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Introduction by the Organisers

The workshopModuli Spaces in Algebraic Geometry, organized by Dan Abramovich
(Brown), Gavril Farkas (HU Berlin), Lucia Caporaso (Rome) and Stefan Kebekus
(Freiburg) was held February 4–8, 2013 and was attended by 25 participants from
around the world. The participants ranged from senior leaders in the field to young
post-doctoral fellows and one advanced PhD student. The range of expertise cov-
ered areas ranging from classical algebraic geometry to mathematics inspired by
string theory. Researchers reported on the substantial progress achieved within
the last three years, discussed open problems, and exchanged methods and ideas.
Most lectures were followed by lively discussions among participants, at times con-
tinuing well into the night. For a flavor of the range of subjects covered, a few of
the talks are highlighted below.

Stable pairs and knot invariants. Rahul Pandharipande (ETH Zürich) re-
ported on work of Shende, Oblomkov and Maulik concerning Hilbert schemes
Hilb(C, n) of n points on a curve C with an isolated, planar singularity. Build-
ing on ideas of Pandharipande-Thomas and Diaconescu, Shende and Oblomkov
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proposed a relation between the Euler characteristics χ
(
Hilb(C, n)

)
and coeffi-

cients in the HOMFLY polynomial of the curve singularity link. This was recently
established by Maulik.

Higher codimension loci in the moduli space of curves. Nicola Tarasca
(Leibniz Universität Hannover) reported on results in his PhD Thesis on the cal-
culation of the cohomology class of the codimension two Brill-Noether locus of
curves with a pencil of degree k in the moduli space M2k of stable curves of genus
2k. Remarkable here is that, while one has a large number of divisor class calcula-
tions on the moduli space, it is for the first time that a closed formula for a higher
codimension locus on the moduli space is found.

Tautological rings of moduli space of curves. In a very impressive talk,
Aaron Pixton (Princeton) proposed a rather amazing conjecture generalizing at
the level of the moduli space Mg,n the Faber-Zagier relations in the cohomology
of the moduli space Mg. The increase in complexity when passing from smooth to
singular curves is considerable and it is a major step forward that a concrete pre-
diction has been put forward. The field is facing an interesting change of paradigm,
in the sense that the largely accepted Faber Conjectures predicting that the corre-
sponding tautological rings of moduli of curves satisfy Poincare duality, are being
replaced by new predictions, according to which the suitable generalizations of
Faber-Zagier relations span all relations between tautological classed. It is already
clear that in genus 24 the two conjectures rule out each other (whereas for g < 24
they are equivalent) and it will be interesting to monitor future developments.

Geometric compactifications of the moduli space of K3 surfaces. A clas-
sical unsolved problem of moduli theory asks for a modular compactification of the
moduli space of polarized K3 surface. While several compactifications of the mod-
uli space have been discussed, none of them is known to date to support a universal
family. Bernd Siebert (Hamburg) reported on joint work Mark Gross (San Diego),
Paul Hacking (Amherst) and Sean Keel (Austin) which might lead to a solution of
this long-standing problem. Building on work of Gross-Siebert which uses Mirror
symmetry to study degenerations of Calabi-Yau manifolds, there is hope to single
out one particular toroidal compactification for which a family might exist. While
many details still need to be filled in, and a discussion of the geometric and mod-
ular properties of the construction is still pending, this is a very exciting project
which might eventually solve a classical problem.

The moduli stack of semistable curves. This is a development providing a
glimpse of the lively discussions which happened at this very meeting. Jarod Alper
(ANU) reported in the most timely manner possible on present joint work with
Andrew Kresch (Zürich) on the structure of the moduli stack of semistable curves.
One of the main questions one must ask about any stack is whether or not it is
a global-quotient stack, or at least if it can be approximated by a global-quotient
stack. A central example is the stack Mss

g of semistable curves, a keystone in
constructing many moduli spaces. Kresch has shown that even the first stage
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of this stack, Mss,≤1
g , is not a global-quotient stack, but Alper conjectured that

Mss
g falls in a general class of stacks well-approximated by global-quotient stacks.

Alper reported that this was established during this meeting by him and Kresch
for Mss,≤1

g , with strong evidence for the result to hold for the full moduli stack of
semistable curves.

Moduli of slope-semistable bundles. Daniel Greb (Ruhr-Universität Bochum)
reported on joint work with Matei Toma (Nancy), discussing wall-crossing and
compactifications for moduli spaces of slope-semistable sheaves on higher-dimen-
sional projective manifolds. Generalizing work of Joseph Le Potier and Jun Li,
he constructed projective moduli spaces for slope-semistable sheaves by showing
semiampleness of certain equivariant determinant line bundles. While the geom-
etry of the resulting moduli spaces is presently only partially understood, these
spaces are likely to shed new light on the question whether Tian’s topological com-
pactifications of moduli spaces of slope-semistable vector bundles admit complex
or even algebraic structures.
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Abstracts

Stable pairs and knot invariants (after Shende, Oblomkov, and
Maulik)

Rahul Pandharipande

My lecture concerned the work of Shende, Oblomkov, Maulik, and others on the
connection between the Hilbert schemes of plane curve singularities and the in-
variants of the associated link.

The main results concern the geometry of the Hilbert scheme of points of plane
curve singularities. Let C be a curve with an isolated planar singularity p ∈ C,
and let Hilb(C, n) be the Hilbert scheme of n points. In papers with R. Thomas,
we proved the generating series of the Euler characteristics of the Hilbert schemes
of points

PC(q) =
∑

n≥0

χ(Hilb(C, n)) qn

is actually a rational function in q of a very constrained form:

PC(q) =

gar∑

h=ggeom

nh,C qgar−h(1− q)2h−2

for integers nh,C where h lies between the geometric genus ggeom and the arithmetic
genus gar. We termed the integers nh,C the BPS state counts associated to C for
their relationship to 3-fold Donaldson-Thomas theory. We observed in examples
nh,C > 0.

Shende and Oblomkov have undertaken a systematic study of the integers nh,C .
Their first discovery is the relationship between nh,C and the knot invariants of the
link of the plane curve singularity. Shende and Oblomkov conjecture that the nh,C

are coefficients of the Jones polynomial of the link. Since the Jones polynomial
occurs as a specialization of the HOMFLY polynomial, a natural question is how
to obtain the full HOMFLY from the Hilbert schemes of points. Here, the idea is to
consider the filtration on the punctual Hilbert scheme Hilbp(C, n) at the singularity
p ∈ C given by minimal number of generators of the ideal. The two variate series
of Euler characteristics (indexed by number of points and number of generators)
Shende and Oblomkov conjecture to be equal after a simple and universal change
of variables to the two variate HOMFLY polynomial. Shende and Oblomkov prove
the conjecture for torus knots associated to singularities Xn − Y m and in a few
other examples. The result for torus knot is not trivial — on one side, an exact
calculation of the HOMFLY polynomial by Jones is used, on the other side, new
techniques of dealing with the Hilbert scheme have to be developed.

Recently, Maulik (using also ideas of Diaconescu and collaborators) was able to
prove the orginal conjecture by Shende and Oblomokov. The main ideas are to lift
the conjecture to relate certainly stable pairs theories on local P1 to the colored
HOMFLY polynomial. Wall-crossing methods in sheaf counting are then used to
prove a blow-up formula. The conifold transition plays a central role.
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It is natural to consider the motives associated to the Hilbert scheme to produce
extra variables. In work with Oblomkov and Rasmussen at Cambridge, Shende has
found a conjecture linking the motivic invariants to modern 3-variate extensions
of HOMFLY.

In a second line of work undertaken by Shende by himself, he finds the basic
geometric meaning of the integers nh,C . In the versal deformation space of C, there
are loci Vh which parameterize the closures of deformations of C with geometric
genus h. These subvarieties Vh are usually singular at the point [C] ∈ Vh. Shende
conjectured in 2009 that nh,C equals the multiplicity of Vh at [C]. In the case
h = ggeom, this conjecture is a consequence of basic results by Göttsche-Fantechi-
Van Straten. In the summer of 2010, Shende proved the full conjecture via an
improved understanding of tangent spaces to relative Hilbert schemes. Shende’s
results explains the positivity nh,C > 0.

Compact moduli spaces for slope-semistable sheaves on
higher-dimensional projective manifolds

Daniel Greb

(joint work with Matei Toma)

My talk focussed on the “variation of semistability”-problem for moduli spaces
of sheaves on higher-dimensional varieties. In dimension greater than one, both
Gieseker-semistability (which yields projective moduli spaces in arbitrary dimen-
sion) and slope-semistability (which is better behaved geometrically, e.g. with re-
spect to tensor products and restrictions) depend on a parameter, classically the
class of a line bundle in the ample cone of the underlying variety. As a consequence,
it is of great importance to understand how the moduli space of semistable sheaves
changes when the semistability parameter varies.

1. Known results on surfaces, and the situation on threefolds

In the case where the underlying variety is of dimension two this problem has
been investigated by a number of authors and a rather complete geometric picture
has emerged, which can be summarised as follows:

(i) A compact moduli space for slope-semistable sheaves also exists as a projec-
tive scheme. It is homeomorphic to the Donaldson-Uhlenbeck compactification,
endowing the latter with a complex structure, and admits a natural morphism
from the Gieseker compactification. This was proven independently by Joseph Le
Potier [LP92] and Jun Li [Li93].

(ii) In the ample cone of the underlying variety there exists a locally finite cham-
ber structure given by linear rational walls, so that the notion of slope/Gieseker-
semistability (and hence the moduli space) does not change within the chambers,
see [Qin93].

(iii) Moreover, at least when the second Chern class of the sheaves under consid-
eration is sufficiently big, moduli spaces corresponding to two chambers separated
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by a common wall are birational, and the change in geometry can be understood
by studying the moduli space of sheaves that are slope-semistable with respect to
the class of an ample bundle lying on the wall, see [HL95].

However, starting in dimension three several fundamental problems appear:
(i) While there are gauge-theoretic generalisations of the Donaldson-Uhlenbeck

compactification to higher-dimensional varieties [Tia00], these are not known to
possess a complex structure.

(ii) Adapting the notion of ”wall” as in [Qin93], one immediately finds examples
where these walls are not locally finite inside the ample cone.

(iii) Looking at segments between two integral ample classes in the ample cone
instead, Schmitt [Sch00] gave examples of threefolds such that the point on the
segment where the moduli space changes is irrational.

2. Stability with respect to movable curves and the main result

In my talk I presented a novel approach to attack the above-mentioned prob-
lems, developed in joint work with Matei Toma (Nancy). It is based on the philos-
ophy that the natural ”polarisations” to consider when defining slope-semistability
on higher dimensional base manifolds are not ample divisors but rather movable
curves.

For any n-dimensional smooth projective variety X we consider the open set
P (X) of powers of ample divisor classes inside the cone of movable curves and
show that it supports a locally finite chamber structure given by linear rational
walls such that the notion of slope-(semi)stability is constant within each chamber.
Moreover, any chamber (even if it is not open) contains products H1H2...Hn−1

of integer ample divisor classes. We are thus led to the problem of constructing
moduli spaces of torsion-free sheaves which are slope-semistable with respect to
a multipolarisation (H1, ..., Hn−1), where H1, ..., Hn−1 are integer ample divisor
classes on X .

The main result of our preprint [GT13] is the following:

Theorem. Let X be a smooth projective threefold, H1, H2 ∈ Pic(X) two ample
divisors, c1 ∈ H2

(
X,Z

)
, c2 ∈ H4

(
X,Z

)
, c3 ∈ H6

(
X,Z

)
three classes, r a positive

integer, c ∈ K(X)num a class with rank r, and Chern classes cj(c) = cj, and Λ
a line bundle on X with c1(Λ) = c1 ∈ H2(X,Z). Denote by Mµss the functor
that associates to each weakly normal variety S the set of isomorphism classes of
S-flat families of (H1, H2)-semistable torsion-free coherent sheaves of class c and
determinant Λ on X. Then, there exists a class û2 ∈ K(X)num, a natural number
N ∈ N>0, a weakly normal projective variety Mµss with an ample line bundle
OMµss(1), and a natural transformation

Mµss → Hom(·,Mµss)

with the following properties:

(1) For any S-flat family F of µ-semistable sheaves of class c and determinant
Λ with induced classifying morphism ΦF : S →Mµss we have

Φ∗
F (OMµss(1)) = λF (û2)

N ,
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where λF (û2) is the determinant line bundle on S induced by F and û2.
(2) For any other triple (M ′,OM ′(1), N ′) consisting of a projective varietyM ′,

an ample line bundle OM ′ (1) on M ′ and a natural number N ′ fulfilling the
conditions spelled out in (1), one has N |N ′ and there exists a uniquely de-

termined morphism ψ :Mµss →M ′ such that ψ∗(OM ′ (1)) ∼= OMµss(N
′

N ).

The triple (Mµss,OMµss(1), N) is uniquely determined up to isomorphism by the
properties (1) and (2).

In addition, Mµss contains the weak normalisation of the moduli space of (iso-
morphism classes of) (H1, H2)-stable reflexive sheaves as a Zariski-open set, an-
swering a particular case of a question raised among others by Teleman [Tel08].

The proof of the main result follows ideas of Le Potier [LP92] and Jun Li
[Li93] in the two-dimensional case: first, using boundedness we parametrise slope-
semistable sheaves by a locally closed subscheme Rµss of a suitable Quot-scheme.
Isomorphism classes of semistable sheaves correspond to orbits of a special linear
group G in Rµss. We then consider a certain determinant line bundle L2 on Rµss

and aim to show that it is generated by G-invariant global sections. Le Potier men-
tions in [LP92] that in the case when H1 = ... = Hn−1 =: H his proof of this fact
in the two-dimensional case could be extended to higher dimensions if a restric-
tion theorem of Mehta-Ramanathan type were available for Gieseker-H-semistable
sheaves. Indeed, such a result would be needed if one proceeded by restrictions to
hyperplane sections on X . We avoid this Gieseker-semistability issue and instead
restrict our families directly to the corresponding complete intersection curves,
where slope-semistability and Gieseker-semistability coincide. The price to pay is
some loss of flatness for the restricted families. In order to overcome this difficulty
we pass to weak normalisations for our family bases and show that sections in L2

extend continuously, and owing to weak normality hence holomorphically, over the
non-flat locus. The moduli space Mµss then arises as the Proj-scheme of a ring of
G-invariant sections in powers of L2 over the weak normalisation of Rµss.

Our construction works for base manifolds of any dimension n ≥ 3 and will be
explitly carried out in future versions of our paper.

3. Outlook

Based on example computations and partial results, it is natural to expect that
the moduli space Mµss realises the following equivalence relation on the set of
isomorphism classes of slope-semistable torsion-free sheaves: Two slope-semistable
sheaves F1 and F2 give rise to the same point in the moduli spaceMµss if and only
if the graded sheaf associated with Jordan-Hölder filtrations of F1 and F2, respec-
tively, as well as naturally associated 2-codimensional cycles coincide. Comparing
with the description of the geometry of the known topological compactifications
of the moduli space of slope-stable vector bundles constructed by Tian [Tia00], we
expect that the moduli spaces Mµss provide new insight concerning the question
whether these higher-dimensional analogues of the Donaldson-Uhlenbeck compact-
ificationspaces admit natural complex or even algebraic structures.
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Cycle Classes of a Stratification on the Moduli of K3 surfaces in
Positive Characteristic

Gerard van der Geer

(joint work with Torsten Ekedahl)

This talk is on joint work with Torsten Ekedahl who died in November 2011.
His sharp intellect and strong and generous personality will be deeply missed.

Moduli spaces in positive characteristic possess stratifications for which we do
not know characteristic zero analogues. These stratifications are very helpful in
understanding these moduli spaces. Here we deal with the moduli of polarized
K3 surfaces in characteristic p > 0, actually p > 2. For a K3 surface in positive
characteristic there is a special invariant, the height of the formal Brauer group,
introduced by Artin and Mazur in the 1970s. The formal Brauer group of a K3
surface is a 1-dimensional formal group and 1-dimensional formal groups over an
algebraically closed field k of characteristic p > 0 are characterized by their height.
If t is a local parameter then multiplication by p can be written as

[p] · t = a tp
h

+ higher order terms

with a 6= 0. This defines the height h. If h = ∞ then we are dealing with Ĝa, the
formal additive group. If h < ∞ we have a p-divisible formal group. Artin and
Mazur deduced a consequence for the geometry of a K3 surface:

if h 6= ∞ then ρ ≤ 22− 2h

with ρ the rank of the Neron-Severi group. It follows that if ρ = 22 then h = ∞.
This case occurs, for example, the Fermat surface of degree 4 in characteristic
p ≡ 3(mod4) has ρ = 22. In general, if h <∞ then 1 ≤ h ≤ 10.

The case h = 1 is the generic case and h = ∞ is called the supersingular case.
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Artin conjectured that if h = ∞ then ρ = 22. This has now been proved by
Maulik, Charles and Madapusi Pera for p > 2, see [3, 1, 2].

Using the height we get strata on the moduli space Fg of polarized K3 surfaces
over an algebraically closed field k of characteristic p. Let Vh be the locus of K3
surfaces with height ≥ h. Since 1 ≤ h ≤ 10 or h = ∞ we get 11 strata and we
know that codimVh ≤ h− 1 for finite h. But for supersingular K3 surfaces there
is another invariant, given by

disc(NS(X)) = −p2σ0 ,

and σ0 is called the Artin invariant. The idea is that though ρ = 22 stays fixed for
supersingular K3 surfaces, divisor classes in the limit might become divisible by p,
thus changing σ0. So besides the height loci Vh we have loci Vσ0 where the Artin
invariant is ≤ σ0. Here σ0 = 11 is the generic supersingular K3, while σ0 = 1 is
the superspecial case, the most degenerate situation.

In joint work with Katsura ([5]) we determined the cycle classes of the height
strata:

[Vh] = (p− 1)(p2 − 1) · · · (ph−1 − 1)λh−1 ,

where λ = c1(π∗Ω
2
X/Fg

) is the first Chern class of the Hodge bundle of the universal

K3 surface π : X → Fg. The remaining classes of the Artin invariant strata turned
out to be very elusive, but were finally determined in joint work with Torsten
Ekedahl, see [4].

We also gave a uniform approach to all strata. This is done by looking at
(almost) complete flags on the cohomology H2

dR(X).
We consider K3 surfaces with an isometric embedding N → NS(X) of non-

degenerate lattices, where we assume that N contains a semi-ample line bundle.
The corresponding moduli space is denoted FN . Let N⊥ the primitive cohomology
in H2

dR. It has a Hodge filtration

0 = U−1 ⊂ U0 ⊂ U1 ⊂ U2 = N⊥

of dimension (say) 0, 1, n − 1, n. In positive characteristic we then get another
filtration, the conjugate filtration

0 = U c
−1 ⊂ U c

0 ⊂ U c
1 ⊂ U c

2 = N⊥

that comes from relative Frobenius F : X → X(p) and the associated spectral
sequence with Eij

2 = Hi(X(p),Ωj

X(p)/k
) converging to H2

dR(X/k). The inverse

Cartier operator induces an isomorphism F ∗(Ui/Ui−1) ∼= U c
2−i/U

c
1−i. We thus

have two flags. We refine the flag on the conjugate filtration and use Cartier to
transfer it to the Frobenius pull back of the Hodge filtration. We thus get two
(almost complete) flags on N⊥ and the relative position of these two flags can be
given by an element of a Weyl group (of an orthogonal group). We show that in
this way one recovers the invariants h and σ0.

There are some very subtle issues related to SO(n) versus O(n) in case n is
even, involving a discriminant on the middle part of the flag. By working on the
flag space (parametrizing flags on N⊥) and using a Pieri formula we were able to
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calculate the cycle classes. I state the result only in case n is odd. The general
result can be found in [4]. The strata on Fg correspond to the case n = 2m+1 = 21.

Theorem 1. There are 2m strata Vk on FN with k = 1, . . . , 2m. For k = 1, . . . ,m
we have the finite height strata, the stratum Vm+1 is the supersingular locus, while
Vm+k for k = 2, . . . ,m give the Artin invariant strata. Their classes are given by
the following formulae.
The finite height case (with 1 ≤ k ≤ m):

Vk = (p− 1)(p2 − 1) · · · (pk−1 − 1)λk−1

The supersingular case:

Vm+1 =
1

2
(p− 1)(p2 − 1) · · · (pm − 1)λm

The Artin invariant case (with 2 ≤ k ≤ m):

Vm+k =
1

2

(p2k − 1)(p2k+2 − 1) · · · (p2m − 1)

(p+ 1)(p2 + 1) · · · (pm−k+1 + 1)
λm+k−1

The results of the paper can also be applied to the moduli of higher-dimensional
varieties, like hyperkähler varieties.
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Stabilization of discriminants in the Grothendieck ring

Ravi Vakil

(joint work with Melanie Matchett Wood)

This talk is a report on the results of [1]. We study the classes of discriminants
(loci in a moduli space of objects with specified singularities) and their comple-
ments in the Grothendieck ring of varieties, focusing on the cases of moduli of
hypersurfaces and configuration spaces of points. The main contributions of this
paper are two theorems and one conjecture (“motivic stabilization of symmetric
powers”).

I. (the limiting motive of the space of hypersurfaces with a given number of
singularities) If L is an ample line bundle on a smooth variety X , we show that
the motive of the subset of the linear system |L⊗j | consisting of divisors with
precisely s singularities (normalized by |L⊗j |), tends to a limit as j → ∞ (in
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the completion of the localization of the Grothendieck ring at L := [A1]), given
explicitly in terms of the motivic zeta function of X .

II. (motivic stabilization of symmetric powers) We conjecture that if X is geo-
metrically irreducible, then the ratio [SymnX ]/LndimX tends to a limit. This is
an algebraic version of the Dold-Thom theorem, and is also motivated by the Weil
conjectures. There are a number of reasons for considering this conjecture, see [1,
§4].

III. (the limiting motive of discriminants in configuration spaces) We show that
if X is geometrically irreducible and satisfies motivic stabilization (II, e.g. if X
is stably rational), then the motive of strata (and their closure) of configurations
of points with given “discriminant” (clumping of points) tends to a limit as the
number of points n → ∞, and (more important) we describe the limit in terms
of motivic zeta values. In the case of s multiple points, the result is the same as
that of I, except the expression in terms of motivic zeta functions is evaluated
at a different value. The reliance on the motivic stabilization conjecture can be
removed by specializing to Hodge structures, where the analogous conjecture holds,
or by working with generating series.

These results are motivated by a number of results in number theory and topol-
ogy (including, notably, stability/stabilization theorems), and they generalize ana-
logues of many of these statements. (An elementary motivation is an analogue of
both I and III for X = SpecZ: the probability of an integer being square free
is 1/ζ(2). One has to first make sense of the word “probability” as a limit, then
show that the limit is a zeta value. These features will be visible in our arguments
as well.) Our results also support Denef and Loeser’s motto [2, l. 1-2]: “rational
generating series occurring in arithmetic geometry are motivic in nature”.

Our results suggest a number of new conjectures in arithmetic, algebraic geom-
etry, and topology that may be tractable by other means.

For more detail and context, see [1, §1].
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Tautological relations on Mg,n

Aaron Pixton

(joint work with Rahul Pandharipande and Dimitri Zvonkine)

The tautological ring of the moduli space of stable curves Mg,n is a subring

R∗(Mg,n) of the Chow ring A∗(Mg,n) consisting of the cycles that arise most
naturally in geometry. The tautological rings can be collectively defined (see [3])
for all g, n as the smallest subrings that are closed under pushforward by the
following morphisms:
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• the maps Mg,n+1 →Mg,n forgetting a marked point;

• the mapsMg1,n1+1×Mg2,n2+1 →Mg1+g2,n1+n2 gluing two curves together
at marked points;

• the mapsMg,n+2 →Mg+1,n gluing two marked points together on a single
curve.

The tautological rings of subspaces ofMg,n, such as the moduli space of smooth
curves Mg,n or the moduli space of curves of compact type M c

g,n, can then be
defined by restriction. In the case of Mg, the tautological ring R∗(Mg) is simply
the ring of polynomials in the Arbarello-Cornalba [1] kappa classes κ1, κ2, . . .. A
tautological relation on Mg is an element of the kernel of the surjection from the
ring of formal kappa polynomials Q[κ1, κ2, . . .] to R

∗(Mg).
All known tautological relations on Mg are linear combinations of the Faber-

Zagier (FZ) relations, a large family of explicit kappa polynomials that were proven
to be tautological relations in [5] using the moduli space of stable quotients. If
the FZ relations give a complete description of the tautological relations, then this
would contradict Faber’s celebrated Gorenstein conjecture [2] for R∗(Mg) when
g ≥ 24.

I will discuss the analogous situation for R∗(Mg,n). Here the kappa classes
are not enough to generate the tautological ring, and the ring of formal kappa
polynomials Q[κ1, κ2, . . .] must be replaced by a more complicated combinatorial
object, the strata algebra Sg,n. The strata algebra is additively defined as a Q-
vector space with basis elements corresponding to the additive generators of the
tautological ring R∗(Mg,n) described by Graber and Pandharipande [4]: pick a
dual graph Γ and take the pushforward of an arbitrary monomial in the kappa
and psi classes along the associated gluing map

ξΓ :
∏

v

Mgv ,nv
→Mg,n.

Multiplication in the strata algebra is defined using the rules for multiplying these
additive generators described in [4]. Then a tautological relation on Mg,n is an

element of the kernel of the natural surjection Sg,n → R∗(Mg,n).
In [8], the author described a large idealR in Sg,n. This ideal can be interpreted

as the ideal generated by pullbacks and pushforwards of special elements R(g, n, r)
that are defined as sums over dual graphs: R(g, n, r) is the degree r part of

∑

Γ

1

|Aut(Γ)|
ξΓ∗

∏

v vertex of Γ

Av

∏

e edge of Γ

Be

∏

l leg of Γ

Cl

for certain local contributions Av, Be, Cl from the vertices (irreducible compo-
nents), edges (nodes), and legs (marked points) of the dual graph.

Conjecture ([8]). R is the ideal of tautological relations on Mg,n.

These conjectural relations can be restricted toM c
g,n andM rt

g,n to give analogous
conjectures. In the case ofMg, the FZ relations are recovered. In each case, as with
the FZ relations, all known relations are linear combinations of these conjectured
relations.
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These conjectures would have numerous implications for the structure of the
tautological rings. Currently, the only known counterexample to Faber’s Goren-
stein conjectures is in the moduli of stable curves: Petersen and Tommasi [7]
proved that R∗(M2,n) is not Gorenstein for some n ≤ 20. Computing the ranks of
the quotients by the (restrictions of the) conjectural relations R, we see that the
tautological rings ofM c

6 ,M
c
5,2,M24,M

rt
20,1,M

rt
17,2,M

rt
14,3,M

rt
11,4,M

rt
10,5, andM

rt
9,6 are

also not Gorenstein if R gives all the tautological relations. (The case M24 is of
course just the FZ relation prediction.)

In ongoing joint work with R. Pandharipande and D. Zvonkine [6], we have
constructed these relations in cohomology.

Theorem ([6]). R is contained in the kernel of the composition

Sg,n → R∗(Mg,n) → H∗(Mg,n).

The proof uses the purity of Witten’s class on the moduli space of 3-spin curves
together with Teleman’s classification of semisimple cohomological field theories
[9]. This also gives a new proof of the FZ relations in cohomology.
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Stable cohomology of compactifications of Ag

Klaus Hulek

(joint work with Samuel Grushevsky and Orsola Tommasi)

1. Introduction

Let Ag = Sp(2g,Z)\Hg be the moduli space of principally polarized abelian
varieties of dimension g (over C). It is a well known result of Borel [Bor74] that
Ag has stable cohomology. To describe this let E be the Hodge bundle on Ag and
denote its Chern classes by λi = ci(E) ∈ H2i(Ag ,Z).

Theorem 1 (Borel). The cohomology of Ag stabilizes and the stable cohomology
is freely generated by the classes λ1, λ3, . . .. More precisely, for all k < g we have

Hk(Ag) = Qk[λ1, λ3, . . .]

where the degree of λi is 2i.

This result can be generalized to local systems. Recall that the irreducible local
systems Vµ on Ag are enumerated by Young diagrams µ. It turns out that the

only local system with non-trivial stable cohomology is the trivial local system.

Theorem 2 (Borel, Hain). For a fixed Young diagram µ, and for all k < g we
have

Hk(Ag, Vµ) =

{
Qk[λ1, λ3, . . .] if µ = 0

0 otherwise.

2. Compactifications

It is natural to ask whether stabilization results can also be obtained for com-
pactifications of Ag. This has been answered positively for the Satake compacti-
fication. Recall that this is set-theoretically given by

ASat
g = Ag ⊔Ag−1 ⊔ . . . ⊔ A0.

Theorem 3 (Charney, Lee). The Satake compactification ASat
g has stable coho-

mology in degrees k < g. This is freely generated by the classes λ1, λ3, . . . and by
classes α3, α5, . . . where the degree of αj is 2j.

The next step is to look at toroidal compactifications Ator
g . The two toroidal

compactifications which have been studied the most are the second Voronoi com-
pactification AVor

g and the perfect cone or first Voronoi compactifcationAPerf
g . The

first is known to have a good modular interpretation due to the work of Alexeev
and Olsson, whereas the second has good properties from the point of view of the
minimal model program: if g ≥ 12, then APerf

g is a canonical model of Ag, in
particular its canonical bundle is ample, as was shown by Shepherd-Barron.

One cannot expect that the second Voronoi compactification has stable coho-
mology: if we denote by l(g) the number of 1-dimensonal orbits of the second
Voronoi decomposition, then it is known that l(2) = l(3) = 1, l(4) = 2, l(5) = 9
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and l(6) ≥ 20000. It also follows from work of Baranovskii and Grishukhin that
at least l(g) ≥ g− 3, in other words the number of boundary divisors (and thus of
irreducible boundary components of AVor

g ) grows with g. In contrast, the bound-

ary of APerf
g is an irreducible divisor for all values of g. The main purpose of this

talk was to show that one has indeed a stabilization result for the cohomology of
APerf

g .

3. Universal families and Mumford’s partial compactifiction

Let Xg → Ag be the universal family. We denote its n-fold cartesian product
by X×n

g → Ag. On this family we have natural divisor classes. For this let T be
(the class of) the theta divisor (trivialized over the 0-section) on Xg and let P be
the (class of) the Poincaré bundle on X×n

g (again trivialized along the 0-section).
Using the projections pi and pi,j onto the i-th and (i, j)-th factor respectively we
obtain via pullback classes Ti, 1 ≤ i ≤ n and Pi,j , 1 ≤ i < j ≤ n on X×n

g .

Theorem 4. The universal family X×n
g → Ag has stable cohomology in degree

k < g. The stable cohomology is generated freely as an algebra over the stable
cohomology of Ag by the classes Ti and Pi,j .

To prove the theorem one uses the Leray spectral sequence with E2-term Ep,q
2 :=

Hp(Ag, R
qπ×n

∗ Q) for the projection π×n : X×n
g → Ag. Since this is a projective

fibration the Leray spectral sequence degenerates at E2-level. The main point
is then to compute the number of trivial local systems in Rqπ×n

∗ (Q), which can
be done by representation theory, and to compare this number to the number of
polynomials of given degree in the classes λi, Ti and Pi,j . The result then follows
since by [GZ12] the classes Ti and Pi,j do not fulfill non-trivial relations in degree
≤ g.

As an easy corollary of this result one obtains stable cohomology for Mumford’s
partial toroidal compactification A′

g = Ag ∪ Xg−1, parametrizing ppav together
with torus rank 1 degenerations. This partial compactification of Ag is contained
in all toroidal copactificationsAtor

g as the part which, under the projection to ASat
g ,

lives over Ag ∪ Ag−1.

Proposition 5. The partial compactificaton A′
g has stable cohomology. More

precisely, for k < g one has

Hk(A′
g,Q) = Qk[D,λ1, λ3, . . .]

where D is the (class of) the boundary and has degree 2.

The proof of this consists of an application of the Gysin exact sequence for the
pair (A′

g,Xg−1) for cohomology with compact support. Since A′
g and Xg−1 are

smooth (as stacks) one can then dualize to cohomology.

4. Stable cohomology of APerf
g

The projection p : APerf
g → ASat

g defines a stratification of APerf
g into strata

βi = p−1(Ag−i). Each stratum βi is itself stratified into strata βi = ⊔βi(σ) where
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σ runs through all cones in the perfect cone decomposition of Sym2
≥0(Q

i) whose
general element is a rank i matrix. The strata βi(σ) are finite quotients of torus

bundle Ti(σ) over i-fold products X
[i]
g−i → Ag−i by a group G(σ), which is the

stabilizer of σ in GL(i,Z) (for details see [HT11]). The strategy is then to compute
the G(σ)-invariant stable cohomology of Ti(σ) and thus the stable cohomology of
βi(σ). One can then use the Gysin spectral sequence for cohomology with compact
support to obtain information on the stable cohomology with compact support for
the strata βi and, after another use of the Gysin spectral sequence, for APerf

g itself.

We note that one cannot translate this back into cohomology as APerf
g is a singular

space. One finally obtains

Theorem 6. The cohomology groups Htop−k(APerf
g ,Q) stabilize for k < g − 1

(where top = g(g + 1) is the real dimension of APerf
g ).

We finally remark that J. Giansiracusa and G. K. Sankaran have independently
from us obtained stabilization results for Hk(Amatr

g ,Q) where Amatr
g is the partial

compactification of Ag given by the matroidal locus.
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Classical vs Tropical Brill-Noether Theory

Margarida Melo

(joint work with Lucia Caporaso)

1. Introduction

Classical Brill-Noether theory is the study of linear series on smooth curves.
For given degree d, genus g and rank r, one expects the space of linear series of
degree d and rank r on a curve C of genus g, denoted by W r

d (C), to be either
empty or to have a certain dimension, given by the so-called Brill-Noether number
ρ = g− (r+1)(g−d+ r). The Brill-Noether theorem, first proved by Griffiths and
Harris in [5] ensures that the expectation holds for general curves of given genus.
Classical proofs of the Brill-Noether theorem use degeneration and semicontinuity
arguments. Still, Brill-Noether varieties of singular, specially reducible, curves are
hard to deal with and in several aspects it is not even clear what to expect.

LetX be a nodal curve and let f : X → B be a regular one parameter smoothing
of X over a smooth curve B, i.e., Xb0

∼= X and, for b 6= b0, Xb is a smooth
curve. Let also L be a line bundle of a certain degree d over X . Then, given an
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irreducible component C ⊂ X , OX (−C) is a line bundle, a so called twister, and
L ⊗ OX (−C)|Xb

∼= LXb
, ∀b 6= b0. This phenomena immediately shows that L|Xb

can specialize to elements in W d
r (X) for all r ≥ 0. In fact, by twisting enough

times, one gets that the degree of L⊗OX (−nC) in C gets as big as we want, and
along with it the rank of L⊗OX (−nC)|Xb0

gets to infinity.

2. Combinatorial rank

For any nodal curve X , we can associate to it the dual (weighted) graph of G
of X , whose set of vertices corresponds to the irreducible components of X and
such that edges connecting two vertices (who might be the same) correspond to
nodes lying in the correspondent components. Likely, for any divisor D in Div X ,
let d ∈ Div G be the divisor in G associated to the multidegree of D on X . There
is a well-established theory of linear series on graphs, most notably due to the
pioneering work of Baker and Norine in [2] for graphs with no loops nor weights
and to Amini-Caporaso in [1] in the general case.

Given a graph G, its divisor group Div G is the free abelian group generated
by V (G), the set of vertices of G. So, an element in Div G has the form d =∑

v∈V (G) d(v)v. The degree of a divisor d is defined as
∑

d∈V (G) d(v) and the set

of effective divisors is Div+(G) := {d ∈ Div G : d(v) ≥ 0, ∀v ∈ V (G)}. We write
d ≥ 0 if d ∈ Div+G. The group of principal divisors Prin G can be defined as the
group of multidegrees of twisters of a curve with G as dual graph. Then we have

Definition. Let d and d′ be two divisors on G. Then d and d′ are said to be
linearly equivalent, and we write d ∼ d′ if ∃ ∈ Prin G such that d− d′ = t.
We then define Pic G := Div G/ ∼.

Given a graph with no loops nor weights, Baker and Norine defined in [2] the
combinatorial rank of a divisor d ∈ Div G, rG(d), as follows:

rG(d) = max{r : ∀e ≥ 0, |e| = r, ∃t ∈ Prin G : d− e+ t ≥ 0}.

In the case when G has loops or weights, the combinatorial rank is defined

according to Amini and Caporaso in [1] using an auxiliary graph Ĝ, obtaining by
adding w(v)(=weight of v) loops on each vertex v and then by inserting a vertex

in each loop of this new graph. The divisor d clearly extends to a divisor d̂ on

G by putting d(v) = 0 on all vertices v ∈ V (Ĝ) \ V (G) and one then defines

rG(d) := rĜ(d̂).
The combinatorial rank rG(d) of a divisor d ∈ Div G is clearly independent of

the representative of the linear equivalence class of d, so it makes sense to write
rG(δ) for the combinatorial rank of a divisor class δ ∈ Pic G as well.

Given, as before, a one parameter smoothing f : X → B of a curve X with dual
graph equal to G and a line bundle L on X such that L|Xb0

has multidegree d,

Baker’s specialization lemma states that rG(d) is bigger or equal than r(Xb,L|Xb
)

for b 6= b0 varying in a certain open neighborhood of b0. Notice that this result was
a very important tool in the recent proof by Cools, Draisma, Payne and Roveba
in [4] of the Brill-Noether theorem using linear series on graphs.



Moduli Spaces in Algebraic Geometry 363

3. Algebraic rank

Given a graph G, denote by MalgG the set of nodal curves X whose dual graph
is equal to G. Recently, in [3], L. Caporaso defined the following notion of algebraic
rank of a divisor on G, using linear series on nodal curves X ∈ MalgG.

Let then δ ∈ Pic G be a divisor class. For any d ∈ δ and X ∈ MalgG, we set

rmax(X, d) := max{r(X,L), ∀L ∈ Picd(X)} = max{r : Wr
d(X) 6= ∅}.

Next, we set

r(X, δ) := min{rmax(X, d), ∀d ∈ δ}.

Finally set

ralg(G, δ) := max{r(X, δ), ∀X ∈ Malg(G)}.

Then the following is Conjecture 1 in [3]

Conjecture 1. Let G be a graph and δ ∈ Pic(G). Then

ralg(G, δ) = rG(δ).

Conjecture 1 is shown in [3] to hold in the following cases:

(1) g ≤ 1;
(2) d ≤ 0 and d ≥ 2g − 2;
(3) |V (G)| = 1;
(4) G is a stable graph of genus 2.

Moreover, in loc. cit. it is also proved that if Conjecture 1 holds for semistable
graphs, i.e., graphs G such that all vertices of G of weight zero have at least two
incident half-edges (in other words, dual graphs of Deligne-Mumford semistable
curves), then it holds generally for all nodal curves.

4. Our results

In a joint work on progress with Lucia Caporaso we show furthermore that
the algebraic rank satisfies nice properties as the Riemann-Roch formula and that
Conjecture 1 holds in the following cases.

Theorem. Let G be any graph and δ ∈ Pic G a divisor class. Then

(1) ralg(G, δ) ≤ rG(δ);
(2) if moreover G is either loopless and weightless or if rG(δ) = −1, 0, we have

that ralg(G, δ) = rG(δ).

We are currently working towards proving that Conjecture 1 is true in general
for any graph and any divisor class.

Finally, we would like to mention that it is interesting to exploit which conse-
quences can our results have for the study of linear series on nodal curves. For
instance, Clifford’s inequality trivially fails for reducible curves for the reasons we
explained above. However, we have the following:
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Proposition (Clifford). Let δ ∈ Pic G with degree d satisfying 0 ≤ d ≤ 2g − 2.
Then

ralg(G, δ) ≤

⌊
d

2

⌋
.

The above result implies that given any nodal curveX and 0 ≤ d ≤ 2g−2, there
is a certain multidegree d with total degree d such that for every L ∈ Picd(X),
r(X,L) ≤ ⌊d

2⌋.
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Teichmüller modular forms and their relation to ‘new’ Galois
representations in H

∗(M3,n)

Carel Faber

Teichmüller modular forms are sections of powers of the determinant of the Hodge
bundle E on Mg, or, more generally, of the vector bundles obtained by applying a
Schur functor for an irreducible representation of GL(g) to E. Teichmüller modular
forms not coming from Siegel modular forms and vanishing on the boundary of
Mg are of most interest. Such sections of det(E)⊗k were studied in detail by T.
Ichikawa in the 1990’s [3, 4, 5]. In particular, he proved that det(E)⊗9 admits a
nonzero section χ9 onM3 vanishing on H3, the closure of the locus of hyperelliptic
curves, and the boundary divisors ∆0 and ∆1.

‘Old’ Galois representations in H∗(M3,n) are those that can be expressed in
terms of L, the Lefschetz motive, and S[k], S[j, k], and S[i, j, k], Galois represen-
tations associated to Siegel modular forms (in general vector valued) of genus 1,
resp. 2, resp. 3 (cf. [1]). Let λ = (a, b, c) with a ≥ b ≥ c ≥ 0 be a weight for
Sp6 and denote by Vλ the local system for GSp6 corresponding to λ on A3, or its
pull-back to M3. (V(1,0,0) = V = R1π∗Qℓ for π : U → A3 the universal principally
polarized abelian threefold.)

We can prove that ‘new’ Galois representations, not expressible in the above
terms, occur in Hi

c(M3,Vλ) for λ = (11, 3, 3) and λ = (7, 7, 3) (probably for i = 6).
For all other λ with |λ| = a+ b+ c ≤ 17, it seems that old Galois representations
suffice, but non-Tate-twisted terms of motivic weight |λ| + 6 are found for λ =
(5, 5, 5), (8, 4, 4), and (9, 5, 3). Teichmüller modular forms corresponding to the
pieces of maximal Hodge degree have been constructed on M3 −H3 and seem to
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extend. For (5, 5, 5), this is χ9; for (8, 4, 4), it is a vector valued Siegel modular
form; the other cases are vector valued Teichmüller modular forms not coming
from Siegel modular forms. The recent work of Chenevier and Renard [2] suggests
that the two new Galois representations are six-dimensional. (Joint work with
Jonas Bergström and Gerard van der Geer.)
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Fibrations in quartic del Pezzo surfaces

Brendan Hassett

(joint work with Yuri Tschinkel)

Let B be a smooth projective curve over an algebraically closed field k with
char(k) 6= 2. A quartic del Pezzo surface fibration is a flat projective morphism
π : X → B with fibers complete intersections of two quadrics in P4. We assume
X is smooth and the singular fibers have at worst one ordinary double point; this
is equivalent to the discriminant divisor ∆ ⊂ B being square-free.

The fundamental invariant is the height

h(X ) = deg(c1(ωπ)
3),

where ωπ is the relative dualizing sheaf. We may compute

h(X ) = −2 deg(π∗ω
−1
π ) = deg(∆)/2,

as the Picard group of the moduli space is isomorphic to Z. Indeed, the moduli
space is isomorphic to P(1, 2, 3) \ s, where s is a point where the minimal degree
invariant is nonzero.

From now on, we assume that B = P1. In this case

χ(Ω1
X ) = h2(Ω1

X )− h1(Ω1
X ) = h(X )− 7,

so that if Pic(X ) ≃ Z2 then h2(Ω1
X ) = h(X )− 5. The expected number of param-

eters for X is −χ(TX ) =
3
2h(X )− 1.

The cohomology of X has a natural Prym construction: If X ⊂ P4 is a smooth
quartic del Pezzo surface then X = {Q0 = Q1 = 0} where Q0 and Q1 are homo-
geneous quadratic forms. Let

D = {[t0, t1] : rank(t0Q0 + t1Q1) < 5} ⊂ P1,
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which has degree five and parametrizes quadric cones containing X . Each quadric
cone has two rulings, each of which traces out a conic fibration on X . Given a
fibration X → P1 as above with generic fiber X , the conic fibrations and quadric
cones are parametrized by finite morphisms

D̃ → D → P1,

where the first is étale of degree two and the second has degree five. The Galois

group of D̃ → P1 is a subgroup of the Weyl group W (D5); we say π has maximal
monodromy if it is the full Weyl group. Kanev [5] has shown that the intermediate
Jacobian of X may be expressed

IJ(X ) = Prym(D̃/D).

Some natural questions include

(1) Are there fibrations with square-free discriminant of height two? With
height six and maximal monodromy?

(2) Are the fibrations with square-free discriminant and maximal monodromy
of a given height irreducible?

(3) How do we characterize the Prym varieties that arise from del Pezzo fi-
brations?

Our main interest is in sections σ : P1 → X of π. The height of a section is

hω−1
π
(σ) = deg(σ∗ω−1

π ) = deg(Nσ),

the degree of its normal bundle. The deformation space of σ has dimension at least
hω−1

π
(σ)+2. We expect there exists an h ∈ N and a canonically defined irreducible

component of

Sect(π, h) = {sections σ : P1 → X : hω−1
π
(σ) = h}

that is birational to Prym(D̃/D), or perhaps a rationally connected fibration over
this variety.

This has arithmetic significance: If everything is defined over a finite field Fq

then our expectation would imply X → P1 has a section defined over Fq. This
follows from results of Lang [6] (that principal homogeneous spaces over abelian
varieties split over finite fields) and Esnault [2] (that rationally connected varieties
over finite fields admit rational points). This would imply long-standing conjec-
tures [1] on the existence of rational points on del Pezzo surfaces over function
fields.

We turn to a concrete example, where X → P1 has height twelve. Note the
natural inclusion

X ⊂ P(π∗ω
−1
π ) ≃ P(OP1(−1)4 ⊕OP1) ⊂ P1 × P8

↓π
P1

where X contains the canonical section σ0 : P1 → P1 × P8 associated with the
summand OP1 . Are there any other sections?
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We consider two natural contractions: Projection onto the second factor induces

X → Y := π2(X ) ⊂ P8,

a small contraction of the canonical section; the image is a nodal Fano threefold
of degree 12. Fiberwise projection from σ0 gives

P1 × ℓ ⊂ X̃ := Blσ0(P1)(X ) ⊂ P1 × P3,

where ℓ is the exceptional line and X̃ is a pencil of cubic surfaces {t0F0+t1F1 = 0}
with base locus

{F0 = F1 = 0} = ℓ ∪ C ⊂ P3.

The curve C ⊂ P3 is a tetragonal curve of genus seven, embedded in P3 via the
adjoint KC − g14 , and ℓ is its four-secant line. Here the intermediate Jacobian
IJ(X ) ≃ J(C), the Jacobian of C.

Theorem 1 ([3, 4]). There exist a distinguished irreducible component of Sect(π, 5)
birational to J(C).

These have an explicit interpretation: Given a generic divisor classA ∈ Pic17(C),
there exists a unique sextic rational curve R ⊂ P3 such that R ∩ C ∈ |A|. The
proper transform of this curve in X yields the desired section.
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Conformal blocks divisors and the birational geometry of Mg,n

Angela Gibney

1. Vector bundles of conformal blocks

There is a seemingly endless supply of vector bundles V = V(g, ℓ, λ) on the
moduli stack Mg,n, of stable n pointed curves of genus g, constructed from the
data of a simple Lie algebra g, a positive integer ℓ, and an n-tuple λ of dominant
weights for g of level ℓ. We refer to V as a vector bundle of conformal blocks,
since over a closed point X = (C, p) in Mg,n corresponding to a smooth curve C,

the vector space V|[X] can be identified with a conformal block, a basic object in
the WZW model of rational conformal field theory [Bea96, TUY89]. One could
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also call V a vector bundle of generalized theta functions. For example, in case
g = slr+1, one also has the beautiful description that over a closed pointX = (C, p)

in the interior of Mg,n, the conformal block V|[X] is canonically isomorphic to the

vector space of generalized parabolic theta functions H0(SUC(r+ 1, λ),L), where
SUC(r+1, λ) is the moduli space of semi-stable vector bundles of rank r+1 with
trivial determinant bundle, and with parabolic structure of type λ on the marked
curve X , and L is a canonical element of its Picard group [Pau96, LS97].

There is no such interpretation of the vector space V|[X] as a conformal block

or as a space of generalized theta functions in case X = (C, p) ∈ Mg,n is on the
boundary – in other words, when the curve C has a node. Nevertheless, these
bundles have been constructed by Tsuchiya, Ueno and Yamada on the entire stack
Mg,n, including at points on the boundary [TUY89, Uen08].

2. Conformal blocks divisors and morphisms

An important feature of vector bundles of conformal blocks is that when g = 0
they give rise to morphisms from the fine moduli spaces M0,n to other projective
varieties. This comes from the fact, proved by Fakhruddin in [Fak12], that every
vector bundle V of conformal blocks on M0,n is globally generated, and hence its
first Chern class c1(V) is a semi-ample divisor. As Fakhruddin shows, this is not
always true for g > 0. While some vector bundles of conformal blocks, like the
Hodge bundle on Mg, are generated by their global sections, others are not.

Fakhruddin has given a recursive formula for the first Chern classes c1(V). We
have learned that these Conformal blocks divisors often occur naturally in families
having interesting properties. For example, the nonzero divisors {c1V(sl2, 1, λ) :
λ} forms a basis for the Picard group of M0,n [Fak12], and {c1V(sln, 1, λ) :

Sn invariant λ} forms a basis for M0,n/Sn [AGSS12]. All but one of the divisors

c1V(sln, 1, λ) lie on extremal faces of the nef cone, Nef(M0,n), and as we show
in [AGSS12], the divisors c1V(sln, 1, λ) for Sn- invariant λ span extremal rays of
Nef(M0,n/Sn). Similar statements can be made about the family of sl2 conformal
blocks divisors with weights λi = ω1, and varying level, studied in [AGS10].

We have identified a number of morphisms associated to conformal blocks divi-
sors onM0,n, including those which have already figured prominently in the litera-
ture [Fak12, AGS10, AGSS12, Gib12], as well as new maps [Gia10, GG12, GJMS12,
Fed11]. For example, there are natural birational models of M0,n obtained via Geo-
metric Invariant Theory which are moduli spaces of pointed rational normal curves
of a fixed degree d, where the curves and the marked points are weighted by non-
negative rational numbers (γ,A) = (γ, (a1, · · · , an)) [Gia10, GS11, GJM11]. These
so-called Veronese Quotients specialize to nearly every known compactification of
M0,n [GJM11]. There are birational morphisms from M0,n to these GIT quotients,
and these maps have been shown to be given by conformal blocks divisors in many
special cases [Gia10, GG12, GJMS12]. I believe this always true.
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3. Conformal blocks divisors and the Mori Dream Space Conjecture

The Mori Dream Space Conjecture of Hu and Keel [HK00] says that the Cox
Ring of M0,n is finitely generated, and so is a “dream space” from the point of
view of Mori Theory. For example, if this conjecture were true, then the cone
of nef divisors would be the convex hull of a finite number of extremal rays. A
second implication would be that every element of Nef(M0,n) would be a semi-

ample divisor. In other words, if M0,n is a Mori Dream Space, then one could

hope to explicitly describe all the nef divisors, and all the morphisms from M0,n

to any projective variety.
One could regard the conformal blocks divisors as both support for and evidence

against the Mori Dream Space Conjecture. On the one hand, the fact that there
are so many – a potential infinitude – of conformal blocks divisors, lends support
to the implication that every nef divisor on M0,n might be semi-ample. If the cone
generated by conformal blocks divisors lies properly inside the cone of net divisors,
then while it may be interesting if it is not polyhedral, it won’t have an impact on
the Mori Dream Space Conjecture.

On the other hand, especially taking into account the fact that most of the
conformal blocks divisors that we have studied lie on extremal faces of the nef
cone, it is natural to ask whether these cones are distinct. In the fantastic event
that every nef divisor were a conformal blocks divisor, then every nef divisor would
of course be semi-ample. But then if the cone of conformal blocks divisors is not
finitely generated, M0,n would not be a Mori Dream Space. Giansiracusa and

I considered a special case of this question, studying the subcone of Nef(M0,n)
generated by level one divisors {c1V(slk, 1, λ) : λ}, and we show that this cone is
indeed finitely generated [GG12].
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Toward a geometric compactification of the moduli space of polarized
K3 surfaces

Bernd Siebert

(joint work with Mark Gross, Paul Hacking, and Sean Keel)

The deformation type of a polarized K3 surface is determined by a single integer
h ≥ 4, the degree of a general hyperplane section. Period theory provides a
description of the corresponding analytic moduli stack Fh as a quotient Dh/Γh of a
bounded symmetric domain Dh by an arithmetic group Γh. The underlying coarse
moduli space is a quasiprojective scheme. It has a Baily-Borel compactification
FBB
h which only adds strata of dimension zero and one, called 0- and 1-cusps. This

compactification, however, is too small to support an extension of the universal
family of K3 surfaces.

At the other extreme are various toroidal compactifications [1][15], which add
divisors to arrive at a projective scheme with toroidal singularities. This compact-
ification depends on the choice of a compatible collection Σ of infinite fans, one
for each cuspidal point, leading to a partial resolution FΣ

h → FBB
h . However, no

proposal has been made for a toroidal compactification that supports a family of
K3 surfaces.

Morrison pointed out that mirror symmetry sometimes provides canonical choi-
ces of Σ by the Mori fan of a mirror degeneration [12]. The mirror family for FBB

h

is a one-dimensional family of lattice polarized K3-surfaces [2][3]. This project
started by the observation of Paul Hacking and Sean Keel that my joint con-
struction with Mark Gross of degenerating families of Calabi-Yau varieties [8] may
provide a canonical family of degenerating K3 surfaces over this toroidal compact-
ification. One basic problem is that the singularities of such a degeneration can
not only be of the type treated in [8]. This problem has been solved in an affine
situation in [4] by combining the construction of [8] away from codimension two
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with the results of [6] and the construction of global functions. The point of using
[6] is that Gromov-Witten theory on the mirror variety provides the coefficients of
a consistent scattering diagram at the singular point. Scattering diagrams are the
bookkeeping device in [8] for the gluing data of standard affine patches, much as
in the construction of cluster varieties. In the global situation the ring of global
functions is replaced by the homogeneous coordinate ring, using the fact that our
construction comes with canonical sections of the polarizing line bundle [5].

We then have the following central technical result.

Theorem 1. Let Y → S be a semistable model (normal crossings central fibre) of
a cusp of the one-dimensional mirror family. Then for each embedding of the cone
of effective curves NE(Y) of Y into a sharp toric monoid P , there is a canonical
degeneration

X −→ Spec
(
C[[P ]]

)

of h-polarized K3 surfaces. The central fibre X0 ⊂ X is a union of P2’s, one for
each zero-stratum of the central fibre Y0 ⊂ Y.

Recall that a sharp toric monoid is the submonoid of some Zr of integral points
of a strictly convex, rational polyhedral cone. In particular, the interior integral
points form an ideal of P , and C[[P ]] denotes the completion with respect to this
ideal. Thus Spec

(
C[[P ]]

)
is the completion of an affine toric variety with a zero

stratum along the toric boundary.
The construction comes with many interesting features, notably reflecting the

birational geometry of Y in terms of the deformation theory of X0. For example,
one can see that the general points of the (type III) toric boundary of Spec

(
C[[P ]]

)

correspond to log K3 surfaces with the kind of singularities arising in our mirror
symmetry program [7][8]. Implicit in the construction is also the existence of a
torus worth of

To make the connection to toroidal compactifications of Fh one notes that the
support of the fan Σ at a 0-cusp is naturally the nef cone of the generic fibre Ygen.
Thus if Pic (Y) → Pic (Ygen) were an isomorphism each maximal cone in Σ would
give a choice of P , provided Σ refines the Mori fan. This is not quite true, because
for a semistable model, Pic (Y) → Pic (Ygen) is only an epimorphism with fibres of
rank g = 2h− 2. The overcount of g gets reflected in the action of a g-dimensional
algebraic torus on X . The way out is to restrict to a canonical slice of the action
that curiously is suggested by those models of the one-dimensional mirror family
which contract all but one component of a semistable model.

At this point we have a family of K3 surfaces over the formal completion of
a toroidal compactification FΣ

h along the boundary divisor, provided the fans Σ
refine the Mori fan of the one-dimensional mirror family at each maximal degen-
eration point. To patch to the existing family over Fh we intend to use an explicit
calculation of period integrals along with a descent result due to Moret-Bailly
[11]. The relevant period integrals turn out to be proportional to log(zp) for some
p ∈ P . This is a manifestation of the fact that our construction produces families
in the canonical coordinates suggested by mirror symmetry.
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Of course, several details remain to be filled in, but the established results
clearly point to the existence of distinguished toroidal compactifications of Fh

that support a family of K3 surfaces. Concerning a modular meaning of these
compactifications, I would like to point out that our family is locally trivial as a
family of polarized schemes over large parts of the compactifying divisor. Thus
our families are not versal in the scheme-theoretic sense. Our compactification
neither appears to be embeddable into stable pairs moduli. My personal opinion
is that one should rather add the data of a certain log structure to the degenerate
K3 surfaces, modifying Olsson’s moduli stack of semistable log K3 surfaces [13].
An approach along these lines, however, would require a better understanding of
the singularities of the log structure at the zero-dimensional strata of X0.
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The moduli stack of semistable curves

Jarod Alper

(joint work with Andrew Kresch)

A fundamental question in the theory of moduli spaces is to characterize which
algebraic stacks are global quotient stacks. Recall that an algebraic stack X is
a global quotient stack if X ∼= [X/GLn] where X is an algebraic space. For a
noetherian algebraic stack X with affine diagonal, there are the following charac-
terizations:

X ∼= [algebraic space/GLn] ⇐⇒
there exists a vector bundle on X such that

the stabilizers act faithfully on the fibers

X ∼= [quasi-affine/GLn] ⇐⇒
X satisfies the resolution property; i.e., every

coh. sheaf is the quotient of a vector bundle

X ∼= [affine/GLn] ⇐⇒
for every coherent sheaf F , Hi(X,F) = 0 for

char = 0 i > 0, and X satisfies the resolution property

The first characterization follows from the usual relationship between principal
GLn-bundles and vector bundles. The second characterization is due to Totaro [11]
and generalized by Gross [6]. To summarize the known general results concerning
global quotient stacks, we have:

• Every smooth, separated Deligne-Mumford stack with generically trivial
stabilizer is a global quotient stack [5].

• In characteristic 0, every separated Deligne-Mumford stack with quasi-
projective coarse moduli space is a global quotient stack [10].

• For a banded Gm-gerbe X → X which corresponds to α ∈ H2(X,Gm), X
is a global quotient stack if and only if α is in the image of the Brauer
map Br(X) → H2(X,Gm) [5].

In particular, [5] uses the third result to produce the first examples of non-quotients
stacks. The general question regarding which algebraic stacks are quotient stacks
appears to be quite difficult. It is not known for instance whether every separated
Deligne-Mumford stack is a global quotient stack. Indeed, as the above results
indicate, the question is related to both global geometric properties as well as
arithmetic properties. Instead, we turn our attention to the local structure of
algebraic stacks. It is natural to conjecture as in [2] that algebraic stacks are étale
locally quotient stacks. Precisely,

Conjecture 1. Let X be an algebraic stack with separated and quasi-compact
diagonal of finite type over an algebraically closed field k. Suppose that all points
have affine stabilizer groups. Let x ∈ X (k) be a point with linearly reductive
stabilizer. Then there exists an étale, representable morphism

f : [Spec(A)/Gx] → X



374 Oberwolfach Report 06/2013

and a point w above x such that f induces an isomorphism of stabilizer groups.

There are various variants of Conjecture 1 where one can replace the affine scheme
Spec(A) with an algebraic space, or remove the condition that f is stabilizer
preserving at w. However, the above is the most desirable conjecture that one
could hope is true. For instance, if X admits a coarse moduli space (or good
moduli space) φ : X → X , then there is a morphism f as above which is the
base change of an étale morphism Spec(AGx) → X . The condition that all points
have affine stabilizers is necessary–if E → C is a family of smooth elliptic curves
degenerating to a nodal cubic over a smooth curve C, then B(Aut(E)) does not
satisfy Conjecture 1 around the point with Gm-stabilizer. Similarly, the linearly
reductive hypothesis is necessary as non-linearly reductive groups are not rigid.
Indeed, Ga to deforms to Gm in a family G → A1 and the corresponding stack B(G)
cannot satisfy Conjecture 1. We have the following evidence for the conjecture:

• It is true for Deligne-Mumford stacks essentially by the Keel-Mori theorem
[9].

• It is true for tame Artin stacks [1].
• It is true for gerbes over Deligne-Mumford stacks [8].
• It is true for quotient stacks [X/G] with X a separated, normal scheme and
G a connected algebraic group by an application of Sumihiro’s theorem
and a Luna-slice argument [2].

The motivation for Conjecture 1 comes from several sources. First, as algebraic
stacks are ubiquitous in algebraic geometry, it is natural to try to understand their
local structure. Similar to how affine schemes are the building blocks for schemes,
it would be desirable to know in what sense the stacks [Spec(A)/GLn] are the
building blocks for algebraic stacks. Since quotient stacks and, in particular, stacks
of the form [Spec(A)/GLn] are particularly simple, this conjecture would imply
that many properties of general algebraic stacks can be reduced to quotient stacks.
Finally, this conjecture arises naturally in the context of developing an intrinsic
and systematic procedure to construct projective moduli spaces parameterizing
objects with infinite automorphisms–see [4]. In particular, we have:

Theorem. [4] Let X be an algebraic stack of finite type over k. Suppose that:

(1) For every closed point x ∈ X , there exists an affine, étale neighborhood
f : [Spec(A)/Gx] → X of x such that f is stabilizer preserving at closed
points of [Spec(A)/Gx] and f sends closed points to closed points.

(2) For any x ∈ X (k), the closed substack {x} admits a good moduli space.

Then X admits a good moduli space.

While the above theorem is not particularly hard to prove, it is interesting because
although conditions (1) and (2) may seem very technical, they can be in fact
verified in practice. The above theorem can be used to generalize [7] to construct
the second flip of Mg:
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Theorem. (−, Fedorchuk, Smyth) For α > 2

3
−ǫ, there are moduli interpretations

of the log-canonical models

Mg(α) = Proj
⊕

d

Γ(Mg, (K + αδ)⊗d).

The above theorem was the topic of the Oberwolfach report [3]. In this report, we
prefer to focus only on Conjecture 1 and, in particular, its validity in a particular
interesting example.

Let Mss
g be the algebraic stack parameterizing Deligne-Mumford semistable curves

where one allows rational components to meet the curve in only two points. Also
consider the substackMss,≤1

g ⊆ Mss
g parameterizing semistable curves with at most

one exceptional component. These algebraic stacks have some striking properties.
First, there is a stabilization morphism st: Mss,≤1

g → Mg which is an isomorphism

over the open substack Mg ⊆ Mss,≤1
g , whose complement has codimension 2.

Moreover,

• Mss,≤1
g is not a quotient stack. Indeed, if V is any vector bundle on Mss,≤1

g ,
then st∗(V)|Mg

∼= V since they agree in codimension 2. It follows that V

cannot have a faithful action of the stabilizer at a strictly semistable curve.
• Mss,≤1

g does not have a quasi-affine diagonal.
• The fiber of a general curve with one node and smooth normalization
under the stabilization morphism is isomorphic to [T/Gm] where T is the
nodal cubic (rather than [A1/Gm]).

• There is no Zariski-open neighborhood of a strictly semistable curve which
admits a good moduli space.

For the above reasons, Mss
g is a natural candidate to test the validity of Conjecture

1. Moreover, semistable curves appear in many contexts such as in admissible
covers or the compactification of the universal Jacobian; therefore, it is useful to
understand the local structure of the algebraic stack. Our main result is:

Theorem. (−, Kresch) Mss,≤1
g satisfies Conjecture 1.

This work is still in progress and we expect to prove more generally that Mss
g

satisfies Conjecture 1 using the machinery of log structures.
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New properties of A5 via the Prym map

Alessandro Verra

(joint work with Gavril Farkas, Sam Grushevskih, and Riccardo Salvati Manni)

This is a report on some results of [FGSMV11], a joint paper with G. Farkas,
S. Grushevskih and R. Salvati Manni. We will revisit the structure of the Prym
map in genus six, P : R6 → A5, and introduce further properties. Then some
new results on the moduli space A5, of principally polarized abelian varieties of
dimension 5, will be deduced. The subjects of this report can be summarized as
follows:

(1) Precisions on the ramification and antiramification divisors of the Prym
map P and new proof of their irreducibility.

(2) Characterization in A5 of the loci parametrizing ppav’s (A,Θ) such that
Sing Θ contains a non ordinary double point.

Let us put (1) and (2) in their own perspectives:

(1) Let D ⊂ A5 and Q ⊂ R6 be the branch divisor and the ramification divisor of
P . Let U := P−1(D) −Q be the antiramification divisor. The irreducibility of Q
was first remarked and proved by Donagi [D92].
As the general fibre of P has the configuration of 27 lines in a smooth cubic surface,
the special one F , over a general point of D, is biregular to the Hilbert scheme
of lines of a cubic surface S such that Sing S consists of a node o. The six lines
through o correspond to F ∩Q. The study of the monodromy of P/Q implies the
irreducibility of Q. In turn this implies the irreducibility of U .
Notice that Q parametrizes Prym curves (C, η) whose Prym canonical model is
contained in a quadric, that is, the multiplication map Sym2H(ωC⊗η) → H0(ω⊗2

C )
is not an isomorphism.
In the talk new divisorial conditions on R6 are introduced, in particular:
(M) Mukai condition. The Prym curve (C, η) satisfies h0(E ⊗ η) ≥ 1, where E is
the Mukai bundle of C.
(N) Nikulin condition. The Prym curve (C, η) satisfies C ⊂ W ⊂ G(2, 5). Here
G(2, 5) is the Grassmannian of lines of P4 and W is the family of lines which are
tangent to a smooth quadric Q ⊂ P4.
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One can show that conditions (M) and (N) define divisors QM and QN , such that
QM ⊆ QN ⊂ Q ⊂ R6. In the talk it is shown that QN is irreducible and that

QM = QN = Q.

This follows from class computations in R∗
6, a standard partial compactification

of R6. Indeed, denoting by X∗ the closure of X ⊂ R6 in R∗
6, one shows that

[Q∗
M ]Ê = [Q∗

N ]Ê = [Q∗].

The previous geometric characterizations of Q are useful in the next step.

(2) The second step is related to Andreotti-Mayer loci Ni ⊂ Ag. Recall that Ni

is the moduli space of pairs (A,Θ) such that dim Sing Θ ≥ i. As is well known
N0 = θnull ∪ N ′

0, θnull and N ′
0 being integral Cartier divisors. A general point

of N0 is defined by a pair (A,Θ) such that Sing Θ consists of ordinary double
points, that is, the quadratic tangent cone has maximal rank g. Moreover one has
Sing Θ = {x,−x} generically in N ′

0 and Sing Θ = {x}, 2x = 0 generically in θnull.
A natural and well motivated question, see [HF06], is the following:

Describe the loci Ng−1
0 ⊂ N0 such that the quadratic tangent cone Qx has rank

≤ g − 1 for some quadratic singularity x ∈ Sing Θ.

Previous results on this problem have been obtained by Grushevskih and Salvati
Manni [GSM07], [GSM08], [GSM11]. For every g they show that Ng−1

0 ∩ θnull is
also contained in N ′

0. Furthermore they have shown that

Theorem 1. Ng−1
0 = θnull ∩N ′

0 for g = 4.

In the talk the next case, where the dimension is 5, is described, [FGSMV11]:

Theorem 2. N4
0 is the union of two irreducible, unirational components θ4null and

N
′4
0 of codimension two. Both of them are contained in U ∩ Q. Moreover:

◦ A general point of N
′4
0 is the image by P : R6 → A5 of a Prym curve

(C, η) such that h0(L ⊗ η) ≥ 1, where L is a line bundle of degree 4 and
dim |L| = 1.

◦ A general point of θ4null is the image by P : R6 → A5 of a Prym curve

(C, η) such that η ∼= θ1 ⊗ θ−1
2 , where θ1, θ2 are theta nulls on C.

The new result includes class computations for these loci. Let Ag be the perfect

cone compactification of Ag so that CH1(Ag) is Zλ⊕Zδ, where δ is the boundary
class. As a further application, see also [GSM11], one has:

Theorem 3. Let s be the slope of A5, then s =
54
7 .

To widen the picture of the geometry of Q, U and N
′4
0 consider the forgetful map

f : R6 → M6.

The Gieseker Petri divisor GP6 of M6 is split in two irreducible components,
namely GP6 = G1

4,6 + GP1
5,6. Here a general point of GP1

4,6 is defined by a curve

having a line bundle L of degree 4 such that h0(L) = 2 and h1(L⊗2) = 1. On
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the other hand a general point of GP1
5,6 is defined by a curve having a theta null.

Keeping the previous notations it turns out that:

f∗GP1
4 = U , f∗GP1

5 = P ∗θnull , D = N ′
0 , P

∗D = 2Q+ U .

We end this report by a picture of the family of Prym curves parametrized by N
′4
0 ,

since they have very special geometric properties.
Let (C, η) be a Prym curve defining a general point p ∈ N

′4
0 . Then p ∈ Q∩U . Since

p ∈ Q, the Prym canonical model C ⊂ P4 of (C, η) is contained in a quadric Q.
Let (A,Θ) be the Prym of (C, η), {x,−x} = Sing Θ. In particular P4 is naturally
identified to the projectivized tangent space to A at x and Q is the projectivized
quadratic tangent cone to Θ at x.
Since p ∈ U , Q has rank four. Moreover one of the two rulings of planes of Q cuts
on C a pencil |L| of divisors of degree 4. Furthermore the line bundle L is Petri
special, that is, h1(L⊗2) = 1. In this situation one can show that there exists a
degree four effective divisor t ⊂ C contained in a 4-secant line < t > to C. We
have also that t ∈ |L⊗ η|, so that h0(L⊗ η) ≥ 1 as indicated in theorem 0.2.
The image Γ of C under the linear projection ν : C → P2 of center < t > is a
very special plane sextic. It has three collinear nodes n1, n2, n3 and three totally
tangent conics. Let o be the fourth node of Γ. Then the strict transform by ν of
the pencil of lines through o is |L|. Finally there exists an integral plane cubic F ,
which is nodal at o, contains n1, n2, n3 and is tangent to Γ along ν∗t.
Let G be the family of plane sextics with the previous properties. One can show
that G is irreducible, unirational and dominates N

′4
0 . This implies the same for

N
′4
0 , so we have summarized part of the proof of theorem 0.2.
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Fourier-Mukai partners of K3 surfaces in positive characteristic.

Martin Olsson

(joint work with Max Lieblich)

Let k be a field. Two smooth projective varieties X and Y over k are called
Fourier-Mukai partners if there exists an equivalence of triangulated categories
D(X) ≃ D(Y ) between their bounded derived categories of coherent sheaves. In
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this work we extend to positive characteristic many of the now classical results in
characteristic 0, due Mukai, Oguiso, Orlov, and Yau (see [Or] and [HLOY]), on
Fourier-Mukai partners of K3 surfaces.

Let X be a K3 surface. For a complex E ∈ D(X) (and in particular for a
coherent sheaf on X) define its Mukai vector, denoted v(E), to be

(rank(E), c1(E), rank(E) + c1(E)2/2− c2(E)) ∈ CH∗(X)⊗Q.

For a fixed vector v ∈ CH∗(X) ⊗ Q and polarization h on X (suppressed from
the notation), let MX(v) denote the moduli space of semistable sheaves on X
with Mukai vector v. For suitable choices of v it is known that MX(v) is a smooth
projective variety, there exists a universal family E onX×MX(v), and the resulting
functor

ΦE : D(X) → D(MX(v)), K 7→ Rpr2∗(Lpr
∗
1K ⊗L E)

is an equivalence of triangulated categories. In particular, for suitable choices of
v the varieties X and MX(v) are Fourier-Mukai partners. Our main result is the
following:

Theorem 1. Assume that the characteristic of k is not 2 and that X/k is a K3
surface.

(i) Any Fourier-Mukai partner of X is of the form MX(v) for suitable vector
v ∈ CH∗(X)⊗Q.

(ii) X has only finitely many Fourier-Mukai partners.
(iii) If the Picard number of X is at least 11 then X has no nontrivial Fourier-

Mukai partners.

Remark 2. Presumably the theorem remains valid in characteristic 2 as well.

By studying the Mukai motive of Fourier-Mukai partners, we also prove the
following two results:

Theorem 3. Let X be a K3 surface over a finite field Fq of characteristic 6= 2. If
Y is a Fourier-Mukai partner of X then X and Y have the same zeta function.

Theorem 4. Let k be an algebraically closed field of characteristic 6= 2, and let W
denote the Witt vectors of k. Let X and Y be K3 surfaces over k with lifts X/W
and Y/W toW giving rise to a Hodge filtration on the F -isocrystal H4

cris(X×Y/K).
Suppose Z ⊂ X × Y is a correspondence coming from a Fourier-Mukai kernel. If
the fundamental class of Z lies in Fil2H4

cris(X ×Y/K) then Z is the specialization
of a cycle on X × Y.

Remark 5. Theorem 3 answers a question of Mustaţă and Huybrechts, while
theorem 4 establishes the truth of the variational crystalline Hodge conjecture in a
special case. Huybrechts also independently found a proof of 3.
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Brill-Noether loci in codimension two

Nicola Tarasca

The classical Brill-Noether theory is a powerful tool for investigating subvarieties
of moduli spaces of curves. While a general curve admits only linear series with
non-negative Brill-Noether number, the locus Mr

g,d of curves of genus g admitting

a grd with negative Brill-Noether number ρ(g, r, d) := g − (r + 1)(g − d+ r) < 0 is
a proper subvariety of Mg.

Such a locus can be realized as a degeneracy locus of a map of vector bundles
over Mg so that one knows that the codimension of Mr

g,d is less than or equal

to −ρ(g, r, d) ([8]). When ρ(g, r, d) ∈ {−1,−2,−3} the opposite inequality also
holds (see [5] and [3]), hence the locus Mr

g,d is pure of codimension −ρ(g, r, d).
Moreover, the equality is classically known to hold also when r = 1 and for any
ρ(g, 1, d) < 0: B. Segre first showed that the dimension of M1

g,d is 2g + 2d − 5,

that is, M1
g,d has codimension exactly −ρ(g, 1, d) for every ρ(g, 1, d) < 0 (see for

instance [1]).
Harris, Mumford and Eisenbud have extensively studied the case ρ(g, r, d) = −1

when Mr
g,d is a divisor in Mg ([7], [4]). They computed the class of its closure in

Mg and found that it has slope 6 + 12/(g + 1). Since for g ≥ 24 this is less than

13/2 the slope of the canonical bundle, it follows that Mg is of general type for g
composite and greater than or equal to 24.

While the class of the Brill-Noether divisor has served to reveal many important
aspects of the geometry of Mg, very little is known about Brill-Noether loci of
higher codimension. The main result presented in the talk is a closed formula for
the class of the closure of the locus M1

2k,k ⊂ M2k of curves of genus 2k admitting

a pencil of degree k. Since ρ(2k, 1, k) = −2, such a locus has codimension two. As
an example, consider the hyperelliptic locus M1

4,2 in M4.
Faber and Pandharipande have shown that Hurwitz loci, in particular loci of

type M1
g,d, are tautological in Mg ([6]). When g ≥ 6, Edidin has found a basis

for the space R2(Mg,Q) ⊂ A2(Mg,Q) of codimension-two tautological classes of
the moduli space of stable curves ([2]). It consists of the classes κ21 and κ2; the
following products of classes from PicQ(Mg): λδ0, λδ1, λδ2, δ

2
0 and δ21 ; the following

push-forwards λ(i), λ(g−i), ω(i) and ω(g−i) of the classes λ and ω = ψ respectively
from Mi,1 and Mg−i,1 to ∆i ⊂ Mg: λ

(3), . . . , λ(g−3) and ω(2), . . . , ω(g−2); finally
the classes of closures of loci of curves having two nodes: the classes θi of the
loci having as general element a union of a curve of genus i and a curve of genus
g − i− 1 attached at two points; the class δ00 of the locus whose general element
is an irreducible curve with two nodes; the classes δ0j of the closures of the loci of
irreducible nodal curves of geometric genus g− j− 1 with a tail of genus j; at last
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the classes δij of the loci with general element a chain of three irreducible curves
with the external ones having genus i and j.

Having then a basis for the classes of Brill-Noether codimension-two loci, in
order to determine the coefficients I use the method of test surfaces. The idea is
the following. Evaluating the intersections of a given a surface in Mg on one hand
with the classes in the basis and on the other hand with the Brill-Noether loci,
one obtains a linear relation in the coefficients of the Brill-Noether classes. Hence
one has to produce several surfaces giving enough independent relations in order
to compute all the coefficients of the sought-for classes.

The surfaces used are bases of families of curves with several nodes, hence a good
theory of degeneration of linear series is required. For this, the compactification
of the Hurwitz scheme by the space of admissible covers introduced by Harris
and Mumford comes into play. The intersection problems thus boil down first
to counting pencils on the general curve, and then to evaluating the respective
multiplicities via a local study of the compactified Hurwitz scheme.

Theorem ([9]). For k ≥ 3, the class of the locus M
1

2k,k ⊂ M2k is

[
M

1

2k,k

]
Q
= c

[
Aκ2

1
κ21 +Aκ2κ2 +Aδ20

δ20 +Aλδ0λδ0 + Aδ21
δ21 +Aλδ1λδ1

+Aλδ2λδ2 +

2k−2∑

i=2

Aω(i)ω(i) +

2k−3∑

i=3

Aλ(i)λ(i) +
∑

i,j

Aδij δij +

⌊(2k−1)/2⌋∑

i=1

Aθiθi

]

in R2(M2k,Q), where

c =
2k−6(2k − 7)!!

3(k!)
Aκ2

1
= −Aδ20

= 3k2 + 3k + 5

Aκ2 = −24k(k + 5) Aδ21
= −(3k(9k + 41) + 5)

Aλδ0 = −24(3(k − 1)k − 5) Aλδ1 = 24
(
−33k2 + 39k + 65

)

Aλδ2 = 24(3(37− 23k)k + 185) Aδ1,1 = 48
(
19k2 − 49k + 30

)

Aδ1,2k−2
=

2

5
(3k(859k − 2453) + 2135) Aδ00 = 24k(k − 1)

Aδ0,2k−2
=

2

5
(3k(187k − 389)− 745) Aδ0,2k−1

= 2(k(31k − 49)− 65)

Aω(i) = −180i4 + 120i3(6k + 1)− 36i2
(
20k2 + 24k − 5

)

+ 24i
(
52k2 − 16k − 5

)
+ 27k2 + 123k + 5

Aλ(i) = 24
(
6i2(3k + 5)− 6i

(
6k2 + 23k + 5

)
+ 159k2 + 63k + 5

)

Aθ(i) = −12i
(
5i3 + i2(10− 20k) + i

(
20k2 − 8k − 5

)
− 24k2 + 32k − 10

)

and for i ≥ 1 and 2 ≤ j ≤ 2k − 3

Aδij = 2
(
3k2(144ij − 1)− 3k(72ij(i+ j + 4) + 1) + 180i(i+ 1)j(j + 1)− 5

)
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while

Aδ0j = 2
(
−3
(
12j2 + 36j + 1

)
k + (72j − 3)k2 − 5

)

for 1 ≤ j ≤ 2k − 3.
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Deforming rational curves in Mg

Edoardo Sernesi

The results presented in this talk are contained in the preprint [2]. We work over C.
The moduli space Mg of stable curves of genus g is uniruled if and only if a general
curve of genus g can be embedded in a projective algebraic surface Y , not ruled
irrational, so that dim(|C|) > 0. Consider the fibration f : X −→ P1 obtained
from a general pencil Λ ⊂ |C| after blowing up its base points. The deformation
theory of f is controlled by the sheaf Ext1f (ΩX/P1 ,OX), whose H0 and H1 are
respectively the tangent space and an obstruction space for the functor Deff . The

condition that Mg is uniruled then translates into the condition that there exists
a non-isotrivial fibration f : X −→ P1 (with general fibre a nonsingular curve) of
genus g such that the sheaf Ext1f (ΩX/P1 ,OX) is globally generated. We call such
a fibration free. The first result we prove is the following:

Theorem 1. Assume that C is a nonsingular curve of genus g in a projective
nonsingular surface Y such that dim(|C|) = r ≥ 1. Assume that Λ ⊂ |C| is a
pencil such that the fibration f : X −→ P1 obtained from it is a free fibration of
genus g. Then:

(1) 10χ(OY )− 2K2
Y ≥ 4(g − 1)− C2 − h0(KY − C)

If moreover dim(|C|) ≥ 2 or h1(OC(2C)) = 0 then h0(KY − C) = 0.

Inequality (1) can be applied to prove the following theorem.
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Theorem 2. Assume that C is a nonsingular curve of genus g in a projective
nonsingular surface Y such that dim(|C|) = r ≥ 1. Assume that C is general.

If 0 ≤ κ− dim(Y ) ≤ 1 then

• pg(Y ) = 0 ⇒ g ≤ 6.
• pg(Y ) = 1 ⇒ g ≤ 11.
• pg(Y ) ≥ 2 ⇒ g ≤ 16.

If Y is of general type and K2
Z ≥ 3χ(OZ) − 10, where Z is the minimal model

of Y , assume that one of the following holds:

(a) dim(|C|) ≥ 2.
(b) h0(KY − C) = 0 and C2 ≥ g−1

2 .

(c) h1(OC(2C)) = 0.

Then g ≤ 19.

The above result shows that the deformation theory of fibrations can be applied
to bound the genus g of general curves moving in a nontrivial linear system on
certain surfaces. The surfaces that are excluded from this analysis are the rational
ones, due to the fact that these methods are not effective on such surfaces. The
case of rational surfaces has been studied in the classical literature and there are
some partial results [1, 3]. Also several other cases are excluded so far in the
general type situation. Nevertheless these results indicate that by these methods
it might be possible to prove the existence of a g0 such that Mg is not uniruled if
g > g0. Of course this result is well known with g0 = 21 (see [3] for a survey) but
the methods we propose here are conceptually simpler than those used so far and
might apply to other cases.
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Categorification of Donaldson-Thomas invariants via perverse sheaves

Jun Li

(joint work with Young-Hoon Kiem)

In mid 1990s, the theory of virtual fundamental class was invented and it enabled
us to define enumerative invariants more systematically. During the past two
decades, many useful curve counting invariants have been defined in this way,
like Gromov-Witten invariants (GW invariants for short) and Donaldson-Thomas
invariants (DT invariants for short).

Of particular interest in string theory are curve counting invariants in a Calabi-
Yau threefold Y . In this case, for each homology class β ∈ H2(Y,Z), the number
of genus g curves with homology class β is expected to be finite. Unfortunately the
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GW invariants are virtual counting of maps, which are rational numbers because
of multiple cover contributions and automorphisms.

In 1998, Gopakumar and Vafa argued using Super-String theory the existence of
a new invariant ng(β), called the Gopakumar invariant (GV invariant, for short).
It is integer-valued and should be defined by an sl2×sl2 action on some cohomology
of certain moduli space of sheaves on Y . Moreover, GV invariants should be viewed
as virtual counting of curves, and are expected to determine all the GW invariants
Ng(β).

(1)
∑

g,β

Ng(β)q
βλ2g−2 =

∑

k,g,β

ng(β)
1

k

(
2 sin(

kλ

2
)

)2g−2

qkβ

where β ∈ H2(Y,Z), q
β = exp(−2π

∫
β
c1(OY (1))).

In 2005, Behrend discovered that the Donaldson-Thomas invariant ofMY (β) is
the Euler number of MY (β), weighted by an integer-valued constructible function
ν, called the Behrend function, i.e.

DT (MY (β)) =
∑

k

k · e(ν−1(k))

where e denotes the topological Euler number. Since the ordinary Euler number
is the alternating sum of Betti numbers of ordinary cohomology groups, it is rea-
sonable to ask if the DT invariant is in fact the Euler number of some cohomology
of MY (β).It is known that the moduli space is locally the critical locus of a holo-
morphic function, called a local Chern-Simons functional. Given a holomorphic
function f on a complex manifold V , one has the perverse sheaf φf (Q[dimV − 1])
of vanishing cycles supported on the critical locus and the Euler number of this
perverse sheaf at a point x equals the value of the Behrend function ν(x). Joyce
and Song asked if there exists a global perverse sheaf P • on MY (β) which is lo-
cally isomorphic to the sheaf φf (Q[dim V − 1]). In [1], the authors answered this
question affirmatively, possibly after taking a cyclic Galois étale cover

ρ : M † −→ M =M †/G where M =MY (β).

Further, the perverse sheaf if of geometric origin, thus admits a MHM structure.
The hypercohomology H∗(M,P •) is a graded vector space whose Euler number

is by construction the DT invariant ofM =MY (β). Furthermore by the theory of
perverse sheaves, it can be shown that there is an sl2×sl2 action of H∗(M †, grP •)
where gr is the graded object using MHM structure of P •. Then the authors
proposed in [1] that this is the desired cohomology for a mathematical theory of
GV invariants. We proved that the genus 0 GV invariant thus defined equals the
DT invariant of MY (β) and checked the equation (1) for primitive fiber class of a
K3-fibered CY3.
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Topological methods in moduli theory and Moduli spaces of curves
with symmetries.

Fabrizio Catanese

(joint work with Ingrid Bauer, resp. Michael Lönne and Fabio Perroni)

1. Symmetry marked varieties

A symmetry marked projective variety is a triple (X,G, φ), where

(1) X is a projective variety,
(2) G is a finite group and
(3) φ : G→ Aut(X) is an injective homomorphism.

Equivalently, one can give the triple (X,G, α) of an action α : X ×G→ X , where
α determines the injective homomorphism φ.

What is important is the notion of isomorphism of marked varieties:

(X,G, α) ∼= (X ′, G′, α′) ⇔ ∃f : X → X ′, ψ : G→ G′

f ◦ α = α′ ◦ (f × ψ)(⇔ φ′ ◦ ψ = Ad(f) ◦ φ),

where f, ψ are isomorphisms.
Now, the group of automorphisms Aut(G) acts on marked varieties by replacing

φ with φ ◦ ψ−1. The group Inn(G) of inner automorphisms does not change the
equivalence class of a triple, hence the group Out(G) acts on the set of equivalence
classes of marked varieties.

2. Projective K(π, 1)’s

The easiest examples of projective varieties which are K(π, 1)’s are

(1) curves of genus g ≥ 2,
(2) AV : = Abelian varieties,
(3) LSM : = Locally symmetric manifolds, quotients of a bounded symmetric

domain D by a cocompact discrete subgroup Γ acting freely, in particular
(4) VIP : = Varieties isogenous to a product, studied in [4], quotients of prod-

ucts of projective curves of respective genera ≥ 2 by the action of a finite
group G acting freely,

(5) Kodaira fibrations F : S → B, where S is a smooth projective surface and
all the fibres of F are smooth curves of genus g ≥ 2.

However, an important role is also played by Rational K(π, 1)’s, i.e., quasi
projective varieties Z such that

Z = D/π,

where D is contractible and the action of π on D is properly discontinuous but not
necessarily free.

While for a K(π, 1) we have H∗(G,Z) ∼= H∗(Z,Z), H∗(G,Z) ∼= H∗(Z,Z), for a
rational K(π, 1) we only have H∗(G,Q) ∼= H∗(Z,Q).

Typical examples of such rational K(π, 1)’s are the moduli space of curves Mg.
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3. Inoue type varieties

Inspired by an example of Inoue, [12], who constructed some surfaces of general
type with K2 = 7, pg = 0 as the quotient by a finite gorup G of some subvarieties
in the product of 4 elliptic curves, together with Ingrid Bauer we defined in [3] the
notion of Inoue type varieties.

• A projective manifold X of dimension ≥ 2 is said to be an ITM = Inoue
Type Manifold iff

(1) X is the quotient X = X̂/G of a projective manifold X̂ by the free action
of a finite group G

(2) X̂ is an ample divisor in a K(π, 1) projective manifold Z

(3) the action of G on X̂ is induced by an action of G on Z
(4) the fundamental group exact sequence

1 → Γ = π1(X̂) ∼= π1(Z) → π1(X) → G→ 1

induces an injective homomorphism (by conjugation) G→ Out(Γ).
• X is said to be a SITM (special Inoue type Manifold) if Z is a product of
curves, Abelian varieties, irreducible locally symmetric manifolds.

Together with Ingrid Bauer, we were able to show that, under some techni-
cal conditions which we have no space to reproduce here, if X ′ is homotopically
equivalent to a SITM X , then also X ′ is a SITM of similar type. The fuller inves-
tigation of the moduli spaces of such manifolds has been one more motivation to
investigate moduli spaces of marked varieties, in particular curves.

4. Moduli spaces of curves with symmetries

Assume that we have a marked curve (C,G, φ). Since C is a K(π, 1), the
homotopy class of the action is determined by an homomorphism (here πg =
π1(C)) into the mapping class group

ρ : G→ Out+(πg) =Mapg.

The homomorphism is injective, as shown by Lefschetz, and determines the differ-
entiable type of the action, as shown by Nielsen.

We have corresponding moduli spaces of curves with symmetries Mg,G,ρ, or
their images in the moduli space of curves, which were shown in [4] and [5] to be
irreducible and closed subsets.

These yield more examples of rational K(π, 1)’s.

Question. How to determine exactly the topological type, i.e. the class of ρ modulo
automorphisms of G and conjugation in the mapping class group Mapg ?

Geometry yields some invariants, for instance the genus g′ of the quotient curve
C′ := C/G, and, denoting by y1, . . . , yd the branch points of the map C → C′,
the Nielsen class ν, which counts the conjugacy classes of the local monodromies
in the points yi.

These invariants suffice for cyclic groups, but, as shown by several authors, one
needs at least a homological invariant in H2(G,Z) in the case where there are no
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branch points (i.e., when G acts freely). This was shown in [11] to be the only
invariant for g′ ≫ 0. We were able to treat the more difficult general case.

4.1. Genus stabilization Theorem. ([7, 8]) There exists a refined homological
invariant ǫ(ρ) ∈ GΓ such that, for g′ ≫ 0, there is a bijection between the set of
topological types and the set of admissible classes of invariants ǫ.

4.2. Branch stabilization Theorem([9]). If the value of the Nielsen function is
sufficiently large for the conjugacy classes which occur as local monodromies, and
the group G is generated by local monodromies, then there is a bijection between
the set of topological types and the set of admissible classes of invariants ǫ.
In [8] we also make the following

Conjecture. The cohomology groups of the moduli spaces Mg,G,ρ stabilize for
g′ ≫ 0.
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The zero section of the universal semiabelian variety, and the locus of
principal divisors on Mg,n

Samuel Grushevsky

(joint work with Dmitry Zakharov)

Let Ag denote the moduli space of complex principally polarized abelian varieties
of dimension g (ppav), and let π : Xg → Ag denote the universal family of ppav.
For a very general ppav B ∈ Ag the Picard group Pic(B) is generated by the class
of the polarization divisor; the Picard group PicQ(Ag) is generated by the first
Chern class of the Hodge vector bundle λ1 := c1(E) := c1(π∗Ω

1
Xg/Ag

). It thus

follows that PicQ(Xg) = Qλ1 ⊕ QT , where T denotes the class of the universal
theta (polarization) divisor trivialized along the zero section zg : Ag → Xg. Our
interest is in fact in computing the class of the zero section.

It is known (see the work of Mumford, van der Geer, Voisin for different ap-
proaches) that the equality [zg(Ag)] = T g/g! holds both in cohomology Hg(X ,Q)
and in Chow group CHg(X ,Q). The question we address is extending this to
the partial compactification of the universal family π′ : X ′

g → A′
g over Mumford’s

partial toroidal compactification A′
g of Ag, parameterizing semiabelian varieties

of torus rank one. Our result is as follows:

Theorem 1 ([1]). For the class of the closure of the zero section, z′g : A′
g → X ′

g

we have the following polynomial expression

[z′g] =
∑

a+b+2c=g

αa,b,c(T
′ −D/8)aDb(∆− 2T ′D)c ∈ CHg(X ′

g),

where the positive coefficients αa,b,c are given by

αa,b,c =
(−1)b+c+1(2−b−c − 21−3b−3c)(2a+ 2b+ 2c− 1)!!B2b+2c

(2a+ 2c− 1)!!(2b+ 2c− 1)!!a!b!c!
.

(with B the Bernoulli numbers).

Here T ′ denotes the class of the extension of the universal polarization divisor
trivialized along the zero section (the notation Θ is used in [1] to avoid confusion
with other natural classes), D is the class of the boundary divisor D := [X ′

g \ Xg],
and to define ∆ we recall the geometric description of X ′

g given by Mumford (see
also our papers with Lehavi, and Erdenberger and Hulek):

(Ỹ = P(P ⊕O))/j
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♠
♠
♠
♠
♠
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♠
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♠
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♠

��

X ′
g = Xg

��

⊔ Y

��

X×2
g−1 ∋ (B, z, b)
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❧
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❧
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❧
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❧
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A′
g = Ag ⊔ Xg−1 ∋ (B, b)
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where X×2
g−1 := Xg−1 ×Ag−1 Xg−1 denotes the fiberwise square of the universal

family, P denotes the universal Poincaré bundle trivialized along the zero section,
and the gluing j is given by identifying the 0-section of the P1 (globally given by
P(P ⊕ 0)) over the point (B, z, b) with the ∞-section (globally given by P(0⊕O))
over the point (B, z + b, b). Then the codimension 2 class ∆ is the class of the

non-normality locus of Y , i.e. of the image of the glued 0 and ∞ sections of Ỹ .
We notice that the zero section in Y is the section 1 (this is the identity for the
group law on C∗ ⊂ P1) over zg−1(Ag−1) ⊂ Xg−1.

To prove the theorem, we in fact show that all classes on Ỹ that are polynomials
in the divisor classes there, and which are pullbacks from Y , are polynomial in
D,T ′−D/8,∆−2T ′D, which establishes the existence of a polynomial expression
— and then proceed to compute the coefficients.

Another application of our result is to computing the class of the double ram-
ification cycle, also know as the locus of principal divisors on pointed curves.
Indeed, for d = (d1, . . . , dn) ∈ Zn with

∑
di = 0 define the map sd : Mg,n → Ag

from the moduli of curves with marked points, by sending a curve to its Jacobian
(considered as Pic0) together with the sum of the Abel-Jacobi images of points,∑
dipi. The double ramification locus is the closure in Mg,n of the preimage of

the zero section. Equivalently, we can think of it as the locus where the divisor∑
dipi is principal on the curve. The question of determining the class of this

locus is due to Eliashberg, and is of importance for constructing suitable symplec-
tic field theories. The restriction of this class to Mct

g,n was determined by Hain

using Hodge-theoretic methods, while the restriction to Mrt
g,n was determined by

Cavalieri, Marcus, and Wise using the Gromov-Witten theory. Further work and
conjectures on this locus are due to Zvonkine.

While we cannot fully compute the class of the double ramification cycle, by
pullback under sd our computation allows us to compute the class of the restriction
of the double ramification cycle to the locus of stable curves of geometric genus
at least g − 1 with at most two non-separating nodes (otherwise the Abel-Jacobi
map may not be defined, or we don’t end up in A′

g ). The result is as follows:

Theorem 2 ([2]). The double ramification cycle in Mg,n restricted to the locus
of curves that have at most two non-separating nodes is given by pulling back the
formula in Theorem 1, where for the pullbacks of the classes we have

s∗dT
′ =

1

2

n∑

i=1

d2iKi −
1

2

∑

P⊆I

(
d2P −

∑

i∈P

d2i

)
δ0,P −

1

2

∑

h>0,P⊆I

d2P δh,P ,

s∗dD = δirr, s∗d∆ =
n∑

i=1

|di|ξi.

Here Ki denote the pullback to Mg,n of the ψ class on Mg,1 under the for-
getful map forgetting all but the i’th point, δ0,P and δirr are the usual boundary
divisors, dP :=

∑
i∈P di, and finally the last class ξi is the closure of the locus of
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nodal curves having two irreducible components intersecting in two points (i.e. “ba-
nana” curves), where one irreducible component has genus 0, and contains only
the marked point pi, and the other component has genus g − 1 and contains the
remaining n− 1 marked points.

While it seems plausible that with much more work the results could be ex-
tended one step further, to the locus of semiabelic varieties of torus rank two,
going deeper into the boundary seems harder as questions of existence of universal
family over different toroidal compactifications of Ag come into play.

References

[1] S. Grushevsky, D. Zakharov: The zero section of the universal semiabelian variety, and the
double ramification cycle, preprint arXiv:1206.3543, 29pp.

[2] S. Grushevsky, D. Zakharov: The double ramification cycle and the theta divisor, preprint
arXiv:1206.7001, 14pp, Proceedings of the AMS, to appear.

Reporter: Daniel Greb



Moduli Spaces in Algebraic Geometry 391

Participants

Prof. Dr. Dan Abramovich

Department of Mathematics
Brown University
Box 1917
Providence, RI 02912
UNITED STATES

Dr. Jarod Alper

Department of Mathematics
Columbia University
2990 Broadway
New York, NY 10027
UNITED STATES

Prof. Dr. Fabrizio Catanese

Lehrstuhl für Mathematik VIII
Universität Bayreuth
NW - II
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