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Abstract. This minisymposium was third in series of similar events, after
two very successful meetings in 2005 and 2009. The aim was to provide a
forum for an extensive discussion on the theoretical aspects and on the areas
of application and validity of numerical upscaling approaches for heteroge-
neous problems with deterministic and stochastic coefficients. The intensive
discussions during the meeting contributed to a better understanding of up-
scaling approaches for multiscale problems with stochastic coefficients, and
for synergy between scientists coming to this topic from the area of deter-
ministic multiscale problems on one hand, and those coming from the area of
SPDE on the other hand. Recent advanced results on upscaling approaches
for deterministic multiscale problems were presented, well mixed with strong
presentations on SDE and SPDE. The open problems in these areas were
discussed, with emphasis on the case of stochastic coefficients brainstorming
numerous numerical upscaling approaches. A number of young researchers,
very actively working in these areas, were involved in the workshop discussing
the links between scales., thus ensuring the continuity between the genera-
tions of researchers.
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Introduction by the Organisers

1. Aim and Motivation

This minisymposium was third in series of similar events. The previous two
minisymposia on Numerical Upscaling took place in 2005 and 2009 and were very
successful. In particular, the last one, in 2009, concentrated on differences and



394 Oberwolfach Report 07/2013

similarities of FE/FV based numerical methods for multiscale problems from one
side, and algebraic multigrid methods for the same problems, from another side.
The intensive discussions on the common points between these two approaches
allowed identifying the topics for synergetic developments. Further on, there was
a second core of the discussions there, and this was the synergy between devel-
oping method for upscaling multiscale problems, and developing robust multilevel
preconditioners for multiscale problems.

The aim of the third mini-workshop, held in 2013, was to provide a forum for
an extensive discussion on the theoretical aspects and on the areas of application
and validity of numerical upscaling approaches for heterogeneous problems with
deterministic and stochastic coefficients. The term “numerical upscaling” is used
here to denote several approaches (to be discussed below) for studying multiscale
problems in the case when the scales cannot be separated (e.g., heterogeneity exist
at each scale and the asymptotic homogenization is not directly applicable). The
uncertainty discussed, concerns stochastic elliptic PDEs and systems of PDEs.
A recapitulation of the achievements on upscaling approaches for deterministic
multiscale problems was done, accompanied by intensive discussion on the open
problems in the area. Strong presentations on SDE and SPDE allowed to better
understand the specifics of these problems. Brainstorming on numerical upscaling
approaches for the case of stochastic coefficients was among the main goals of the
meeting.

2. Background

Multiscale problems, due to their importance for many branches of science and
industry, attract significant attention of the mathematical community. Essential
success was achieved during the last decades in the studies of problems with clearly
separated fine and coarse scales (e.g., periodic microstructures, which are hetero-
geneous at a fine scale, but are homogeneous at a coarse scale). In this case the
ratio between the fine and the coarse scale can play the role of a small parameter,
and asymptotical analysis can be performed. Rigorous results were obtained in
the field of (asymptotic) homogenization.

However, many scientific and industrial multiscale problems do not fall into
the category of problems with scale separation. Intensive research on variety of
numerical upscaling approaches was carried out in the last decade. At the same
time, the Algebraic Multigrid Methods also evolved in this direction. The most
active mathematical research in the field of numerical upscaling for flow problems
is currently carried out in three directions: upscaling based on multigrid meth-
ods, upscaling based on multiscale finite element method and related approaches
(MSFV, HMM, Variational Multiscale Method, etc.), and application of upscal-
ing for solving multiscale industrial and environmental problems. Both, MG and
multiscale FEM, provide a suitable framework for solving multiscale problems in
the case of no scale separation. A number of papers devoted to multigrid and
upscaling were published recently. A topic, related to both, AMG and multiscale
FEM, is the so called Algebraic Multigrid-element method, AMGe. Methods like
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Multiscale FEM, MsFEM; Multiscale Finite Volume, MSFV; Variational Multi-
scale Method; Heterogeneous Multiscale Method, are well understood now, at least
when applied as numerical upscaling procedure for multiscale linear elliptic prob-
lems. Complementary to this, some of these methods became a popular choice
as an ingredient of two level domain decomposition preconditioners for heteroge-
neous problems. The consecutive iterations fine-to-coarse and coarse-to-fine scale
is a natural feature of the multigrid method. In the last decade it was shown that
approaches like model reduction has a great potential for solving multiscale prob-
lems. Intensive research is carried out recently in the area of multiscale stochastic
PDE. This include both, stochastic homogenization and numerical upscaling for
SPDE. Researchers from most of these closely related directions were invited to
participate in the discussions.

3. Topics

The discussion was restricted to continuous-to-continuous upscaling for elliptic
problems with deterministic and stochastic coefficients. Scalar PDEs as well as
systems of PDEs were considered. The field of numerical upscaling is still a very
broad research field, and for the miniworkshop several well focused topics were
defined.

• Numerical upscaling approaches. MsFEM, MSFV, VMS, Heterogeneous
Multiscale Method, etc. versus AMG, AMGe, EMB, etc. Multilevel/Multigrid
preconditioners for multiscale problems; Frameworks for solving multiscale
problems: Similarities, differences and synergy.

• Numerical upscaling approaches for stochastic multiscale problems : what
can be reused from deterministic numerical upscaling approaches? Re-
duced basis approaches for deterministic and stochastic multiscale prob-
lems. Multlevel approaches for stochastic problems.

• Upscaling effective properties of heterogeneous media in the case of sto-

chastic media. Spectral methods versus Monte Carlo and Multilevel Monte
Carlo: robustness, efficiency, etc.

• Convergence results. A priori and a posteriori estimates for determinis-
tic problems. How to use a posteriori estimates for developing adaptive
multilevel precondiotioners for multiscale problems. Convergence of the
spectral methods and Monte Carlo type methods in the case of multiscale
problems with stochastic coefficients.

• Benchmarking and validation. A careful specification of benchmark prob-
lems and validation approaches is needed in the field of numerical up-
scaling. A class of benchmark problems can be provided by asymptotic
homogenization, when the latter is applicable. Defining benchmark tests
for coupled multiscale problems with deterministic and stochastic coeffi-
cients will be discussed.
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The thorough and concentrated consideration of the above topics by the quali-
fied participants in the mini-workshop ensured a strong synergy effect. Intercon-
nections between different approaches were identified, thus enriching each of them,
and providing a background for new developments.
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Abstracts

Data sparse approximation of the Karhunen-Loève expansion

Alexander Litvinenko

(joint work with Boris Khoromskij, Hermann G. Matthies)

1. Introduction

To approximate a random field κ(x, ω) with as few random variables as possible,
but still retaining the essential information, the Karhunen-Loève expansion (KLE)
becomes important. Often the random field is characterised by its covariance
function covκ(x, y). The KLE of a random field requires the solution of eigenvalue
problem with the integral operator which has the covariance matrix as its kernel.
Usually this eigenvalue problem is solved by a Krylov subspace method with a
sparse matrix approximation. We demonstrate the use of the sparse hierarchical
matrix (H-matrix) technique with a log-linear computational cost of the matrix-
vector product and a log-linear storage requirement.

Let us define the following operator T which will be needed for computing the
KLE of κ(x, ω):

T : L2(G) → L2(G), (Tv)(x) :=

∫

G

covκ(x, y)v(y)dy,

where G is a computational domain. For covκ ∈ L2(G × G) the operator T is
compact and selfadjoint, in fact, Hilbert-Schmidt. As the covariance function
covκ is symmetric positive definite, hence so is T [1]. Thus, the eigenfunctions vℓ
of the following Fredholm integral equation of the second kind

(1) Tvℓ = λℓvℓ, vℓ ∈ L2(G), ℓ ∈ N,

are mutually orthogonal and define a basis of L2(G). The eigenvalues λℓ are real,
non-negative and can be arranged decreasingly λ1 ≥ λ2 ≥ ... ≥ 0. By definition,
the KLE of κ(x, ω) is the following series

(2) κ(x, ω) = Eκ(x) +

∞∑

ℓ=1

√
λℓvℓ(x)ξℓ(ω),

whereEκ(x) is the mean value of κ(x, ω), λℓ and vℓ are the eigenvalues/eigenvectors
of the operator T and ξℓ(ω) are uncorrelated random variables. For numerical pur-
poses one truncates the KLE (2) to a finite number m of terms. In the case of a
Gaussian random field, the ξℓ are independent standard normal random variables.
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2. FE discretisation of equation (1) and numerics

In general, the eigenvalue problem (1) needs to be solved numerically and stan-
dard techniques may be used for this purpose. Assume that b1,...,bN are the nodal
basis functions with respect to the nodes x1, ..., xN ∈ G ⊂ R

d, i.e. bi(xj) = δij ,
i, j ∈ I, I = {1, . . . , N}. The discrete eigenvalue problem will be as follows

MCMvℓ = λℓMvℓ, Cij = covκ(xi, xj), Mij =

∫

G

bi(x)bj(x)dx, i, j, ℓ ∈ I.

Recall that the matrix C is symmetric positive definite and dense. The mass
matrix M is symmetric positive definite and may be sparse. Typical examples of
the covariance function are a) cov(ρ) = exp{−ρ2} (Gaussian type) and b) cov(ρ) =

exp{−ρ} (exponential type), where ρ(xi, xj) =

√
∑d

ν=1

(
x
(ν)
i − x

(ν)
j

)2

/l2ν, lν are

correlation length scales, xi =
(
x
(1)
i , ..., x

(d)
i

)
and xj =

(
x
(1)
j , ..., x

(d)
j

)
∈ G, d =

2, 3. We approximate C in the H-matrix format [1] with the cost O(kN logN),
where k is the maximal rank of subblocks. To compute m eigenvalues (m ≪ N)
(see Table 2) and the corresponding eigenvectors we apply an iterative Krylov

subspace (Lanczos) eigenvalue solver. An H-matrix approximation C̃ consists
of low-rank blocks and dense blocks. All low-rank blocks are computed by the
adaptive cross approximation algorithm (ACA) [1].

All the following numerical experiments are done on PC with a 2GHz processor
and with 3GB RAM (see more in [1, 2]). The first table shows that the comput-

ing time and memory requirements for the H-matrix approximation C̃ are much
smaller than for the dense matrix C.

N rank k size, MB t, sec. ‖(C−C̃)z‖2
‖C‖2‖z‖2

max
i=1..10

|λi − λ̃i|
|‖C‖2−‖C̃‖2|

‖C‖2

of C̃ C C̃ C C̃

4.0 · 103 10 48 3 0.8 0.08 7 · 10−3 7.0 · 10−2 2.0 · 10−4

1.05 · 104 18 439 19 7.0 0.4 7 · 10−4 5.5 · 10−2 1.0 · 10−4

2.1 · 104 25 2054 64 45.0 1.4 1 · 10−5 5.0 · 10−2 4.4 · 10−6

Table 1. H-matrix approximation of the covariance function of
the exponential type, l1 = l3 = 0.1, l2 = 0.5, G is 3D L-shape
domain [1, 2]), z is a random vector.

Table 3 demonstrates the accuracy of the H-matrix approximation of the co-
variance function of the exponential type for different covariance lengths l1 and l2
(G = [0, 1]2, n = 1292).

For small problem sizes such as 332, 652 (in 2D) it is possible to compute the
exact covariance matrix C and check the accuracy of the H-matrix approximation
(the last column of Tab. 4), but for large problem sizes there is not enough memory
(“nem”) to store the matrix C.

For a stationary covariance function (i.e. cov(x, y) = cov(|x − y|)) and a rect-
angular computational domain with tensor grid, the Fast Fourier technique (FFT)
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matrix info (MB, sec.) m

N k size of C̃ time to set up C̃ 2 5 10 20 40 80
2.4 · 104 4 12 0.2 0.6 0.9 1.3 2.3 4.2 8
6.8 · 104 8 95 2 2.4 3.8 5.6 8.4 18.0 28
2.3 · 105 12 570 11 10.0 17.0 24.0 39.0 70.0 150

Table 2. Time required for computing m eigenpairs of the co-
variance function of the exponential type with l1 = l3 = 0.1,
l2 = 0.5 for L-shape 3D domain with the edge size 1.

l1 l2 ε
0.01 0.02 3 · 10−2

0.1 0.2 8 · 10−3

0.5 1 2.8 · 10−5

Table 3. Dependence of the H-matrix accuracy on the covari-
ance lengths l1 and l2.

time (sec.) memory (MB)

n C C̃ C C̃ ε
332 0.14 0.01 9.5 0.7 4.3 · 10−3

652 2.6 0.05 1.4 · 102 3.5 3.7 · 10−3

1292 −− 0.24 nem 16 −−
2572 −− 1 nem 64 −−

Table 4. Computing time and storage cost, rank k = 5,
cov(x, y) = exp{−ρ}, l1 = l2 = 1, domain G = [0, 1]2.

can be applied for approximation of KLE [3]. Alternatively, one can apply low-
rank tensor methods [2, 3] and reduce the computational cost to O(knd log n),
where n = N1/d number of degrees of freedom in one direction.

Conclusion: We have successfully applied the H-matrix technique for the ap-
proximation of covariance matrices in 2D and 3D computational domains with
non-trivial discretisation. The combination of the H-matrix technique and itera-
tive eigenvalue solvers are seen to be a very efficient way to compute the KLE.
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Numerical upscaling of eigenvalue problems

Axel Målqvist

(joint work with Daniel Peterseim)

1. Introduction

We present a numerical upscaling technique for computing eigenpairs of self-
adjoint linear elliptic second order differential operators with arbitrary positive
bounded coefficients. The precise setting is as follows. Let Ω ⊂ R

d be a bounded
Lipschitz domain with piecewise flat boundary and let A ∈ L∞(Ω,Rd×d

sym) be a
matrix-valued coefficient with uniform spectral bounds. Consider the self-adjoint
eigenvalue problem: find eigenpairs (u, λ) such that

(1) −∇ · (A∇u) = λu.

A standard finite element approximation of these eigenvalues and eigenfunctions
is constructed using a shape regular mesh Th of Ω with a corresponding finite

element space Vh ⊂ V := H1
0 (Ω): find eigenpairs u

(ℓ)
h ∈ Vh and λ

(ℓ)
h ∈ R such that,

(2) a(u
(ℓ)
h , v) := (A∇u(ℓ)h ,∇v) = λ

(ℓ)
h (u

(ℓ)
h , v), ∀v ∈ Vh.

We are mainly interested in the small eigenvalues. Popular approaches for the
computation of these eigenvalues include e.g. Lanczos/Arnoldi-type iterations or
the QR-algorithm applied directly to the Nh-dimensional finite element matrices,
where Nh = dim(Vh).

In our approach we avoid the application of an eigenvalue solver to the large-
scale problem (2) directly. Instead, inspired by [3], we compute a low-dimensional
approximation space Vcs ⊂ Vh first, with NH = dim(Vcs) ≪ Nh. This preprocess-
ing step is done by (approximately) inverting the operator for special right hand
sides and subject to certain linear constraints. Having performed NH of those
computations, the solution of a low-dimensional NH × NH eigenvalue problem
by standard solvers yields approximations of the first NH eigenpairs. The linear
problems needed to be solved on the fine scale are totally independent.

Our method is related to some coarse finite element mesh with maximal width
H . The accuracy of the approximate eigenvalues is expressed in terms of H . With-
out any assumptions on the smoothness of eigenfunctions, we prove that the error
scales like H4. Note that a standard first-order conforming finite element com-
putation yields H2 under full H2(Ω) regularity, see e.g. [2]. Under such strong
assumption the two-grid method [5] allows certain postprocessing (solution of lin-
ear problems on the fine scale) of the coarse finite element eigenpairs to increase
the accuracy to H4. This is also possible to exploit for our proposed method to
get even higher order convergence.

2. Galerkin approximation and main result

We let TH denote an underlying coarse regular finite element mesh, with mesh
function H defined by H |T = diam(T ) := HT for all T ∈ TH . We denote the
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interior nodes of the mesh N . We let VH = span({φx}x∈N ) be a finite element
space such that VH ⊂ Vh.

We recall the Clément type interpolant IH : V → VH presented in [1]. Let
IHv =

∑
x∈N (IHv)(x)φx, where,

(IHv)(x) =
(v, φx)

(1, φx)
,

for all x ∈ N . The following approximation and stability property holds,

H−1
T ‖v − IHv‖L2(T ) + ‖∇(v − IHv)‖L2(T ) ≤ C‖∇v‖L2(ωT ), ∀v ∈ V,

where ωT is the collection of elements in T overlapping T .
We are ready to present the decomposition of the space Vh into a coarse and a

fine part. We let the fine scale space be defined by,

Vfs := kernel IH = {v ∈ Vh : IHv = 0},

and the coarse scale space by,

Vcs = {v ∈ Vh : a(v, w) = 0, for all w ∈ Vfs}.

This yields an a-orthogonal split of the space Vh = Vcs ⊕ Vfs. We note that
dim(Vcs) = dim(VH) = |N |. In order to compute a basis for Vcs we solve |N |
corrector problems: find ψx ∈ Vfs such that,

a(ψx, v) = a(φx, v), for all v ∈ Vfs,

and let Vcs = span({φx −ψx}x∈N ). The Galekin approximation of equation (2) in

the space Vcs reads: find u
(ℓ)
cs ∈ Vcs and λ

(ℓ)
cs ∈ R such that,

a(u(ℓ)cs , v) = λ(ℓ)cs (u
(ℓ)
cs , v), v ∈ Vcs.

We now present an error bound for the approximate eigenvalues.

Theorem 1. Let H be sufficiently small so that H ≤ Cℓ−1/4
√

α

λ
(l)
h

. Then it holds

(3)
λ
(ℓ)
cs − λ

(ℓ)
h

λ
(ℓ)
h

≤ C
√
ℓ


H

√
λ
(ℓ)
h

α




4

for all ℓ = 1, . . . , |N |,

for some constant C only depending on Ω and the shape regularity constant and

with α being the lower spectral bound of A.

Remark 1. In [3] it is shown that φx − ψx decays exponentially (in the number
of coarse elements) away from node x. This allows the use of truncated patches
of size H log(H−1), with Dirichlet boundary conditions, rather than solving for ψx

on the entire domain Ω. Theorem 1 holds also when using truncated domains.



404 Oberwolfach Report 07/2013

3. Numerical example

Let Ω := (−1, 1)2 \ [0, 1]2 be the L-shaped domain. Consider the constant
scalar coefficient A = 1 and consider uniform coarse meshes with maximal mesh
widths

√
2H = 2−1, . . . , 2−4 of Ω. The reference mesh Th has maximal mesh width

h = 2−7/
√
2. We consider a P1 conforming finite element approximation of the

eigenvalues on the reference mesh Th and compare these discrete eigenvalues λ
(ℓ)
h

with coarse scale approximations depending on the coarse mesh size H .
Table 5 shows results for the case without truncation, i.e., all linear problems

have been solved on the whole of Ω. For fixed ℓ, the rate of convergence of the

ℓ λ
(ℓ)
h e(ℓ)(1/2

√
2) e(ℓ)(1/4

√
2) e(ℓ)(1/8

√
2) e(ℓ)(1/16

√
2)

1 9.6436869 0.003494567 0.000034466 0.000000546 0.000000010
2 15.1989274 0.009621397 0.000079887 0.000000845 0.000000010
3 19.7421815 0.023813222 0.000213097 0.000002073 0.000000023
4 29.5281571 0.096910157 0.000724615 0.000006574 0.000000076
5 31.9265496 0.094454625 0.000874659 0.000009627 0.000000138
6 41.4922250 - 0.002395227 0.000019934 0.000000254
7 44.9604884 - 0.002443271 0.000019683 0.000000223
8 49.3631826 - 0.003651870 0.000028869 0.000000308
9 49.3655623 - 0.004266472 0.000032835 0.000000355
10 56.7389993 - 0.006863742 0.000055219 0.000000618

Table 5. Errors e(ℓ)(H) =:
λ
(ℓ)
H

−λ
(ℓ)
h

λ
(ℓ)
h

for ℓ = 1, . . . , 10, constant

coefficient A = 1, and various choices of the coarse mesh size H .

eigenvalue error λ
(ℓ)
H − λ

(ℓ)
h in terms of H observed in Table 5 is between 6 and 7

which is even better than predicted in Theorem 1. For more elaborate numerical
results we refer to [4].
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Generalized multiscale finite element method for the wave equation

Eric Chung

(joint work with Yalchin Efendiev, Wing Tat Leung)

Let Ω ⊂ R
2 be a bounded domain of two dimensions. The aim of the paper is to

develop a new multiscale method for the following wave equation

(1)
∂2u

∂t2
= ∇ · (a∇u) + f in Ω

with the homogeneous Dirichlet boundary condition u = 0 on ∂Ω. The function
f(x, t) is a given source. The problem (1) is also supplemented with the following
initial conditions

u(x, 0) = g0(x), ut(x, 0) = g1(x).

We assume that the coefficient a(x) is highly oscillatory, representing the compli-
cated model in which the waves are simulated. It is well-known that solving (1) by
standard methods requires a very fine mesh, which is computationally prohibited.
Thus a coarse grid solver is needed.

Now, we will give a detailed description of our new generalized multiscale finite
element method, following the general framework in [2]. The method gives a
numerical solver on coarse grid, providing an efficient way to simulate waves in
complicated media. As we will discuss next, the local basis functions are obtained
via the solutions of some local spectral problems. The POD technique is then used
to obtain the most dominant modes. These modes form the basis functions of our
multiscale finite element method.

Let Vh be the standard finite element space on the fine mesh. We introduce
a coarse mesh that consists of union of connected fine-mesh grid blocks and is
denoted by T H and the set of all edges is denoted by EH . We denote the size of
the coarse mesh by H . Next, we define the snapshot space. Let Xh be the space
of conforming multiscale basis functions with respect to the coarse grid T H . More
precisely, an element in Xh is obtained by solving ∇ · (a∇u) = 0 in each coarse
grid block with piecewise linear boundary conditions. The the coarse space VH is
obtained by solving an eigenvalue problem on Xh locally on each coarse block.

We can then state the IPDG method [1] as: find uH(t, ·) ∈ VH such that

(2) (
∂uH
∂t2

, v) + aDG(uH , v) = l(v), ∀ v ∈ VH ,

where the bilinear form aDG(u, v) and the linear functional l(v) are defined by

aDG(u, v) =
∑

K∈T H

∫

K

a∇u · ∇v

+
∑

e∈EH

(
−
∫

e

{a∇u · n}e [v]e −
∫

e

{a∇v · n}e [u]e +
γ

H

∫

e

a[u]e [v]e

)

l(v) = (F, v) − aDG(ph, v)
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where γ > 0 is a penalty parameter and n denotes the unit normal vector on e. A
related DG method for high contrast flow problem is developed in [3].

Next, we will present a numerical example of using the above method when
a(x) is the Marmousi model. The computational results are shown in Table 6.
In the table, we present the results of using all basis functions (using all energy),
a subset of basis functions with 5% and 10% of the total energy. The relative L2

error and relative L2 error for cell averages are denoted by e2 and e2. The time
for offline and online computations are denoted by tm and tl respectively. The
computation time for fine mesh solution is 4.58. From the table, we see that our
method provides a significant speed up for a reasonable level of error.

E num of basis e2 e2 tm tl
0.05*total E 9 0.0665 0.0553 14.878059 0.129203
0.1*total E 12 0.0508 0.0379 32.922124 0.181453
total E 32 0.0444 0.0308 1057.213370 1.170797

Table 6. Result with POD for Marmousi.
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The localized reduced basis multi-scale method with online enrichment

Felix Albrecht

(joint work with Mario Ohlberger)

We are interested in the efficient and reliable numerical solution of parametric
multi-scale problems, the multi-scale (parametric) character of which is indicated
by ε (µ) if expressed in the general notation of (1). It is well known that solving
parametric multi-scale problems accurately can be challenging and computation-
ally costly for small scales ε and for a strong dependency of the solution on µ.

Two traditional approaches exist to reduce this computational complexity: nu-
merical multi-scale methods and model order reduction techniques. Numerical
multi-scale methods reduce the complexity of multi-scale problems with respect
to ε, while model order reduction techniques reduce the complexity of parametric
problems with respect to µ (for both see [3] and references therein).

The localized reduced basis multiscale (LRBMS) method is a combination of
both to reduce the complexity of parametric multi-scale problems with respect to
ε and µ simultaneously. It performs well, for instance in the context of two-phase
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flow problems (see [1]), but still requires solving (1) on the ε scale for several
parameters µ, just like classical RB methods. Therefore, we propose an extension
to the LRBMS method which requires a smaller number of full solutions of (1) by
further incorporating localization ideas from numerical multi-scale methods.

Following the notation of [3], we consider solutions ε
µuh ∈ Uh of the parameter-

ized variational multi-scale problem

Rε
µ[

ε
µuh](vh) = 0 ∀vh ∈ Vh,(1)

with trial and test function spaces Uh, Vh : Ω ⊂ R
d → R, d = 1, 2, 3, and an ε- and

µ-dependent mapping Rε
µ : Uh → V ′

h. The approximation spaces Uh and Vh are
associated with a fine triangulation τh of Ω resolving the ε scale.

In general, numerical multi-scale methods capture the macroscopic behavior of
the solution in coarse approximation spaces, e.g., VH ⊂ Vh, usually associated
with a coarse triangulation TH of Ω, and recover the microscopic behavior of the
solution by local fine-scale corrections. Inserting this additive decomposition into
(1) yields a coupled system of a fine- and a coarse-scale variational problem. By
appropriately selecting trial and test spaces and defining the localization opera-
tors to decouple this system, a variety of numerical multi-scale methods can be
recovered, e.g., the multi-scale finite element method, the variational multi-scale
method and the heterogeneous multi-scale method (see [3] and references therein).

Model order reduction using reduced basis (RB) methods, on the other hand, is
based on the idea to introduce a reduced space Vred ⊂ Vh, spanned by solutions of
(1) for a limited number of parameters µ. These training parameters are iteratively
selected by an adaptive greedy procedure. Depending on the choice of the training
parameters and the nature of the problem Vred is expected to be of a significantly
smaller dimension than Vh. Additionally, if R

ε
µ allows for an affine decomposition

with respect to µ, its components can be projected onto Vred, which can then be
used to effectively split the computation into an offline and online part (see [1, 3]).
In the offline phase all parameter-independent quantities are precomputed, such
that the online phase’s complexity only depends on Vred.

The idea of the combined LRBMS approach, for Uh = Vh, is to generate a local
reduced space V T

red ⊂ V T
h for each coarse element of TH , given a tensor product

type decomposition of the fine approximation spaces, Vh = ⊕T∈TH
V T
h . The coarse

reduced space is then given as VH,red := ⊕T∈TH
V T
red ⊂ Vh, resulting in a multi-

plicative decomposition of the solution into
ε
µuH,red(x) =

∑dim(VH,red)
i=1 uµi (x)ϕ

ε
i (x),

where the reduced basis functions ϕε
i capture the microscopic behaviour of the

solution and the coefficient functions uµi only vary on the coarse triangulation.
We detail the LRBMS method in the context of linear elliptic parametric multi-

scale problems, which arise for instance as the pressure equation in the two-phase
flow context: : find ε

µuh ∈ Vh, such that −∇·(aεµ∇ ε
µuh) = fu holds in a weak sense

with homgeneous dirichlet boundary conditions. In this context, the residual in
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(1) is given as Rε
µ[·] := ε

µA[·]− Fµ, where
ε
µA and Fµ can be expressed as

ε
µA[·] =

∑

T∈TH

ε

µA
T [·] +

∑

T,S∈TH

ε

µA
T,S [·], Fµ =

∑

T∈TH

FT
µ ,

where the coupling operators
ε
µA

T,S are given as in the SWIP discontinuous
galerkin context for any nontrivial combination of T, S ∈ TH (see [1] for details).
The local opearators and functionals

ε
µA

T and FT
µ can be given by any suitable dis-

cretization inside the coarse element T , for instance by a continuous finite element
discretization in a local fine space V T

h of piecewise linear polynomials on the fine
triangulation inside the coarse element T . The local reduced spaces V T

red :=< ΦT >
are then spanned by local reduced bases ΦT which are computed by restricting and
compressing global solution snapshots.

Here we propose an online enrichment step as an addition to the LRBMS
method to reduce the need for global solution snapshots. While it is not feasible
in the RB framework to compute solution snapshots during the online phase, the
LRBMS frameworks allows us to carry out local computations in the online phase
to enrich the local reduced bases. The idea of the LRBMS method with online en-
richment is as follows: the initial construction of the local reduced bases is carried
out as described above but using fewer training parameters and thus less global
snapshots. Given local error indicators ||| εµuh|T − ε

µuH,red|T |||T ≤ ηTred(
ε
µuH,red) we

efficiently asses the quality of the reduced solution ε
µuH,red ∈ VH,red with respect to

the reference solution ε
µuh ∈ Vh during the online phase and select coarse elements

T̂H ⊆ TH where the local reduced bases are insufficient for the current parameter

µ. In a local offline phase we compute a local correction function ϕT δ

cor ∈ V T δ

h for

each T ∈ T̂H on an oversampled domain T ⊂ T δ by solving
ε

µA
T δ

[ϕT δ

cor](vh) = FT δ

µ (vh)−
ε

µA
T δ

[εµuH,red|T δ ](vh) ∀vh ∈ V T δ

h .

We then restrict this correction function to T and enrich the existing local reduced

basis on T by adding ϕT δ

cor|T after orthonormalization. This process is repeated
until the quality of the reduced solution meets the prescribed torelance again.
After this local offline phase all quantities are made available in a reduced fashion
again and the online phase continues. We repeat this process for each parameter,
which is not yet captured by the local reduced bases.

We exemplify the local offline phase by a 2d thermalblock problem, illustrated
in figure 1, where the local reduced bases have been trained in the offline phase
with one global solution snapshot to µtrain, computed on a fine triangulation τh
with 2500 elements utilizing the discretiation framework Dune-Fem [2]. During
the online phase we solve for a test parameter µtest which only differs from µtrain

locally in T0 and T2. Since the reduced basis is insufficient for µtest, a local offline
phase is started to enrich the local bases until the indicated errors fall below 5e−4

(figure 1, right). As indicators ηTred we use the true relative error in the local energy
norm. For a local oversampling size of ten for example (red line, circular markers),
the error torelance is reached after 14 iterations. The resulting sizes of the local



Mini-Workshop: Numerical Upscaling for Media with Heterogeneity 409

reduced bases, (|Φ0|, |Φ1|, |Φ2|, |Φ3|) = (14, 6, 14, 6), show the local influence of the
parameter component µ2 and the symmetry of the problem (figure 1, left).

Figure 1. Thermalblock example with the values of the piecewise con-
stant parametric diffusion ε

µa given by µ = (µ0, µ1, µ2)′ and the coarse trian-

gulation TH = ∪3
i=0Ti (left). Error evolution during the local offline phase

(right): maximum local relative error for µtest = (0.1, 1, 0.01)′ against size
of the coarse reduced space with the local reduced bases trained only with
µtrain = (0.1, 1, 1)′ for several sizes of oversampling layers (colored).
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Robust Multilevel Schwarz Methods for Multiscale Problems

Jörg Willems

In this talk we focus on the development of robust multilevel Schwarz solvers
for symmetric positive definite (SPD) systems resulting from the discretization of
partial differential equations (PDEs) with highly varying or otherwise degenerate
coefficients. Particular emphasis is put on the case when coefficient variations are
neither periodic nor statistically homogeneous but exhibit pronounced non-local
features.
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The three systems of equations under consideration are the stationary diffusion
equation, the equations of linear elasticity for an isotropic medium, and the curl-
curl equation with positive L2-term:

(1) (stationary diffusion) −∇ · (K∇u) = f

with u denoting the concentration, K = [Ki,j]
d
i,j=1 the SPD permeability tensor,

and f a volumetric source;

(2) (linear elasticity) −∇ · (η1(∇ · u)I + 2η2ε(u)) = f

where u is the displacement, η1, η2 the Lamé parameters, I the identity matrix,
and f the volumetric force;

(3) (curl-curl) ∇×(µ−1∇×u) + κu = f ,

here u denotes the vector potential, µ is the permeability, and κ is real and pos-
itive. (3) e.g. arises in the solution of the instationary Maxwell’s equations when
employing implicit time stepping schemes.

Multiplying (1), (2), and (3), respectively, by suitable test functions, performing
integration by parts, and assuming proper boundary conditions leads to variational
problems of the following form:

Find u ∈ V such that for all v ∈ V we have aΩ(u, v) = F (v),

where V is a suitable (infinite dimensional) function space, F ∈ V ′ is a bounded
linear functional and aΩ(·, ·) is a bounded SPD bilinear form on V ×V . For a finite
dimensional subspace Vh ⊂ V we consider the discrete variational formulation:

(4) Find uh ∈ Vh such that for all vh ∈ Vh we have aΩ(uh, vh) = F (vh).

We focus on the development and analysis of efficient and robust multilevel
solvers for (4) (see also [6, 8, 9] and the references therein and also [3, 4, 5, 7, 10]
for recent advances in this area of research).

The abstract framework that we discuss in this talk relies on the construction
of a sequence of increasingly coarser spaces ranging from the finest level L to the
coarsest level 0, i.e.,

(5) V0 ⊂ V1 ⊂ . . . ⊂ Vl ⊂ Vl+1 ⊂ . . . ⊂ VL−1 ⊂ VL := Vh.

Let {Ωl,j}nl

j=1 be a family of overlapping subdomains, then Vl is constructed in

such a way that for each vl+1 ∈ Vl+1 there exist (vl+1,0 :=)vl ∈ Vl and vl+1,j ∈
V 0
l+1(Ωl,j) := {v ∈ Vl+1 | supp(v) ⊂ Ωl,j}, j = 1, . . . , nl satisfying

(6) vl+1 =

nl∑

j=0

vl+1,j and

nl∑

j=0

‖vl+1,j‖2a ≤ C‖vl+1‖2a,

where ‖ · ‖a is the norm induced by aΩ(·, ·) and C is a constant independent
of problem and mesh parameters. (6) is the well-known stable decomposition
property playing a prominent role in the analysis of overlapping Schwarz domain
decomposition methods (cf. e.g. [6, Section 2.5]).



Mini-Workshop: Numerical Upscaling for Media with Heterogeneity 411

The inequality in (6) can be achieved with a robust constant C if Vl is con-
structed in the following way (see [1, 3, 10]): Let {Ξl,j}nl

j=1 be a partition of

identity corresponding to {Ωl,j}nl

j , i.e.,

Ξl,j : Vl+1 → V 0
l+1(Ωl,j) and

nl∑

j=1

Ξl,j = I,

where I denotes the identity operator. Assuming that for any j = 1, . . . , nl and
any vl+1, wl+1 ∈ Vl+1 with vl+1|Ωl,j

≡ wl+1|Ωl,j
it holds that Ξl,jvl+1 ≡ Ξl,jwl+1

we may with a slight abuse of notation but without any ambiguity write

Ξl,j : Vl+1(Ωl,j) := Vl+1|Ωl,j
→ V 0

l+1(Ωl,j) with Ξl,j(vl+1|Ωl,j
) := Ξl,jvl+1.

Now, for j = 1, . . . , nl let mΩl,j
(·, ·) : Vl+1(Ωl,j) × Vl+1(Ωl,j) → R be an SPD

bilinear form satisfying ‖Ξl,jvl+1‖a ≤ ‖vl+1|Ωl,j
‖m,Ωl,j

, where ‖ · ‖m,Ωl,j
is the

norm induced by mΩl,j
(·, ·). With this notation we consider the following local

generalized eigenvalue problems: Find (λil+1,j , ϕ
i
l+1,j) ∈ (R+

0 , Vl+1(Ωl,j)) such
that

aΩl,j
(w, ϕi

l+1,j) = λil+1,j mΩl,j
(w, ϕi

l+1,j), ∀w ∈ Vl+1(Ωl,j),

where aΩl,j
(·, ·) indicates that aΩ(·, ·) is restricted to the subset Ωl,j ⊂ Ω. Then,

for an arbitrarily chosen threshold τ−1
λ and w ∈ Vl+1(Ωl,j) it holds with P

a
Ωl,j

w :=∑
i:λi

l+1,j
<τ−1

λ
aΩl,j

(w, ϕi
l+1,j)ϕ

i
l+1,j that (see e.g. [2, 4])

‖w − P a
Ωl,j

w‖2m,Ωl,j
≤ τλ|w − P a

Ωl,j
w|2a,Ωl,j

≤ τλ|w|2a,Ωl,j
,

where | · |a,Ωl,j
is the semi-norm induced by aΩl,j

(·, ·) on Vl+1(Ωl,j). The next
coarser space Vl ⊂ Vl+1 is then defined as

Vl := span
{
Ξl,jϕ

i
l+1,j | j = 1, . . . , nl and i such that λil+1,j < τ−1

λ

}
,

and it can be shown (cf. [3, 2, 4, 10]) that with a sequence of increasingly coarser
spaces constructed in this way (6) holds with C = C(τλ) = O(τλ). Thus, it
follows by standard arguments from the analysis of abstract Schwarz methods
that the energy-norm of the error propagation operator of the (scaled) symmetric
two-level hybrid Schwarz preconditioner satisfies ‖(I − θ

∑nl

j=1 πl+1,j)(I − πl)(I −
θ
∑nl

j=1 πl+1,j)‖a < δ, where δ < 1 depends only on the constant C = C(τλ) in

(6), θ is a suitable scaling factor depending on the choice of the subdomains, and
πl+1,j and πl denote the aΩ(·, ·)-orthogonal projections onto V 0

l+1(Ωl,j) and Vl,
respectively.

It is straightforward to see that the error propagation operator of the hybrid
Schwarz preconditioner can be interpreted as the error propagation operator of
a two-grid method with (scaled) block Jacobi smoother and a coarse solve with
respect to Vl. In order to extend this two-level method to an actual multilevel
algorithm one may approximate this solve with respect to Vl by a recursion of the
rationale just described. In order for the obtained multilevel method to have a
convergence rate independent of the number of levels L one can apply the general
framework of (nonlinear) AMLI (cf. [9, 10] and the references therein for details).
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On an abstract level the multilevel method outlined above and detailed in [10]
has been shown to be applicable to (4) resulting from (1), (2), and (3), respectively.

In this talk we provide some numerical examples verifying the robustness of
the method when applied to the isotropic and anisotropic diffusion equation with
highly varying multiscale permeability fields. Obtaining comparable results also
for the equations of linear elasticity as well as the curl-curl equation is the object
of ongoing research. Further topics of investigation include the question of how
to choose the partition of identity and the subdomains in such a way that the
nested spaces in (5) exhibit large coarsening factors. Since the computation of lo-
cal generalized eigenvalue problems is computationally expensive, we additionally
consider it worth studying the possibilities to supersede their actual solution by
considerations involving an analysis of the (multiscale) coefficients.
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Numerical Upscaling By Spectral Element Agglomeration Coarsening

Panayot S. Vassilevski

Abstract

In this talk we present some recent results on the construction of coarse spaces
with guaranteed approximation properties utilizing spectral element agglomeration
AMG coarsening, which we refer to as ̺AMGe numerical upscaling. We demon-
strate the quality of the ̺AMGe coarse spaces on the popular SPE10 dataset.

1. Problem description

Consider a s.p.d. sparse matrix A coming from a finite element discretization of
an elliptic PDE posed on a domain Ω ⊂ R

d, (plane polygon, d = 2) (or polytope,
d = 3). We use quasiuniform mesh Th with mesh size h and respective finite
element space Vh. Also, let Nh be the set of Lagrangian degrees of freedom, that
in the case of piecewise (bi)linear finite element space Vh coincide with the vertices
{xi} of the elements in Th. The corresponding elliptic bilinear form reads

(1) a(u, ϕ) =

∫

Ω

k(x)∇u · ∇ϕ dx,

where k = k(x) is a given positive coefficient. It may admit very large jumps in
certain parts of Ω which are assumed resolved by the fine-grid triangulation Th,

We now summarize our spectral aggregation/element agglomeration based ap-
proach to construct accurate enough coarse spaces. We assume that a set TH of
non–overlapping agglomerated elements {T } has been constructed. This means
that each T is a (connected) union of fine–grid elements {τ}. Let the character-
istic mesh size (diameter of T ∈ TH) be of order H . We do not assume that H
is comparable to the fine–grid mesh–size h. For each T , we assemble the local
stiffness matrix AT and the local weighted mass matrix GT . They correspond to
the respective integrals of the form

∑

τ⊂T

∫

τ

k(x)∇ϕj · ∇ϕi dx and
∑

τ⊂T

∫

τ

k(x)ϕjϕi dx,

for all basis functions ϕi, ϕj with support intersecting T . We also need the diagonal
of A restricted to T , DT .

In addition to the set TH of agglomerated elements T , we assume that we have
respective aggregates {Ai}nA

i=1 where each A = Ai is contained in some T . The
set {Ai} provides a non–overlapping partition of the set Nh of fine–degrees of
freedom.
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1.1. The construction of tentative prolongator. We use the following con-
struction. For each agglomerated element T , we solve the local generalized eigen-
value problem

(2) ATqk = λkDTqk, k = 1, . . . , nT ,

where nT is the number of fine–degrees of freedom in T . By choosing the first
mT eigenvectors in the lower part of the spectrum of D−1

T AT (based on a given
tolerance θ ∈ (0, 1)) we form the rectangular matrix QT = [q1, . . . , qmT

]. Then,
we extract the rows of QT with row–indices from the aggregate A (where A ⊂ T )
and form QA. Finally, using SVD, we form a linearly independent set from the

columns of QA. The resulting matrix P̂A has orthogonal (hence linearly inde-
pendent) columns. The global tentative prolongator is simply the block-diagonal
matrix

(3) P̂ =




P̂A1 0 . . . 0

0 P̂A2 . . . 0

0 0
. . . 0

0 . . . 0 P̂AnA



·

1.2. The smoothed prolongator. Based on the tentative interpolant P̂ and a
matrix polynomial S = sν(b

−1D−1A) ([2]), where D is the diagonal of A and b is

such that ‖D− 1
2AD− 1

2 ‖ ≤ b = O(1), and

(4) sν(t) = (−1)ν
1

2ν + 1

T2ν+1(
√
t)√

t
,

(T2ν+1 is the Chebyshev polynomial of degree 2ν + 1) we define the actual inter-

polation matrix P , i.e., we let P = SP̂ which has the property that it becomes
stable in energy norm.

2. Some tests on the SPE10 dataset

The SPE10 data set is characterized with a 3D domain with dimensions 1200×
2200 × 170 units and it is divided into cells of size 20 × 10 × 2 units. Thus, the
fine-scale model in 3D has 60×220×85 cells. We consider the 3D domain cut into
85 horizontal slices and we solve a 2D problem for each slice. The 2D domain has
dimensions 1200× 2200 units and it is divided into cells of size 20 × 10 resulting
in a mesh with 60 × 220 elements (13200 fine-grid elements). The coefficient on
each slice is a scalar represented by piecewise constant functions.

The prolongator smoother polynomial degree is ν = 3.
The coarse space is built by the spectral SA-AMGe method defined in the

preceding section. We use geometric agglomerates such that each coarse element
is also a rectangle and it is a union of fine–grid rectangular elements. We have
chosen H = 12h. The fine-grid degrees of freedom within each agglomerated
element are used to form aggregates.

We denote by A(k) the global stiffness matrix computed for coefficient k.
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Figure 1. ‖u− Puc‖A(k)/‖u‖A(k) versus varying spectral toler-
ance θ (13481 fine dofs, 119641 non-zero elements of the fine-grid
operator, 90 agglomerates).

For a given prolongator P and a stiffness matrix A we denote by u the computed
(fine) solution of Au = f and by uc the computed (coarse) solution of PTAPuc =
PT f = PTAu. In Fig. 1, we show the relative energy error ‖u−Puc‖A(k)/‖u‖A(k)

versus the spectral tolerance θ, or equivalently, versus the coarse dofs size.
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Upscaling Approaches for Nonlinear Processes in Li-ion Batteries

Vasilena Taralova

(joint work with Yalchin Efendiev, Oleg Iliev)

Lithium-ion batteries are multiscale systems with complex porous structure on
the microscale. A typical Li-ion battery consists of many electrically connected
electrochemical cells. Each cell has two electrodes-anode and cathode. Both elec-
trodes have porous structure consisting of connected active particles with the voids
between them being filled with liquid electrolyte. We refer to the scale where we
distinguish the porous structure of the electrodes as ”microscale” and we denote
the lengthscale of the whole electrode as ”macroscale”. We consider the isother-
mal model derived in [1]. On the microscopic scale nonlinear diffusion equations
describe the transport of ions and charges in the active particles and in the elec-
trolyte. Highly nonlinear interface conditions couple the equations in the two
phases due to electrochemical reactions that occur on the boundary between the
particles and the electrolyte. A detailed description of Li-ion batteries along with
pictures is given in [3]. Depending on the type of the battery we can have a very
big number of particles in each electrode. Therefore direct numerical simulations
can be very computationally expensive. Our goal is to derive upscaled model on
the lengthscale of the whole electrode which correctly captures the macroscopic
behaviour of the electrodes and does not require resolving all the small-scale fea-
tures. We consider periodically arranged particles and we rigorously derive coupled
micro-macroscopic Li-ion battery model via the homogenization theory [4]. The
equations of the electrolyte phase couple the concentration ce of Li+ and the
potential φe:

∂ce

∂t
−∇ · (ke11(ce)∇ce + ke12∇φe) = 0, x ∈ Ωe ⊂ R

3(1a)

−∇ · (ke21(ce)∇ce + ke22∇φe) = 0, x ∈ Ωe ⊂ R
3(1b)

where with Ωe we denote the domain of the electrolyte. The equations describing
the transport of Lithium ions and charge in the particles are

∂cs

∂t
−∇ · (Ds∇cs) = 0, x ∈ Ωs ⊂ R

3(2a)

−∇ · (κs∇φs) = 0, x ∈ Ωs ⊂ R
3(2b)

where Ωs is the domain of the active (solid) particles, cs is the concentration of Li+
in the particles, φs is the potential in the particles, Ds is the ion diffusion and κs

is the electronic conductivity. We make no distinction between anode and cathode
active particles since the equations describing the electrochemical processes in both
types of particles are identical except for the values of the material parameters Ds

and κs. The following interface conditions are imposed on the boundary between
the active particles and the electrolyte:

Ns · ns = Ne · ns = N (ce, cs, φe, φs), x ∈ γ(3)

Js · ns = Je · ns = J (ce, cs, φe, φs), x ∈ γ(4)
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where the ion flux and the electrical current in the electrolyte are respectivelyNe =
− (ke11(c

e)∇ce + ke12∇φe) and Je = − (ke21(c
e)∇ce + ke22∇φe), and the ion flux and

the electrical current in the particles are Ns = −Ds∇cs and Js = −κs∇φs. The
unit normal vector ns points in the direction from the particles to the electrolyte.
With γ we denote the interface boundary between the solid and the electrolyte,

and the current densities are N =
k

F

√
cecs (csmax − cs)

[
exp

Fη
2RT − exp

−Fη
2RT

]
and

J = FN with η = φs − φe − U0(c
s). We consider periodic arrangement of the

particles and as a single periodic cell we take a cubic block consisting of one
active particle surrounded by electrolyte. If we denote with L the characteristic
length of the electrodes and with l-that of the particles, for the small parameter

ε → 0 we take ε = l/L . Consequently the fast (microscopic) variable is y =
x

ε
,

where x is the slow (macroscopic) variable. We denote the reference periodicity
cell with Y (with characteristic size L), where Y = E ∪ S ∪ Γ with E being the
electrolyte domain in the reference cell, S-solid particle domain, and Γ-interface
boundary between the electrolyte and the particle. The diffusion of Li+ in the
particles is much slower than the diffusion of ions in the electrolyte. Therefore
we do not upscale the equation for the concentration cs of Li+ in the particles
since the behaviour of the function cs can be captured adequately only on the
microscale. We pose equations (1) and (2b) in the whole domain Ω with the help
of characteristic functions and then we perform the standard asymptotic analysis
for ε → 0. A crucial step in the correct homogenization of the model is the
homogenization of the interface conditions. We show that the total flux across
the whole interface boundary is preserved no matter how many active particles
we have in the electrode. This is due to the fact that all the outer boundaries of
the battery cell are insulated except for the cathode and anode boundaries where
we apply constant potential and constant current respectively. This means that
the total flux acroos the interface does not depend on ε. From here we obtain
that the current densities Nε and Jε are of order ε. We rigorously upscale also
the Neumann boundary conditions. Finally we obtain the following macroscopic
equations for the homogenized concentration ce0 and potentials φe0 and φs0

|E|
|Y |

∂ce0
∂t

−∇x · (K11∇xc
e
0 +K12∇xφ

e
0) =

1

ε |Y |

∫

Γ

N (ce0, c
s, φe0, φ

s
0) ds, x ∈ Ω

(5a)

−∇x · (K21∇xc
e
0 +K22∇xφ

e
0) =

1

ε |Y |

∫

Γ

J (ce0, c
s, φe0, φ

s
0) ds, x ∈ Ω(5b)

−∇x · (Λs∇xφ
s
0) = − 1

ε |Y |

∫

Γ

J (ce0, c
s, φe0, φ

s
0) ds, x ∈ Ω(5c)

where for each integration point x ∈ Ω we have to solve the following microscale
problem for the concentration cs of Li+ in the particles given in scale invariant
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Figure 1. Homogenized and microscopic solution for 10×10×10
particles in each electrode with ε = 0.1

form in terms of the variable y ∈ S

∂cs

∂t
−∇y ·

(
Ds

ε2
∇yc

s

)
= 0, y ∈ S(6a)

−D
s

ε2
∇yc

s · ns =
1

ε
N (ce0, c

s, φe0, φ
s
0), y ∈ Γ(6b)

We impose periodic boundary conditions on ∂S\Γ, i.e. on the boundary of the
solid particle where the particles are connected to each other. The coefficients in
the homogenized equations (5) are nonlinear and they are tensors depending on the
solutions of auxiliary cell problems which in our case are linear and do not depend
on ce0, φ

e
0 or φs0. This means that the cell problems are solved only once. In Figure

1 we show numerical results for the potential φe. In [2] a similar approach is used
to derive a macroscopic Li-ion battery model starting from a different microscopic
model. However, there is no mathematical justification of the order of the current
densities and no numerical results are shown.
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Global Model Reduction for Flows in High-Contrast Media

Michael Presho

(joint work with Yalchin Efendiev, Victor Calo, Mehdi Ghommem)

1. Introduction

In many porous media modeling applications the permeability of the media may
vary over several orders of magnitude. For example, flow through a fractured
porous medium is a scenario where the permeability within the fracture set may
be significantly larger than in the surrounding medium. Similarly, shale barriers or
deformation bands often represent regions whose permeability can be many orders
of magnitude smaller than the surrounding regions. Both types of permeability
variation can significantly affect the underlying flow dynamics, and the direct
numerical simulation of these processes can be prohibitively expensive due to the
small-scale effects of the respective configurations. In addition, the computational
constraints are only magnified in situations where numerous simulations must be
carried out for uncertainty quantification or sensitivity analysis. As a result, the
use of reduced-order models that significantly reduce the number of degrees of
freedom in the problem formulation are particularly desirable within this context.

Several techniques, including proper orthogonal decomposition (POD) and dy-
namic mode decomposition (DMD), have been used as effective reduced-order
modeling techniques (see, e.g., [1, 2]). Both methods involve projecting the orig-
inal set of equations into a reduced-dimension set of modal bases. However, the
modes corresponding to each method are constructed in a different fashion. In
particular, POD is a technique that attempts to extract the coherent structures of
the underlying system by identifying the most energetic structures from a set of
snapshots. In contrast, DMD hinges on the construction of modes resulting from
a linear approximation of dynamically relevant structures. It should be noted that
both methods enable the construction of a set of low-dimensional modes represent-
ing a linear or non-linear dynamical process. In this talk we apply both POD and
DMD approaches to a flow model in highly heterogeneous porous media [3]. To test
the performance of each approach we compute fully-resolved benchmark solutions
and compare them with solutions sought within the respective modal approxima-
tion spaces. Aside from the relative success of both methods, DMD is shown to be
a much more accurate global model reduction technique when Galerkin-projection
is used to obtain the modal approximation.

2. Model equation

In this talk we consider the following parabolic equation that models single-phase
porous media flow:

(1)
∂u

∂t
−∇ ·

(
κ(x)∇u) = f(x) in Ω,

where Ω is a bounded domain, u is the pressure, f is an external forcing parameter,
and κ(x) is a high-contrast, isotropic permeability coefficient. In particular, the
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ratio κmax/κmin is assumed to be very large. A standard finite element discretiza-
tion, and implicit time marching scheme yields matrix equations of the form

(2) Uk+1 =
(
M +∆tA

)−1
MUk +

(
M +∆tA

)−1
∆tF,

whereMij =
∫
Ω φiφj is a mass matrix, Aij =

∫
Ω κ∇φi ·∇φj is the stiffness matrix,

Fi =
∫
Ω
fφi is the forcing vector, and U = [u1, u2, . . . , un]

T is the unknown solution
vector at each time step. We note that solutions from Eq. (2) will be used as the
fully-resolved benchmarks for comparison with the mode decomposition techniques
described next.

3. Mode decomposition methods

In this section we briefly describe the process of implementing proper orthogonal
decomposition (POD) and dynamic mode decomposition (DMD). For POD we
assume that a collection of solution “snapshots” is available in a matrix V ∈ R

n×m

where m≪ n:

V =
[
v(t1) v(t2) · · · v(tm)

]
.

We then solve the m×m eigenvalue problem V ∗V Xi = σ2
iXi in order to obtain

the POD modes that are defined by

(3) φPOD
i =

1

σi
V Xi.

For DMD we also assume that a sequence of snapshots written as

V N
1 = {v1, v2, . . . , vN},

is available. We note that the subscript of the snapshot matrix denotes the starting
point of the snapshots, and the superscript denotes the end point of the snapshots.
The main goal of DMD is to approximate the system dynamics by a linear mapping.
That is, we wish to write

(4) V N
1 = {v1, Av1, A2v1, . . . , A

N−1v1}.
For a sufficiently long sequence we assume that the solution at the N th step may be
written as vN = V N−1

1 a+r, where a = [a1, a2, . . . , aN−1] is an unknown coefficient
vector, and r is the residual. Combining the above equation with (4) we may then
write

AV N−1
1 = V N

2 = V N−1
1 S + reTN−1,

where S is of the form

S =




0 a1
1 0 a2

. . .
. . .

...
1 0 aN−2

1 aN−1



.

In order to obtain the final form of the above matrix, we solve the minimization
problem S = minS ‖V N

2 −V N−1
1 S‖.We emphasize that S is the matrix that will be
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Figure 1. Illustration of a high-contrast field (left), and reduced-
order model errors (right)

used to approximate the dynamics of the system. The solution of the minimization
problem may be written as

S =
(
(V N−1

1 )∗ V N−1
1

)−1
(V N−1

1 )∗ V N
2 ,

although more robust forms are also available [2]. We then solve the eigenvalue
problem SXi = λiXi, in order to compute the DMD modes given by

(5) φDMD
i = V N−1

1 Xi.

Then, using the modes from (3) or (5) we seek an approximate solution u(x, t) ≈
ũ(x, t) =

∑M
i=1 αi(t)φi(x) or Uk ≈ Ũk = Φαk and use the Galerkin projection

〈
φi(x),

∂u

∂t
−∇ ·

(
κ(x)∇u

)
− f

〉
= 0,

in order to obtain the following reduced-order model for the unknown modal co-
efficients

dα

dt
= −

(
Φ∗MΦ

)−1
Φ∗AΦα+

(
Φ∗MΦ

)−1
Φ∗F.

In the talk, the performance of the above model is assessed by considering a variety
of high-contrast permeability coefficients, and we offer a condensed set of results
in Fig. 1. We see from the figure that DMD offers a more accurate and stable
reduced-order model. We note that the results are representative of a variety of
other permeability cases.

References

[1] G. Berkooz, P. Holmes, J. L. Lumley, The proper orthogonal decomposition in the analysis
of turbulent flows, Annual Review of Fluid Mechanics 53 (1993), 321–575.

[2] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, Journal of
Fluid Mechanics 656 (2010), 5–28.

[3] M. Ghommem, V. Calo, Y. Efendiev, Mode decomposition methods for flows in high-contrast
porous media. Part I. Global approach, Submitted to JCP.



422 Oberwolfach Report 07/2013

Homogenization of High-Contrast Brinkman Flows

Donald Brown

(joint work with Guanglian Li, Yalchin Efendiev, Viktoria Savatorova)

Simulating porous media flows has a wide range of applications. Often, these
applications involve many scales and multi physical processes. A useful tool in the
analysis of such problems in that of homogenization. Which provides an averaged
description as a tool for circumventing the need for complicated simulation of the
fine scale features. In this talk, we present recent developments of homogenization
techniques in the application of flows in porous media. We present the ideas
for extending these techniques to high-contrast flows of Brinkman type [1]. In
addition, these ideas are connected by the modeling of multiscale fluid-structure
interaction problems by including slowly varying geometry into the coefficients of
permeability [2, 3]. Future work, including extension to coupling to deformable
media and Brinkman-Forchheimer models, are also discussed.

In modeling of highly-contrast porous media, the Brinkman model is often pro-
posed [4]. In areas of low permeability the diffusive behavior of the Darcy model
dominates. While in areas of high flow, a Stokesian model is more relevant. The
Brinkman model allows the incorporation of both of these phenomena. By adding
an inertial term to the Stokes equation to slow the flow in areas of low permeabil-
ity or from the other view, adding a viscous term to the mixed Darcy formulation
we obtain the high-contrast Brinkman model. The advantage of this model as
opposed to the Stokes-Darcy systems is the circumventing of complex interface
conditions known as the Beaver-Shaffman-Joseph interface conditions.

The homogenization of such a system is more natural because all the informa-
tion about the geometry is contained the coefficients . The other advantage of
using the Brinkman model is the model at certain scales is homogenization invari-
ant. Note that if we are at the pore-scale Stokes model and we homogenize we
arrive at a Darcy diffusion equation [2, 3]. However, as will be shown in the talk,
the Brinkman model homogenizes to Brinkman. Yielding a stable Brinkman-to-
Brinkman multiscale simulation platform.

We now state our main result presented in [1] and introduce the Brinkman
equations explicitly. Letting ε denote the characteristic scales, δ be the contrast
parameter, pε, uε the fine-scale pressure and velocity, the fine-scale Brinkman equa-
tion is given by

∇pε −∆uε + αδ
ε

(x
ε

)
uε = f in Ω,(1a)

div(uε) = 0 in Ω , uε on ∂Ω.(1b)

We assume periodic structure of the Brinkman coefficient αδ
ε, using two-scale

asymptotics, deriving cell equations, and estimating correctors as in [3] and refer-
ences therein, we will arrive at the homogenized Brinkman equation

∇p̄−∆ū+ α∗ū = f in Ω,(2a)

div(ū) = 0 in Ω , ū = 0 on ∂Ω.(2b)
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From the careful corrector estimates, we are able to obtain an understanding of
the convergence relationship between scales and contrast, a fact that is often lost
in theoretical two-scale convergence arguments.

The connection to FSI can be made by again applying it in the iterative FSI
framework. If we assume the deformation of the Brinkman domain, periodicity
will be broken and a two-scale slowly varying α(x, xε ) will arise. Future work
includes advanced algorithms, numerical schemes, and the extension to nonlinear
Forchheimer flow. The extension of these methods too nonlinear Forchheimer is
of particular interest to incorporate non-Darcy effect. It is given by

∇pε −∆uε + αδ
ε

(x
ε

)
uε + βδ

ε

(x
ε

)
|uε|uε = f in Ω,(3a)

div(uε) = 0 in Ω , uε = 0 on ∂Ω.(3b)

Applying corrector techniques to the above equation may be difficult and new
machinery may need to be developed.
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Multiscale Finite Volume Formulation for Compositional Flow in

Heterogeneous Porous Media

Hadi Hajibeygi

(joint work with Hamdi Tchelepi)

Recent advances in the multiscale finite volume (MSFV) framework for modeling
subsurface flows include iterative improvement of locally conservative approximate
solutions (See e.g. [1-4]). The cumulative effort lays a strength foundation for a
next-generation reservoir simulation tool. The MSFV developments have focused
on immiscible multiphase flows. Here, we extend the MSFV approach to com-
positional flows, whereby components partition across multiple fluid phases. For
compositional displacements, the sequential-implicit strategy using the natural-
variables formulation results in a nonsymmetric pressure equation with strong
dependence on the phase distribution. We present a new multiscale formulation
for nonlinear multi-component multiphase flow, with general mass transfer. Fol-
lowing Shank and Vestal [5], a symmetric pressure equation is obtained by adding
the component mass-conservation equations (total mass balance). Also in con-
trast to the existing multiscale approaches, the transport equations are cast in
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terms of the overall mass fraction. The new formulation is weakly sensitive to
the appearance or disappearance of fluid phases. The coupling between the dis-
crete equations of the flow and transport problems is performed in a consistent
and locally conservative manner, and that allows one to terminate the iterations
before tight residual tolerances are reached. This mass-conservative property is
crucial for efficient modeling of compositional displacements in large heterogeneous
reservoirs. Numerical examples are provided to validate the consistency of the pro-
posed simulation strategy, and then to study the accuracy of the devised MSFV
formulation.

References

[1] P. Jenny, S. H. Lee, H. A. Tchelepi, Multi-scale finite-volume method for elliptic problems
in subsurface flow simulation, Journal of Computational Physics, 187 (2003) 47-67.

[2] H. Zhou, Algebraic Multiscale Finite-Volume Methods for Reservoir Simulation, PhD dis-
sertation, Stanford University, 2010.

[3] H. Hajibeygi, Iterative Multiscale Finite Volume Method for Multiphase Flow in Porous
Media with Complex Physics, PhD dissertation, ETH Zurich, 2011. doi: 10.3929/ethz-a-
006696714.

[4] Y. Wang, H. Hajibeygi, H. A. Tchelepi: Algebraic Multi-stage Multiscale Linear Solvers,
Proceeding of The 13th European Conference on the Mathematics of Oil Recovery, 10 - 13
September, 2012, Biarritz, France.

[5] G. Shank and C. Vestal. Practical techniques in two-pseudocomponent black-oil simulation.
SPE Reservoir Engineering, 4(2):244–252, 1989.

Generalized Multiscale Finite Element Methods

Yalchin Efendiev

In this talk, we propose a general approach called Generalized Multiscale Finite
Element Method (GMsFEM) for performing multiscale simulations for problems
without scale separation over a complex input space. As in multiscale finite ele-
ment methods (MsFEMs), the main idea of the proposed approach is to construct
a small dimensional local solution space that can be used to generate efficient and
accurate approximation to the multiscale solution with a potentially high dimen-
sional input parameter space. In the proposed approach, we present a general
procedure to construct the offline space that is used for a systematic enrichment
of the coarse solution space in the online stage. The enrichment in the online stage
is performed based on a spectral decomposition of the snapshot space consisting of
all plausible functions in the space. In the online stage, for any input parameter,
a multiscale space is constructed to solve the global problem on a coarse grid. The
online space is constructed via a spectral decomposition of the offline space and by
choosing the eigenvectors corresponding to the largest eigenvalues. In this talk, we
discuss the use of oversampling and discontinuous Galerkin coupling mechanisms.
The computational saving is due to the fact that the construction of the online
multiscale space for any input parameter is fast and this space can be re-used for
solving the forward problem with any forcing and boundary condition. Compared
with the other approaches where global snapshots are used, the local approach that
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we present in this paper allows us to eliminate unnecessary degrees of freedom on
a coarse-grid level. We present various examples and some numerical results to
demonstrate the effectiveness of our method.

MLMCMC – Multilevel Markov Chain Monte Carlo

Robert Scheichl

(joint work with Christian Ketelsen, Aretha Teckentrup, Panayot Vassilevski)

In this talk we address the problem of the prohibitively large computational cost of
existing Markov chain Monte Carlo (MCMC) methods for large–scale applications
with high dimensional parameter spaces, e.g. uncertainty quantification in porous
media flow. We propose a new multilevel Metropolis-Hastings algorithm, and give
an abstract, problem dependent theorem on the cost of the new multilevel estima-
tor based on a set of simple, verifiable assumptions. For a typical model problem
in subsurface flow, we then provide a detailed analysis of these assumptions and
show significant gains over the standard Metropolis-Hastings estimator.

The parameters in mathematical models for many physical processes are often
impossible to determine fully or accurately, and are hence subject to uncertainty.
It is of great importance to quantify the uncertainty in the model outputs based
on the (uncertain) information that is available on the model inputs. A popular
way to achieve this is stochastic modelling. Based on the available information, a
probability distribution (the prior in the Bayesian framework) is assigned to the
input parameters. If in addition, some dynamic data (or observations) related to
the model outputs are available, it is possible to reduce the overall uncertainty and
to get a better representation of the model by conditioning the prior distribution
on this data (leading to the posterior). In most situations, however, the posterior
distribution is intractable in the sense that exact sampling from it is unavailable.
One way to circumvent this problem, is to generate samples using a Metropolis–
Hastings type MCMC approach [9], which consists of two main steps: (i) given the
previous sample, a new sample is generated according to some proposal distribu-
tion, such as a random walk; (ii) the likelihood of this new sample (the data fit) is
compared to the likelihood of the previous sample. Based on this comparison, the
proposed sample is then either accepted and used for inference, or it is rejected
and we use instead the previous sample again, leading to a Markov chain.

A major problem with MCMC is the high cost of the likelihood calculation
for large-scale applications, since it commonly involves the numerical solution of
a partial differential equation (PDE) with highly varying coefficients (for accu-
racy reasons usually) on a very fine spatial grid. Due to the slow convergence
of Monte Carlo averaging, the number of samples is also large and moreover, the
likelihood has to be calculated not only for the samples that are eventually used
for inference, but also for the samples that end up being rejected. Altogether,
this leads to an infeasibly high overall complexity, particularly in the context of
high-dimensional parameter spaces, typical in realistic subsurface flow problems,
where the acceptance rate of the algorithm can be very low.
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We show here how the computational cost of the standard Metropolis-Hastings
algorithm can be reduced significantly by using a multilevel approach. This has
already proved highly successful in the context of standard Monte Carlo estimators
based on independent and identically distributed (i.i.d.) samples [7, 5], in partic-
ular for subsurface flow problems [3, 1, 2, 10]. The basic ideas are to exploit the
linearity of expectation, to introduce (in an unbiased way) a hierarchy of computa-
tional models that are assumed to converge (as the model resolution is increased)
to some limit model (e.g. the original PDE), and to build estimators for differ-
ences of output quantities instead of estimators for the quantities themselves. In
that way each individual estimator will either (i) have a smaller variance, since the
differences of the output quantities from two consecutive models go to zero with
increased model resolution, or (ii) require significantly less computational work
per sample, if the model resolution is low. Either way the cost of an individual
estimator is significantly reduced, easily compensating for the extra cost of having
to compute L estimators instead of one, where L is the number of levels.

However, the application of the multilevel approach in the context of MCMC is
not straightforward. The posterior distribution, which depends on the likelihood,
has to be level-dependent, since otherwise the cost on all levels is dominated by the
evaluation of the likelihood in the finest model leading to no real cost reduction
on the coarser levels. Instead, and in order to avoid introducing extra bias in the
estimator, we construct two parallel Markov chains {θnℓ }n≥0 and {Θn

ℓ−1}n≥0 on
levels ℓ and ℓ − 1 each from the correct posterior distribution on the respective
level. The coarser of the two chains is constructed using the standard Metropolis–
Hastings algorithm, for example using a (preconditioned) random walk. The main
innovation is a new proposal distribution for the finer of the two chains {θnℓ }n≥0.
A similar two-level proposal distribution has been investigated before in [4], but
only for standard single-level Metropolis-Hastings.

Let us describe the new algorithm for the following model problem of stationary,
single phase flow in a porous medium:

−∇ · (k(x, ω)∇p(x, ω)) = f(x), in D ⊂ R
d,(1)

subject to the Dirichlet boundary condition p(ω, x) = p0(x) on ∂D, with a lognor-
mal distribution for the input random field, the permeability k(x, ω), with covari-
ance function C(x, y) = σ2exp(−‖x − y‖1/λ). We discretise (1) using standard,
continuous, piecewise linear finite elements (FEs) on a sequence of grids {Tℓ}ℓ≥1,
with mesh width hℓ = h02

−ℓ, and we sample from the input random field on level
ℓ using a truncated Karhunen-Loève (KL) expansion of log k,

(2) kℓ(θℓ(ω), x) = exp
( Rℓ∑

j=1

√
µjφj(x)ξj(ω)

)
,

with Rℓ terms. The KL-eigenpairs (µj , φj) are known explicitly for the above
(exponential) covariance function C(x, y). The prior of our model on level ℓ is

thus the Rℓ-dimensional random vector θℓ = (ξj)
Rℓ

j=1 with multivariate standard

normal N(0, I) distribution Pℓ. Using Bayes’ Theorem, the posterior distribution,
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conditioned on observations Fobs of some functional F(p) of the PDE solution, is

(3) πℓ(θℓ) = P(θℓ|Fobs) ∝ Lℓ(Fobs|θℓ)Pℓ(θℓ).

with an (in general) intractable normalising constant PF (Fobs). The data fit is
modelled to be Gaussian, i.e. Lℓ(Fobs|θℓ) ∝ exp

(
− ‖Fobs − F(pℓ(θℓ))‖2/(2σ2

F )
)
,

where pℓ is the PDE solution on Tℓ and σ2
F is the fidelity. The output quantity of

interest is the expected value of another functional Q = G(p) of the PDE solution.
We start by choosing a tolerance ε > 0 and a grid TL, L ∈ N, such that the bias

|EπL
[Q −QL]| ≤ ε/

√
2, where Qℓ = G(pℓ). Now, as indicated, we use linearity of

expectation to define the following unbiased multilevel estimator for EπL
[QL]:

(4) Q̂ML
L = 1

N1

N1∑

n=1

Q1(θ
n
1 ) +

L∑

ℓ=2

1
Nℓ

Nℓ∑

n=1

Qℓ(θ
n
ℓ )−Qℓ(Θ

n
ℓ−1).

The two Markov chains {θnℓ }n≥0 and {Θn
ℓ }n≥0, for 1 ≤ ℓ ≤ L − 1, are indepen-

dent, but drawn from the same posterior distribution πℓ. Clearly, the multilevel
estimator coincides with the standard MCMC estimator on level L (in the limit
as N1, . . . , NL → ∞), since all other terms cancel.

All the Markov chains {θnℓ }n≥0 and {Θn
ℓ }n≥0 in (4) are constructed via the

following (standard) Metropolis-Hastings algorithm (for details see [9, 8]):

Algorithm 1. Choose θ0 (from the prior P or from some “burnt-in” chain)

1. Given θn, generate a new proposal θ′ from a proposal distribution q(θ′|θn)
2. Evaluate α(θ′|θn) = min

{
1,
π(θ′) q(θn|θ′)
π(θn) q(θ′|θn)

}
.

3. Set θn+1 =

{
θ′ with probability α(θ′|θn),
θn with probability 1− α(θ′|θn).

In practice this is randomised by averaging over several such chains on each level.
For the “coarse” chains {θn1 }, {Θn

1}, . . . , {Θn
L−1} we use a standard proposal

distribution q = qRWℓ based on a preconditioned random walk [6].
The important new ingredient is a novel two-level proposal distribution q = qTL

ℓ

for the fine chains {θn2 }, . . . , {θnL}. We want the chains {θnℓ } and {Θn
ℓ−1} to be

close, so that the variance of Qℓ(θ
n
ℓ )−Qℓ(Θ

n
ℓ−1) is small and thus the variance of

the estimator on level ℓ in (4) is small. To ensure this, we use θ′ℓ = [Θn+1
ℓ−1 , θ

′
ℓ,F ],

where θ′ℓ,F contains the last Rℓ − Rℓ−1 (“fine”) components of θ′ℓ that are not
active on level ℓ − 1 and is obtained again by a random walk from θnℓ,F . It turns

out that qTL
ℓ is computable. It depends on the acceptance probability for Θn+1

ℓ−1 ,
and so it follows via some algebra that the two-level acceptance probability is

(5) αTL
ℓ (θ′ℓ|θnℓ ) = min

{
1,
πℓ(θ

′
ℓ) πℓ−1(θnℓ,C)

πℓ(θnℓ )π
ℓ−1(Θn+1

ℓ−1 )

}
,

where θnℓ,C denotes the first Rℓ−1 (“coarse”) components of θnℓ .

For linear (or Fréchet differentiable) functionals F and G we have the following
theoretical results. The first lemma is a consequence of the decay, as j → ∞, of
the KL-eigenvalues µj in (2).
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Lemma 0.1 ([8, Theorem 4.6]). Let Rℓ & h−2
ℓ . Then all finite moments of

1− αTL
ℓ (θ′ℓ|θℓ) are O(h1−δ

ℓ−1), for any δ > 0.

This means that on the finer levels we accept almost all samples. Using this
together with the theory for standard Multilevel MC based on i.i.d. samples in
[2, 10], it is possible to establish the following main result.

Theorem 0.1 ([8, Thm. 4.1 & 4.8]). For any ε, δ > 0 and {θ0ℓ}Lℓ=1 with πℓ(θ
0
ℓ ) > 0,

we have limmin{Nℓ}→∞ Q̂ML
L = EπL [QL] and there exists L ∈ N, (Nℓ)

L
ℓ=1 ∈ N

L s.t.

(6) EML

[
(Q̂ML

L − EπL [Q])2
]
≤ ε2 and Cost(Q̂ML

L ) = O(ε−(d+1)−δ),

where EML[·] is expectation w.r.t. the joint distribution of all the chains in (4).

Note that in comparison, the standard Metropolis-Hastings algorithm with qRWL

instead of qTL
L (but with the same L so that the bias is again less than ε/

√
2) has an

ε-cost of O(ε−(d+2)−δ), i.e. a whole power of ε more than the multilevel approach.
The numerical experiments for d = 2 in [8] confirm all these theoretical results.

In fact, in practice it seems that (at least in the pre–asymptotic phase) the cost
seems to grow only like O(ε−d) and the absolute cost is between 10 and 100 times
lower than for the standard estimator, which is a vast improvement and brings the
cost of the multilevel MCMC estimator down to a similar order than the cost of
standard multilevel MC estimators based on i.i.d. samples. This provides real hope
for practically relevant MCMC analyses for many large scale PDE applications.

Note also that there is nothing special about the model problem above and that
the algorithm is applicable in any other MCMC application, provided the input
parameters can be ordered according to their “importance” for the functionals F
and G. In [8, Theorem 3.5] we formulate the above theoretical results in abstract
terms and show that under certain assumptions – that need to be verified for any
new application – the multilevel estimator always leads to a reduction in the ε-cost
over the standard Metropolis-Hastings algorithm.
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