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Abstract. Optimization problems governed by partial differential equations
(PDEs) arise in many applications in the form of optimal control, optimal de-
sign, or parameter identification problems. In most applications, parameters
in the governing PDEs are not deterministic, but rather have to be modeled
as random variables or, more generally, as random fields. It is crucial to
capture and quantify the uncertainty in such problems rather than to simply
replace the uncertain coefficients with their mean values. However, treating
the uncertainty adequately and in a computationally tractable manner poses
many mathematical challenges. The numerical solution of optimization prob-
lems governed by stochastic PDEs builds on mathematical subareas, which so
far have been largely investigated in separate communities: Stochastic Pro-
gramming, Numerical Solution of Stochastic PDEs, and PDE Constrained
Optimization.

The workshop achieved an impulse towards cross-fertilization of those dis-
ciplines which also was the subject of several scientific discussions. It is to be
expected that future exchange of ideas between these areas will give rise to
new insights and powerful new numerical methods.
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Introduction by the Organisers

The workshop Numerical Methods for PDE Constrained Optimization with Un-
certain Data, organized by Matthias Heinkenschloss (Houston) and Volker Schulz
(Trier) was held 27 January – 2 February 2013. One of the main objectives of
this meeting was to bring together leading experts from the fields of stochastic
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programming, numerical solution of stochastic PDEs, and PDE constrained op-
timization in order to encourage and foster new approaches by the exchange of
state-of-the-art methods and fresh ideas. The achievement of this goal was well
reflected by this workshop which was attended by almost fifty active researchers
from seven countries including a few students and postdoctoral fellows. A total
of thirty presentations was given at the workshop covering a wide spectrum of is-
sues ranging from the analysis of specific theoretical problems to more algorithmic
aspects of computational schemes and various applications.

A particular area of active research is the topic of

Optimization methods

This topic was one of the central themes of the workshop addressed in several
talks including optimization with probability constraints (Henrion), optimal ex-
perimental design (Herzog), preconditioning of full-space SQP methods (Ridzal),
finite dimensional stochastic programming (Schultz), robust optimization based
on lower order approximations (Ulbrich) and in several application oriented talks.

Another central theme of the workshop was concerned with

Adaptive methods

This topic included the aspects of high order spatial discretizations (Gittelson),
adaptive solution of PDE constrained optimization problems (Kouri), low-rank
tensor approximations (Litvinenko), accurate discretization schemes (Mohammadi),
collocation approaches (Nobile), adaptive quadratur rules (Ritter), and adaptive
Smolyak-type approaches (Schillings).

Furthermore, the powerful methodology of

Model reduction and model predictive control

played an important role. Researchers in these areas reported on the usage of
Fokker-Planck approaches (Borzi), nonstationery nonlinear model predictive con-
trol (Kostina), real-time optimization (Potschka) and approximation of stochastic
optimization problems (Römisch).

The important aspect of

Applications

was the subject of ten talks concerned with Pareto-front identification in aerody-
namic optimization (Desideri), oil and gas exploration (El-Bakry), groundwater
flow (Ernst), optimal experimental design (Herzog), cardiovascular applications
(Kunisch), inverse identification (Matthies), radio frequency ablation (Preusser),
large scale shape optimization (Schmidt), topology optimization (Stoffel) and ther-
moelastic shape optimization (Zorn).

Furthermore several talks addressed interesting side aspects not covered within
the clusters above, like piecewise deterministic processes (Annunziato), random
domains (Harbrecht), and the tractability of multivariate problems (Novak),

It was noticable in several presentations that the idea of bringing the so far
seperated disciplines of stochastic programming, numerical solution of stochastic
PDEs, and PDE constrained optimization together is timely and very relevant for
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applications. However, it has become also clear that this workshop has been just
the first step giving an impulse towards cross-fertilization of those fields and that
further similar efforts are necessary to unravel the full potential for future joint
research.
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Abstracts

Probability Density Function Optimal Control of Piecewise

Deterministic Processes

Mario Annunziato

A novel strategy for the optimal control of piecewise deterministic processes (PDP)
is illustrated. The PDPs considered here are stochastic processes made of pieces of
determisitic motion punctuated of random events that are originated by a Markov
process. The control objectives are devised as functionals of the probability den-
sity function (PDF) of the process, that follows a desired sequence of configura-
tion. The corresponding optimal control problems are formulated as a sequence
of open-loop optimality systems in a nonlinear model predictive control strategy.
The governing equation of the time dependent marginal PDFs is a Kolmogorov-
Fokker-Planck-type equation, that results to a system of linear hyperbolic PDEs.
An upwind discretization scheme, that is positive and conservative preserving, is
discussed for this equation and its adjoint. The effectiveness of this new control
framework is tested to the problem of optimal control of filtered of dichotomous
noise.

This work is part of the talk “A Fokker-Planck Strategy for the Optimal Control
of Stochastic Processes and Piecewise Deterministic Processes” that is in collabo-
ration with Prof. Dr. Alfio Borz̀ı (Würzburg Univ.) and it is supported in part
by the EU Marie Curie International Training Network Multi-ITN STRIKE Pro-
jekt ‘Novel Methods in Computational Finance’ and in part by the ESF OPTPDE
Programme.
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An Optimal Control Strategy for Probability Density Functions of

Stochastic Processes and Piecewise Deterministic Processes

Alfio Borzi

(joint work with M. Annunziato, M. Mohammadi)

An efficient framework for the optimal control of probability density functions
(PDF) of multidimensional stochastic processes and piecewise deterministic pro-
cesses is presented. This framework is based on Kolmogorov-Fokker-Planck-type
equations that govern the time evolution of the PDF of stochastic processes and
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piecewise deterministic processes. In this approach the control objectives are for-
mulated in terms of the PDF to follow a given trajectory and to reach a desired ter-
minal configuration. The corresponding optimal control problems are formulated
as a sequence of open-loop optimality systems in a nonlinear model predictive con-
trol strategy. Theoretical results concerning the forward and the optimal control
problems are provided. In the case of stochastic (Ito) processes, the Fokker-Planck
equation is of parabolic type and it is shown that under appropriate assumptions
the open-loop bilinear control function is unique. In the case of piecewise de-
terministic processes (PDP), the Fokker-Planck equation consists of a first-order
hyperbolic system. Discretization schemes are discussed that guarantee positivity
and conservativeness of the forward solution. The proposed control framework is
validated with multidimensional biological and financial models.
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Multiple-Gradient Descent Algorithm, MGDA, for Pareto-Front

Identification - Application to Robust Design

Jean-Antoine Désidéri

(joint work with Jean-Antoine Désidéri, Régis Duvigneau)

We began with a numerical illustration of optimum-shape design in aerodynam-
ics (aircraft wing shape design for minimum drag). If the geometry is optimized
at a fixed nominal Mach number, its performance degrades rapidly at off condi-
tions, which illustrates the necessity to perform robust-design optimization. This
can be realized in practice by Monte-Carlo approaches in which for an assigned
(usually Gaussian) distribution of Mach numbers, both mean and variance of drag
are minimized, yielding a two-objective optimization formulation. Possibly, due
to computationally-demanding flow simulation, one may resort to meta-models
of mean and variance in terms of the design parameters. Such meta-models are
constructed based on a database of high-fidelity pre-calculations [1]. An alter-
nate route is to consider a multi-point formulation in which the Mach number
is discretized, yielding several shape functionals to be minimized. In all cases,
algorithm-wise, one is led to consider a multi-objective optimization problem for
which we propose a multiple-gradient descent algorithm (MGDA) in which the
descent direction is constructed as the minimum-norm element in the convex hull
of the gradients [2]. The notion of Pareto-stationarity has been introduced and
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proved to be the natural necessary condition to Pareto-optimality. MGDA con-
verges to Pareto-stationary points. Direct variants of MGDA have been proposed
using an incomplete well-ordered Gram-Schmidt process, and a scaling by the
Hessian matrices [3].
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Rendus Mathématique, 350:5-6 (2012), 313-318.

[3] J.-A. Désidéri, MGDA Variants for Multi-Objective Optimization, Research Report 8068,
INRIA (2012). (http://hal.inria.fr/hal-00732881)

Some Interesting Mathematical Problems in the Oil and Gas Business

Amr El-Bakry

In this talk I will review some important math problems from PDE to optimization
and explain the source of uncertainty in these problems.

Travel Time Calculations at the WIPP: UQ for a Groundwater Flow

Problem

Oliver G. Ernst

(joint work with K. Andrew Cliffe, Björn Sprungk)

We consider a groundwater flow problem with random transmissivity field arising
in a site assessment for the radioactive waste repository Waste Isolation Pilot
Plant (WIPP) in Carlsbad, NM (USA). We show how a statistical model may
be obtained from measurements of transmissivity and compare three methods
for the numerical solution of the resulting boundary value problem with random
coefficient: Monte Carlo simulation, sochastic collocation and Gaussian process
emulators. The quantity of interest in these calculations is the probability law
of the travel time of a particle released in the domain to the domain boundary.
We demonstrate that, for rough covariance structures, the number of random
parameters one can feasibly accomodate do not allow the CDF of the travel time
to be approximated with sufficient accuracy.
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Merits of High-Order Spatial Discretization for Random PDE

Claude Jeffrey Gittelson

Solutions of a class of random elliptic boundary value problems admit efficient
approximations by polynomials on the parameter domain. Each coefficient in such
an expansion is a spatially-dependent function, and can be approximated within a
hierarchy of finite element spaces. Convergence rates for multilevel approximations
using a separate finite element space to approximate each coefficient can be derived
based on summability properties of the coefficients in a scale of spatial norms.
Sparse tensor product constructions, which impose additional structure on such
a multilevel approximation, can always essentially attain the optimal convergence
rate, [1].

Surprisingly, simply choosing a single level of refinement for all active coeffi-
cients sometimes also reaches the optimal convergence rate of much more flexible
multilevel approximations, while avoiding difficulties arising from having to deal
with multiple spatial discretizations, [1]. This finding is particularly prevalent
for high-order spatial approximations. Thus high-order methods may provide a
simpler alternative to sparse tensor product constructions and other multilevel
stochastic Galerkin approximations in that both approaches yield improvements
in efficiency, but these do not appear to be complimentary, [2].
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Modelling and Simulation of Elliptic PDEs on Random Domains

Helmut Harbrecht

Introduction.

The rapid development of computational resources in recent years allows the
accurate numerical solution of large classes of partial differential equation models,
provided that the problem’s input data are given exactly. Often, however, exact
input data for numerical simulations in engineering are not known. The practical
significance of a highly accurate numerical solution of differential equation models
in engineering must thus address how to account for uncertain input data.

If a statistical description of the input data is available, one can mathematically
describe the data and the solutions as random fields and aim at the computation
of corresponding deterministic statistics of the unknown random solution u. Our
particular interest is on elliptic boundary value problems on uncertain domains
D(ω) ⊂ Rn. Specifically, we like to compute the expectation

Eu(x) =

∫

Ω

u(x, ω)dP (ω),
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the two-point correlation

Coru(x,y) =

∫

Ω

u(x, ω)u(y, ω)dP (ω),

and from it the variance Vu(x) = Coru(x,x) − E2
u(x).

The goal of computation is as follows: given mean and two-point correlation
of the boundary perturbation field, compute, to leading order, the mean and the
two-point correlation of the random solution of the boundary value problem.

Partial differential equations on random domains. For a given random
event ω ∈ Ω, we shall consider the Dirichlet problem for the Poisson equation on
a random domain

(1) −∆u(ω) = f in D(ω), u(ω) = g on ∂D(ω).

Here, the random domain D(ω) ⊂ Rn is seen as the random perturbation of a
fixed nominal domain D ⊂ Rn, that is

∂D(ω) = {y ∈ R
n : y(x, ω) = x+ εκ(x, ω)n(x), x ∈ ∂D},

where n denotes the outward normal vector at ∂D.
For a fixed, small ε ∈ [0, ε0], one can linearize the problem with respect to ω

under additional assumptions on the smoothness of κ(x, ω), necessary to ensure
that the perturbed domain is still admissible (e.g. Lipschitz continuous). Namely,
for x ∈ K ⊂⊂ D, we find the first order shape Taylor expansion

(2) u(x, ω) = u(x) + εδu(x)[κ(ω)] +O(ε2),

see [7]. Herein, u signifies the solution of (1) with respect to the nominal domain
D, i.e.,

(3) −∆u = f in D, u = g on ∂D,

and δu is the related local shape derivative

(4) ∆δu = 0 in D, δu = κ
∂(g − u)

∂n
on ∂D.

Under the assumption that Eκ = 0, we arrive, in view of the shape Taylor expan-
sion (2), at (cf. [2, 4, 7])

(5) Eu(x) = u(x) +O(ε2), Coru(x,y) = ε2Corδu(x,y) +O(ε3),

where Corδu satisfies the boundary value problem

(6)

(∆x ⊗∆y)Corδu = 0 in D ×D,

∆xCorδu = 0 on D × ∂D, ∆yCorδu = 0 on ∂D ×D,

Corδu = Corκ

[
∂(g − u)

∂n
⊗ ∂(g − u)

∂n

]
on ∂D × ∂D.

Consequently, the expectation of the random solution coincides, with leading order
in the size of the random perturbation, with the solution of the Poisson equation
(3). The two-point correlation, i.e., the second order statistical moment, is, with
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leading order, given by a partial differential equation in tensor product form, which
is based on the equation for the local shape derivative (4).

Note that the present linearization approach extents to more general second
order diffusion problems [2] and to Neumann and Robin boundary conditions [3].
Random interface problems have been considered in [4]. Moreover, random right
hand sides and random coefficients can analogously be treated [6, 8].

An abstract view on the linearization approach. The linearization of a sec-
ond order elliptic boundary value problem with respect to a given input parameter
κ(ω) involves the associated derivative δu(ω) ∈ H(D). It is generally given by a
boundary value problem

Aδu(ω) = f(ω) on D,

where A : H(D) → H′(D) denotes a linear, second order elliptic partial differential
operator which is defined on a domainD ⊂ Rn. Typically one might think ofH(D)
being a Sobolev space with dual H′(D). Moreover, the random input parameter
linearly enters the right hand side f(ω) ∈ H′(D) since the mapping κ(ω) 7→ δu(ω)
is linear. The two-point correlation Corδu ∈ Hmix(D×D) := H(D)⊗H(D), which
pops up in the asymptotic expansions (5), is thus given by the tensor product
problem

(7) (A⊗A)Corδu = Corf on D ×D.

Especially it holds Corf ∈ H′
mix(D ×D) = H′(D)⊗H′(D).

Combination technique. The starting point for the definition of sparse tensor
product spaces for the Sobolev space Hmix(D×D) are traditional and widely used
multilevel hierarchies

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ H(D),

where dim(Vj) ∼ 2jn. Then, appropriate complement spaces

W0 := V0, Wj := Vj ⊖ Vj−1, j > 0

are chosen to arrive at the multiscale decomposition

VJ =W0 ⊕W1 ⊕ · · · ⊕WJ .

In general, such complement spaces are defined by hierarchical bases like e.g.
wavelet or multilevel bases, see [1] and the references therein. The sparse tensor

product space V̂J ⊂ Hmix(D ×D) is finally defined in accordance with

V̂J =
⊕

j+j′≤J
Wj ⊗Wj′ =

J⊕

j=0

Vj ⊗WJ−j .

It possesses only O(2JnJ) degrees of freedom which is much less than the O(22Jn)
degrees of freedom of the full tensor product space VJ ⊗VJ . However, the approxi-
mation power of the sparse tensor product space and the full tensor product space
are essentially (i.e., except for logarithmic factors) identical if extra smoothness is
given in terms of Sobolev spaces with dominating mixed derivative [1].
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To derive the combination technique, we consider the special complement spaces

Wj := (Pj − Pj−1)H(D) ⊂ Vj

with Pj : H(D) → Vj being the Galerkin projection associated with the operator

A. Then, the Galerkin system with respect to the sparse tensor product space V̂J
decouples due to Galerkin orthogonality. Namely, it holds

(
(A⊗A)vi,i′ , wj,j′

)
L2(D×D)

= 0 for all vi,i′ ∈Wi ⊗Wi′ , wj,j′ ∈Wj ⊗Wj′

provided that i 6= j or i′ 6= j′. As a consequence, the Galerkin solution Ĉorδu,J to

(7) in the sparse tensor product space V̂J can be written as

Ĉorδu,J =

J∑

j=0

{pj,J−j − pj,J−j−1} ∈
J⊕

j=0

Vj ⊗ (VJ−j ⊖ VJ−j−1) = V̂J

where pj,j′ denotes the Galerkin solution of (7) in the full (but small) tensor
product space Vj ⊗ Vj′ , cf. [3, 6].

Low-rank approximation. A rank-r approximation of a given function Corf ∈
L2(D ×D) is defined by

Corf (x,y) ≈ Corf,r(x,y) :=

r∑

ℓ=1

aℓ(x)bℓ(y)

with certain functions aℓ, bℓ ∈ L2(D). Inserting such a low-rank approximation in
the tensor product boundary value problem (7) leads to the representation

Corδu =
(
A−1 ⊗A−1

)
Corf ≈

(
A−1 ⊗A−1

)
Corf,r =

r∑

ℓ=1

(
A−1aℓ

)
⊗
(
A−1bℓ

)
,

i.e., the tensor product boundary value problem is reduced to 2r simple boundary
value problems on the domain D. In the case of the second moment analysis in
uncertainty quantification, we find the special situation that Corf is symmetric
and positive semi-definite. Hence, the pivoted Cholesky decomposition can be
used to efficiently compute the low-rank approximation to the right hand side, see
[4, 5].
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Optimization Problems with Probabilistic Constraints

René Henrion

A probabilistic constraint is an inequality of the type

(1) P (g(z, ξ) ≤ 0) ≥ p,

where g is a mapping defining a (random) inequality system and ξ is an s- di-
mensional random vector defined on some probability space (Ω,A,P). The prob-
abilistic constraint expresses the requirement that a decision vector z is feasible
if and only if the random inequality system g(z, ξ) ≤ 0 is satisfied at least with
probability p ∈ [0, 1]. The use of probabilistic constraints is highly relevant for
engineering problems involving uncertain data. Among its numerous applications
one may find topics like water management, telecommunications, electricity net-
work expansion, mineral blending, chemical engineering etc. For a comprehensive
overview on the theory, numerics and applications of probabilistic programming,
we refer to, e.g., [8], [9], [10].

From a formal viewpoint, a probabilistic constraint is a conventional constraint
α(z) ≥ p with α(z) := P (g(z, ξ) ≤ 0) on the decision vector (because the depen-
dence on ξ vanishes by taking the probability). However, the major difficulty
imposed by probabilistic constraints arises from the fact that typically no analyt-
ical expression is available for α. All one can hope for, in general, are efficient
tools for numerically approximating α. This bears a lot of challenges in the the-
oretical and algorithmical analysis of such optimization problems, e.g., structure
(differentiability, convexity), numerics (computation of gradients) and stability
of solutions (perturbations of the underlying probability distribution). The talk
addresses some of these aspects along with concrete applications from energy man-
agement.

With respect to structural properties, we present some recent results on the
Lipschitz continuity of probability functions α as introduced above [5] as well as
on the convexity of linear probabilistic constraints with Gaussian coefficient matrix
[3, 4]. It is shown that convexity can be derived for sufficiently large probability
levels p in (1) which can be explicitely calculated from the given distribution
parameters.

The focus of the talk is on gradient formulae for probability functions α which
allow to analytically reduce the computation of gradients ∇α to that of function
values α̃ again (possibly with modified distribution parameters). This is possible,



Numerical Methods for PDE Constrained Optimization with Uncertain Data 255

for instance, in case of probabilistic constraints of the form

P(Lξ ≤ h(x)) ≥ p or P(Ξx ≤ h(x)) ≥ p

where the components of the random vector ξ or of the random coefficient matrix
Ξ obey a joint multivariate Gaussian law [1, 6]. The benefit of such reduction is
threefold: first, the same efficient codes used to approximate function values can
be employed for the computation of gradients; second, proceeding by induction,
one may calculate in the same way higher order derivatives; third, thanks to
the analytic relation between gradients and function values, there is no risk of
increasing the approximation error which is inevitable for function values.

Finally, we touch the aspect of stability of probabilistic optimization problems
in the context of empirical (sample average) approximations where the original
(typically continuous) probability distribution is approximated by a discrete one
(e.g., based on a Monte Carlo sample). Such approach is seductive because it
works more or less for arbitrary given distributions and allows to employ tech-
niques from mixed integer programming. While general stability results on prob-
abilistic programming obtained in [2] confirm convergence (actually with Hölder
rate with respect to the Kolmogorov distance between probability distributions)
of the approximated to the theoretical solution set, simple examples show that the
promising exponential term involving the used sample size N does not exclude
huge sample sizes needed for a reasonable precision in the approximation of the
theoretical solution set even in small dimension [7].
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[10] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on Stochastic Programming, MPS-
SIAM series on optimization 9, 2009.



256 Oberwolfach Report 04/2013

Optimal Experimental Design for Heat Transfer Experiments

Roland Herzog

(joint work with Tommy Etling)

We consider experiments for the determination of the heat transfer coefficient
between samples of different materials. The experiment proceeds by heating the
two samples to different initial temperatures, then applying the desired contact
pressure and observing the temperature evolution by thermographic images. We
model the problem as a coupled 1D heat conduction problem for the two temper-
atures T1, T2 in the two probes:

λ1
∂T1

∂n = 0 λ2
∂T2

∂n = 0 on outer probe boundaries

̺1 cp,1
∂T1

∂t = λ1
∂2

∂x2T1 ̺2 cp,2
∂T2

∂t = λ2
∂2

∂x2T2 within each probe

λ1
∂T1

∂n = α (T2 − T1) λ2
∂T2

∂n = α (T1 − T2) on inner probe boundaries

T1(·, 0) = T1,0 T2(·, 0) = T2,0 at initial time.

The parameters are the densities ̺1, ̺2, the heat conduction coefficients λ1 and
λ2 and the heat transfer coefficient α.

Statistical methods can be used to assess the quality of the parameter estima-
tion. One possibility which is computationally tractable is to calculate confidence
regions of the linearized (Gauss-Newton) parameter estimator. Tight confidence
regions will be ellipsoidal in shape. Their size is determined by the eigenvalues of
the estimator’s covariance matrix.

In optimal experimental design, the objective is to choose the experimental
conditions so as to maximize the information content of the experiment [2]. In
other words, the objective is to reduce the size of the confidence regions. In the heat
transfer experiment, experimental conditions available are the initial temperatures
of the samples, as well as the choice of spatio-temporal measurements drawn from
the wealth of thermographic images. We present numerical experiments for the
estimation of the heat transfer coefficient between samples, as well as the thermal
conductivity coefficients in each sample. The presentation is based on results
obtained in [1].
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Nonlinear Model Predictive Control of Non-Stationary Partial

Differential Equations

Ekaterina Kostina

(joint work with Hans Georg Bock, Gregor Kriwet)

Many spatio-temporal processes in the natural and life sciences, and in engi-
neering are described by the mathematical model of non-stationary PDE. It is of
high practical relevance as well as a mathematical challenge to use such models
for a process optimization subject to numerous important inequality restrictions.
However, in the presence of perturbations and model uncertainties the real pro-
cess will never follow an off-line computed optimal solution. Thus the challenge
is to compute feedback controls based on system state and parameter estima-
tion that take these perturbations and uncertainties into account. We present a
new optimization method for moving Horizon Estimation (MHE) and Nonlinear
Model Prediction Control (NMPC) to meet this challenge. The general principle
is to re-estimate states and parameters whenever new information about the pro-
cess is available, to solve a complete optimal control problem and to apply the
first instant of this optimal control as a feedback law. However, the frequency of
perturbation information about the system requiring immediate optimal feedback
control response is typically orders of magnitude higher than even one single op-
timization iteration. Therefore we discuss an efficient method for MHE for PDE
models which uses the MHE principles for DAE as described in [3, 4]. Then we
discuss an innovative multi-level iterations strategy which was first introduce in
[1, 2] to make NMPC computations real-time feasible even for PDE constrained
optimal control problems. However in the PDE and also the large-scale DAE case,
neither does MHE measurement information yield accurate information of the full
state and parameter space, nor is this indeed necessary for effective, e.g. stabi-
lizing, NMPC. Hence, a logical further step is the development of a simultaneous
MHE and NMPC method “in one step”. This requires both the theoretical in-
vestigation of joint sensitivity, conditioning and stability analysis of coupled MHE
and NMPC and an efficient generalization of the existing algorithmic approaches
to combined multi-level real-time iterations. Another open research topic is the
so-called “dual” control problem, which simultaneously optimizes the controls for
both experimental design for information and for process performance related cri-
teria, thus combining, e.g., the cost function as a performance criterion to be
optimized and the contribution of inaccuracies to loss of performance (e.g. the re-
sulting variance of the cost function) to be minimized. As a result, certain degrees
of freedom in the controls are exploited to reduce the inaccuracies leading to the
most significant performance losses.
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An Approach for the Adaptive Solution of Optimization Problems

Governed by Partial Differential Equations with Uncertain Coefficients

Drew P. Kouri

(joint work with Matthias Heinkenschloss, Denis Ridzal, Bart G. van Bloemen
Waanders)

The numerical solution of optimization problems governed by partial differential
equations (PDEs) with random coefficients is computationally challenging because
of the large number of deterministic PDE solves required at each optimization
iteration. In this talk, we introduce an efficient algorithm for solving such problems
based on a combination of adaptive sparse-grid collocation for the discretization of
the PDE in the stochastic space and a trust-region framework for optimization and
fidelity management of the stochastic discretization. The overall algorithm adapts
the collocation points based on the progress of the optimization algorithm and
the impact of the random variables on the solution of the optimization problem.
It frequently uses few collocation points initially and increases the number of
collocation points only as necessary, thereby keeping the number of deterministic
PDE solves low while guaranteeing convergence. Currently an error indicator
is used to estimate gradient errors due to adaptive stochastic collocation. The
algorithm is applied to three examples, and the numerical results demonstrate
a significant reduction in the total number of PDE solves required to obtain an
optimal solution when compared with a Newton conjugate gradient algorithm
applied to a fixed high-fidelity discretization of the optimization problem.
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On Optimal Control of the Bidomain Equations

Karl Kunisch

The bidomain equations describe the electrical activity of the heart. Extracellular
current density stimuli are used to act as controls to achieve control objectives as
for instance defibrillation of arrhythmias. An open loop formulation is proposed,
mathematically justified, and numerically realized for simplified geometries. For
closed loop control approximation of the Hamilton-Jacobi-Bellman by model re-
duction techniques is discussed. The closed loop formulation is robust against
system perturbations.

Sampling and Low-Rank Tensor Approximations

Alexander Litvinenko

(joint work with Hermann G. Matthies)

Computing of a response surface (another name is a surrogate model) can be
very helpful in the area of uncertainty quantification. The idea is to approximate
unknown solution function (which is expensive to evaluate) by a cheap surrogate
(e.g. a polynomial) which is easy to evaluate. In this work we show how to
compute and then how to update such low-rank response surface on the fly with
a linear complexity [4, 3]. Later on the constructed surrogate model is used for
generation of a large sample which is necessary for computing different statistics of
the solution, such as mean, variance, error bars, cumulative distribution function
and histograms.

After the response surface (RS) is constructed from few samples, we use new
data (snapshots) and the residual to update it. A motivation for this idea comes
from the fact that in many software packages it is impossible or very difficult to
change the code, but it is possible to access the residual.

Numerical examples [3, 4] show that in the case of a smooth solution one can safe
around 80% of computing cost (i. e. the response surface is a good preconditioner),
but if the solution is discontinuous then the response surface produces a poor
approximation and the full computation is necessary.

1. Data compression

Let vi ∈ Rn, i = 1..Z, be the solution vectors (snapshots), where Z is a number
of stochastic realisations of the solution and n number of degrees of freedom in the
physical space. Let us build from all these vectors the matrix W = (v1, ...,vZ) ∈
Rn×Z and consider the approximation (with accuracy ε)

(1) W ≈ Wk = ABT , where ‖W −Wk‖ < ε, k ≪ min{n, Z}.
To compute factors A ∈ Rn×k and B ∈ RZ×k we compute the truncated singular
value decomposition Wk = UkΣkVk

T , where Uk ∈ Rn×k contains the first k
columns of U, Vk ∈ RZ×k contains the first k columns of V and Σk ∈ Rk×k

contains the k-biggest singular values of Σ. We denote A = UkΣk and B = Vk.
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Denote the i-th column of matrix BT by bi ∈ Rk be given. Eq. 2 and Eq. 3
show how to compute the mean v ∈ Rn and the covariance without multiplying
A and B:

(2) v =
1

Z

Z∑

i=1

vi ≈ vk =
1

Z

Z∑

i=1

A · bi = Ab.

The computational complexity is O(k(Z + n)), besides O(nZ)) for usual dense
data format. By definition, the covariance matrix is C = 1

Z−1WcW
T
c . Now, the

covariance matrix can be approximated like

(3) C ≈ 1

Z − 1
UkΣkΣ

T
kU

T
k =

1

Z − 1
AAT .

The variance of the solution vector (i.e. the diagonal of the covariance matrix in
Eq. 3) can be computed with the complexity O(k2(Z + n)).
Lemma: Let ‖W−Wk‖2 ≤ ε, and uk be a rank-k approximation of the mean u.
Then a) ‖u− uk‖ ≤ ε√

Z
, b) ‖C−Ck‖ ≤ 1

Z−1ε
2.

For the proof see [4, 3].

Suppose Wk is given. Suppose also that matrix W
′ ∈ Rn×m contains new m

solution vectors. For a small m, computing the factors C ∈ Rn×k and D ∈ Rm×k

such that W
′ ≈ CDT is not expensive. Now our aim is to compute with a

linear complexity the rank-k approximation of Wnew := [WW′] ∈ Rn×(Z+m).
To do this, we build two concatenated matrices Anew := [AC] ∈ Rn×2k and
BT
new = blockdiag[BT DT ] ∈ R2k×(Z+m). Note that matrices Anew and Bnew

have rank 2k. To truncate rank from 2k to k we use the QR-algorithm with the
linear complexity O((n+ Z)k2 + k3) [1, 4, 3].

2. Response surface and its low-rank approximation

Let v(x, θ) be the solution ( or a functional of the solution). It can be pressure,
density, velocity, lift, drag etc. v(x, θ) can be approximated in a set of new
independent Gaussian random variables (polynomial chaos expansions (PCE) of
Wiener [6])

(4) v(x, θ(ω)) ≈
∑

β∈JM,p

vβ(x)Hβ(θ) = [...vβ(x)...][...Hβ(θ)...]
T ,

where θ(ω) = (θ1(ω), ..., θM (ω)), vβ(x) are coefficients, Hβ(θ) the multivariate
Hermite polynomials, JM,p a finite multi-index subset of infinite dimensional
multi-index set and p the maximal polynomial order Hβ(θ). Since Hermite poly-
nomials are orthogonal, the coefficients vβ(x) can be computed by projection:

vβ(x) =
1

β!

∫

Θ

Hβ(θ)v(x, θ)P(dθ) ≈
1

β!

nq∑

i=1

Hβ(θi)v(x, θi)wi,

where the multidimensional integral over Θ is computed approximately, for ex-
ample, on a sparse Gauss-Hermite grid where θi are quadrature points, wi corre-
sponding weights and nq is the number of quadrature points. Using the rank k
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approximation ABT of the set of realisations, obtain

(5) vβ(x) =
1

β!
[v(x, θ1), ...,v(x, θnq

)] · [Hβ(θ1)w1, ..., Hβ(θnq
)wnq

]T ≈ ABT cβ ,

where vector cβ := 1
β! [Hβ(θ1)w1, ..., Hβ(θnq

)wnq
]T . The matrix of all PCE coef-

ficients will be [...vβ(x)...] = ABT [...cβ ...], β ∈ JM,p. Put all together, obtain a
low-rank representation of RS

(6) v(x, θ) ≈ ABT [...cβ ...](..., Hβ(θ), ...)
T .

3. Update of response surface via computing the residual

Assume that we already approximated the unknown solution by a response
surface like in Eq. 6. The following algorithm updates the given response surface.
Algorithm: (Update of the response surface)

(1) Take the next point θnq+1 and evaluate the response surface Eq. 6 in this
point. Let u(x, θnq+1) be the obtained solution.

(2) Compute residual ‖r(u(x, θnq+1))‖. Only if ‖r‖ is large solve expensive
deterministic problem. It can be also used, e. g., as a start value in an
iterative process.

(3) Update A, BT , [...cβ ...] and go to (1).

In the best case we never solve the deterministic problem again. In the worst case
we must solve the deterministic problem for each θnq+i, i = 1, 2, ... The numerical
results [4, 3] (solution is smooth, no shock) show that with this algorithm one
can reduce e. g. the number of needed iterations (for non-linear Navier Stokes)
from 10000 to 2000. If the solution is discontinuous (e. g. with shock) then our
response surface is a very poor approximation and the produced value can not be
used as a good start point in iterations.

Future plans: In this work we split the spatial part from the stochastic part
via SVD. The next aim is to split high-dimensional stochastic part and repre-
sent/approximate it in a low-rank tensor format and to keep this format during
the further postprocessing. We have successfully tried this idea in [2] for the elliptic
problems with uncertain coefficients.
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Stochastic Setting for Inverse Identification Problems

Hermann G. Matthies

(joint work with A. Litvinenko, B. V. Rosić, A. Kuc̆erová, J. Sýkora, O. Pajonk)

In trying to predict the behaviour of physical systems, one is often confronted
with the fact that some parameters which characterise the system may only be in-
completely known, or in other words they are uncertain. We want to identify these
parameters (denote by q) through observations or measurement of the response of
the system [2, 5, 6].

Such an identification can be approached in different ways. One way is to mea-
sure the difference between observed and predicted system output and try to find
parameters such that this difference is minimised, this optimisation approach leads
to regularisation procedures. Here we take the view that our lack of knowledge or
uncertainty of the actual value of the parameters can be described in a Bayesian
way through a probabilistic model. The unknown parameter is then modelled
as a random variable — also called the prior model — and additional informa-
tion on the system through measurement or observation changes the probabilistic
description to the so-called posterior model. Bayesian setting allows updating /
sharpening of information about q when measurement is performed.

It is well-known that such a Bayesian update (BU) is in fact a conditional ex-
pectation, and this is the basis of the presented method. As the Bayesian update
may be numerically very demanding, we accelerate this update through meth-
ods based on functional approximation or spectral representation of stochastic
problems [3, 1], in particular Wiener’s so-called homogeneous or polynomial chaos
expansion — which are polynomials in independent Gaussian random variables
and which can also be used numerically in a Galerkin procedure.

The idea presented in the talk is extension (non-linear BU in contrast to linear
BU) of ideas presented in [6, 5]. In [5] we present a fully deterministic method
to compute sequential updates for stochastic state estimates of dynamic models
from noisy measurements. It does not need any assumptions about the type of
distribution for either data or measurement — in particular it does not have to
assume any of them as Gaussian. The implementation is based on a polynomial
chaos expansion of the stochastic variables of the model — however, any other
orthogonal basis would do. We use a minimum variance estimator that combines
an a priori state estimate and noisy measurements in a Bayesian way. For com-
putational purposes, the update equation is projected onto a finite-dimensional
PCE-subspace. The resulting Kalman-type update formula for the PCE coeffi-
cients can be efficiently computed solely within the PCE. As it does not rely on
sampling, the method is deterministic and fast. The original Kalman filter is
shown to be a low-order special case of the presented method. For the numer-
ical illustration we perform a bi-modal identification using noisy measurements.
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Additionally, we provide numerical experiments by applying it to the well known
Lorenz-84 model and compare it to a related method, the ensemble Kalman filter.

In [6] we present a sampling-free approach to a probabilistic interpretation of an
inverse problem in which unknown coefficient (e.g. conductivity or permeability
field) is represented by a random field. The arising stochastic forward problem is
solved through stochastic Galerkin method [4, 8]. The forward solution is used to
forecast the measurement. The update of the prior is a projection of the minimum
variance estimator from linear Bayesian updating onto the polynomial chaos basis.
With the help of such representation the probabilistic identification problem is cast
in a polynomial chaos expansion setting and the Bayes’ linear form of updating.
By introducing the Hermite algebra this becomes a direct, purely algebraic way
of computing the posterior, which is comparatively inexpensive to evaluate. In
addition, we show that the well-known Kalman filter is the low order part of this
update. The proposed method is tested on a stationary diffusion equation with
prescribed source terms, characterised by an uncertain conductivity parameter
which is then identified from limited and noisy data obtained by a measurement
of the diffusing quantity.

We remind that in [6, 5] we used the linear Bayesian update. The new idea is
to use an non-linear Bayesian update. The Bayesian update of order n looks as
follow

(1) qa(·) = qa(
0H, . . . , kH, . . . , nH) =

n∑

k=0

kHz⊗k,

where qa(·) the PCE coefficients of the value of interest (e.g. conductivity field),
kH - k-th non-linear Bayesian update coefficient and z - the difference between the
noisy measurements and the numerical forecast of these measurements. We note
that coefficients kH , k = 0..n, are unknown and should be computed first. To com-
pute kH we set up the system, which comes from the corresponding minimization
problem (see [2]) and solve it. The solution is the vector (0H, . . . , kH, . . . , nH) of
unknown coefficients. Since dimension of the system is large, solving such system
is a non-trivial task. The computational cost is O(nαNβLγ), where L the number
of PCE coefficients, N number of degrees of freedom in the physical space and
α, β, γ > 1. In our implementation all matrix elements, the right-hand side as well
as unknowns of this system are tensors. This is a reason why an efficient low-rank
tensor arithmetic in necessary here.

We underline that the main idea here was to do the (linear as well as non-
linear) Bayesian update directly on the polynomial chaos expansion of the value
of interest without any sampling. This idea has appeared independently (only as
a linear update) in [7] as a variant of the Kalman filter.
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Accurate Discretization Schemes for a Class of Fokker-Planck

Equations

Masoumeh Mohammadi

For a class of Fokker-Planck equations two different discretization schemes are in-
vestigated; considering two cases of bounded and unbounded domains. These equa-
tions of parabolic type govern the time evolution of the probability density function
of stochastic processes. For the bounded domain, the discretization schemes com-
bine the Chang-Cooper method for spatial discretization with backward first- and
second-order finite differencing in time to obtain stable and accurate solutions that
satisfy conservation and positivity properties of the probability density function.
These properties are theoretically proven and validated by numerical experiments.
For the case of unbounded domains, the Hermite spectral discretization method
is applied and analyzed. This method is more expensive, but provides us an ap-
propriate means to treat the unbounded domain, and moreover the error decays
exponentially as the number of expansion terms in the spatial discretization in-
creases. The results are then generalized to discretize and analyze a Fokker-Planck
optimal control system in an unbounded domain.
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Collocation Approaches for Forward Uncertainty Propagation in PDE

Models with Random Input Data

Fabio Nobile

(joint work with Raul Tempone)

Mathematical models are widely used in physics and engineering applications as
predictive tools. However, in many situations, the input parameters of the model
are uncertain due to either a lack of knowledge or an intrinsic variability of the sys-
tem. Examples are the study of subsurface phenomena, biological tissues, complex
materials, whose properties are often heterogeneous, not perfectly characterized
and, possibly, changing in time in an uncertain way.

In this work we consider the case in which the uncertainty can be described
reasonably well in a probabilistic setting and we focus on the problem of effectively
propagating it from the input parameters to the output quantities of interest of the
mathematical model. In particular we focus on numerical methods of collocation
type that imply solving the problem for a well chosen set of input parameters and
make inference on the statistical properties of the output quantities based on the
corresponding evaluations.

We consider an abstract problem defined in a domain D ⊂ Rd which could
involve spatial and temporal variables

(1) find u : L(y)(u) = F in D

where L is an operator involving partial derivatives of u and F is the forcing
term. Problem (1) has typically to be endowed with suitable boundary or initial
conditions on subsets of ∂D.

The operator L is supposed to depend on a vector of N random parameters

y = (y1, . . . , yN ) ∈ RN taking values in a hypercube Γ =
∏N
n=1 Γn ⊂ RN and with

a known joint probability density function ρ : Γ → R+. The case N = ∞ is also
relevant in applications as it allows to tackle cases in which the operator depends
on random fields distributed over the domain D (or subsets of it). Only for the
sake of exposition, we here assume that the random parameters yn are statistically

independent so that the joint density factorizes as ρ(y) =
∏N
n=1 ρn(yn).

We also assume that problem (1) is well posed for any possible value of the
random vector y ∈ Γ, so that there exists a unique solution u(y) in a suitable
Hilbert space V and ‖u(y)‖V ≤ C(y)‖F‖V ′ where the random variable C(y) is
Lp integrable with respect to the measure ρ(y)dy for some p ≥ 2. Under these
assumptions we can think of u as a Hilbert-valued function u : Γ → V which
belongs to the Bochner space Lpρ(Γ;V ).

A collocation approach aims at constructing an approximation ũ(y) of the exact
map u(y) starting from point evaluations u(yi) for some well chosen points yi ∈ Γ,
i = 1, . . . ,M . In particular we look for multivariate polynomial approximations

ũ ∈ PΛ⊗V where Λ ⊂ NN is an index set and PΛ = span{∏N
n=1 y

pn
n , (p1, . . . , pn) ∈

Λ}. The use of global polynomials is sound in many applications because of the
high regularity of the map u(y). It is well known, indeed, that for linear elliptic
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problems with random diffusion coefficients, the map y 7→ u(y) can even be an-
alytic in y (see e.g. [1, 2]). This is however not the case for a hyperbolic second
order equation with random wave speed where only finite regularity has to be
expected, in general, as shown in [8] and [9].

Collocation on sparse grids. The first approach we propose is based on
the well known Smolyak sparse grid construction (see e.g. [3]) for high dimen-
sional polynomial interpolation. For each random variable yn, let in > 0 denote

the level of interpolation, {yinn,j}
m(in)
j=1 be a set of good interpolation knots, which

could be either Gauss abscissas with respect to the density ρn, or nested Gauss
abscissas (Gauss-Patterson knots) or Clenshaw-Curtis abscissas for bounded ran-
dom variables. Here m(in) is the number of collocation points used at level in

and is an increasing function of its argument. We denote by Um(in)
n the 1D poly-

nomial interpolant operator based on the knots {yinn,j}
m(in)
j=1 , with Um(0)

n = 0, and

by ∆m(i) =
⊗N

n=1(U
m(in)
n − Um(in−1)

n ) the hierarchical surplus associated to the
multi-index i = (i1, . . . , iN) ∈ NN . Given an index set Λ ⊂ NN the sparse grid
approximation of u is defined by

(2) ũ = SΛu =
∑

i∈Λ

∆m(i)u.

Following [3], we propose to optimize the construction following a knapsack ap-
proach and select the index set Λopt corresponding to the most profitable terms

in the series. Here, the profit P (i) associated to a hierarchical surplus ∆m(i)u is
defined as P (i) = maxj≥i ∆E(j)/∆W (j) where ∆E(i) is the estimated error de-

crease when adding the term ∆m(i)u to the approximation in (2) and ∆W (i) is the
corresponding cost (number of evaluation points in ∆m(i)u). In [10] it has been
proven that if

∑
i∈NN P (i)τ∆W (i) <∞ for some τ < 1, then

‖u− SΛopt
u‖L2

ρ(Γ;V ) ≤ CM1− 1
τ

where M is the total number of knots included in the sparse grid. This result,
applied to a linear elliptic equation with N non-overlapping inclusions of random
uniformly distributed conductivity allows us to show that the stochastic collocation
method on optimized sparse grids converges with a rate faster than algebraic
(see [10] for details). A posterior estimates for the profits based on inexpensive
computations have also been proposed in [10], which make this approach practical.

Discrete L2 projection from random evaluations. An alternative ap-
proach to sparse grid approximation consists in taking M independent samples,
{yj}Mj=1, distributed with the measure ρ(y)dy and then computing ũ by a discrete

L2
ρ projection onto the polynomial space PΛ:

(3) ũ = argmin
v∈PΛ⊗V

1

M

M∑

i=1

‖u(yi)− v(yi)‖2V .

The crucial question is how large the sample size M should be with respect to
the dimension |PΛ| of the polynomial space PΛ to achieve a stable and optimally
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convergent approximation. Results in the monovariate case can be found in [5, 6]
and their generalization to the multivariate case are given in [4]. In particular,
we show that, for N uniformly distributed independent random variables, the
condition M ∝ |PΛ|2 guarantees stability of the discrete projection (3). More
precisely, the following optimality result is shown in [4]: for any γ > 0, if M

logM ≥
C(1 + γ)|PΛ|2, then, with probability larger than 1− 2M−γ , we have,

‖u− ũ‖L2
ρ(Γ;V ) ≤ (1 +

√
2) inf

v∈PΛ⊗V
‖u− v‖L∞(Γ;V ).

Application of this technique to PDEs with random coefficients can be found in
[7]. Still, our numerical experience shows that for a moderate number of random
variables, the condition M ∝ |PΛ|2 is over-constraining and a linear relation is
often enough for practical purposes, making the discrete projection (3) particularly
attractive for moderately high dimensional approximations.
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Tractability of Multivariate Problems

Erich Novak

We start with an example: What can we say about the optimal approximation
of very smooth functions from the class

Fd = {f : [0, 1]d → R | ‖Dαf‖∞ ≤ 1 for all α ∈ N
d
0 }?



268 Oberwolfach Report 04/2013

We allow all algorithms that use n “pieces of information” L1(f), . . . , Ln(f),
the Li are linear functionals. It turns out that linear algorithms

Sn(f) =

n∑

i=1

Li(f) gi

are optimal and it is well known that every order of convergence can be achieved
for Fd. If

e(Sn) = sup
f∈Fd

‖f − Sn(f)‖∞

is the error of Sn, then the complexity of the problem is given by

e(n, d) = inf
Sn

e(Sn) or n(ε, d) = inf{n | e(n, d) ≤ ε}

and it is well known that for any d and r > 0

e(n, d) = O(n−r) or n(ε, d) = O(ε−1/r).

Conventional conclusion: The problem is easy since the order of convergence is
excellent. We show that this conclusion is wrong: The order of convergence is not
a good measure for the complexity, here we have the curse of dimensionality.

Theorem (Novak and Woźniakowski, 2009): For L∞-approximation over Fd we
have

e(n, d) = 1 for all n ≤ 2⌊d/2⌋ − 1

or
n(ε, d) ≥ 2⌊d/2⌋ for all ε ∈ (0, 1).

The proof is short: Take s = ⌊d/2⌋ and consider f : [0, 1]d → R,

f(x) =
∑

i∈{0,1}s

ai(x1 + x2)
i1(x3 + x4)

i2 . . . (x2s−1 + x2s)
is .

The space Vd of such functions has dimension 2s and

‖f‖∞ = sup
α

‖Dαf‖∞ for all f ∈ Vd.

For continuous N : Vd → R2s−1, there is a f ∈ Vd with ‖f‖∞ = 1 such that
N(f) = N(−f); this follows from the Borsuk-Ulam Theorem. Hence Sn(f) =
φ(N(f)) = Sn(−f) and e(Sn) ≥ 1 for n = 2s − 1.

Open problem: Consider the same class

Fd = {f : [0, 1]d → R | ‖Dαf‖∞ ≤ 1 for all α ∈ N
d
0 }

and numerical integration,

Sd(f) =

∫

[0,1]d
f(x) dx.

Is this problem tractable? Curse of dimension? For the larger classes

F kd = {f : [0, 1]d → R | ‖Dαf‖∞ ≤ 1 for all α ∈ N
d
0, |α| ≤ k},

we have the curse of dimension, see the recent paper by Hinrichs, Novak, Ullrich,
Woźniakowski (2013).
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Usually, we cannot obtain tractability even by strong smoothness assumptions,
see the L∞ approximation problem for C∞ functions. Sometimes: yes, we present
recent results about the tractability of the star discrepancy by Heinrich, Novak,
Wasilkowski, Woźniakowski (2001) and Hinrichs (2004).

One often can obtain tractability by using additional properties concerning
the “structure” of the functions. For example, one often has “partially separable
functions”. A function f : [0, 1]d → R of many variables (d large) may be a sum
of functions, that only depend on k variables (k small):

f(x1, x2, . . . , xd) =
∑

ℓ

gℓ(xi1 , xi2 , . . . , xik).

In optimization such functions are called “partially separable”. As a rule: Prob-
lems are tractable for such functions (with k fixed and d→ ∞), even if the gℓ are
not very smooth.

More generally, one can study weighted Sobolev spaces. See, for example, Wer-
schulz, Woźniakowski (2009). Unit ball of the space Hd,γ given by all f : [0, 1]d →
R with

‖f‖2 =
∑

u⊆[d]

γ−1
d,u

∫

[0,1]d

(
∂|u|

∂xu
f(x)

)2

dx ≤ 1,

where [d] := {1, 2, . . . , d} and γ = {γd,u} are non-negative weights. Results for L2

approximation for linear (or continuous) information Λall and for function values
Λstd:

• For equal weights γd,u = 1 the problem is weakly tractable for Λall and
not weakly tractable for Λstd.

• For bounded finite order weights (γd,u = 0 if |u| > k) the problem is always
polynomially tractable, even for Λstd.

Various Weights:

• Product weights: γd,u =
∏
j∈u

γd,j . Then

H(Kd,γ) = H(K1,γd,1)⊗ · · · ⊗H(K1,γd,d)

and γd,j moderates the influence of xj
• Finite-order weights:

γd,u = 0 for all |u| > k. Then

f =
∑

u⊆[d],|u|≤k
fu

is a sum of functions depending on at most k variables.

One can model various properties of f by suitable weights. We present various
results for integration by Gnewuch, Woźniakowski (2008), Novak, Woźniakowski
(2001, 2010), Sloan, Woźniakowski (1998, 2002).

Some problems are not tractable for deterministic algorithms but they are
tractable for randomized algorithms. We present several such results.
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Solving integral equations with random bits: Compute u(s), integral equation

u(x)−
∫

[0,1]d
k(x, y)u(y) dy = f(x)

on [0, 1]d with Lipschitz kernel k, ‖k‖∞ < α < 1 and right hand side. Optimal
order with MC (Heinrich & Mathé 1993) en ≍ n−1/2−1/(2d). With a discretized
version of classical MC and results for summation we get the upper bound

cost ≤ ε−2 + d (log ε−1)2,

only d (log ε−1)2 random bits are needed, see Novak, Pfeiffer (2004).

We present recent results by Daniel Rudolf about Markov chain Monte Carlo:
explicit error bounds lead to tractability.

Optimal importance sampling was recently studied by Aicke Hinrichs: S(f) =∫
Rd f(x)̺(x) dx for f ∈ H , H a RKHS with

‖S‖2 =
∫

Rd

∫

Rd

K(x, y)̺(x)̺(y) dxdy <∞.

Randomized error e(An) = sup‖f‖H≤1(E(S(f)−An(f))
2)1/2.

Hinrichs 2010 proved: If K(x, y) ≥ 0 then with importance sampling

e(An) ≤
(π
2

)1/2

n−1/2 ‖S‖.
Hence such problems are strongly polynomially tractable.

Summary: Many problems for functions f : [0, 1]d → R are intractable, if con-
sidered in the worst case setting for classical function spaces, like Ck([0, 1]d).

There are two major remedies:

• Problems with a structure (weighted spaces)
• Randomized algorithms.

Towards Real-Time Optimization for PDE

Andreas Potschka

(joint work with Hans Georg Bock)

Closed-loop feedback control constitutes a widely used approach to treat uncer-
tainties in time-dependent problems that allow for repeated measurements. We
describe an extension of the Real-Time Iteration (RTI) [2] for Nonlinear Model
Predictive Control (NMPC) of ordinary differential equations (ODE) to the case
with parabolic partial differential equations (PDE). Our work is based on recent
advances in the numerical treatment of instationary PDE constrained optimiza-
tion problems on the basis of a two-grid Newton-Picard decomposition approach
[3, 4]. The extension can be analyzed and implemented as an additional level in
the Multi-Level Iteration [1] (see also talk by E. Kostina in this workshop).

We assume the Bayesian view of having only uncertain knowledge of the true
model parameters and the current system state. However, our knowledge can be
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improved through measurements, even though it is usually impossible to mea-
sure the complete system state. Via Moving Horizon Estimation (MHE), which
determines parameter and state realizations of maximum likelihood and their co-
variances regarding the most recent measurements on a finite time horizon of the
past, we can find the data for an NMPC problem on a finite time horizon of the
future. The NMPC result is either a local feedback law or a short control move
that we apply to the system and update repeatedly when new measurements be-
come available. The main challenge is to solve the coupled MHE-NMPC problem
in real-time and to reduce the feedback delay between measurement arrival and
control update to a minimum. Depending on the system under consideration, real-
time feasible feedback rates can vary from microseconds (mechanical systems) to
minutes (chemical plants). We focus here on the NMPC problem.

We discretize the PDE-NMPC problem first in space and then in time via Direct
Multiple Shooting. Through smart grouping of variables into PDE and non-PDE
variables (x1, x2) ∈ Rn1+n2 , n1 ≫ n2, and regrouping of the constraints such that
PDE initial value and matching constraints come first, we arrive at a large-scale
structured Nonlinear Programming (NLP) problem denoted by

min(x1,x2)∈Rn1+n2 f(x1, x2)

s.t. gi(x1, x2) = 0, i ∈ E1, |E1| = n1,

gi(x1, x2) = 0, i ∈ E2,
gi(x1, x2) ≥ 0, i ∈ I.

We need to solve a sequence of Quadratic Problems (QP) of the form

min
1

2

(
x1
x2

)T(
B11 B12

B21 B22

)(
x1
x2

)
+

(
b1
b2

)T (
x1
x2

)

s.t. C11x1 + C12x2 = c1, C21x1 + C22x2 = c2, C31x1 + C32x2 ≥ c3.

Our goal is to eliminate all PDE variables x1 from the QP in a structure exploiting
pre- and postprocessing step. The matrix C11 has a lot of structure: Due to
multiple shooting, it is a large negative unit lower triangular matrix with shooting
matrices Gi on the block subdiagonal. Thus, C11 is invertible. However, the
Gi matrices are large and dense, prohibiting efficient numerical inversion. But
if we approximate the constraint and Hessian matrices in a two-grid Newton-
Picard fashion, we can still expect fast convergence of the (now inexact) SQP [3]
and obtain an efficient formula for the inverse in the following way: We use two
spatial discretization grids, denote the prolongation matrix by P , and construct a
restriction matrix that satisfies RP = I. Then, we approximate the derivatives (̃ )

by their coarse grid counterparts (̂ ), for example G̃i = PĜiR.
Theorem 1. With the projectors Πslow = InMS×nMS ⊗ (PR) and Πfast = I−Πslow,

it holds that C̃−1
11 Πslow = (I⊗ P )Ĉ−1

11 (I⊗R) and C̃−1
11 Πfast = −Πfast.

In other words, the Newton-Picard approximation of C11 acts as a Newton
iteration on the slow modes, but as a Picard iteration on the fast modes.

Corollary 2 (Efficient inverse formula). C̃−1
11 = (I⊗ P )

(
Ĉ−1

11 + I
)
(I⊗R)− I.
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The approximated QP can then be solved efficiently by virtue of the following
theorem, where we have dropped the tildes.
Theorem 3 (Partial nullspace approach). Let

Z =
(

−C−1
11 C12

I

)
, c′1 = C−1

11 c1, b′ = B21c
′
1 + b2 − CT

12C
−T
11 (B11c

′
1 + b1),

B′ = ZTBZ, c′2 = c2 − C21c
′
1, C′

2 = C22 − C21C
−1
11 C12,

c′3 = c3 − C31c
′
1, C′

3 = C32 − C31C
−1
11 C12.

Assume (x∗2, y
∗
E2
, y∗I) ∈ Rn2+m2+m3 is a primal-dual solution of the reduced QP

(1) minx2∈Rn2

1

2
xT2 B

′x2 + b′
T
x2 s.t. C′

2x2 = c′2, C′
3x2 ≥ c′3.

If we choose x∗1 = C−1
11 (c1−C12x

∗
2) and y

∗
E1

= C−T
11

(
(B12 − B11C

−1
11 C12)x

∗
2 +B11c

′
1

+b1 − CT
21y

∗
E2

− CT
31y

∗
I
)
, then (x∗, y∗) := (x∗1, x

∗
2, y

∗
E1
, y∗E2

, y∗I) is a primal-dual so-
lution of the two-grid Newton-Picard QP.

If we furthermore choose the two-grid Newton-Picard Hessian approximation

B̃ = B̃fast + B̃slow with

B̃fast =

(
(I⊗Πfast)TB11(I⊗Πfast) 0

0 0

)
,

B̃slow =

(
(I⊗R)TB̂11(I⊗R) (I⊗R)TB̂12

B̂21(I⊗R) B̂22

)
,

then we can see that almost all terms that need to be computed in Theorem 3 can
be evaluated completely on the coarse grid due to

Z̃TB̃fastZ̃ = 0, B̃′ = Z̃TB̃Z̃ = ẐTB̂Ẑ, B̃11C̃
−1
11 C̃12 = (I⊗R)TB̂11Ĉ

−1
11 Ĉ12.

Only C̃−T
11 (B̃11c

′
1 + b1) needs to be evaluated on the fine grid to recover y∗E1

.
In an RTI scheme, it is sufficient to only perform one inexact SQP iteration per

NMPC step. Hence, solving two-grid Newton-Picard QP problems on the basis of
Theorem 3 enables us to only evaluate one forward solve for c1, one adjoint solve
for b1, and one matrix-vector-product with the Lagrange-Hessian for yE1 on the
fine grid per NMPC step. This can be carried out within a small multiple of the
time of a forward simulation of the system. Hence, high sampling rates appear to
be possible also for NMPC of parabolic PDE problems.

Moreover, all fine-grid operations can be postponed to the preparation phase
after the updated control was applied to the system. Thus, the feedback delay
can be reduced considerably, because after the arrival of the state estimate, we
only need to compute a small part of b′, c′1, c

′
2, and c′3 on the coarse grid, solve

the reduced QP (1) with efficient warm or hot starts, and immediately apply the
first control in x2 to the system. Thus, we can expect feedback delays which are
similar to the case of NMPC with ODE.
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Stochastic Collocation for Optimization of Radio Frequency Ablation

under Parameter Uncertainty

Tobias Preusser

(joint work with Inga Altrogge, Sabrina Haase, Robert M. Kirby, Tim Kröger,
Torben Pätz, Hanne Tiesler, Dongbin Xiu)

Radio frequency (RF) ablation is a minimally invasive alternative to surgical re-
section for the treatment of tumors and metastases in the human liver. Thereby
tumor cells are destroyed by heat, which is produced by a local alternating elec-
tric current. The electric current emerges from the electrodes of a needle shaped
applicator that is placed into the tumor. Mathematical modeling, simulation and
optimization can be used to improve the quality of the treatment by assisting the
medical doctor in finding the optimal placement of the RF applicator.

A simple model for RF ablation consists of a system of coupled partial differen-
tial and algebraic equations that describe the electric current, the diffusion of heat
and the tissue damage. The bio-physical tissue parameters involved in the pro-
cess (electric and thermal conductivity, density, heat capacity) change non-linearly
with the temperature and need to be modeled as well. Moreover these parameters
are different for each patient; to a large extend they are not precisely known and
thus carry uncertainty.

We model this uncertainty by random fields, which we use in the PDE system
and also in optimizing the placement of the probe such that the minimal temper-
ature of the tumor becomes maximal. For the solution of the stochastic PDEs
we use the polynomial chaos approach and an adaptive sparse grid collocation
method, which is characterized by piecewise multilinear basis functions. Different
objective functions involving the fitting of the expectation and stochastic moments
are discussed and an SQP method based on stochastic collocation is discussed.

Various examples based on real patient data show the performance of the ap-
proaches and underline the practical consequences of our research.
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Preconditioning of a Full-Space Trust-Region SQP Algorithm for

PDE-constrained Optimization

Denis Ridzal

(joint work with Miguel Aguiló and Joseph Young, Sandia National Laboratories)

We develop a new class of preconditioners for augmented (optimality) systems
that arise in a full-space trust-region sequential quadratic programming (SQP)
algorithm designed for matrix-free optimization. By exploiting the structure of
augmented systems and by utilizing SQP as the outer iteration, our approach
extends the applicability of recent work on solvers for PDE-constrained optimiza-
tion [1] to a wide range of optimal design, optimal control and inverse problems.

Introduction . Our optimization algorithm is based on the composite-step trust-
region SQP framework of [2]. Let X and C be Hilbert spaces and let f : X → R

and c : X → C be sufficiently smooth functions. We consider the problem

min f(x)(1a)

s.t. c(x) = 0.(1b)

We assume that that the Fréchet derivative cx(x) of the constraint is surjective. We
further assume that the dual spaces satisfy X ∗ = X and C∗ = C. Let L : X×C → R,

L(x, λ) = f(x) + 〈λ, c(x)〉C ,

be the Lagrangian for (1). Let xk be the k-th SQP iterate and λk the Lagrange
multiplier estimate at xk. Let Hk = H(xk, λk) be a self-adjoint approximation of
the Hessian ∇xxL(xk, λk) of the Lagrangian. Trust-region SQP methods solve (1)
by solving a sequence of convex and nonconvex subproblems derived from

min 1
2 〈Hks, s〉X + 〈∇xL(xk, λk), s〉X + L(xk, λk)(2a)

s.t. cx(xk)s+ c(xk) = 0, ‖s‖X ≤ ∆k.(2b)
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To reconcile the linear equality constraint and the trust-region constraint in (2b)
we apply a Byrd-Omojokun composite-step approach. The trial step sk is com-
puted as the sum of a quasi-normal step nk and a tangential step tk. The quasi-
normal step nk reduces linear infeasibility by approximately solving

min ‖cx(xk)n+ c(xk)‖2C(3a)

s.t. ‖n‖X ≤ ζ∆k,(3b)

where ζ ∈ (0, 1) is a fixed constant. Once the quasi-normal step nk is computed,
the tangential step tk is computed as an approximate solution of the subproblem

min 1
2 〈Hk(t+ nk), t+ nk〉X + 〈∇xL(xk, λk), t+ nk〉X + L(xk, λk)(4a)

s.t. cx(xk)t = 0, ‖t+ nk‖X ≤ ∆k,(4b)

using a Steihaug-Toint projected conjugate gradient (CG) iteration. The Lagrange
multiplier λk is estimated by approximately solving

(5) min ‖∇f(xk) + cx(xk)
∗λ‖X .

This outlines a generic composite-step trust-region framework. To make the
framework robust and efficient for matrix-free computations, inexact linear system
solves arising in the solution of (3), (4) and (5) are incorporated in the convergence
analysis, and appropriate linear solver stopping conditions are developed, see [3, 4].

Augmented systems and PDE constraints. Our SQP algorithm solves a se-
quence of special saddle-point systems, called augmented systems. They are used
to compute: (a) a Newton direction for the quasi-normal step; (b) the null-space
projections in Steihaug-Toint CG; (c) an additional feasibility-restoring null-space
projection; and (d) the Lagrange multiplier. The systems are of the form

(6)

(
I cx(xk)

∗

cx(xk) 0

)(
z
y

)
=

(
b1

b2

)
+

(
r1

r2

)
,

where (b1 b2) ∈ X ×C is a given right-hand side vector, and the size of the nonzero
residual (r1 r2) ∈ X × C is controlled via the general condition

‖r1‖2X + ‖r2‖2C ≤ R(‖b1‖X , ‖b2‖C , ‖z‖X ,∆k, ξ) .

Here R : [R+]4 × (0, 1) → R+, and ξ is a prescribed nominal stopping tolerance.
In PDE-constrained optimization one often assumes a splitting of optimization

variables x into state variables u and control variables g, i.e., X = U × G. The
augmented system operators are then written in 3×3 block form

A =




I 0 cu(xk)
∗

0 I cg(xk)
∗

cu(xk) cg(xk) 0


 , or compactly, A =




I 0 c∗u
0 I c∗g
cu cg 0


 .
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Preconditioning . Assuming the existence of (cu(xk))
−1, and inspired by the

solvers developed in [1], we consider two preconditioners for the operator A:

P ⋆ =




I 0 0
0 I 0
0 0 (cuc

∗
u + cgc

∗
g)

−1


 and P =




I 0 0
0 I 0
0 0 c−∗

u c−1
u


 .

We recognize the preconditioner P ⋆ as an exact Schur-complement preconditioner,
in the sense that a P ⋆-preconditioned Krylov solver for a system given by the
operator A converges in at most three iterations, see [6]. However, the inverse of
cuc

∗
u + cgc

∗
g is difficult to apply in practice. The approximate preconditioner P is

a practical alternative, as it eliminates the control Jacobian product cgc
∗
g. As a

consequence, the application of P amounts to a ‘linearized state solve’ followed by
an ‘adjoint solve’, which are readily available in PDE-constrained optimization.

The eigenvalue estimates from [1] extend naturally to the preconditioned op-
erator PA. For the problems studied in [1] the eigenvalues of PA cluster around

three values: 1, (1 +
√
5)/2, and (1 −

√
5)/2. Owing to the 2×2 identity block

in A, note that the only requirement for applying P is that cu(xk) be invertible!

Numerical results. Augmented systems are the only linear systems solved in
our SQP algorithm. They are independent of the Lagrangian L, the objective
function f and the second derivatives of the constraint c. While this simplifies
preconditioning, the remaining problem information must be handled elsewhere in
the SQP loop. This is primarily done through the Steihaug-Toint CG algorithm for
subproblem (4), invoked once per SQP iteration. Thus, we not only examine the
performance of our preconditioner, but also study the behavior of outer iterations.

We consider four problems with PDE constraints. The details are given in [5].
Problem (A) is an inverse problem in heat transfer (Poisson equation) with full-
field measurements. It features a very small regularization term. Problem (B)
is an optimal control problem in acoustics (Helmholtz equation). The control is
applied in a narrow annular subregion of the computational domain. Problem (C)
is a full-field inverse problem in nonlinear elasticity (St. Venant-Kirchhoff model),
with a very small regularization term. Problem (D) is an optimal flow-control
problem (Navier-Stokes equations), with a boundary control.

We solve augmented systems (6) using GMRES. The nominal stopping tolerance
is ξ = 10−2. We terminate the SQP algorithm when ‖∇xL(xk, λk)‖X and ‖c(xk)‖C
reach 10−9. The preconditioner P is applied using sparse direct solvers, although
iterative solves are possible. We study the mesh dependence of the preconditioner.
We report the average number of GMRES iterations. For problem (B) we also
increase the wave frequency with the mesh size. Additionally, for all problems we
report CG iteration totals for the mid-sized mesh. The results are as follows:
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(A) Thermal inversion – CG: 158

Mesh Size GMRES Iters

64×64 4.7

128×128 4.6

256×256 4.7

(B) Acoustic control – CG: 66

Mesh Size Freq GMRES Iters

64×64 112 Hz 9.1

128×128 225 Hz 7.7

256×256 450 Hz 6.4

(C) Elastic inversion – CG: 151

Mesh Size GMRES Iters

32×32 9.1

64×64 9.0

128×128 9.7

(D) Flow control – CG: 143

Mesh Size GMRES Iters

352 14.5

1408 17.4

5632 21.4

For problems (A)–(C) the preconditioner’s performance is nearly mesh indepen-
dent. For problem (D) we observe slight mesh dependence. The CG iteration totals
are between 66 and 158, while only four to eight SQP iterations are used, see [5].
In [5] we also study a source inversion problem governed by advection-dominated
diffusion, and show the preconditioner’s robustness to high Péclet numbers.

Conclusion . The augmented system preconditioner is efficient in the context
of our matrix-free SQP algorithm for PDE optimization. Numerical examples
show mesh independence for various PDE models. The preconditioner is generally
applicable, and its performance appears largely independent of the governing PDE.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corpora-

tion, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.
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Quadrature on the Sequence Space

Klaus Ritter

(joint work with M. Gnewuch, F. Hickernell, S. Mayer, T. Müller-Gronbach, B.
Niu)

Let ρ be a probability measure on a set D. We study numerical integration of
functions f : DN → R w.r.t. the product measure µ = ρ⊗N on the sequence space
DN.

The study of quadrature problems for functions of infinitely many variables xi ∈
D was initiated in [9], and it has intensively been studied recently, see [1, 5, 6, 8, 12,
13, 14, 16] and the preprints [2, 3, 4]. In the same setting function approximation
is studied in [19, 20, 21], linear tensor product problems are studied in [17], and
a non-linear problem associated with elliptic PDEs with random coefficients is
studied in [11, 10]. Moreover, see [18] for a survey and [7] for some aspects of the
analytic foundations of computational problems of this kind.

In the talk we focus on a particular smoothness scale for the integrands f ,
namely functions with ANOVA components in weighted spaces of bounded mixed
smoothness, while the general framework of weighted superpositions of tensor
product reproducing kernel Hilbert spaces is only briefly sketched.

We present sharp upper and lower bounds for the minimal errors of randomized
algorithms due to [2], which substantially improve the results from [8]. Almost
optimal algorithms are based on the stochastic multilevel technique and on ran-
domized QMC methods for certain finite-dimensional subproblems. Tractability
results for multivariate problems form an important ingredient in the analysis,
see [15] for a comprehensive study. Finally, an integrand from computational fi-
nance is used as a numerical example, and to illustrate the need to properly relate
smoothness on the path space with smoothness on the sequence space.

Supported by the DFG within SPP 1324 and by (CM)2.
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Approximation of Stochastic Optimization Problems and Scenario

Generation

Werner Römisch

First we recall the main approaches to optimization models under stochastic un-
certainty: Chance constrained and two-stage stochastic optimization models (see
[6]). Next we review known results on quantitative stability of stochastic opti-
mization problems, i.e., on quantitative continuity properties of optimal values
and solution sets with respect to probability distributions belonging to certain
spaces equipped with probability metrics [4]. The general results are specialized
for linear two-stage stochastic programs. Important specific approximations of
the underlying probability distributions are discrete probability measures with fi-
nite support. The latter measures reduce integrals to weighted sums and lead, in
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addition, to specific constraint structures of the resulting approximate optimiza-
tion models. For example, in case of linear two-stage models the approximations
represent large scale linear programs which contain finitely many realizations or
scenarios of the underlying random vector.

Next we address the problem of optimal scenario generation and discuss a num-
ber of methods for generating scenarios based on high-dimensional numerical inte-
gration schemes (see [5]). We begin with empirical (or Monte Carlo) approxima-
tions and argue how available quantitative stability results may be used together
with empirical process theory (from asymptotic statistics) to obtain (probabilistic)
convergence rates for optimal values and solution sets (see [4, Chapter 4]). Next
we report on recent developments in using (i) optimal quantization methods, (ii)
Quasi-Monte Carlo methods [2] and (iii) sparse grids for scenario generation (see
[5]). We argue that recent results in [3] motivate the use of Quasi-Monte Carlo
and sparse grid methods in stochastic optimization if they are combined with ef-
fective dimension reduction techniques. In particular, we highlight randomized
lattice rules, a recently developed class of methods for high-dimensional numerical
integration which combine good properties of Monte Carlo and Quasi-Monte Carlo
methods [2, 1].
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Sparse, Adaptive Smolyak Quadratures for Bayesian Inverse Problems

Claudia Schillings

(joint work with Christoph Schwab)

Based on the parametric deterministic formulation of Bayesian inverse problems
with unknown input parameter from infinite dimensional, separable Banach spaces
proposed in [10], we develop a practical computational algorithm whose conver-
gence rates are provably higher than those of Monte-Carlo (MC) and Markov-
Chain Monte-Carlo methods, in terms of the number of solutions of the forward
problem. The focus is on linear, elliptic PDE with unknown diffusion coefficient,
however, the derived convergence results are not limited to linear, elliptic PDEs:
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analogous results hold for forward maps of a rather wide range of mathematical
models.

A basic problem in Bayesian inverse problems consists of determining the un-
known diffusion coefficient u ∈ X from given noisy observation data δ = O(G(u))+
η (with η ∈ RK representing the observation noise, O : R 7→ RK bounded, linear
observation operator and G : X → R forward response map from some separa-
ble Banach space X of unknown parameters into a separable Banach space R of
responses) in order to compute the expectation of a quantity of interest. The pro-
posed approach relies on a reformulation of the forward problem with unknown
stochastic input data as an infinite dimensional, parametric deterministic problem.
Therefore, the unknown diffusion coefficient u is assumed to admit a parametric
representation of the form

u = ā+
∑

j∈J

yjψj

where y = (yj)j∈J is an i.i.d sequence of real-valued random variables yj ∼
U [−1/2, 1/2], ie. the prior is given by µ0(dy) :=

⊗
j∈J

λ1(dyj), ā, ψj ∈ X and J

denotes a finite or countably infinite index set, ie. either J = {1, 2, ..., J} or J = N.
Under appropriate assumptions on the forward and observation model and the

prior measure, the posterior distribution on u is absolutely continuous with respect
to the prior, see [10]. The density of the posterior with respect to the prior is a
Radon-Nikodym derivative that is given by an infinite dimensional version of Bayes
rule. Based on this result, we are interested in computing the expectation of a
prediction function φ : X → S for a Quantity of Interest (QoI). The expectation
of QoI under the posterior (given data δ) is given by Eµδ [φ(u)] := Z ′/Z ∈ S with

Z ′ =

∫

[−1/2,1/2]J
Ψ(y)µ0(dy) Z =

∫

[−1/2,1/2]J
Θ(y)µ0(dy) ,

Θ(y) = exp(− 1
2 |δ − O(G(u))|2Γ 1

2

∣∣∣
u=ā+

∑
j∈J

yjψj

, Ψ(y) = Θ(y)φ(u)
∣∣∣
u=ā+

∑
j∈J

yjψj

.

In [10], joint analyticity of the posterior density as a function of the parameter
vector y ∈ U is proven. In particular, the estimates of the size of domains of
analytic continuation which were obtained in [10] allowed to prove rates on so-
called sparse, monotone N -term polynomial chaos approximations of the posterior
density Ψ(y). The resulting approximation rates are independent of the dimension,
ie. of the number of active coordinates yj in the quadrature approximations of Z
and Z ′, and will be the basis for the presented proofs of (dimension independent)
convergence rates of the adaptive Smolyak quadrature algorithms. For any finite
monotone set Λ ⊂ F , the quadrature operator is defined by

QΛ =
∑

ν∈Λ

∆ν =
∑

ν∈Λ

⊗

j≥1

∆νj

with difference operators ∆ν =
⊗

j≥1 ∆νj , ∆j = Qj−Qj−1 and (Qk)k≥0 sequence

of univariate quadrature formulas, see [9] for details on the construction of the
tensorized multivariate quadrature formulas.
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Then, it can be proven (under appropriate assumptions on the univariate quad-
rature formulas and on the forward model) that sparsity in the unknown coefficient
function u, i.e. if

∑∞
j=1 ‖ψj‖σL∞(D) < ∞ for 0 < σ < 1, implies the existence of

two sequences (Λ1
N )N≥1, (Λ

2
N)N≥1 of monotone sets Λ1,2

N ⊂ F such that with

#Λ1,2
N ≤ N

|Z −QΛ1
N
(Θ)| ≤ CZN

−s , s =
1

σ
− 1 ,

and

‖Z ′ −QΛ2
N
(Ψ)‖V (m) ≤ CZ′N−s , s =

1

σ
− 1 .

The construction of the monotone index set (Λ1,2
N )N≥1 is based on a greedy-type

strategy which attempts to control the global approximation error by locally col-
lecting indices of the current set of reduced neighbors with the largest error con-
tributions. We will present numerical experiments based on the following model
parametric elliptic boundary value problem

−div(u∇p) = f in D := [0, 1] , p = 0 in ∂D ,

with f(x) = 100 · x and diffusion coefficient u(x, y) = ā +
∑64

j=1 yjψj ,where ā =

1 and ψj = αjχDj
with Dj = [(j − 1) 1

64 , j
1
64 ], y = (yj)j=1,...,64 and αj =

1.8
jζ
, ζ =

2, 3, 4 in order to numerically verify the theoretical results. Exemplarily, the ap-
proximation error of the normalization constant Z for three values of the parameter
ζ controlling the sparsity of the unknown input data is shown in Figure 1.
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Figure 1. Comparison of the error curves of the normalization
constant Z with respect to #ΛN based on the sequences with
Clenshaw-Curtis, symmetrized Leja and R-Leja quadrature points
with number of observations K = 2NK − 1 , NK = 2, 3, 4, η ∼
N (0, 1) and with ζ = 2 (left), ζ = 3 (middle) and ζ = 4 (right).

Furthermore, we will present numerical results considering a lognormal diffusion
coefficient, ie. ln(u(x, y)) =

∑64
j=1 yjψj ,where ψj = αjχDj

, indicating the same
convergence behavior as in the uniform case, cp. Figure 2.
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Figure 2. Comparison of the error curves of the normalization
constant Z with respect to #ΛN based on the Gauss-Hermite
quadrature with number of observations K = 2NK − 1 , NK =
2, 3, 4, η ∼ N (0, 1) and ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.).
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Large Scale Shape Optimization for Deterministic Problems

Stephan Schmidt

(joint work with N. Popescu, M. Berggren, V. Schulz, N. Gauger, A. Walther)

Shape optimisation problems are characterised by the fact that the input geometry
is the unknown to be found. Thus, using a naive approach, one is forced to compute
the sensitivities of the objective function with respect to the input geometry. For
problems governed by PDEs, this especially means that the PDE solver has to
be differentiated with respect to the input mesh. Because this derivative can
be cumbersome and costly to compute, shape calculus will be used to derive an
expression of this sensitivity, which exists on the boundary of the domain alone and
is an analytic expression that can be evaluated without any knowledge of partial
derivatives of the PDE solution procedure with respect to the input mesh. The
talk will show some applications in acoustics where is continuous shape variation
approach is coupled to dolfin-adjoint and the whole shape optimisation problem
is solved using FEniCS. In particular, for the acoustic horn problem, the shape
derivative for minimising the sound reflections is given by

dJ [V ] =

∫

ΓHorn

tf∫

t0

〈V, n〉c2
[
−λp

〈
∂u

∂n
, n

〉
−∇Γ · (λpu)

]
dt dS

=

∫

ΓHorn

tf∫

t0

〈V, n〉
(
−c2∇ · (λpu)

)
dt dS

−λ̇u = −c2∇λp in Ω

−λ̇p = −∇ · λu
1

2
(λp − c〈λu, n〉) (t) =

p(t)− g(t)

2c
on Γin.

The talk also serves as a basis for discussing the methodology to solve inverse
scattering problems governed by the Maxwell equations given uncertain data and
the automatic generation of shape derivatives using UFL. Last but not least, tran-
sient problems in CFD are considered with special emphasis on optimal morphing
shapes.
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Stochastic Programming in Finite Dimension as Inspiration for

PDE-Constrained Optimization under Uncertainty

Rüdiger Schultz

(joint work with Sergio Conti, Benedict Geihe, Martin Rumpf, Harald Held,
Martin Pach)

Shape optimization with linearized elasticity and stochastic loading is taken as an
example for the transfer of basic modeling principles from finite-dimensional sto-
chastic programming to PDE-constrained optimization under uncertainty. When
including stochasticity of data into shape optimization, or PDE-constrained op-
timization in general, it is not entirely the random vectors representing the sto-
chastic data, but in addition, and with crucial consequences, the availability of
information, that matters.

Indeed, there are different modeling approaches, implied by different place-
ment of the constraint that future data information must not be anticipated when
making decisions. In stochastic shape optimization, nonanticipativity arises quite
naturally. The shape decision has to be made before the random forces are ap-
plied to the shape (elastic body), and, of course not vice versa, meaning the shape
adjusts to the realization of the random data.

Then the two-stage stochastic programming approach readily translates to shape
optimization: decide on the shape , then observe the realization of the stochastic
load, compute the displacement by solving the elasticity PDE. With an objective
function, such as the compliance, a random quantity now arises – and has to be op-
timized. The quantity can be seen as stemming from a family of random variables
in which “best” members have to be identified

This leads into stochastic decision theory or into answering the question of how
to rank random variables. Two generic classes of optimization problems come up
this way: risk aversion in the objective by including suitable risk measures, or risk
aversion in the constraints by suitable stochastic (partial) orders, also known as
stochastic dominance relations.

Again these concepts readily extend to shape optimization, “creating infinite-
dimensional cousins” of traditional stochastic programs in finite dimension. These
range from risk-neutral expectation models to mean-risk models addressing differ-
ent attitudes to risk, and finally arrive at models involving stochastic dominance
relations.

The talk addresses these modeling alternatives, provides some insight into algo-
rithmic issues aiming at efficient numerical solution of frequently occurring elastic-
ity PDEs., and concludes with reporting illustrative numerical tests. For details,
the journal publications [1],[2, 3] can be consulted.
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Topology Optimization under Aerodynamic Loads

Roland Stoffel, Volker Schulz

Structural optimization is a challenging issue of high practical interest. In this talk,
structural optimization is performed within an aerodynamic framework. Therefore
a topology optimization method is developed, which is based on the topological de-
rivative. In particular, the topological derivative for linear elasticity is connected
with the level-set method, which performed the topological changes implicitly.
Efficient implementations as well as classical results and results in practical appli-
cations will be presented.

Robust Optimization with PDE Constraints based on Linear and

Quadratic Approximations

Stefan Ulbrich

(joint work with Adrian Sichau)

We present a second order approximation for the robust counterpart of PDE-
constrained optimization problems with uncertain data. The approach is an ex-
tension of first order robust approximations, which have been proposed for uncer-
tain nonlinear optimization problems by [2] and [4], see also [1]. We show how
for ellipsoidal uncertainty sets the approximated worst-case functions, which are
the essential part of the approximated robust counterpart, can be formulated as
trust-region problems that can be solved efficiently. Also, the gradients of the
approximated worst-case functions can be computed efficiently by combining a
sensitivity and an adjoint approach. However, there might be points where these
functions are nondifferentiable. Hence, we introduce an equivalent formulation of
the approximated robust counterpart as an MPEC, in which the objective and
all constraints are differentiable. Numerical results for the shape optimization in
structural mechanics to obtain optimal solutions that are robust with respect to
uncertain loadings show the efficiency of the approach. The formulation can fur-
ther be extended to model the presence of actuators that are capable of applying
forces to a structure in order to counteract the effects of uncertainty. We show that
also this robust optimization problems with actuators can be solved efficiently.

More precisely, we consider PDE-constrained optimization problems of the form

(1) min
y∈Y, x∈X

h0(y, x; p) s.t. hi(y, x; p) ≤ 0, i ∈ I, C(y, x; p) = 0,
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where x ∈ X denotes the design variables, y ∈ Y the state, p ∈ Rnp uncertain
parameters and C(y, x; p) = 0 the PDE constraint. We assume that h0, hi :
Y ×X × Rnp → R, C : Y ×X × Rnp → Z are twice continuously differentiable,
that C(y, x; p) = 0 has a unique solution y = y(x; p) for all relevant x, p and that
∂yC ∈ L(Y, Z) is invertible. The parameter p is uncertain with p ∈ Up = {p ∈
Rnp : ‖p − p̄‖Bp

≤ 1}, where ‖z‖Bp
:=

√
zTBpz with Bp symmetric positive

definite. It would also be possible to consider uncertainty in the design x.
By defining the worst case values of objective function and inequality constraints

(2) φi(x) := max
y∈Y,∆p∈R

np
hi(y, p̄+∆p) s.t. C(y, x; p̄+∆p) = 0, ‖∆p‖Bp

≤ 1

the robust conterpart of (1) is given by

(3) min
x∈X

φ0(x) s.t. φi(x) ≤ 0, i ∈ I.

However, for nonlinear problems this formulation is computationally not tractable.
Therefore, it is proposed in [2], see also [4], to approximate the worst case functions
(2) by the following approximation based on a linearization around (ȳ, x; p̄) with
C(ȳ, x; p̄) = 0

φ̃i(x) := max
∆y∈Y,∆p∈R

np
hi(ȳ, x; p̄) + ∂(y,p)hi(ȳ, x; p̄)

(
∆y

∆p

)

s.t. C(ȳ, x; p̄) + ∂(y,p)C(ȳ, x; p̄)

(
∆y

∆p

)
= 0, ‖∆p‖Bp

≤ 1

(4)

and to consider the approximated robust conterpart

(5) min
x∈X

φ̃0(x) s.t. φ̃i(x) ≤ 0, i ∈ I.

Then (4), (5) can be formulated as an NLP involving second order cone constraints
that can be solved efficiently as long as either np or |I| is moderate [2].

For problems with large uncertainty sets or strongly nonlinear hi the approxi-
mation (4), (5) can be too inaccurate. Therefore, we propose to use the following
approximation of the worst case functions

φ̃i(x) := max
∆y∈Y,∆p∈R

np
hi(ȳ, x; p̄) + ∂(y,p)hi(ȳ, x; p̄)

(
∆y

∆p

)

+
1

2

〈(
∆y

∆p

)
,

(
∂yyhi ∂yphi
∂pyhi ∂pphi

)
(ȳ, x; p̄)

(
∆y

∆p

)〉

s.t. C(ȳ, x; p̄) + ∂(y,p)C(ȳ, x; p̄)

(
∆y

∆p

)
= 0, ‖∆p‖Bp

≤ 1.

(6)

We show the following, see also [3].

• (6) can be reformulated as a trust region problem and can be characterized
equivalently by well known optimality conditions.

• If the hard case does not occur, the derivative of (6) can be computed
efficiently by combining sensitivity and adjoint techniques.
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• (5), (6) can be formulated as an MPEC that can be solved efficiently as
long as np and |I| are moderate.

The efficiency of the approach is demonstrated for the shape optimization governed
by the linear elasticity equations for uncertain surface loads p. In this case, (5),
(6) coincides with the exact robust counterpart (2), (3).

Finally, we consider the case that actuators can counteract the uncertain forces,
more precisely, a problem of the form

(7) min
x∈X

φact0 (x) s.t. c(x) ≤ 0,

where

φact0 (x) := max
y∈Y,∆p∈Rnp

min
∆pa∈Rnp

h0(y, p̄+∆p+∆pa) s.t. ‖∆pa‖Ba
≤ 1,

s.t. C(y, x; p̄+∆p+∆pa) = 0, ‖∆p‖Bp
≤ 1.

(8)

We approximate (7), (8) again by using a quadratic approximation of h0 and
a linearization of C at (ȳ, x; p̄). By assuming that the reduced Hessian of the
quadratic model of h0 is positive definite, which is the case in our application,
we derive necessary as well as slightly stronger sufficient conditions for (8) that
can be used in an MPEC formulation. For our application it turns out that the
sufficient condition is satisfied. Numerical results for the shape optimization of an
elastic structure with actuators for uncertain surface loads show the potential of
the approach.
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Thermoelastic Shape Optimization and its Application to a Cast-Iron

Cooking Plate

Heinz Zorn

(joint work with Stephan Schmidt, Volker Schulz, Roland Stoffel)

Shape optimization constrained by a single physical discipline is an often discussed
and well known problem. Here the optimization of a thermoelastic system, con-
strained by a coupled system of linear elasticity and the heatequation is considered.
The derivation of the shape gradient for this thermoelastic problem is shown and
an algorithm for a projected gradient optimization strategy ist introduced. The
theory is presented together with its application to a cast-iron cooking plate and
the numerical results.
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