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Abstract. The workshop “Geophysical Fluid Dynamics” addressed recent
advances in analytical, stochastic, modeling and computational studies of
geophysical rotating fluids models. Of particular interest on the analytical
and stochastic sides were the contributions concerning dispersive mechanism,
regularity verses finite-time formation of singularities of certain viscous and
inviscid geostrophic models, the primitive equations, Boussinesq approxima-
tion, boundary layers and fast rotating fluids. Model reductions, based on
asymptotic, scaling analysis and variational methods, were presented. In ad-
dition, computational investigations were provided in support of the claim
that three-dimensional geophysical turbulent flows exhibit two-dimensional
features, at small Rosby numbers.
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Introduction by the Organisers

This workshop was fostering the investigation of large classes of geophysical fluid
models by means of techniques steaming from analysis, stochastics, modeling and
computational sciences. The complexity of fluid models taking into account all
relevant physical factors, such as fast rotation, thinness of the oceans and the
atmosphere and moist, as well as spatial and temporal scales, arising in climate
research, turbulent flows and meteorology show the strong need for accessible re-
liable reduced models. At the limit of small Rosby number, taking into account
fast rotation and the smallness of the vertical to horizontal aspect ratio, these sim-
plified models are reduced to, for instance, shallow water models capturing grav-
ity waves, stratified three-dimensional fluids mimicking two-dimensional turbulent
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flows, geostrophic balanced models at planetary horizontal scales and primitive
equations with vertical hydrostatic balance.

The mathematical tools for deriving these models rely often on sophisticated
asymptotic analysis methods that take into consideration the spatial and time
scales that are relevant to the physical phenomena. Let us stress that identifying
these relevant scales is already a major mathematical challenge.

The mathematical investigation of these reduced models involves many modern
tools ranging from harmonic analysis concerning oscillatory integrals, dispersive
estimates, resonances, micro-local analysis, as well as nonlinear evolutionary par-
tial differential equations and their stochastic counterpart. As a first step in this
investigation one aims for proving the global well-posedness of these simplified
models (or at least for the relevant time scales under which they are derived).
Next, one attempts to provide rigorous justification and validation of the derived
models. At the same time this is an important step toward the development of
numerical and computational schemes for simulating these models. As it has been
mentioned above, these models involve a wide spectrum of spatial and temporal
scales that makes the computational aspects of these models still out of reach. Of
particular challenge in this context is the present of fast rotating waves that re-
quire high temporal resolution. Consequently, a great effort is now being made to
reduce the system further to mode out these fast waves. An additional approach
for treating atmospheric motion is through the mathematical analysis and stability
of boundary layers.

One of the main characteristics of this workshop was the bringing together
leading experts from diverse scientific backgrounds such as analysis, modeling
and numerics. This has ignited lively and productive interaction and exchange
of interdisciplinary ideas. This was a very inspiring experience. The presence of
younger participants was very visible all during this meeting. In particular, the
workshop provided a platform for younger participants to play an active role in
the meeting by encouraging them to present their own work in a special highly
visible evening session which was fully attended by all participants. Topics covered
in this special session are e.g., optimal fluid mixing, models for the aquaplanet,
liquid crystals, and L∞-estimates for the Navier-Stokes equations.

The lectures presented took 40 minutes which were followed by very lively and
interactive discussions of 20 minutes. In addition, there were two special special
evening tutorials of one hour on stochastic analysis with fast rotation and data
assimilation.

The meeting brought together a very good mixture of various communities and
several leaders from different disciplines met here for the first time in person. The
gender diversity was good, especially among the younger participants.
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Abstracts

Nonlinear ocean eddies

Roger M. Samelson

Two aspects of the nonlinear dynamics of ocean flows are discussed. First, the
downscale transfer of energy from developing baroclinic waves to quasi-isotropic
small-scale three-dimensional turbulence is examined in numerical calculations
with a large-eddy simulation model based on the nonhydrostatic Boussinesq equa-
tions with a nonlinear eddy viscosity closure (joint work with E. Skyllingstad).
These simulations resolve the full range of motions from rotationally dominated,
growing baroclinic waves to quasi isotropic, three-dimensional shear instabilities.
The results confirm a forty-year-old prediction that frontogenetic collapse of cross-
frontal spatial scales, driven by baroclinic-wave deformation fields, will continue
to the Kelvin-Helmholtz turbulent transition. This process of frontal collapse
followed by K-H transition provides a mechanism for spontaneous loss of bal-
ance in an initially geostrophic flow, and a direct, spectrally non-local pathway
for downscale energy transfer that is phenomenologically distinct from traditional
concepts of turbulent cascades and can contribute substantially to total kinetic
energy dissipation. Second, a recent global analysis of two decades of satellite
altimeter observations of nonlinear ocean eddies are reviewed, and a simple sto-
chastic model is presented of the mean altimeter-tracked eddy amplitude life cycles
(joint work with D. Chelton, M. Schlax, J. Early). The stochastic model consists of
thresholded subsequences of a Markov or first-order auto-regressive (AR1) model
in which the random increments are drawn from a normal distribution. Normal-
ized amplitude life cycles of altimeter-tracked with eddy lifetimes of 16 to 80 weeks
are computed and found to be essentially independent of lifetime. Basic aspects
of this approximately universal (lifetime-independent) mean structure of normal-
ized altimeter-tracked eddy life cycles, including time-reversal symmetry and the
simple structure of the mean amplitude time series, are reproduced with remark-
able accuracy by the stochastic model. The dependence of dimensional amplitude
statistics on eddy lifetime and the distribution of eddy numbers vs. eddy lifetime
can also be partially reproduced by this model.
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Dispersive estimates for the Euler and the Navier-Stokes equations

with the Coriolis force

Ryo Takada

(joint work with Youngwoo Koh and Sanghyuk Lee)

We are interested in a dispersion phenomenon of the Coriolis force, arising in the
incompressible Euler and Navier–Stokes equations in the rotational framework:

(NSC)





∂u

∂t
− ν∆u+Ωe3 × u+ (u · ∇)u+∇p = 0, in R+ × R

3,

div u = 0 in R+ × R
3,

u(0, x) = u0(x) in R
3,

where ν ≥ 0 denotes the kinetic viscosity coefficient and the constant Ω ∈ R

represents the speed of rotation around the vertical unit vector e3 = (0, 0, 1).
It is known that the semigroup {TΩ(t)}t≥0 associated with the linearized prob-

lem of (NSC) has the explicit form

TΩ(t)f =
1

2
eiΩt

D3
|D|

[
eνt∆(I +R)f

]
+

1

2
e−iΩt

D3
|D|

[
eνt∆(I −R)f

]

with some singular integral operator R. Hence the dispersion effect of the Coriolis
force is closely related to the dispersive estimates for the operator that is given by
the Fourier integral

e±iΩt
D3
|D| f(x) :=

∫

R3

ei(x·ξ±Ωt
ξ3
|ξ| )f̂(ξ)dξ, (t, x) ∈ R+ × R

3.

Since the function ξ3/|ξ| which is the source of dispersion is homogeneous of degree
0, by the Littlewood–Paley decomposition and the scaling argument, the matter

reduces to the case in which f̂ is supported in the annulus
{
ξ ∈ R

3
∣∣ 1/2 ≤ |ξ| ≤ 2

}
.

We show the two–dimensional dispersive estimates for the linear group e±iΩt
D3
|D| .

More precisely, we prove that
∥∥∥e±iΩt

D3
|D| f

∥∥∥
L∞
≤ C(1 + |Ω|t)−1‖f‖L1

for all t ≥ 0,Ω ∈ R and f ∈ L1(R3) with supp f̂ ⊂
{
ξ ∈ R

3
∣∣ 1/2 ≤ |ξ| ≤ 2

}
. As

an application to the Euler equations, we prove that the lifespan of the solution
can be taken arbitrarily large provided the speed of rotation is sufficiently high.

Multiscale regimes in atmospheric flows

Rupert Klein

My presentation first summarized the unified approach to meteorological modelling
based on multiple scales asymptotics that I have developed over the past decade
and which is summarized in [1]. In the context of the present workshop, I have
emphasized the roles of formal asymptotic analysis as both a “language” for fram-
ing phenomenological descriptions of physical processes of interest in systematic
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mathematical terms and as a means for the generation of interesting hypotheses
and conjectures that would await rigorous proof.

Next I have pointed out three typical examples of multiscale problems for at-
mospheric flows that are of high interest to the meteorological community and for
which it would be very much worthwhile to develop mathematical theory beyond
formal asymptotics.

The first example concerns a recent theory, [2], for nearly axisymmetric tilted
vortices in the “gradient wind regime”. This flow regime covers vortices from
strong tropical storms to weak hurricanes or taiphoons. The development involves
matched asymptotic expansions for vortices that are axisymmetric to leading order
in each horizontal plane. At the same time the vortices are strongly tilted in
that the connecting line of the leading order vortex centers features horizontal
displacements comparable to the typical vortex core size of about 200 km. The
theory yields coupled evolution equations for the vortex centerline and the leading
order axisymmetric primary circulation in the same spirit as earlier analyses of
slender three-dimensional vortices in engineering fluid flows, see [3] and references
therein.

The second example presents a somewhat unusual problem from a theoretical
point of view. In [4] we investigate the regime of validity of the anelastic and
pseudo-incompressible (sound-proof) approximations for atmospheric flows. We
point out that, asymptotically speaking, for realistic stratifications of potential
temperature (entropy), the full compressible flow equations represent an asymp-
totic three timescale problem, in which sound waves are fastest, internal waves
have an intermediate time scale, and advection is the slowest process (we have ne-
glected rotation in this analysis). The sound-proof models are designed to maintain
internal waves and advection but to suppress sound waves. Thus the challenge is
to analyze an asymptotic three-scale problem and to obtain insight into the re-
maining two-scale problem – the sound-proof models – when only the fastest time
scale is removed by asymptotic arguments.

The last example involves strong storm fronts or “squall lines”. Through dimen-
sional analysis of observational data we, that is Verena Molina, [5], Mitch Moncrieff
(National Center for Atmospheric Research, Boulder, CO, USA), and the author,
were led to set up an unusual multiscale asymptotic regime for such processes. The
data reveal that a relatively narrow storm front that extends laterally over several
hundred kilometers produces strong precipitation in a band of 10-30 km thickness.
Within this band, the actual precipitation is induced by strong updrafts which
themselves are concentrated in narrow convective towers with a typical diameter
of 1 km. These towers, in turn, are sparsely distributed within the precipitation
band with characteristic distances of just a few kilometers. In nondimensional
asymptotic terms this can be phrased by assuming convective tower diameters
of order O(ǫ), characteristic tower-to-tower distances of order O(

√
ǫ), and a bulk

front-normal thickness of the precipitation band of order O(1). Thus, this problem
clearly demands an asymptotic multiple scales formulation, albeit one that does
not assume the small-scale processes to be “space filling”. Rather, the narrow
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towers are sparsely distributed, and this requires modifications in the formulation
of sublinear growth conditions. At the same time, due to the fact that the tow-
ers are separated by distances large compared with their diameter, the method
of matched asymptotic expansions must be invoked to describe their structure.
Finally, since the development of an individual convective tower is triggered by
local flow instabilities, the spacio-temporal distribution of the towers should be
modelled by a stochastic process akin to suggestions by Plant & Craig [6]. In con-
clusion, a reasonably comprehensive model for the main precipitation band will –
besides boundary layer and related process descriptions – combine matched and
nonstandard multiscale asymptotic expansions with a stochastic process to model
the appearance of convective towers.

To conclude, atmospheric flow processes are a rich source of intriguing ap-
plied mathematics problems that often deviate from established problem types
and classes.
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Vortex formation in stably stratified turbulence

Yoshifumi Kimura

(joint work with Jackson R. Herring)

Recent numerical results on vortex formation in stably stratified turbulence is
presented. In particular, the relation between the power-law transition in energy
spectra and production and destabilization of Kelvin-Helmholtz billows in stably
stratified turbulence is studied. Kelvin-Helmholtz billows, often observed in the
oceans and the atmosphere, are thought to be an important mechanism of mixing
and turbulence in stably stratified flows. We integrated the Navier-Stokes equa-
tions under the Boussinesq approximation pseudo-spectrally using up to 20483

grid points. Our method is to integrate the equations from the zero total energy
initial condition with horizontal forcing imposed in a narrow wave number band.
Recent computations demonstrate that a power-law transition in the horizontal
energy spectrum, which has been observed in the atmosphere[1], exists for stably
stratified turbulence even without rotation[2]. In the course of development for
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a stationary shape, the horizontal spectrum undergoes some different stages. At
the first stage, it shows a single steep power-law (k4−5

⊥ ). By this time, we observe
that many wedge vortices are produced and they move horizontally (like dipoles)
in random directions. This stage lasts a long period of time, and then the tail part

of the spectrum begins to rise to show the Kolmogorov-type slope (k
−5/3
⊥ ). During

the time of this stage, the wings of the wedges become thinner and thinner while
translating, and finally detach to be almost independent vortex layers. This thin-
ning mechanism makes the vertical shear stronger and eventually local Richardson
number small to develop Kelvin-Helmholtz billows. We will show that the hor-
izontal breaking of the Kelvin-Helmholtz billows results in the Kolmogorov-type
slope in the spectrum.
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Figure 1. Left: Kelvin-Helmholtz billows in stably stratified tur-
bulence. Right: The horizontal slice near the Kelvin-Helmholtz
billow (along the white line in the left figure). The numbers at
axes are the grid numbers. [2]
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Stochastic partial differential equations in mathematical fluid

dynamics

Wilhelm Stannat

We consider the stochastic Navier-Stokes equations

(1)
∂u

∂t
− ν∆u + (u · ∇) u+∇p = η̇(t, x) , div u = 0

on the d-dimensional torus T
d = [0, 2π]d, d = 2, 3. The stochastic forcing term

η(t, x) is a Wiener process taking values in the Hilbert space H = L2
σ of square

integrable divergence free vector fields u : Td → Rd having mean zero
∫
u dx = 0.

Consequently, η(t, x) can be represented as

η(t, x) =
∑

k

αkβk(t)ek(x)
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where {ej} is an orthonormal system of H , {βk} are independent 1-dimensional
standard Brownian motions (defined on an underlying probability space (Ω,F , P ))
and {αk} ⊂ R. W.l.o.g. we assume in the following that {ej} is the complete
ornonormal system of eigenvectors corresponding to the Stokes operator A = νΠ∆
on H . For later reference, let us introduce the interpolation spaces

Hα := {u =
∑

k

ukek |
∑

k

|k|2αu2k <∞} , α ∈ R

and observe that independence of βk, k = 1, 2, . . . , implies E
[
‖η(t, ·)‖2Hα

]
=∑

k |k|2αα2
k t ≤ ∞.

Existence and uniqueness of martingale solutions

Given an initial distribution µ0 on H , a probability measure P on
Ω = C([0, T ];D(∆)′) is called a martingale solution of (1) if the canonical process
ξt : Ω→ D(∆)′, ω 7→ ω(t) satisfies the following three conditions:

(i) P
[
supt∈[0,T ] |ξt|H +

∫ T
0 |ξs|2H1 ds <∞

]
= 1,

(ii) for all smooth divergence-free vector fields ϕ having zero mean

Mϕ
t := 〈ξt, ϕ〉H + ν

∫ t

0

〈ξs,∆ϕ〉H ds−
∫ t

0

〈(ξs∇)ϕ, ξs〉H ds

is a continuous square-integrable martingale with quadratic variation 〈Mϕ〉t =∑
k α

2
k〈ek, ϕ〉2H · t

(iii) Pξ0 = µ0.

For a thorough discussion of the properties of martingale solutions as well as its
interrelation with the notion of weak solutions of (1) we refer to [1].

In the 2D-case existence and uniqueness of martingale solutions for smooth noise
satisfying E

[
‖η(t, ·)‖2H1

]
< ∞ goes back to Viot (1975). Existence of martingale

solutions in the general case E
[
‖η(t, ·)‖2H

]
< ∞ both in 2D and 3D was shown

by Flandoli and Gatarek (1995), leaving the question of uniqueness open. Ex-
istence of martingale solutions could be extended also to rough noise satisfying
E
[
‖η(t, ·)‖2Hα

]
<∞ for α > − 1

2 by Flandoli (1995). Particular interest has been
put in the literature on the case of space-time white noise αk ≡ 1: existence of
martingale solutions has been proven by Albeverio and Cruzeiro (1990) and exis-
tence and uniqueness of strong solutions (a.s. w.r.t. the invariant measure µν to
be introduced below) by Da Prato and Debussche (2001).

An alternative approach to solving (1) directly, is to construct the semigroup of
transition probabilities of a full Markov process associated with (1) (if it exists).
To this end note that if (1) has a unique martingale solution for all deterministic
initial conditions u0 ∈ H , it follows that

TtF (u0) := E (F (u(t)) | u(0) = u0)
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defines a semigroup of linear operators (T0 = Id and Tt ◦ Ts = Tt+s, t, s ≥ 0). Its
infinitesimal generator L can be represented as

LF (u0) :=
d

dt
TtF (u0)|t=0

=
1

2

∑

k

α2
k〈F ′′(u0)ek, ek〉H + 〈ν∆u0 − (u0 · ∇)u0, F ′(u0)〉H

for sufficiently smooth functions F . L is called the Kolmogorov operator associated
with (1) and it can be analyzed on suitable function spaces, in particular on the
space Lp(H,µ) w.r.t. an invariant measure µ of (1). Having the Kolmogorov
operator we can also weaken the notion of an invariant measure as follows: a
probability measure µ on (H,B(H)) is called infinitesimally invariant if

∫
LF dµ =

0 for all F contained in a suitable domain of smooth functions.

Existence and uniqueness of invariant measures

Existence of invariant measures for (1) has been obtained in the 2D-case for η
satisfying E

[
‖η(t, ·)‖2Hα

]
< ∞ and α > − 1

2 by Flandoli (1995) and in the 3D-

case for η satisfying E
[
‖η(t, ·)‖2H

]
< ∞ and ν sufficiently large by Flandoli and

Gatarek (1995). Uniqueness has been proven for η satisfying E
[
‖η(t, ·)‖2Hα

]
<∞

with α > 3
4 by Flandoli and Maslowski (1995), for α = 1 by Kuksin (2002) and by

Mattingly and Hairer (2006). Up to now, no uniqueness results are known in the
3D-case.

The existence of the invariant measures is mostly obtained employing a compact-
ness argument and only little is known about their properties apart from their
support and some moment estimates. There is however one remarkable exception:
in the 2D-case with space-time white noise the Gaussian measure

µν(du) = N

(
0,

1

ν

∫

T2

∣∣∣(−∆)−
1
2 u

∣∣∣
2

dx

)
(du)

is infinitesimally invariant for the associated Kolmogorov operator.

As already mentioned above, using invariant measures one can construct an ex-
tension of the Kolmogorov operator in the space Lp(H,µ) generating a strongly
continuous semigroup that can then be considered as the transition semigroup of
a Markov process associated with the stochastic partial differential equation (1).
If there is only one such extension the Kolmogorov operator is called Lp-unique.
For the precise definition of the domain of the Kolmogorov operator as well as im-
plications of Lp-uniqueness on the uniqueness of the martingale problem we refer
to [3, 4].

For the case of the stochastic Navier-Stokes equations (1) L2-uniqueness for the
Kolmogorov operator for η satisfying E

[
‖η(t, ·)‖2H1

]
<∞ has been obtained first

by Barbu, Da Prato and Debussche (2004), Lp-uniqueness for all finite p in [4],
under the same assumption on the noise, also for the stochastic Navier-Stokes
equations in a rotational setting. For space-time white noise L1-uniqueness has
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been obtained in the paper [3] for sufficiently large viscosity ν. [2] extends the
latter result to the stochastic Navier-Stokes equations in a rotational setting.

Stochastic power law fluids

Many of the results obtained for the stochastic Navier-Stokes equations can be
generalized to stochastic power law fluids

(2) ∂tu− div ν (|Eu|)Eu+ (u · ∇) u+∇p = η̇(t, x) , div u = 0

that have been introduced by Terasawa and Yoshida in [5]. Here, Eu = 1
2∇u +

1
2∇Tu and ν(x) = ν0

(
1 + x2

) p−2
2 .

Existence of martingale solutions have been obtained by Terasawa and Yoshida
(2011) for η satisfying E

[
‖η(t, ·)‖2H1

]
< ∞ for p > 3d

d+2 and pathwise uniqueness

under the more restrictive assumption p ≥ 1 + d
2 . Sauer (2012) could relax the

smoothness assumption on the noise to E
[
‖η(t, ·)‖2H

]
<∞ and obtained existence

of a strong solution (in the probabilistic sense) for p ≥ 1+ d
2 . Existence of invariant

measures has been obtained by Sauer (2012) under the same assumptions. For
smoother noise satisfying E

[
‖η(t, ·)‖2H1

]
<∞ existence of invariant measures has

been obtained in the 2D-case for p > 1 and in the 3D-case for p > 1 + 2d
d+2 . In

the 2D-case Sauer (2012) also obtained Lr-uniqueness, r ∈ [1, p], of the associated
Kolmogorov operator for smooth noise E

[
‖η(t, ·)‖2H1

]
<∞ and p ∈ (p2, 2], where

p2 is the second root of p3 − 8p2 + 14p− 6 (approx. 1.61).
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The relative entropy method for geophysical flows

Yann Brenier

The “relative entropy method” is used in several fields of mathematical physics,
PDEs and probabilities (kinetic theory, systems of particles, systems of hyperbolic
conservation laws...). A striking example is the derivation of the Euler equations of
incompressible fluids from the Boltzmann equation some years ago by Laure Saint-
Raymond. Another example is E. Feireisl’s contribution to the workshop. Here,
we report on two examples of geophysical fluid dynamics for which the relative
entropy method applies. The first example has been treated by several authors,
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mainly E. Grenier, N. Masmoudi-T.K. Wong, and the author (without Coriolis
force). The second by M. Cullen and the author.
The first example is the 2d Euler equation in a very thin domain, with a variable
Coriolis force involving the so-called β−plane approximation, namely

Dt = ∂t + u∂x + v∂y, ∂xu+ ∂yv = 0,

Dtu+ ∂xp = −βyv, Dtv + ∂yp = βyu,

x ∈ R/Z, −ε < y < +ε, v = 0 at |y| = ε.

After rescaling (y, v)→ (y, v)ε, β → β/ε2 and setting Ω = ∂yu− ε2∂xv + βy, we
get the “rescaled equations in vorticity form” (REVF)

Dt = ∂t + u∂x + v∂y, u = ∂yψ, v = −∂xψ,
DtΩ = 0, (∂2y + ε2∂2x)ψ + βy = Ω

x ∈ R/Z, 1 < y < +1, v = 0 at |y| = 1.

We want to compare the solutions (ψ,Ω) of these equations to those (ψ,Ω) of the
formal limit equations (FLE) obtained by letting ε go to zero. Here is a positive
answer:
Let T > 0 and a smooth solution (ψ,Ω) of the FLE. Assume there is a constant
r > 0 such that

(1) r ≤ ∂2yu(t, x, y) + β ≤ 1/r, ∀(t, x, y) ∈ [0, T ]×R/Z×]− 1, 1[.

Then, for each c0 > 0, there is a constant C depending only on (c0, T, r, ψ,Ω) with
the following property: let (ψ,Ω) be any solution of the REVF for which

e(t) = ||∂yψ − ∂yψ||2 + ε2||∂xψ − ∂xψ||2 + ||Ω− Ω||2

(where || · || denotes the L2 norm in (x, y) ∈ R/Z×]− 1,+1[) is smaller than coε
2

at time t = 0, then e(t) stays smaller than Cε2 for all t ∈ [0, T ]. In addition, there
are examples of no-convergence when condition (1) is violated. The error term e(t)
is hard to control (a naive estimate leads to e′(t)/e(t) ≤ c/ε, with is untractable).
The convergence is established by substituting for ||Ω − Ω||2 (in the definition of
e(t)) the “relative entropy”

∫
(F (t, x,Ω)− F (t, x,Ω)− ∂3F (t, x,Ω)(Ω− Ω))dxdy

where F is constructed out of (ψ,Ω) and chosen, for some constant γ, so that

∂3F (t, x,Ω(t, x, y)) =
∂yψ(t, x, y)− γ
∂yΩ(t, x, y)

> 0.

The second example is the Boussinesq equation (with constant Coriolis f frequency
and buoyancy frequency N) with fields (u, v, w, p, θ) depending only on (t, x, z)
(but not y) and periodic boundary conditions. We also include given source terms
(g, h)(t, x, z):

Dt = ∂t + u∂x + w∂z , ∂xu+ ∂zw = 0,

Dtu+ ∂xp = fv, Dtv = −fu+ g, Dtw + ∂zp = Nθ, Dtθ = −Nw + h
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Then, we rescale the source terms, the velocity field and the time variable: (g, h)→
(g, h)ε, (u,w)→ (u,w)ε, t→ 1/ε, to see the long term effect of small source terms.
This does not affect the equations, except

ε2Dtu+ ∂xp = fv, ε2Dtw + ∂zp = Nθ.

The limit equations are obtained by setting ε = 0. Then, we get the same kind of
convergence result as for the first example, under the following convexity condition
(“Cullen-Purser’s stability”)

0 < r ≤ eigenvalues(D2
x,z(

fx2 +Nz2

2
+ p(t, x, z))) ≤ 1/r,

for some constant r > 0. In this case, the error between the solutions (u, v, w, p, θ)
of the original equations and those (u, v, w, p, θ) of the limit equations is measured
with the “relative entropy”

∫
dxdz(Φ(t, v, θ) − Φ(t, v, θ)−∇Φ(t, v, θ) · (v − v, θ − θ)),

where we have set up f = N = 1 (for simplicity) and

Φ(t, ξ, ζ) = sup
x,z

xξ + zζ − x2 + z2

2
− p(t, x, z).
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Finite-time blow up solutions for the inviscid primitive equation in

two and three space dimension

Slim Ibrahim

(joint work with Chongsheng Cao, Kenji Nakanishi, and Edriss S. Titi)

1. Introduction

In large oceanic and atmospheric dynamic models, the viscous Primitive equa-
tions can be derived from Boussinesq equations using the so called hydrostatic



Geophysical Fluid Dynamics 537

balance approximation. We refer the interested reader to e.g., [8, 12, 14] for the
details of such a derivation. The 3D primitive equations are given by the system:

∂u

∂t
+ uux + vuy + wuz + px −Rv = ν∆u(1)

∂v

∂t
+ uvx + vvy + wvz + py +Ru = ν∆v(2)

∂zp+ T = 0,(3)

∂T

∂t
+ uTx + vTy + wTz = Q+ κ∆T,(4)

ux + vy + wz = 0,(5)

where the unknowns are the velocity vector field (u, v, w) of the fluid, its pressure
p and its temperature T . Here, Q is a heat source, R > 0 is the rotation param-
eter due to the Coriolis force, ν > 0 is the viscosity of the fluid, and κ > 0 is the
diffusion coefficient.
Equations (1) and (2) represent the horizontal components of the momentum equa-
tion while (3) is the vertical motion under the hydrostatic balance. Supplementing
the above system with initial value (u0, v0, T0) and the relevant geophysical bound-
ary conditions, the global well-posedness (for all time and for all initial data) of
strong solutions in 3D has been proven first in [1] in the viscous diffusive case.
This result has been improved recently in [2] to the case of only partial anisotropic
vertical diffusion.
As in geophysical situations the viscosity coefficients are very small, then it be-
comes interesting to know whether the non-viscous primitive equations are globally
regular or that they develop finite time singularity. Moreover, since the rotation
term did not play any role in establishing the global regularity in the viscous cases,
we also assume there is no rotation by taking R = 0. In contrast, notice that for
the three dimensional Navier-Stokes, Euler and Boussinesq equations, fast rota-
tion avoids resonannces at the limit equations and leads to strong dispersion and
averaging mechanism that weakens the nonlinear effects. This of course allows
for establishing the global regularity result in the viscous Navier-Stokes case, and
prolongs the life-space of the solution in the Euler case (see also and [4, 3] and
references therein.

Hence, in the horizontal channel Ω = {(x, y, z) : 0 ≤ z ≤ H, (x, y) ∈ R
2}, the

inviscid primitive equations without the Coriolis force reads:

ut + uux + vuy + wuz + px = 0,(6)

vt + uvx + vvy + wvz + py = 0,(7)

pz + T = 0,(8)

Tt + uTx + vTy + wTz = κT,(9)

ux + vy + wz = 0,(10)

in the horizontal channel Ω = {(x, y, z) : 0 ≤ z ≤ H, (x, y) ∈ R
2}; subject to the

boundary conditions: no-normal flow and no heat flux in the vertical direction at
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the physical solid (top z = H and bottom z = 0) boundaries, and periodic bound-
ary conditions, say with period L, in horizontal directions. For results concerning
the short time existence and uniqueness of the inviscid primitive equations see, for
example, [7, 9, 13] and references therein. Our main Theorem is the following

Theorem 1. There exists a smooth initial data for which the corresponding smooth
solution of (6)-(10) blows-up in finite time.

In order to establish the Theorem, we assume that we are given a smooth
solution to the inviscid primitive equation. First we derive a reduced equation
that this smooth solution will satisfy. Then we follow [5] (see also [10]) to show
that for certain class of initial data the corresponding solutions to this reduced
equation blow up in finite time. Finally, we provide a family of initial data whose
corresponding smooth solutions to the inviscid primitive equations blow up in
finite time.

2. Sketch of the Proof

Since our goal is to establish the blowup for certain class of smooth solutions and
initial data, we restrict ourselves to smooth solutions with constant temperature
T , zero v component, that are y-independent, and periodic with respect to x with
the following symmetry

u(x, z, t) = −u(−x, z, t); p(x, z, t) = p(−x, z, t); w(x, z, t) = w(−x, z, t),
subject to the boundary condition

w|z=H = w|z=0 = 0,(11)

It is not difficult to see that the solution map preserves these symmetries. Taking
into account these symmetries, one can solve for the pressure term and find that

px = − 2

H

∫ H

0

uux dz := −2uux.,(12)

and therefore, u satisfies the following non-local closed system

∂u

∂t
+ uux + wuz − 2uux = 0,(13)

Differentiating the above equation with respect to x, using the divergence free
condition and setting W (z, t) := w(0, z, t), we end up with the reduced system

Wtz − (Wz)
2 +WWzz +

2

H

∫ H

0

(Wz)
2 dz = 0,(14)

W (0, t) =W (H, t) = 0.(15)

As equation (14) is invariant under the scalingW (z, t) 7→ λW (z, λt), then we look
for a self-similar solution in the form

W (z, t) =
ϕ(z)

1− t , withϕ(0) = ϕ(H) = 0.
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That is, for m2 = 2
H

∫H
0 (ϕ′

m(z))2dz, the blow-up profile ϕ satisfies

ϕ′ − (ϕ′)2 + ϕϕ′′ +m2 = 0, ϕ(0) = ϕ(H) = 0.(16)

An explicit phase-portrait analysis of the above nonlinear eigenvalue problem in-
sures the existence of nontrivial solution ϕ, and consequently the finite time blow-
up of the unique solution of the reduced problem .
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Boundary layers for non-linear flows in pipes and channels

Anna L. Mazzucato

We present recent results on the analysis of viscous boundary layers for certain
classes of non-linear, 3D incompressible flows in pipes and channels. We use both
effective equations for flow correctors, and singular perturbation analysis for a heat
equation with variable drift in the small diffusion limit.
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Weak Neumann implies H∞ calculus of the Stokes operator

Matthias Geissert

We show that the Stokes operator admits an H∞-calculus on Lqσ(Ω) provided the
Helmholtz decomposition exists in Lq(Ω) and the boundary of Ω ⊂ R

n is smooth
enough. The proof is based on the properties of the Dirichlet-Laplacian and an
abstract result by Kalton, Kunstmann and Weis (see [1]). We also discuss some
related results. In particular, we discuss maximal Lp-regularity estimates for the
Stokes equations.
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On two approaches to Navier-Stokes problems: frequency analysis and

geometric analysis

Tsuyoshi Yoneda

I gave two topics in my talk but I only give one abstract (geometric analysis). The
other one (frequency analysis) can be found in [5]. Ohya and Karasudani [4] devel-
oped a new wind turbine system that consists of a diffuser shroud with a broad-ring
at the exit periphery and a wind turbine inside it. Their experiments show that
a diffuser-shaped (not nozzle-shaped) structure can accelerate the wind at the en-
trance of the body. A strong vortex formation with a low-pressure region is created
behind the broad brim. Accordingly, the wind flows into a low-pressure region, the
wind velocity is accelerated further near the entrance of the diffuser. We would like
to analyze this “wind-lens phenomena” in pure mathematical approach. For the
first step, we need to figure out why the diffuser shroud creates vortices easier than
the nozzle shroud. In general, creation of a vortex needs separation phenomena
near a boundary, and before separating from the boundary, the flow moves toward
reverse direction near the boundary against the laminar flow direction. There are
several results related to the separation in pure mathematics. Maekawa [3] consid-
ered the two-dimensional Navier-Stokes equations in a half plane under the no-slip
boundary condition. He established a solution formula for the vorticity equations
and got a sufficient condition on the initial data for the vorticity to blow up to
the inviscid limit. Ma and Wang [2] provided a characterization of the boundary
layer separation of 2-D incompressible viscous fluids. They considered a separation
equation linking a separation location and a time with the Reynolds number, the
external forcing and the initial velocity field. However, none of the above stud-
ies has shown the mechanism behind the reverse flow phenomena rigorously. In
this talk we show that a diffuser-shaped boundary induces the reverse flow. Let
us be more precise. We consider the two-dimensional Navier-Stokes equation in
Ω ⊂ R

2 (define Ω later) with mixed no-slip and inflow-outflow conditions on ∂Ω.
We need to handle a shape of the boundary ∂Ω precisely, thus we set parametrized
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smooth lower and upper boundaries ϕ = (ϕ1, ϕ2), ϕ
∗ = (ϕ∗

1, ϕ
∗
2) : (0, δπ) 7→ R

2 as
|∂sϕ(s)| = |∂sϕ∗(s)| = 1, |∂2sϕ(s)| = |∂2sϕ∗(s)| = 1/δ, ϕ(0) = (0, 0), ϕ∗(0) = (0, 1),
∂sϕ(0) = ∂sϕ

∗(0) = (1, 0), ∂2sϕ(0) = (0,−1/δ) and ∂2sϕ∗(0) = (0, 1/δ). We define
the domain Ω as follows:

Ω := {(x1, x2) ∈ R
2 : ϕ2(s) < x2 < ϕ∗

2(s), x1 = ϕ1(s) for 0 < s < δπ}.
We see that ∂Ω is composed by

∂Ω = ∪0<s<δπϕ(s)
⋃

∪0<s<δπϕ
∗(s)

⋃
∪0<x1<1{(0, x)}

⋃
∪ϕ2(δπ)<x2<ϕ∗

2(δπ){(ϕ1(δπ), x2)}.

The non-stationary two-dimensional Navier-Stokes equation is expressed as

(1)

{
∂tu− ν∆u+ (u · ∇)u = −∇p, ÷ u = 0 in Ω ⊂ R

2,

u|∪0<s<δπϕ(s) = 0, u|∪0<s<δπϕ∗(s) = 0, and u|t=0 = u0,

where u = u(x) = u(x, t) = (u1(x1, x2, t), u
2(x1, x2, t)). In this talk we sometimes

abbreviate the time t not x. Let α1, α2 > 0 be coefficients of the inflow profile
(Poiseuille flow profile) such that (we do not need to assume outflow profile in this
problem):

u1(0, x2, t) = α1(t)x2 −
α2(t)

2
x22

with α1(t) = α2(t)/2. Also assume u2(0, x2) = 0.

Definition 1. (Normal coordinate.) For s ∈ [0, δπ], let

Φ(s, r) = Φϕ(s, r) := (∂sϕ(s))
⊥r + ϕ(s).

We define ⊥ as the upward direction.

We assume that the solution is smooth near the lower boundary and the in-
flow. More precisely, let us choose sufficiently small S and R, and let ΩS,R :=
∪0<s<S,0<r<RΦ(s, r). Assume that the solution (u, p) to (1) is in

C∞([0, T ]×D) ∩ C∞((0, T )× ΩS,R) for any D ⋐ ΩS,R.

In this setting, we can avoid interior blow-up by taking sufficiently small R. Thus
we only need to care boundary regularity not interior regularity (our method is
applicable to the 3D case). For the boundary regularity, see [1] for example.
Boundary layers appear on the surface of bodies in viscous flow because the fluid
seems to stick to the boundary ∂Ω. Right at the surface the flow has zero relative
speed and this fluid transfers momentum to adjacent layers through the action of
viscosity. To handle such physical phenomena in mathematics, we need to define
“laminar flow”

Definition 2. (Laminar flow.) u has “laminar flow” iff u is smooth, |u| 6= 0 and
the flow u is to the rightward direction (laminar flow direction), namely,

0 <

〈
∂sϕ(s),

u

|u|(Φ(s, r))
〉
≤ 1,

for sufficiently small s and r, where 〈·, ·〉 means usual inner product.
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We mainly consider a topological shape of the laminar flow near the lower
boundary. In this case, one of the three situations only occur (for fixed time
t): diffusing-parallel laminar flow, concentrating laminar flow and topologically
changing flow (inducing the reverse flow, limiting case).

Definition 3. For s, r > 0, let

us(s, r) := 〈u(Φ(s, r)), ∂sϕ(s)〉, ur(s, r) := 〈u(Φ(s, r)), (∂sϕ(s))⊥〉

and

L(s, r) := ur(s, r, t)

us(s, r, t)
· r + δ

δ
.

• Diffusing-parallel laminar flow: We call diffusing-parallel laminar flow iff

lim
r→0

∂rL(s, r) ≥ 0 for sufficiently small s.

• Concentrating laminar flow: We call concentrating laminar flow iff

lim
r→0

∂rL(s, r) < 0. for sufficiently small s.

• Topologically changing flow (inducing the reverse flow, limiting case): We
say topologically changing flow iff there are sufficiently small s > 0 and
r > 0 such that us(Φ(s, r)) = 0.

We note that if the initial datum has diffusing laminar flow, the solution does
no have concentrating laminar flow near the initial time, more precisely, there is
no {tj}j such that tj → 0 and each u(tj) has concentrating laminar flow. Thus
it is reasonable to assume that u persists diffusing-parallel laminar flow for [0, Td)
(Td > 0). The following is the main theorem.

Theorem 4. Assume u persists diffusing-parallel laminar flow for [0, Td) (Td > 0).
Then the following three assertions are hold:

• u cannot keep diffusing-parallel laminar flow for infinite time, namely Td 6=
∞.
• u cannot create concentrating laminar flow from diffusing-parallel laminar
flow. More precisely, assume that u has concentrating laminar flow at time
Tc. Then Td 6= Tc.
• Topologically changing flow occurs at finite time, namely, there are s > 0
and r > 0 (near the boundary) such that limt→Td

us(Φ(s, r), t) = 0.

Remark 5. Our result should be closely related to the Ma and Wang’s work
[2]. They gave an example to demonstrate how the external forcing with reverse
orientation to the initial velocity field leads to structural bifurcation and boundary
layer separation. In other words, our work should be closely related to their
“reverse orientation”.
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New developments in geostrophic turbulence and its implications for

climate modeling and weather predictability

Joseph Tribbia

One of the many areas in geophysical fluid dynamics that is reflected in the theory
of how we model dissipation in the climate system is the theory of two-dimensional
and quasi-geostrophic turbulence and its consequent impact on atmospheric flow.
Upscale energy and and downscale enstrophy cascades have been observed in the
atmosphere along with the -3 power law predicted in two-dimensional turbulence
theory developed by Batchelor and Kraichnan in the late 1960s. A consequence of
this observational finding is the fact that, unlike three-dimensional turbulence in
which the eddy turnover time decreases with eddy length scale, in two-dimensional
and quasi-geostrophic turbulence the eddy turnover time is constant independent
of eddy length scale in the enstrophy cascading range. A further consequence of
this is that the Rossby number is constant through the enstrophy cascade. This
implies that instabilities which depend on ageostrophic processes are restricted
because the scaling laws which imply balanced, quasi-geostrophic dynamics are
valid at all length scales. Recent results show, however, even given that all of the
above statements are true and maintained in the dynamics, there is a mechanism
through which quasi-geostrophic turbulence becomes inconsistent and develops the
seeds of its own destruction at small scales.

Stochastic Three-Dimensional Rotating Navier-Stokes Equations:

Averaging, Convergence and Regularity

Alex Mahalov

We consider stochastic three-dimensional rotating Navier-Stokes equations and
prove averaging theorems for stochastic problems in the case of strong rotation.
Regularity results are established by bootstrapping from global regularity of the
limit stochastic equations and convergence theorems. The energy injected in the
system by the noise is large, the initial condition has large energy, and the reg-
ularization time horizon is long. Regularization is the consequence of a precise
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mechanism of relevant three-dimensional nonlinear dynamics. We establish multi-
scale averaging and convergence theorems for the stochastic dynamics.
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Rayleigh-Bénard convection: Bounds on the Nusselt number

Felix Otto

(joint work with Christian Seis and Camilla Nobili)

This is about Rayleigh-Bénard convection, which arises when a viscous fluid is
heated from the bottom and cooled from the top. More precisely, it is about tur-
bulent Rayleigh-Bénard convection, when there are temperature boundary layers
and plumes in the bulk. In the infinite Prandtl Number limit and with help of
the Boussinesq equation it is modeled by the coupling of an advection diffusion
equation for the temperature T to the Stokes equations for the fluid velocity u:

∂tT +∇ · (Tu)−△T = 0, −△u+∇p = T

(
0

1

)
, ∇ · u = 0.

The Nusselt number Nu is the time-space averaged upwards heat flux. Experi-
ments and numerical simulations show that the Nusselt number is independent of
the container height H , where we impose the temperature and no-flux boundary
conditions:

T = 1 for z = 0, T = 0 for z = H, u = 0 for z = 0, H.

Constantin & Doering [1] showed by a (logarithmically failing) maximal regu-

larity estimate in H2,∞ for the Stokes equation that Nu . log2/3H (which can be

easily improved to Nu . log1/3H , see [4, Lemma 4]). Doering & O.& Reznikoff [2]

showed by the “background field method” thatNu . log1/3H (which we improved

to Nu . log1/15H [4, Theorem 1]). The background field method is appealing,
since it yields an inequality (believed to be an equality) for Nu by the solution
of a saddle point problem that encapsulates the idea of marginal stability of the
boundary layer. However, we show that

• Nu . log1/15H is optimal within the background field method, see [3]

• A combination of the methods yields the stronger boundNu . log1/3 logH ,
see [4, Theorem 2]

Hence the background field method has no physical meaning (in particular the
optimal background temperature profile is unrelated to the horizontally averaged
temperature profile) because it does not even yield an optimal bound on Nu.

This is joint work with Christian Seis and Camilla Nobili.
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Rossby waves trapped by quantum mechanics

Thierry Paul

Rossby and Poincaré waves appear naturally in the study of large scale oceano-
graphy. Poincaré waves (PW), of period of the order of a day, are fast dispersive
waves and are due to the rotation of the Earth through the Coriolis force. Much
slower, Rossby waves (RW) are sensitive to the variations of the Coriolis parameter,
propagate only eastwards and remain localized for long period of times. We would
like here to report on some new results, obtained in collaboration with C. Cheverry,
I. Gallagher and L. Saint-Raymond [1, 2, 3] studying this phenomenon, dispersivity
of PW and trapping of RW, as a consequence of the study of the oceanic waves in
a shallow water flow subject to strong wind forcing and rotation, linearized around
a inhomogeneous (non zonal) stationary profile. The main feature of our results,
compared to earlier ones, [5, 7, 4] to quote only very few of them, consists in the
fact that we abandon both the betaplane approximation (constant Coriolis force)
and the zonal aspect (non dependence w.r.t. the latitude) of the convection term
(coupling with the wind).

After some scalings and dimensional homogenizations, the Saint-Venant system
of equations for the variations η, u near a constant value of the height h̄ and
divergence free stationary profile of velocity ū takes the form (see [2, 3] for details)

(1)
∂tη +

1
ε∇ · u+ ū · ∇η + ε2∇ · (ηu) = 0

∂tu+ 1
ε2 bu

⊥ + 1
ε∇η + ū · ∇u + u · ∇ū+ ε2u · ∇u = 0

where b is the horizontal component of the Earth rotation vector normalized to
one and ε−1 measures the Coriolis force.

The linear version of (1) reads (here D := 1
i ∂ and x = (x1, x2) ∈ R

2):

(2) ε2i∂tv +A(x, εD, ε)v = 0, v = (v0, v1, v2) = (η, u1, u2),

with the linear propagator

(3) A(x, εD, ε) := i




εū · ε∇ ε∂1 ε∂2
ε∂1 εū · ε∇+ ε2∂1ū1 −b+ ε2∂2ū1
ε∂2 b+ ε2∂1ū2 εū · ε∇+ ε2∂2ū2


 .



546 Oberwolfach Report 10/2013

We will concentrate on (2) with the condition that, essentially, b is increasing
at infinity with all derivatives bounded in module by |b| and only non degenerate
critical points. Moreover ū will have to be smooth with compact support.

A simplified version of our main result reads as follows (see [3] for details).

Theorem 1. Under certain microlocalization properties of the initial condition,
the solution vε(t) = vε(t, .) of (2) decomposes on two Rossby and Poincaré vector
fields vε(t) = vRε (t) + vPε (t) satisfying

• ∀t > 0, ∀Ω compact set of R2,

(4) ‖vPε (t)‖L2(Ω) = O(ε∞)

• ∃Ω bounded set of R such that, ∀t > 0

(5) ‖vRε (t)‖L2(Rx1×(R/Ω)x2 )
= O(ε∞).

Theorem 1 shows clearly the different nature of the two type of waves: dispersion
for Poincaré and confining in x2 for Rossby. The method of proving Theorem 1 will
consist in diagonalizing the “matrix” A(x, εD, ε). Such diagonalization, if possible,
would immediately solve (2) by reducing it to the form ε2i∂tu+D(x, εD, ε)u = 0
with D(x, εD, ε) diagonal and solving it component by component. Diagonalizing
matrices with operator valued entries is not a simple task, but our next result will
show how to achieve it modulo ε∞ in the case of matrices with ε-semiclassical type
operators entries.

To any (regular enough) function Aε ∼
∑∞

0 εlAl on R
2n = T ∗

R
n, possibly ma-

trix valued, we associate the operator Aε (densely defined) on L2(Rn) defined by:

f → Aεf, (Aεf)(x) =
∫
Aε(x+y2 , ξ)ei

ξ(x−y)
ε f(y)dydξεn .

Aε is called the symbol of Aε and Aε the (Weyl) quantization of Aε.
Let Aε be suchN×N operator valued matrix of symbol Aε ∼

∑∞
0 εlAl. We will

suppose that A0(x, ξ) is Hermitian and therefore is diagonalizable (at each point)
by U = U(x, ξ), U∗A0U = diag(λ1, . . . , λN ) := D. We will suppose moreover that

(6) ∀(x, ξ), ∀i 6= j, |λi(x, ξ)− λi(x, ξ)| ≥ C > 0.

Theorem 2 ([3]). There exist Vε semiclassical operator and Dε diagonal (w.r.t.
the N ×N structure) such that

V −1
ε AεVε = Dε +O(ε∞) and V ∗

ε Vε = IdL2(Rn,CN ) +O(ε∞) = VεV
∗
ε +O(ε∞).

Moreover Dε = D+ εD1 +O(ε2), where D is the Weyl quantization of D and D1

is the diagonal part of (∆1 − DI1+I1D
2 ) with (U being the Weyl quantization of U)

(7) ∆1 =
U∗AεU −D

ε
|ε=0, I1 =

U∗U − IdL2(Rn,CN )

ε
|ε=0.

Let us go back now to the case given by (3). One checks easily that A(x, εD, ε)
is of semiclassical type. Its symbol is
(8)

A(x, ξ, ε) =





εū · ξ ξ1 ξ2
ξ1 εū · ξ + ε2∂1ū1 −b+ ε2∂2ū1

ξ2 b+ ε2∂1ū2 εū · ξ + ε2∂2ū2



 =





0 ξ1 ξ2
ξ1 0 −b

ξ2 b 0



+O(ε).
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The spectrum of the leading orderA(x, ξ, 0) is {−
√
ξ2 + b2(x2), 0,+

√
ξ2 + b2(x2)}.

Therefore Condition (6) is satisfied only if ξ2 + b2(x) ≥ C > 0 which corre-
spond to the microlocalization condition in Theorem 1. Theorem 2 gives, af-
ter a tedious computation, that A(x, εD, ε) is unitary equivalent (modulo ε2)
to the diagonal matrix diag(T+, TR, T−) where T± is the Weyl quantization of

τ±(x, ξ) := ±
√
ξ2 + b2(x2) and T

R is the quantization of the Rossby Hamiltonian

τR(x, ξ) := ε( ξ1b
′(x2)

ξ2+b2(x) + ū(x) · ξ).
Under the betaplane approximation, b(x2) = βx2, the Hamiltonians T± are

exactly solvable and one shows by hand the dispersive effect for the Poincaré
waves. In our situation this doesn’t work, and because of the ε2 term in the r.h.s.
of (2) the method of characteristics does not apply. A general argument, inherited
form quantum mechanics will provide us the solution. First we remark that the
Poisson bracket {τ±, x1} = ξ1/τ

±. This indicates, at a classical level, that ẋ1 has
a sign for each Poincaré polarization, leading to no return travel. The following
theory, due to Eric Mourre, gives the “quantum” equivalent of this argument.

Let H and A be two self-adjoint operators on a Hilbert space H such that: the
intersection of the domains of H and A is dense in the domain of H , t 7→ eitA

maps the domain of H to itself and sup[0,1] ‖HeitAϕ‖ < ∞ for ϕ in the domain

of H , and i[H,A] is bounded from below, closable and the domain of its closure
contains the domain of H . Finally let us suppose the following
Positivity condition: there exist θ > 0 and an open interval ∆ of R such that
if E∆ is the corresponding spectral projection of H , then

(9) E∆i[H,A]E∆ ≥ θE∆,

namely i[H,A] > 0 on any spectral interval of H contained in ∆.

Theorem 3 (E. Mourre ’80, [6]). For any integer m ∈ N and for any θ′ ∈]0, θ[,
there is a constant C such that

‖χ−(A− a− θ′t)e−iHtg(H)χ+(A− a)‖ ≤ Ct−m

where χ± is the characteristic function of R±, g is any smooth compactly supported
function in ∆, and the above bound is uniform in a ∈ R.

In other words, to talk in the quantum langage, if one starts with an initial
condition ϕ such that “A ≥ a” and the positivity condition (9) holds, after any
time t the “probability” that “A ≤ θ′t” is of order t−m. In particular, as t → ∞
the solution e−iHtϕ escape from any compact spectral region of A.

Taking A = x1, Theorem 3 gives, after verification that it applies, exactly
the “Poincaré” part of Theorem 1. The “Rossby part” is given by using the
bicharacteristic method and a small computation done in [3] which shows that
bicharacteristics are trapped in finite regions in the latitude (x2) direction.

Let us mention to finish that the nonlinear terms can be handled by using a
“L∞” Gronwall Lemma and working in some anisotropic and semiclasical Sobolev
spaces, so that the solution of (1) is close to the one of (2) as ε→ 0.
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On the inviscid limit problem for viscous incompressible flows in the

half plane

Yasunori Maekawa

We consider the Navier-Stokes equations for viscous incompressible flows in the
half plane under the no-slip boundary conditions:

(NSν)





∂tu− ν∆u+ u · ∇u+∇p = 0 t > 0, x ∈ R
2
+,

div u = 0 t ≥ 0, x ∈ R
2
+,

u = 0 t ≥ 0, x ∈ ∂R2
+,

u|t=0 = a x ∈ R
2
+.

Here R
2
+ = {(x1, x2) ∈ R

2 | x2 > 0} and ν is the kinematic viscosity which is
assumed to be a positive constant, while u = u(t, x) = (u1(t, x), u2(t, x)) and
p = p(t, x) denote the velocity field and the pressure field, respectively. We will

use the standard notations for derivatives; ∂t = ∂/∂t, ∂j = ∂/∂xj , ∆ =
∑2

j=1 ∂
2
j ,

div u =
∑2

j=1 ∂juj, and u · ∇u =
∑2

j=1 uj∂ju.
The behavior of viscous incompressible flows at the inviscid limit is a classical

issue in the fluid dynamics. When the fluid domain has no boundary it is well
known that the solution of the Navier-Stokes equations converges to the one of the
Euler equations. However, in the presence of nontrivial boundary one is faced with
a serious difficulty in this problem even in the two-dimensional case if the no-slip
boundary condition is imposed on the velocity field. This is due to the appear-
ance of the boundary layer, whose formation is formally explained by Prandtl’s
theory and the thickness of the boundary layer is estimated as the square root of
the viscosity. So far the rigorous verification of the formal asymptotic expansion
proposed by Prandtl is achieved only within the analytic framework [1, 7, 8]. More
precisely, in [1, 7, 8] it is proved that for analytic initial data the solution of (NSν)
converges to the one of the Euler equations outside the boundary layer and to the
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one of the Prandtl equations in the boundary layer. However, it is still an open
problem in the Sobolev framework even for a short time period.

In the fluid dynamics the vorticity field, i.e., the curl of the velocity field, is also
an important quantity and useful in understanding various phenomena. At the
inviscid limit it is recognized that the vorticity is highly produced in the boundary
layer and forms a vortex sheet (or line in the two dimension) along the boundary.
However, under the no-slip boundary condition on the velocity field the study
of the vorticity field is still less developed mathematically, since the vorticity is
subject to a nonlocal and nonlinear boundary condition from which it is not easy
to derive useful informations. This is contrasting with the case of the whole plane,
where the detailed analysis has been established; e.g. [5, 2]. In the case of the half
plane the situation is relaxed a little, since the solution formula is available for the
linearized problem [3].

The object of research in this talk is the inviscid limit behavior of solutions to
(NSν) by using the vorticity formulation when the initial vorticity is located away
from the boundary. In particular, we do not impose the analyticity of initial data
in the whole fluid domain. This class of initial data includes a dipole-type localized
vortex, which is often used in numerical works as a benchmark to investigate the
interaction between the vorticity created on the boundary and the vorticity away
from the boundary which is originated from the initial one; cf. [6]. It should
be noted here that, even if there is no vorticity near the boundary at the initial
time, the vorticity is immediately created there and forms a vortex line along the
boundary in positive time. In particular, we have to deal with the boundary layer
also in this case. We give a rigorous description of the asymptotic expansion at
ν → 0, which is verified at least for a time period 0 ≤ t ≤ O(min{d0, 1}), where
d0 > 0 is the distance between the support of the initial vorticity and the boundary.
The details of the results are available at [4].
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Optimal mixing and optimal stirring for fixed energy, fixed power, and

fixed palenstrophy flows

Evelyn Lunasin

The advection of a substance by an incompressible flow is important in many
physical settings. This process often involves complex evolving structures of wide
range of space and time scales. We concentrate on the case of scalar advection
where the transported quantity is passive, so has negligible feedback on the flow.
We address the following question: Given an initial tracer distribution what in-
compressible flow field, satisfying certain reasonable amplitude constraints, should
be imposed that will stir the scalar quantity in an optimal manner. We will discuss
how one can quantify the degree of mixedness of the passive scalar field, what we
mean by optimal stirring and what is the quantity that needs to be optimized in
the stirring process. We will also discuss what are the relevant constraints on the
flows.

We focus on the optimal stirring strategy recently proposed by Lin,Thiffeault
and Doering (2011). We then show an explicit example demonstrating finite-
time perfect mixing with a finite energy constraint on the stirring flow. On the
other hand, if the two-dimensional incompressible flow is constrained to have a
particular smoothness property finite-time perfect mixing is ruled out. The case
of finite power constraint is an open problem. We discuss some partial results and
discuss related problems from other areas of analysis.

The Navier-Stokes equations in spaces of bounded functions

Ken Abe

We give a local existence theorem for the Navier-Stokes equations on L∞. This
is known for Rn and Rn

+ but unknown for domains with non-trivial boundaries.
We focus on bounded domains and also estimate the maximum of solutions near
blow-up time.
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Dynamics of Nematic Liquid Crystal Flows: The Quasilinear Approach

Katharina Schade

(joint work with Matthias Hieber, Manuel Nesensohn and Jan Prüss)

Consider the (simplified) Leslie-Ericksen model for the flow of nematic liquid crys-
tals in a bounded domain Ω ⊂ R

n for n > 1. We develop a complete dynamic
theory for these equations, analyzing the system as a quasilinear parabolic evo-
lution equation in an Lp-Lq-setting. First, the existence of a unique local strong
solution is proved. This solution extends to a global strong solution, provided the
initial data are close to an equilibrium or the solution is eventually bounded in the
natural norm of the underlying state space. In this case the solution converges ex-
ponentially to an equilibrium. Moreover, the solution is shown to be real analytic,
jointly in time and space.
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Global solutions for the Navier-Stokes equations in the rotational

framework

Tsukasa Iwabuchi

(joint work with Ryo Takada)

We consider the initial value problem for the Navier-Stokes equations with the
Coriolis force

(NSC)





∂u

∂t
−∆u+Ωe3 × u+ (u · ∇)u+∇p = 0 in R

3 × (0,∞),

div u = 0 in R
3 × (0,∞),

u(x, 0) = u0(x) in R
3,

where Ω ∈ R, e3 = (0, 0, 1) and u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) and
p = p(x, t) denote the unknown velocity field and the unknown pressure of the
fluid at the point (x, t) ∈ R

3 × (0,∞), respectively. The purpose of this talk is
to show the existence and the uniqueness of the global solutions to (NSC) in the

homogeneous Sobolev spaces Ḣs(R3) (s ≥ 1/2).
For the existence of solutions to (NSC), Babin-Mahalov-Nicolaenko [1, 2, 3]

showed the existence of global solutions and the regularity of the solutions to
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(NSC) for the periodic initial data with large |Ω|. Chemin-Desjardins-Gallagher-

Grenier [5] proved that for any initial data u0 ∈ H
1
2 (R3)3, there exists a positive

parameter Ω0 such that for every Ω ∈ R with |Ω| ≥ Ω0 there exists a unique global
solution. On the other hand, Giga-Inui-Mahalov-Saal [7] showed the existence of
global solutions for small initial data u0 ∈ FM−1

0 (R3)3, where the condition of
smallness is independent of the speed of the rotation Ω, and FM−1

0 (R3) is scaling
invariant to (NSC) with Ω = 0. Indeed, for the solution u to (NSC) with Ω = 0,
let uλ(x, t) := λu(λx, λ2t) for λ > 0. Then, uλ is also a solution to (NSC) with
Ω = 0 and we have ‖uλ(·, 0)‖FM−1

0
= ‖u(·, 0)‖FM−1

0
for all λ > 0. On such other

results of global solutions for small initial data, Hieber-Shibata [8] studied in the

Sobolev space H
1
2 (R3), Konieczny-Yoneda [11] studied in the Fourier-Besov space

˙FB
2− 3

p

p,∞ (R3) with 1 < p ≤ ∞. On the well-posedness for (NSC) with Ω = 0 in the
scaling invarint spaces, we refer to Fujita-Kato [6], Kato [9], Kozono-Yamazaki [12],
Koch-Tataru [10].

In this talk, we would like to show that it is possible to characterize the sufficient
speed of rotation Ω with the initial data. The sufficient speed of the rotation is
characterized with the norm of initial data u0 ∈ Ḣs(R3) for the case s > 1/2

and each precompact set of Ḣ
1
2 (R3), which the initial data belong to, for the case

s = 1/2.
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Global well-posedness of an inviscid 3D pseudo-Hasegawa-Mima model

Aseel Farhat

(joint work with Chongsheng Cao and Edriss S. Titi)

In plasma physics, the 3D Hasegawa-Mima model is one of the most fundamental
models that describe the electrostatic drift waves. In the context of geophysi-
cal fluid dynamics, the 3D Hasegawa-Mima model appears as a simplified model
of a reduced Rayleigh-Bénard convection model that describes the motion of a
fluid heated from below. Investigating the inviscid 3D Hasegawa-Mima model is
challenging even though the equations look simpler than the 3D Euler equations.
Inspired by these models, we introduce and study an analytical model that has
a nicer mathematical structure which we call the pseudo-Hasegawa-Mima model.
We prove a global well-posedness result for the inviscid 3D pseudo-Hasegawa-Mima
model. These results are one of the first results related to the 3D Hasegawa-Mima
equations.
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Climate dynamics of a coupled Aquaplanet

Josiane Salameh

(joint work with Peter Korn)

The idea behind an Aquaplanet, an idealized configuration of the current earth
with all the landmasses removed, is not recent. However, most of the research
is conducted with stand-alone atmospheric models. Thus, the originality behind
considering the coupled Aquaplanet setup, highlights the impacts of the ocean and
allows us to directly interpret the fundamental processes and feedbacks between
ocean and atmosphere without any land interference.

The first coupled Aquaplanet experiments, were conducted by two research
groups using different general circulation models (GCM) of coarse resolution.
Compared to the current climate on Earth, the global climate was respectively
warm in [1] with no sea-ice formation and cold in [2] with ice caps reaching down
to 55◦ of latitude. Major contrasts appeared in the meridional temperature profile,
ocean heat transport and the strength of Hadley cells. However, the direct com-
parison of the results between the two models is limited, because of their diverse
model properties.

Ferreira et al. [3] raised the question if the coupled Aquaplanet is a deter-
ministic system by verifying the existence of multiple equilibrium states, through
integrating the same model (identical external forcing and parameters) from just
different random initial conditions. The three stable states were: a cold state with
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sea-ice extending to midlatitudes, a warm state totally free of ice and a ”snowball”
state completely covered with sea-ice.

The extreme disparity in the final climate states cited above drives us to further
investigate the Aquaplanet climate with more complex models. In particular,
we aim to analyze the atmosphere-ocean interactions via capturing the global
temperature profile, the wind and ocean currents pattern, the heat transport,
the atmospheric and oceanic circulation and others. In order to achieve a higher
physical understanding of the Earth rotation and its effect on the global circulation
of the Aquaplanet, we consider two extreme cases with a slow and fast rotation
rate. Some preliminary atmospheric aspects were already discussed in the case of
a tidally locked Aquaplanet [4]. However, our coupled Aquaplanet setup presents
a broader description of the global climatic features affected, not only atmospheric
ones.
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Free fall of a rigid body in a viscoelastic fluid

Karoline Götze

We consider a coupled system of equations describing the movement of a rigid
body immersed in a viscoelastic fluid. It is shown that under natural assumptions
on the smoothness and compatibility of the data and for general geometries of the
rigid body, a unique local-in-time strong solution exists.

More precisely, in this model, the fluid viscous stress S = 2αµD(v) + τ is
constituted by a Newtonian part, D(v) denotes the symmetric part of the fluid
velocity gradient, and an elastic part τ which is given by the transport equation

(1) λ1(∂tτ + (v · ∇)τ + ga(τ,∇v)) + τ = 2µ(1− α)D(v).

The model can be specified through relaxation time λ1 > 0, α ∼ 1
λ1
> 0, a viscosity

parameter µ and through the objective function

ga(τ,∇v) := τW (v)−W (v)τ−a(D(v)τ+τD(v)), a ∈ [−1, 1], W (v) = ∇v−D(v),

where a = 1 gives the Oldroyd-B model.
We assume that a container given as the bounded domain O holds the rigid

body in a compact domain B(t) with outer normal n(t) such that the fluid fills a
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domain D(t) = O\B(t). Since D(t) will change with time, we have to consider the
fluid equations and equation (1) on the space-time domain

QD := {(t, x) ∈ R
4 : t ∈ R+, x ∈ D(t)},

so the velocity v and pressure q satisfy

(2)

{
∂tv + (v · ∇)v − divS+∇q = f0, in QD,

div v = 0, in QD,

where f0 may be some external force. We assume that no-slip conditions hold at
the boundary of the fluid domain, so v = 0 on ∂O and

v(t, x) = η(t) + θ(t)× (x− xc(t)), on Q∂B,

where fluid and rigid body meet. The velocity of the rigid body is given by
a translational velocity η and an angular velocity θ, calculated with respect to
the position of the center of mass xc. They satisfy the equations for balance of
momentum and angular momentum,

(3)

{
mη′ +

∫
Γ(t)(S− qId)n dσ = f1,

(Jθ)′ +
∫
Γ(t)

(x− xc(t))× (S− qId)n dσ = f2,

which contain the drag force and torque exerted by the fluid. The constant m > 0
is the body’s mass and J is its inertia tensor and f1 and f2 denote external forces
and torques. In order to model free fall, we can set f0 = g, f1 = mg and f2 = 0
for some constant vector g.

Adding initial conditions, we combine (1), (2) and (3) into one coupled system
of equations in the unknowns v, q, η, θ and implicitly, D(t), and show that for
sufficiently smooth compatible data, a unique local-in-time solution exists which
strongly satisfies the system and depends continuously on the data [1].

The proof relies mainly on two previous results regarding the linearized equa-
tions. The first is on maximal Ls-regularity estimates in Lr for the Newtonian
coupled problem, i.e. 1− α = 0 and only equations (2) and (3) are relevant. This
was shown recently in [2]. The second result concerns the local well-posedness of
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viscoelastic flows of this type, equations (1) and (2) without the rigid body, shown
in [3] for s > 1, r > 3. Using higher-regularity a-priori estimates, the coupling
of parabolic and hyperbolic parts of the system can be treated via a modified
Schauder fixed point argument.

The main motivation for studying the local well-posedness of this system were
open questions regarding the sedimentation of particles in a viscoelastic fluid.
It is known from experiments and mathematical analysis [4, 5] that the stable
orientations of particles falling through a viscoelastic liquid may be the opposite
of those obtained in a Newtonian liquid, due to normal stress effects. In order to
extend the mathematical treatment of this phenomenon, it may be a first step to
construct local-in-time regular solutions and global solutions for small data.

References

[1] K. Götze Strong solutions for the interaction of a rigid body and a viscoelastic fluid, J.
Math. Fluid Mech. (2013), DOI 10.1007/s00021-012-0131-0

[2] M. Geissert, K. Götze, and M. Hieber, Lp-theory for strong solutions to fluid rigid-body
interaction in Newtonian and generalized Newtonian fluids., Trans. Amer. Math. Soc. 365
(2013), no. 3, 1393–1439.

[3] E. Fernández-Cara, F. Guillén, and R. R. Ortega, Some theoretical results concerning non
Newtonian fluids of the Oldroyd kind, Annali della Scuola Normale Superiore di Pisa 26
(1998), no. 1, 1–29.

[4] G. P. Galdi and A. Vaidya, Translational steady fall of symmetric bodies in a Navier-Stokes
liquid, with application to particle sedimentation, J. Math. Fluid Mech. 3 (2001), no. 2,
183–211.
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On the spontaneous generation of inertia-gravity waves

Leslie M. Smith

(joint work with Gerardo Hernandez-Duenas and Sam Stechmann)

The spontaneous generation of inertia-gravity waves is investigated for the three-
dimensional (3D) rotating Boussinesq equations in a triply periodic domain. We
compare quasi-geostrophic (QG) dynamics without waves to the dynamics of a
hierarchy of models that are constructed to include more and more nonlinear
interactions involving inertia-gravity waves [1]. Two case studies are presented,
both starting with initial data that projects only onto the vortical-mode (balanced)
component of the flow.

The 3D rotating Boussinesq equations are given by

Du

Dt
+ f ẑ× u = −∇P −Nθẑ+ ν∇2u, ∇ · u = 0

(1)
Dθ

Dt
−Nw = κ∇2θ, θ =

g

Nρo
ρ′
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where the ẑ-axis is the axis of rotation and stratification. The frame rotation
rate is f/2 and the density is given by ρ = ρo − bz + ρ′, ρ′ ≪ ρo, |bz| with N2 =
gb/ρo. Nondimensional Rossby Ro and Froude Fr numbers may be defined as
Ro = U/(fL), F r = U/(NH), where L/U is a time scale associated with the
initial data, and here H = L is the length of the domain. We work mainly in
the regime Ro ≈ Fr ≈ 0.1 typical of a range of scales in the oceans and the
atmospheric mid-latitudes. Solutions in the unforced, linear, inviscid limit are

v(x, t;k) = φ(k) exp

[
i

(
k · x − σ(k)t

)]
+ c.c. where v is the state vector with

eigenmodes φs(k) and eigenvalues σs(k), s = 0,+,−. The wave modes φ±(k)

have frequencies σ±(k) = ±(N2k2h + f2k2z)
1/2/k and the vortical mode φ0(k) has

zero frequency σ0(k) = 0. Since φs(k), s = ±, 0 form an orthogonal basis, (1)
may be written as

(2)
∂

∂t
bsk =

∑

△

∑

sp,sq

C
skspsq
kpq b∗sp b

∗
sq exp

[
i

(
σsk + σsp + σsq

)
t

]

where u(x, t) =
∑

k

∑
s bs(t;k)φs(k) exp

[
i

(
k · x − σs(k)t

)]
, and there is a sum

over triads k+p+ q = 0 and a sum over modes types s = 0,±. Symbolically, (2)
is given by

0 ← [00] ⊕ [0+] ⊕ [0−] ⊕ [++] ⊕ [+−] ⊕ [−−]
+ ← [00] ⊕ [0+] ⊕ [0−] ⊕ [++] ⊕ [+−] ⊕ [−−]

(3) − ← [00] ⊕ [0+] ⊕ [0−] ⊕ [++] ⊕ [+−] ⊕ [−−]
where 0 indicates a vortical mode, ± indicates a wave mode, and the symbol ⊕ here
means ‘also including.’ The QG approximation allows only interactions between
vortical modes and is written symbolically as 0 ← [00] [2]. Intermediate models
can be constructed by progressively including inertia-gravity waves, and two such
models are PPG including interactions with exactly one inertia-gravity wave:

0 ← [00] ⊕ [0+] ⊕ [0−]
+ ← [00]

(4) − ← [00]

and P2G including interactions with one and two inertia-gravity waves:

0 ← [00] ⊕ [0+] ⊕ [0−] ⊕ [++] ⊕ [+−] ⊕ [−−]
+ ← [00] ⊕ [0+] ⊕ [0−]

(5) − ← [00] ⊕ [0+] ⊕ [0−].
Both models PPG and P2G can be written as PDE systems in physical space, and
both conserve energy. Furthermore, they incorporate two-way feedback between
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Figure 1. Full Boussinesq (left) and QG (right): Contours of
streamfunction for Ro = Fr = 0.2; times t = 0, 20, 40 nonlinear
turnover times.

waves and vortical modes. In contrast, forced linear models incorporate only one-
way feedback from vortical modes to waves [3]. The model PPG can be understood
as a generalization of higher-order PV inversion models [4], but where the slaving
is eliminated.

For an initially balanced dipole, the generation of inertia-gravity waves increases
the speed of the dipole and causes a cyclonic drift in the trajectory of the dipole
(see Figure 1). For relatively small Ro = Fr = 0.1, PPG can capture the evolution
of the dipole for roughly ten times longer than a forced linear model. However, for
larger Ro = Fr = 0.2, neither PPG nor P2G can faithfully track the speed and
trajectory of the dipole for long times, indicating that three-wave interactions are
important for intermediate Ro and Fr (but still smaller than unity).

For random initial data, the spontaneous generation of inertia-gravity waves
reduces the size of the emerging vortices. Figure 2 shows that PPG does not
generate vortices. A third model P2SG containing vortical-vortical-vortical and
vortical-wave-wave interactions behaves similarly to QG (with vortical-vortical-
vortical interactions only). The model P2G can accurately reproduce the size of the
vortices generated by the full Boussinesq dynamics. A qualitative understanding
begins to emerge, whereby vortical-wave-wave interactions create radiating waves
that may influence the evolution of balanced structures, but do not by themselves
generate structures. By contrast, the vortical-wave-wave interactions take energy
out of the wave modes and change the balanced state through feedback onto the
vortical modes.

Acknowledgements: L.M. Smith gratefully acknowledges comments and sug-
gestions made by Oberwolfach participants H. Bessaih, R. Klein, R. Samelson, and
J. Tribbia.
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On Stability of Navier-Stokes-Boussinesq Type System and Ekman

layers

Hajime Koba

We often consider the Boussinesq system when we treat fluids effected by heat
convection. We refer to a system coupling among the fluid velocity, the temper-
ature, and the pressure of the fluid as a Navier-Stokes-Boussinesq type system.
We consider the stability for the spatial inhomogeneous Navier-Stokes-Boussinesq
system. By stability we mean that if a solution of a system satisfies the asymp-
totic stability. Applying fractional powers of linear operators and maximal Lp-
regularity, we show stability of energy solutions of the Navier-Stokes-Boussinesq
type system. This approach is very important to show L2-asymptotic stability for
stationary solutions without knowing detailed information of the stationary solu-
tions. We can easily prove stability of energy solutions of various fluid systems.

We also discuss weak nonlinear stability of Ekman boundary layers in rotating
stratified fluids. A stationary solution of the rotating Navier-Stokes equations with
a boundary condition is called an Ekman boundary layer. We construct station-
ary solutions of the rotating Navier-Stokes-Boussinesq equations with stratification
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effects (a geophysical fluid system) in the case when the rotating axis is not nec-
essarily perpendicular to the horizon. We call such stationary solutions Ekman
layers. Under some assumptions on the Ekman layers and the physical parameters,
we show the existence of a weak solution to an Ekman perturbed system, which
satisfies the asymptotic stability.

On Some Mathematical Aspects of High-Resolution Climate Modeling

Peter Korn

Numerical models of the global atmosphere and ocean circulation discretized the
underlying Partial Differential Equations of the atmosphere and ocean, namely the
compressible, non-hydrostatic Navier-Stokes equations for the atmosphere and the
so-called Primitive equations (incompressible, hydrostatic, under the Boussinesq
approximation) for the ocean. The domain is a rotating sphere. The discretiza-
tion projects the continuous equations onto finite-dimensional subspaces. Usually
these subspaces are chosen to be different for atmosphere and ocean, for example
in the ocean they may be associated with a logically rectangular latitude-longitude
grid, while in the atmosphere one uses spherical harmonics and a spectral grid.
A new generation of atmosphere-ocean models is currently developed by several
modeling centers1 that deviates from this traditional practice by using the same
type of grid in the atmosphere as well as in the ocean in order to facilitate the
coupling of the two components. The choice of the common grid is delicate due
to different requirements in both components of the coupled system and the best
choice seems to be so-called “unstructured grids’, i.e. non-orthogonal grids with-
out any directional preference such as east-west and north-south. The grid that
we use is a Delaunay triangulation of the sphere with a associated Voronoi grid of
hexagons. On this grid we use a so-called C-type staggering.
The discretization on such unstructured grids requires new numerical approaches.
Strong constraints on the numerical method are the computational efficiency and
specific physical conditions from Geophysical Fluid Dynamics such as geostrophic
balance or energetically neutral discrete Coriolis force. We describe in some detail
a structure preserving discretization for the ocean primitive equations. The con-
struction principle of this method is the use of vector calculus for the discretization
of differential operators (divergence, gradient and curl) combined with a discrete
weak-form of the equations and is oriented towards the conservation properties of
the continuous equations. The resulting set of discrete equations for velocity v,

1The MPAS consortium of the National Center for Atmospheric Research and Los Alamos
in the U.S and the ICON project of the Max Planck Institute for Meteorology and the German
Weather Service in Germany
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free surface elevation h and tracer C reads as follows

V elocity :
d

dt
PTPve,k + P̂T ((ω + f)P̂ v)e,k + PT (wc,k+ 1

2
∂zPvk

z
)

+ PTP∇
( |Pv|2k

2
+
pk
ρ0

)
− PTdivKv∇Pve,k − ∂zAv∂zPTPve,k = Fv,

Hydrostatic : ∂zp = −ρ̄g, Incompress. : div (PTPv) + ∂zw = 0,

F reesurface :
∂h

∂t
+ div

[
PT (

∫ h

−H

Pv dz)
]
= Fh,

T racer :
dCc,k
dt

+ div
[
PT (CPv)

]
c,k
− divKC∇Cc,k − ∂zAC∂zCc,k = FC ,

ω is the vorticity, f the Coriolis parameter, ρ the density and p the pressure, e, c
denote edges and cells,k a vertical level,¯z a vertical interpolation and P, P̂ generic
mappings from cell edges to cell centers and from cell edges to cell vertices, re-
spectively. For the discrete scheme with continuous time one can for example
show a discrete form of energy conservation in the inviscid and unforced case or
the absence of spurious vorticity production in the absence of lateral boundaries.
Results from numerical ocean simulations over 1000 years and phenomenological
comparison with an established ocean model confirm the approach. One can fi-
nally state that it is in fact possible to develop an unstructured grid ocean model
that shows essential features of a global ocean circulation on climate time scales.
Preliminary results from a coupled atmosphere-ocean model with land completely
removed (so-called coupled aquaplanet) are also promising.

For the majority of numerical atmosphere-ocean circulation models it is unclear
what their relation to the continuous equations is. In the case of the Primitive
Equations the global well-posedness was proven by Cao and Titi [1] for specific
boundary conditions and constant parameters for viscosity and temperature dif-
fusion. This theorem provides a mathematical foundation and discrete Primitive
Equation models satisfying the conditions of the Cao-Titi theorem have to con-
verge to this solution. Results on convergence or error estimates have not been
established for the global Primitive Equation ocean models such as POP or MOM
used in the Intergovernmental Panel on Climate Change (IPCC) scenarios.

Finally i suggest a new approach for combining coupled numerical circulation
models with observations in Data Assimilation. This problem can be solved with
variational methods that aim at minimizing the distance between observations and
the model solution by controlling the initial conditions ψ0. While the distance is
usually based on the L2-norm, i suggest to use a higher-order Sobolev norm in
space. This controls via the Sobolev embedding theorem a control over the L∞

norm while one still stays within the Hilbert-space framework. More specifically
the cost functional

J (ψ0) := Jb(ψ0) + Jo(ψ0)

consists of a background term Jb(ψ0) that measures the distance to the previous
forecast, usually with a weighted L2-norm according to the background error co-
variance matrix Jb(ψ0) = ||ψ0 − ψback||L2(dµB) and an observational term Jo(ψ0)
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that measures the deviation between model trajectoryM[ψ0] starting from initial
state ψ0 and evolving according to the model operatorM, where the distance is
also a weighted L2-norm, with a weight given by the observation error covariance,
Jo(ψ0) =

∫
T
||M[ψ0] − Hψobs||2L2(dµR) dt. The Data Assimilation Problem is to

determine initial condition ψ∗
0 such that

J (ψ∗
0) = min

ψ0

J (ψ0)

and ψ(ψ∗
0) satisfies model equations

(1)

Our suggestion is to replace the L2-norm in the background term Jb by

(2) J sb := (ψ0) := ||ψ0 − ψb||Hs(dµB)

and the L2-norm observation term Jo by

(3) J so := (ψ0) :=

∫

T

∑

|α|≤s

∫

T

||M[ψ0]−Hψobs||2H−α(dµR) dt

where s is a multi-index. We consider the following set of coupled Partial Differen-
tial Equations on a rotating plane with periodic boundary conditions that mimic
in a very simple way an coupled Atmosphere-Ocean model

Atmosphere:
∂ua

∂t
+ (ua · ∇)ua + fua⊥ + ga∇θa = ǫau△ua,

∂θa

∂t
+ div(haua) = −αθo + ǫah△θa.

Ocean:
∂uo

∂t
+ (uo · ∇)uo + fuo⊥ + go∇θo = βua + ǫou△uo,

∂θo

∂t
+ div(houo) = ǫoh△θo.

(4)

where ua/o denotes velocity, θa/o height of the upper free surface, ha/o = θa/o−θa/ob

the total depth of atmosphere/ocean and α, β > 0 are coupling constants. By
choosing different fluid depths and using reduced gravity constants one can obtain
a “fast” atmosphere coupled to a “slow” ocean model. One can now prove the
following results[2]

Theorem 1. Let observations ψobs ∈ L2(T ;H) be given. Then there exist optimal
initial conditions ψ̄0 ∈ Hs for the coupled data assimilation problem (1) for the
equations (4) using the cost functional (2) and (3).

The minimizers can be characterized by a first-order necessary condition.

Theorem 2. Let ψ∗
0 ∈ Hs be an optimal initial condition of the data assimilation

problem and ψ̄ = (ūa, h̄a, ūo, h̄o) the associated solution of the coupled model. Then
ψ∗
0 satisfies

ψ∗
0 = ψback − B−1SsΨ̃0,
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where Ψ̃ is the solution of the adjoint equations with initial condition ψ̃(t1) = 0

and forcing F̃ :=
∑

|α|≤s(−1)α△−αR
(
ψ(ψ0)−Hψobs

)

− ∂Ψ̃

∂t
+N ′∗[ψ̄](Ψ̃) + LΨ̃− C̃(Ψ̃a, Ψ̃o) = F̃

where C̃ is the coupling operator, L the linear terms of the model, N ′∗ the adjoint
of the derivative of the nonlinear operator and Ss is given by Ss :=

[
I − D2 +

D4 . . .D2s
]−1

.
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The Navier-Stokes equations with Robin boundary conditions in

bounded Lipschitz domains

Sylvie Monniaux

(joint work with Jürgen Saal)

In this work, we investigate the solvability of




∂tu−∆u+∇π − u× curlu = 0, div u = 0 in (0, T )× Ω,

ν · u = 0, ν × curlu = αu, on (0, T )× ∂Ω,
u(0) = u0, in Ω,

where 0 < T ≤ ∞, α ≥ 0, Ω ⊆ R
3 is a bounded Lipschitz domain, ν(x) denotes the

outer unit normal vector at x ∈ ∂Ω and u0 is an initial value in the critical space
usually denoted by L

3
σ(Ω), consisting of divergence-free vector fields in L3(Ω;R3)

with zero normal component at the boundary. Our strategy is to study the Laplace
operator Aα associated to the problem, namely

D(Aα) =
{
u ∈ L2(Ω;R3);u = u1 + u2 with u1, u2 ∈ L2(Ω;R3),

div u1 ∈ H1(Ω), curlu1, curl curlu1 ∈ L2(Ω;R3) and ∆u2 = 0,

N (u),N (div u),N (curlu) ∈ L2(∂Ω) :

ν · u1,2 = 0, ν × curlu2 = 0 and ν × curlu2 = αu on ∂Ω
}
,

Aαu = −∆u,
where N (f)(x) := sup

{
|f(y)|; y ∈ Ω, |x − y| ≤ (1 + κ)dist (y, ∂Ω)

}
denotes the

maximal nontangential operator applied to f at x ∈ ∂Ω. We first show how the
boundary conditions ν ·u = 0 and ν×curlu = αu make sense. One of the difficulty
is that in Lipschitz domains, the space of vector fields u ∈ L2(Ω;R3) such that
div u ∈ L2(Ω), curlu ∈ L2(Ω;R3) and ν·u = 0 on ∂Ω is not contained inH1(Ω;R3).
We prove that −Aα generates a bounded analytic semigroup on L2(Ω;R3) which
can be extended to Lp(Ω;R3) for p ∈

[
9
7 ,

9
2

]
. The case α = 0 has been studied in
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[1] and [2] where it has been noticed that the Helmoltz projection (the projection
of vector fields onto divergence-free vector fields) commutes with the operator A0.
This is no more the case if α > 0. However, the boundary conditions used here
allow to treat the pressure term ∇π as a small perturbation of Aαu in the Navier-
Stokes system. Note that the nonlinearity in the Navier-Stokes system used here
is justified by the identity (u · ∇)u = 1

2∇|u|2 − u× curlu for smooth vector fields
u.
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Decay estimates of the Oseen semigroup in two-dimensional exterior

domains

Toshiaki Hishida

Let Ω be an exterior domain in R
2 with smooth boundary ∂Ω. We consider the

Navier-Stokes system

∂tu+ u · ∇u = ∆u−∇p, div u = 0,

u|∂Ω = 0, u→ u∞ as |x| → ∞(1)

which describes the motion of a viscous incompressible fluid past an obstacle R2\Ω
(rigid body) that moves with translational velocity −u∞, where u(x, t) = (u1, u2)
and p(x, t) respectively denote unknown velocity and pressure of the fluid, while
u∞ ∈ R

2 \ {0} is a given uniform velocity. Without loss of generality, one may
take u∞ = −2αe1 with α > 0, where e1 = (1, 0). By denoting u−u∞ by the same
symbol u, (1) is reduced to

∂tu+ u · ∇u = ∆u+ 2α∂1u−∇p, div u = 0,

u|∂Ω = 2αe1, u→ 0 as |x| → ∞.(2)

It is an open question to clarify the large time behavior of solutions to the initial
value problem for (2). Toward better understanding of this problem, it is important
to study: (i) steady flows with fine decay/summability for |x| → ∞; (ii) decay
properties of solutions to the Oseen initial value problem, see (3) below, for t→∞.
Concerning the first issue (i), it was proved by [5], [6], [11] and, later on, by [7]
that if α > 0 is sufficiently small, then (2) admits a steady flow (called a physically
reasonable solution) that satisfies u(x) = O(|x|−1/2) as |x| → ∞ and exhibits a
parabolic wake region behind the body like the Oseen fundamenatal solution. So
far, the stability/instablity of this flow is unsolved, while we know the stability of
small physically reasonable solutions in 3D exterior domains. The difficulty in 2D
is due to less decay property for |x| → ∞, that is not enough to show the stablity.
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This presentation is concerned with the second issue (ii) above, that is, the
large time behavior of solution u(·, t) = e−tLf to the initial value problem for the
Oseen system

∂tu−∆u− 2α∂1u+∇p = 0, div u = 0 in Ω× (0,∞)

u|∂Ω = 0, u→ 0 as |x| → ∞, u(·, 0) = f
(3)

where L = Lα denotes the Oseen operator defined in the space Lqσ(Ω). Our aim
is to show the Lq-Lr estimates (with n = 2)

(4) ‖e−tLf‖r ≤ C t−(n/q−n/r)/2‖f‖q (1 < q ≤ r ≤ ∞, q 6=∞)

(5) ‖∇e−tLf‖r ≤ C t−(n/q−n/r)/2−1/2‖f‖q (1 < q ≤ r ≤ n)
for t > 0, where n ≥ 2 is the space dimension and ‖ · ‖q stands for the norm of
Lq(Ω). For the Stokes semigroup (case α = 0), these estimates were deduced by
[8] (n ≥ 3), [1], [2] (n = 2) and [10] (n ≥ 2). As for the Oseen semigroup (case
α > 0), (4) and (5) were established by [9] (n = 3) and [3], [4] (n ≥ 3), except
the case of plane exterior domains, where the constant C > 0 above can be taken
uniformly with respect to small α > 0. This is important in the proof of stability
of 3D steady flows as an application of (4)–(5). Unfortunately, our main result on
the Oseen semigroup in 2D, see Theorem 1 below, does not provide such desirable
situation, but I believe the theorem will have to be improved in the future. The
most difficulty in 2D is to control both parameters λ (resolvent parameter) and α
in asymptotic analysis of the Oseen resolvent. In fact, we have to deal with the
logarithmic singularity such as log (λ+ α2) for small (λ, α) unlike 3D case.

The main result on Lq-Lr estimate of the Oseen semigroup in 2D exterior
domains reads as follows.

Theorem 1. Let α > 0. Then

(6) ‖e−tLf‖r ≤ C t−1/q+1/r‖f‖q (1 < q ≤ r <∞)

(7) ‖e−tLf‖∞ ≤ C t−1/q (log t)‖f‖q (1 < q < r =∞)

(8) ‖∇e−tLf‖r ≤ C t−1/q+1/r−1/2‖f‖q (1 < q ≤ r < 2 = n)

(9) ‖∇e−tLf‖2 ≤ C t−1/q (log t)‖f‖q (1 < q ≤ r = 2 = n)

for t ≥ 2 and f ∈ Lqσ(Ω). Concerning the constant C, given arbitrary large M > 0

and small ε > 0, there is a constant C̃ = C̃(M, ε; Ω, q, r) such that C ≤ C̃/αρ

provided α ∈ (0,M ], where

ρ =

{
1 + ε 1/q − 1/r ≤ 1/2
2 + ε 1/q − 1/r > 1/2

for (6)

ρ =

{
1 + ε q > 2
2 + ε q ≤ 2

for (7)

ρ =

{
1 + ε q = r
2 + ε q < r

for (8) and (9).
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As in [8] and [9], the essential step for the proof is to derive local energy decay
properties of the semigroup in ΩR = Ω ∩ BR by means of spectral analysis. To
do so, we analyze the regularity of the resolvent (λ + L)−1 near λ = 0, whose
parametrix is constructed by using the Oseen resolvents in the whole plane R

2

and in a bounded domain near the obstacle R
2 \ Ω. The analysis of asymptotic

structure as λ→ 0 (and α→ 0 as well) of the fundamental solution of the Oseen
resolvent in R

2 plays a key role. A representation formula of the fundamental
solution can be written in terms of the modified Bessel functions of the second
kind.

References

[1] W. Dan and Y. Shibata, On the Lq-Lr estimates of the Stokes semigroup in a two-
dimensional exterior domain, J. Math. Soc. Japan 51 (1999), 181–207.

[2] W. Dan and Y. Shibata, Remark on the Lq-L∞ estimate of the Stokes semigroup in a
2-dimensional exterior domain, Pacific J. Math. 189 (1999), 223–239.

[3] Y. Enomoto and Y. Shibata, Local energy decay of solutions to the Oseen equations in the
exterior domains, Indiana Univ. Math. J. 53 (2004), 1291–1330.

[4] Y. Enomoto and Y. Shibata, On the rate of decay of the Oseen semigroup in exterior
domains and its application to Navier-Stokes equation, J. Math. Fluid Mech. 7 (2005),
339–367.

[5] R. Finn and D. R. Smith, On the linearized hydrodynamical equations in two dimensions,
Arch. Rational Mech. Anal. 25 (1967), 1–25.

[6] R. Finn and D. R. Smith, On the stationary solution of the Navier-Stokes equations in two
dimensions, Arch. Rational. Mech. Anal. 25 (1967), 26–39.

[7] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations,
Vol. I: Linerised Steady Problems, Vol. II: Nonlinear Steady Problems, Springer, New York,

1994.
[8] H. Iwashita, Lq-Lr estimates for solutions of the nonstationary Stokes equations in an

exterior domain and the Navier-Stokes initial value problem in Lq spaces, Math. Ann. 285
(1989), 265–288.

[9] T. Kobayashi and Y. Shibata, On the Oseen equation in the three dimensional exterior
domains, Math. Ann. 310 (1998), 1–45.

[10] P. Maremonti and V. A. Solonnikov, On nonstationary Stokes problem in exterior domains,
Ann. Sc. Norm. Sup. Pisa 24 (1997), 395–449.

[11] D. R. Smith, Estimates at infinity for stationary solutions of the Navier-Stokes equations
in two dimensions, Arch. Rational Mech. Anal. 20 (1965), 341–372.

The dark side of geophysical fluid dynamics: A report from behind

the curtain

Sebastian Reich

My talk consisted of two parts with the first one summarizing some fundamental
difficulties and challenges for mathematical modeling of atmospheric fluid dynam-
ics. The second part gave an overview over ensemble based data assimilation
schemes from the perspective of optimal transportation.

A goal of scientific research is to make skillful predictions, gain in understanding,
and to close explanatory gaps. Mathematics has contributed to this goal through
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two main streams of mathematical research, namely learning from data and the
derivation of statistical models on the one hand and the analysis and simulation
of mechanistic, first principle-based models on the other. Furthermore, these tech-
niques have been developed by statistics and applied mathematics to a large extent
independently of each other. There are, of course, overlaps in areas such as inverse
problems, Markov models, and approximation theory. But I believe that a much
stronger integration of data-driven and first principle-driven modeling approaches
is necessary in order to achieve fundamental advances in the understanding of
weather and climate. This is largely due to the fact that, indeed, geophysical
fluid dynamics rests upon first principles but uncontrolled approximations need
to be made in order to get aggregated model hierarchies, which can be analysed
and simulated. In order to formulate appropriate closure schemes in form of what
are called parametrization in meteorology one needs to mimic the mean effect of
the unresolved scales on the resolved ones in form of largely heuristically moti-
vated and data tuned models. Furthermore, even if purely first principle-based
models and their mathematically rigorous reduction were achievable, numerical
approximations as well as uncertain initial and boundary conditions lead to un-
certain predictions which will get further amplified by nonlinear dynamics. Hence
again model forecasts need to be interfaced with data in order to constrain such a
growth of uncertainty. This interfacing of models with data is called data assimila-
tion in geophysics. While data assimilation could be viewed as a classic filtering or
smoothing problem, novel aspects and challenges include the high dimensionality
of phase space, strong nonlinearity of models, spatio-temporally correlated model
errors due to uncontrolled approximations, and sparsity of data.

Current data assimilation algorithms used in practice are either variational
(minimizing a cost function) or ensemble-based resting on the assumption of Gaus-
sianity of uncertainties. There are currently many activities to make a link between
those algorithms and consistent filtering algorithms such as sequential Monte Carlo
methods. Consistency means that a filter algorithm is able to reproduce the ana-
lytic solution in the limit of ever increasing ensemble sizes. Such a limit is however
of little practical relevance in atmospheric data assimilation. A novel approach,
we have proposed, is to replace the resampling step of a sequential Monte Carlo
method by a coupling between discrete random variables based on linear program-
ming (optimal transport). This novel approach allows for a McKean interpretation
of the Bayesian inference step, leads to a linear transformation of ensemble mem-
bers and has the advantage of making localization possible. Here localization
means that observation at a specific point in space should only affect the state
variables near the observed point due to a limited spatial correlation of the data
and forecast fields. This approximation has been shown in practice to effectively
eliminate the curse of dimensionality for sufficiently well observed systems. Fur-
thermore, our approach allows one to put different ensemble transform filtering
algorithm within a unifying framework.
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Some introductory notes on data assimilation and optimal transportation can
be found in [1]. The sequential Monte Carlo method with an optimal transport
based ensemble transform step is described in [2].
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Scale interactions in compressible rotating fluids

Eduard Feireisl

The motion of a compressible viscous rotating fluid in the so-called f -plane ap-
proximation can be described by the Navier-Stokes system in the dimensionless
variables as

∂t̺+∇ · (̺~u) = 0,

∂t(̺~u) +∇ · (̺~u ⊗ ~u) +
1

ε
̺~f × ~u+

1

ε2m
∇p(̺) = εα ∇ · S(∇~u) + 1

ε2n
̺∇G,

where ̺ is the fluid density, ~u is the velocity field, and ε→ 0 is a small parameter.
The symbol S(∇~u) denotes the viscous stress, here given by Newton’s rheological
law

S(∇~u) = µ

(
∇~u+∇t~u− 2

3
∇ · ~uI

)
+ η∇~uI, µ > 0, η ≥ 0.

Finally, we fix the axis of rotation and the direction of the gravitational field as

~f = [0, 0, 1], ∇ ·G = [0, 0,−1].
The problem is considered in an infinite slab

Ω = R2 × (0, 1)

and supplemented with the complete slip boundary conditions

~u · ~n = u3|∂Ω = 0, [S · ~n]tan|∂Ω = 0,

and the far field conditions

̺→ ˜̺ε, ~u→ 0 as |x| → ∞,
where ˜̺ε is the static density distribution satisfying

∇p(˜̺ε) = ε2(m−n) ˜̺ε∇G, ˜̺ε → 1 as ε→ 0.

Our aim is to identify the singular limit system for ε → 0. Note that this
includes the following phenomena acting simultaneously:
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• Low Rossby number.

Rossby number ≈ ε:
3D flow → 2D flow,

see [1], [2], [3].
• Low Mach number.

Mach number ≈ εm:

compressible → incompressible,

see [5], [6], [7], [10], among others.
• High Reynolds number.

Reynolds number ≈ ε−α:
viscous (Navier-Stokes) → inviscid (Euler),

see Clopeau, Mikelić, Masmoudi [8], [9], [10], Swann [11], among others.

We discuss the asymptotic limit and identify the limit problem - the incom-
pressible planar Euler system:

∇ · ~v = 0,

∂t~v + ~v · ∇~v +∇Π = 0 in (0, T )×R2.
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Is there Einstein’s formula in fluid dynamics?

Anatoli Babin

In geophysical fluid dynamics there are two kinds of rotation: uniform rotation
(the Earth rotation) and localized rotation (as in tornadoes, hurricanes, eddies).
The subject of my talk is localized rotation.

A localized object can be characterized by its trajectory. The trajectory can
be affected by external forces and by internal characteristics of the object, such
as its energy. This type of relation is described by Einstein’s formula M = E

c2 . In
the Newtonian mechanics the inertial mass determines the response to an external
force by the formula Mass = force

acceleration , and Einstein’s formula relates the
inertial mass with the internal energy of an object.

To understand the mechanics of extended localized objects we consider a sim-
pler, but still nontrivial, model from electrodynamics. Namely we consider the
nonlinear Klein-Gordon (KG) equation.

We have proven [1], [2] the following theorem: If solutions of the KG equa-
tion concentrate at a trajectory r̂ (t), then the trajectory satisfies the following
equation:

∂t

(
1

c2
Ē∞ (t) ∂tr̂

)
= f∞ (r̂)

where Ē∞ (t) is the limit of the concentrating energy, f∞ is the Lorentz force and

c is the speed of light. Hence we obtain Einstein’s formula M = Ē∞(t)
c2 as a

property of localized solutions of the KG equation. Examples show that the main
contribution to the energy comes from the rotation in the complex plane described
by the phase factor of a solution.

The concept of concentrating solutions used in the derivation of Einstein’s for-
mula is quite general and can be applied to problems in fluid mechanics. Now
there is the question. Is it possible to derive an analog of Einstein’s formula for
dynamics of localized objects in fluid mechanics framework? In the talk I illus-
trate the method of concentrating solutions on the example of 2D Euler equation
and 3D Euler equations.
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Models for nearly geostrophic shallow water with spatially varying

Coriolis parameter

Marcel Oliver

(joint work with Mahmut Çalık, Sergiy Vasylkevych)

Large-scale flow in mid-latitude atmosphere and ocean dynamics is characterized
by smallness of the Rossby number ε, which measures the relative importance
of inertial vs. Coriolis forces. To leading order in ε, such flow is in geostrophic
balance—the pressure gradient balances the Coriolis force exactly, and the flow is
stationary. A balance model then describes the slow dynamics of small departures
from a balanced state. In the simplest case, when the full flow is described by the
rotating shallow water equations as we assume throughout this talk, there are two
classical balance models, the semigeostrophic and the quasigeostrophic equations
which differ in the assumed scaling of a second parameter, the Burger number,
and in the scaling of the surface height variations. In this talk, we shall only be
concerned with the semigeostrophic limit where Burger and Rossby numbers are
of the same order and there are no restrictions on the magnitude of surface height
variations except for a natural positivity condition on the layer depth.

Salmon [12] pioneered the derivation of balance models via the variational for-
mulation of the fluid system and introduced two new models, the so-called L1

model and the large-scale semigeostrophic (LSG) equations. (The term “large-
scale semigeostrophic equations” was coined in [13], where the author implements
similar ideas for a stratified flow.) His ideas were subsequently extended in a
number of ways, see [4, 6, 7, 9, 15, 16, 17] and references therein. In this talk, we
revisit the variational asymptotics introduced in [7] where the variational principle
is written in a new coordinate system chosen precisely so that, when consistently
truncated to a certain order in ε, the variational structure degenerates, thereby
providing an implicit constraint on the dynamics.

When the Coriolis parameter is constant, this approach yields a one-parameter
family of balance models, the generalized LSG equations. As a function of the
model parameter, they “interpolate” between Salmon’s L1 model and the LSG
equations. For a fixed value of the model parameter, an instance of the generalized
LSG equations is, in many respects, similar to Hoskins’ semigeostrophic equations.
Both sets of equations are Hamiltonian (for the semigeostrophic equations, see [12],
for the generalized LSG equations, see [8]), both coincide up to terms of order one
in Rossby number, and, in the case of constant Coriolis parameter, both can be
formulated as an advection equation for the potential vorticity in a transformed
coordinate system coupled with a nonlinear potential vorticity inversion. In the
semigeostrophic case, the transformation has been introduced by Hoskins [5] and
is now known by his name; the associated potential vorticity inversion law is a
nonlinear elliptic Monge–Ampère equation. Generalized LSG theory also employs
separate semigeostrophic coordinate system in which advected potential vorticity is
coupled to the velocity by a system of elliptic PDEs. The key difference is that the
Hoskins transformation into semigeostrophic coordinates is explicit in the physical
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coordinate system and implicit in the new semigeostrophic coordinates. For the
generalized LSG equations, the situation is reversed, which has an obvious benefit
for the numerical implementation of the model. Advection of potential vorticity
was used to prove well-posedness for the semigeostrophic equations [1] and for
the generalized LSG equations [2]. Finally, for a constant Coriolis parameter, the
semigeostrophic equations also possess a materially conserved potential vorticity
in physical coordinates.

When the Coriolis parameter is spatially varying, there is no known conserved
potential vorticity for the semigeostrophic equations in physical coordinates [10].
A conserved potential vorticity does exist in so-called vorticity coordinates [14, 10,
11], but computing the transformation to vorticity coordinates requires another
prognostic equation [14]. More recently, Cullen et al. [3] use the theory of opti-
mal transport to give a formal argument that the semigeostrophic equations on
a sphere can be written in terms of potential vorticity advection and inversion,
but in order to obtain a practical solution procedure, they continue to work in
physical coordinates. Moreover, to our knowledge there are no known results on
the mathematical well-posedness of the semigeostrophic equations in this general
case.

In this talk, we show how the strategy of [7] extends to the case of the rotating
shallow water equations with spatially varying Coriolis parameter. We assume that
the Coriolis parameter f is a smooth function and that it remains bounded away
from zero; however, no further restrictions are made. In our setting, the difficulties
to semigeostrophic theory posed by spatial variations of f largely disappear. We
find that the equations of motion can be derived in much the same way as for
nonvarying f , and that they can be formulated as an advection equation for a
transformed potential vorticity (PV) coupled with a nonlinear potential vorticity
inversion relation. The transformation back to physical coordinates is explicit in
the new coordinates and can be readily computed.

Invertibility of the potential vorticity relation across the family of generalized
LSG models is guaranteed if either the Rossby number or the gradient of the
Coriolis parameter is sufficiently small. However, the possible choices of semi-
geostrophic coordinates are more subtle than in the case of a constant Coriolis
parameter. There are three distinguished cases.

First, we can derive a model for which invertibility hinges only on the positivity
of the Coriolis parameter and of the initial potential vorticity. This condition is
robust in the sense that it is satisfied for all times whenever it is satisfied at the
initial time. The same condition already appears in the case of non-varying Coriolis
parameter [2]. The condition appears to be sharp and physically reasonable; it
unconditionally includes the β-plane approximation to the shallow water equations
at mid-latitudes. However, we cannot deal with the degeneracy of the Coriolis
parameter for the spherical shallow water equations at the equator—a fundamental
difficulty for balance models in general. Although invertibility for this model is as
good as for the L1 model with constant f , the new models necessarily requires,
unlike the L1 model with constant f , an O(ε) change of coordinates.
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Second, we may choose a transformation which is negligible up to terms of
O(ε2)—terms beyond the formal order of accuracy of the model. In this case, we
lose simplicity of the balance relation and we lose robust solvability. Third, there is
a model where PV inversion gains the maximum possible three derivatives. It too
has a non-robust solvability condition whenever the Coriolis parameter is spatially
varying.

In conclusion, we believe that the new family of balance models characterized
by robust solvability (and which also possess a relatively simple balance relation)
is the most promising and warrants further numerical study.
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