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Introduction by the Organisers

The meeting ‘Stochastic Analysis for Poisson Point Processes: Malliavin Cal-
culus, Wiener-Itô Chaos Expansions and Stochastic Geometry’ organised by Gio-
vanni Peccati and Matthias Reitzner, was held in Oberwolfach from February 10
to February 15, 2013. It was attended by 16 participants, roughly half of them
working in stochastic analysis on Poisson point processes, the others working in
stochastic geometry; 5 were younger participants. The most important part of the
program consisted of informal discussions between participants of the two different
groups for initiating new research cooperations on the border between stochastic
analysis and stochastic geometry.

The official program involved 7 long lectures (composed of two connected one
hour talks), and 9 one hour lectures. We now provide a short description of the
contributions.
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Daniel Hug and Mathew Penrose presented old and new problems from sto-
chastic geometry and random graphs, with emphasis on recent developments.
Christoph Thäle reported on modern results for random mosaics, an extremely
important area at the heart of stochastic geometry.

Nicolas Privault and Laurent Decreusefond provided a very inspiring introduc-
tion to the Malliavin calculus for point processes and moment identities. Several
connections were made with optimal transport and the general theory of deter-
minantal point processes. These two topics are actually among the most active
of modern stochastic analysis: it is reasonable to expect that the workshop will
stimulate new research in these directions. Giovanni Peccati provided an accessi-
ble introduction to the Stein’s and Chen-Stein method, as well as to their many
applications to limit theorems on the Poisson space. Mark Podolskij gave an inter-
esting talk on his recent research on limit theorems for ambit processes. The use
of Malliavin calculus for Lévy processe and general completely random measures
was discussed by Frederic Utzet in his talk on multiple Stratonovich integrals and
the Hu-Meyer formula.

One should note that many of these talks aimed at generalising the existing
tools of stochastic analysis on the Poisson space to more general point processes.
This should be of high importance for future applications in stochastic geometry.
Indeed, geometric applications often require more flexible models than just Poisson
point processes.

One of the principal emphasis of the workshop was on limit theorems where
the error term and the speed of convergence is described in terms of Malliavin
operators. Domenico Marinucci reported on his recent work (jointly with Duras-
tanti and Peccati) on limit theorems for Wavelet Coefficients of Spherical Poisson
Fields. Raphaël Lachièze-Rey provides an ideal introduction to limit theorems for
U -statistics associated with marked point processes, together with a clear presen-
tation of several powerful new results in the domain (this is connected to joint
work with G.Peccati). Solesne Bourguin spoke about mixed limits on the Pois-
son space. This is very recent work (jointly with Peccati) offering a possibility
to prove far-reaching multivariate limit theorems, which automatically show the
asymptotic independence of the coordinates of the investigated random vector.

Günter Last gave talks about joint work with Hug, Penrose and Schulte on the
covariance structure of the intrinsic volumes of the Boolean model. This has been
out of reach for many years and could be described in full generality only very
recently using the Malliavin calculus, thus providing a breakthrough in stochastic
geometry.

Ilya Molchanov and Sergei Zuyev spoke about their work on variational cal-
culus for Poisson processes. This was published ten years ago and now turns
out to fit perfectly into the framework of Malliavin calculus. Further interesting
applications of stochastic analysis in stochastic geometry have been described by
Matthias Schulte who presented his central limit theorems for the Poisson-Voronoi
approximation, and Matthias Reitzner who described recent results for the disk



Mini-Workshop: Stochastic Analysis for Poisson Point Processes 485

graph. This last talk also displayed an inspiring discussion about an important
open question, namely how to prove effective concentration inequalities for non-
Lipschitz functionals on the Poisson space.
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Abstracts

From processes of flats to random tessellations and from particle

processes to Boolean models

Daniel Hug

The aim of these two talks is to provide an introduction to some basic models of
stochastic geometry in the framework of Poisson processes. These models will be
relevant for subsequent talks. We begin by recalling the notion of a general Poisson
process without requiring the intensity measure to be diffuse. A ubiquitous tool
and key result in this context is J. Mecke’s characterization of Poisson processes,
along with a multivariate extension which holds for Poisson processes. Moreover,
we indicate by several examples throughout the talks how these results turn out
to be useful.

Then we explore the effect of invariance assumptions on geometric point pro-
cesses (see [6]). In the case of a stationary process of k-flats, for instance, the
intensity measure decomposes partly, which has useful consequences for station-
ary Poisson processes of flats. Then we describe the intensity measure of the
section process of a stationary (but not necessarily isotropic) process of flats with
a fixed subspace. Moreover, we analyze the intersection processes of a given order
for a stationary Poisson process of hyperplanes. Then we indicate the connection
to recent work on asymptotic variances and central limit theorems obtained by
the Malliavin-Stein method (see [2, 3, 4]). In a somewhat dual situation, the no-
tion of proximity is recalled, which was originally introduced by R. Schneider [5]
and which quantifies how dense the flats in a stationary Poisson random field of
k-flats are, if k is smaller than half the dimension of the space (so that almost
surely any two flats in a realization will not intersect each other). This notion has
been further explored in [7], recent work in progress with Ch. Thäle and W. Weil
investigates related inverse problems, that is, the reconstruction of the direction
distribution of a process of flats from the direction distribution of an associated
segment process.

A hyperplane process induces a hyperplane tessellation, and a point process
leads to a Voronoi tessellation in a canonical way. We provide a common framework
to study the zero cell of the former and the typical cell of the latter in a Poisson
setting, that is, for a (not necessarily stationary) Poisson process of hyperplanes
and for a stationary Poisson point process. Then we describe some of the results
of recent joint work with Julia Hörrmann [1], on the volume of the zero cell in
arbitrary dimensions, with a particular emphasis on high-dimensional asymptotics.
The results described here include sharp bounds for the variance of the volume
of the respective random cell. In addition, we highlight the connection to the
hyperplane conjecture.

In the second talk, we start with a description of the intensity measure of a
stationary particle process (see [6]). Then we recall the notion of a density of
a geometric functional for a given stationary particle process, and we provide
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alternative descriptions for theses densities. The union set of a Poisson particle
process is a Boolean model. It is well known that a Boolean model can also be
obtained from a Poisson point process by independent marking. We describe how
first order properties, that is, relations between mean values for functionals of
a Boolean model in a given observation window and densities of the underlying
Poisson particle process can be derived. Here methods of integral geometry are
crucial. In particular, local (measure-valued) versions of classical functionals such
as the intrinsic volumes and mixed functionals and measures are required. This
topic will be described in more detail in a subsequent talk by Günter Last who
will report on joint recent work (by D. Hug, G. Last and M. Schulte) concerning
second order properties (covariances of geometric functionals) and central limit
theorems. These results are again based on the Malliavin-Stein method, but also
on new applications of the aforementioned integral geometric methods.

References

[1] J. Hörrmann, D. Hug, On the volume of the zero cell of a class of isotropic Poisson hyper-
plane tessellations, arXiv:1208.3325
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Random Graphs

Mathew D. Penrose

Two survey talks on random graphs. The first talk discussed the Erdös-Rényi
model G(n, p). We described threshold functions for the following: existence of a
subgraph isomorphic to a specified finite graph; non-existence of isolated vertices;
connectivity. Also Poisson limit theorems for number of copies of a specified finite
graph, and for number of isolated vertices. Also discussed giant component/phase
transition phenomenon, and two-point concentration phenomenon for the maxi-
mum degree and for the clique number.

The second talk described graphs created on a randomly scattered set of vertices
in Euclidean d-space, by placing an edge between any two vertices at most unit
distance apart. When the underlying set of vertices is an infinite homogeneous
Poisson process, this graph is called the Gilbert graph; when it is a finite set of
points in a cube, it is called the random geometric graph. We discuss basic notions
notions for the Gilbert graph such as cluster size distribution, and phase transition
for infinite components. We related these notions to asymptotic properties of the
random geometric graph.
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Various limit theorems for ambit processes

Mark Podolskij

(joint work with Ole E. Barndorff-Nielsen, Andreas Basse-O’Connor, Jose
Manuel Corcuera, Mikko Pakkanen)

In a recent paper Barndorff-Nielsen and Schmiegel [3] introduced the class of ambit

processes as a time-spatial model for the velocity field in a turbulent flow:

Xt(z) = µ+

∫

At(z)

g(ξ, s, z, t)σs(ξ)L(dξ, ds) +

∫

Dt(z)

q(ξ, s, z, t)as(ξ)dξds,

where At(z) and Dt(z) are ambit sets, g and q are deterministic weight functions,
b represents the intermittency field, a is the drift field and L denotes a Lévy
basis. This type of models has a very rich probabilistic structure and a direct
physical interpretation. The stochastic field X represents the velocity, while σ2 is
the energy dissipation under suitable normalization. The ambit set At(z) (resp.
Dt(z)) determines the influence area of the intermittency field σ (resp. the drift
field a) on the velocity Xt(z). A particular choice of models for g, q, a, b may
reproduce the stylized facts of a turbulent flow, such as stationarity, isotropy,
skewness, scaling behaviour and aggregational Gaussianity.

In this work we are interested in determining the asymptotic behaviour of cer-
tain high frequency functionals for various subclasses of the introduced ambit
fields. We will see that the limit theory strongly depends on the weight function g
(in the following we ignore the Lebesgue drift of the original process) and on the
driving motion L.

We start with a Brownian semistationary process without drift that are defined
as

Xt = X0 +

∫ t

−∞

g(t− s)σsdWs,

where σ is a smooth stochastic process and the function g has the representation

g(x) = xαf(x), α ∈ (−1/2, 1/2)

such that f : [0,∞) is continuously differentiable function with exponential decay
and f(0) 6= 0. Such processes have a small scale behaviour similar to that of the
fractional Brownian motion BH with a Hurst parameter H = α+ 1/2 ∈ (0, 1). In
the following we will study the asymptotic behaviour of the functional

V (X)nt =

[t/∆n]∑

i=1

|∆n
i X |2, ∆n

i X = Xi∆n
−X(i−1)∆n

as ∆n → 0, although more general statistics may be considered (cf. [1, 2]). Setting

Gt :=
∫ t

−∞ g(t − s)dWs we define the scaling constant τ2n := E[(Gt+∆n
− Gt)

2].

Our first result has been proved in [1]:

∆nτ
−2
n V (X)nt

ucp
−→

∫ t

0

σ2
sds.
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The associated stable central limit theorem, which holds for α ∈ (−1/2, 0] and if
σ is Hölder continuous of order γ > 1/2, is as follows:

∆−1/2
n

(
∆nτ

−2
n V (X)nt −

∫ t

0

σ2
sds
)

dst−→ ρ

∫ t

0

σ2
sdW

′
s,

where W ′ is a new Brownian motion (independent of everything) and ρ is a certain
constant that depends only on α. This result is proved via a combination of
Malliavin calculus and some techniques from stochastic integration. We remark
that for general weight function g more complicated limits may appear. In general,
we may expect law of large numbers of the type

∆nτ
−2
n V (X)nt

ucp
−→

∫

R+

(∫ t−θ

−θ

σ2
sds

)
π(dθ),

where π is a probability measure on R+. This situation appears when g has many
singularities.

For processes driven by a pure jump Lévy motion the limiting behaviour of
the statistic V (X)nt is completely different. Let us consider a simple Lévy moving
average process

Xt = X0 +

∫ t

−∞

g(t− s)dLs,

where L is a β-stable process with β ∈ (0, 2) or a compound Poisson process.
Again the function g is assumed to be of the form

g(x) = xαf(x), α ∈ (0, 1),

with f : R+ → R being a smooth function with exponential decay and f(0) 6= 0.
In this case the process X is continuous, but it is not a semimartingale. We
obtain the following result: Assume that L is a compound Poisson process and
α ∈ (0, 1/2), then we obtain for any t > 0

∆−2α
n V (X)nt

dst−→ f2(0)
∑

k: Tk∈[0,t]

|∆LTk
|2

(
∞∑

l=1

|(l − Uk)
α
+ − (l − 1− Uk)

α
+|

2

)
,

where (Tk) are jump times of L, ∆LT denotes the jump size at time T and (Uk)k≥1

is a sequence of iid U([0, 1])-distributed random variables. We conjecture that
similar asymptotic result holds for a rather general pure jump semimartingale
driver (given sufficient conditions).

Finally, we present first limit theory for the case of continuous ambit fields
observed along a curve. We consider a two dimensional ambit field (Xt)t∈R2 :

Yt1,t2 =

∫ t1

−∞

∫ t2

−∞

g(t1 − s1, t2 − s2)σs1,s2W (ds1, ds2),

where W denotes a white noise process and g : (R+)2 → R is given as

g(x) = ‖x‖αf(x), α ∈ (−1, 0).
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Again f : (R+)2 → R is assumed to be a smooth function with exponential decay
and f(0) 6= 0. We observe the random field Y along a curve z : [0, t] → R2,
z(s) = (z1(s), z2(s)), i.e.

Xs = Yz(s).

Furthermore, we assume that z′k, k = 1, 2, has a constant sign. In this framework
we obtain the following asymptotic result: Assume that α ∈ (−1,−1/2), then it
holds that

∆−1−α
n V (X)nt

ucp
−→

∫ t

0

φ2
sσ

2
sds,

where φs describes a certain space deformation; in particular, it depends on z′ and
f(0). Furthermore, it holds that

∆−1/2
n

(
∆−1−α

n V (X)nt −

∫ t

0

φ2
sσ

2
sds

)

dst−→ λ

∫ t

0

φ2
sσ

2
sdW

′
s,

where W ′ is a Brownian motion independent of everything and λ is a known
constant.
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Combinatorics, moments and quasi-invariance for Poisson random

integrals

Nicolas Privault

1. Moment identities

Consider a Poisson point process with σ-finite diffuse measure σ(dx) on a σ-
compact metric space X . The underlying probability space Ω is a space of con-
figurations whose elements ω ∈ Ω are identified with the Radon point measures

ω =
∑

x∈ω

ǫx, where ǫx denotes the Dirac measure at x ∈ X and the Poisson proba-

bility measure with intensity σ on Ω is denoted by πσ. The isometry formula for
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the multiple compensated Poisson stochastic integrals Ik(fk) of symmetric square-
integrable functions fk : Xk → R in k variables shows that

(1) E
[
Ik(f

⊗k)F
]
= E

[∫

Xk

f(x1) · · · f(xk)Dx1
· · ·Dxk

Fσ(dx1) · · ·σ(dxk)

]

where F : Ω → R is a finite sum of multiple stochastic integrals and Dx is the
finite difference operator defined by

DxF := ε+x F (ω)− F (ω) = F (ω ∪ {x})− F (ω), ω ∈ Ω, x ∈ X.

Next, using the relation

E(g) := exp

(
−

∫ ∞

0

g(x)dx

)∏

x∈ω

(1 + g(x)) =

∞∑

n=0

1

n!
In(g

⊗n)

with g = ef − 1 we find, by the Faà di Bruno formula applied to the exponential
function,

∞∑

n=0

1

n!
E

[
F

(∫

X

fdω

)n]
= E[Fe

∫
X

fdω] = e
∫
X
(ef−1)dσE

[
FE(ef − 1)

]

=

∞∑

k=0

1

k!

∫

Xk

(ef(x1) − 1) · · · (ef(xn) − 1)E
[
ε+
xk
F
]
σ(dx1) · · ·σ(dxk)

=

∞∑

n=0

1

n!

∑

P1,...,Pk⊂{1,...,n}

∫

Xk

f |P1|(x1) · · · f
|Pk|(xk)E

[
ε+
xk
F
]
σ(dx1) · · ·σ(dxk),

with ε+
xk

= ε+x1
· · · ε+xk

, for F : Ω → R a bounded random variable, where the sum
runs over all partitions {P1, . . . , Pk} of {1, . . . , n}, hence the relation

E

[
F

(∫

X

fdω

)n]

=
∑

P1,...,Pk⊂{1,...,n}

∫

Xk

f |P1|(x1) · · · f
|Pk|(xk)E

[
ε+
xk
F
]
σ(dx1) · · ·σ(dxk),

which extends as the moment identity

E

[(∫

X

ux(ω)ω(dx)

)n]
=

∑

P1,...,Pk

E

[∫

Xk

ε+
xk
(u|P1|

x1
· · ·u|Pk|

xk
)σ(dx1) · · ·σ(dxk)

]
,

(2)

for u(x, ω) a sufficiently integrable random process on X ×Ω, cf. Prop. 3.1 of [6].
From the relation

ε+
xk
(ux1

· · ·uxk
) = ε+x1,...,xk

(ux1
· · ·uxk

) =
∑

Θ⊂{1,...,k}

DΘ(ux1
· · ·uxk

),
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where DΘ = Dx1
· · ·Dxl

when Θ = {1, . . . , l}, we deduce that

E

[(∫

X

ux(ω)ω(dx)

)n]
=

∑

P1,...,Pk

E

[∫

Xk

ε+
xk
(u|P1|

x1
· · ·u|Pk|

xk
)σ(dx1) · · ·σ(dxk)

]

=
∑

P1,...,Pk

∑

Θ⊂{1,...,k}

E

[∫

Xk

DΘ(u
|P1|
x1

· · ·u|Pk|
xk

)σ(dx1) · · ·σ(dxk)

]
.

Under the cyclic conditionDx1
ux2

· · ·Dxk
ux1

= 0 we getDx1
· · ·Dxk

(ux1
· · ·uxk

) =
0, x1, . . . , xk ∈ X , ω ∈ Ω, cf. [3], [5], and provided in addition that the moment∫
X uk(s)σ(ds) is deterministic, k ≥ 1, a decreasing induction shows that

E

[(∫

X

ux(ω)ω(dx)

)n]
=

∑

P1,...,Pk

∫

Xk

u|P1|
x1

· · ·u|Pk|
xk

σ(dx1) · · ·σ(dxk), n ≥ 1,

i.e.
∫
X
ux(ω)ω(dx) has a compound Poisson distribution. See [7] for related con-

sequence for the mixing of random transformations of Poisson measures. Such
results have been recently extended to point processes with Papangelou intensities
in [1].

2. Quasi-invariance

Formula (1) can be extended to indicator functions 1A(ω) over random sets
A(ω), as

E
[
FIn(1

⊗n
A )
]
= E [FCn(ω(A), σ(A))](3)

= E

[∫

Xn

Dx1
· · ·Dxn

(
F

n∏

p=1

1A(xp)

)
σ(dx1) · · ·σ(dxn)

]
,

via a pathwise extension of the multiple stochastic integral, by application of
Stirling inversion to (2) and to the Charlier polynomial Cn(x, λ) of order n ∈ N

with parameter λ > 0, cf. [4]. As a consequence, if τ : Ω × X → Y satisfies
the cyclic condition Dt1τ(ω, t2) · · ·Dtkτ(ω, t1) = 0, t1, . . . , tk ∈ X , ω ∈ Ω, for all
k ≥ 1, and g : Y → R is sufficiently integrable we get

E

[
e−

∫
X

g(τ(ω,x))σ(dx)
∏

x∈ω

(1 + g(τ(ω, x)))

]
= 1.

Denoting by τ∗ : Ω → Ω the mapping defined by shifting configuration points
according to τ , this implies the non-adapted Girsanov identity

E

[
F (τ∗(ω))e

−
∫
X

φ(ω,x)σ(dx)
∏

x∈ω

(1 + φ(ω, x))

]
= E[F ], F ∈ L1(Ω),

provided τ(ω, ·) : X → X is invertible on X for all ω ∈ Ω, and the density

φ(ω, x) :=
dτ−1

∗ (ω, ·)σ

dσ
(x) − 1, x ∈ X,
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exists for all ω ∈ Ω. If τ∗ : Ω → Ω is invertible then the random transformation
τ−1
∗ : Ω → Ω is absolutely continuous with respect to πσ , with density

(4)
dτ−1

∗ πσ

dπσ
= e−

∫
X

φ(ω,x)σ(dx)
∏

x∈ω

(1 + φ(ω, x)).

3. Examples and stopping sets

Examples can be constructed when A(ω) is a stopping set, i.e. a random set
such that {A ⊂ U} ∈ FK for all U ⊂ K, where FK denotes the σ-algebra gener-
ated by points inside K, cf. [8] and Def. 2.27 in [2]. In this case (3) shows that
E[In(1

⊗n
A )] = 0. Examples of transformations τ(ω, x) can be defined by leaving

A(ω) invariant and by shifting x 7→ τ(ω, x) depending only on those points of ω
that belong to A(ω). Specific examples include A the smallest ball containing the
n points closest to the origin when X = Rd, or A = [0, Tn] when X = R+ and Tn

is the nth Poisson jump time, and A the complement of the open convex hull of
the points of ω that belong to the unit ball.
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Towards a Malliavin calculus for general point processes

Laurent Decreusefond

(joint work with I. Flint)

Malliavin calculus was initially conceived for the standard Brownian motion,
to prove that solutions of some stochastic differential equations do have a density
with respect to the Lebesgue measure. Later on, it was extended to Poisson point
processes [1, 9] and more general Gaussian processes [8, 11]. The generalization of
Itô integral it yielded, paved the way to anticipative calculus and integration with
respect to processes which are not semi-martingales like the fractional Brownian
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motion [3]. The differential structure inherited from these considerations appeared
to be very useful for Greeks computation in mathematical finance for instance [6].
More recently, there have been a tremendous activity around the application of
the Malliavin calculus main formula which is the integration by parts formula to
the Stein method. Combining the two approaches, it is possible to estimate finely
distances between some probability measures and Gaussian or Poisson measures
[2, 7]. In order to extend the applicability of this approach, it is thus important
to have integration by parts formula for some other processes. That is the object
of the present presentation.

In a recent paper [10], Privault gave some new formulas for the moments of any
order of stochastic integrals with respect to a Poisson process. These formulas
were the starting point of the following considerations. For a locally finite point
process of distribution µ, on a Polish space E, it is said to have a Papangelou
intensity if there exists c such that

∫

ΓE

∑

x∈ω

u(x, ω\x) dµ(ω) =

∫

ΓE

∫

E

u(x, ω) c(x, ω) dλ(x) dµ(ω),

where ΓE is the set of locally finite configurations over E, equipped with the vague
topology. We also introduce the compound Papangelou intensity ĉ: ĉ(x, ω) =
c(x, ω), ĉ(ν ∪ η, ω) = ĉ(ν, η ∪ ω) ĉ(η, ω). Informally, ĉ(ν, ω) is the probability to
observe ω∪ν given the configuration ω is already observed. Let us introduce a few
notations: For P = P1, · · · , Pk a partition of {1, · · · , n} into k subsets (whose
set is denoted by T k

n ),

uP(x, ω) =

k∏

l=1

∏

i∈Pl

ui(xl, ω).

In [5], we proved the following identity, valid for any F and uk sufficiently inte-
grable:

(1) E[F (ω)
n∏

k=1

∫
uk(y, ω)ω( dy)]

=

n∑

k=1

∑

P∈T k
n

E
[ ∫

Ek

F (ω ∪ x)uP (x, ω ∪ x)ĉ(x, ω)λ⊗(k)(dx)
]

where λ(dx) is the intensity measure: λ(A) = E[ω(A)]. A consequence of (1) is
the following identity: For any bounded function F on ΓE ,

(2) E[Fδ(u)] = E[

∫

E

DzF (ω)u(z, ω)c(z, ω) dλ(z)],

where D is the usual difference operator: For F : ΓE → R,

DF : E × ΓE −→ R

(x, ω) 7−→ DxF (ω) = F (ω ∪ x) − F (ω\x),
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and δ is a newly defined divergence operator: If E[
∫
|u(y, ω)| c(y, ω)λ(dy)] < ∞,

δ(u) =

∫
u(y, ω\y) dω(y)−

∫
u(y, ω) c(y, ω) dλ(y).

This extends the well known integration by parts formula for Poisson processes
(obtained by taking c ≡ 1), which is in fact a simple consequence of the Mecke
formula. Thus, (2) is the first step towards a Malliavin calculus for general point
processes. In particular, we proved a generalization of the Skorokhod isometry
formula:

E[δ(u)2] = E[

∫
u(y, ω)2c(y, ω) dλ(y)]

+E[

∫∫
Dyu(z, ω)Dzu(y, ω)ĉ({y, z}, ω) dλ(y) dλ(z)]

−E[u(z, ω)u(y, ω)

(
ĉ({y, z}, ω)− c(y, ω)c(z, ω)

)
dλ(y) dλ(z)]

:= A1 +A2 +A3.

A1 is the term we expect for an isometry formula. The term A2 does exist
for Poisson process but for u deterministic or satisfying the cyclicity condition
Dyu(z, ω)Dzu(y, ω) = 0, it vanishes. As to the term A3, it corresponds to the
term added by the correlation between the particles.

Another kind of gradient can be defined for point processes if E is a space with
a notion of differentiation, for instance E = Rd or a manifold. Then, for any
vector field v, we set

∇vf(

∫

E

h1 dω, · · · ,

∫

E

hk dω)

=

n∑

j=1

(∂j)f(

∫

E

h1 dω, · · · ,

∫

E

hk dω) 〈∇Ehj , v〉,

provided that f and the hk are sufficiently regular. For E = Rd, one can establish
an integration by parts formula which reads as

E[∇vF G] = −E[F ∇vG]

+E[F G

(∫
divλ v(x) + 〈∇E ln c(x, ω\x), v(x)〉 dω(x)

)
],

where divλ is the adjoint of the gradient on Rd with respect to the intensity
measure λ. At the opposite of the Gaussian case where there is only one gradient,
for point processes, there are two rather different gradients with complementary
properties. For instance, it is shown in [4] that a functional of configurations is
Lipschitz with respect to the total variation distance on the configuration space
whenever its discrete gradient is bounded, whereas a bounded differential gradient
induces that the functional is Lipschitz with respect to the Wasserstein distance
between configurations.
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Henri Poincaré (B) Probability and Statistics, 41:123–149, 2005.

[4] L. Decreusefond, A. Joulin, and N. Savy. Upper bounds on Rubinstein distances on con-
figuration spaces and applications. Communications on stochastic analysis, 4(3):377–399,
2010.

[5] Laurent Decreusefond and Ian Flint. Moment formulae for general point processes. Submitted
http://hal.archives-ouvertes.fr/hal-00753801, November 2012.

[6] E. Gobet and A. Kohatsu-Higa. Computation of Greeks for barrier and look-back options
using Malliavin calculus. Electron. Comm. Probab., 8:51–62 (electronic), 2003.

[7] I. Nourdin and G. Peccati. Normal Approximations with Malliavin Calculus: From Stein’s
Method to Universality. Cambridge University Press, 2012.

[8] D. Nualart. The Malliavin Calculus and Related Topics. Springer–Verlag, 1995.
[9] N. Privault. Stochastic analysis in discrete and continuous settings with normal martingales,

volume 1982 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2009.
[10] Nicolas Privault. Girsanov identities for poisson measures under quasi-nilpotent transforma-

tions. Annals of Probability, 40(3):1009–1040, 05 2012.
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Normal Approximations for Wavelet Coefficients on Spherical Poisson

Fields

Domenico Marinucci

(joint work with Claudio Durastanti, Giovanni Peccati)

A classical problem in asymptotic statistics is the assessment of the speed of con-
vergence to Gaussianity (that is, the computation of explicit Berry-Esseen bounds)
for parametric and nonparametric estimation procedures. In this area, an impor-
tant novel development is given by the derivation of effective Berry-Esseen bounds
by means of the combination of two probabilistic techniques, namely the Malliavin

calculus of variations and the Stein’s method for probabilistic approximations. The
fact that one can use Malliavin calculus to deduce normal approximation bounds
(in total variation) for functionals of Gaussian fields was first exploited in [5] –
where one can find several quantitative versions of the fourth moment theorem
for chaotic random variables proved in [7]. Lower bounds can also be computed,
entailing that the rates of convergence provided by these techniques are sharp in
many instances – see again [6].

In a recent series of contributions, the interaction between Stein’s method and
Malliavin calculus has been further exploited for dealing with the normal approx-
imation of functionals of a general Poisson random measure. These findings have
recently found a wide range of applications in the field of stochastic geometry –
see [1, 2, 3] for a sample of geometric applications.
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The purpose of this paper is to apply and extend the main findings of [8, 9] in
order to study the multidimensional normal approximation of the elements of the
first Wiener chaos of a given Poisson measure. Our main goal is to deduce bounds
that are well-adapted to deal with applications where the dimension of a given
statistic increases with the number of observations. This is a framework which
arises naturally in many relevant fields of modern statistical analysis; in particular,
our principal motivation originates from the implementation of wavelet systems on
the sphere. In these circumstances, when more and more data become available, a
higher number of wavelet coefficients is evaluated, as it is customarily the case when
considering, for instance, thresholding nonparametric estimators. We shall hence
be concerned with sequences of Poisson fields, whose intensity grows monotonically.
We then exploit the wavelets localization properties to establish bounds that grow
linearly with the number of functionals considered; we are then able to provide
explicit recipes, for instance, for the number of joint testing procedures that can
be simultaneously entertained ensuring that the Gaussian approximation may still
be shown to hold, in a suitable sense.
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Stein’s method on the Poisson space

Giovanni Peccati

I delivered two talks, concerning the connections between two powerful proba-
bilistic techniques, namely the Stein’s and Chen-Stein methods for probabilistic
approximations, and the Malliavin calculus of variations on the Poisson space. The
connection between these two topics was first developed on the Gaussian space by
I. Nourdin and myself (see the monograph [4]). The staple of the talks was the
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content of the papers [6, 7], where the Malliavin calculus on the Poisson space
(in a form due to Nualart and Vives [5]) was first combined with the Stein’s and
Chen-Stein methods, with specific emphasis on limit theorems for chaotic random
variables. I also discussed some of the recent developments obtained in [1, 2, 3],
where several applications in stochastic geometry have been developed. One im-
portant point developed in the talks is that the use of Malliavin calculus allows
one to deal quite easily with the asymptotic independence of random variables,
often achieving conclusions that are not obtainable by other techniques.
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Variational analysis of Poisson processes

Ilya Molchanov, Sergei Zuyev

In the two lectures we summarise the basic ideas about optimisation methods for
Poisson point processes.

Given a rather general phase space X , we consider the family of finite Poisson
process distributions. Given a functional F of configurations Π, we treat the
expectation EµF (Π) as a function f(µ) of a finite measure µ which is the intensity
measure of a corresponding Poisson point processes. Thus the domain of f is the
set M+ of (non-negative) finite measures which is a cone in the Banach space M

of all signed measures with a finite total variation norm. By explicitly developing
the expectation Eµ+ηF (Π) for η ∈ M such that µ + η ∈ M+ one can show that
under rather mild assumptions on F the function f is analytic. The corresponding
derivatives have explicit form, in particular,

Eµ+ηF −EµF =

∫

X

∆̄µ(x) η(dx) + o(‖η‖) ,

where δx is the Dirac measure concentrated on {x}. The function ∆̄µ(x) =
Eµ[F (Π+δx)−F (Π)] is called the expected first difference and has the meaning of
the gradient, [7]. Varying intensity measure allows us to establish Margulis-Russo
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type formula for Poisson process which has proved extremely useful, e.g., in perco-
lation theory, since it links the geometry and the probability in a nice form, [11].
Another application of the variation approach is the Gamma-type result according
to which the volume of a stopping set (a generalisation of a stopping time) given
the number of Poisson process points in it, has Gamma distribution under some
scalability condition, see [12].

Problem of finding an optimal distribution for a certain criterion could be for-
mulated as an abstract constrained optimisation problem on the Banach space M:
f(µ) → inf over µ ∈ M+ ∩ Å, where Å ⊆ M+. The first order optimality condition
involves characterising the tangent cone to the constrained set. This was done for
many practically interesting cases in [6]. In particular, if µ∗ is minimising EµF
over µ with a fixed total mass, then there exists u such that ∆̄µ∗(x) ≥ u for all
x ∈ X and ∆̄µ∗(x) = u µ∗-almost everywhere, see [7].

The second lecture concerns applications of variational methods, most impor-
tantly, the necessary condition for extremum. Consider approximation of convex
twice differentiable function g on [a, b] by means of a linear spline determined by
the values of g at points of a Poisson process Πµ on [a, b] with intensity measure µ.
The objective function f(µ) is the mean approximation error in L1-metric. The
expected first difference can be explicitly written as

∆̄µ(x) = −g(x)Eµ(r
−
x + r+x ) +Eµr

−
x Eµg(x+ r+x ) +Eµr

+
x Eµg(x− r−x ) ,

where r±x are distances from x to its left and right neighbours from Πµ. The
optimality condition over intensity measures µ with the fixed total mass a requires
that the expected first difference is a constant on the support of µ, and eventually
leds to a differential equation that is to be solved numerically.

However, considerably more interesting questions appear in the high intensity
setting, as the total mass a → ∞. The local nature of the expected first difference
makes it possible to transform the problem locally to its stationary counterpart in
a neighbourhood of x. Heuristically, this amounts to looking at the asymptotics
of r±x and f near x, so that ∆̄µ(x) ∝ a−3p(x)−3f ′′(x). Then we obtain that the

density of µ in the high intensity case should be proportional to (f ′′)1/3.
This heuristic idea can be formalised for Poisson processes in Rd using the

concept of stopping set, noticing that the first order difference depends on the
configuration through the corresponding stopping set. These tools can be easily
used to fid optimal Poisson approximation of convex sets by inscribed polytopes
and of multivariate convex functions by tangent planes and by triangulated Bezier
surfaces.

At the next step relationships to the corresponding deterministic problems are
explained using the example of optimal quantisation. The asymptotic behaviour
of errors is also determined locally using tessellations of the space (which in the
optimal quantisation example is the Voronoi tessellation), see [1, 2]. The optimal
quantisation setting is closely related to the clustering problem in statistics. In
this problem, replacing deterministic set of points with a Poisson process turns
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a non-convex optimisation problem into a convex one that is possible to solve ei-
ther asymptotically in the high intensity setting or numerically by the steepest
descent approach for any given total intensity. Its variant for optimal placement
of telecommunication stations has been considered in [7]. Note that the Poissoni-
sation of deterministic optimal quantisation problem has been studied in [3].

Finally, relations to optimisation issues in experimental design [5] and design
of random materials with required structural properties [4] are mentioned.
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Geometric functionals of the Boolean model: mean values, covariance

structure and beyond

Günter Last

(joint work with Daniel Hug, Matthias Schulte)

Let η be a stationary Poisson process on the space Kd of convex bodies in Rd, that
is, on the space of compact, convex subsets of Rd. All random objects occurring
in this talk are defined on an abstract probability space (Ω,F ,P). Stationarity
implies that the intensity measure Λ of η has to be translation invariant. We also
assume that Λ is locally finite, so that Theorem 4.1.1 in [9] implies that

Λ(·) = γ

∫∫
1{K + x ∈ ·}dxQ(dK).
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where the intensity γ is positive and finite and where Q is a probability measure
on Kd. We assume γ > 0. The Boolean model associated with η is defined by

Z :=
⋃

K∈η

K,

where we have identified η with its support. This is a fundamental model of sto-
chastic geometry and continuum percolation with many applications in materials
science and physics. Let Z0 denote a typical grain, that is, a random convex set
with distribution Q. Since Λ is locally finite, the mean values

vi := EVi(Z0), i ∈ {0, . . . , d},

are finite, where Vi(K), i = 0, . . . , d, are the intrinsic volumes of a convex body
K, or more generally of a set K in the convex ring Rd; see [9] for more detail.

In this talk we present a systematic mathematical treatment of second order
properties of the random vector (V0(Z∩W ), . . . , Vd(Z∩W )) of the intrinsic volumes
of Z, observed within the compact, convex windowW . More details and full proofs
will be given in [4]. The volume functional was first studied in [1, 6], while in [2]
Berry-Esseen bounds and large deviation inequalities were established. Volume
and surface were treated (in a more general setting) in [3]. A mathematical non-
rigorous approach to second moments of curvature measure with a very interesting
application to morphological thermodynamics was presented in [7].

Throughout we assume that the typical grain Z0 satisfies

ER(Z0)
3d < ∞,

where R(K) is the radius of the circumball of a convex set K. Our first result is
the existence of the asymptotic covariances

σi,j := lim
r(W )→∞

Cov(Vi(Z ∩W ), Vj(Z ∩W ))

Vd(W )
, i, j ∈ {0, . . . , d},

where r(W ) denotes the inradius of a convex set W . It turns out that this con-
vergence happens at rate r(W )−1. Moreover, the limits are given by

σi,j = γ

∞∑

n=1

1

n!

∫∫
V ∗
i (K1 ∩K2 ∩ . . . ∩Kn)(1)

V ∗
j (K1 ∩K2 ∩ . . . ∩Kn)Λ

n−1(d(K2, . . . ,Kn))Q(dK1),

where

V ∗
i (K) := E Vi(Z ∩K)− Vi(K), K ∈ Kd.

In proving these results we make crucial use of the explicit Fock space representa-
tion of Poisson functionals derived in [5].

Closely related with the asymptotic covariances are the numbers

ρi,j

:=γ
∞∑

n=1

1

n!

∫∫
Vi(K1 ∩ · · · ∩Kn)Vj(K1 ∩ · · · ∩Kn)Λ

n−1(d(K2, . . . ,Kn))Q(dK1).
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We show that

ρi,j =

∫
eγCd(x)Hi,j(dx), i, j ∈ {0, . . . , d},

where
Cd(x) := EVd(Z0 ∩ (Z0 + x)), x ∈ Rd,

is the mean covariogram of the typical grain, and where the Hi,j are finite measures
on Rd. These measures are derived from curvature measures associated with the
typical grain. The exact definition is not given here.

Define for any j ∈ {0, . . . , d − 1} and l ∈ {j, . . . , d} a polynomial Pj,l on Rd−j

of degree l − j by

Pj,l(tj , . . . , td−1) := 1{l = j}+ clj

l−j∑

s=1

(−1)s

s!

d−1∑

m1,...,ms=j
m1+...+ms=sd+j−l

s∏

i=1

cmi

d tmi
,

where, as in [9, (5.4)],

cmj :=
m!κm

j!κj
, m, j ∈ {0, . . . , d}.

If Z0 is isotropic (i.e. distributionally invariant under rotations), then a classical
result of stochastic geometry says that, for i ∈ {1, . . . , d} and K ∈ Kd,

V ∗
i (K) = −(1− p)

d∑

k=i

Vk(K)Pi,k(γvi, . . . , γvd−1).(2)

We refer to [9] for a proof and a discussion of the history of this result. Combining
(2) with (1), yields integral representations of the asymptotic covariances. In the
two-dimensional (isotropic) case these formulas are rather explicit.

We also show that many of our results can be derived for general additive and
translation invariant geometric functionals. Moreover, using the Stein-Malliavin
approach from [8] we prove a multivariate central limit theorem with Berry-Esseen
bounds.
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Recent Trends in Stochastic Geometry

Christoph Thäle

(joint work with Tomasz Schreiber and Matthias Schulte)

Modern stochastic geometry is concerned with the development of new models
for spatial random structures and with their exact and asymptotic analysis. In the
first talk, a relatively new model for a random tessellation of the d-dimensional
Euclidean space is presented and its first- and second-order properties are investi-
gated. Limit theorems with a limiting Weibull point process on the real half-line
are in the focus of the second talk.

1. Iteration Stable Tessellations

Imagine that we are given a polytope W ⊂ Rd and some t > 0. We then
assign to W a random lifetime, which is exponentially distributed with mean
Λ([W ])−1, where Λ is the isometry invariant measure on the space of hyperplanes
in Rd and [W ] stands for the collection of all hyperplanes that have non-empty
intersection with W . When the lifetime of W has run out, we choose a hyperplane
H according to the conditional distribution Λ( · |[W ]), which cuts W into the two
sub-polytopes W± = W ∩H±, where H± are the two half-spaces determined by
H . The described construction continues now recursively in W± and we stop it
when time t is reached. The outcome of this procedure is a random tessellation
Y (t,W ) of W , see [2].

It is a crucial observation that the random process (Y (t,W ))t>0 is a pure-jump
Markov process in the space of tessellations of W . Its generator is given by

AF (Y (s,W )) =

∫

[W ]

∑

f a cell of Y(s,W)∩H

[F (Y (s,W ) ∪ f)− F (Y (s,W ))] Λ(dH),

where F is a bounded measurable function on the space of tessellations of W
and where Y (s,W ) ∪ f is the tessellation Y (s,W ) with the new facet f added,

see [5]. Consequently, F (Y (t,W )) −
∫ t

0 AF (Y (s,W )) ds is a martingale wrt. the
natural filtration induced by (Y (t,W ))t>0. This can be used to deduce first-order
properties of Y (t,W ). Taking for example for F the surface area S = Vd−1, we
see that

ES(Y (t,W )) =

∫ t

0

∫

[W ]

∑

f a cell of Y(t,W)∩H

S(f) Λ(dH) ds

=

∫ t

0

∫

[W ]

S(W ∩H) Λ(dH) ds = t V (W ),
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where V (W ) = Vd(W ) is the volume of W . Using a similar martingale approach,
one can also investigate second-order properties of Y (t,W ). For example, the
following has been derived in [4]:

VS(Y (t,W )) =
d− 1

2

∫

W

∫

W

1− e
−

2κd−1

dκd
t‖x−y‖

‖x− y‖2
dx dy.

Turning to the asymptotic regime, we consider a fixed time t > 0 and the rescaled
polytopes WR = RW . Let us write ∼ for the asymptotic equivalence of functions.
Then (see [4])

VS(Y (t,WR)) ∼ πV (W )R2 logR

if d = 2, and for d ≥ 3 we have that

VS(Y (t,WR)) ∼
d− 1

2
R2(d−1)

∫

W

∫

W

‖x− y‖−2 dx dy.

Besides, first- and second-order structure of Y (t,W ) (resp. Y (t,WR)), also the
central limit problem (and also its functional counterpart) has been considered in
[6], showing that Gaussian limits only appear in space dimension d = 2, whereas
in all higher space dimensions a non-Gaussian limiting distribution shows up.

2. Poisson Limit Theorems

Fix some standard Borel space (Y,Y) with a non-atomic σ-finite measure λ.
By ηt we denote a Poisson point process on Y with intensity measure λt = tλ
and ηkt, 6=, k ≥ 1, stands for the set of all k-tuples of distinct points of ηt. Let

further f : Yk → R be a non-negative measurable function that is invariant under
permutations of its arguments and satisfies λk(f−1([0, x])) < ∞ for all x > 0.
The Poisson point process ηt and the function f induce a collection of points
ξt = {f(y1, . . . , yk) : (y1, . . . , yk) ∈ ηkt, 6=} on the positive real half-axis R+. In
fact, by our assumptions on f , ξt is a locally finite point process on R+. Because
of the symmetry of f , every f(y1, . . . , yk) also occurs for permutations of the
argument (y1, . . . , yk). However, we count the point f(y1, . . . , yk) for every subset
{y1, . . . , yk} ⊂ ηt only once. Nevertheless, the point process ξt might still have
multiple points if there are several subsets having the same value under f .

For γ > 0, t ≥ 1 and x > 0 let us introduce

αt(x) =
1

k!
E

∑

(y1,...,yk)∈ηk
t,6=

1(f(y1, . . . , yk) ≤ xt−γ)

and

rt(x) = sup
y1,...,yk−j∈Y

1≤j≤k−1

λj
t ({(ŷ1, . . . , ŷj) ∈ Yj : f(ŷ1, . . . , ŷj , y1, . . . , yk−j) ≤ xt−γ}).

In the following, we investigate the rescaled point process tγξt := {tγf(y1, . . . , yk) :
(y1, . . . , yk) ∈ ηkt, 6=}.
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Assume that there are constants β, τ > 0 such that lim
t→∞

αt(x) = βxτ and that

lim
t→∞

rt(x) = 0 for any x > 0. Then tγξt converges as t → ∞ in distribution to ξ,

where ξ is a Poisson (Weibull) point process on R+ with intensity measure

ν(B) = βτ

∫

B

uτ−1 du, B ⊂ R+ Borel.

A proof of this (and some local refinements) is given in [7]. It is based on recent
findings that combine the classical Chen-Stein method for Poisson approximation
with the Malliavin calculus of variations on the Poisson space [3].

The general result can be used to study a number of problems arising in sto-
chastic geometry. For example, let K ⊂ Rd be a convex body and ηt be the
restriction of a stationary Poisson point process of intensity t ≥ 1 to K. Con-
sider the family ξt of all volumes of d-dimensional simplices that can be formed
by d + 1 points of ηt, i.e. ξt = {V ([y1, . . . , yd+1]) : (y1, . . . , yd+1) ∈ ηd+1

t, 6= }, where

[y1, . . . , yd+1] stands for the simplex with vertices y1, . . . , yd+1. Using the above re-
sult and methods from integral geometry (in particular, the Blaschke-Petkantschin
formula) one can show that the point processes td+1ξt converge in distribution as
t → ∞ to a homogeneous Poisson point process on R+ with intensity β, where

β =
dκd

d+ 1

∫

[K]

Vd−1(K ∩H)d+1 dH.

In the particular case d = 2 we have the simple expression β = 2V (K)2. This
generalizes and extends a problem previously studied in [1].

Similar methods can also be used to study the proximity of Poisson k-flat pro-
cesses in R2 with d− 2k > 0, intrinsic volumes of intersection processes of Poisson
k-flats in Rd if d − 2k ≤ 0, edge lengths in a Poisson random polytope on the
sphere, edge lengths in a random geometric graph or a Delauney graph as well as
small cells in a Poisson line tessellation, see [7].
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Scaling regimes for geometric Poisson functionals

Raphaël Lachièze-Rey

(joint work with Giovanni Peccati)

In a recent series of papers, the combination of Stein’s method and Malliavin
calculus in the Poisson framework allowed for the asymptotic study of many dif-
ferent random geometric functionals. We show in this talk how the behaviour
of a certain kind of variables, called Poisson U -statistics, and more generally of
finite Wiener-Itô series, can be well described in this framework. In particular
the scale of interaction between the particles of the process within the functional,
that can be informally defined as the radius of influence of a given particle, is of
great importance with respect to the limit behaviour. The corresponding results
are contained in [1, 2].

More precisely, let λ > 0, ηλ be a Poisson measure on some Polish space E, and
Fλ = F (ηλ) a functional under the form

Fλ := F (ηλ) = EFλ +

q∑

q=1

Iq(hλ,q)

where Iq is the q-th multiple Wiener-Ito integral and hλ,q is a kernel Eq 7→ R

satisfying adapted intergability conditions. The aim of our work is to study the
asymptotic behaviour of

F̃λ =
Fλ − EFλ

varFλ
.

In most geometric applications, E is assumed to be under the form E = Rd ×M
where M is a locally compact space, called the marks space, endowed with a
probability distribution, and ηλ is a homogeneous Poisson measure restricted to
[−λ1/d, λ1/d] ×M . Each point x = (t,m) ∈ E contains a spatial variable t ∈ Rd

and a mark m ∈ M .
Our point of view was to introduce a geometric assumption of the form of the

kernels hλ,q, namely that each can be put under the form

hλ,q(x1, . . . , xq) = γλ,qh(αλ(x1, . . . , xq)), x1, . . . , xq ∈ E,

where αλ denotes the scalar multiplication of the spatial variables, hq is a function
on Eq assumed to be stationary, i.e. invariant under spatial translations, and
γλ,q ∈ R. The stationary assumption is motivated by many problems arising from
stochastic geometry, and the factor αλ denotes a change of scale in the problem,
i.e. a zoom-in or zoom-out situation. For 1 ≤ q ≤ k, hq is furthermore assumed
to decrease sufficiently fast from the diagonal, which is formalized by an explicit
integrability condition on Eq.

Under these assumptions one can give explicit variance asymptotics and bounds
on the distance between Fλ and the limit law, with the help of the contractions,
an analytic tool arising from the multiplication formula. An interesting particular
case is when Fλ is a Poisson U -statistic, as introduced in [4] , i.e.
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Fλ =
∑

(x1,...,xk)∈η 6=
λ

h(x1, . . . , xk),

is the sum over all the k-tuples of distinct points of ηλ for a given kernel h.
Depending on {αλ;λ > 0}, several different limit regimes appear in the limit,

such as a Gaussian limit, a Poisson limit, or a χ2-limit. The case αλ ∼ λ1/d co-
incides with geometric U -statistics, i.e. U -statistics which kernel does not depend
on λ, and in this case we were able to complete the work of [4] and completely
characterize the limit law, living in a Gaussian chaos. The case αλ ∼ 1 meets
and generalises some results about random graphs from [3], telecommunication
networks, or the boolean model. For smaller αλ, the speed of convergece to the
normal law decreases until the limit law undergoes a Gauss/Poisson transition,
illustrated in [1] in an example involving geometric random graphs.
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Mixed limits and asymptotic independence on the Poisson space

Solesne Bourguin

(joint work with Giovanni Peccati)

In a recent series of papers, it has been shown that one can combine Malliavin cal-
culus with Stein’s method on a Gaussian space, in order to obtain limit theorems
and explicit bounds in the normal approximation of non–linear functionals of the
underlying Gaussian field. The seminal paper [2] was the first to bring together
Stein’s method and Malliavin calculus. The reference [4] extends this paper to the
multidimensional case, and [3] uses the techniques developed in the two previous
references to study universality properties on Gaussian Wiener chaos. These ref-
erences also contain examples of applications of these approximation results to the
derivation of Berry–Esséen bounds in the Breuer–Major theorem as well as new
second order Poincaré inequalities. Later on, the authors of [6] and [7] combined a
discrete version of the Malliavin calculus on the Poisson space with Stein’s method
in order to obtain limit theorems and explicit bounds in the normal approximation
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of a non–linear functional F of an underlying Poisson random measure. A general
bound of the form, where Z ∼ N (0, 1),

dH(F,Z) ≤
1

2

d∑

i,j=1

E

∣∣∣C(i, j)−
〈
DFi,−DL−1Fj

〉
L2(µ)

∣∣∣

+
1

4
E

∫

Z

(
d∑

i=1

|DzFi|

)2( d∑

i=1

∣∣DzL
−1Fi

∣∣
)
µ(dz).

was obtained, encompassing the original one–dimensional result of [6] and where
the operator D and L−1 are differential operator of the Malliavin calculus. These
results allowed, among other applications, for the derivation of central limit the-
orems for non–linear functionals of Lévy moving averages (such as the Ornstein–
Uhlenbeck Lévy process). Recently, a new approximation framework was proposed
in [5] that combined the Malliavin calculus on the Poisson space with the Chen–
Stein method in order to obtain limit theorems and explicit bounds in the Poisson
approximation of non–linear functionals of the underlying Poisson random mea-
sure. This new Poisson approximation result comes in the form of a bound on the
distance in total variation between the laws of a general functional F of a Poisson
random measure and a Poisson random variable Z with parameter λ, and can be
stated as follows.

dTV (F,Z) ≤
1− e−λ

λ
E

∣∣∣λ−
〈
DF,−DL−1F

〉
L2(µ)

∣∣∣

+
1− e−λ

λ2
E

∫

Z

∣∣DzF (DzF − 1)DzL
−1F

∣∣µ(dz).

In this talk, we present recent results based on the reference [1] originating from
a new general inequality on the Poisson space obtained by combining the Chen–
Stein method with Malliavin calculus on the Poisson space. Additionally, new
results are obtained such as multidimensional Poisson approximations, stable and
mixed limit theorems, as well as a characterisation of asymptotic independence
for U–statistics. Applications to limit theorems involving the joint convergence of
vectors of subgraph–counting statistics exhibiting both a Poisson and a Gaussian
behaviour are presented.
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Malliavin calculus for completely random measures

Frederic Utzet

The purpose of this talk is to extend Malliavin calculus for Poisson processes
based on the difference operator or add one cost operator,

DzF (ω) = F (ω + δz)− F (ω),

to the functionals of a completely random measure without fixed atoms, and it is
an adaptation of the ideas of Solé et al. [10] to the random measures context.

Let Z be a complete and separable metric space and Z be its Borel σ–field.
Following the nomenclature of Daley and Vere-Jones [1], a measure µ on (Z,Z) is
said to be finitely bounded if µ(A) < ∞ for every bounded set A ∈ Z; note that
such a measure is σ–finite thanks to the separability properties of Z. A random
measure on (Z,Z) is a measurable mapping from a probability space (Ω,F ,P) into
the set of finitely bounded measures on (Z,Z) endowed with the σ–field induced by
the evaluation maps µ → µ(A), for every finitely bounded measure µ and A ∈ Z.

We will assume that the intensity measure (or first moment measure) of a
random measure ξ on (Z,Z):

λ(A) := E ξ(A), A ∈ Z

is finitely bounded (this is a general assumption in the theory of random measures,
see Daley and Vere-Jones [1, Page 65] or in its applications to Stochastic Geometry,
see Schneider and Weyl [9, Page 57]); in particular, as we commented, we assume
that λ is σ–finite. A point s ∈ S is called a fixed atom of the random measure ξ if
P
{
ξ{s} > 0

}
> 0. If ξ has no fixed atoms, then for every s ∈ S, λ{s} = E ξ{s} = 0,

so its intensity measure is non-atomic.
A random measure ξ with intensity mesure λ is said to be completely random

if for any family of disjoint sets A1, . . . , Ak ∈ Z , with λ(Ai) < ∞, i = 1, . . . , k,
the random variables ξ(A1), . . . , ξ(Ak) are independent.

Let ξ be a a completely random measure without fixed atoms with intensity
measure λ. For A ∈ Z with λ(A) < ∞, it is proved that the random variable ξ(A)
has an infinitely divisible law concentrated on [0,∞), and this gives rise to the
representation of ξ in terms of a Poisson process on Z × (0,∞) called Kingman
representation (see Kigman [4, 5], Daley and Vere–Jones [1], Kallenberg [3]); we
have that

ξ(A) = β(A) +

∫∫

Z×(0,∞)

1A(t)x dN(t, x),

where β is a (deterministic) finitely bounded measure, and N is a Poisson process
on Z × (0,∞) with intensity given by a certain measure ν, which is σ–finite and
non-atomic; however, ν is not necessarily finitely bounded, and in many interesting
cases it may be infinity on sets of the form A × (0, ε). We will assume that the
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deterministic measure β is 0. Hence, from now on, we can take Ω to be the
canonical space of the Poisson process N ,

Ω = {ω =

n∑

i=1

δ(ti,xi), ti ∈ Z, xi > 0, n ∈ N ∪ {∞}},

and, for ω =
∑n

i=1 δ(ti,xi), and A ∈ Z

ξ(ω)(A) =

n∑

i=1

xiδA(ti).

Following Itô [2], the completely random measure ξ defined on Z is extended
to a completely random measure M on Z × (0,∞), now in the sense of vector
measures (see, Peccati and Taqqu [8, Chapter 5]) using the compensate Poisson
process

N̂ = N − ν.

To this end, define a measure µ on Z × (0,∞) by

dµ(t, x) = x2 dν(t, x).

For C ∈ Z ×B(0,∞) such that µ(C) < ∞, we have 1C(t, x)x ∈ L2(Z × (0,∞), ν),
hence the following random variable is well defined as a limit in L2(Ω):

M(C) :=

∫∫

Z×(0,∞)

1C(t, x)xN̂ (dt, dx).

It turns out that M(C) is centered, and if C1 and C2 satisfy µ(C1) < ∞ and
µ(C2) < ∞, then

E
[
M(C1)M(C2)] = µ(C1 ∩ C2).

Moreover, M is a completely random measure on Z× (0,∞) with control measure
µ.

Then we can construct the usual Itô multiple integral of order n of functions of

L2
n := L2

((
Z× (0,∞)

)n
, µ⊗n

)
, satisfying all the usual properties (see Peccati and

Taqqu [8]).
Moreover, following again Itô steps [2], every square integrable random variable,

measurable with respect to the σ–field generated by ξ admits a chaos expansion:
If F ∈ L2(Ω), then

F =

∞∑

n=0

In(fn), fn ∈ L2
n.

From this point, it is possible to apply the machinery of the annilation operators
(Malliavin derivative) and creation operators (Skorohod integral) on a Fock space
as was exposed by Nualart and Vives [6].

So, on the one hand, for

F =

∞∑

n=0

In(fn), fn ∈ L2
n. fn symmetric
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such that
∞∑

n=1

nn!‖fn‖
2
L2

n
< ∞,

the Malliavin derivative of F is defined as

D(t,x)F =
∞∑

n=1

nIn−1

(
fn
(
(t, x), ·

))
,

convergence in L2(Z × (0,∞)× Ω, µ⊗ P).
On the other hand, given a random variable F and (t, x) ∈ Z × (0,∞), we can

define a quotient operator

D′
(t,x)F (ω) =

1

x

(
F (ω + δ(t,x))− F (ω)

)
.

Under some (quite general) conditions, D′ and D coincide.
Furthermore, the operators

• Skorohod integral δ,
• Ornstein–Uhlenbeck generator L,
• Inverse of L

are constructed in the standard way using chaos expansions.
Unfortunately, the bounds for the Wasserstein distance to the normal law in

terms of the Malliavin operators of the Poisson case given in Peccati et al. [7] do
not transfer directly to that context of random measures.
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The Poisson-Voronoi approximation

Matthias Schulte

The Poisson-Voronoi approximation is a random approximation that can be used
to reconstruct an unknown set. Let K ⊂ Rd be a compact convex set and let ηt
be a stationary Poisson point process of intensity t > 0 in Rd. For a point x ∈ ηt
the Voronoi cell of x is given by

C(x, ηt) = {z ∈ Rd : ‖z − x‖ ≤ ‖z − y‖ for all y ∈ ηt},

and x is called nucleus of C(x, ηt). The Voronoi cells (C(x, ηt))x∈ηt
form a tessel-

lation of Rd, where every cell contains all points of Rd such that the nucleus is the
closest point of ηt. The Poisson-Voronoi approximation of K is defined as

At(K) =
⋃

x∈ηt∩K

C(x, ηt).

The underlying idea is that we want to reconstruct an unknown set K, but the
only information available is a kind of oracle which tells us for every point of ηt
whether it belongs to K or not. Now we construct the Voronoi tessellation with
respect to ηt and approximate K by the union of all Voronoi cells with nucleus in
K.

Since the Poisson-Voronoi approximation can be used to estimate the volume
of an unknown set, one is interested in its volume. A short computation shows
that

EVol(At(K)) = Vol(K)

so that the volume of the Poisson-Voronoi approximation of K is an unbiased
estimator for the volume of K. For its variance one has the lower and upper
bounds (see [3, 5])

C κ1Vd−1(K) t−1− 1
d ≤ VarVol(At(K)) ≤ C

d−1∑

i=0

κd−iVi(K) t−2+ i
d

for t ≥ (2/r(K))d with constants C,C > 0 only depending on the dimension d.
Here, Vi(K), i = 0, . . . , d, stand for the intrinsic volumes of K, r(K) denotes the
inradius of K, and κi is the volume of the unit ball in Ri. It is also possible to
derive the asymptotic result

lim
t→∞

VarVol(At(K))

t−1− 1
d

= cdκ1Vd−1(K)

with a constant cd > 0 only depending on the dimension d. This means that the
asymptotic variance of the volume of the Poisson-Voronoi approximation of K for
increasing intensity t depends only on the surface area of K.

Knowing the asymptotic behaviour of the variance, one can consider the limiting
distribution. It can be shown (see [5]) that

Vol(At(K))−Vol(K)√
VarVol(At(K))

→ N in distribution as t → ∞,
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where N stands for a standard Gaussian random variable.
The proofs of the variance bounds and the central limit theorem in [5] make use

of the Wiener-Itô chaos expansion and the Malliavin-Stein method. As a random
variable depending on a Poisson point process the volume of the Poisson-Voronoi
approximation has a so called Wiener-Itô chaos expansion

Vol(At(K)) = Vol(K) +
∞∑

n=1

In(fn),

where In(·) stands for the n-th multiple Wiener-Itô integral and the square inte-
grable symmetric functions fn ∈ L2

s((R
d)n), n ∈ N, are given by formulas reflecting

the effect of adding points to the Poisson point process (see [2]). Moreover, its
variance has the representation

VarVol(At(K)) =

∞∑

n=1

n! ‖fn‖
2
n.

Together with some estimates for the functions fn, n ∈ N, this yields lower and
upper bounds for the variance. The central limit theorem is based on a bound for
the normal approximation of Poisson functionals in terms of Malliavin operators
(see [1]), which are defined via their Wiener-Itô chaos expansions. A technical
computation shows that this bound is less than a sum of deterministic integrals
depending on the functions fn, n ∈ N. For the volume of the Poisson-Voronoi
approximation these integrals vanish for increasing intensity, which implies the
central limit theorem.

The error of the Poisson-Voronoi approximation can be measured by the volume
of the symmetric difference of At(K) and K. For the volume of the symmetric
difference one can also show variance bounds and a central limit theorem. The
upper bound and the central limit theorem can be followed directly from the proofs
for the volume of the Poisson-Voronoi approximation.

The assumption that K is convex is not necessary for the construction of the
Poisson-Voronoi approximation but simplifies some arguments in the proofs. It
can be replaced by some more general conditions. For another possible general-
ization of the class of approximated sets see [4], where sets of finite perimeter are
considered and bounds for moments are derived.
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On some Large Deviation inequality

Matthias Reitzner

Let ωt be a Poisson point process in Rd of constant intensity t > 0.To define the
disk graph G(ωt, δt) we take all points of ωt to be the vertices of G(ωt, δt) and
connect two points x, y ∈ ωt by an edge if

‖x− y‖ ≤ δt.

The resulting graph G(ωt, δt) is a random geometric graph, called disk graph, or
sometimes Gilbert graph, interval graph (for d = 1) or distance graph. The disk
graph is the maybe most natural construction of a random geometric graph, see
e.g. the book by Penrose [5].

We are interested in the local behaviour of the disk graph within a convex body
W , when t → ∞ and δt → 0 in such a way that t2δdt converges to a constant.
Define the number of edges of G(ξ, δ) in the window W given by

Nt = N(ωt, δt) =
1

2

∑

(x,y)∈(ωt∩W )2
6=

1(‖x− y‖ ≤ δt).

Classical results are the expectations of these quantities which are proved using
the Slivnyak-Mecke theorem

ENt ≈
t2

2

(
V (W )κd δ

d
t

and

VNt ≈ V (W ) t2δdt (κ
2
d tδ

d
t +

κd

2
)

for δt → 0. Limit theorems showing that the normalized random variable converges
to a Poisson (or normal) distributed random variable are e.g. due to Penrose [5],
Lachiéze-Rey and Peccati [3] [4], Bourguin and Peccati [2], Schulte [7], and others.

A deeper understanding of the behaviour of the disk graph can be obtained by
ordering all distances between two points in the convex body W . This yields the
point set

ξt = {‖x1 − x2‖ : (x1, x2) ∈ (ωt ∩W )26=}

on the positive real line. It was proved by Schulte and Thäle [8] that t2/dξt
converges in distribution to a Poisson point process, and that the shortest distance
between two points is Weibull distributed.

The main part of the talk is a proof of a large deviation inequality in this
case. Assume K ∈ N, α > 0 and δt = αt−

2
d (sparse regime). There exists a

c = c(K,α,W ) such that

P(Nt ≥ K ln t) ≤ ct−K+1.

The proof of this inequality uses Talagrand’s large deviation inequality for the
convex distance function and an Poissonization argument. It would be interesting
to obtain a direct proof in the Poisson setting using the Malliavin calculus.
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As an application we present a connection to a question concerning empty
triangles. Given a finite point set X in the plane, the degree of a pair {x, y} ⊂ X
is the number of empty triangles t = conv{x, y, z}, where empty means t ∩ X =
{x, y, z}. Define degX as the maximal degree of a pair in X .

Here we take X to be the intersection of a Poisson point process with the
convex body W . Observe that for any pair (x, y) ∈ (ωt∩W )26= the degree is clearly

bounded by the number of points ωt ∩W which has expectation tVd(W ). It turns
out that the degree of X is close to this trivial upper bound. It is proved in Bárány,
Marckert and Reitzner [1] that for X = ωt ∩W there is a constant c > 0 such that

E(degX) ≥
c

ln t
t.

The proof uses essentially a large deviation inequality for the length of the disk
graph.
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