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Introduction by the Organisers

For a long time, research in the history of mathematics has mostly focused on
developments in pure mathematics. In recent years, however, some significant
research has changed this situation. The conference brought together historians of
mathematics actively involved in this reorientation, in order to take stock of what
has been achieved, and to identify historical problems yet to be solved. In having
done so, the organizers hope to have advanced the general understanding of the
relations of mathematics with neighbouring scientific fields, and with technological,
economic and social practices involving mathematical methods, in the period since
ca. 1500.

A fundamental historical insight provided a starting point for planning this
meeting: There is no, and there has never been, a once and for all fixed notion
of ‘applied’ mathematics. Rather, we have to deal with a field of interactions
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of the production of mathematical knowledge with a large and variable number
of scientific, technological and social areas beyond the core disciplines of ‘pure’
mathematics. For want of a better term, and without taking the term literally, we
call this field the ‘applied field’ of mathematics.

At different times in history, conflicting views on the value and possibilities
of using mathematical methods in other contexts have generated controversial
discussions e.g. about the unity of mathematics, about the role of mathematics as a
tool, or as an aim in itself. Motives for engaging in such debates came both from the
side of the practitioners of the mathematical sciences themselves and from the side
of real or potential ‘users’ of mathematical methods. Moreover, the very notion
of the ‘application’ of ready-made mathematical methods and knowledge to extra-
mathematical domains is problematic; in fact in many cases mathematical methods
emerged from interactions with such domains, thereby changing and challenging
the existing ideas about mathematics.

In the early modern period, the mathematical sciences in Europe were formed
with reference to an inner distinction between mathematicae purae and mathema-
ticae mixtae. However, the field denoted as ‘mixed mathematics’ was complex,
varying in inner structure, and not coinciding with what later came to be called
‘applied’ mathematics (a denotation whose meaning was hardly less variable). The
situation was further complicated by the fact that mathematical methods became
part of the very notion of ‘natural philosophy’, or science per se, during the 17th
century. Several sciences – and first and foremost the new science of ‘mechanics’
in all its branches from celestial mechanics to hydrodynamics – were inextricably
linked with the production of mathematical knowledge. During the 18th century,
the notion of ‘application’ of one mathematical science to another was gaining
interest (e.g. in the approach of the French Encyclopedists, in particular of Jean
d’Alembert). Moreover, in several fields of the mathematical sciences (such as
hydrodynamics and hydraulics), a lack of mutual integration of ‘theory’ and ‘prac-
tice’ was lamented by several authors at the time. Nevertheless, as is clearly shown
in the work of Euler and many of his contemporaries, there was still no delineated
field of ‘applied mathematics’. A more explicit distinction between ‘pure’ and ‘ap-
plied’ mathematics gradually came to the fore during the 19th century, while an
institutional separation of ‘applied’ and ‘pure’ mathematical research in journals,
university positions and, eventually, institutes was a matter of the 20th century.
During the early 20th century, moreover, the idea of ‘mathematical modelling’ was
shaped, and it rapidly gained importance in a wide variety of areas from economics
to engineering and medicine. The revolutionary development of new calculation
devices contributed to a new balance between analytical, graphical and numerical
methods and led finally even to a new notion of the solvability of mathemati-
cal problems. These developments, initially taking place primarily within applied
contexts, also became important for certain areas of pure mathematics. In recent
decades, however, voices are gaining strength that argue for a renewed integration
of pure and applied mathematics, both on the institutional and cognitive level
(such voices are already well-known from the beginning of the 20th century when
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Richard Courant was one of their strongest speakers). Striking a balance between
the development of the applied field and the unity of mathematics remains a chal-
lenge.

In view of the above, the scope of topics dealt with during the conference
needed to span the period between the 16th century and the present, in order to
help us better understand how the ‘applied field’ developed and was structured.
Throughout, the emphasis was not to establish a separate historiography of applied
mathematics per se, but rather to understand how the whole of mathematics was
internally structured both with a view to ‘applications’ and to its relation with
extra-mathematical domains.

By giving short introductory talks the three organizers tried to raise some gen-
eral issues and questions for the ensuing 20 presentations and the discussion. These
talks went into the notion of applied mathematics originating around 1800, into
historical changes in the classification of sub-branches of mathematics according
to the pure/mixed or pure/applied divide (with particular reference to influential
works such as the French Encyclopédie and comparing them with modern changes
in the relationship between science and technology), and, thirdly, the very im-
portant features of modeling within modern applied mathematics, the latter with
emphasis on models in economics and biology.

While biology as an area of application was followed up in the conference in a
talk on Karl Pearson, last minute cancellations resulted in a reduced discussion of
applications in economics. However, the latter topic came up in connection with
a presentation of social statistics in Late Imperial China. This contribution was
also exceptional with respect to its non-European focus. At the same time the two
last named presentations touched upon statistics as an important field and tool
of applied mathematics, as did other talks on applied mathematics in industrial
surroundings, which in particular discussed applied work by Iris Runge and B.L.
van der Waerden. Engineering mathematics was recognized in the workshop as
an important historical bridge and stimulus for renewing the relationship between
mathematics and the applied field since the 18th century. Related to this topic
were talks on mathematizing water powered machines and on ballistics in the 18th
and 19th centuries and another presentation on the important hybrid discipline
of fluid dynamics around 1900. The important theme of visualization of mathe-
matical concepts and its changes from material models of the pre-computer age
(used for instance by Felix Klein) to modern computer imaging was touched upon
in several talks. Mathematical physics, which had often been a topic of histori-
cal discussions before, was less completely represented in the workshop although
it came up particularly in connection with talks discussing the development of
French, German and English applied mathematics during the 19th century. In
this context regional and national differences between the various mathematical
cultures, which partly still exist in modern globalized research, came clearly to the
fore.

The workshop aimed from the outset at emphasizing the role of the applied field
in the period of early modern mathematics. This was done in presentations on
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hitherto little known areas such as ‘mathematical gardening’ or landscape design,
and it was related to mathematical practices in early modern treatises on mathe-
matical perspective and the development of mathematical instruments during the
same period. The aspect of auxiliary instruments and means for computation
and construction in applied mathematics and the development of the material in-
frastructure were discussed in various contributions in connection with the treat-
ment of observational data, with mathematical tables, handbooks and textbooks
of mathematics. This discussion reached as far as touching the topic of computer
design at the hands of John von Neumann in its relation to theoretical work by
Alan Turing. However, similar to mathematical physics, the development of com-
puting technology – a topic frequently treated in other contexts and occasions –
was not a focus of the workshop.

Throughout the workshop problems of conceptual development were discussed,
e.g. the relation between (astronomical) observation and mathematical theory,
the discussion of ‘inner-mathematical’ applications in the case, for instance, of
Hermite, the conflict between the factual and indubitable use of notions such as
‘mixed’ and ‘applied’ mathematics and the philosophical and logical insufficiencies
of the latter.

Thus both in philosophical and conceptual respects and as to the possible
fields and directions of application (economy, non-European cultures, mathemati-
cal physics, mathematical instruments and computers) there is room for enlarging
the future discussion of the history of mathematics in the applied field.
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Abstracts

The establishment of the notion and of the word ‘applied
mathematics’ around 1800

Reinhard Siegmund-Schultze

The meaning of names such as “applied mathematics” or even “mathematician”
changes through history and is relative even within any period, as we know. But
a change of names gives the historian first clues to look more closely.

In the “Prolegomena” to Johann Friedrich Weidler’s (1691–1755) Latin Institu-
tiones Mathematicae of Wittenberg 1718 there is (to my knowledge) the first ap-
pearance of the word “applied mathematics” in any language. At page 5 Weidler
speaks about “Mathesis applicata, quam nonnulli mixta appellant.” The Insti-
tutiones became a textbook for Russian mathematics students at the new uni-
versity in Moscow, founded by M.V. Lomonosov in 1755. Abraham Gotthelf
Kästner’s Anfangsgründe der angewandten Mathematik (Göttingen 1759) is the
first book to mention “applied mathematics” on the title page. In the Ger-
man countries in the 18th century, the word “applied mathematics” gradually
replaced the older “mixed mathematics”, supported by some philosophical reflex-
ions about “pure” and “applied” mathematics in the work of Immanuel Kant. The
two short-lived journals edited by the influential combinatorialist Karl Friedrich
Hindenburg, the Leipziger Magazin für reine und angewandte Mathematik (1786–
1789) and the Archiv für reine und angewandte Mathematik (1795–1799) were the
first to have “applied mathematics” in the title. In France “mixed mathematics”
(“mathématiques mixtes”) was still in use in the famous Encyclopédie of Diderot
and d’Alembert (1750), and even in the second edition of J.-E. Montucla’s Histoire
des mathématiques (1798–1802). In 1792 the (former) Marquis de Condorcet, who
was also involved in the metrical reform, was apparently the first Frenchman to
use the name “mathématiques appliquées,” though only in the appendix of his
report to the National Assembly. For the future so-called “Instituts” (which did
not materialize) he proposed hiring:

“Un professeur de mathématiques pures. Un professeur de mathématiques ap-
pliquées, qui comprendra dans ses leçons les éléments de mécanique, d’optique,
d’astronomie, et les applications élémentaires les plus utiles du calcul et de la
géométrie à physique, aux sciences morales et politiques.” [Titre IV, p. 65,
thanks to Christian Gilain for this information]

An effect of the Industrial Revolution around 1800 was more systematized engi-
neering education first in France and in the event in other continental countries
such as Germany, Austria, Switzerland, and Italy as well. Mathematics as a sci-
ence and as a teaching subject received an institutional boost both at Technical
Universities (École Polytechnique) and later at traditional Universities. Aspects of
national competition and pride played a role when mathematicians and politicians
underscored the (at least potential) use of mathematics. In Norway, which had
just introduced a constitution and was emancipating from Danish rule, Christopher
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Hansteen’s position as “lecturer for applied mathematics” (Lector i den Anvendte
Mathematik) at the newly founded University in Christiania was expressly justified
in May 1814 by “the broad scope of applied mathematics and its importance for
Norway”. In 1815 Hansteen was promoted to “Professor Matheseos applicatae”.

Applied mathematics figures in the titles of Gergonne’s Annales des mathé-
matiques pures et appliquées from 1810 and of Crelle’s Journal für die reine und
angewandte Mathematik from 1826, however already the prefaces and later the
published articles make it clear that pure mathematics was the real aim in both
cases. In spite of sweeping accusations (for instance from German mathemati-
cians) about a prevailing utilitarian attitude in French mathematics (for instance
in a famous but partly misinterpreted quote by C.G.J. Jacobi of 1830, which was
discussed in the present talk) the general tendency was the one as described by
Jesper Lützen in his biography of Liouville:

“Generally, Liouville’s production is characterized by a slow movement from
applied to pure mathematics; here, Liouville followed a general tendency of
the time.” [1, x]

A tentative conclusion of the talk is the following:
Around 1800, in the age of the Industrial Revolution and of continued nation
building, state funding and political and ideological support (revolution in France,
Neo-Humanism in Germany) led to a new level of recognition of “mathematics”
as a discipline (teaching, journals). The older bifurcation pure/mixed mathe-
matics, was replaced in Germany and somewhat later in France (but not yet in
England!) by pure/applied, the difference basically being that before only mixed
mathematics (extended by ‘rational mechanics’ in the 18th century) had broader
interests behind it and was (if not systematically) funded, while now the whole
of mathematics was beginning to be supported and recognized. “Applied Math-
ematics” was increasingly considered to be part of a “discipline mathematics”,
while “mixed mathematics” had been something between mathematics and other
sciences. So in this sense and slightly paradoxically, in spite of the general
importance of the Industrial Revolution as a historical background, it is pure
mathematics which increasingly gets systematic public support for the first time
and thus receives the relatively stronger boost than applied mathemat-
ics. Carl G.J. Jacobi (1804–1851) can be considered a representative of these
changes towards “pure mathematics.” However, exactly in the case of Jacobi, who
gradually turned towards applied mathematics at the end of his life, the dangers
of a one-sided picture become obvious, which describes 19th century mathematics
as a succession of “utilitarian” French followed by “pure” German mathematics.
The institutionalization of “applied mathematics” as a separate sub-discipline of
its own, with funding for journals and institutes (for instance C. Runge, R. von
Mises) was reserved for a later period of “reemergence of applications” and the so-
called second Industrial-technical revolution under Felix Klein and others around
1900.
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On “application” and categorizations of mathematics

Moritz Epple

I.

Let us begin with a look at the most recent Mathematical Subject Classification
(MSC 2010).

This comprehensive classification of topics in mathematical literature appears
to follow a broad general strategy of dividing the field of mathematics into major
branches, some of which are broadly refered to as ‘pure mathematics’ whereas
others are understood to be ‘applied’ mathematics. Introductory texts in the web
in several languages distinguish the following top-level areas: General/foundations
(00 ff), discrete mathematics/algebra (05 ff), analysis (26 ff), geometry and topol-
ogy (51 ff), and then: applied mathematics / other (60 ff). However, this seemingly
obvious partition is often undercut within MSC, see e.g. 37Nxx “Applications” in
the section on Dynamical Systems, or 47Nxx “Miscellaneous applications of oper-
ator theory” – etc. Still, the same divide between pure and applied mathematics
seems to be operative on a smaller scale as on the top level – we glimpse an un-
derstanding of a polar overall divide between pure and applied mathematics with
self-similar structure.

How did such a classificatory scheme develop? Is MSC 2010, and in particular,
the way in which it operates with the distinction pure/applied, the result of a ‘nat-
ural history’ of the inner organization of the branches of the tree of mathematics?

To sharpen this question, let us look at an earlier classification of these branches,
given in the “Explication détaillée du système des connoissances humaines” in the
Discours Préliminaire of the first volume of the French Encyclopédie (Paris, 1751).
Here we find another ‘canonical’ division, based on the following explanations:

Une autre propriété plus générale des corps, & que supposent toutes les autres,
savoir, la quantité a formé l’objet des Mathématiques. On appelle quantité ou
grandeur tout ce qui peut être augmenté & diminué.

La quantité, objet des Mathématiques, pouvoit être considérée, ou seule
& indépendamment des individus réels, & des individus abstraits dont on
en tenoit la connoissance, ou dans ces individus réels & abstraits; ou dans
leurs effets recherchés d’après des causes réelles ou supposées; & cette seconde
vûe de la réflexion a distribué les Mathématiques en Mathématiques pures,

Mathématiques mixtes, Physico-mathématiques.

This division is basically a binary one, with ‘physico-mathematics’ still a kind of
anomalous singleton at the time. Now look at the branches of mixed mathematics.



666 Oberwolfach Report 12/2013

Les Mathématiques mixtes ont autant de divisions & de sous - divisions, qu’il
y a d’êtres réels dans lesquels la quantité peut être considérée. La quantité

considérée dans les corps en tant que mobiles, ou tendans à se mouvoir, est
l’objet de la Méchanique. La Méchanique a deux branches, la Statique & la
Dynamique. La Statique a pour objet la quantité considérée dans les corps
en équilibre, & tendans seulement à se mouvoir. La Dynamique a pour objet
la quantité considérée dans les corps actuellement mus. La Statique & la
Dynamique ont chacune deux parties. La Statique se distribue en Statique

proprement dite, qui a pour objet la quantité considérée dans les corps solides
en équilibre, & tendans seulement à se mouvoir; & en Hydrostatique, qui a
pour objet la quantité considérée dans les corps fluides en équilibre, & tendans
seulement à se mouvoir. La Dynamique se distribue en Dynamique proprement

dite, qui a pour objet la quantité considérée dans les corps solides actuellement
mus; & en Hydrodynamique, qui a pour objet la quantité considérée dans les
corps fluides actuellement mûs. Mais si l’on considere la quantité dans les eaux
actuellement mûes, l’Hydrodynamique prend alors le nom d’Hydraulique. On
pourroit rapporter la Navigation à l’Hydrodynamique, & la Ballistique ou le
jet des Bombes, à la Méchanique.

La quantité considérée dans les mouvemens des Corps Célestes donne l’As-

tronomie géométrique; d’où la Cosmographie ou Description de l’Univers, qui
se divise en Uranographie ou Description du Ciel ; en Hydrographie ou Descrip-

tion des Eaux ; & en Géographie; d’où encore la Chronologie, & la Gnomonique

ou l’Art de construire des Cadrans.
La quantité considérée dans la lumiere, donne l’Optique. Et la quantité

considérée dans le mouvement de la lumiere, les différentes branches d’Optique.
Lumiere mûe en ligne directe, Optique proprement dite; lumiere réfléchie dans
un seul & même milieu, Catoptrique; lumiere rompue en passant d’un milieu
dans un autre, Dioptrique. C’est à l’Optique qu’il faut rapporter la Perspective.

La quantité considérée dans le son, dans sa véhémence, son mouvement,
ses dégrés, ses réflexions, sa v̂ıtesse, &c. donne l’Acoustique.

La quantité considérée dans l’air, sa pesanteur, son mouvement, sa conden-
sation, raréfaction, &c. donne la Pneumatique.

La quantité considérée dans la possibilité des événemens, donne l’Art de

conjecturer, d’où nâıt l’Analyse des Jeux de hasard.
L’objet des Sciences Mathématiques étant purement intellectuel, il ne faut

pas s’étonner de l’exactitude de ses divisions.

These are two rather different systems of classifications of what the 18th century
called the mathematical sciences, or of what in the more recent picture is seen as
subfields of one science of mathematics. The distinction pure/mixed was conceived
and functioned in a different way than the distinction pure/applied.

Given that we find different ways of partitioning the mathematical sciences,
there is perhaps no timeless essence of such a partitioning. What is the role of the
opposition ‘pure vs. applied’ in one period, and the role of the opposition ‘pure
vs. mixed’ in the other? What was (and is) the conceptual framework making
either of these oppositions seem plausible? How did the former come to replace
the latter? When and why did this happen?
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II.

Moreover, the central notions used in making such classifications may have rather
different meanings in different times and places. This can be illustrated by a
brief look at a reflection on the very notion of application in the period in which
the distinction between pure and mixed mathematics structured the large field of
mathematical sciences. Indeed, in the French Encyclopédie the notion of ‘appli-
cation’ was the object of a rather different epistemological consideration than the
reflections usually at the basis of the modern distinction. All texts referred to in
the following were authored by Jean d’Alembert. In this reflection, there are two
competing tendencies at work.

In the article “Application”, printed in the first volume of the Encyclopédie, in
1751, the notion is first introduced as a relation between any two sciences:

Application d’une science à une autre, en général, se dit de l’usage qu’on fait
des principes & des vérités qui appartiennent à l’une pour perfectionner &
augmenter l’autre.

En général, il n’est point de science ou d’art qui ne tiennent en partie à
quelqu’autre. Le Discours préliminaire qui est à la tête de cet Ouvrage, & les
grands articles de ce Dictionnaire, en fournissent par - tout la preuve. (Art.
‘Application’.)

One can see from the emphasis of the last sentences that d’Alembert thinks highly
of application as a tool in advancing knowledge. However, the Encyclopédie em-
phasizes symmetry: Not only can a more abstract branch of the mathematical
sciences such as algebra (or analysis) be applied to a more concrete branch such
as geometry, geometry can also be applied to algebra, or arithmetics. Not only
can a pure branch such as analysis and geometry be applied to the mixed branch
of mechanics, but mechanics can also be applied to geometry.

In addition, there is a second, related but more local notion of application
at work within the sciences, d’Alembert calls it “the application of one thing to
another”:

Application d’une chose à une autre, en général se dit, en matiere de Science ou
d’Art, pour désigner l’usage dont la premiere est, pour connôıtre ou perfection-
ner la seconde. Ainsi l’application de la cyclöıde aux pendules, signifie l’usage
qu’on a fait de la cyclöıde pour perfectionner les pendules, Voyez Pendule,
Cyclöıde, &c. & ainsi d’une infinité d’autres exemples. (Art. ‘Application’.)

As before, there is potential symmetry in this relation, and there is no intrinsic
structure of what can be applied to what, it is just a matter of useful practice for
advancing knowledge.

In contrast to the above, we find a different line of thought which is less symmet-
rical and linked with the distinction between pure and mixed mathematics: While
in the genealogy of human knowledge (outlined e.g. in the Discours préliminaire of
the Encyclopédie) abstraction bringing the fields of knowlegde into an ordered se-
quence ranging from medicine and agriculture via experimental physics to algebra
(=analysis), ‘application’ makes more abstract sciences useful to more concrete
sciences. In that respect, abstraction and application function as complements to



668 Oberwolfach Report 12/2013

each other, and whereas in the field of mathematical sciences, abstraction moves
up from mixed to pure mathematics, application is the guarantee that the purest
areas (geometry, arithmetics, algebra=analysis, in that order) will be useful for
the more concrete fields, and thus in the last consequence for human life. The
point here is: Abstraction and application are linking mathematics to a whole
world of sciences and arts beyond mathematics. D’Alembert is trying to make an
argument why abstract mathematics belongs into this world, and is helpful for it.

However, this view was not uncontested among the encyclopedists, see the fol-
lowing criticism by Diderot, taken from his Pensées sur l’interpretation de la na-
ture, published 3 years after vol. 1 of the Encyclopédie, which reads just as another
addition to the entry Application:

Une des vérités qui aient été annoncées de nos jours avec le plus de courage et
de force, qu’un bon physicien ne perdra point de vue, et qui aura certainement
les suites les plus avantageuses, c’est que la région des mathématiciens est un
monde intellectuel, où ce que l’on prend pour des vérités rigoureuses perd
absolument cet avantage quand on l’apporte sur notre terre. On en a conclu
que c’était à la philosophie expérimentale à rectifier les calculs de la géométrie,
et cette conséquence a été avouée, même par les géomètres. Mais à quoi
bon corriger le calcul géométrique par l’expérience? N’est-il pas plus court
de s’en tenir au résultat de celle-ci? d’où l’on voit que les mathématiques,
transcendantes surtout, ne conduisent à rien de précis sans l’expérience; que
c’est une espèce de métaphysique générale où les corps sont dépouillés de leurs
qualités individuelles; et qu’il resterait au moins à faire un grand ouvrage
qu’on pourrait appeler l’Application de l’expérience à la géométrie, ou Traité
de l’aberration des mesures.

Note that this criticism again plays with the idea of symmetry in the notion of
application! Indeed d’Alembert as well has a number of reflections on mistaken
“applications” of mathematics to other sciences. For instance, there is the use of
the “geometric method” in metaphysics, an application he views as more or less
absurd:

Plusieurs ouvrages métaphysiques, qui ne contiennent souvent rien moins que
des vérités certaines, ont été exécutés à la maniere des Géometres; & on y voit
à toutes les pages les grands mots d’axiome, de théorème, de corollaire, &c. –
Les auteurs de ces ouvrages se sont apparemment imaginés que de tels mots
faisoient par quelque vertu secrete l’essence d’une démonstration, & qu’en
écrivant à la fin d’une proposition, ce qu’il falloit démontrer, ils rendroient
démontré ce qui ne l’étoit pas. (Art. Application)

Secondly, there is the problem of applying geometry to areas of experimental
physics where no substantial mathematization is available (at least for the time
being). This “abuse” is related to the making of unjustified hypotheses:

Il faut avoüer cependant que les différens sujets de Physique ne sont pas
également susceptibles de l’application de la Géométrie. Plusieurs expériences,
telles que celles de l’aimant, de l’électricité, & une infinité d’autres, ne don-
nent aucune prise au calcul; en ce cas il faut s’abstenir de l’y appliquer. Les
Géometres tombent quelquefois dans ce défaut, en substituant des hypotheses
aux expériences, & calculant en conséquence: mais ces calculs ne doivent avoir
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de force qu’autant que les hypotheses sur lesquelles ils sont appuyés, sont con-
formes à la nature; & il faut pour cela que les observations les confirment, ce
qui par malheur n’arrive pas toûjours. D’ailleurs quand les hypotheses seroient
vraies, elles ne sont pas toûjours suffisantes. S’il y a dans un effet un grand
nombre de circonstances dûes à plusieurs causes qui agissent à la fois, & qu’on
se contente de considérer quelques - unes de ces causes, parce qu’étant plus
simples, leur effet peut être calculé plus aisément; on pourra bien par cette
méthode avoir l’effet partiel de ces causes: mais cet effet sera fort différent de
l’effet total, qui résulte de la réunion de toutes les causes. (Art. Application,
a similar passage appears in the Discours Préliminaire.)

Here, d’Alembert is close to admitting that the criticism by Diderot, quoted above,
has some substance, at least in certain areas of experimental science. There are
even are certain areas of physical study in which the abuse of mathematics is
ending up close to charlatanry:

Il faut avoüer pourtant que les Géometres abusent quelquefois de cette appli-
cation de l’Algebre à la Physique. Au défaut d’expériences propres à servir
de base à leur calcul, ils se permettent des hypothèses les plus commodes,
à la vérité, qu’il leur est possible, mais souvent très - éloignées de ce qui
est réellement dans la Nature. On a voulu réduire en calcul jusqu’à l’art de
guérir; & le corps humain, cette machine si compliquée, a été traité par nos
Medecins algébristes comme le seroit la machine la plus simple ou la plus facile
à décomposer. C’est une chose singuliere de voir ces Auteurs résoudre d’un
trait de plume des problèmes d’Hydraulique & de Statique capables d’arrêter
toute leur vie les plus grands Géometres. (Discours Préliminaire.)

III.

Let us return to the topic of our meeting. Comparing the modern idea of applica-
tions of mathematics, and of the distinction between pure and applied mathemat-
ics, with earlier notions such as the ones sketched above (which, by the way, are
rather specific to the encyclopedist project and not shared throughout the early
modern period, or throughout Europe even in the 18th century) raises a general
issue which we hope to pursue during this week. There might even be a future
in which distinctions between pure and applied (or pure and mixed, for that mat-
ter) will loose their relevance for structuring the field of mathematical knowledge.
Again this could happen in rather different ways. One, for instance, might be to
just drop the idea of a pure field of mathematical science. All we would be left
with, then, would be applications... In this connection, compare the EU’s new
policy description HORIZON 2020 – a new horizon for placing mathematics in a
world of ‘useful’ science? The striking observation here is that many of the clas-
sical disciplines of science, including mathematics, are not explicitly mentioned in
the policy descriptions. Have we ended up in a world of applications?

Indeed, in our discussions of pure/mixed and pure/applied we should be aware of
potentially changing hierarchies and valuations. A few years ago, Paul Forman has
published a long article elaborating what has come to be called the second Forman
thesis [1]. In this article, Forman claims (and deplores) that the traditional ranking
of science above technology (and of pure mathematics above applied mathematics)
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that dominated scientific attitudes for a long time in the modern era has reversed
a few decades ago. Now, technology (understood in a very broad way, including
social technologies) is leading the hierarchies of knowledge, and science has become
subordinated to their advancement. While Forman’s material for making this claim
are mostly writings on technology (and, in particular, histories of technology) he
might indeed have a point. HORIZON 2020 almost looks as if it was a confirmation
of his thesis. Thus, if we are discussing the changing ways in which mathematics
was related to the ‘real world’, to physical nature and to society, we should not
forget that we are at the same time discussing a small, but not irrelevant part of
the question of which place has been, and should be given to science in the world
in which we live.
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The idea of mathematical models and modelling in 20th century

Tinne Hoff Kjeldsen

Mathematical modelling gained importance in a wide variety of areas in the 20th
century. It has been perceived of as having induced a new (or a change in) scientific
practice in these areas. I will give two examples of research from the first half of
the 20th century that reflect the emergence of the modelling approach, one in
economics and one in biology.

In economics, the emergence of mathematical modelling has been linked to the
modern axiomatic approach in mathematics. Research that developed in ways
that reflect the modelling approach is found in John von Neumann’s work on
game theory and economic behaviour. In their joint book, he and Morgenstern
explained their approach to modelling [7, p. 33]:

At this stage the reader will observe a great similarity with the everyday con-
cept of games. We think that this similarity is very essential; indeed, that
it is more than that. For economic and social problems the games fulfill –
or should fulfill – the same function which various geometrico-mathematical
models have successfully performed in the physical sciences. Such models
are theoretical constructs with a precise, exhaustive and not too complicated
definition; and they must be similar to reality in those respects which are es-
sential in the investigation at hand. To recapitulate in detail: The definition
must be precise and exhaustive in order to make a mathematical treatment
possible. The construct must not be unduly complicated, so that the math-
ematical treatment can be brought beyond the mere formalism to the point
where it yields complete numerical results. Similarity to reality is needed to
make the operation significant. And this similarity must usually be restricted
to a few traits deemed “essential” pro tempore – since otherwise the above
requirements would conflict with each other.
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Besides illustrating the modelling approach, von Neumann’s work on game the-
ory and economics also illustrates – as stated in the extended abstract for this
workshop – that “the very notion of the ‘application’ or ‘use’ of ready-made math-
ematical methods and knowledge to extra-mathematical domains is problematic;
in fact in many cases mathematical methods emerged from interactions with such
domains, thereby changing and challenging the existing ideas about mathematics”.
The areas in the Mathematical Subject Classification with index 90 (operations
research, mathematical programming) and 91 (game theory, economics, social and
behavioral sciences) developed as a result of mathematizing games of strategy, eco-
nomic behaviour and logistic planning. Linear programming, e.g., grew out of the
work with the development of programming models in the U.S. Air Force. In 1948
a research program was set up to explore its connection with game theory, and the
underlying mathematical structure, creating new research areas in mathematics
(index 90 and 91) and influencing new developments in ‘pure’ mathematics [3].

An early example of research that reflects the modelling approach in biology can
be found in Nicolas Rashevsky’s paper from 1934 “Physico-Mathematical Aspects
of Cellular Multiplication and Development” [4], which he presented to biologists at
a Cold Spring Harbor symposium. He used the term ‘physico-mathematical’ which
was used to indicate investigations of the cause of a phenomenon. Rashevsky was
investigating the cause of cell division. He singled out one feature that is present
in all cells (metabolism) and examined whether this process could be the cause
of cell division. His strategy was to calculate the forces acting on a unit volume
that are produced in an idealized (homogenous and spherical) cell by a gradient of
concentration of a substance. He was able to deduce, that when the radius of such a
spherical cell reaches a critical seize, division of the cell will cause a decrease of free
energy. Nature favors configurations with smallest possible value of free energy,
so Rashevsky was, as he wrote: “tempted to infer that therefore division of a cell
will occur spontaneously as soon as, ... the cell will exceed the critical seize”. The
biologists were very critical and hostile towards Rashevsky’s approach [2]. They
criticized what we would call Rashevsky’s modeling process. They wanted to know
the ‘model’s’ relation to nature: “What is the nearest example in nature to this
theoretical case?”, they asked, arguing that: “ ... it (the ‘model’) doesn’t help
as a general solution because a spherical cell isn’t the commonest form of cell”
[4]. This discussion between Rashevsky and the biologists illustrates an important
epistemological issue, the question of how scientists and mathematicians come to
an agreement about what counts as knowledge in such uses of mathematics.

The migration of mathematics into biology was slower than in economics, but
its significance has been growing during the past decades. The Society for Mathe-
matical Biology was founded in 1973 and The European Society for Mathematical
and Theoretical Biology was founded in 1991. Mathematical modelling has in-
troduced a new scientific practice in biology. In 1989 the mathematician Pedro
Miramontes from the biomathematics group at the National Autonomous Univer-
sity of Mexico used the term in silico paradigm for a new kind of experiments in
the life sciences that are carried out entirely within a computer.
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The increasing use of mathematical modelling in scientific practices raises the
question of what are the function and status of mathematical modelling in the
production of scientific knowledge. How is “knowledge” negotiated between dis-
ciplines? How do mathematicians and scientists build mathematical models, how
do they learn from mathematical models, how do they argue with them, how do
they integrate knowledge across the disciplinary boundaries of mathematics and
the extra-mathematical domain, how do they validate models, how does mathe-
matical modelling interact with the production of mathematical knowledge, how
does it change and challenge existing ideas about mathematics? To deal with such
questions, Amy Dahan concludes from her study in the history of meteorology:

In order to understand how scientific practices and knowledge results relate
to each other, the notion of model needs to be historicized through a study
of its workings and functions in different historical configuration of scientific
research. It also needs to be subjected to sociological analysis: modeling
activities should be reinserted into their institutional, technical, and politi-
cal environments, without separating the cognitive from the social elements
combining within each model. We need to pay attention to the actors – the
researchers, engineers, and users of models – and to the actions themselves.
[1, pp. 126-127]

As it was pointed out in the extended abstract of this workshop, by focusing on
such historical studies, we can gain insights which can be helpful in contempo-
rary discussions about the social role of mathematics and the function (action) of
mathematical modelling in other fields. Such issues are also discussed in Critical
Mathematics Education. As pointed out by Ole Skovsmose [6], we have new sites
for knowledge production. We find a variety of companies, institutions and orga-
nizations involved in knowledge production – e.g. pharmaceuticals, biotechnology,
etc. – sites that can be overloaded with different business interests. The social role
of mathematics and the function and status of mathematical modeling in other
areas, challenges the assumption of neutrality of mathematics and science, inher-
ent in traditionally science and mathematics education. An important concern in
critical mathematics education is to reflect upon and criticise mathematics in its
variety of forms of actions [5], to show how power and mathematics come together.

In discussing the changing ways in which mathematics was related to the ‘real
world’ in the context of mathematical modelling and its role and function in sci-
entific practice, technology and society – it seems to be the case that as math-
ematics becomes more important its role seems to become less visible – a point
that is reflected in the recent EU policy for research and innovation, Horizon 2020.
Mathematics and mathematical modelling will be a key component of many of the
areas of expertise in the call, though without being mentioned explicitly.
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“Of a Gardiner, and how he is to be qualified”: Landscape design and
the early modern mathematical sciences

Volker Remmert

The scientiae or disciplinae mathematicae were generally subdivided into ma-
thematicae purae, dealing with quantity, continuous and discrete as in geometry
and arithmetic, and mathematicae mixtae or mediae, which dealt not only with
quantity but also with quality – for example astronomy, gnomonics, optics, mu-
sic, the science of waters and architecture. The Jesuit Gaspar Schott enumerated
almost thirty fields among the mathematicae mixtae in his Cursus mathematicus
of 1661. Schott’s division is in the tradition of Clavius who in his very influential
Euclid commentary of 1574 discusses the division of the mathematical sciences
(disciplinarum mathematicarum divisio) and explicitly uses mixed mathematics
(mathematicae mixtae) as a category [3].

What is it that you do in a garden?

The garden entertains and delights by means of the mathematical sciences, mostly
mixed: music and acoustic effects (echo), fountains and sundials, geometric forms,
automata and many more things that could be found in early modern gardens
would be part of a thorough or encyclopedic course of the mathematical sciences
[1].

In the preface of the Mario Bettini’s (S.J.) Apiaria universae philosophiae ma-
thematicae (3 vols., Bologna 1642) a forceful metaphor comes up: the hortus
mathematicus, the garden of the mathematical sciences. This metaphor is more
than a typical blossom of early modern rhetoric and iconography aiming at the
legitimization of the mathematical sciences. Rather the hortus mathematicus is
perceived of as a field where the theory and practice of gardening and the math-
ematical sciences interact and all the things you need to create gardens and be
entertained in them are covered by the mathematical sciences: practical geometry,



674 Oberwolfach Report 12/2013

architecture, perspective, optics, music, etc. The garden was a location to be en-
tertained in, but simultaneously a place of the mathematical sciences, which were
used as well for the creation of the garden as the recreation in the garden.

The mathematical sciences and gardening/landscape design

In the 17th and early 18th century authors writing on gardening often stress the im-
portance of the mathematical sciences for gardening. The French Royal gardener
Jacques Boyceau, for instance, in his Traité du Jardinage (Paris 1638) demanded
that young gardeners be thoroughly instructed in geometry, architecture, arith-
metic and perspective. By training young gardeners in the arts and in the relevant
mathematical sciences Boyceau wished to emancipate gardening from the crafts
and raise it to the status of an art. His programme was very successful and had
an important impact on young gardeners as, for instance, André Le Nôtre, the
creator of the gardens of Versailles.

Between 1600 and the mid-18th century practitioners of the mathematical sci-
ences and of gardening and landscape design shared the conviction that they could
to a certain extent control and dominate nature. And, indeed, the methods and
knowledge of the mathematical sciences opened up new ways to do so. Such new
options deeply affected the realm of landscape design and gardening in various
ways and thus directly reached into the political sphere by offering new possibil-
ities and forms of representation – and not only in the gardens of Herrenhausen
or Sanssouci where Leibniz and Euler were drawn into the international fountain
competition. The art of gardening and landscape design was, perhaps, the most
prominent representative of the early modern urge to dominate nature. From this
perspective an alliance with the mathematical sciences seems natural.

To design a garden, theoretical decisions have to be made concerning the design
and the organization of space, the planting, the features and the artistic equipment
of the garden. Thus knowledge of geometry is indispensable. Also knowledge of
architecture is a must in order to design a garden (fountains, pavilions, orangeries
etc.) as well as familiarity with perspective and acoustics (artificial echos). All
these, geometry, architecture, perspective, acoustics, belong to the mathematical
sciences.

In practice or rather in the field, before planting and equipping the gardens,
challenges have to be met which also require knowledge of the mathematical sci-
ences: the grounds have to be surveyed and to be modified according to the design.
This task was often entrusted to military engineers who had the necessary exper-
tise in changing landscapes and moving vast amounts of soil [4]. The theoretical
knowledge needed as well as the familiarity with mathematical instruments are
typical of fortification, geodesy and practical geometry – again parts of the math-
ematical sciences.

On a more theoretical level one of the most determined propagators of the use
of the mathematical sciences in gardening was the English virtuoso John Evelyn
(1620–1706). Beginning in the 1650s he became a key figure for the introduction of
Continental writings on gardening to England [2]. In his Elysium Britannicum, or
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The Royal Gardens [5] Evelyn pursued the somewhat ambitious goal to turn the
art of gardening into a scientific enterprise. For this purpose he drew on the whole
range of the mathematical sciences (geometry, optics, astronomy and astrology,
perspective, architecture, acoustics, the science of waters etc.). He refers to the
volumes of contemporary practitioners of the mathematical sciences as Bernard
Lamy, Salomon de Caus, Marin Mersenne and William Oughtred, but above all to
the heavy Latin folios of Jesuits authors such as Athanasius Kircher, Gaspar Schott
or Mario Bettini. The Jesuit publications were essential for the teaching of the
mathematical sciences in their whole range and naturally also covered the practical
branches, which were equally relevant for landscape design as for fortification and
military engineering. This corresponds well to the important role that Jesuit
colleges had in the teaching of mixed mathematics.

During the 17th century in order to learn the necessary techniques landscape
designers and gardeners often relied on the wide-spread introductory texts written
for young military officers, such as Sébastien Leclerc’s Pratique de la geometrie
(Paris 1669, 1682, 1691) or Alain Manesson-Mallet’s Géométrie pratique (4 vols.,
Paris 1702). However, in the 18th century authors writing on gardening would
include the elements of geometry which they deemed necessary in their works
(Dézallier d’Argenville in his Théorie et Pratique du Jardinage of 1709, Switzer in
his Ichnographia Rustica of 1718 and Langley in his New Principles of Gardening
of 1728).

Concluding remarks

A detailed analysis of the relationship between landscape design and the mathe-
matical sciences in the early modern period has not yet been undertaken. It is
obvious that there is a vast field of research to be done on the intersection of his-
tory of mathematics, science and technology and the history of landscape design
and gardening. To embrace this field would mean to tackle some of the following
questions:

(1) Who were the individuals or groups concerned with landscape design and
gardening and the relevant forms of knowledge from the mathematical
sciences?

(2) Who codified the relevant forms of knowledge? What are the reasons and
what are the forms of communication involved?

(3) What role do the mathematical sciences, new instruments and new tech-
nological developments play in the art and practice of landscape design?
And how does the interaction feed back into the mathematical sciences?

All these questions and topics are closely connected to the more general trends of
scientization and mathematization that have shaped European societies since the
early modern period [6].
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An attempt to characterize what was termed Messung and considered
mathematical practice in 16th century mathematical treatises

Jeanne Peiffer

The purpose of this talk was to question some 16th century practices situated at the
nexus of geometry, optics, perspective and instrument making, in order to give an
idea of the use of geometry in arts and crafts. The nexus seems to be best described
for the German area by the polysemic “Messung”, introduced by Albrecht Dürer in
his famous Underweysung der messung ([Dürer 1525, Strauss 1977, Peiffer 1995]).
This term points to a constructive geometry, without demonstrations and mea-
surements. Starting with the example of a skew curve, a conical helix seated on a
cylindrical one [Dürer 1525, Book I, fig. 15], which has been interpreted by 20th

century historians of mathematics ([Amodeo 1908, Taton 1954]) as an early occur-
rence of descriptive geometry, I have shown that Dürer makes a distinction between
an abstract curve represented by two projections on two mutually perpendicular
planes on one hand, and a mathematical description of a spiralling staircase in a
conical tower on the other. In this latter case, and in others belonging to the archi-
tectural context of Book III of his Underweysung, like the construction of a round
twisted column [Dürer 1525, Book III, fig. 9-10], Dürer alters the representation of
the curve in order to conform to the experience of steps being smaller and steeper
when climbing up in the tower. Dürer offers a mathematical construction that
allows to obtain the desired effect. It is based on the 4th postulate of Euclidean
optics (magnitudes seen under equal angles are perceived as equal), well known
from the use Vitruvius has made of it for the purpose of optical corrections. When
the curve is associated with architecture, it is perceived in a physical space, which
is also visual. Dürer is however silent on the link to vision which is made only later
in book III (fig. [28] concerning the proportioning of letters in inscriptions high up
on buildings). One possible ex planation for Dürer’s silence is that he learned the
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technique in a workshop environment and applied it tacitly [Peiffer 2004]. This
hypothesis is confirmed by Daniele Barbaro, who in his La pratica della perspet-
tiva (1568), commented on Dürer’s “artificio” or “instrument” and established a
double link between painters’ and architects’ knowledge on one hand and Euclid’s
optics on the other. Some of Dürer’s Southern German followers identified “kunst
des messens” with perspective, which relates in this context to optics. Augustin
Hirschvogel for instance speaks in his Geometria (1543) of “dise edle und Nützliche
kunst des messens (Perspectiva in Latein genant)” [Hirschvogel 1543, dedication].

To sum up, Dürer’s procedure can be described as an intermingling of geo-
metrical constructive methods, optics, workshop techniques and (simple) math-
ematical instruments. This is reflected in the following quote from Johann Sto-
effler’s Von künstlicher Abmessung: “Der nutz unnd dienstbarkeit diser kunst
[Geometria]/würt durch erfarung und brauch bekant. . . Fürter bringt sie herfür
vil künst/die handtwirckung unnd Perspective damit sie zu menschlichem brauch
dienlich” [Stoeffler 1536, p. Aij].
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How relevant is the category of ‘mixed mathematics’ to the sixteenth
century?

Jim Bennett

As someone working in the history of practical mathematics and mathematical
instruments, I have often come across the assumption that the term ‘mixed math-
ematics’ is relevant to my research. I have been advised by editors and referees to
include references to this category in publications, so that readers will appreciate
the character of the mathematics about which I am writing. I have resisted doing
so, because I do not come across the term in the sources I use, which has made
me reluctant to reinforce an assumption that might be surviving merely by being
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passed on from one historian to another. I did not see that the people I was writing
about used this term, or, more importantly, subscribed to the assumptions that
lay behind it.

The category of ‘mixed mathematics’ was of course used in periods in the past,
particularly in the 18th and 19th centuries, and my comments refer only to the
early period covered by the workshop, the 16th century in particular. In fact
discussions in the workshop itself revealed that my concerns must be restricted
further: to the practical mathematical tradition and perhaps especially, though not
exclusively, to mathematical practice in England. Among Jesuit mathematicians,
for example, we learned that the category is commonly used. Nonetheless, even if
my strictures have a more limited application, it is important to be careful not to
import assumptions unthinkingly into areas of practice where they are not used.

An earlier study ([1]) found no instances of the term ‘mixed mathematics’ before
1600 and traced its origins in English to Francis Bacon, Of the Proficiency and
Advance of Learning, published in 1605. Those results were effectively challenged
in the workshop, but they might still be helpful in formulating a qualified pattern
for the term’s occurrence. There is in fact a conspicuous early instance of the use
of ‘mixed’ in the English mathematical literature not mentioned by Brown, and it
is dealt with here more to set it aside as something different and distinctive than
as a case that qualifies his account in a substantial way.

John Dee’s well-known preface to the first English edition of Euclid’s Elements,
published in 1570, was accompanied by a ‘groundplat’ or diagram, setting out the
relationships between the mathematical sciences. For both the ‘principal’ math-
ematical, sciences, arithmetic and geometry, Dee distinguishes between ‘simple’
and ‘mixt’, but he is referring to mixtures between the sciences themselves. So
‘mixt arithmetic’ is a mathematical science where geometry is used within arith-
metic, a science ‘which with aide of Geometrie principall, demonstrateth some
Arithmeticall Conclusion, or Purpose.’ Similarly mixed geometry accepts the aid
of arithmetic; for Dee, Euclid’s Elements is itself an example of mixed geometry.
This has nothing to do with what historians tend to call ‘mixed mathematics’ in
the period and the many ‘Artes Mathematicall Deriuatiue’, as Dee calls them,
appear in a separate branch of his ‘groundplat’. It is worth noting that Dee con-
siders the term ‘mixt’ a sufficiently unoccupied descriptor in the landscape of the
mathematical sciences that he is free to adopt and use it in the way he does.

There have been suggestions in the secondary literature that Bacon’s use of
‘mixed mathematics’ drew on Aristotle’s notion of ‘subordinate’ sciences and on
the development in medieval Aristotelian thought of the notion of ‘scientiae me-
diae’ – sciences such as optics, measurement and perhaps astronomy, that sit
between mathematics and physics. A problem with that is that in the medieval
organisation of knowledge and hierarchy of disciplines, mathematics is considered
inferior to physics, so for a science to be ‘scientia media’ involves an aspiration to
a higher status than mathematics by partaking of some of the qualities of physics,
with its accounts of the nature and causes of things. Most historians who invoke
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the mixed mathematics category imply that pure mathematics is being compro-
mised or qualified by an engagement with the mechanical world. For Bacon the
‘mixing’ involved in mixed mathematics is with natural philosophy, but this is not
aspirational on the part of mathematics, since he ranks mathematics alongside
physics and metaphysics. For him mathematics can be a tool for certain branches
of natural philosophy, improving its performance in invention, demonstration and
use.

This is not at all in line with what we find in practical mathematics, where
engagement with natural philosophy is rare and generally considered not relevant
to mathematical practice. It is almost always the case in the 16th century that
the practical mathematical arts and sciences, where mathematics is put to use and
becomes a sphere of action with a disciplinary range of individual sciences, has
nothing to do with natural philosophy.

Bacon’s meaning of ‘mixed mathematics’ can be found in 17th-century Eng-
lish writers, such as John Wilkins, Robert Boyle and Ralph Cudworth, for whom
Bacon was a very useful figurehead with polemical value to experimental philoso-
phers, particularly within the Royal Society, but who sat outside mathematical
practice. The first examples of ‘insiders’ using the term come towards the end of
the 17th century – William Molyneux and William Whiston – but by then New-
ton’s Principia was an example for the kind of mathematics they would have seen
as ‘mixed’.

Reverting to the 16th century, we should be cautious about using ‘mixed math-
ematics’ in that context because it could well be misleading. If it assumes that
some ‘mixing’ is happening, what are the ingredients being mixed? In practical
mathematics, techniques of geometry and arithmetic are not being invoked in ac-
counts of the natural world, so any mixing is not with natural philosophy. Instead
they are made relevant to the artificial world, where man and not God is the in-
ventor and the other ingredient in the mix, along with pure mathematics, would
be the practical arts.

The vigorous development of practical mathematics in the 16th century cer-
tainly involved the use of geometrical techniques to achieve material ends in a
growing range of mathematical arts – from astronomy, navigation and survey-
ing to cartography, warfare, horology, architecture, drawing and painting in per-
spective. Mathematical instruments were ubiquitous in these developments. The
mathematicians who were carrying them forward did not think of themselves as
applying an independent or self-sufficient domain of pure mathematics, finding
content pre-existing in this distinct domain that could be used for their more
mundane problems and mixing it with practical techniques. It would be more in
keeping with their attitudes to say that there was a set of techniques or resources
that characterised mathematical practice (and these included instruments) that
could be modified, developed, extended, revised, augmented and used, and that
constituted the disciplinary core of their practice. They thought of new areas of
use simply as further instances of their work as mathematicians. They were aware
that there was what was called ‘speculative’ mathematics, where developments
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were not worked out through challenges thrown up in the practical arts, but did
not see their procedure as mixing this with mechanical or material practice.

The more complex instruments of the period and the books published to explain
their ‘construction and use’, in the common organisation adopted in such works,
provide instructive examples of how the practitioners approached their discipline.
The example taken in the talk was the Regiomontanus sundial; there is insufficient
space to deal with it here, but see [2].

The dial illustrates the contemporary use of the ‘theoric’, where a systemic
technique (most often a geometrical construction or projection) could deliver a
much wider range of data than were used in its creation. A map drawn to scale,
for example, was such a device. A theoric was largely devoid of natural philo-
sophical content, just as a map could take a variety of forms, according to the
projection being used, the test of success being its usefulness for a particular pur-
pose, such as Mercator sailing, rather than its fidelity to the nature of things.
Theorics are not ‘mixed’ through an engagement with natural philosophy, in the
sense used by Bacon, but neither are they ‘mixed’ because a kind of ‘pure’ math-
ematics is an ingredient in their construction. In 16th-century accounts of the
Regiomontanus dial, as with other mathematical instruments, the reader is told
in considerable detail, step by step, the procedure for the construction, but is not
offered the geometrical proof a modern mathematician might expect to establish
the instrument’s legitimacy. It is typical of this genre of mathematical practice
that legitimacy comes through the skilful use of a set of geometrical techniques,
accepted within mathematical practice. This is a genre of operative mathemat-
ics, using protocols of practice rather than regimes of proof, and to apply the
descriptor ‘mixed’ to it endangers our appreciation of this essential characteristic.
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Tobias Mayer’s use of Observations

Steven Wepster

The lunar tables of Tobias Mayer of 1753 and 1762 were of epoch-making accu-
racy and made the determination of longitude at sea feasible. I show that they
incorporate elements of an outdated lunar motion model going back to Jeremiah
Horrocks of 1640. I also show how Mayer adjusted the coefficients on which the
tables depend. For this, he used an iterative technique with a high ad-hoc nature,
which I reconstructed from certain undocumented papers, very similar to modern
spreadsheets, in his archives. Dynamical lunar theory is a much less important
factor in the success of the tables than has been supposed until recently. Mayer
also proposed to study world temperature distribution by a similar procedure of
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model fitting as he had used for the lunar tables. His extensive use of overdeter-
mined systems for parameter fitting was not universally accepted but it clearly
showed what an ‘engineering approach’ could accomplish when a more theoretical
approach failed.
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Different ways of mathematizing water powered machines in the 18th
and early 19th century

Gerhard Rammer

At the beginning of the 18th century, Antoine Parent developed the first theory
of water wheels by mathematizing the dynamics of the operating wheel. He es-
tablished his theory via application of the newly invented differential calculus and
could then use it to calculate the optimal operation conditions for the wheel, i.e.,
its velocity and the load it could lift. While the theory did not provide any infor-
mation about design details, and despite its results seeming dubious, it was still
highly praised as an important achievement because of its mathematical method.

During the entire 18th and the first half of the 19th century, many attempts
were made to find an appropriate mathematization of water wheels. The theory
for undershot wheels had remained a cumbersome endeavor for a long time while
the theory for overshot wheels had soon been established and their overall dimen-
sions could be calculated. But there was still need of a theory that also gave hints
on the design details. In 1809, Franz Josef von Gerstner published his idea on
how rules could be given for every design parameter for overshot wheels, based
strictly on mathematical methods. Although his copious calculations led to com-
plex systems of equations that could not be solved and had thus to be simplified,
the mathematical method itself was highlighted in order to raise the value of the
results, a rhetoric that was common in the engineering literature of the time. On
that note it is also interesting to point out that the engineering approach of this
time was often purely theoretical and did not rely on empirical data.
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The Decline of ‘Mathesis mixta’ in Rational Mechanics and its
Philosophical Implications, 1788–1869

Helmut Pulte

In the 17th and 18th century, rational mechanics was widely understood as part
of ‘mathesis mixta’, i. e. as an integral part of mathematics that has to do with
numbers, magnitudes, figures, formulas etc. that refer to concrete physical ob-
jects. Under the premise of different paradigms of mechanism, the primary aim of
rational mechanics was to uncover the primary laws of motion of material parti-
cles. Motion itself being regarded as a genuine mathematical concept, mechanics
was, first of all, understood as a mathematical science. ‘Mathematical’ in this
sense does not mean ‘mathematics applied to science’ but rather ‘science, having
essentially to do with mathematical entities’. Being a deductively organized part
of mathematics, it seemingly participated from the evidence and certainty that
was ascribed to mathematical knowledge in general.

Due to internal and (even more) external reasons, this understanding of rational
mechanics changed dramatically in the course of the 19th century: Rational or – to
use the modern term – theoretical mechanics developed into a discipline that was
primarily understood as a part of physics to which certain mathematical methods
and concepts were ‘applied’. One important consequence of this process was that
‘first principles’ or ‘axioms’ of mechanics lost their status as both mathematical
and empirical truths. This dissolution paved the way for a modern understanding
of mechanics as a fallible empirical science. In turn, the development in question
was a historical precondition of the later ‘revolutions’ in theoretical physics.

The talk outlined this ‘meta-theoretical’ change in rational mechanics – which
can be described as a decline of ‘Euclideanism’ in I. Lakatos’ sense – and discussed
its main causes. The starting point was Lagrange’s Méchanique Analitique (1788)
and its terminal point was C. Neumann’s Principien der Galilei-Newton’schen
Theorie (1869), which was – due to its criticism of the basic principles of mechan-
ics in conjunction with its criticism of Newtonian absolute space – arguably the
‘beginning of the end’ of classical mechanics.

A careful historical analysis of this general change reveals some remarkable
cornerstones which deserve to be mentioned in detail: First, already Lagrange’s
Méchanique Analitique, which aimed at an integration of the results of different
research programs of the 18th century, had to pay a high prize for its unification
efforts: Its principles became formal axioms of science rather than laws of nature.
The rise of these principles was accompanied by a ‘semantic unloading’ of their
basic mathematical concepts (like moment, action or potential). The basic prob-
lem Lagrange had to face was that this formalisation led to a conflict with the
traditional meaning of ‘axioms’ as true and self-evident first propositions, which
are neither provable nor in need of a proof. While he first stuck to this under-
standing, he later had to admit that his first principle (namely that of virtual
velocities) lacks one decisive characteristic of an axiom in the traditional meaning,
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i. e. that it was ‘not sufficiently evident to be established as a primordial prin-
ciple’. He and other mathematicians (like Fourier, Laplace, Poisson, Poinsot and
Ampère) attempted to prove this ‘axiom’ – a process indicating a degeneration of
traditional mechanical Euclideanism to ‘Rubber Euclideanism’.

Second, within the German reception of Lagrange’s mechanics and French math-
ematical physics in general, a new understanding of mathematics as a ‘pure’ sci-
ence became essential. Strongly influenced by philosophy and the broader cultural
movement of Neohumanism, doing mathematics was primarily understood as a
mere mental activity based on laws of thought which are independently from any
experience or empirical intuitions. This conception first brought about a genuine
problem of the applicability of mathematics to nature and articulated this problem
sharply. C. G. J. Jacobi was the most important representative in this respect.
In his last Berlin lectures on Analytische Mechanik from 1847/48, he rejected
Lagrange’s approach for its inability to describe the behaviour of real physical
bodies and he sharply criticised his attempts to mathematically demonstrate so-
called ‘axioms’ of mechanics: They cannot be based on unquestionable rules of
thinking and mathematical deduction. At this point Jacobi – as an exponent of
pure mathematics – totally dismissed Euclideanism as an ideal of empirical science
in general: The formal similarity between the deductive system of analytical me-
chanics and systems of pure mathematics (like number theory) must not lead to
the false belief that both theories meet the same epistemological standards. Jacobi
was the first representative of the analytical tradition who saw and drew this con-
sequence. According to his view, mathematics offers a rich supply of possible first
principles, and neither empirical evidence nor mathematical or other reasoning can
determine any of them as true. Empirical confirmation is necessary, but can never
provide certainty. First principles of mechanics, whether analytical or Newtonian,
are not certain, but are only probably true. Certainty of such principles, a feature
of mechanical Euclideanism, cannot be achieved. Moreover, the search for proper
mechanical principles always leaves space for a choice between different alterna-
tives. Jacobi, well educated in classical philology and very conscious of linguistic
subtleties, consequently called first principles of mechanics ‘conventions’, exactly
50 years before H. Poincaré did. According to his understanding of rational me-
chanics, mathematics is applied to empirical reality, and not ‘mixed up’ with it.
It is here, within mathematics, where the conventional character of the principles
has to be located, because free mathematical invention offers more possibilities
than nature can realize.

Third, mathematicians like B. Riemann and C. Neumann picked up Jacobi’s
criticism of traditional Euclideanism in rational mechanics and developed it fur-
ther. Neumann’s Leipzig inaugural lecture Ueber die Principien der Galilei-New-
ton’schen Theorie from 1869 is very significant in this respect: Like K. R. Popper
about six decades later, he described even the basic principles of mechanics (as the
law of inertia, for example) as ‘neither true nor probable’. They, too, are ‘arbi-
trary’ and ‘moveable’ mathematical hypothesis; they can always be overthrown by
further developments. Modern fallibilism lurks around here. In this context, the
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methodological meaning of his famous ‘body Alpha’ becomes relevant: Neumann
decomposed Newton’s law (or hypothesis) of inertia as an indubitable, dogmatic
principle to three different propositions (existence of Alpha, rectilinearity, unifor-
mity), which together form the empirical content of this law. His explication of
the different empirical attributes can be understood as a perfect example for the
process of explicating conditions and establishing conventions which are typical
for the rise of hypothetical thinking in general.

There are some lessons which might be learned from this ‘short story’ linking
1788 to 1869: The modern understanding of mechanics as a genuinely physical
science should not blind us to the fact that in the 18th and first half of the 19th

century it was, as part of ‘mathesis mixta’, credited with the evidence and cer-
tainty of mathematics, being de facto regarded as epistemologically equivalent
to Euclidean geometry by nearly all scientists and most philosophers of science.
Moreover, the ‘top down-perspective’ of the working mathematical physicist im-
plied that the dissolution of mechanical Euclideanism and the rise of hypothetical
thinking began (and had to begin) here, at the top: In a way, there could happen
no ‘bottom up’-dissolution by empirical falsifiers before. Last, in the course of the
19th century, a ‘shrinking-process’ of mathematical evidence and certainty took
place, and physical geometry as well as mathematical physics were affected by
this process. The concept of pure mathematics, isolating arithmetic, algebra and
analysis as the remaining mathematical ‘paradise’ of evidence and certainty from
the larger area of the mathematical sciences, played a crucial role in this process.
Mechanics, however, was repudiated from this paradise once and for all.

References

[1] Jacobi, C. G. J.: Vorlesungen über analytische Mechanik. Berlin 1847/48. Ed. by H. Pulte.
Braunschweig/Wiesbaden 1996.
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Ballistics during 18th and 19th centuries: What kind of mathematics?

Dominique Tournès

Two recent papers ([1], [7]) have studied the scientific and social context of ballis-
tics during and around the First World War, and have put in evidence the collab-
orations and tensions that have been existing between two major milieus, the one
of artillerymen, that is engineers and officers in the military schools and on the
battlefield, and the other one of mathematicians that were called to solve difficult
theoretical problems. My aim is to give a similar survey for the previous period,
that is to say during the second half of the 18th century and the 19th century.

The main problem of exterior ballistics – I won’t speak of interior ballistics,
which is nearer to physics and chemistry than mathematics – is to determine the
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trajectory of a projectile launched from a cannon with a given angle and a given
velocity. The principal difficulty encountered here is that the differential equations
of motion involve the air resistance F (v), which is an unknown function of the
velocity v. In fact, the problem is more complex because we must take into account
other factors like the variations of the atmospheric pressure and temperature, the
rotation of the Earth, the wind, the geometric form of the projectile and its rotation
around its axis, etc. However these effects could be often neglected in the period
considered here, because the velocities of projectiles remained small.

For a long time, artillerymen have made the assumption that the trajectory is
parabolic, but this was not in agreement with the experiments. Newton was the
first to research this topic taking into account the air resistance. In his Principia of
1687, he solved the problem with the hypothesis of a resistance proportional to the
velocity, and he got quite rough approximations when the resistance is proportional
to the square of the velocity. After Newton, Jean Bernoulli discovered the general
solution in the case of a resistance proportional to any power of the velocity,
but his solution, published in the Acta Eruditorum of 1719, was not convenient
for numerical computation. After Bernoulli, many attempts have been done to
treat mathematically the ballistic equation. We may organize these attempts
throughout two main strategies, one analytical and one numerical.

The analytical strategy consists in integrating the differential equation in finite
terms or, alternatively, by quadratures. Reduction to an integrable equation can
be achieved in two ways: 1) choose an air resistance law so that the equation can
be solved in finite form, leaving it to the artillerymen to decide after if this law
can satisfy their needs; 2) if a law of air resistance is imposed through experi-
ence, change the other coefficients of the equation to make it integrable, with of
course the risk that modifying the equation could modify also the solution in a
significant way.

In 1744, D’Alembert restarts the problem of integrability of the equation. Act-
ing here as a geometer, concerned only with progress of pure analysis, he finds
four new cases of integrability. His work went relatively unnoticed at first: Le-
gendre in 1782, and Jacobi in 1842 have found again certain of the same cases of
integrability, but without quoting D’Alembert.

During the 19th century, we can observe a parallelism between the increas-
ing velocities of bullets and cannonballs, and the appearance of new instruments
to measure these velocities [2]. Ballisticians have therefore felt the necessity of
proposing new air resistance laws for certain intervals of velocity [3]. Thus, cer-
tain previous theoretical developments, initially without applications, led to tables
that were actually used by the artillerymen. The fact that some functions deter-
mined by artillerymen from experimental measurements fell within the scope of
integrable forms has reinforced the idea that it might be useful to continue the
search for such forms.

It is within this context that Francesco Siacci resumes the theoretical search
for integrable forms of the law of resistance. In two papers published in 1901,
he discovers ten families of air resistance laws corresponding to new integrable
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equations. The question of integrability by quadratures of the ballistic equation
is finally resolved in 1920 by Jules Drach [5], a brilliant mathematician who has
contributed much in Galois theory of differential equations. Drach exhausts there-
fore the problem from a theoretical point of view, but his very complicated results
are greeted without enthusiasm by the ballisticians, who do not see at all how to
transform them into practical applications.

Another way was explored by theoreticians who accepted Newton’s law of the
square of the velocity, and tried to act on other terms of the ballistic equation to
make it integrable. In 1769, Borda proposes to assume that the medium density is
variable and to choose, for this density, a function that does not stray too far from
a constant and makes the equation integrable. Legendre deepens Borda’s ideas in
his essay on the ballistic question [8], with which he won in 1782 the prize of the
Berlin Academy. After Legendre, many other people, for example Siacci at the
end of the 19th century [9], have developed similar ideas to obtain very simple,
general, and practical methods of integration.

The second strategy for integrating the ballistic differential equation, that is
to say the numerical approach, contains three main procedures: 1) calculate the
integral by successive small arcs; 2) develop the integral into an infinite series and
keep the first terms; 3) construct graphically the integral curve.

Euler is truly at the starting point of the calculation of firing tables in the
case of the square of the velocity [6]. In 1755, he resumes Bernoulli’s solution
and puts it in a form that will be convenient for numerical computation. The
integration is then done by successive arcs: each small arc of the curve is replaced
by a small straight line, whose inclination is the mean of the inclinations at the
extremities of the arc. A little later, Grävenitz achieves the calculations of the
program conceived by Euler and publishes firing tables in Rostock in 1764. In
1834, Otto improves Euler’s method and calculates new range tables that will
experience a great success, and will be in use until the early 20th century.

Another approach is that of series expansions. In the second half of the 18th cen-
tury and early 19th, we are in the era of calculation of derivations and algebraical
analysis. The expression of solutions by infinite series whose law of formation of
terms is known, is considered to be an acceptable way to solve a problem exactly,
despite the philosophical question of the infinite and the fact that the series ob-
tained, sometimes divergent or slowly convergent, do not always allow an effective
numerical computation. Lambert, in 1765, is one of the first to express as series
the various quantities involved in the ballistic problem. On his side, Français ap-
plies the calculation of derivations for obtaining a number of explicit new formulas.
However, he himself admits that these series are too complicated for applications.

Let us mention finally graphical approaches providing artillerymen with an easy
and economic tool. Lambert in 1767, and Obenheim in 1818 have the similar idea
of replacing some previous ballistic tables by a set of curves carefully drawn by
points. In 1848, Didion [4], following some of Poncelet’s ideas, constructs some
ballistic curves that are not a simple graphic representation of numerical tables, but
are obtained directly from the differential equation by a true graphical calculation.
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Artillery was so the first domain of engineering science in which graphical tables,
called “abaques” in French, were commonly used.

In conclusion, throughout the 18th and 19th centuries, there has been an inter-
esting interaction between analytic theory of differential equations, numerical and
graphical integration, and empirical research through experiments and measure-
ments. Mathematicians, ballisticians and artillerymen, although part of different
worlds, collaborated and inspired each other regularly. All that led however to
a relative failure, both experimentally to find a good law of air resistance, and
mathematically to find a simple solution of the ballistic differential equation.

Mathematical research on the ballistic equation has nevertheless played the
role of a laboratory where the modern numerical analysis was able to develop.
Mathematicians have indeed been able to test on this recalcitrant equation all
possible approaches to calculate the solution of a differential equation. There is
no doubt that these tests, joined with the similar ones conceived for the differential
equations of celestial mechanics, have helped to organize the domain into a separate
discipline at the beginning of the 20th century.
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dans un autre fluide quelconque, Mémoires de l’Académie des sciences de Berlin, 9 (1755),
321–352.

[7] A. Gluchoff, Artillerymen and mathematicians: Forest Ray Moulton and changes in Amer-
ican exterior ballistics, 1885-1934, Historia Mathematica 38 (2011), 506–547.

[8] A.-M. Legendre, Dissertation sur la question de balistique, Berlin: Decker, 1782.
[9] F. Siacci, Balistica, Torino: Casanova, 1888.

Applications in the 19th century

Jesper Lützen

The 19th century saw a shift in the relation between pure and applied mathematics.
In the beginning of the century the French polytechnic tradition valued applied
mathematics highly and the majority of mathematical researches were closely con-
nected with applications. Towards the end of the century German neo-humanistic
ideas emphasized that mathematical research was done for the honor of the human
mind. However, this tendency should not hide the fact that even at the end of
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the century mathematical activities continued to a great degree to be directly or
indirectly inspired by applications.

While the notion of mixed mathematics was still in use at the beginning of the
century, the notion of applied mathematics soon took over. However, it is not
an easy task to get a precise idea of the 19th century meaning of this notion. In
most research papers by working mathematicians it is taken as a self explanatory
notion, and in encyclopedias and similar works about mathematics there is no
shared agreement about the meaning of the word and the way applied mathematics
differ from pure mathematics.

In his second edition of his Histoire des Mathématiques Montucla (1799) stuck
to the traditional division between a pure mathematics dealing with abstract quan-
tity and a mixed mathematics dealing with concrete quantities of nature. A similar
distinction can be found in some early 19th century distinctions between pure and
applied mathematics. Another way that applied mathematics was distinguished
from pure mathematics was through its purpose: Applied mathematics was done
in order to understand nature. Finally also the certainty of the research was
used as distinguishing factor. While pure mathematics was often seen as certain
knowledge, applied mathematics did not share this certainty. However, already
Montucla pointed out that once the hypotheses of nature that were to play the
role of basic principles in a branch of mixed (or applied) mathematics were taken
as axioms the rest of the mathematical deductions acquired the same “moral cer-
tainty” as pure mathematics. This opinion was repeated by Fourier and others
and led Whitehead (1940) to declare that in principle there is no such thing as
applied mathematics.

When reading definitions of applied mathematics in 19th century encyclopedia
and the indices in journals of “pure and applied mathematics”, one is struck by
the scientific view of applied mathematics. By this I mean that according to these
works, the purpose of applied mathematics is to get to grips with the workings
of physical nature, and in particular to uncover hypotheses about the causes of
natural phenomena. Here, the 19th century saw great breakthroughs. Traditional
fields like mechanics, including celestial mechanics, astronomy, optics, acoustics
and probability theory (that was usually, but not always, classified among the
applied mathematics) were carried to much higher levels of mathematical and
physical perfection, and new fields, in particular heat theory (first heat conduc-
tion and then thermodynamics) and electromagnetism were dealt with using new
mathematical techniques and theories created for this purpose.

As some of the other talks of this meeting indicate engineering applications in
areas such as surveying, architecture, navigation, fortification, ballistics, chronol-
ogy, geodesy, hydraulics, crystallography, mechanical engineering, and in rare cases
political economy were wide spread in the 19th century but the encyclopedists seem
to have valued such applications less than applications to scientific enquiry.

The widespread 19th century view that the purpose of applied mathematics was
primarily to reveal the physical causes of natural phenomena shows that applied
mathematics was in fact more a successor of the so called physico-mathematical
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sciences as it was a successor of mixed mathematics, in its original form. Indeed,
according to Schuster (2012) mixed mathematics was originally considered to be
a science subordinate to the science of natural philosophy. According to Aristotle,
natural philosophy dealt with matter and causes but these subjects were outside
the realm of mixed mathematics. Such a view of mixed mathematics was still put
forward by Montucla in 1799. According to him a mathematician doing research
in optics does not study the nature of light but only the geometric consequences
of the simple laws of reflection and refraction.

Such an inhibiting view of what mathematics could do for the study of nature
was denied by Descartes who coined the concept of physico-mathematical sciences
for mathematical investigations of physical causes. This distinction between mixed
mathematics and physico- mathematics can still be found in d’Alembert’s paper
on mathematics in the Encyclopédie but towards the end of the 18th century
the notion of physico-mathematical sciences had according to Montucla become
a widely used synonym for mixed mathematics. Still, one can find traces of the
original meaning of the phrase well into the 19th century.

In fact Liouville used this notion in two of his early memoirs. First in a 132
page long unpublished memoir presented to the Académie des Sciences in 1830
entitled Recherches sur la théorie physico-mathematique de la chaleur. One of the
main objects of the memoir was to study the way the law according to which heat
is transmitted between two molecules. This part of the memoir was later extended
to a separate (also unpublished) memoir entitled Mémoire sur les questions pri-
mordiales de la théorie de la chaleur. Such studies of the primordial causes of heat
conduction certainly falls under the old concept of physico-mathematics so it seems
that Liouville still knew the original meaning of the concept (see Lützen 1990 for
a more detailed discussion of Liouville’s contributions to applied mathematics).

This conjecture is corroborated by Liouville’s second use of the word in his paper
Sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de
calcul pour résoudre ces questions (1832). In this paper where he presented his
new theory of differentiation of arbitrary (complex) order he emphasized: “The
solution of most physico-mathematical problems basically depends on a question
similar to those we have dealt with, namely, the determination of an arbitrary
function placed under the integral sign,. . . Thus, the properties of differentials
of arbitrary order are linked with the most tricky and most useful mathematical
theories”.

One of the problems that he solved with his new calculus was to derive the in-
teraction between two infinitesimal conducting elements from experimental “facts”
obtained by Ampère concerning the interaction between two finite conductors. He
showed how this problem led to an integral equation for the function determining
the dependence of the interaction between two conducting elements as a function
of their distance, and demonstrated how this equation could be solved using his
new calculus. This was probably the problem that had originally led him to the
creation of his theory of differentiation of arbitrary order (usually called fractional
calculus today). He had followed Ampère’s lectures at the Collège de France on
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electrodynamics and had learned of the idea that electrodynamic phenomena could
be explained as a result of elementary interactions between infinitesimal conduct-
ing elements; he seems to have invented his new calculus as a method to find such
elementary interactions from empirical facts about interactions between finite sys-
tems. For this reason he considered it an important contribution to Laplace’s
program in physics, and it was certainly a contribution to the original program of
physico-mathematics.
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Contrasting styles: Thomas Young (1773–1829) natural philosopher,
and William Wallace (1768–1843) mathematician

Alex D. D. Craik

Thomas Young and William Wallace were near contemporaries, but could hardly
have been more different in outlook. Yet both played a part in preparing for the
revival of British mathematics that finally took place from about 1840, mainly due
to graduates of the reinvigorated Cambridge University. As introduction, prevail-
ing views of natural philosophy and mathematics are summarised, citing Charles
Hutton’s A Mathematical and Philosophical Dictionary (1795), and W.W. Rouse
Ball (1888). The latter wrote: “The mathematicians of the nineteenth century. . .
may roughly be divided into those who have specially studied pure mathematics
(in which I should include theoretical dynamics and astronomy) and those who
have specially studied physics. . . ” That Rouse Ball includes “theoretical dynamics
and astronomy” as branches of pure mathematics, seems surprising today. But
his rationale was that these subjects had well-established governing equations. In
contrast, subjects that involved speculation about underlying principles and equa-
tions should be regarded as “physics” or “natural philosophy.” We shall see how
Thomas Young and William Wallace respectively typify “natural philosophy” and
“pure mathematics” in Rouse Ball’s sense.

Thomas Young (1773–1829) is one of Britain’s great polymaths: see Robin-
son (2006). He is best remembered for: The wave theory of light (interference
and diffraction); Elasticity and bending of beams (“Young’s modulus”); Surface
tension (“Young-Laplace formula”); Accommodation of the eye and colour vision;
Decipherment of the scripts of ancient Egypt. Other writings on mechanical oscil-
lators and fluid dynamics are discussed in Craik (2010). His A Course of Lectures
on Natural Philosophy and the Mechanical Arts (1807), given at London’s Royal
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Institution, emphasises practical applications and contains no mathematics what-
soever. According to George Peacock (1855): “If. . . the lectures were delivered
nearly in the form in which they were printed, they must have been generally un-
intelligible. . . ” However, they contain valuable physical insights, particularly on
elasticity, optics and the tides.

His Elementary Illustrations of the Celestial Mechanics of Laplace. Part the
first, comprehending the first book (1821) reworks Laplace’s material to render it
“perfectly intelligible to any person who is conversant with the English mathe-
maticians of the old school only.” He introduces many diagrams, and reorganises
it in “Theorems”, “Corollaries”, “Lemmas” and “Scholia” that look back to an
earlier age. In “Of the Motion of Fluids”, he gives a long quotation from Poisson’s
Traité de Mécanique, that he thinks is clearer than Laplace. But, again, Young
makes many insightful remarks, based on sound physical intuition rather than
mathematical analysis.

Papers of 1800 and 1808 on hydraulics explore similarities between sound and
light; give perhaps the first description of transition to turbulence; examine re-
sistance of flow through tubes; and attempt a theory of the hydraulic jump. A
notable 1823 encyclopaedia article on Tides describes observed tides around the
world, and explores the analogy with the motion of a periodically-forced pendulum.
On the latter, Peacock wrote: “The methods adopted here make a bold and. . .
tolerably successful inroad upon the solution of a problem of great difficulty by
means which are apparently hardly sufficient for the purpose”.

The so-called Laplace equation, or Young-Laplace equation of surface tension
expresses the difference ∆p in pressure across a fluid interface as ∆p = γ[(1/R1)+
(1/R2)] where γ is the coefficient of surface tension and R1, R2 are two mutually
perpendicular radii of curvature of the surface. Young stated this result entirely
in words in 1805, without proof; and Laplace gave a mathematical derivation in
1806 without mentioning Young. Young responded with unjustified and polemical
criticisms of Laplace, to which Laplace later replied.

Despite his mathematical limitations and prejudices, Thomas Young made
many worthy contributions to physics. His many speculations and analogies show
sound physical insight, but he is a frustrating author to read. Even his friend
Hudson Gurney (1831) wrote that: “. . . from a dislike of the affectation of alge-
braic formality, which he had observed in some foreign authors, he was led into
something like an affectation of simplicity, which was equally inconvenient to the
scientific reader.”

Less well-known than Young, William Wallace (1768–1843) was more of a
mathematician and less of a natural philosopher. Born in Dysart, Scotland, he
received little formal education. But his talent was recognised by Edinburgh pro-
fessors John Robison and John Playfair; and in 1803 he became a mathemat-
ical master at the Royal Military College, Marlow (later Sandhurst), alongside
James Ivory and Thomas Leybourn. There, Wallace assisted with the Mathe-
matical Repository, a ‘popular’ magazine that tried to promote the continental
calculus as opposed to Newtonian fluxions. Among Wallace’s contributions is a
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translation of a long article by Legendre. Both Ivory and Wallace also wrote for
Encyclopaedia Britannica, prepared textbooks, and published mathematical pa-
pers. Wallace’s most significant publication was the inappropriately-titled article
“Fluxions” (1815) for the Edinburgh Encyclopaedia: this was the first treatise of
differential and integral calculus to be published in the English language. Had it
been issued as a separate volume, its influence would surely have been greater.

In 1819, Wallace became professor of mathematics at Edinburgh University.
There, he published texts on geometry and trigonometry; revived the astronomical
observatory; and invented two instruments for use in cartography and surveying.
These are the eidograph (a copying instrument for making images of any desired
size) and the chorograph (an instrument for establishing position on a chart from
known angular measurements). The former had considerable success; but the
latter did not, as it failed to replace the station pointer then in use. The perhaps
sole surviving chorograph is described, and also some correspondence of Wallace
that belongs to descendents of Wallace: the chorograph has recently been donated
to National Museums Scotland in Edinburgh.

In 1832, Wallace contributed to the political debate on the Reform Bill: how to
determine the relative economic importance of the various boroughs of England
and Wales for taxation and electoral purposes. This is an early mathematical
contribution to socio-economic theory, in whichWallace derived a simple functional
relation expressing the importance of each borough in terms of its number of houses
h, and the total assessed taxes t for the previous year. His model supported that
proposed in the draft bill, but was inconsistent with a rival proposal.

Thomas Young was an amazingly versatile scholar, who made fundamental con-
tributions to physics by means of inventive and fruitful analogies and insights; but
his mathematical skills were limited and antiquated. On the other hand, William
Wallace was one of the best British mathematicians of his day, conversant with
“continental analysis” as well as traditional geometry. His interests in practical
applications of mathematics drew him to astronomy and surveying, and also to a
socio-political application; but, unlike Young, not to speculative “natural philoso-
phy”.

[Note: In the discussion of this paper, Andrea Bréard commented that several of
Wallace’s articles in Encyclopaedia Britannica were translated into Chinese in the
1870s, so aiding the transmission of “Western” mathematics to that country.]
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Charles Hermite between pure and applied mathematics

Catherine Goldstein

In 1885, the French mathematician Charles Hermite gathered into a book, On
Some Applications of Elliptic Functions, [5], a long series of notes from the Comptes
rendus hebdomadaires des séances de l’Académie des sciences that he had pre-
sented before the Academy between 1877 and 1882. In this work, Hermite studied
the Lamé equation, [4]

d2y

dx2
− [n(n+ 1)k2sn2(x, k) + h]y = 0.

where sn(., k) designates as usual the Jacobi elliptic function.
Gabriel Lamé had introduced this second-order linear differential equation in

his study of the distribution of heat on an ellipsoid,[7, 8], and solved it only for
particular values of the constant. Hermite solved it in general. He introduced new
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complex functions (the so-called elliptic functions of the second order) which retro-
spectively foreshadow Poincaré’s Fuchsian functions. And alongside this equation,
he also solved in a uniform way several problems arising in mechanics, such as
the problem of the rotation of a body subject to no external forces around a fixed
point or that of the conical pendulum.

The question I addressed in my talk is a simple one: can we, as historians,
decide if this particular work belongs to pure or to applied mathematics, and how,
that is, by means of which criteria?

The current (re)classification of the Jahrbuch’s reviews following the MSC 2000
provides a dubious answer: Hermite’s book appears both in section 33E, analy-
sis, and in the applied subsection 70–99, “Mechanics of particles and systems.”
However, the classifications of the time all agree in putting it in pure mathemat-
ics. For the Jahrbuch ueber die Fortschritte der Mathematik, it belonged in the
section: “Siebenter Abschnitt. Functionentheorie. Capitel 2. Besondere Functio-
nen. B. Elliptische Functionen”, while the Répertoire bibliographique des sciences
mathématiques (which explicitly distinguished pure from applied topics) invented

a special subsection for it: “H5d. Équation de Lamé”.
The question thus appears to be settled. However, if one takes into account not

just Hermite’s book alone, but the entire set of references used in it, in order to
delineate how Hermite positioned his own work inside the mathematical disciplines,
no clear picture emerges. In the first note presented to the Academy, in 1877, for
instance, before he even discussed the applications, Hermite refered to Poisson’s
Traité de mécanique, and Poinsot’s Théorie nouvelle de la rotation des corps (an
article published in the journal of Liouville), classified in the R-chapter (mechanics)
of the Répertoire bibliographique, as well as to Lamé’s original memoirs, classified
in T4; both R and T4 belonging to applied mathematics. But Hermite also used
Weierstrass’s Théorie des fonctions abéliennes and Heine’s Einige Eigenschaften
der Laméschen Functionen, classified as pure mathematics. New questions thus
arise, on the transformation from applied to pure mathematics and reciprocally,
and on nationally divergent representations of such a division. Moreover, the
same variety will appear in later papers quoting and using Hermite’s book, from
Gylden’s astronomical works to Klein’s articles on mechanics (both classified as
applied) as well as in Poincaré’s analytical papers (classified as pure).

Moreover, contemporary discourses on Hermite’s work also display some ambi-
guity. Émile Picard described the book in those terms: “These studies on Lamé’s
equation opened the way to many analytical results. But what interested Hermite
the most, was that he could apply them to Mechanics and Astronomy. The title he
gave to his memoir is significant here,” [9, p. xxxiii]. On the other hand, Hermite
himself dismissed his own qualifications as an applied mathematician : “I am not
aware of recent research on mathematical physics and in particular on electricity,
as I am, as you know, a contemplative analyst,” he wrote for instance in 1880 to
Mittag-Leffler,[6, p. 29]. Darboux tried to adjust this double image by depicting
the applications themselves as the main agents in the process: “These discoveries
[on Lamé’s equation] allowed Hermite to give new and original solutions of several
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very interesting mechanical problems: the rotation of a solid body around a fixed
point, the movement of the conical pendulum, the determination of the figure of
equilibrium of a spring. Applications [. . . ] came to Hermite almost as if they were
soliciting him, through the good offices of his beloved elliptic functions.”[1]

Is then applied mathematics to be described by its content, or by the profes-
sional situation of its creator? Was pure vs applied mathematics in the nineteenth
century the exact equivalent of the pure vs mixed distinction of earlier works, or,
on the contrary, were large parts of mixed mathematics included in pure math-
ematics, as Hermite’s mechanical work may suggest? Was the distinction linked
to the nature of the results or the nature of the mathematician? Or was the very
idea of a division into pure and applied at stake?

Hermite’s case is particularly interesting because despite his auto-description as
a contemplative analyst, one is often tempted to see him as a natural scientist doing
mathematics. Indeed, he believed that “even the most abstract analysis is for the
most part an observational science, [he] completely assimilate[d] the complex of
concepts, known and to be known in this domain of analysis, to those of the natural
sciences,”(quoted in [3, p. 154]). This conviction is expressed at every level of his
mathematical practice, [2, 3]. Solving Lamé’s equation, in particular, does not
mean for him giving a general formula as the solution, but rather finding explicit
forms of it which would allow computations of key elements in each mechanical
application. For him, computations and observations should provide mathematical
“facts,” the task of the mathematician being to detect the key characters allowing
him to classify those facts, exactly as a natural scientist would classify organisms.
Applications are made possible by a unity of all aspects of the world, including
the purest topics in mathematics. In such a coherent view, “Analysts seem to
[Hermite] to be natural scientists who, with the eyes of the mind, (in a world as
real as the natural one) look on beings external to themselves, which they have not
created, and whose existence is as necessary as that of animals and vegetables. And
[. . . ] the world of the Analysts has the most intimate relations with the physical
world because the first contains the elements of the laws that govern the second.
The study of the subjective world thus allow[ed him] a glimpse, a view of the real
world, and [he] believe[d] that this idea, which is so common, of the continuity
in the laws of nature directly proceed[ed] from the early analytical notions about
functions that ruled until Riemann,”[6, p. 40]. Such a position is not isolated
(see for instance Lamé’s views in [10]). It suggests that while the distinction
between pure and applied mathematics was certainly activated at various levels
by nineteenth-century mathematicians, it was neither stable during the period, nor
uniformly understood. It did not pinpoint distinctive types of practice, nor did it
hamper a view of mathematics in which applications to astronomy or to number
theory were all of a kind. Even if such labels may be treated as intriguing (if
complex) actor categories, they thus do not appear to be efficient historiographical
categories.
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Observatory Mathematics in the Nineteenth Century:
Mathematization and Observation

David Aubin

(joint work with Charlotte Bigg)

This talk is a preliminary investigation of the relationship between the changing
sense of mathematization and of observation between the end of the 18th century
and the beginning of the 19th century. To start, let us note that there is a crucial
linguistic difference between those terms. While observation remained relatively
close to its Latin root and had for a long time been in constant use although
increasingly in the field of science in the 18th century, mathematization was ex-
tremely rare and its meaning had not stablized (on observation and its cognates,
see Marie-France Piguet, “De la connaissance des astres à celle des hommes : Ob-
server, Observation, Observateur, Observatoire dans les dictionnaires du 18ème
siècle,” Séminaire “Cosmos,” Centre Alexandre–Koyré, Paris, 7 February, 2013.
On the history of scientific observation in general, see [1]). Mathématiser indeed
was an entry in Louis–Sébastien Mercier’s dictionary of neologisms, which was
applied to the young men to whom a lot of mathematics was taught rather than
to the phenomena one wished to study with the help of mathematical techniques
[2, p. 115–116].

My claim here is that we can distinguish two different forms of mathematiza-
tion in the nineteenth century and that they can be seen as broadly corresponding
with two different understandings of observation. Let us begin by briefly discussing
mathematization. The turn of the 19th century was, in this context, identified by
T.S. Kuhn as the “Second Scientific Revolution” because of the strong impulse
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from was then called the “Laplacian program” to mathematize the Baconian sci-
ences [3]. Although this view was strongly constested, the history of electromag-
netism nonetheless offers an iconic contrast than can be used to demarcate the two
types of mathematization I want to draw attention to [4]. The respective ways
in which Carl Friedrich Gauss and Adrien–Marie Ampère mobilized contempo-
rary mathematics in order to produce a new science of electricty and magnetism
indeed stood in marked constrast. In short, while Ampère used small hand-held
aparatuses in his makeshift laboratory to exhibit effects that could be represented
through differential equations, Gauss drew on the full resources of his observa-
tory. Studying the magnetometer with a theodolite and an astronomical clock,
insisting moreover on inserting these measures in a global network of geomagnetic
observations (which was called the “magnetic crusade”), Gauss produced a sci-
ence of electricity where quantitative precision and comparability of data were
cardinal values [5, 6]. Following Sophie Roux, I suggest that the best labels for
these two kinds of mathematization perhaps are, respectively, “formalization” and
“quantification” of phenomena [7] (see also [8]).

Turning to the story of observation, the situation is more complex. Focusing on
francophone literature, I selected three main bodies of work to try and delineate
the semantic context of observation in this period: (1) discussions on the art of ob-
servation around 1770; (2) the emergence of the idiosyncratic expression “sciences
d’observation” in the first half of the nineteenth century; and (3) discussion of

observation in published courses of physics, especially at the École polytechnique.
1. In the Encyclopédie, the article on “observation” published by Pierre–Jacques

Malouin is surprising on two main counts. To begin, Malouin summarized observa-
tion as being “the attention of the mind [esprit ] turned toward the objects offered
by Nature.” In this understanding, observation had more to do with reason than
with the senses. Then, he clearly placed observation above experimentation as
a way to investigate nature, underscoring that while in the former process, one
examined nature as it is, in the latter process, one examined nature as it was arti-
ficially manipulated. What I call the “Art d’observer” tradition was instantiated
by two other texts written for the competition anounced by the Academy of Sci-
ences of Haarlem in 1770 on the topic of “What is required in the art of observing
& to what extent does this art contribute to the perfection of our understanding
[entendement ]” (for more details, see [9]).

For these authors, if, to some extent observation required inherent talent,
nonetheless it could be learnt. For Senebier, “the science that I propose, instead of
being the art of thinking would be the art of perceiving, it would be a logic for the
senses, it would teach their use and their operation, it would teach the means of
grasping what sets them in motion and to profit from the sensations they excite, as
from the ideas they give birth to.” Similarly for Carrard, “in order to enlighten, to
awaken their attention, & from now on to train good observers could one not show
what is required to succeed in the art of observing & then to determine what fruits
may be gained from this Art, as practised to perfect human Understanding?” A
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significant characteristic of the discourses on observation in these decades, espe-
cially compared to later writings, was their emphasis on method, on training the
body, mind and sensory organs, of learning the proper rules for observing. The
topics covered by our authors reflect these concerns. Though Carrard and others
brought up the issues of comparing observations, of communicating results, of the
importance of long series of observations as only Societies can produce, the focus
was mostly put on the individual observer. Here logic and “entendement” are
related to the researcher’s personal qualities. Indeed, one of the first to discuss
the role of observation in his scientific work, Georges Buffon indeed offered it as
an alternative when more mathematical approaches [10, p. 62].

2. Though the term “science d’observation” is absent from the Encyclopédie, it
slowly appeared at the end of the 18th century as a meaningful concept for think-
ing the sciences and their relations with mathematics. Condorcet casually used
the expression in his “Rapport et projet de décret sur l’organisation générale de
l’instruction publique” (1792). Fifteen years later, while he was warning against
the dangers of only considering principles (or theories) in medicine at the expense
of observation, the physician Georges Cabanis wrote that this was also true of
all “sciences d’observation.” Interestingly, as a model of an observation science
that had lately progressed rapidly, Cabanis mentioned physics. Contrary to his
predecessors, he referred not to the Newtonian tradition but to the new Laplacian
physics. In a contemporary physics textbook, Jean-Nicolas Hachette, professor
at the École polytechnique, concurred with Cabanis to say that something new
was happening in physics, but not that physics belonged to the observation sci-
ences. Hachette praised Haüy’s work in crystallography as an example of a science
formerly merely concerned with “more or less methodical classification” whose
fundamental principles could now be solidly established on the foundation of “our
most certain knowledge, geometry.” What is interesting here is that Hachette
used the term “science d’observation” disparagingly for the older type of crystal-
lography. While Cabanis thought that the “sciences d’observation” heralded the
future, Hachette anchored them in the Enlightenment naturalistic practices of the
“art d’observer” tradition.

Nevertheless, from the late 1810s to well into the 1840s, most branches of knowl-
edge, including physics, claimed to be part of the rising “sciences d’observation.”
Medicine, of course, was a prime example, just as physiology, psychology, and
meteorology, but also political economy, moral philosophy, or even metaphysics.
“Statistics is a science of observation,” the philosopher of probability theory Au-
gustin Cournot wrote in 1843. “There are no sciences but the sciences of observa-
tion,” the spiritualist philosopher Charles de Rémusat (1797–1875) added. Around
1830, in francophone literature, the term “sciences d’observation” suddenly flour-
ished as a convenient label for a set of scientific domains all seemingly based on
“observation.” Although the exact definition of the “sciences d’observation” was
subject to strong variations, the label became central for many people’s under-
standing of the classification of knowledge. As we shall see, physics would come
to play a central role in the redefinition of the boundaries between observation
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and experimentation. But at first, as we can gather from Hachette or Cabanis,
the meaningful contrast was not between observation and experiment but rather
between observation and raisonnement (i.e. reasoning or the way in which one
should use one’s reason). The best source to examine this are the Annales des
sciences d’observation, published by Jean-Baptiste Saigey and François-Vincent
Rapsail in the early 1830s.

3. In francophone literature, observation science came to be opposed not to
the experimental science anymore, but to reasoning science [sciences du raison-
nement ]. Positivist thought expressed a belief in the fact that the new physics
of heat (with Fourier), of light waves (Fresnel), of electricity (with Coulomb and
Poisson), of magnetism and electromagnetism (with Ampère) were sciences of
observation whose analogues in pure reason had been found, through mathema-
tization. Subsequently physics professors at the École polytechnique started to
underscore the distinction between observation and experimentation. Contrary to
astronomy, Gabriel Lamé for example argued, physics was not yet completed, and
so, this discipline offered examples of all the stages through which a branch of
science needed to go. Lamé contrasted the art of experiment with observation:

The art of experimenting, which consists as far as possible in isolating each
pair of force and effect, is a powerful help to the physicist. Observation, which
consists in the study of phenomena as they naturally present themselves with
all their complication, more rarely leads to the knowledge of the laws that
govern these phenomena [11, p. 1:i].

The hierarchy drawn by Malouin had thus been reversed. Experimentation was
more powerful than observation because it allowed the physicist to single out the
effects he wanted to study. In the four successive editions of his course, spanning
nearly thirty years, Lamé’s successor at the École polytechnique, Jules Jamin,
forcefully repeated the message that by allowing experiment to play a more im-
portant role than observation, physics was progressing faster than most observation
science [12, 1:3] (first ed. 1859). This would lead to the passive understanding of
observation most famously expounded by Claude Bernard [13].

To conclude, I would like to underscore that the changing sense of observa-
tion and experimentation, as well as the changing values invested in those terms,
went hand in hand with changing conditions for carrying out observations and
expertimentation. The model of the observatory sciences which emphasized the
quantification of observation was slowly replaced by that of the laboratory sci-
ences which favored the mathematical “formalization” (in the sense of the above)
of experimental results [15, 14, 16]. I suggest that what we need to understand
is not only the transition from mixed mathematics to applied mathematics, but
rather to the dyad applied mathematics–theoretical physics. My claim is that the
changing sense and changing conditions of observation have a lot to do with this
process.
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Mathematical Models as Artefacts for Research: Felix Klein and the
Case of Kummer Surfaces

David E. Rowe

Already as a student in Bonn, Felix Klein was exposed to model-making through
his teacher, Julius Plücker, who used models to visualize the properties of special
surfaces that arise in line geometry. Afterward, Klein attended Kummer’s seminar
in Berlin, where he began to explore the connections between general Kummer
surfaces and so-called complex surfaces, first studied by Plücker. In the late 1870s,
Klein and Alexander Brill supervised the work of several students at the Munich
Technische Hochschule who designed a large collection of models there. There
followed a new era in model production, based in Munich but marketed through
the Darmstadt firm owned by Brill’s brother. By 1900 the plaster models of L.
Brill could be found at leading universities around the world. My talk described
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early interest in models of algebraic surfaces in the era before mass production of
plaster models began. It centered especially on Kummer surfaces, starting with
the special cases studied by Plücker but also including Kummer’s own famous
models, which began as research artefacts in Berlin, before passing to Munich and
then proliferating to points beyond (for further details, see [15]).

During this early period, model-making went hand in hand with cutting edge
research. In Bonn, Klein assisted Plücker in designing around thirty different
models that displayed select features of a certain class of quartic surfaces linked to
quadratic line complexes. Klein emphasized the connection between these math-
ematical models and Plücker’s earlier research in physics, especially his famous
experiments on electrical discharges in rarefied gases [12]. Plücker carried these
out with the assistance of Heinrich Geissler, famous for his invention of the glass
tubes that bear his name. In both of these research fields, Plücker was drawn to
describe complex, never-before-seen spatial phenomena [3].

Although little appreciated in Germany, Plücker had an excellent reputation
as an experimental physicist in England, where his work was championed by
Michael Faraday, a physicist who thought in pictures, not formulae. Klein later
recalled how Plücker once told him that Faraday had given him the initial impe-
tus to build models illustrating different types of the so-called complex surfaces
he unveiled as the centrepiece of his new line geometry [10, p. 7]. Faraday was
by no means the only one in England to take an interest in these exotic spa-
tial artefacts. Thomas Archer Hirst, who had studied under Jakob Steiner in
Berlin, was another enthusiast for Plücker’s models. In 1866, Plücker delivered
a well-received lecture at a meeting in Nottingham in which he employed a sub-
collection of his models [2]. Hirst was intent on acquiring copies, and so Plücker
afterward donated a set of these made in boxwood to the London Mathemati-
cal Society (the correspondence between Plücker and T. A. Hirst can be found
at http://www.lms.ac.uk/content/plucker-collection). These attractive wooden
models can still be seen today on display at the Science Museum in London.

Immediately after Plücker’s death in 1868, Klein was entrusted to complete his
classic monograph, Neue Geometrie des Raumes gegründet auf die Betrachtung
der geraden Linie als Raumelement. By probing deeper into Plücker’s theory of
quadratic line complexes, he began to realize its close links with Kummer’s work in
geometrical optics from the 1860s. So what better place to delve more deeply into
these matters than in Kummer’s own seminar? Kummer was an old-fashioned,
serious-minded Prussian who thought of Gauss as the embodiment of the highest
ideals in mathematics [1, pp. 81–82]. He had no advanced students at this time,
however, so Klein naturally felt starved for intellectual nourishment. Luckily, he
soon realized there was one other attendee in the seminar with a background
comparable to his own, Sophus Lie. He and Klein made for an odd pair, but
they nevertheless hit it off immediately. Soon Klein had all the mathematical
stimulation he needed. Lie was already deeply immersed in research on curves
associated with a special type of quadratic line complex formed by the lines that
meet the faces of a tetrahedron in a fixed cross ratio. The properties of such
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tetrahedral complexes and their curve systems would continue to occupy Lie and
Klein for well over a year [14]. In Paris they met Gaston Darboux, who quickly
directed their attention to the field of sphere geometry, a French specialty. Soon
Klein and Lie were eagerly pursuing links between Plücker’s line complexes and
their analogues, 3-parameter families of spheres in 3-space. By early July, Lie had
made one of his most spectacular discoveries: his line-to-sphere transformation.
After the outbreak of the Franco-Prussian War they were separated, but Klein
continued to think about the role of Kummer surfaces in the theory of quadratic
line complexes. With the help of a friend, they designed a model of a Kummer
surface and used this to study the singularities of its asymptotic curves. The latter,
as Lie had discovered, were algebraic of degree 16, a result he deduced directly
from his line-to-sphere mapping.

It was only five years earlier that Kummer had uncovered these remarkable
quartics in connection with his studies of ray systems in geometrical optics. These
Kummer surfaces arise as the focal surfaces of algebraic ray systems of the second
order and class. Their discovery eventually opened the way to numerous subse-
quent investigations [7]. This era, in fact, witnessed several such discoveries in
algebraic geometry. In rapid fire fashion, mathematicians now began to study a
huge variety of algebraic surfaces beyond the realm of quadrics, which had already
been studied and classified by Euler. An early breakthrough came around 1850
when Cayley and Salmon discovered that non-singular cubic surfaces contain 27
lines that form complicated spatial configurations [4].

Geometry at this time was still strongly tied to the study of figures in 3-space.
Leading mathematicians continued to think of geometrical objects as idealizations
drawn from the world in which we live. Klein and his teachers were thus intent
on gaining a visual image of these new-fangled mathematical objects, an interest
that prompted several contemporary geometers to build various types of models
in order to study their properties in greater detail. Bezout’s theorem made it
possible to exploit the invariant degree of algebraic curves and surfaces by moving
to the complex domain, thereby posing a new challenge: how to interpret the
imaginary elements that lie outside the realm of real 3-space, the arena of interest
for the geometer. Special incidence configurations – like Hesse’s inflection point
configuration for cubic curves, or Schläfli’s double-six in connection with the 27
lines of a cubic surface – also helped identify key features.

Not long after Plücker’s death, Klein designed four additional models to show
the main types of real singularities that can arise with these Plücker surfaces [10,
pp. 7–10]. Klein’s models, like those designed by Plücker, were produced and sold
by the firm of Johann Eigel Sohn, located in Cologne. Originally made in zinc,
they were far heavier than the more familiar plaster models built afterward. For
his Habilitation lecture in Göttingen, held in January 1871, Klein presented one
of these models in order to convey some newly discovered properties of special
curves associated with Plücker’s complex surfaces. Later the next year, Klein and
Clebsch presented two new models of cubic surfaces to the Göttingen Scientific
Society. It was on this occasion that Clebsch unveiled his famous diagonal surface
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with its special configuration formed by the 27 lines on a non-singular cubic [6,
Kommentarband, pp. 7–14]. Klein’s model, built by his doctoral student Adolf
Weiler, illustrated a cubic surface with four real singular points, the maximum
possible. Already at this time Klein claimed that by starting from this particular
surface one could derive the entire 19-dimensional continuum of cubics by means
of deformations. This theory later inspired Carl Rodenberg to produce a series
of 26 plaster models that featured the striking surfaces modelled by Clebsch and
Klein. Published by L. Brill in 1881, the Rodenberg series represents a higher
water mark in the art of model design and production [17].

Perhaps even more famous were the special quartics studied by Kummer in
the mid 1860s [11, pp. 418–432]. These objects exhibit a special configuration of
16 singular points and 16 singular planes in space that soon led to a plethora of
investigations connected with the properties of these so-called Kummer surfaces.
Each plane passes through six of the sixteen singular points, which are constrained
to lie on a conic, forming a (16,6) configuration. Such surfaces are self-dual, hence
of the fourth order and class. This means that the lines in space intersect the
surface in four (real or imaginary) points, whereas four tangent planes will pass
through any given line. Kummer noted that these sixteen singularities are the
maximum possible for a quartic, as confirmed by the formula for the class of a
surface with d ordinary nodes: k = n(n− 1)2 − 2d = 4(3)2 − 2(16) = 4.

Klein took note of Kummer’s work in a fundamental paper [9, pp. 53–80] writ-
ten earlier that same summer of 1869, just before he departed for Berlin. There
he focused attention on the singularity surfaces of quadratic line complexes, which
are formed by the locus of bi-planar points; those at which the cone of lines pass-
ing through them degenerates into two planar pencils of lines. After introducing
so-called Kleinian coordinates, he went on to show that for a general quadratic
line complex–in fact, for a whole 1-parameter family of such complexes–the asso-
ciated singularity surface will be a quartic with precisely the same configuration
of singular points and planes found by Kummer in 1864 [7, chapters 4, 5].

In the meantime, Kummer found an elegant and surprisingly simple description
for a 2-parameter system of quartic surfaces in which the real points lie within
a bounded portion of space. This system included as a special case the so-called
Roman surface of Jacob Steiner, which Kummer had independently re-discovered
in the mid 1860s [19, p. 180]. To give a vivid picture of the organic connections
underlying the various types of singularities that can arise, he designed seven
plaster models, presented to the Prussian Academy at a meeting held on 20 June
1872 [11, pp. 575–586]. All seven exhibit tetrahedral symmetry, as reflected in the
form of their quartic equation:

ϕ2 = λpqrs = 0

where ϕ = 0 is the equation for a family of concentric spheres with parameter µ:

ϕ = x2 + y2 + z2 − µ k2.

Over the next twelve years, these seven plaster models could only be seen by
visiting the Berlin mathematics seminar. Surely a number of mathematicians
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knew of their existence from Kummer’s publication, but very few had any idea
of what they actually looked like. Not until the 1880s did these models leave
their local confines in Berlin, after which they quickly became familiar objects to
mathematicians around the world.

The production of mathematical models took on a far more public face in the
late 1870s. This began in 1875 with Klein’s appointment as professor of mathe-
matics at the Technische Hochschule in Munich, where he succeeded the elderly
Otto Hesse. There Klein was joined by Alexander Brill, who had studied under
Clebsch in Giessen in the 1860s and afterward formed a close working relationship
with Max Noether. Brill’s background and training, however, were highly unusual,
though ideally suited for model making [5].

At the TH Munich, Klein was eager to take up research on Kummer/Plücker
surfaces again. He brought with him the zinc models he had designed back in 1871,
but these he found unsatisfactory in certain respects. So he was pleased to enlist
the support of a student, Karl Rohn, who built three new models under Klein’s
watchful eye. All three were prepared in plaster of Paris and marketed in the
second series of models offered by L. Brill. In the catalogues they are identified as
Kummer surfaces, but Rohn emphasized that these models illustrate the passage
from a general Kummer surface to the special cases that arise in Plücker’s theory
of quadratic line complexes [13]. So the latter two models represent, first, a general
Plücker complex surface with eight real singular points and, second, a degenerate
Plücker surface for which only four such points remain. The former case appears
in the middle of the third row of the advertisement above. A more aesthetically
pleasing image is reproduced below [7, chapter 6].

Although the motivation behind many of these models was primarily didactical,
some cases involved new results of potential interest to researchers. In such cases,
fairly elaborate explanations were sometimes necessary. These could be found in
brochures written by the respective designers, many of whom provided detailed
mathematical descriptions without which even an educated observer would surely
remain baffled. This literature accompanied the models upon purchase, but was
otherwise unavailable to a wider public. By 1899, when Ludwig Brill sold the
publication rights for his collection of models to the firm of Martin Schilling in
Halle, the demand for them had not yet reached its peak; nor had the number of
different models available for purchase flattened out. Indeed, a dozen years later
M. Schilling, now located in Leipzig, put out a catalogue listing nearly 400 models
available for delivery [17]. Some years earlier, after repeated requests for the
technical brochures that came with the models, Schilling also published the entire
collection for the first 23 series of models [16]. Many of these are an invaluable
resource for understanding the mathematical meaning of the objects on display.
By this time, the era of mathematical model-making had long since entered an
era of mass production. While the use of models and other visual aids took on a
growing importance in mathematics education, these objects rarely played a role
any longer as artefacts for research. Indeed, their demise as tools for research was
already under way when the Brill firm began to market them.
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matische Miniaturen, Bd. 3, Basel: Birkhäuser, 115–141.
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“Social statistics have no merit for theoretical study” – Conflicting
and complementary views on statistics in late Imperial China

Andrea Bréard

In late Imperial China, the sciences were part of shixue 實學 (‘concrete/solid/real
learning’), as crucial tools for statecraft, but mathematics were not a discipline
until the late 19th century, and neither ‘mechanics’ nor ‘physics’ or ‘optics’ were an
independent branch of learning. Thinking and knowledge concerning mechanics or
physics existed in scattered philosophical texts, technological texts, astronomical
texts and mathematical texts. Looking at the bibliography in the official history of
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the last Chinese dynasty, the Qing (1644–1911), one can find two categories related
to mathematical writings: ‘astronomy & mathematics’ and ’magical computations’
(shushu 術數) usually linked to impostors and to heterodoxy. The notions of pure
and applied mathematics were not even actors’ categories in China, at least not
before the 1930s. As can be seen in divers textual sources in the 1930s, it is then
that reflections upon a dichotomy between pure (or theoretical) and applied math-
ematics emerge, that relate to a methodological distinction in terms of precision
or logical rigor. Other authors instrumentalize the pure-applied distinction as an
explanation for China’s backwardness in the sciences in the early 20th century.

In order to make my contribution fit into the framework of this workshop, I had
thus taken the liberty to shift a little bit the terms, and decided not to attempt a
historicization of the relationship between applied and pure mathematics for the
Chinese case at the turn of the 20th century. By adopting a more China-centered
approach, which is in general more fruitful when dealing with non-European sci-
ence and traditions, I rather discussed a distinction between what in Chinese terms
are the ‘fundamental principles’ (ti 體) and the ‘applications’ (yong 用).

During the late Qing, the slogan ‘Chinese studies as essence/for fundamen-
tal principles – Western studies for practical application’ (Zhongti xiyong 中體
西用) was instrumentalized in scientific and political discourse and served more
and more as a framework for rationalizing foreign knowledge. ‘Chinese studies
for essence/fundamental principles’ primarily meant traditional Chinese political
and economic systems and their corresponding ideologies but the expression also
referred to Chinese culture and its Confucian underpinnings, while ‘Western stud-
ies for practical use’ was limited primarily to Western science and technology, in
particular mechanics, physics, chemistry, mathematics and military technology.
Western institutions (particularly political institutions) and thought were seen
as heresy and dichotomous to ‘Chinese studies’ and were subjected to rejection.
When introducing statistical theories from abroad and creating a nationwide sta-
tistical institutional network in the early 20th century, the Chinese government
urgently needed precise numbers as a new tool in political decision.

In my paper, I analyzed how reformers legitimized this ‘statistical revolution’
(see [1]) by making statistics fit into the ‘essence’ – ‘application’ paradigm and
by pointing out the importance of the ‘concreteness’ of numbers. In late imperial
and early Republican China, the notion of ‘statistics’ was a multi-layered one and
different kinds of statistical theories and practices co-existed: administrative sta-
tistics which had a very long tradition in China itself, social statistics which were
imported/naturalized from Germany via Japan and ‘purely’ mathematical statis-
tics which came from the anglo-saxon tradition and were at first brought to China
by returning students from abroad. When statistical theories (for application to
social questions) were imported in China at the turn of the 20th century, China
already had a long (and institutionalized) administrative tradition of collecting
numbers and reporting them to the throne. Statistics, although not defined as a
discipline, then were sets of descriptive tables produced for the state. Reformers
defended the import of foreign statistical theories as something that was merely
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grafted onto old administrative practices. Official and unofficial discourse dur-
ing the reforms at the end of the Qing dynasty abounds in justifications of the
new (the ‘application’ from abroad) by referencing the old (the Chinese ‘essence’).
By underlining the existence of a statistical tradition in the Chinese imperial ad-
ministration since high Antiquity, the memorialists subtly convinced the Emperor
and other high officials to conduct reforms based on traditional patterns (‘reform
within tradition’). Adopting anything foreign/Western thus was reduced to a
simple reintroduction of Chinese methods that had partly gotten lost over the
centuries.

More specifically, in my paper I used the writings of two important statistical
figures, Shen Linyi 沈林一, the first director of the Central Statistical Bureau,
and Meng Sen 孟森, translator of the most influential statistical manual [3], who
were representative of these two complementary and by times conflicting aspects
of statistics. Meng had studied law and politics in Japan where he learned about
statistics and translated Yokoyama Masao’s General Discussion of Statistics [5].
His translation was the first statistical manual in China, and it certainly circulated
widely not only in government circles but also in institutions where statistics were
taught. Both, the original and the translation were reprinted and edited many
times until the 1930s. But the manual was not a mere translation. It was inter-
spersed with Meng Sen’s personal commentaries, which were not uncritical towards
China’s conservative forces. The chapter on population statistics, presented by the
author as the most important type of statistics, takes up the major part of the
book. Among mathematical methods one finds only three short sections on sum-
mation, proportions and mean values, and although Meng Sen obvisouly had some
notions of probability theory applied to vital statistics, he only refers to these in
his extensive comments upon the calculation of mortality tables (see for example
the reference to [2] in [3] p. 270-273). Shen Linyi was less interested in statistics
from a mathematical point of view. His publications do not refer to any theoretical
works he might have encountered through contacts with his contemporaries or in
the library of the Constitutional Commission, of which the Statistical Bureau was
part of and which owned two copies of Meng Sen’s Chinese language statistical
manual. Shen Linyi was more familiar with statistical work, with the practices
that related to the collection and recording of fiscal data or to the standardization
of measures and weights (see [4]).

In summary, using statistics as a case study, I showed the ways in which the
‘essence’ – ‘application’ distinction was entangled with a dichotomy between Chi-
nese and Western (or more generally foreign) science in the accompanying political
and scientific discourses. I also showed how reformers argued that statistical prac-
tices, in a dire need to be reformed at the end of the Qing, could fit well into
the neo-Confucian concept of ‘concrete studies’. The numbers produced should
correspond to precise facts, social or economic actualities so important for deter-
mining quotas for local assemblies or to show the success of educational reforms
for example.
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Karl Pearson and Darwinian Evolution: The Development of Applied
Statistics

M. Eileen Magnello

By the end of the 1890s, the content and practice of statistics was transformed into
a highly specialised mathematical discipline. These intellectual and later institu-
tional changes largely occurred due to a statistical translation of Charles Darwin’s
redefinition of the biological species, as something that could be viewed in terms
of populations rather than simply classifying species as types. The joint-efforts of
two Cambridge-trained Victorians, the mathematician Karl Pearson (1857–1936)
and the Darwinian zoologist Weldon (1860–1906) led to their mathematical recon-
ceptualisation of Darwinian biological variation and “statistical” populations of
species in the 1890s, which provided the framework within which a major paradig-
matic shift occurred in statistical techniques and theory. Their work thus brought
about an epistemic rupture from the work of the vital statistics of the state where
averages were the unit of measurement, to that of mathematical statistics, where
the principal unit of measurement became individual variation.

Weldon’s work on the shore crab (Carcinus maenas) in Naples and Plymouth
from 1892 to 1895 not only brought them into the forefront of ideas of speciation
(or the multiplication of species) and provided the impetus to Pearson’s earliest
statistical innovations, but it also led to Pearson shifting his professional interests
from having had an established career as an elastician to becoming an applied
mathematical statistician. The ground-breaking statistical work that Pearson de-
veloped with Weldon in 1892 and later with Francis Galton (1820–1911) in 1894
enabled him to lay the foundations of modern mathematical statistics.

After graduating as the Third Wrangler in Mathematics at Cambridge, Pearson
began to plan his eighteen-month academic sojourn to Germany. Having made
arrangements with Kuno Fischer, Pearson left for Heidelberg in April 1879 to
improve his conversational German and to study physics and metaphysics under
Fischer and Gustav Kirchhoff. After reading the works of Berkeley, Fichte, Locke,
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Kant and Spinoza, Pearson found that his ‘faith in reason ha[d] been so shattered
by the merely negative results to him which he found in these great philosophers
that he despaired his little reason leading to anything’. He subsequently abandoned
philosophy because ‘it made him miserable and would have led to him to inevitably
short-cut his career’. Later that summer Pearson was at such ‘low ebb of despair’,
in his search for the truth, that he was tempted to become a Roman Catholic.
His time in Germany became a period of self-discovery: the romanticist and the
idealist discovered positivism.

Pearson thus adopted and coalesced two different philosophical traditions to
fulfil two different needs, for idealism was concerned with nature and personal
feelings, whereas positivism dealt with science and professional goals. His pas-
sionate Germanic interests, which underscored his desire to find the truth, were
pursued whilst he was writing papers and books on elasticity, engineering, me-
chanics, philosophy and optics. Having abandoned the study of philosophy and
physics in Heidelberg, he went to Berlin and spent his time making measurements
of physical quantities in Heinrich Quincke’s laboratory. A few months later he
began to attend lectures on Roman International Law and Philosophy by Bruns
and Theodor Mommsen (1817–1903). During this time, Pearson also continued to
read books on medieval and sixteenth century German literature.

Despite these trials and tribulations, Pearson’s time in Germany was one of
enormous enjoyment. A Cambridge friend, Ralph Thickness, visited Pearson in
the Black Forest and had a wonderful time with him. Ralph found that Carl’s en-
joyment of life in Germany was so immense that he even cracked jokes in a Swabian
dialect whilst drinking his beer. He was very much at home there and, according
to Ralph, ‘Carl got quite enthusiastic at times and was far more emotional and
enthusiastic in Germany than he was in London’. Pearson even established him-
self as a welcome visitor in the little village of Saig, in the Black Forest, where
years afterward he was pleased to meet those whom he had known as children.
He returned to Germany quite regularly, especially as he ‘longed for freedom from
the social constraints of a rigid class system in England’ and bemoaned that ‘the
English masked their feelings and that [their] society had thus become artificial’.

Having returned to London in 1880, he was called to the Bar, but hated the
law and decided instead, to ‘devote his time to the religious producing of German
literature before 1300’. By the 1880s, London was full of idealistic young men who,
like Pearson, were dissatisfied with conventional politics and religion, and were
searching for new ways of understanding and changing their society. Pearson was
particularly interested in pursuing further study of German folklore and literature,
the history of the Reformation and German humanists. From 1880 to 1884 he
lectured in various academic institutes and working men’s clubs in London. He
lectured on Martin Luther’s influence on the material and intellectual welfare of
Germany, and on German social life and thought, from the earliest times up to the
sixteenth century. He also gave lectures on Karl Marx and Ferdinand Lassalle at
revolutionary clubs in Soho. In his pursuit of German history, Pearson consulted
his friend and the Cambridge University librarian, Henry Bradshaw (1831–1886),
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who taught him the meaning of thoroughness and patience in research. With
Bradshaw’s help, Pearson finished in 1887Die Fronica: Ein Beitrag zur Geschichte
des Christusbildes im Mittelalter (a collection of the Veronica images of Christ).
He became such an accomplished philological scholar of medieval German folklore,
literature and its language, that in May 1884, he was short-listed for the newly
created post in German at Cambridge. However, in spite of his accomplishments
with German literature, Pearson ‘longed to be working with symbols and not
words’. He would thus have to find work as a mathematician.

A month later he received the Chair of ‘Mechanism and Applied Mathematics’
at University College London He lectured single-handedly for 11 hours weekly, and
taught mathematical physics, sound, electricity, light, magnetism, wave-motion
and hydrodynamics to engineering students. Still dissatisfied a month later, he
eventually applied for the Professorship of Geometry at Gresham College in 1890.
Having abandoned the pursuit of religious, philosophical and literary truth, Pear-
son began his search for the numerical truth at Gresham. As a Cambridge Wran-
gler, Pearson learned to use applied mathematics as a pedagogical tool for deter-
mining the truth (one that provided the means of producing reliable knowledge).
Given the dominance of Euclidean geometry in Victorian Britain, Pearson re-
garded ‘geometry as a mode of ascertaining numerical truth’, and a ‘fundamental
process of statistical enquiry’. It was at Gresham College where Pearson first
began to teach statistics and where he began to think of formulating a mathemat-
ically based statistical methodology, which would be dramatically different from
the vital statistics espoused by the mid-Victorian statisticians.

At Gresham College, Pearson divided statistics into two parts: Pure Statistics
was that branch of mathematics which dealt with the computation, representa-
tion and the handling of statistics, whilst Applied Statistics was the application of
pure statistics to special classes of facts, which could be used in the biological and
social sciences, anthropology and physics. The catalyst that would bring about
this transformation of statistics came in November 1892 when W.F.R. Weldon was
looking for a working hypothesis that fit Darwin’s theories. When Charles Dar-
win suggested that evolution proceeded by the accumulation of minute differences
between individuals, he introduced the idea of continuous variation into biological
discourse. This idea of continuous variation forced nineteenth century natural-
ists to reconsider the traditional definition of the biological species. Up until the
middle of the nineteenth century, species were defined in terms of types by many
biologis ts, including museum taxonomists.

This transition in measuring biological variation rather than simply calculating
averages enabled Pearson and Weldon to create the tools that led to a new statis-
tical paradigm when they translated Darwin’s ideas about what kinds of natural
processes occur in the world into statistical concepts. Consequently, they had to
create a new way of thinking about statistics. To help Weldon interpret his statisti-
cal data, Pearson had to create new statistical methods to measure this Darwinian
variation, develop a system that did not rely on the normal distribution to deter-
mine how a new species emerged, and, moreover, Pearson had to standardise his
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system of frequency distributions that could accommodate large sample sizes (of
more than one thousand) to find empirical evidence of natural selection by de-
tecting disturbances in the distribution. After Pearson formulated a standardised
system of frequency distribution, it then became possible to make comparisons
and generalisations abou t data sets that had previously been impossible to make.

By November 1893, Pearson had worked out the foundations to his statistical
methodology, based on the method of moments, which he first learnt from Benôıt
Clapeyron’s 1890 paper Theorem of the Three Moments. The term ‘moment’
originates in mechanics, and is a measure of force about a point of rotation, such
as a fulcrum. In statistics, moments are averages. Using the first moment, Pearson
taught his students how to calculate the arithmetic mean by determining the point
about which the lever balances on the fulcrum. The second moment is used to
find what Pearson called the ‘squared standard deviation’ (or the ‘variance’). The
third moment, which indicates if the lever balanced on the fulcrum, is used to find
a measure of the skewness of a distribution: an unbalanced lever is analogous to
an unbalanced normal distribution or a skewed distribution. The fourth moment
measures how flat or peaked is the curve of the distribution; for which Pearson
coined the word ‘kurtosis’ (which means “arched” or “bulging”). It has three
components: (a) ‘leptokurtic’ referred to what Pearson called the peakedness of a
distribution; (b) ‘platykurtic’ was so-called because its flatter shape resembled a
platypus; and (c) ‘mesokurtic’ referred to the normal curve. These four parameters
describe the essential characteristics of any empirical distribution: the system is
parsimonious and elegant. These statistical tools are essential for interpreting any
set of statistical data, whatever shape the distribution takes. Pearson created
a new mathematically-based statistical methodology, partly by amalgamating the
probability work from the French in the 18th century, moving outside the realms of
vital statistics, using his maths from Cambridge and, most importantly, by devising
and then applying these methods to Darwinian ideas of variation, population,
speciation and natural selection and expanding this to correlation, which not only
led to the foundations to the modern theory of applied statistics, but it also helped
to create the modern world view. Moreover, his statistical methodology not only
transformed our vision of nature, but it also gave scientists a set quantitative
tools to conduct research, accompanied with a universal scientific language that
standardised scientific writing in the twentieth century.

Fluid Mechanics: A Challenge for Mathematics ca. 1900

Michael Eckert

Felix Klein’s role in the history of mathematics is well known, both with respect
to mathematics proper and the applications of mathematics ([6], [9], [10] and
[11]). He seems therefore an appropriate candidate to explore the issue of our
workshop in more detail. I focus on fluid mechanics ca. 1900 as a test case
for mathematical applications. It became a particular challenge for contemporary
mathematicians because of the proverbial gulf between hydraulics as an engineering



712 Oberwolfach Report 12/2013

practice and hydrodynamics as a theoretical science based on mathematics and
physics. Klein dedicated considerable effort to hydrodynamics at three occasions
in the beginnings of the 20th century. First in a lecture in the winter semester
1899/1900, then in two seminars in the winter semester in 1903/04 and in 1907/08.

Klein’s perception of applications developed gradually. When he was appointed
as professor of mathematics at Erlangen University in 1872, he emphasized in par-
ticular the service of mathematics for other sciences and “the formal educational
value that its study provides.” (quoted in [8]). A few years later, in his inaugural
lecture at Leipzig University, he added “modern technology” as an additional field
that requires mathematical underpinning. This certainly reflects that he had spent
in the meantime a period of five years at the Munich Polytechnic School [2, Kap.
4.3]. However, he did not yet challenge at that time the primacy of polytechnic
schools for the training of engineers: “We have to limit ourselves to a discourse
of the principles and leave aside the many details that are indispensible for the
engineer” [3]. Only when he was called in 1886 to Göttingen did Klein assume
the ambitious view to “develop the universities in such a way that they can fully
account for the modern disciplines; in particular, the polytechnic schools should
be attached to the universities.” (quoted from a letter to Friedrich Althoff, 27
May 1888, cited in [6, p. 85]). Backed by Althoff from the Prussian Ministry,
Klein’s perception of “applications” became highly political and developed into a
set of strategies on the national and international level. It involved new curric-
ula for high schools and universities, approaches to the engineering community,
editorial efforts such as the Enzyklopädie der mathematischen Wissenschaften mit
Einschluss ihrer Anwendungen and the establishment of new applied institutes.
With this perspective, Klein started to address in his lectures and seminars spe-
cialties that he regarded as suitable targets for exposing the need of mathematical
underpinning.

Hydrodynamics became a particular target as a result of Klein’s increasing
focus on technical mechanics. He had included technical mechanics as part of
applied mathematics, for example, in 1898 in a new regulation for Prussian high-
school teacher examinations. “Technical mechanics is no isolated specialty,” he
explained again in 1900 in a talk before an audience of high school teachers. “We
have occasionally included technical mechanics in our Göttingen university lec-
tures. I myself use to take it into account as far as possible in my general lectures
and seminars on theoretical mechanics” [4]. In this vein he also lectured on hy-
drodynamics in the winter semester 1899/1900. By the same time, Klein began to
edit the mechanics part of the Encyclopedia which included an article on hydro-
dynamics (authored by A. E. H. Love and published in 1901) and on hydraulics
(authored by Ph. Forchheimer and published in 1905).

Klein’s lecture on hydrodynamics was a sequel to preceeding lectures on point
mechanics and the mechanics of rigid bodies. “Although we stress the mathe-
matical aspects of our subjects compared to the physical aspects, there will be
no lack of prospects in different directions,” Klein alerted his students about the
broad scope of this lecture. Originally he intended to split it in a general and a
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special lecture. The latter was dedicated to the application of automorphic func-
tions, as Klein revealed in the introduction to the general lecture. “The context
of this special lecture with the general lecture on deformable bodies is due to the
applicability of automorphic functions to problems in mechanics. Many mechan-
ical problems lead to elliptic functions and can therefore be regarded as solved”
[5]. Klein had to cancel the special lecture on automorphic functions this time for
other reasons, but the intent reveals his focus on mathematics rather than technol-
ogy as his major concern. The use of automorphic functions in fluid mechanics is
restricted to special two-dimensional flow arrangements, so that engineers would
have hardly shared the excitement of mathematicians about their applicability.
See, for example, [7].

Four years later, Klein dedicated his seminar to hydrodynamics. He recruited
as co-organizer Karl Schwarzschild, who had been appointed in 1901 as profes-
sor of astronomy and director of the Göttingen obervatory. The preceding lecture
served as a reference, but the form of the seminar allowed Klein and Schwarzschild
to deal with specific problem areas without the need of a systematic exposition.
The focus on problems provoked a revealing discrimination concerning the math-
ematical difficulties “to understand hydraulics from the perspective of theoretical
hydrodynamics,” as Klein described the goal of the seminar in his introductory
talk. “From the mathematical perspective the subjects may be categorized in the
following way,” he reported to the Göttingen Mathematical Society on 9 February
1904 about the seminar, “a. well defined problems, b. rather poorly defined prob-
lems, c. very badly defined problems.” Turbulence, for example, was rated to the
second category. “The question how one can explain theoretically the emergence
of turbulence appears still unsolved; we will hear more about the contemporary
approaches in the presentations of Schwarzschild, Herglotz and Hahn,” Klein al-
luded to these forthcoming seminar talks. The three theorists reviewed the riddle
of turbulence in pipes and channels so pervasively that they decided to published
a common paper on it – although it had little to do with their other work in
mathematics, physics and astronomy [1].

Another four years later, in the winter semester 1907/08, the gulf between hy-
drodynamics and hydraulics was once again the subject of a Göttingen seminar,
this time co-organized by Klein, Emil Wiechert, Ludwig Prandtl and Carl Runge.
Wiechert was head of Germany’s first university institute for geophysics founded
in 1898 at Göttingen. Runge and Prandtl had been called to Göttingen in 1904
in order to direct the new institutes for applied mathematics and mechanics that
Klein had established in the course of his effort to add applied fields to Göttingen
university. “Connection of theory with practice (observation, experiment, con-
struction),” Klein remarked about his intention in the beginning of the seminar,
“Enormous practical interest. Practical background: the Institute for Applied Me-
chanics.” (30 October 1907, SUB, Cod. Ms. Klein 20 F). Among the seminarists
were Prandtl’s doctoral students and Prandtl’s assistant, Theodore von Kármán,
who would later rival Prandtl as a pioneer of modern fluid mechanics.
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In conclusion, the application of mathematics to fluid mechanics resulted in a
development which payed more attention to practice than to mathematics. Klein’s
original strategy to use practice as a challenge for mathematics was transformed
by Prandtl into a program that led to the establishment of applied mechanics as
a discipline in its own right.
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Transmitting disciplinary practice in applied mathematics? Textbooks
1900 - 1930

Tom Archibald

“I do not believe that there is, properly speaking, such a thing as applied
mathematics. There is a British Illusion to that effect.”

O. Veblen 1929, quoted in [1]
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1. Introduction: Disciplinary space for applied mathematics

Applied mathematics today clearly has some kind of status as a discipline, whether
we define discipline casually or use a broader sociological definition. This was not
always the case. Yet by the early twentieth century bodies of practice had begun to
be established in various fields that now function as part of applied mathematics or
in close conjunction with it. Today, speaking very broadly, we may see a tripartite
division of these practices and tools into scientific computing, modelling using
adapted or new mathematical tools, and the mathematical analysis of those tools.
To set aside stochastic and statistical modelling, these tools are usually centred
around ordinary and partial differential equations, though more recently algebra
and discrete mathematics make an important appearance.

How to go from this vague impression of the present to an historical analysis
based on what mathematicians do? Here we focus on the transmission of bodies
of knowledge and the accompanying establishment of canonical texts, possibly dif-
ferent in different contexts. This brings us up against the notion of disciplinarity.
The notion of discipline aims to analyse scientific activity from the point of view
of division of labour. It is characterized by forms in the day to day organization of
research and teaching. At the teaching level, it anticipates the necessity of a dis-
tribution of specific tasks, the tools for which have to be acquired (e.g. modelling).
The relationship to knowledge production comes through the tension between the
acquisition of things known and the necessity of innovation to improve or extend
the domain of effectiveness of the approach. The student’s acquisition of knowl-
edge is generally done in light of a (weakly specified) frontier of knowledge defined
in terms of increasing cognitive mastery of a somewhat predefined object, e.g the
mechanical behaviour of fluids. Disciplines to some extent partition inquiry, and
for practitioners there is a general idea that a particular discipline somehow com-
plements others in some larger field (e.g. applied mathematics versus theoretical
physics).

In what follows, by looking at various aspects of applied mathematical toolkits
and practices as they appear in textbooks in the period from 1900 to 1930, we
seek a nascent set of practices and hence a nascent discipline.

We focus on examples that aim specifically at transmitting a corpus of methods
to a variety of publics: mathematicians, physicists, students of both, and other
groups also (e.g. engineers, military, ...) The books we consider were intended for,
and used by, a variety of publics. In the 19th c., the toolkits provided were for
“Natural Philosophy”, “Mathematical Physics”, and descriptors of that kind. The
eventual standard repertoire of applied mathematics emerged largely from there.
Beginning already in the 19th century there were many specialized treatises, eg on
variational methods or potential theory, aiming at applications to varying degrees.

Two examples from the nineteenth century give us a starting point for our
reflections: Thomson and Tait, and Riemann’s lecture courses (later to become
Riemann-Weber, and ultimately Frank-von Mises). Thomson and Tait was ini-
tially envisaged as a survey of all of natural philosophy, a project eventually aban-
doned, so that it never went beyond what its authors considered to be mechanics
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(though their view was broad). More influential for later compendia of methods
were the two volumes of Riemann. The first of these, appearing under the title
Schwere, Elektrizität, und Magnetismus dealt with the applications of potential
theory (seen as the theory of the Laplace and Poisson equations). For various rea-
sons, the volume on partial differential equation has had a more enduring legacy.
Following a basic treatment of definite integrals, Fourier series, and differential
equations, detailed discussions of: the heat equation with various boundary condi-
tions; vibrations of elastic bodies, uses of potential and Lagrange’s principle; and
fluids, considering among other things the case where there is a velocity potential,
compressible flow, and the motion of solids in incompressible fluids. A key feature
of the work is to provide repertoire of methods for fundamental examples.

2. The British Illusion: Love, Lamb and Whittaker

Let’s take a look at what Veblen termed the illusion that there is such a thing as
applied mathematics, a position that appeared to him to be held by the British.
This impression would clearly have been fostered by the Cambridge Tripos train-
ing, which in a complex Newtonian legacy continued to emphasize natural phi-
losophy. This older legacy is not our subject here, and we we turn instead to to
writers whose works were to become canonical in British-influenced contexts – as
well as in those in competition with British work in these fields. These are A. E.
H. Love and Horace Lamb.

“The title of what well-known mathematical book could just as easily be the
title of a tragedy? Love’s Elasticity.” This joke attests to the fact that this was a
very well-known work, as does its universal presence in library collections. A. E.
H. Love (1863–1940) was 2nd Wrangler in 1885, a Fellow of St John’s from 1886,
taking up a professorial position at Oxford in 1899. His 1892/3 A Treatise on
the Mathematical Theory of Elasticity, had many editions; the 4th 1927 still falls
within our period. The work is very much an exposition, was widely cited and
treated as classic by later writers (Muskhelishvili for example). Above all this is
a work on analysis, though there is more than a nod to engineering, especially in
the (brief) Chapter 4, “The relation between the mathematical theory of elasticity
and technical mechanics.”

In that section of the work Love discussed the limitations of the mathematical
theory:

“The theory is worked out for bodies strained gradually at a constant temper-
ature, from an initial state of no stress to a final state which differs so little
from the unstressed state that squares and products of the displacements can
be neglected... [it uses ] Hooke’s law, and it is known that many materials
used in engineering structures, e.g. cast iron, building stone, and cement, do
not obey Hooke’s law...”

Love also underlined the importance for engineering while acknowledging further
specific limitations of the models. Assumptions such as those of strain being
proportional to load, and of strain disappearing after removal of load led to poor
agreement with experiment in many situations. Nonetheless Love discusses the
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measuring apparatus in use by engineers, for example Unwin’s extensometer, fitted
with automatic recording apparatus to produce stress strain diagram. In Love’s
work there are reflections on the scope of theory as well, particular in relation to
discussions of factors of safety in cases of impact or sudden reversal of load.

Horace Lamb (1839–1934) was 2nd wrangler in 1872. He became Fellow at
Trinity, then took a faculty position in Australia. He subsequently returned to a
position in Manchester which he occupied for 35 years, from 1885–1920. Lamb was
the author of several textbooks, some elementary, such as his Higher Mechanics
1920, though there are many others. The many editions attest to their success.
Looking at Higher Mechanics today, it appears broadly accessible (in terms of its
limited prerequisite knowledge and the pace of the development. It is of interest as
having problems (that is, work to be done by the student) that go beyond routine
skill-building to address that are both modern and engineering-related. This is
particularly noticeable in the concluding chapters on gyrostatic problems, vibra-
tions, and variational principles. This work, and many of Lamb’s works, contain
references to international literature both for theoretical content (eg Levi-Civita
and Amaldi) and for specific practical examples and thus are useful as a guide to
readers of varying levels of training and competence. Lamb’s discussion of gyro-
scopes in this book was briefly discussed, affording a specific practical application,
the marine stabilizer.

Lamb’s best-known work was of course hisHydrodynamics a standard for decades
with editions in 1879, 1895, 1906, 1916, and 1924. It is a comprehensive “intro-
duction” for a varied audience, and covers a still-standard if classical repertoire
including vortex motion, tidal waves, surface waves, expansion waves, viscosity,
and many other fundamental subjects in fluid mechanics. Alex Craik made the
observation at the meeting, worth repeating, that their own introduction lectures
(in the 1960s) continued to be based on Lamb, though their own contact with it
began later in their careers.

Lamb explicitly considered his treatment to go beyond what he termed “mathe-
matical method”, where the emphasis should probably be laid on the word “math-
ematical.” He is interested in things that are, in his expression, physically impor-
tant. Lamb’s work appears to have been widely influential, particularly in Ger-
many. This and other British works were translated into German: the 3rd edition,
at Klein’s urging, in 1907 by Friedel, and the 5th under the auspices of von Mises
by Dr. Elise Helly, appearing in 1931. At this point we see the older German
tradition beginning to merge with the British, or at least, beginning to absorb its
main results. In the translation von Mises added about 60 pages from his own
work.

Having looked on the “modelling” side, we turn to analysis and computation in
the person of E. T. Whittaker (1873–1956). Whittaker is yet another 2nd Wran-
gler. He was a Fellow of Trinity to 1906, then took a position at Trinity College
Dublin until 1911, where he was also Astronomer Royal. He then moved defi-
nitely to Edinburgh. His many well-known works include Whittaker and Watson’s
Course of Modern Analysis (cf Barrow-Green) with editions 1902, 1915, 1920,
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1927. Rather like Riemann-Weber this aims at providing the essentials of anal-
ysis for the purpose of application: Fourier series, linear differential equations,
asymptotics, and special functions. A more specialized work, his Analytical Dy-
namics of 1904 (second edition in 1917) was translated into German in the Springer
Grundlehren series in 1924.

Whittaker’s stint as an Astronomer left him convinced of the importance of
computation, and his literary production included a joint work with Robinson,
Calculus of Observations, based on lectures to students in the “Mathematical
Observatory” of Edinburgh University 1913–1923. The work is a selection of nu-
merical methods, including graphical methods, buts lays considerable importance
on hand calculation regimes.

The material equipment essential for a student’s mathematical laboratory is
very simple. Each student should have a copy of Barlow’s table of squares, etc.,
a copy of Crelle’s “Calculating Tables,” and a seven-place table of logarithms.
Further it is necessary to provide a stock of computing paper (i.e. paper ruled
into squares by rulings a quarter of an inch apart; each square is intended to
hold two digits; the rulings should be very faint, so as not to catch the eye
more than is necessary to guide the alignment of the calculation), and lastly a
stock of computing forms for practical Fourier analysis (those used in Chapter
X of this book may be purchased).

Whittaker and Robinson 1924

While this work was not translated, it was purchased abroad: the title page of the
copy on the Oberwolfach collection shows the imprint of the Luftfahrtforschungs-
anstalt Hermann Goering in Braunschweig.

3. Concluding Remarks

The mention of translations draws to our attention the fact that these were sub-
jects of international interest in which solutions of particular problems were eagerly
sought as part of a repertoire for a variety of uses. These uses include industrial
uses, and a nice example of both the international dimension of the field and
the applications-oriented nature of the work is provided by Stephen Timoshenko
(1878–1902) whose work in Russia, at Westinghouse, and at the Universities of
Michigan and Stanford provide an example of international diffusion of many tech-
niques in elasticity theory.

Do these examples move us towards identifying a nascent toolkit for applied
mathematics? These examples are intended more to be suggestive of an evolution
toward discipline than demonstrative of it. Clearly, the complex networks that link
the works and the authors need to be mined thoroughly, and a fuller range of works
needs to be explored. In particular, an assessment of the links between engineers
and mathematicians, mostly indicated only collaterally in these examples, needs
to be made. The role of publishers in the diffusion of work internationally also
needs to be explored.
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Turing, the Riemann Zeta-Function, and the Changing Borderline
between Pure and Applied Traditions in Mathematics

Leo Corry

In 1953 Turing published an article in the Proceedings of the London Mathematical
Society with the title “Some calculations of the Riemann zeta function”. This was
actually Turing’s last research paper and not one of his most influential ones. It was
an investigation related with a classical problem in number theory, the Riemann
Hypothesis (RH), in which Turing presented calculations performed with the help
of a program running in a general purpose computer, the Manchester Mark I.
Compared with Turing’s contributions to the foundations of theoretical computer
science, artificial intelligence, code-breaking, or actual computer design, this is
a much lesser known (and certainly less dramatic) chapter of his scientific and
personal biography. It is of historical importance, however, once we add to the
picture the interesting fact that, previously, in 1939, Turing had applied for a
grant from the Royal Society to support the engineering of a special machine to
calculate approximate values for the Riemann zeta-function on its critical line.

My lecture discusses Turing’s involvement with the Riemann Hypothesis and
the implications of the different approaches followed in these two attempts, which
are separated by Turing’s war-time activities and the ensuing dramatic changes in
his personal and professional life, as well as in the world of computing at large. I
describe the connections of these two episodes within the broader contexts of his
own scientific world, as well as that of the British tradition of mathematical table-
making. In particular, the lecture uses the perspective of this involvement in order
to shed some new light on two main topics commonly discussed around Turing’s
1936 seminal article, where the idea of the Universal Turing Machine (UTM) was
first introduced.

The first main topic has to do with the direct relationship between the idea
of the UTM and the actual building of a general-purpose, program-stored, digital
fast-speed computer, particularly as embodied in the so-called Von Neumann Ar-
chitecture after 1945. The perspective presented in the talk emphasizes that when
proposing the abstract UTM Turing did not have in mind the construction of a
physical machine embodying this idea. The fact that his early attempts to deal
with the RH were conceived in terms of a special purpose machine is at the focus
of the historical evidence presented in support of this perspective.

The second main topic discussed in this context relates to the British Math-
ematical Tables Committee and its activities beginning in the last third of the
nineteenth century, and aimed at developing new methods for calculating math-
ematical tables of various sorts, including in pure mathematics, and especially
under the leadership of John Leslie Comrie. The perspective presented in the talk
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emphasizes the connection of Turing’s early mathematical activities with the kind
of traditions developed in the framework of the activities of the Committee. It is
claimed that this connection played an important role in Turing’s active interest
in formalizing and then studying the limitations of the idea of computing by one,
or a group of, human computers.

“What has mathematics got to do with oil?” – Van der Waerden and
applied mathematics

Martina R. Schneider

Bartel L. van der Waerden (1903–1996) published almost as much in mathematics
as in the history of science. His contributions to algebra, algebraic geometry and
to the history of mathematics and astronomy are well known today. Less well
known are his publications in applied mathematics as well as his positions related
to applied mathematics.

“What has mathematics got to do with oil?” is the title of a talk given by
van der Waerden in the Netherlands after World War II. At that time van der
Waerden was head of the department of applied mathematics at the newly founded
mathematical research center in Amsterdam and also employed at the research
laboratory of the oil company Bataafsche Petroleum Maatschappij (B.P.M., later
Royal Dutch Shell). After the war van der Waerden could not get a position
at Dutch universities because he had worked at Leipzig University in Germany
during the occupation of the Netherlands, and this was interpreted by the general
public as collaboration. In 1948, however, van der Waerden was appointed as
an extra-ordinary professor of pure and applied mathematics at the University
of Amsterdam, a post sponsored by Dutch industry [1]. Applied mathematics
was also a regular part of his teaching obligations at Zurich university from his
appointment in 1951 until his retirement in 1973.

Van der Waerden’s contributions to applied mathematics consist of articles and
monographs on quantum mechanics, statistics, and various other topics. They
make up circa 20% of his mathematical publications if the bibliography by J. Top
and L. Walling [2] is taken as a basis. Thus they form a considerable part of van
der Waerden’s mathematical research which has only been given little attention
by historians of mathematics so far.

In my own study on van der Waerden’s research on quantum mechanics [3] I
have found several characteristic features of van der Waerden’s scientific activity in
physics. One feature is that the direct contact van der Waerden had with physicists
was of vital importance for getting van der Waerden started. In 1928 it was the
Austrian physicist Paul Ehrenfest, professor in Leiden, who got in touch with van
der Waerden to ask him questions about Weyl’s 1928-book on group theory and
quantum mechanics. Van der Waerden was invited by Ehrenfest to give a lecture
on the topic, which was well received. Ehrenfest also asked him to develop a kind
of tensor calculus for the quantum mechanical structures which Ehrenfest called
spinors. This led to van der Waerden’s first publication in quantum mechanics in
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1929 [4]. Van der Waerden’s network of scientists played not only a decisive role
for the genesis of this article, but also for most of his other publications in physics.

Another characteristic feature of van der Waerden’s research activity in physics
can be described by the notion of pragmatism. In the case of the spinor calculus
mentioned above, van der Waerden developed a calculus tailored to the needs of
physicists. The spinor calculus was modelled on tensor calculus. It did not require
much research, but rested upon results from representation theory and invariant
theory. The reader of van der Waerden’s article on spinor calculus, however,
learns hardly anything of these mathematical theories. Instead van der Waerden
addressed himself in considerable detail to the questions of how to handle the new
calculus and of how to write the relativistic wave equation of the electron in spinor
notation. The same kind of pragmatism can be detected in his monograph “Die
gruppentheoretische Methode in der Quantenmechanik” (1932) [5]. There van der
Waerden promoted and even improved a non-group theoretic method developed by
the American physicist John C. Slater. Slater had tried to find a way around group
theoretic methods in quantum mechanics as these methods were quite controversial
at that time.

In the talk I have explored in how far these two characteristic features of van der
Waerden’s approach to physics can also be attributed to his research in statistics.

Van der Waerden started publishing articles on statistics in 1935 when he was
professor at Leipzig University. This first set of papers (1935–1943) is related to
medicine and bio-assay. A central question was how to deal with small samples.
Most of these publications appeared in the Berichte of the Saxonian Academy of
Sciences in Leipzig. But van der Waerden also published in practitioner’s journals
like the Klinische Wochenschrift for medical doctors or the Archiv für experi-

mentelle Pathologie und Pharmakologie for physiologists. It was only at the end
of the 1930s that he learned about the “English statistical school”, in particular
about distribution-free tests [6]. From the publications it is not clear how van der
Waerden came about these questions. There is only one little clue: a joint-article
with Martin Gildemeister, director of the Institute of Physiology in Leipzig and,
like van der Waerden, member of the Saxonian Academy of Sciences.

At the beginning of the 1950s, van der Waerden developed his own distribution-
free rank order test, the so-called X-test. In the articles we find traces of an ex-
change with David van Dantzig. Van Dantzig was a friend and former colleague
of van der Waerden, and head of the department of statistics at the Dutch math-
ematical research center. The research center also helped to calculate the tables
for the X-test [7]. It was van Dantzig who drew van der Waerden’s attention to
papers on distribution-free tests by Erich Lehmann and also by other statisticians.
Van der Waerden got in touch with Lehmann, and Lehmann spent his sabbatical
year with van der Waerden in Zurich in 1956/57 and returned again for six months
in 1959/60.

In 1957 van der Waerden published a text book on mathematical statistics
in German [8]. In the preface he explained how he was drawn into the field:
“Ever since the days as a student, economists, doctors, physiologists, biologists,
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and engineers have come to me with queries of a statistical nature.” The book
was based, according to van der Waerden, on a draft written in 1945 and used
in a lecture course on error calculation and statistics at B.P.M. He had already
announced a lecture course on probability theory at Leipzig University for the
winter term 1944/45, however it is not clear whether the course did actually take
place.

It was Lehmann who suggested and supported the translation into English of
van der Waerden’s text book on mathematical statistics. He was impressed by the
50 examples in the book of the application of statistics to different fields taken,
as van der Waerden pointed out, not from theory, but from practice. For van
der Waerden, the usefulness of statistics was not only restricted to the natural
sciences. He also considered statistics useful in demography, economics, industrial
applications, psychology, and even in history.

One example of the use of statistics in the humanities is worth mentioning,
namely its application to the history of astronomy. Van der Waerden used sta-
tistical methods in the discussion of a Byzantine sun table in example 19 of his
book. He also tried to convince Otto Neugebauer of the use of statistical testing
for the determination of theories about Babylonian intercalations between 529–
385 BCE. After an exchange of letters in 1958/59 (see Nachlass van der Waerden,
ETH-archive Zurich) the latter, however, remained unconvinced.

Summing up, I have pointed out that there are some indications that the two
characteristic features of van der Waerden’s research in physics might also play
a role in his involvement in statistics. However, further research needs to be
done with respect to both of the features: i) to determine more exactly van der
Waerden’s network of scientists relevant to his statistical research at various places
and times, and ii) to analyze how pragmatic van der Waerden’s approach actually
was despite his own claims in this direction.

The case study also raises the more general question of how typical van der
Waerden’s research activities in applied mathematics were for mathematicians at
the time.
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Mathematical Modeling, Mathematical Consultants, and
Mathematical Divisions in Industrial Laboratories

Renate Tobies

“Applied” Mathematics and training of mathematical consultants

Around 1900, mathematics became a constitutive element of the newly formed
technical sciences (electrical engineering, mechanical engineering, etc.). It was in
this context that mathematicians began to discuss, in concrete terms, what was
meant by “applied mathematics”. Developments in Germany, especially at Göttin-
gen, played a leading role in this international process. Carl Runge (1856–1927)
and Rudolf Mehmke (1857–1944), driven by Felix Klein (1849–1925), arranged the
Zeitschrift für Mathematik und Physik [Journal for Mathematics and Physics] into
a journal only for applied mathematics since 1901, and explained:

Though it remains a matter of dispute what counts as “pure” and what counts
as “applied” mathematics, we hope that our readers will approve if we refrain
from drawing the sharpest lines between the two subjects. In addition to the
fields discussed in volumes 4–6 of the Encyklopädie der mathematischen Wis-

senschaften [Encyclopedia of the Mathematical Sciences] – namely mechanics
(especially technical mechanics), theoretical physics (including mathematical
chemistry and crystallography), geophysics, geodesy, astronomy – and in ad-
dition to the essential fields of probability and regressions analysis, statistics,
and actuarial mathematics, we are also interested in cultivating the follow-
ing disciplines: numerical analysis, approximate calculation (“approximation
mathematics”), the theory of empirical formulas, descriptive geometry (in con-
junction with shadow generation and perspective), and graphical analysis. It
is with the methods employed in these fields, above all, that applied mathe-
matics is executed to its fullest capacity. Moreover, we would like to devote
considerable attention to the technical instruments that are used by the prac-
titioners of these fields, including numerical and graphical tables, mechanical
calculators, and graphical instruments. [1, pp. 8–9]

When Runge accepted the first full professorship of applied mathematics at the
University of Göttingen in 1904, Klein abandoned his own, discipline-based un-
derstanding of the subject. Beginning with a new examination requirements that
were established for future secondary school teachers in 1898, the heart of the ap-
plied mathematics program in Prussia had been the fields of descriptive geometry,
technical mechanics (including graphical statics and kinematics), and the geodesy
(including probability theory). When, in 1907, German supporters of applied
mathematics gathered at the University of Göttingen, they issued the following
formulation:
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“The essence of applied mathematics lies in the development of methods
that will lead to the numerical and graphical solution of mathematical prob-
lems.” [“Das Wesen der angewandten Mathematik liegt in der Ausbildung
und Ausübung von Methoden zur numerischen und graphischen Durchführung
mathematischer Probleme.”] [4, p. 518]

Numerical, graphical, and instrumental methods put in the center of attention
supported by industrialists and internationally linked. Klein inspired the book
Über die Nomographie von M. d’Ocagne (Leipzig: B. G. Teubner, 1900) written
by his former doctoral student Friedrich Schilling (1868–1950); it was published
already one year after Maurice d’Ocagne’s (1862–1938) Traité de nomographie
(Paris: Gauthier-Villars, 1899). Klein also stressed John Perry’s (1850–1920)
Practical Mathematics (3d edition London 1899; German edition Wien 1903) and
Calculus for engineers (3d edition London 1899; German edition Leipzig: B.G.
Teubner 1902). Perry had propagated a laboratory method with the training of
the use of tables and mechanical instruments that was developed further under
Carl Runge in Göttingen. Runge had developed his procedure for solving ordinary
differential equations in the 1890s, today known as Runge-Kutta procedures. He
and his doctoral students published books on Practical Analysis (translated also
in English); and as a result of his visiting professorship at Columbia University in
1909–10, Runge published his book Graphical Methods (1912) first in English.

The methods (numerical, graphical, instrumental) were used, trained, devel-
oped further in the framework of research seminars of applied mathematics at the
University of Göttingen, where not only future secondary school teachers but also
future mathematical consultants in industrial laboratories took part including sci-
entists who later promoted applied mathematical fields in the United States: for
example George Ashley Campbell (1870–1954), Stephen P. Timoshenko (1878–
1972), and Roland G. D. Richardson [5, pp. 57, 64–69, 278], [3].

A New Style of Thinking in Industrial Laboratories: “Calculation
instead of trial and error”

It was a novel turn of events when calculation began to hold sway over experi-
mentation in the laboratory setting. From a chronological perspective, the new
style of thinking (following Ludwik Fleck’s term) entered first the laboratories
at optical workshops respectively companies, followed by Companies of Heavy-
Current/Power Engineering (AEG, Siemens-Schuckert, General Electric Company),
communication industry especially since the 1920s, and since the 1930s aviation
and steel industries also became a job market for mathematicians.

In order to achieve repeatable products advance calculation has become increas-
ingly important. Researchers who had completed their doctorates in mathematics
already in the 1890s have been recruited as mathematical consultants and headed
mathematical divisions at the famous Carl Zeiss Company in Jena. The early suc-
cessful international research cooperation in this field, for example between Moritz
von Rohr (1868–1940), Carl Zeiss Company, and the Swedish ophthalmologist Al-
lvar Gullstrand (1862–1930) is a largely uncharted field of research.
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We know that Charles P. Steinmetz (1865–1923) headed a mathematical division
at GE since 1894, the same did Reinhold Rüdenberg (1883–1961) at the Siemens-
Schuckert Company since 1908; Cäcilie Fröhlich (1900–1992) who had completed
a doctorate in mathematics at the University of Bonn worked as a mathematical
consultant at the AEG (General Electric Company) in Berlin from 1927 to 1937,
at the “Ateliers de Constructions Electriques de Charleroi” in Belgium, and later
in the United States [5].

By examining the work of Iris Runge (1888–1966), the eldest daughter of Carl
Runge, I was able to identify not only an esteemed and competent mathematical
consultant at the Osram Company but also a group of similar researchers at Tele-
funken in the 1930s (a similar group had existed at the Bell Telephone Laboratories
since 1928). My research enabled me to show how an industrial researcher had
constructed mathematical bridges between statistics and quality control of mass
production; between the physical and chemical methods of material research and
the concrete problems of manufacturing conductors, filaments, bulbs, and electron
tubes; and between the models of theoretical physics (optics, colorimetry, etc.)
and the design of scientific instruments. It could be demonstrated, with examples,
how simplified models were employed to enhance the understanding of industrial
processes and production.

A general procedure for solving mathematical problems was developed and em-
ployed internationally. John R. Carson, a member of the Mathematical Research
Department at the Bell Telephone Laboratories, provided an accurate description
of the procedure as early as 1936:

The art consists in seeing how to go at a problem; in knowing what simplifica-
tions and approximations are permissible while leaving the essential problem
intact, in precise formulation in mathematical terms, and finally, in reducing
the solution to a form immediately interpretable in physical and engineering
terms. [2, p. 398]

This remains same foundational approach to problem solving that is still charac-
teristic in industrial mathematics.
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On the Very Notion of Applied Mathematics

José Ferreirós

We have found along this meeting many expressions of the idea that basically there
is only one discipline mathematics, and that the notion of applied mathematics is
problematic (von Neumann). I share the view that the historian should not employ
the category of “applied math” as a properly historiographical one, although of
course we should study its rise and the evolution as an actor’s category. Even
more, I tend to think that avoiding that category is a positive contribution to the
philosophical understanding of mathematics.

The aim of my talk is to clarify some differences between the contrasts pure/mixed
and pure/applied as they operated in the past; to propose some basic methodolog-
ical ideas about the study of applied math in practice; and to discuss briefly some
famous views about the “applicability of mathematics”.

Notice that, as of 1800, almost nobody seems to have thought of asking why
mathematical notions are applicable, let alone suggest that their effectiveness was
“unreasonable”. Six generations of mathematicians later, we find Nobel Prize
Eugene Wigner (professor of physics and mathematics at Princeton University)
having great success with his 1960 talk on the “unreasonable effectiveness” of
mathematics. He ended by saying:

The miracle of the appropriateness of the language of mathematics for the for-
mulation of the laws of physics is a wonderful gift which we neither understand
nor deserve. We should be grateful for it and hope that it will remain valid in
future research and that it will extend, for better or for worse, to our pleasure,
even though perhaps also to our bafflement, to wide branches of learning.

I would like to suggest that one of the main reasons for this shift is cultural
and institutional. In the early 20th century, the image of mathematics as a pure
discipline, fully autonomous from anything else, and in fact hardly comparable
with ‘the sciences’, was well established within and without the math community.
This happened despite the fact that the most influential mathematicians of 1900
– Poincaré and Hilbert – did not believe in such a picture.

Importantly, this cultural image of mathematics was not only shared by a large
community of specialists, but, one can argue, was strongly institutionalised in
Math Depts, first in Germany, then (surprisingly perhaps) in the USA, and then
elsewhere. Felix Klein (1926) said of Jacobi’s school that it is “a scientifically
oriented Neohumanism, which sees its objective in an inexorably rigorous cultiva-
tion of pure science,” and this orientation endured by being institutionalized. [On
the adaptation of mathematicians to the environment of Neohumanist Philosophy
Faculties, see among others [5]; for the USA see [8].] This institutional factor is
highly important.

1.

In matters like this, when the topic has to do with broad divisions in the orga-
nization of knowledge and learning, it is useful to employ the categories of body
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and image of knowledge [2]. The body of knowledge relevant to a certain field,
or to a group of practitioners, has to do with their skills and toolkits (more on
this below), while the image of their discipline or their particular field is affected
by broader factors. We have seen examples of how philosophical elements can be
relevant here, but there are also sociological and institutional factors, and quite
importantly educational orientations which shape up the image of the discipline
for a new generation.

To put it bluntly and provocatively, consider what Vladimir I. Arnol’d had to
say [1]:

Mathematics is a part of physics. Physics is an experimental science, a part
of natural science. Mathematics is the part of physics where experiments are
cheap. . . .

In the middle of the twentieth century it was attempted to divide physics
and mathematics. The consequence turned out to be catastrophic. Whole
generations of mathematicians grew up without knowing half of their science
and in total ignorance of any other sciences.

While the first sentences may be ironic, pointing to ‘experiments’ on paper or
on the computer, the criticism raised in the second paragraph is seriously taken.
Obviously, if your conception of math coincides with Arnol’d’s, issues having to do
with applied math and related matters will appear in a different light. His views
resonate with Fourier (1822: “Profound study of nature is the most fertile source
of mathematical discoveries”) and many other mathematicians of the past.

It is useful to consider schematically the contrast between images of mathemat-
ics in the 18th and the 20th centuries. I shall simplify quite a lot, but the resulting
map is clarifying when properly employed.

2.

Up to 1800 mathematics was usually defined as the Science of magnitudes: it
“is nothing more that the science of magnitudes”, said Euler [4, p. 4]. This is
the setting for the pure/mixed contrast. Notice that this perspective immediately
points to the real world and to the later called ‘applications’: magnitudes are given
to us everywhere in Nature (distance from the MFO to the train station; amount
of water we have spent this week; etc.). Quite importantly, the foundations of
mathematics is not itself a topic for mathematics – but rather for philosophy of
metaphysics. You know well how around 1800 there was heated debate about “the
metaphysics of the calculus”; also Gauss typically referred to the “metaphysics”
of space or of the complex numbers [5]. Even as late as the 1880s Kronecker would
still insist that a discussion of the number concept (like discussions of space or
time) pertain to the “open field” of philosophy and not in the fenced space of a
particular scientific discipline.

In discussions of traditional math vs. modern math, around 1900, it was not
infrequently emphasized that there is a contrast between Empiricism of the former
and Idealism of the latter (du Bois-Reymond, Kronecker, Baire and Borel, etc.).
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This can be easily understood: in the traditional perspective, numbers are rela-
tions between magnitudes, their ‘existence’ is derivative and unproblematic. The
foundational problem of mathematical existence arose with the modernistic spirit,
which conceived of mathematics as perfectly autonomous and pure, and alien-
ated from the sciences [6]. Autonomous, self-contained, self-justified: this was
the dream (one can find here in the background many philosophical and cultural
elements).

Around 1950, mathematics was usually defined to be the Science of structures :
“as we all know, all mathematical theories can be considered as extensions of the
general theory of sets” [3]. Notice that this perspective does not point to the
real world, but to the internal scaffolding of structures, concepts, and objects of
a now autonomous math. Here is where the contrast pure/applied was shaped.
The foundations, in strong contrast to the previous situation, is itself a topic for
mathematics – logic, set theory, proof theory – not for philosophy. Numbers, sets,
functions, structures, are “pure objects” of mathematics, independent from the
real world. Mathematical existence has nothing to do with real existence (consider
Hilbert’s famous proposal) and it has become problematic.

Another aspect that I would like to emphasize is the strong differences in the
meaning of “abstract”. Within the science of magnitudes, one certainly can con-
sider magnitudes disregarding their concrete properties and concentrating on their
relations; thus we arrive at the abstract parts of the discipline (pure math), while
consideration of peculiar kinds of magnitudes (time, motion, etc.) is characteristic
of mixed mathematics. By contrast, in the setting of modern mathematics ab-
stract points to freely defined structures, which are taken to be independent from
the “real world”, autonomous. Applied math emerges when those structures are
employed in relation to another discipline, be it physics, engineering, biology, or
economics. The second meaning, unlike the first, does pose a problem of how to
account for the “applicability”.

3.

Several participants to the workshop have discussed aspects that one ought to
consider in applied mathematics as an activity. I propose to amplify a bit the list
of facets of the practice of applied mathematics that can profitably be considered:
1. The networks of practitioners involved, which of course need not be just math-
ematicians, for one is interested in detailed knowledge of their interactions with
engineers, scientists, politicians. 2. The aims and purposes of their work, which as
Lützen remarked are definitory of this practice as such (which reminds me of what
happens with science vs. technology). 3. The skills deployed by the practitioners,
also in order to maintain their interactions with other agents involved, and the
constraints accepted, which may be stronger than in some branches of so-called
pure math. 4. The interpretation proposed of the target situations, which again is
both a central problem of these practices and a reason why certain skills and tools
are needed (in recent decades one speaks here of modeling, but the phenomenon
is broader). 5. The toolkits that are required, to borrow Archibald’s term, i.e.,
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results, methods, theories. 6. The values that are put in effect, revealed through
the language employed for appraisal and evaluation (which changes significantly
from branch to branch of math), e.g., when a previous contribution is deemed
limited and an improvement proposed.

4.

A last part of the talk was devoted to some critical remarks on Wigner’s paper
(1960), which I believe is much more quoted that read – with the effect that its
contents are less influential than its mere title. On reading it again, I find it
more interesting than expected, particularly some ideas having to do with limits
of physical theories. But this is not what people remember. I also find that
Wigner’s perspective of mathematics, which exemplifies the impact of the 20th

century image in its formalistic version, amounts to a severe misrepresentation
of mathematical knowledge, of its historical evolution, and of its relations to the
sciences. The mathematics of 1800 was deeply engaged with techniques and with
natural science, it had certainly proven its usefulness, while developments since
then ought to be expected – if anything – to enlarge the spectrum of applications
and to facilitate them. However, there is not enough space here to deal with this
issue.
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Pure et Appliquée
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Université de Strasbourg
7, rue René Descartes
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