlowicz

Jacob Fox

(joint work with Choongbum Lee, Benny Sudakov)

A subdivision of a graph H is any graph formed by replacing edges of H by
internally vertex disjoint paths. This is an important notion in graph theory,
e.g., the celebrated theorem of Kuratowski uses it to characterize planar graphs.
For a graph G, we let σ(G) denote the largest integer p such that G contains a
subdivision of a complete graph of order p. Clique subdivisions in graphs have been
extensively studied and there are many results which give sufficient conditions for
a graph G to have large σ(G). For example, Bollobás and Thomason [5], and
Komlós and Szemerédi [10] independently proved that every graph of average
degree at least d has σ(G) ≥ cd1/2 for some absolute constant c. Motivated by a
conjecture of Erdős, in [2] the authors further showed that when d = Ω(n) in the
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above subdivision one can choose all paths to have length two. Similar result for
subdivisions of general graphs with O(n) edges (a clique of order O(

√
n) clearly

satisfies this) was obtained in [9].
For a given graphG, let χ(G) denote its chromatic number. A famous conjecture

made by Hajós in 1961 states that σ(G) ≥ χ(G). Dirac [7] proved that this
conjecture is true for all χ(G) ≤ 4, but in 1979, Catlin [6] disproved the conjecture
for all χ(G) ≥ 7. Subsequently, several researchers further studied this problem.
On the negative side, by considering random graphs, Erdős and Fajtlowicz [8] in
1981 showed that the conjecture actually fails for almost all graphs. On the positive
side, recently Kühn and Osthus [11] proved that all graphs of girth at least 186
satisfy Hajós’ conjecture. Thomassen [12] studied the relation of Hajós’ conjecture
to several other problems of graph theory such as Ramsey theory, maximum cut
problem, etc., and discovered many interesting connections.

In this paper, we revisit Hajós’ conjecture and study to what extent the chro-
matic number of a graph can exceed the order of its largest clique subdivision.
Let H(n) denote the maximum of χ(G)/σ(G) over all n-vertex graphs G. The
example of graphs given by Erdős and Fajtlowicz which disprove Hajós’ conjec-
ture in fact has σ(G) = Θ(n1/2) and χ(G) = Θ(n/ logn). Thus it implies that
H(n) = Ω(n1/2/ logn). In [8], Erdős and Fajtlowicz conjectured that this bound
is tight up to a constant factor so that H(n) = O(n1/2/ logn). Our first theorem
verifies this conjecture.

Theorem 24. There exists an absolute constant C such that H(n) ≤ Cn1/2/ logn
for n ≥ 2.

The proof shows that we may take C = 10120, although we do not try to optimize
this constant. For the random graph G = G(n, p) with 0 < p < 1 fixed, Bollobás
and Catlin [4] determined σ(G) asymptotically almost surely and later Bollobás
[3] determined χ(G) asymptotically almost surely. These results imply, by picking
the optimal choice p = 1 − e−2, the lower bound H(n) ≥ ( 1

e
√
2
− o(1))n1/2/ logn.

For a graph G, let α(G) denote its independence number. The theorem above
actually follows from the study of the relation between σ(G) and α(G), which
might be of independent interest. Let f(n, α) be the minimum of σ(G) over all
graphs G on n vertices with α(G) ≤ α.

Theorem 25. There exist absolute positive constants c1 and c2 such that the
following holds.

(1) If α < 2 logn, then f(n, α) ≥ c1n
α

2α−1 , and

(2) if α = a logn for some a ≥ 2, then f(n, α) ≥ c2
√

n
a log a .

Note that for α = 2 logn, both bounds from the first and second part gives
f(n, α) ≥ Ω(

√
n). Moreover, both parts of this theorem establish the correct

order of magnitude of f(n, α) for some range of α. For α = 2, it can be shown
that in the triangle-free graph constructed by Alon [1], every set of size at least
37n2/3 contains at least n edges. This implies that the complement of this graph
has independence number 2 and the largest clique subdivision of size t < 37n2/3.
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Indeed, if there is a clique subdivision of order t ≥ 37n2/3, then between each of
the at least n pairs of nonadjacent vertices among the t vertices of the subdivided
clique, there is at least one additional vertex along the path between them in the
subdivision. However, this would require at least t + n vertices in the n-vertex
graph, a contradiction. On the other hand, for α = Θ(logn), by considering
G(n, p) with constant 0 < p < 1, one can see that the second part of the above
theorem is tight up to the constant factor. Even for α = o(logn), by considering
the complement of G(n, p) for suitable p ≪ 1, one can easily verify that there

exists an absolute constant c′ such that f(n, α) ≤ O(n
1

2
+ c

′

α ).
Our second theorem can also be viewed as a Ramsey-type theorem which es-

tablishes an upper bound on the Ramsey number of a clique subdivision versus an
independent set.
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Hyperbolic graphs

Matthias Hamann

Ever since Gromov’s paper [4] on hyperbolic groups appeared, the interactions
between hyperbolic graphs and trees, the simplest class of hyperbolic graphs, are
studies. Before we turn our attention to these connections, we define hyperbolic
graphs.

Let G be a graph. A geodesic triangle is a subgraph of G consisting of three
vertices and three geodesics, i.e. shortest paths, one between each two of the
vertices. The geodesics are the sides of the geodesic triangle. The graph G is
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called hyperbolic if there is a δ ≥ 0 such that for all triangles any point on one of
its sides has distance at most δ to some point of the union of the other two sides.

A ray R is called geodesic if dR(x, y) = dG(x, y) for all vertices x, y on R. We
call two geodesic rays x1x2 . . . and y1y2 . . . equivalent if there is an m ∈ N such
that for infinitely many i ∈ N there is a j ∈ N with d(xi, yj) ≤ M . Equivalence
of geodesic rays is an equivalence relation in hyperbolic graphs and the set of its
equivalence classes forms the hyperbolic boundary.

Let us return to the connections between arbitrary hyperbolic graphs and trees:
One such connection was investigated by Buyalo et al. [2] and deals with quasi-
isometric embeddings of hyperbolic groups (and more generally of visual hyperbolic
spaces) into the product of binary metric trees, where the number of trees you need
for the product depends on the topological dimension of the hyperbolic boundary.

If we want to use trees to capture various informations about the hyperbolic
graph and its boundary, then it is (usually) more suitable to look at only one tree
and not on a product of trees. There are results in which the local structure of
the tree resembles the local structure of the hyperbolic graph. Here, we mention
a result of Gromov [4] who constructed for a finite subset of the completion of a
δ-hyperbolic graph a tree in the graph whose completion contains the given set
and all whose geodesics between elements of the finite set are quasi-geodesics in
the hyperbolic graph. Another result in the same direction is due to Benjamini
and Schramm [1]: they show that if a locally finite hyperbolic graph has exponen-
tial growth then the graph has a subtree with exponential growth such that the
embeddingof the tree is bilipschitz.

There are also constructions of trees that try to capture the boundary of a
given hyperbolic space in a good way. For locally finite graphs, several ideas for
constructions of such trees can already be found in Gromov’s article [4]. They
have been elaborated on in [3]. The constructed trees capture the boundary of
the hyperbolic graph in that there is a continuous map from their own boundary
onto that of the graph. For hyperbolic graphs of bounded degree, these maps are
finite-to-one. However, the constructed trees are abstract trees, that is, they are
not necessarily subtrees of the hyperbolic graph.

We combine these last two approaches [5, 6] in that we construct in every locally
finite hyperbolic graphs whose hyperbolic boundary has finite Assouad dimension
a rooted spanning tree that gives us a good picture of the graph and also of its
hyperbolic boundary: the rays in the tree starting at the root are (γ, c)-quasi-
geodesics in the graph and every geodesic ray of the graph lies eventually in a
∆-neighbourhood of some ray of the tree for some ∆ ∈ N. Furthermore, the
embedding of the tree extends continuously to the boundaries such that every
boundary point of the graph has at least one but a bounded number of inverse
images. For both aspects of the tree – representing the graph and representing
the hyperbolic boundary in a good way – the constants we obtain depend only
on the hyperbolicity constant δ and on the Assouad dimension of the hyperbolic
boundary
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In addition, we show that the condition on at least some dimension of the
hyperbolic boundary is necessary: if the hyperbolic boundary of a locally finite
hyperbolic graph G has topological dimension at least n, then for every spanning
tree T of G there is a boundary point of G that has at least n+ 1 inverse images
under the canonical extension of the embedding of T into G on the boundaries.
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The entropy of random-free graphons and properties

Hamed Hatami

(joint work with Sergey Norin)

1. Introduction

In recent years a theory of convergent sequences of dense graphs has been de-
veloped. One can construct a limit object for such a sequence in the form of
certain symmetric measurable functions called graphons. Every graphon defines
a random graph on any given number of vertices. In [HJS] several facts about
the asymptotics of the entropies of these random variables are established. These
results provide a good understanding of the situation when the graphon is not
“random-free”. However in the case of the random-free graphons they completely
trivialize. The purpose of this article is to study these entropies in the case of the
random-free graphons.

For every natural number n, denote [n] := {1, . . . , n}. Let U denote set of all
graphs up to an isomorphism. Moreover, for n ≥ 0, let Un ⊂ U denote the set of
all graphs in U with exactly n vertices. We will usually work with labeled graphs.
For every n ≥ 1, denote by Ln the set of all graphs with vertex set [n].

The homomorphism density of a graph H in a graph G, denoted by t(H ;G), is
the probability that a random mapping φ : V (H) → V (G) preserves adjacencies,
i.e. uv ∈ E(H) implies φ(u)φ(v) ∈ E(G). The induced density of a graph H in a
graph G, denoted by p(H ;G), is the probability that a random embedding of the
vertices of H in the vertices of G is an embedding of H in G.

We call a sequence of finite graphs (Gn)∞n=1 convergent if for every finite graph
H , the sequence {p(H ;Gn)}∞n=1 converges. It is not difficult to construct con-
vergent sequences (Gn)∞n=1 such that their limits cannot be recognized as graphs,
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i.e. there is no graph G, with limn→∞ p(H ;Gn) = p(H ;G) for every H . Thus
naturally one considers U , the completion of U under this notion of convergence.
It is not hard to see that U is a compact metrizable space which contains U as
a dense subset. The elements of the complement U∞ := U \ U are called graph
limits. Note that a sequence of graphs (Gn)∞n=1 converges to a graph limit Γ if
and only if |V (Gn)| → ∞ and p(H ;Gn) → p(H ; Γ) for every graph H . Moreover,
a graph limit is uniquely determined by the numbers p(H ; Γ) for all H ∈ U .

It is shown in [LS06] that every graph limit Γ can be represented by a graphon,
which is a symmetric measurable function W : [0, 1]2 → [0, 1]. The set of all
graphons are denoted by W0. Given a graph G with vertex set [n], we define
the corresponding graphon WG : [0, 1]2 → {0, 1} as follows. Let WG(x, y) :=
AG(⌈xn⌉, ⌈yn⌉) if x, y ∈ (0, 1], and if x = 0 or y = 0, set WG to 0. It is easy to
see that if (Gn)∞n=1 is a graph sequence that converges to a graph limit Γ, then for
every graph H ,

p(H ; Γ) = lim
n→∞

E





∏

uv∈E(H)

WGn
(xu, xv)

∏

uv∈E(H)c

(1 −WGn
(xu, xv))



 ,

where {xu}u∈V (H) are independent random variables taking values in [0, 1] uni-
formly, and E(H)c = {uv : u 6= v, uv 6∈ E(H)}. Lovász and Szegedy [LS06] showed
that for every graph limit Γ, there exists a graphon W such that for every graph
H , we have p(H ; Γ) = p(H ;W ) where

p(H ;W ) := E





∏

uv∈E(H)

W (xu, xv)
∏

uv∈E(H)c

(1 −W (xu, xv))



 .

Furthermore, this graphon is unique in the following sense: If W1 and W2 are two
different graphons representing the same graph limit, then there exists a measure-
preserving map σ : [0, 1] → [0, 1] such that

(1) W1(x, y) = W2(σ(x), σ(y)),

almost everywhere [BCL10]. With these considerations, sometimes we shall not
distinguish between the graph limits and their corresponding graphons. We define
the δ1 distance of two graphons W1 and W2 as

δ1(W1,W2) = inf ‖W1 −W2 ◦ σ‖1,
where the infimum is over all measure-preserving maps σ : [0, 1] → [0, 1].

A graphon W is called a stepfunction, if there is a partition of [0, 1] into a finite
number of measurable sets S1, . . . , Sn so that W is constant on every Si×Sj . The
partition classes will be called the steps of W .
LetW be a graphon and x1, . . . , xn ∈ [0, 1]. The random graphG(x1, . . . , xn,W ) ∈
Ln is obtained by including the edge ij with probability W (xi, xj), independently
for all pairs (i, j) with 1 ≤ i < j ≤ n. By picking x1, . . . , xn independently and
uniformly at random from [0, 1], we obtain the random graph G(n,W ) ∈ Ln. Note
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that that for every H ∈ Ln,

Pr[G(n,W ) = H ] = p(H ;W ).

1.1. Graph properties and Entropy. A subset of the set U is called a graph
class. Similarly a graph property is a property of graphs that is invariant un-
der graph isomorphisms. There is an obvious one-to-one correspondence between
graph classes and graph properties and we will not distinguish between a graph
property and the corresponding class. Let Q ⊆ U be a graph class. For every
n > 1, we denote by Qn the set of graphs in Q with exactly n vertices. We let
Q ⊆ U be the closure of Q in U .

Define the binary entropy function h : [0, 1] 7→ R+ as h(x) = −x log(x) − (1 −
x) log(1 − x) for x ∈ (0, 1) and h(0) = h(1) = 0 so that h is continuous on [0, 1]
where here and throughout the paper log(·) denotes the logarithm to the base 2.
The entropy of a graphon W is defined as

Ent(W ) :=

∫ 1

0

∫ 1

0

h(W (x, y))dxdy.

Note that it follows from the uniqueness result (1) that entropy is a function of
the underling graph limit, and it does not depend on the choice of the graphon
representing it. It is shown in [Ald85] and [Jan, Theorem D.5] that

(2) lim
n→∞

Ent(G(n,W ))
(

n
2

) = Ent(W ).

A graphon is called random-free if it is {0, 1}-valued almost everywhere. Note that
a graphon W is random-free if and only if Ent(W ) = 0, which by (2) is equivalent
to Ent(G(n,W )) = o(n2). Our first theorem shows that this is sharp in the sense
that the growth of Ent(G(n,W )) for random-free graphons W can be arbitrarily
close to quadratic.

Theorem 26. Let α : N → R+ be a function with limn→∞ α(n) = 0. Then there
exists a random-free graphon W such that Ent(G(n,W )) = Ω(α(n)n2).

A graph property Q is called random-free if every W ∈ Q is random-free. Our
next theorem shows that in contrast to Theorem 26, when a graphon W is the
limit of a sequence of graphs with a random-free property, then Ent(G(n,W ))
cannot grow faster than O(n logn).

Theorem 27. Let Q be a random-free property, and let W be the limit of a
sequence of graphs in Q. Then Ent(G(n,W )) = O(n log n).

Remark 1. We defined G(n,W ) as a labeled graph in Ln. Both Theorems 26
and 27 remain valid if we consider the random variable Gu(n,W ) taking values
in Un obtained from G(n,W ) by forgetting the labels. Indeed, Ent(Gu(n,W )) =
Ent(G(n,W )) − Ent(G(n,W ) | Gu(n,W )) and Ent(G(n,W ) | Gu(n,W ) = H) =
O(n log n) for every H ∈ Un. It follows that

Ent(G(n,W )) −O(n log n) ≤ Ent(Gu(n,W )) ≤ Ent(G(n,W )).
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Partitioning edge-connectivity

Tomáš Kaiser

We discuss the following problem posed by Matt DeVos (who also used the
phrase ‘partitioning edge-connectivity’ to describe it):

Problem 1. Is it true that for a1, a2 ≥ 1, every (a1 + a2 + 2)-edge-connected
graph G has edge-disjoint spanning subgraphs G1 and G2 such that each Gj is
aj-edge-connected (j = 1, 2)?

The only case of Problem 1 where the answer is known to be affirmative is
(a1, a2) = (1, 1), by the following well-known corollary of Tutte and Nash-Williams’
tree-packing theorem [2, 3]:

Proposition 1. Every 2k-edge-connected graph has k edge-disjoint spanning trees.

In the general case, Proposition 1 only implies that the desired spanning sub-
graphs exist if G is 2(a1 + a2)-edge-connected. In this talk, we outline a proof of
the first open case of Problem 1, namely (a1, a2) = (1, 2):

Theorem 28. Every 5-edge-connected graph G admits a spanning tree whose com-
plement is a spanning 2-edge-connected subgraph of G.

The proof is based on a method similar to one used in [1] for the tree-packing
theorem, although the current setting is somewhat more complicated. Roughly
speaking, the main steps are as follows:

(1) Given a spanning tree T , an associated sequence of partitions of the vertex
set of G is defined. Each member of the sequence is coarser than or equal
to its successor, so there is a ‘limit’ partition P .

(2) If |P| ≥ 2, then the assumption that G is 5-edge-connected implies a lower
bound on the density of the graph T/P , obtained from the complement
of T by contracting each class of P . The density bound guarantees that
T/P contains a subgraph that can be obtained by taking ‘2-edge-joins’ of
1-fold subdivisions of 3-edge-connected graphs.

(3) Any such subgraph can be used for an exchange step, resulting in an
improvement of the spanning tree T in terms of a suitably defined ordering.
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(4) After finitely many iterations, we will have |P| = 1, which implies that T
is the desired spanning tree with a 2-edge-connected complement.

In fact, step (3) is considerably more involved due to a technical problem men-
tioned in the talk (and successfully resolved since then). The complete proof of
Theorem 28 is being prepared for publication.
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Getting to the point of Reed’s Conjecture: How local can you go?

Andrew D. King

(joint work with Katherine Edwards)

1. Reed’s Conjecture, evidence, and tightness

Reed’s conjecture, now published 15 years ago, proposes the strongest possible
bound on the chromatic number χ as a convex combination of the size of the
largest closed neighbourhood (∆ + 1) and the size of the largest clique (ω), which
represent a trivial upper and lower bound on χ, respectively.

Conjecture 3 (Reed ’98 [9]). Every graph satisfies

χ ≤
⌈

1
2 (∆ + 1 + ω)

⌉

It is easy enough to see that this is best possible. One example showing this
is the uniform expansion of C5. Another is a graph with no stable set of size 3,
and with clique number o(|V |), whose existence is a fundamental result in Ramsey
theory.

So why should we believe it? First, the bound holds for the fractional chromatic
number:

Theorem 29 (Reed ’00 [8]). Every graph satisfies

χf ≤ 1
2 (∆ + 1 + ω)

Second, the bound holds for claw-free graphs [6], which are a natural general-
ization of quasi-line graphs – quasi-line graphs, in turn, are a class for which χf
and χ agree asymptotically [5]. So given the previous result, they should be easy
victims.

Third, we can at least bound χ as a nontrivial convex combination of the other
two bounds:
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Theorem 30 (Reed ’98 [9]). There is an ǫ > 0 such that every graph satisfies

χ ≤
⌈

(1 − ǫ)(∆ + 1) + ǫω
⌉

King and Reed recently provided a much simpler proof of this result [7], using
an extremely useful existence condition that, for this problem, characterizes a
minimum counterexample:

Theorem 31 (King ’11 [4]). Any graph satisfying ω > 2
3 (∆ + 1) contains a stable

set meeting every maximum clique.

2. The local and superlocal strengthening

Reed’s Conjecture posits a bound on χ based on two global invariants. Can
we replace these with a local invariant based on how hard the neighbourhood of a
given vertex is to colour?

Conjecture 4 (King ’09 [3]). Every graph satisfies

χ ≤ max
v∈V

⌈

1
2 (d(v) + 1 + ω(G[Ñ(v)]))

⌉

(In this case, Ñ(v) denotes the closed neighbourhood of v). This conjecture is
known to hold for the fractional relaxation (McDiarmid ’00 [8]) and for quasi-line
graphs (Chudnovsky, King, Plumettaz and Seymour, ’12 [1]). We would very much
like to at least prove an ǫ-relaxation of this conjecture:

Conjecture 5. There is a universal constant ǫ > 0 such that every graph satisfies

χ ≤ max
v∈V

⌈

(1 − ǫ)(d(v) + 1) + ǫω(G[Ñ(v)]))
⌉

Using γℓ(v) to denote 12(d(v) + 1 + ω(G[Ñ(v)])), we are now saying that if χ
is high, some γℓ(v) must be high. But seeing as γℓ(v) represents the difficulty
in colouring the neighbourhood of v, it seems as though these difficult-to-colour
vertices should not appear merely as a stable set. Hence we propose the superlocal
strengthening of Reed’s Conjecure.

Conjecture 6 (Edwards, King [2]). Every graph satisfies

χ ≤ max
uv∈E

⌈

1
2 (γℓ(u) + γℓ(v))

⌉

We have managed to prove this for the fractional relaxation and for quasi-line
graphs.

3. Fractional colourings and stronger conjectures

We might hope that we can push the ”local averaging” condition even further,
for example with the following question:

Question 1. Is there a graph for which

χf > max
u∈V

1

d(u) + 1

∑

v∈Ñ(u)

γℓ(v)



Graph Theory 105

The answer to this is yes, as we can see by looking at a clique of size k with
k pendant neighbours added to every vertex. However, we conjecture something
weaker, letting C denote the set of maximal cliques in G:

Conjecture 7. Every graph satisfies

χf > max
C∈C

1

|C|
∑

v∈C
γℓ(v)

To prove the fractional relaxation of the previous bounds we have discussed,
the same greedy colouring algorithm suffices. This algorithm, introduced by Reed,
can be defined as the limit, for increasing k, of the following randomized process:

(1) Begin with weight 1 on every vertex and weight 0 on every stable set.
(2) Take a maximum stable set S in G uniformly at random, and add weight

1/k to it.
(3) For any vertex in S, reduce the weight on the vertex by 1/k.
(4) Delete any vertex with nonpositive weight remaining and go to step 2.

We believe the clique-averaged conjecture would require a different approach.
To this end, we modify this algorithm by simply choosing S to be a maximum
weight stable set chosen uniformly at random, rather than a maximum stable set.
Yet we have not found an effective way to analyze this process – obviously it never
requires more than ∆ + 1 colours.

Question 2. Does the weight-modified Reed’s fractional colouring always use at
most maxv γℓ(v) colours, like the original algorithm? Can we prove better bounds?

We would be extremely interested in the answers to such questions, and suspect
that they might even be useful in attempts to prove a better asymptotic bound in
the direction of Reed’s Conjecture.
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Quasirandomness and limits of combinatorial objects

Daniel Král’

(joint work with Oleg Pikhurko)

A sequence of graphs with increasing orders is pseudorandom if the limit of the
densisities of any graph H in the graphs in sequence is the same as the density of H
in the random graph Gn,1/2. This property is equivalent to many other properties
a sequence of graphs may have, including the non-existence of unbalanced cuts or
seperation among eigenvalues [1]. A surprising fact is that if the limits of densities
of K2 and C4 in the graphs forming the sequence are the same as the corresponding
densities in Gn,1/2, then the sequence must be pseudorandom.

Cooper [2] studied pseudorandomness of permutations. A sequence of permuta-
tion is pseudorandum if the limit of densities of any k-element permutation in the
sequence is equal to k!−1. A question attributed to Graham asks whether there
exists k0 such that a sequence of permutations must be pseudorandom if the above
holds for k ≤ k0. We show that this is indeed the case with k0 = 4; this is the
best possible value as there exist examples that k0 = 3 would not suffice.

Our proof uses the theory of permutation limits developed by Hoppen et al. [3,
4]. We consider as a limit object a measure on a unit measure with a property
so-called unit marginals (this limit object is different from that in [3, 4] but it is
not hard to show that the two objects are equivalent). Using this machinery, we
show that the limit of any sequence of permutations with densitites of all 4-element
permutations converging to 1/24 must be the uniform measure on the unit square.
A similar argument can be used to show the analogous statement for graphs: if
the densities of all 4-element subgraphs in a sequence of graphs converge to their
densities in Gn,1/2, then the limit of the sequence is the graphon uniformly equal
to 1/2 on the unit square.
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Long geodesics in subgraphs of the cube

Imre Leader

(joint work with Eoin Long)

Given a graph G of average degree d, a classic result of Dirac [3] guarantees
that G contains a path of length d. Moreover, for general graphs this is the best
possible bound, as can be seen by taking G to be Kd+1, the complete graph on
d+ 1 vertices.
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The hypercube Qn has vertex set {0, 1}n and two vertices x, y ∈ Qn are joined
by an edge if they differ on a single coordinate. In this talk we consider the
analogous question for geodesics in the hypercube. A path in Qn is a geodesic if
no two of its edges have the same direction. Equivalently, a path is a geodesic if
it forms a shortest path in Qn between its endpoints. Given a subgraph G of Qn
of average degree d, how long a geodesic path must G contain?

It is trivial to see that any such graph must contain a geodesic of length d/2.
Indeed, taking a subgraph G′ of G with minimal degree at least d/2 and starting
from any vertex of G′, we can greedily pick a geodesic of length d/2 by choosing
a new edge direction at each step.

On the other hand the d-dimensional cube Qd shows that, in general, we cannot
find a geodesic of length greater than d in G. Our main result is that this upper
bound is sharp.

Theorem 32. Every subgraph G of Qn of average degree d contains a geodesic of
length at least d.

Noting that the endpoints of the geodesic in G guaranteed by Theorem 32 are
at Hamming distance at least d, we see that Theorem 32 extends the following
result of Feder and Subi [4].

Theorem 33 ([4]). Every subgraph G of Qn of average degree d contains two
vertices at Hamming distance d apart.

We remark that neither Theorem 32 nor Theorem 33 follow from isoperimetric
considerations alone. Indeed, if G is a subgraph of Qn of average degree d, by the
edge isoperimetric inequality for the cube ([1], [5], [6], [7]; see [2] for background)
we have |G| ≥ 2d. However if n is large, a Hamming ball of small radius may have
size larger than 2d without containing a long geodesic.

Finally, Feder and Subi’s theorem was motivated by a conjecture of Norine [8]
on antipodal colourings of the cube. We discuss Theorem 32 in relation to Norine’s
conjecture.

References

[1] A.J. Bernstein: Maximally connected arrays on the n-cube, SIAM J. Appl. Math. 15(1967),
1485-1489.

[2] B. Bollobás: Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combina-
torial Probability, Cambridge University Press, 1st ed, 1986.

[3] G.A. Dirac: Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69-81.
[4] T. Feder, C. Subi: On hypercube labellings and antipodal monochromatic paths,

http://theory.stanford.edu/∼tomas/antipod.pdf.
[5] L.H. Harper: Optimal assignments of numbers to vertices, SIAM J. Appl. Math. 12(1964),

131-135.
[6] S. Hart: A note on edges of the n-cube, Discrete Math. 14(1976), 157-163.
[7] J.H. Lindsey: Assignment of numbers to vertices, Amer. Math. Monthly 71(1964), 508-516.
[8] S. Norine, Open Problem Garden,

http://garden.irmacs.sfu.ca/?q=op/edge antipodal colorings of cubes.



108 Oberwolfach Report 02/2013

Local Graph Theory

Nati Linial

(joint work with Hao Huang, Humberto Naves, Yuval Peled, and Benny Sudakov)

Some major challenges that come from application areas such as bioinformatics
raise very interesting problems in graph theory. It is often the case that exper-
imental work gives rise to very large data sets that are best expressed as huge
graphs. To be concrete one can think of the protein-protein interaction (=PPI)
graph of an organism. The vertex set of a PPI graph is comprised of all proteins
of the organism in question, where two vertices are adjacent iff the two corre-
sponding proteins are (experimentally) found to be in interaction. What kind of
numeric data should one try to extract from such a huge graph? The biologists
who generate the data do not have at present even a good vocabulary to describe
the kind of knowledge that they wish to derive from such graphs. Current prac-
tices are very simplistic at best, e.g., many practitioners look at invariants such as
degree distribution and other very simple concepts. The evolving theory of graph
limits suggests a better approach. Namely, one should look at the distribution of
small (say k-vertex) subgraphs of the big (say n-vertex) graph G. We call this
distribution the k-local profile of G. This brings us to our first major problem.

Question: What are the possible k-profiles of large G’s ?
To illustrate, here is the case k = 3 of this general problem. For i = 0, 1, 2, 3, let

pi(G) be the probability that three randomly sampled vertices in G span exactly
i edges. Let p(G) = (p0(G), . . . , p3(G)). Consider the set S ⊂ R4 which consists
of all limit points of a sequence p(Gn) where Gn is a sequence of graphs with
|V (Gn)| → ∞.

Question: Describe the set S.
Though we know quite a few things about this set, a full description is presently

unavailable. Among other things, the papers below completely describe (i) The
intersection of S with the plane (p0, p3) and (ii) Its intersection with the plane
p3 = 0. We note that at present the analogous problem for 4-vertex graphs seems
out of reach.
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Hexagon Graphs and the Directed Cycle Double Cover Conjecture

Martin Loebl

(joint work with Andrea Jimenez, Mihyun Kang)

We explore the well-known Jaeger’s directed cycle double cover conjecture [1].
Jaeger’s conjecture is equivalent to the assertion that every cubic bridgeless graph
has an embedding on a closed Riemann surface with no dual loop. For each cubic
graphG we define a new object, the hexagon graphH(G), whose perfect matchings
describe all embeddings of G on closed Riemann surfaces. We initiate the study of
the properties of the hexagon graphs related to the embeddings with no dual loop.
As a consequence we obtain a cut-type sufficient condition for the validity of the
DCDC conjecture in the class of fork graphs. This condition is satisfied in the class
of lean fork graphs, and the lean fork graphs hence satisfy the DCDC conjecture.
Fork graphs are graphs obtained from a triangle by sequentially adding special
fork-type graphs, and lean fork graphs are fork graphs satisfying an additional
connectivity property.

How rich is the class of all the fork graphs? Given a graph H with vertices
of degree either two or three, let the number of its vertices of degree two be its
degree of freedom. When constructing the fork graphs, we can obtain intermediate
graphs H with arbitrarily large degree of freedom. This leads us to conjecture
that the DCDC conjecture is as hard for the fork graphs as for the general cubic
bridgeless graphs.
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Semi-definite method in extremal combinatorics

Sergey Norin

The density of a graph H in a graph G, denoted by tinj(H ;G), is the probability
that in a random embedding of the vertices of H in the vertices of G, every edge
of H is mapped to an edge of G. Many fundamental theorems in extremal graph
theory can be expressed as algebraic inequalities between the subgraph densities.

The homomorphism density of H in G, denoted by t(H ;G), is the probability
that in a random mapping (not necessarily injective) from the vertices of H to the
vertices of G, every edge of H is mapped to an edge of G. It is frequently possible
to replace subgraph densities with homomorphism densities. An easy observation
shows that one can convert any algebraic inequality between homomorphism den-
sities to a linear inequality. In recent years a new line of research in the direction
of treating these inequalities in a unified way has emerged. An interesting result
in this context, proved recently in several different forms [8, 20, 18], says that
every such inequality follows from the positive semi-definiteness of a certain in-
finite matrix. As an immediate consequence, every algebraic inequality between
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the homomorphism densities follows from an infinite number of certain type of
applications of the Cauchy-Schwarz inequality. This explains why many results
in extremal graph theory are proved by one or more tricky applications of the
Cauchy-Schwarz inequality.

In [20] Razborov introduced flag algebras which provide a powerful formal cal-
culus that captures many standard arguments in extremal combinatorics. He
observed that a typical proof of an inequality in extremal graph theory between
homomorphism densities of some fixed graphs involves only homomorphism densi-
ties of finitely many graphs. He stated that one of the most interesting general open
questions about asymptotic extremal graph theory is whether every true linear in-
equality between homomorphism densities can be proved using a finite amount
of manipulation with homomorphism densities of finitely many graphs. In [13]
we show that the answer to this question and a related question of Lovász [17,
Problem 17] is negative by proving the following theorem.

Theorem 34. The following problem is undecidable.

• instance: A positive integer k, finite graphs H1, . . . , Hk, and integers
a1, . . . , ak.

• question: Does the inequality a1t(H1;G) + . . .+ akt(Hk;G) ≥ 0 hold for
every graph G?

In a paper in preparation, Hatami, Hatami, Lovett and myself show that the
above problem is undecidable even if we restrict ourselves to bipartite graphs G.
Although Theorem 34 shows that not every algebraic inequality between homo-
morphism densities is a linear combination of a finite number of semidefiniteness
inequalities, the positive semidefinite characterization is still a powerful approach
for proving such inequalities. Below we describe several such applications.

In [11] we use this method to prove the following.

Theorem 35. Fo all sufficiently large positive integers l, the maximum number
of copies of the cycle of length 5 in a triangle-free graph with 5ℓ + a vertices
(0 ≤ a ≤ 4) is ℓ5−a(ℓ+ 1)a,

The above has been conjectured by Erdös [7]. The proof of the asymptotic
relaxation of this statement is a rather standard Cauchy-Schwarz calculation in
Razborov’s flag algebras. To derive the exact result from the asymptotic one we
develop a new approach which appears to differ substantially from the standard
one based on stability and removal lemmas (see e.g. [16, 19]). Instead, we convert
finite graphs into certain limit objects and then apply analytic methods to prove
uniqueness of the optimum in this setting. This general approach in our case allows
us to get the exact result from the asymptotic one and is likely to be applicable
to other problems.

A natural question in Ramsey theory is how many monochromatic subgraphs
isomorphic to a graph H must be contained in any two-coloring of the edges of
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the complete graph Kn. Equivalently how many subgraphs isomorphic to a graph
H must be contained in a graph and its complement?

Goodman [9] has shown that for H = K3, the optimum solution is essentially
obtained by a typical random graph. The graphs H that satisfy this property are
called common. Erdös [6] conjectured that all complete graphs are common. Later,
this conjecture is extended to all graphs by Burr and Rosta [2]. Sidorenko [22]
disproved Burr and Rosta’s conjecture by showing that a triangle with a pendant
edge is not common. It is now known that in fact the common graphs are very
rare. For example Jagger, Šťov́ıček and Thomason [15] showed that every graph
that contains K4 as a subgraph is not common. Until recently, all of the known
common graphs are of chromatic number at most 3. In [15] the authors mention
that they consider the question whether W5 [the wheel with 5 spokes] is common
as one of the most important questions in the area. In [12] we answer the question
in the affirmative.

One of the most intriguing problems in extremal (di)graph theory is the follow-
ing conjecture due to Caccetta and Häggvist [3].

Conjecture 8. Every n-vertex digraph with minimum outdegree at least r has a
cycle with length at most ⌈n/r⌉.

The case when r = n/3 is of particular interest. It asserts that any digraph on n
vertices with minimum outdegree at least n/3 contains a directed triangle. In [14]
we obtained a new minimum degree bound for this case of the Caccetta-Häggvist
conjecture.

Theorem 36. Every n-vertex digraph with minimum outdegree at least 0.3465n
contains a triangle.

This improves previous bounds established by Caccetta and Häggvist [3] (0.3820n),
Bondy [1] (0.3798n), Shen [21] (0.3543n) and Hamburger, Haxell, and Kostochka
[10] (0.3532n). The main ingredients of our proof of Theorem 36 are once again
the semidefinite method, an induction argument, generalizing the argument of
Shen [21] and a recent result of Chudnovsky, Seymour and Sullivan [4] on elimi-
nating cycles in triangle-free digraphs. Brute force computer search is used to find
a way of combining these ingredients which yields the optimum bound.

The Turán’s brickyard problem [23] is the problem of determining the mini-
mum number of crossings, which must occur in a planar drawing of the complete
bipartite graph Kn,n. It has been investigated since 1950’s and recent success
in improving the lower bounds for this number is due to an application of semi-
definite method and relies on heavy computations. Recently, jointly with Yori
Zwols, I have started considering applications of the flag algebra framework to
this setting. Our first results suggest that one can apply semi-definite program-
ming to produce a larger class of constraints on the crossing numbers. We have
been able to show that the crossing number is lower bounded by 0.905 of the con-
jectured optimum, improving on the previously best known bound of 0.8594 due to
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De Klerk, Pasechnik and Schrijver [5]. It seems likely that using more general class
of semi-definite programs one can significantly improve our current understanding
of this tantalizing open problem.
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Expansion of random graphs: new proofs, new results

Doron Puder

We present a new approach to showing that random graphs are nearly optimal
expanders. This approach is based on deep results from Combinatorial Group
Theory. It applies both to regular and irregular random graphs.

Let Γ be a random d-regular graph on n vertices, and let λ be the largest abso-
lute value of a non-trivial eigenvalue of its adjacency matrix. It was conjectured
by Alon [2] that for every ε > 0 , most d-regular graphs satisfy λ < 2

√
d− 1 + ε

. Friedman famously presented a proof of this conjecture in [4]. Here we suggest
a new, substantially simpler proof of a nearly-optimal result: we show that for d
even, a random d-regular graph satisfies λ < 2

√
d− 1 + 1 asymptotically almost

surely.
A main advantage of our aproach is that it is applicable to a generalized con-

jecture: A random d-regular graph on n vertices in the permutation model is, in
fact, a random n-covering space of a bouquet of d/2 loops. More generally, fixing
an arbitrary base graph Ω , we study the spectrum of Γ, a random n-covering of
Ω. Let λ be the largest absolute value of a non-trivial eigenvalue of Γ. Extending
Alon’s conjecture to this more general model, Friedman [3] conjectured that for
every ε > 0, a.a.s. λ < ρ+ε, where ρ is the spectral radius of the universal cover of
Γ. When Ω is regular we get the same bound as before, and for an arbitrary Ω, we
prove a nearly optimal upper bound of

√
3ρ . This is a substantial improvement

upon all known results ([3, 5, 6, 1]). The techniques and results from combinatorial
group theory which underlie the proofs come mainly from [8] and [7].
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The approximate Loebl-Komlós-Sós conjecture

Maya Stein

(joint work with Jan Hladký, János Komlós, Diana Piguet, Miklós Simonovits,
Endre Szemerédi)

The Loebl–Komlós–Sós conjecture first appeared in [3]. It suggests that if a graph
fulfills a certain condition on the median degree, then it contains every tree of a
given order as a subgraph.

Conjecture 9 (Loebl–Komlós–Sós conjecture 1995). Let G be an n-vertex graph
with at least n/2 vertices of degree at least k. Let T be any tree on k + 1 vertices.
Then T ⊆ G.

A related but independent conjecture is the Erdős-Sós Conjecture. Here, the
condition on the median degree is replaced with a condition on the average degree
of the host graph.

Conjecture 10 (Erdős-Sós Conjecture 1963). Let G be a graph of order n with
average degree more than k − 1 edges. Let T be any tree on k + 1 vertices. Then
T ⊆ G.

A breakthrough has been announced in the early 1990’s by Ajtai, Komlós,
Simonovits, and Szemerédi [1], who, with methods similar to the ones presented
here, solve Conjecture 10 for sufficiently large values of k.

Both Conjectures 9 and Conjecture 10 have an important application in Ramsey
theory. It is easy to see that each of them implies that the Ramsey number of
two trees Tk+1, Tℓ+1 on k + 1 and ℓ + 1 vertices, respectively, is bounded by
R(Tk+1, Tℓ+1) ≤ k + ℓ + 1. Actually more is implied: Any 2-edge-colouring of
Kk+ℓ+1 contains either all trees on k + 1 vertices in red, or all trees on ℓ+ 1
vertices in blue.

Let us now turn back to the Loebl–Komlós-Sós conjecture. Conjecture 9 is dom-
inated by two parameters: one quantifies the number of vertices of ‘large’ degree,
and the other tells us how large this degree should actually be. Strengthening
either of these bounds sufficiently, the conjecture becomes trivial. On the other
hand, the bound of k for the degree is necessary because of the stars, while the
bound on the numbers of large degree vertices might be lowered a bit (for details,
see [4]).

Several partial results concerning Conjecture 9 have been obtained by placing
either restrictions on the host graph, or on the class of trees to be embedded. Also,
the case k = n/2 has been treated. For references, see [4].

A more general approach is the attack of the dense case of Conjecture 9, that
is, the case when k is linear in n. This has been done using a method that
employs the Regularity Lemma. The solution of the dense case was achieved by
first establishing an approximate result [6], which was then extended, by adding
stability arguments, to the full exact dense case (for large graphs) by Hladký and
Piguet [5], and independently Cooley [2]. Let us state the two results here.
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Theorem 37 (Piguet-Stein [6]). For any q > 0 and α > 0 there exists a number
n0 such that for any n > n0 and k > qn the following holds. If G is an n-vertex
graph and has at least (12 + α)n vertices of degree at least (1 + α)k, and T is any
tree on k + 1 vertices, then T ⊆ G.

Theorem 38 (Hladký-Piguet [5], Cooley [2]). For any q > 0 there exists a number
n0 = n0(q) such that for any n > n0 and k > qn the following holds. If G is an
n-vertex graph and has at least 1

2n vertices of degree at least k, and T is any tree
on k + 1 vertices, then T ⊆ G.

It is left to deal with the sparse case of Conjecture 9, that is, when k is sublinear
in n. We have recently been able to establish the following analogue of Theorem 37:

Theorem 39 (Hladký, Komlós, Piguet, Simonovits, Stein, Szemerédi [4]). For
any α > 0 there exists a number k0 such that for any k > k0 the following holds.
If G is an n-vertex graph and has at least (12 + α)n vertices of degree at least
(1 + α)k, and T is any tree on k + 1 vertices, then T ⊆ G.

The trouble in the sparse case is that the Regularity Lemma is no longer useful
in sparse graphs. To surmount this shortcoming we use a general decomposition
technique which applies also to sparse graphs: each graph can be decomposed into
vertices of huge degree, regular pairs (in the sense of the Regularity Lemma), and
two different expander-like parts. We call this a sparse decomposition of the graph.
Such a tool has been used also in [1].

In a dense graph, our sparse decomposition yields basically the Szemerédi Reg-
ular Partition. But in a sparse graph, it allows us to explore those parts of the
graph that escape from being regularized, and use them for our tree embedding.
We indicated in the talk very roughly how the different parts can be useful for the
embedding; the actual embedding procedures are quite involved (see [4]).
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Couplings of probability spaces and Sidorenko’s conjecture

Balázs Szegedy

We present a new approach to Sidorenko’s conjecture. This approach uses
entropy calculations and coupligs of probability spaces.

Let {Ωi = (Xi,Ai, µi)}3i=1 be three probability spaces. Assume that {ψi : Xi →
X3}i=1,2 are measure preserving maps. Then we say that X3 is a joint factor

of Ω1 and Ω2. In this situation there is a unique probability space Ω4 which is
a coupling of Ω1 and Ω2 such that they are conditionally independent over Ω3.
This means that there are measure preserving maps {φi : Ω4 → Ωi}i=1,2 such

that ψ1 ◦ φ1 = ψ2 ◦ φ2 and E(φ−1
1 (A)|φ2) = E(φ−1

1 (A)|ψ2 ◦ φ2) holds for every
A ∈ A1. We say that Ω4 is the conditionally independent coupling of Ω1 and
Ω2 over the joint factor Ω3. Assume that {νi}4i=1 are also probability measures
on {Ai}4i=1 such that, µi is absolutely continuous with respect to νi. Assume
furthermore that (X4, ν4) is the conditionally independent coupling of (X1, ν1)
and (X2, ν2) over (X3, ν3) using the above maps ψ1, ψ2, φ1, φ2. Then the relative

entropy function defined by D(µ ‖ ν) = Eµ(log(dµ/dν)) satisfies the following
inclusion-exclusion type formula.

D(µ4 ‖ ν4) = D(µ1 ‖ ν1) +D(µ2 ‖ ν2) −D(µ3 ‖ ν3).

We will use the above language for probability distributions on copies of a
graph H in another graph G. It is convenient to introduce the notion of graph
homomorphisms. A homomorphism from H to G is a map f : V (H) → V (G)
such that the image of every edge in H is an edge in G. Let Hom(H,G) ⊂
V (G)V (H) denote the set of homomorphisms from H to G and let t(H,G) denote
the probability that a random map f : V (H) → V (G) is a homomorphism. We
interpret Hom(H,G) as the set of copies of H in G and t(H,G) as the density of H
in G. Let τ(H,G) denote the uniform distribution on Hom(H,G) and let ν(H,G)
denote the uniform distribution on V (G)V (H). Let D(µ) := D(µ ‖ ν(H,G)) for
an arbitrary probability distribution µ on Hom(H,G). The Erdös-Simonovits,
Sidorenko conjecture ([1],[6]) is the following.

Conjecture 11 (Erdös-Simonovits, Sidorenko). Let H be a bipartite graph. Then

t(H,G) ≥ t(e,G)|E(H)|

for every graph G where e is a single edge. Equivalently:

D(τ(H,G)) ≤ |E(H)| D(τ(e,G)).

Note that any probability distribution µ on Hom(H,G) satisfies that

D(τ(H,G)) ≤ D(µ).

If µ satisfies D(µ) ≤ |E(H)|D(τ(e,G)) then H satisfies the Sidorenko conjecture
in G. For various graphs H one can construct such a measure µ by iterated
conditionally independent couplings. The required inequality follows from the
inclusion-exclusion formula. This verifies Sidorenko’s conjecture for various graphs
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including many old ([4],[2],[5], [3]) and many new cases. In particular we obtain a
very simple proof of the famous result [5] by Conlon, Fox and Sudakov which says
that if a vertex in H is complete to the other side then H satisfies the conjecture.
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Hypergraph containers

Andrew Thomason

(joint work with David Saxton)

Given a uniform hypergraph G, it is sometimes helpful to have a collection C of
containers for the collection I of independent sets, such that |C| is much smaller
than |I| itself, but, for each I ∈ I, there is some C ∈ C with I ⊂ C, and moreover
no C ∈ C is large. Here is an illustration.

The list chromatic number χℓ(G) is the smallest ℓ such that, whenever we assign
to each vertex v a list Lv of ℓ colours, there is a vertex colouring of G in which the
colour of v is chosen from Lv. Unlike χ(G), χℓ(G) must grow with the minimum
degree of the graph G. Alon [1], improving on earlier results, showed that χℓ(G) ≥
(1/2+o(1)) log2 d holds for any graph G of minimum degree d. One can ask, more
generally, about simple hypergraphs (those in which no two edges share more than

one vertex). Haxell and Verstraëte [5] proved that χℓ(G) ≥ (log d/5 log log d)
1/2

for every simple, d-regular r-uniform hypergraph G when d is large and r = 3.
Alon and Kostochka [2] obtained χℓ(G) ≥ (log d)1/(r−1) for general r.

Simple examples show that one would expect χℓ(G) = Ω(log d). To attempt a
proof, let us assign random lists Lv of size ℓ, chosen from a palette of k colours
(the value of k is not critical — take k around ℓ2). If there is a choice of colours
from these lists that form a proper colouring of G, then there is some k-tuple of
independent sets (I1, . . . , Ik) such that the vertices of colour j lie inside Ij . We
say the lists Lv respect a tuple (I1, . . . , Ik) if, for each v, Lv is not a subset of
{j : v /∈ Ij}. If the lists allow a colouring then there is some tuple (I1, . . . , Ik) that
the lists respect. Now in a regular r-uniform hypergraph we have |Ij | ≤ (1 − c)n
where c = 1/r. Thus, on average, |{j : v /∈ Ij}| ≥ ck, and so the probability that

the lists respect a particular k-tuple is at most (1−cℓ)n ≤ e−nc
ℓ

(this can be made



118 Oberwolfach Report 02/2013

precise). Hence if |I|ke−ncℓ < 1 then, with positive probability, the lists fail to
respect any k-tuple, showing that χℓ(G) > ℓ.

Taking ℓ = Θ(log d) we would obtain the lower bound χℓ(G) = Ω(log d) this
way provided |I| ≤ en/d. But this bound on |I| is hopelessly optimistic. However,
suppose that we were able to find a set C of containers for I, such that

• |C| ≤ en/d

• |C| ≤ (1 − c)n for all C ∈ C, and
• for all I ∈ I there exists C ∈ C with I ⊂ C.

Then we could use C and (C1, . . . , Ck) in the argument above rather than I and
(I1, . . . , Ik), and so establish that χℓ(G) = Ω(log d).

For regular graphs, Sapozhenko [6] showed that such a set of containers exists.
In [7] we proved that containers exist for regular simple uniform hypergraphs.
Given an independent set I, there are small sets R, S generated randomly, and a
third small set T generated deterministically, and a container C = f(R,S, T ) with
I ⊂ C. Because the containers are determined by small sets, |C| is not large.

We wish to extend these ideas to non-regular hypergraphs, partly to gain a
bound on χℓ(G) in general, but also because we can then iterate the container
process to obtain smaller containers. Indeed, if C is a container for I in G, then I
is independent in the hypergraph G′ = G[C], and we can find a smaller container
I ⊂ C′ insideG′. However, for non-regular hypergraphs, we cannot require that |C|
be bounded, since |I| can be arbitrarily close to n. By using the notion of degree
measure µ(S) =

∑

v∈S d(v)/
∑

v∈G d(v), though, we can aim to find containers
with µ(C) ≤ 1 − c (this implies |C| ≤ (1 − c)n for regular hypergraphs).

In fact, we can construct such containers for any r-uniform hypergraph, not just
simple ones [8]. The construction is via a deterministic algorithm, which generates
containers from r small sets, so ensuring that |C| is small. The actual size of |C|
is expressed in terms of a parameter δ which can be readily computed from the
co-degrees in G. The construction is surprisingly efficient, insofar as in many cases
it can be shown that no smaller set of containers exists.

One consequence of the existence of these containers is that we can show
χℓ(G) ≥ 1

(r−1)2 logr d for any simple r-uniform hypergraph G of average degree d

(in particular this improves Alon’s result for graphs by a factor of 2).
There are other consequences in graph theory. For example, let H be some

ℓ-uniform hypergraph. We might be interested in ℓ-uniform H-free hypergraphs
of order n. Consider the e(H)-uniform hypergraph G on vertex set [n]2, whose
edges correspond to copies of H on vertex set [n]. An independent set I in G is
precisely an H-free graph on [n]. By building containers in G we discover that
all H-free graphs are contained in just a few almost H-free graphs. This can be

applied to prove a variety of facts, such as that there are at most 2(π(H)+o(1)(n

ℓ) H-
free ℓ-uniform hypergraphs of order n. It also implies the recently proved sparse
Túran theorems of Conlon-Gowers [4] and Schacht [9], as well as the full K LR
conjecture. Balogh, Morris and Samotij [3] have obtained closely related results
here. Corresponding results pertain for other structures, such as the number of
solution-free sets for collections of linear equations.
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Graph coloring, communication complexity, and the stubborn problem

Stéphan Thomassé

(joint work with Nicolas Bousquet, Aurélie Lagoutte)

A classical result of Graham and Pollak asserts that the edge set of the complete
graph on n vertices cannot be partitioned into less than n− 1 complete bipartite
graphs. A natural question is then to ask for some properties of graphs Gℓ which
are edge-disjoint unions of ℓ complete bipartite graphs. An attempt in this direc-
tion was proposed by Alon, Saks and Seymour, asking if the chromatic number of
Gℓ is at most ℓ+ 1. This wild generalization of Graham and Pollak’s theorem was
however disproved by Huang and Sudakov who provided graphs with chromatic
number Ω(ℓ6/5). The O(ℓlog ℓ) upper-bound being routine to prove, this leaves
as open question the polynomial Alon-Saks-Seymour conjecture asking if an O(ℓc)
coloring exists for some fixed c.

A well-known communication complexity problem introduced by Yannakakis,
involves a graph G of size n and the usual suspects Alice and Bob. Alice plays
on the stable sets of G and Bob plays on the cliques. Their goal is to exchange
the minimum amount of information to decide if Alice’s stable set S intersect
Bob’s clique K. In the nondeterministic version, one asks for the minimum size
of a certificate one should give to Alice and Bob to decide whether S intersects
K. If indeed S intersects K, the certificate consists in the vertex x = S ∩ K,
hence one just has to describe x, which cost is logn. The problem becomes much
harder if one want to certify that S ∩K = ∅ and this is the core of this problem.
A natural question is to ask for a O(log n) upper bound. Yannakakis observed
that this would be equivalent to the following polynomial clique-stable separation
conjecture: There exists a c such that for any graph G on n vertices, there exists
O(nc) vertex bipartitions of G such that for every disjoint stable set S and clique
K, one of the bipartitions separates S from K.

A variant of Feder and Vardi celebrated dichotomy conjecture for Constrait
Satisfaction Problems, the List Matrix Partition (LMP) problem asks whether
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all (0, 1, ∗) CSP instances are NP-complete or polytime solvable. The LMP was
investigated for small matrices, and was completely solved in dimension 4, save
for a unique case, known as the stubborn problem: Given a complete graph G
which edges are labelled by 1,2, or 3, the question is to partition the vertices
into three classes V1, V2, V3 so that Vi does not span an edge labelled i. An easy
branching majority algorithm computes O(nlog n) 2-list-coloring of the vertices
such that every solution of the stubborn problem is covered by at least one of
these 2-list-coloring. The stubborn problem hence reduces to O(nlog n) 2-SAT
instances, yielding a pseudo polynomial algorithm. A polynomial algorithm was
recently discovered by Cygan et al., but whether the original branching algorithm
could be turned into a polynomial algorithm is still open. Precisely one can ask
the polynomial stubborn 2-list cover conjecture asking if the set of solutions of any
instance of the stubborn problem can be covered by O(nc) instances consisting of
lists of size 2.

In this talk, I will show that the polynomial Alon-Saks-Seymour conjecture, the
polynomial clique-stable separation conjecture and the polynomial stubborn 2-list
cover conjecture are indeed equivalent. One of the implications linking the two
first problems was already proved by Alon and Haviv.

Approximating minimum cost k-node-connectivity augmentation via

independence-free graphs

László Végh

(joint work with Joseph Cheriyan)

For a set V , let
(

V
2

)

denote the edge set of the complete graph on the node
set V . In the minimum-cost k-connectivity augmentation problem, we are given a
graph G = (V,E) and nonnegative edge costs c :

(

V
2

)

→ R+, and the task is to

find a minimum cost set F ⊆
(

V
2

)

of edges such that G + F is k-node-connected.
Let opt(G) denote the optimum value.

The problem is NP-hard for k ≥ 2. In the asymptotic setting, we restrict
ourselves to instances where the number of nodes is lower bounded by a function
of k. Our main result addresses such a setting:

Theorem 40. Let G = (V,E) be an undirected graph with at least k3(k − 1) + k

nodes. There is a polynomial-time algorithm that finds an edge set F ⊆
(

V
2

)

such
that G+ F is k-connected and c(F ) ≤ 6opt(G).

This is the first constant factor approximation algorithm even for the asymptotic
setting. In [3], an O(log k) approximation guarantee was given for the asymptotic
setting, assuming that n ≥ 6k2. Most research efforts subsequent to [3] focused
on finding near-logarithmic approximation guarantees for all possible ranges of n
and k. The best current approximation ratio is O(log k log n

n−k ) by Nutov [9].
For the analogous problem of edge-connectivity augmentation, the seminal re-

sult by Jain [8] gives a 2-approximation algorithm. This works for the more general
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survivable network design problem (SNDP).1 This result was proved by the novel
technique of iterative rounding. The key theorem asserts that every basic feasible
solution to the standard linear programming (LP) relaxation has at least one edge
of value at least 1

2 . A 2-approximation is obtained by iteratively adding such an
edge to the graph and solving the LP relaxation again.

As tempting as it might be to apply iterative rounding for SNDP with node-
connectivity requirements, unfortunately the standard LP relaxation for this prob-
lem might have basic feasible solutions with small fractional values on every edge.
Such an example was presented already in [2]. Recently, [1] improved on pre-
vious constructions by exhibiting an example of the min-cost k-connected span-
ning subgraph problem with a basic feasible solution that has value O(1/

√
k) on

every edge. Still, iterative rounding has been applied to problems with node-
connectivity requirements: for example, Fleischer, Jain and Williamson [4] gave a
2-approximation for node-connectivity SNDP with maximum requirement 2.

Our new insight is that whereas iterative rounding fails to give O(1)-approxi-
mations for arbitrary instances, we can isolate a class of graphs where it does
work; and moreover, we are able to transform an arbitrary input instance to a new
instance from this class.

Frank and Jordán [5] introduced the framework of set-pairs for node-connectivity
problems; the LP relaxation is also based on this notion. By a set-pair, we mean
a pair of nonempty disjoint sets of nodes, not connected by any edge of the graph;
the two sets are called pieces. If the union of the two pieces has size > n− k, then
the set-pair is called deficient, since it corresponds to the two sides of a node cut
of size < k. Clearly, a k-connected graph must not contain any deficient set-pairs.
A new edge has to cover every deficient set-pair, that is, an edge whose endpoints
lie in the two different pieces. Two set-pairs are called independent, if they cannot
be simultaneously covered by an edge (of the complete graph), It can be seen that
the two set-pairs are independent if and only if one of them has a piece disjoint
from both pieces of the other set-pair.

A graph is called independence-free if any two deficient set-pairs are dependent.
This notion of independence-free graphs was introduced by Jackson and Jordán [7]
in the context of minimum cardinality k-connectivity augmentation (the special

case of our problem where each edge in
(

V
2

)

\ E has cost 1).
We observed that bad examples for iterative rounding (such as the one in [1])

always contain independent deficient set-pairs. We show that this is the only pos-
sible obstruction: in independence-free graphs, the analog of Jain’s theorem holds,
that is, every basic feasible solution to the LP relaxation has an edge with value
at least 1

2 . The proof is a simple extension of Jain’s result on edge-connectivity.
The first phase of our algorithm uses “combinatorial methods” to add a set of

edges of cost ≤ 4opt(G) to obtain an independence-free graph. The second phase

1In the SNDP, we are given an undirected graph with non-negative costs on the edges, and
for every unordered pair of nodes i, j, we are given a number ρi,j ; the goal is to find a subgraph
of minimum cost that has at least ρi,j edge-disjoint paths between i and j for every pair of nodes

i, j.
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applies iterative rounding to add a set of edges of cost ≤ 2opt(G) to obtain an
augmented graph that is k-connected.

In the first phase we guarantee a property stronger than independence-freeness.
By a rogue set we mean a set U ⊆ V with d(U) < k and |U | < k. We call a graph
rogue-free if it does not contain any rogue-sets; it is easy to see that a rogue-
free graph must also be independence-free. Our main tool is the Frank-Tardos
algorithm [6] for k-outconnectivity augmentation, a standard tool in connectivity-
augmentation algorithms. We show that a graph with at least k3(k− 1) + k nodes
can be made rogue-free by two applications of this algorithm, with suitably chosen
root sets.
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Immersions in highly connected graphs

Paul Wollan

(joint work with D. Marx and P. Seymour)

We consider graphs with parallel edges but no loops. A graph G admits an im-
mersion of a graph H if there exist functions πv : V (H) → V (G) and πe mapping
the edges of H to subgraphs of G satisfying the following:

a. the map πv is an injection;
b. for every edge f ∈ E(H) with endpoints x and y, πe(f) is a path with

endpoints equal to πv(x) and πv(y);
c. for edges f, f ′ ∈ E(H), f 6= f ′, πe(f) and πe(f

′) have no edge in common.

The vertices {πv(x) : x ∈ V (H)} are the branch vertices of the immersion. We will
also say that G immerses H or alternatively that G contains H as an immersion.
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There is an easy structure theorem for graphs which exclude a fixed H as an
immersion [3], [2]. If we fix the graph H and let ∆ be the maximum degree of
a vertex in H , then one obvious obstruction to a graph G containing H as an
immersion is if every vertex of G has degree less than ∆. The structure theorem
shows that this is approximately the only obstruction. The structure theorem
says that for all t ≥ 1, any graph which does not have an immersion of Kt can be
decomposed into a tree-like structure of pieces with at most t vertices of degree at
least t2.

The structure theorem gives rise to a variant of tree decompositions based on
edge cuts instead of vertex cuts, called tree-cut decompositions. The minimum
width of a tree-cut decomposition is the tree-cut width of a graph. The tree-cut
width shares many of the standard properties of tree-width translated into terms
of immersions. For example, the tree-cut width of a graph is monotone decreasing
under taking immersions. See again [3] for further details.

We consider here the extremal problem of how much edge connectivity is nec-
essary to force a fixed graph H as an immersion. DeVos, Dvorak, Fox, Mcdonald,
Mohar, Scheide [1] have shown that in a simple graph, minimum degree 200t suf-
fices to force an immersion of Kt. Moreover, there exist examples of graphs with
minimum degree t− 1 which do not contain Kt as an immersion. More generally,
it is easy to construct graphs which are highly edge connected and still have no
Kt immersion. Consider, for example, the graph obtained from taking a path and
adding t2/4− t parallel edges to each edge. Such a graph is O(t2) edge connected
but still contains no Kt immersion.

The example above of a highly edge connected graph with no Kt immersion
has tree-cut width bounded by a function of t. Thus, one might hope that all the
highly edge connected graphs which do not admit Kt as an immersion similarly
have bounded tree-cut width. This is in fact the case.

Theorem 41. There exists a function g satisfying the following. Let k ≥ 4, n ≥ 1
be positive integers. Then for all graphs H with maximum degree k on n vertices
and for all k-edge connected graphs G, either G admits an immersion of H, or G
has tree-cut width at most g(k, n).

The theorem is not true for k = 3. This is because if G and H are 3-regular
graphs, then G contains H as an immersion if and only if G contains H as a
topological minor. Thus, if H is any 3-regular graph which cannot be embedded
in the plane, then any 3-regular planar graph G cannot contain H as an immersion
and such graphs can have arbitrarily large tree-width.
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