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Introduction by the Organisers

Multiscale problems are ubiquitous in modern science and engineering. Appli-
cations are many: materials science, underground flows, wave propagation, etc.
Indeed, materials that seem to be a continuum are made up of atoms. Geolog-
ical media have many scales ranging from very small (atomistic), to an order of
magnitude larger (pore and crack sizes), and to even much larger sizes of tectonic
plates. Composite materials that are critical for modern technology are typically
multiscale (e.g., small filling particles of different sizes in a sample of much larger
size or layers of various thickness in a laminate composite).

Many, though not all, of the models involve random modeling. Mathematics
evidently plays a major role in this area. It covers the whole spectrum from theory
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(with homogenization theory, variational calculus, etc) to scientific computing, via
numerical analysis (with the development of adequate, multiscale, finite element
methods and related approaches). Statistics-based methods are also employed.
While modeling at each specific fundamental scale (e.g., molecular dynamics at
atomistic scales, continuum PDEs at much larger scales) has been quite successful,
the coupling between different scales is not well understood mathematically.

The workshop has been an opportunity to make a state-of-the art review of
the mathematical knowledge in a broad sense, to draw up a list of the challenges
to overcome in the near future. It was a unique opportunity to bring together
experts from all the areas involved. Approximately 45 scientists with very different
backgrounds attended. Many delivered a talk, presenting their recent contributions
in the light of their own perspectives. The quite compact schedule we had did not
prevent many informal interactions to take place over coffee breaks, meals and
lively evenings.

On the theoretical side, we heard about recent theoretical achievements on
quantitative rates of convergence in stochastic homogenization, on the Einstein
relation, or on derivations of models for rough boundaries. Several contributions
presented novel results on homogenization in the presence of large random poten-
tials and on the derivation of macroscopic models to understand the energy density
and phase information of waves propagating in highly heterogeneous media. Sev-
eral discussions focused on the relatively uncharted territory of understanding the
propagation of uncertainty from the coefficients in an equation to the solution of
said equation.

Many numerical analysis talks were devoted to novel numerical methods for
approximating the solution space of PDEs with rough coefficients and possibly
with non-separated scales. This generated intense discussion among the partici-
pants. Common features and differences between the approaches were discussed in
terms of robustness, cost, assumptions made, generality, ease of implementation,
mathematical rigor and optimality. While there is a variety of heuristic numeri-
cal schemes, the mathematical understanding of such problems remains relatively
underdeveloped. The workshop helped fill that gap through such discussions.

Techniques using polynomial chaos expansion were also a topic of choice. Vari-
ance reduction issues, and more general aspects of Monte-Carlo methods, were
the topic of several talks. Applications as varied as transport processes through
membranes, wave propagation phenomena, underground flows in porous media,
nanotechnologies, colloid dynamics, optimal design of trussed materials, modeling
of composite materials used in the aerospace industry, were addressed. Based on
the feedback already received from participants, we consider the organization of
such a workshop equally beneficial for scientists interested in theoretical issues, ap-
plied mathematicians developing numerical techniques, and mechanical engineers
in contact with practical problems. The mixing of experts at deterministic and
stochastic techniques was extremely rewarding for both camps. We hope other
workshops in the same spirit will be organized in the near future.
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Abstracts

Coupling reduced basis and numerical homogenization methods for

solving quasilinear elliptic problems

Assyr Abdulle

We study finite element (FE) discretizations of quasilinear second-order elliptic
problems of the form

(1) −∇ · (aε(x, uε(x))∇uε(x)) = f(x) in Ω, uε(x) = 0 on ∂Ω,

where Ω is a bounded convex polyhedron in Rd with d ≤ 3. The d × d tensor
aε(x, s), assumed to be uniformly elliptic and bounded, is allowed to vary on a very
small spatial scale denoted by ε. We note that the homogenization of this problem
has been studied in [8],[9], where it is shown that the homogenized equation is of
the same quasilinear type as the original equation, with aε(x, uε(x)) replaced by a
homogenized tensor a0(x, u0(x)) depending nonlinearly on a homogenized solution
u0. We are interested in the following two problems:

• derive an efficient numerical homogenization of (1) (i.e., a numerical me-
thod that approximate the homogenized solution u0 without the a priori
knowledge of a0(x, u0(x))),

• control the error of the approximation process, i.e., derive an a priori error
analysis.

Notations. We consider a macro finite element (FE) space Sℓ
0(Ω, TH) made of

piecewise polynomial of degree ℓ defined on a family of (macro) partition TH of Ω
in simplicial or quadrilateral elements K of diameter HK (H ≫ ε is allowed). We
then define a quadrature formula (QF) {xKj

, ωKj
}Jj=1 on each K ∈ TH given by

an affine transformation of a QF from a reference element K̂. For each K ∈ TH
and xKj

∈ K, j = 1, . . . , J, we define a sampling domain Kδj = xKj
+ (−δ, δ)d,

(δ ≥ ε) and we consider a micro FE space Sq(Kδj , Th) ⊂ W (Kδj ) with simplicial
or quadrilateral FEs and piecewise polynomial of degree q (Th is a conformal and
shape regular family of triangulation Th). The spaceW (Kδj ) is either the Sobolev

space W (Kδj ) = W 1
per(Kδj ) = {z ∈ H1

per(Kδj );
∫
Kδj

zdx = 0} or W (Kδj ) =

H1
0 (Kδj ).

The numerical homogenization method. We work in the framework of the
finite element heterogeneous multiscale method (FE-HMM) [1, 10, 4] and consider
the following micro-macro FEM [5]: Find uH ∈ Sℓ

0(Ω, TH) such that

BH(uH ;uH , wH) = F (wH), ∀wH ∈ Sℓ
0(Ω, TH),

where

BH(uH ; vH , wH) =
∑

K∈TH

J∑

j=1

ωj,K

|Kδj |

∫

Kδj

aε(x, uHKj
)∇vhKj

(uHKj
) · ∇wh

Kj
(uHKj

)dx,
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and vhKj
(s) is sol. of the micro pblm vhKj

(s)− vHlin ∈ Sh(Kδj , Th)∫

Kδj

aε(x, s)∇vhKj
(s) · ∇zhdx = 0 ∀zh ∈ Sh(Kδj , Th),

and similarly for wh
Kj

(s)). Here we use the short-hand notation uHKj
= uH(xKj

).

The Newton method. A practical computation of a macroscopic numerical
solution relies on a Newton method: consider a sequence {uHk } such that

∂BH(uHk ;uHk+1 − uHk , w
H) = FH(wH)−BH(uHk ;uHk , w

H) ∀wH ∈ Sℓ
0(Ω, TH),

where the Fréchet derivative ∂BH is given by

∂BH(zH ; vH , wH) := BH(zH ; vH , wH)

+
∑

K∈TH

J∑

j=1

ωKj

d

ds
a0Kj

(s)|s=zH (xKj
)v

H(xKj
)∇zH(xKj

) · ∇wH(xKj
).

For the implementation we consider zHk =
∑Mmacro

i=1 U i
kφ

H
i , Uk = (U1

k , . . . , U
Mmacro

k )T

(
B(zHk ) +B′(zHk )

)
(Uk+1 − Uk) = −B(zHk )Uk + F.

The local contribution to the stiffness matrix relies on the matrices BK(zHk ) and

B′
K(zHk ). This latter matrix involves the computation of ∂

∂s (BK,j(s)) that can

be approximated by ∂
∂s (BK,j(s)) ≈ BK,j(s+

√
eps)−BK,j(s)√
eps . Hence, at each iteration

of the Newton method, we have to solve O(Mmac) micro problems, where Mmac

represents the macroscopic degrees of freedom (DOF). Furthermore the a-priori
estimates given in [5] indicate that the DOF in each micro problem have to increase
as Mmac increases.

Reduced basis FE-HMM. In order to reduce the computational complexity
of the FE-HMM, we suggest a reduced basis (RB) FE-HMM. The use of RB for
numerical homogenization problems has first been proposed in [12] and analyzed
for the FE-HMM for a class of linear elliptic problems in [3],[6]. The RB-FE-
HMM method is based on offline and online stages. In the offline procedure,
accurate micro solutions for the original problem on sampling domains are selected
and computed. Theses micro problems are parametrized by the location of the
cell problem in the domain Ω and (for nonlinear problems) by the value of the
macroscopic solution at this location. We consider a compact subspace D of Ω×R

(D should be chosen such that Tδ ⊂ Ω, for all (xτ , s) ∈ D). For any randomly
chosen parameter we define the map Gxτ

from the physical sampling domain
Tδ = xτ + (−δ/2, δ/2)d centered at xτ to the reference domain Y . A greedy
algorithm allows to choose an optimal basis of micro functions

ŜN (Y ) = span{ξ̂N ,n(y), n = 1, .., N}
that is computed with high accuracy for selected values of the parameters.

We note that a crucial ingredient for the Greedy algorithm are appropriate a
posteriori error estimates for the construction of the basis of ŜN (Y ). As the pre-
computed microscopic functions depend nonlinearly on the macroscopic solution,
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we introduce a new a posteriori error estimator for the Greedy algorithm that
guarantees the convergence of the online Newton method and the uniqueness of
the method.

In the online stage, the micro problems are then computed in the sampling
domains Kδj as defined above using the reduced basis space (a shifted and scaled

version of ŜN (Y )). If one has an “affine” representation of the tensor aε(x, s) =

a(x, x/ε, s) =
∑Q

q=1 Θq(x, s)aq(x/ε) then the online micro problems can be com-

puted by solving a small N × N linear system (essentially pre-assembled in the

onfline stage), whereN is the dimension of ŜN (Y ) (N is usually small when the RB
strategy applies). When the affine representation is not available an interpolation
method [11] can be used to approximate the tensor in an affine form.

A priori error estimates in terms of macro, micro, modeling and reduced basis
errors have been derived for the RB-FE-HMM applied to quasilinear homogeniza-
tion problems have been derived in [7], generalizing results for quasilinear problems
previously obtained for the FEM [2] and the FE-HMM [5].
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How to construct a corrector when the homogenization limit may not

exist due to non-separated scales.

Leonid Berlyand

(joint work with Houman Owhadi and Lei Zhang)

The homogenization of PDEs with periodic or random ergodic coefficients and
well-separated scales is well understood. In particular, one of the central issues is
the construction of the corrector that provides an approximation in the H1 norm.

In this talk we present an overview of three subsequent constructions of a gen-
eralized corrector (GC) for the most general case of arbitrary L∞ coefficients for
linear problems, which may contain infinitely many scales that are not necessarily
well-separated or ergodic. The key issue here is a proper generalization of the
periodic cell problem. For stationary & ergodic coefficients such a generalization
was obtained by S. Kozlov in his seminal work on random homogenization.

First, we present results of a joint work with H. Owhadi [1] when GC is con-
structed from globally supported solutions of “cell problems” (basis functions).
This construction required an introduction of novel notions of the flux norm and
the transfer property. While allowing for the optimal constant in the error esti-
mate that does not depend on the contrast, the numerical implementation is rather
costly due to the global support of the basis functions. This motivated a subse-
quent work by H. Owhadi and L. Zhang [2], where localized basis functions with

support
√
h log 1/h were developed. We next present the results of this work and

the main ideas of the proof that is based on the Caccioppoli inequality and expo-
nential decay of the Green’s function for an auxiliary problem. Finally, we briefly
mention the most recent joint work with H. Owhadi and L. Zhang [3], described
in the talk by L. Zhang, where GC is constructed from a variational polyharmonic
nodal basis with support h log 1/h.
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Some variants of stochastic homogenization

Xavier Blanc

(joint work with C. Le Bris, P.-L. Lions)

We review works in which the setting for stochastic homogenization is seen as a
perturbation of the periodic setting. In the case when this perturbation is small,
simplifications are possible for computing the homogenized coefficient.
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1. The classical setting

In [5, 6], the following stochastic setting was introduced: the group (Zd; +) acts
on the probability space (Ω,F ,P), this action is assumed to preserve the measure
P:

(1) ∀y ∈ Zd, ∀B ∈ F , P(τyB) = P(B),

and is assumed to be ergodic:

(2) ∀B ∈ F ,
(
∀y ∈ Zd, τyB = B

)
⇒ (P(A) = 0 or 1).

A function F ∈ L1
loc

(
Rd, L1(Ω)

)
is stationary if

(3) ∀k ∈ Zd, F (x+ k, ω) = F (x, τkω) almost everywhere in x, almost surely.

In this setting, the ergodic theorem can be stated as follows:

Theorem 1 (Ergodic theorem, [7, 8]). Let F ∈ L∞ (Rd, L1(Ω)
)
be a stationary

random variable in the sense of (3). Then

(4) F
(x
ε
, ω
) ∗−⇀

ε→0
E

(∫

Q

F (x, ·)dx
)

in L∞(Rd), almost surely.

This allows to derive a homogenization theory for linear elliptic operator, defin-
ing a homogenized equation with the help of a corrector, which is the solution
to an elliptic stationary equation posed on the whole space Rd. Note that in the
classical works [9, 10], the group acting on Ω is Rd rather than Zd, which is a
different setting. The present one allows to recover the periodic case by simply
assuming that F in (3) is deterministic.

2. Deformation of a periodic structure

In the works [2, 3], we have introduced a slightly different setting which make
it more explicit the fact that the random coefficients of our equation are close
to a periodic reference configuration. This setting is the following: We fix some
Zd-periodic matrix Aper which is uniformly elliptic and bounded, and define

(5) Aε(x, ω) = Aper

(
Φ−1

(x
ε
, ω
))

.

We consider the following homogenization problem:

(6)





−div
(
Aper

(
Φ−1

(
x
ε , ω

))
∇u
)
= f in D,

u = 0 on ∂D,
where the function Φ(·, ω) is assumed to be a diffeomorphism from Rd to Rd P-
almost surely. The diffeomorphism is assumed to additionally satisfy

EssInf
ω∈Ω, x∈Rd

[det(∇Φ(x, ω))] = ν > 0,(7)

EssSup
ω∈Ω, x∈Rd

(|∇Φ(x, ω)|) =M <∞,(8)

∇Φ(x, ω) is stationary in the sense of (3).(9)
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Such a Φ will be called a random stationary diffeomorphism.
We proved in [2] the following results:

Theorem 2. Let Aper be a square matrix which is Zd-periodic, bounded and uni-
formly elliptic, and Φ a random stationary diffeomorphism satisfying hypotheses
(7)-(8)-(9). Then for any p ∈ Rd, the system
(10)



−div
[
Aper

(
Φ−1(y, ω)

)
(p+∇wp)

]
= 0,

wp(y, ω) = w̃p

(
Φ−1(y, ω), ω

)
, ∇w̃p is stationary in the sense of (3),

E

(∫

Φ(Q,·)
∇wp(y, ·)dy

)
= 0,

has a solution in
{
w ∈ L2

loc(R
d, L2(Ω)), ∇w ∈ L2

unif(R
d, L2(Ω))

}
. Moreover, this

solution is unique up to the addition of a (random) constant.

Theorem 3. Let D be a bounded smooth open subset of Rd, and let f ∈ H−1(D).
Let Aper and Φ satisfy the hypotheses of Theorem 2. Then the solution uε(x, ω) of
(6) satisfies the following properties:

(i) uε(x, ω) converges to some u0(x) strongly in L2(D) and weakly in H1(D),
almost surely;

(ii) the function u0 is the solution to the homogenized problem:

(11)





−div (A∗∇u) = f in D,

u = 0 on ∂D.
In (11), the homogenized matrix A∗ is defined by:

(12) A∗
ij = det

(
E

(∫

Q

∇Φ(z, ·)dz
))−1

· E
(∫

Φ(Q,·)
(ei +∇wei(y, ·))T Aper

(
Φ−1(y, ·)

)
ej dy

)
,

where for any p ∈ Rd, wp is the corrector defined by (10).

In the theorems above, we have used the notation L2
unif for the uniform L2

space, that is, L2
unif =

{
f ∈ L2

loc, sup
x∈Rd

, ‖f‖L2(Rd) < +∞
}
.

It is worth noticing that, in general, the matrix Aper ◦ Φ−1 is not stationary,
that is, it does not satisfy (3).

The above results have been extended to the nonlinear case in [1].

3. Deformation close to identity

In the case of a diffeomorphism Φ which is close to identity, that is, if

Φ(x, ω) = x+ ηΨ(x, ω),
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where η is small, and if Aper is smooth, it is possible to expand the result A∗ in
powers of η, finding an expansion in which the first terms are defined by deter-
ministic formulas:

(13) A∗ = A0 + ηA1 +O(η2),

where A0 is the homogenized matrix associated to Aper, and A
1 is the expectation

value of some linear functions of ∇Ψ. Therefore, it may be computed directly as
a deterministic function of E(∇Ψ). See [3] for the details.

This is particularly useful as far as numerical computations are considered.
Indeed, if one assumes the above expansion for Φ, and if the first two terms in (13)
are sufficient for the purpose at hand, the computational cost is greatly improved:
instead of solving problem (10), which is set in the whole space Rd, we only need
to solve corrector-like problems on the periodic cell Q. See [4] for the details.
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Kinetic limit for a wave equation in a medium with weak random

disorder

Maximilian Butz

Introduction

For a realistic description of wave propagation one has to account for possible
inhomogeneities of the underlying medium. Physical examples include waves trav-
elling in a shallow water of varying depth, elastic waves in composite materials or
light propagating through air with temperature fluctuations.

When modeling the disorder of the medium as random fluctuations of the index
of refraction, there are three space scales of the problem: the correlation length
of the fluctuations (CL), the typical wavelength (WL), and the observation scale
(OS) on which we want to understand the energy transport of the wave.

Cases that have been mathematically rigorously studied make use of a clear
scale separation of wavelength and correlation length (WL≪ CL ≈ OS in [4], or
WL≪ Cl ≪ OS in [1]) or model the random medium as time dependent ([2] for
the case of a random Schrödinger equation).

A particularly interesting case, however, is when the waves can fully interact
with the inhomogeneities, i.e. WL ≈ CL = O(1). We consider the system in the
kinetic limit, with weak O (

√
ε) disorder and observe the propagation behavior on

large O(1/ε) space and time scales.
In this scaling, Erdös and Yau [3] investigate a Schrödinger equation with weak

random potential,

(1) i
d

dt
ψ = (−∆+

√
εV )ψ.

while [6] consider a discrete analog of the present problem, the propagation of
elastic vibrations through a cubic crystal lattice,

(2) my
d2

dt2
uy = (∆latticeu)y ,

where the presence of different isotopes leads to O (
√
ε) fluctuations of the atom

masses my. As the space variable y ∈ Z3 is discrete the Fourier space is com-
pact. In both cases the main object of the analysis is the Wigner function to be
introduced below, and the limit is governed by a linear Boltzmann equation.

In my talk I want to present a rigorous proof of the kinetic limit for the case of
a continuous wave equation. As the main goal is to understand how to deal with
the randomness of the medium and the scaling limit, the wave equation itself will
be chosen as simple as possible, a scalar wave equation on Rd,

(3)
∂2

∂t2
u(x, t) = c(x)2∆u(x, t).
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Wigner Functions

We start (3) with initial conditions

u(x, 0) = u0(x)

∂

∂t
u(x, 0) = v0(x),

(4)

where u0 ∈ H1
(
Rd;R

)
and v0

c ∈ L2
(
Rd;R

)
. The speed of wave propagation

is assumed to have average one, and to be perturbed in the neighborhood of
the points (yn) generated by a Poisson point process (with Lebesgue measure as
intensity measure) on Rd. So it reads

(5) c(x) = 1 +
√
εξ(x)

with a small parameter ε > 0 and a random field

(6) ξ(x) =
∑

n∈N

φ(x − yn)−
∫

Rd

φ(y)dy

where φ is a positive function on Rd with certain smoothness and decay conditions.
With Ω =

√
−∆ we define ψ = ψ(x, t) as

(7) ψ =

(
ψ+

ψ−

)
=

1

2

(
Ωu+ i∂tu/c
Ωu− i∂tu/c

)

and arrive at a Schrödinger-type equation

(8) i
d

dt
ψε = Hεψ

ε.

The selfadjoint operator Hε is random and ε-dependent by

Hε = H0 +
√
εV

=

(
Ω 0
0 −Ω

)
+

√
ε

2

(
Ωξ + ξΩ −Ωξ + ξΩ
Ωξ − ξΩ −Ωξ − ξΩ

)
.

(9)

The Wigner transform of ψε is a 2 × 2 matrix-valued function defined on the
macroscopic (x, k) phase space,

W ε
σ′σ[ψ

ε](x, k)

= ε−d

∫

Rd

dyei2πk·yψε
σ′

(x
ε
+
y

2

)
ψε
σ

(x
ε
− y

2

)
.

(10)

We now want to understand the limit behavior of the disorder-averaged Wigner
functionW ε

++[ψ
ε(t/ε)]. Typically, one would test weak convergence with Schwartz

functions J on R2d,

(11)
〈
J,W ε

++

〉
=

∫

R2d

dxdkJ(x, k)W ε
++(x, k).
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However, the dispersion relation ω(k) = 2π|k| of the wave equation is not smooth
at the origin, so we obtain a higher resolution at k ≈ 0 in a similar manner to [5]:

(12)
〈〈
a,W ε

++

〉〉
=

∫

R2d

dxdka

(
x, k,

k

ε

)
W ε

++(x, k).

Roughly speaking a(x, k, q) is uniformly Schwartz in x, k, smooth in q and con-
verges to a radial limit a(x, k, q) → b(x, k, q/|q|) as |q| → ∞.

For this class of test functions and initial conditions ψε(t = 0) bounded in
L2
(
Rd;C2

)
and tight on momentum and macroscopic position space, we can prove

our main result.

Main Result

Let all above assumptions hold and fix a space dimension d ≥ 2. Then there exists
a subsequence ε→ 0 and positive, bounded Borel measures µ0 on Rd×

(
Rd \ {0}

)

and µH
0 on Rd × Sd−1 as well as a vector ϕ0 ∈ L2

(
Rd;C

)
such that for all a as

described above and all t ≥ 0

lim
ε→0

E
[〈〈
a,W ε

++[ψ
ε(t/ε)]

〉〉 ]
=

=

∫

Rd×(Rd\{0})
µt(dx, dk)b(x, k, k/|k|)

+

∫

Rd×Sd−1

µH
t (dx, dq)b(x, 0, q)

+
〈
a0,W

1[ϕt]
〉

(13)

with a0(x, q) = a(x, 0, q), W 1 a non-scaled Wigner function. The time-evolution
of the limit object

(
µt, µ

H
t , ϕt

)
from the initial state

(
µ0, µ

H
0 , ϕ0

)
reads

d

dt
µt(x, k) = − k

|k| · ∇xµt(x, k) +

∫

Rd

νk(dk
′)(µt(x, k

′)− µt(x, k))(14)

d

dt
µH
t (x, q) = − q

|q| · ∇xµ
H
t (x, q)(15)

ϕ̂t(q) = e−2πi|q|tϕ̂0(q),(16)

with measure νk given by

(17) νk(dk
′) = |φ̂(k − k′)|22πδ(2π|k| − 2π|k′|)|2πk|2dk′.

Thus, in the limit, wave motion disintegrates into three decoupled limit dy-
namics: Microscopic waves with wavelengths of the same order of magnitude as
the correlation length of the medium, which scatter off the inhomogeneities; on
macroscopic scales their energy transport is given by a linear Boltzmann equation
(14), with a collision kernel encoding the microscopic properties of the medium.
Mesoscopic waves have wavelengths much larger than the correlation length but
much smaller than the observation scale, thus they do not scatter and they appear
on macroscopic scale as solution of a mere transport equation (15). Finally, there
are macroscopic waves with wavelengths that are still resolved in the scaling limit,
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they do not scatter either and thus are solutions of an unperturbed wave equation
(16).
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Towards an optimization of the slip length of viscous fluids near rough

walls

Anne-Laure Dalibard-Roux

(joint work with D. Gérard-Varet, D. Bucur, M. Bonnivard)

In this talk, I will present some recent results about wall laws for viscous fluids
in the vicinity of a rough boundary. When the roughness is random stationary
and ergodic, one can prove that in general, the wall law is Dirichlet at first order,
and Navier at second order with an effective slip length of the same order as the
amplitude and the wave length of the roughness. The derivation of the Navier wall
law involves a multi scale expansion with a boundary layer corrector, in the spirit
of homogenization problems.

Once the wall law is derived, the issue is to design roughness profiles which
maximize the slip length, so as to minimize energy losses. We will review differ-
ent tools which enable us either to prove or to guess which profiles are optimal
(domain derivation techniques, numerical simulations, periodic homogenization
theory, direct computation).

Generalized multiscale finite element method with oversampling

Yalchin Efendiev

In this talk, I describe generalized multiscale finite element method. In this
method, as a construction of offline and online spaces, we propose an efficient
local model reduction technique for multiscale problems. I discuss oversampling
technique within GMsFEM and present convergence results. Numerical results are
presented.
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Optimization of structurally graded materials

Virginie Ehrlacher

(joint work with C. Le Bris, F. Legoll, G. Leugering, M. Stingl, F. Wein)

We consider microstructured materials whose composition evolves gradually at the
macroscopic scale. An example of such material is shown in the picture below.

Our aim is to optimize the microstructure of such a material with respect to
given loading scenarios and boundary conditions. More precisely, let d ∈ N∗,
Ω ⊂ Rd and S ⊂ Ω an open subset of Ω. We assume that the domain Ω is
occupied by a given linear elastic material in the domain S, characterized by a

linear elasticity tensor
(
E0

ijkl

)
1≤i,j,k,l≤d

, and by void in the domain Ω \ S. More

precisely, the linear elastic tensor of the microstructured material is given by

∀1 ≤ i, j, k, l ≤ d, ∀x ∈ Ω, ES
ijkl(x) = χS(x)E

0
ijkl ,

where

∀x ∈ Ω, χS(x) :=

{
1 if x ∈ S,
η if x /∈ S,

where η > 0 is a small regularization parameter.

For the sake of simplicity, we will assume that the material is subject to external

volumic forces f ∈
(
L2(Ω)

)d
and that Dirichlet boundary conditions are imposed

on the displacement field. Thus, if the material occupying the domain Ω is charac-
terized by a linear elasticity tensor field (Eijkl(x))1≤i,j,k,l, the displacement field

uE of the material is the unique solution of (using Einstein’s relations)

(1)

{
find uE ∈

(
H1

0 (Ω)
)d

such that

∀v ∈
(
H1

0 (Ω)
)d
,
∫
ΩEijkl(x)eij

(
uE
)
ekl (v) dx =

∫
Ω f · v,
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where for all 1 ≤ i, j ≤ d and all v = (vk)1≤k≤d ∈
(
H1

loc(R
d)
)d
,

eij(v) :=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
.

For the sake of simplicity, using a slight abuse of notation, we shall denote by
EuE = f to refer to the fact that uE is the unique solution of problem (1).

Typical optimization problems we would like to consider are of the following
form:

(2) Find Sopt such that Sopt ∈ argmin
S ∈ S

ESuES

= f

C
(
uES

)
≤ c

J
(
uES

, S
)
,

where

• S is an admissible set of structures S, which encodes the structural con-
straints of the material to optimize;

• J is a cost functional to minimize;

• C denotes some constraints which must be satisfied on uES

.

Unfortunately, it is well-known that a minimization problem of the form (2) is
ill-posed in general [1].

We propose an alternative way of considering this problem: let g : Ω → Rd be
a macroscopic mapping, let ε > 0 be a small real number, Y = (0, 1)d the unit
cube of Rd and χper ∈ L∞

per(Y, {η, 1}) a fixed Y -periodic function with values in
{η, 1}. Instead of considering materials whose microstructure is characterized by
a general subset S of the domain Ω, we are going to consider structures S such
that their characteristic function χS is of the form

∀x ∈ Ω, χS(x) = χper

(
g(x)

ε

)
.

Our aim is then to keep χper and ε fixed and optimize the structure of the material
by optimizing the choice of the macroscopic mapping g.

We would like to consider two different strategies: the first one consists in using
the homogenization formulae proved by Bensoussan, Lions and Papanicolaou in the
limit when the size of a microcell of the material goes to 0 to model the properties
of the macroscopic material; the second one consists in taking into account the fact
that the size of the microcell is indeed small, but not 0, and to use an adapted finite
element method such as a Multiscale Finite Element Method (MsFEM) to compute
efficiently the properties of this material. In order to perform these computations
in practice, it will be necessary to use advanced reduced-order modeling methods
such as reduced basis or greedy algorithms. This is currently work in progress.
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Stochastic Homogenization for Small Isotropic Perturbations of the

Heat Equation

Benjamin Fehrman

In this talk, we describe some analytic methods used to understand the limiting
behavior of solutions uǫ to drift-diffusion equations

(1)

{
uǫt − tr(A(xǫ , ω)D

2uǫ) + 1
ǫ b(

x
ǫ , ω)Du

ǫ = u1(x) on Rd × (0,∞),
uǫ = u0 on Rd × {0} ,

which are small, isotropic perturbations of the heat equation.
Precisely, the coefficients are bounded, Lipschitz continuous, stationary ergodic

and, additionally, satisfy a restricted isotropy condition introduced by Bricmont
and Kupiainen [1] in the discrete setting and considered by Sznitman and Zeitouni
[3] in the continuous setting. For every orthogonal transformation r preserving the
coordinate axis, for every x ∈ Rd,

(2) (b(rx, ·), A(rx, ·)) and (rb(x, ·), rA(x, ·)rt) have the same law.

Furthermore, the coefficients satisfy a finite range dependence.
We will focus on the following result.

Proposition 1. [3] (d ≥ 3) There exists η > 0 and α > 0 such that if

|b(x, ω| ≤ η and |A(x, ω)− I| ≤ η

then, almost surely, as ǫ→ 0,

uǫ → u locally uniformly on Rd × [0,∞),

for u satisfying {
ut − α∆u = u1 on Rd × (0,∞),
u = u0 on Rd × {0} .

The essential difficulty toward obtaining homogenization is the lack of estimates,
uniform in ǫ, for the solutions of (1). As a result, and in contrast to the case b = 0,
see Papanicolaou and Varadhan [2], an invariant measure will not exist, in general,
for the underlying process.

The proof therefore follows by an induction argument which propagates pde
analogues of the localization, trapping and contraction controls appearing in [3]
along a sequence of finer length scales. The finite range dependence and isotropy
are used to ensure that these controls are satisfied, with high probability, on a
large portion of space as the length scale approaches zero.
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Model reduction in homogeneous chaos spaces

Roger Ghanem

Optimal basis are sought through a rotation of Gaussian variables with respect to
which polynomial chaos spans are constructed. Those bases are used in solving
partial differential equations whose coefficients are random variables or processes.
A number of arguments are also presented for the selection of these rotations.
The resulting approximations reduce very high-dimensional problems into either
a 1-dimensional problem or a sequence of 1-dimensional problems

A quantitative two-scale expansion in stochastic homogenization

Antoine Gloria

(joint work with Stefan Neukamm, Felix Otto)

Consider a discrete elliptic equation on the (discretized) unit torus, with iid con-
ductivities. We then show that the L2-norm is probability of the discrete H1-norm
in space of the first two terms of the two-scale expansion decays as “ε” (up to a
logarithm in dimension 2). The proof relies on a covariance estimate, bounds on
the moment of the corrector, an estimate of the error on the approximation of the
homogenized coefficients by periodization, and annealed estimates on the random
Green’s function (first two derivatives).

Asymptotic behaviors for the Random Schrödinger Equation with

Slowly Decaying Correlations

Christophe Gomez

The topic of the talk concerned wave propagation in random media with slowly
decaying correlations. The motivation of this study comes from data collections
in real environments, such as laser beams propagation through the atmosphere,
geophysics, and medical imaging, showing the possibility to encounter such propa-
gation media. Waves propagating in such environment undergo multiple scattering
and it is necessary to understand this mechanism for application purposes. For
random environments with rapidly decaying correlations wave scattering is de-
scribed through the notion of scattering mean free path describing the expected
propagation distance for which a signal becomes partially coherent. However, for
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random media with slowly decaying correlations the scattering mean free path is
not defined anymore. Nevertheless, as described below, it is possible to derived
kinetic models for wave decoherence in such random media.

Monochromatic wave propagation can be described using the so-called paraxial
wave equation given by the following random Schrödinger equation :

iκ∂zφ+
1

2
∆xφ+ κ2σV (z,x)φ = 0

where φ is the wave field amplitude, z is the main propagation axis coordinate,
κ = 2π/λ is the wavenumber (λ is the wavelength), and x ∈ Rd the transverse
section variable. The fluctuations of the propagation medium are given by V and
σ represents the amplitude of the fluctuations. The problem was to understand
the scattering effects for high frequency waves. A classical tool to do so is the
following Wigner transform

W (z,x,k) =
1

(2π)d

∫
dyeik·yφ

(
z,x− lc

y

2

)
φ
(
z,x+ lc

y

2

)

which is the spatial Fourier transform of the two points correlation function of the
wave field. This tool describes the loss of coherence of the wave field φ on a spatial
correlation scale lc through diffusion phenomena on the wavevector k. In this
talk, we have characterized anomalous diffusion phenomena of the wavevector over
several propagation scales. If the wave propagates over large distances, cumulative
scattering effects may start to become significant. The first decoherence effects
happen after a propagation distance L1 on a correlation scale lc,1 (related to the
propagation distance) and can be described thanks to the following stochastic
partial differential equation

dW (z,x,k) = − σ(θ)(−∆k)
θ/2W (z,x,k)

+ i

∫
dBz(dp)e

ix·p
(
W
(
z,x,k− p

2
)−W

(
z,x,k+

p

2
)
)
, θ ∈ (0, 1),

where (Bz)z is a Wiener process depending on the statical properties of the random
medium (as well as θ and σ(θ)), and whose solution is

W (z,x,k) =
1

(2π)d

∫
dqŴ

k(0,x,q) exp
(
ik · q+ i

∫
Bz(dp)e

ip·x(e−iq·p/2
− e

iq·p/2)
)
.

The random part of the previous equation suggests an uncertainty on the wavevec-
tor diffusion behavior. However, when the wave propagates further (L2 ≫ L1)
the randomness averages out, the loss of coherence of the wave field happens on
smaller spatial scales lc,2 ≪ lc,1, and can be described by the following fractional
heat equation

∂zW (z,x,k) = −σ(θ)(−∆k)
θ/2W (z,x,k).

The meaning of lc,2 ≪ lc,1 when L2 ≫ L1 is that we lose first the coherence of the
wave field on its large structures before losing it on its smaller structures. Finally,
for larger propagation distances (L3 ≫ L2 ≫ L1) the smallest scales of the wave
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field lc,3 ≪ lc,2 ≪ lc,1 are also affected and the loss of coherence can be described
thanks to the following radiative transport equation

∂zW (z,x,k) + k · ∇xW (z,x,k) =

∫
σ(p)

(
W (z,x,k+ p)−W (z,x,k)

)
,

where σ(p) described how the wave field is scattered, and depends on the statical
properties of the random medium. The three previous regimes show that all the
spatial scales of the wave field are affected, some of them earlier than if the medium
has rapidly decaying correlations, and it is not possible to defined a scattering
mean free path, it would be 0. In the other hand, this means that the wave field is
strongly affected throughout the propagation and produce a very nice smoothing
effect in k and x. These results have been published in the two following papers :
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Deterministic and stochastic homogenization problems with new

applications in nanotechnology

Clemens Heitzinger

(joint work with Pierre Degond, Peter Markowich, and Christian Ringhofer)

Introduction

Non-standard deterministic and stochastic homogenization problems arise natu-
rally from the modeling of recent devices in nanotechnology and nanostructured
metamaterials. Non-standard situations are, e.g., homogenization at surfaces, and
using systems of equations to describe the physics. Related problems arise from
the modeling of confined structures such as nanopores and ion channels.

An overview of recent results is given. For the concrete applications discussed
here, very good agreement with experimental data has been achieved in numerical
simulations based on these homogenized model equations.

In nanotechnology, homogenization problems arise immediately due to the in-
herently different length scales of single features and whole devices. Examples of
potentially great impact are nanowire biosensors [1, 2, 3, 4, 5] and nanowire gas
sensors [6, 7], as nanowires have several advantages for sensing applications.

In these and related applications, stochastic homogenization problems also arise
naturally in addition to deterministic ones. Inevitable noise and fluctuations result
in fluctuations in the functional that corresponds to the sensor response, and
quantifying these uncertainties makes it possible to determine the signal-to-noise
ratio.



824 Oberwolfach Report 14/2013

Homogenization results

One of the first problems solved was a homogenization problem for the Pois-
son equation with a periodic, highly oscillatory charge concentration at a material
interface [8]. We found that the highly oscillatory charges are replaced by two
interface conditions after homogenization. The two interface conditions are jumps
in the solution and in essentially its normal derivative, and the sizes of the jumps
depend on the surface-charge density and the dipole-moment density of the bound-
ary layer. Based on this result and an existence and local-uniqueness result for a
system of equations [9], it has became possible to study the current-voltage char-
acteristics of realistic nanowire sensors in 2D and 3D simulations [10]. In order
to simulate nanowires with very large aspect ratios, we additionally developed the
first parallel algorithm for the drift-diffusion-Poisson system with jumps at an in-
terface [11]. Comparison with measurements of different devices yielded excellent
agreement. Therefore, this model enables the rational design and optimization
of nanowire bio- and gas sensors despite the nonlinear interdependence between
design parameters [10, 12, 5].

In the next step, an effective equation for the covariance of the solution of the
Poisson equation was derived in [13] for the problem with a stochastic boundary
layer. Given the stochastic process of the boundary layer, the variance of the
solution can be calculated efficiently as the diagonal of the solution of the effective
equation for the covariance. Numerical results were also discussed and compared
to the Monte-Carlo method.

A problem with a stochastic boundary layer was considered numerically in [14],
where the actual probability distribution of the molecules was calculated from
their electrostatic free energy by solving the nonlinear Poisson-Boltzmann equa-
tion. This approach based in the physics of the problem goes beyond the popular
assumption of normal distributions. The numerical results indicate how the fluc-
tuations and the noise in nanowire devices can be reduced.

For the simulation of the functional devices mentioned above, transport equa-
tions are needed. Therefore we have been working on the homogenization of the
most general system for many-particle systems, namely the Boltzmann-Poisson
system

−∇ · (Aǫ∇uǫ) = ρǫ + gǫ,(1a)

∂tfǫ +
1

ǫ
{Eǫ, fǫ}xv =

1

ǫ2
Q(fǫ)(1b)

in a diffusive scaling. This system is the most general approach towards the
simulation of these devices. Again, highly oscillatory charge concentrations live at
a surface or a manifold. A drift-diffusion equation with effective coefficients can
be derived by homogenization of the system (1).

Nanopores and ion channels lead to related multiscale problems. When mod-
eling confined structures, the essential problem is that bulk coefficients are not
correct. Therefore, a multiscale problem involving transport through confined
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structures was solved in [15]. The main model equation is the Boltzmann equa-
tion (1b), a (6 + 1)-dimensional equation. The result is a (2 + 1)-dimensional
diffusion-type transport equation whose transport coefficients are given – even in
closed form – by the (harmonic) confinement potential. For the first time, the
physically correct coefficients in the transport equation can be calculated. Addi-
tionally, the computational effort is considerably decreased; currents and fluxes
can be calculated directly in contrast to time consuming particle Monte-Carlo
simulations. Very good agreement with measurements of various ion channels was
found [16].

Conclusions

New homogenization problems arising from multiscale problems in applications
in nanotechnology were solved. Numerical simulations based on the homogenized
equations were developed and simulation results were compared with measure-
ments of nanoscale devices. Very good agreement was found.

Current and future work involves more sophisticated model equations and sys-
tems of equations. There is also plenty of opportunity to use stochastic homoge-
nization to quantify noise, fluctuations, and uncertainties.
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Corrector Analysis for Some Heterogeneous Multi-Scale Schemes

Wenjia Jing

(joint work with Guillaume Bal)

It is well known that homogenization theories provide natural benchmarks for
multi-scale numerical methods designed to solve partial differential equations with
highly oscillatory coefficient. In this talk, we introduce the so-termed corrector
theory which concerns the distributions of the fluctuations in a heterogenous PDE
compared with the homogenized one. We show that corrector theories provide
natural benchmarks for multi-scale numerical methods to evaluate their ability
in capturing the fluctuations of the heterogeneous PDEs, which is important in
many applications and is often among the main objectives of multi-scale methods.
Using benchmarks of this kind, and considering several methods in the general
framework of heterogeneous multi-scale methods (HMM) of E and Engquist, we
investigate the competition between savings in the computation and accuracy in
capturing the fluctuations. Further, our corrector theory may provide remedies
for the contradiction between the two.

More precisely, let uǫ and u0 denote the solutions to the heterogeneous PDE and
the homogenized one, where some coefficient qǫ(x, ω) = q(xǫ , ω) of the former is
rescaled from a stationary ergodic random field q(x, ω) on some probability space
(Ω,F ,P). Let E denote the expectation. The fluctuation in the heterogeneous
PDE is defined to be uǫ − Euǫ. The corrector theory is therefore of the form

uǫ(x, ω)− Euǫ(x, ω)

ǫγ
distribution−−−−−−−→

ǫ→0
σ

∫
G(x, y)u0(y) dW

γ(y),
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where ǫγ is the order of the fluctuation in the L2 norm, G(x, y) is the Green’s
function of the homogenized equation, σ is some constant depending on q and W γ

is some Gaussian process. Depending on the settings, the convergence makes sense
as in distribution of continuous paths, L2 paths, or merely weakly in x. The result
depends on the de-correlation structure of q(·, ω). In particular, when q is short

range correlated, γ = d
2 and W

d
2 is the standard multi-parameter Wiener process;

when q is a function of a stationary Gaussian field whose correlation function
behaves like c|x|−α, α < d for large |x|, then γ = α

2 and W
α
2 is a Gaussian

random field with correlation function c|x − y|−α. Such corrector theories are
difficult to obtain for general PDEs but are available for the one dimensional
steady diffusion operator − d

dx

(
aǫ(x)

d
dx

)
and for the elliptic operator with random

potential (P (x,D) + q0) + qǫ(x). We refer to [9, 7, 1, 3, 4, 2] for more details.
Based on the corrector theory, we build a benchmark to test the performances of

multi-scale numerical methods in capturing the fluctuations of the heterogeneous
problem. Let uhǫ be the solution to the heterogeneous equation given by the
numerical methods with discretization size h, and let uh0 be the solution to the
homogenized equation given by the same method. Consider the following diagram:

uhǫ − uh0

ǫ
α∧d
2

(x, ω)
h→0−−−−→
(i)

uǫ − u0

ǫ
α∧d
2

(x, ω)

ǫ→0

y(ii) (iii)

yǫ→0

Uh
α∧d(x;W

α∧d)
h→0−−−−→
(iv)

Uα∧d(x;W
α∧d).

The scaling α ∧ d depends on the de-correlation structure of q as remarked. Path
(iv) is precisely the corrector theory before. We are interested in Paths (ii) and
(iii). What is the intermediate distribution when ǫ ↓ 0 while h is fixed? More
importantly, does this distribution converges to the one given by the corrector
theory when h ↓ 0?

We analyze this diagram using the aforementioned ODE/PDE and random field
models for some numerical methods in the framework of HMM [8]. There, besides
h, there is another parameter δ ≤ h, the scale on which fine computations are
made. Usually, δ is much larger than ǫ so as to capture the homogenization limit
and smaller than h to reduce computations. We identify the intermediate limit

Uh,δ
d and further observe: For short range correlated medium, its limit is (h/δ)

d
2 Ud.

For long range correlated medium, however, the intermediate Uh,δ
α converges to the

correct limit Uα even for δ < h. Therefore, savings in computation may come at a
cost of amplifying the fluctuations (depending on the medium). Our theory should
help to remedy this possible amplification effect.

References

[1] G. Bal, Central limits and homogenization in random media, Multiscale Model. Simul., 7
(2008), pp. 677–702.



828 Oberwolfach Report 14/2013

[2] G. Bal, J. Garnier, Y. Gu, and W. Jing, Corrector theory for elliptic equations with oscil-
latory and random potentials with long range correlations, Asymptotic Analysis, 77 (2012),
No. 3-4, pp. 123-145.

[3] G. Bal, J. Garnier, S. Motsch, and V. Perrier, Random integrals and correctors in homoge-
nization, Asymptot. Anal., 59 (2008), pp. 1–26.

[4] G. Bal, and W. Jing, Corrector theory for elliptic equations in random media with singular
Green’s function, Commun. Math. Sci. 9 (2011), No. 2, pp. 383-411.

[5] G. Bal, and W. Jing, Corrector theory for MsFEM and HMM in random media, Multiscale
Modeling and Simulation 9 (2011), pp. 1549-1587.

[6] G. Bal, and W. Jing, Corrector analysis of a heterogeneous multi-scale scheme for elliptic
equations with random potential, preprint 2012.

[7] A. Bourgeat and A. Piatnitski, Estimates in probability of the residual between the random
and the homogenized solutions of one-dimensional second-order operator, Asymptot. Anal.,
21 (1999), pp. 303–315.

[8] W. E, P. Ming, and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic
homogenization problems, J. Amer. Math. Soc., 18 (2005), pp. 121–156 (electronic).

[9] R. Figari, E. Orlandi, and G. Papanicolaou, Mean field and Gaussian approximation for
partial differential equations with random coefficients, SIAM J. Appl. Math., 42 (1982),
pp. 1069–1077.

[10] T. Y. Hou, X.-H. Wu, and Z. Cai, Convergence of a multiscale finite element method for
elliptic problems with rapidly oscillating coefficients, Math. Comp., 68 (1999), pp. 913–943.

Asymptotics of solutions of the stochastic lattice wave equation

Tomasz Komorowski

(joint work with S. Olla, L. Ryzhik)

We consider the long time limit for the solutions of a discrete wave equation
with weak stochastic forcing. The multiplicative noise conserves energy, and in
the unpinned case also conserves momentum. We obtain a time-inhomogeneous
Ornstein-Uhlenbeck equation for the limit wave function that holds for both square
integrable and statistically homogeneous initial data. The limit is understood in
the pointwise sense in the former case, and in the weak sense in the latter. On the
other hand, the week limit for square integrable initial data is deterministic.

Monte Carlo simulations in media with interfaces

Antoine Lejay

(joint work with Sylvain Maire and Géraldine Pichot)

Diffusion problems in media with interfaces between sub-domains are ubiquitous.
Discontinuities in the diffusivity, or thin layers, lead for example to such problems.

We are interested in developing Monte Carlo methods, where a quantity of
interest (pressure, concentration, effective coefficient, ...) is computed by using
the empirical distribution of a cloud of particles moving independently and ran-
domly in such media. Applications may be found in geophysics, brain imaging,
atmospheric study, population ecology, astrophysics, oceanography, chemistry, ...
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More precisely, we consider a one-dimensional infinite medium with an interface
at 0 separating two parts of constant diffusivity D(x) = D− for x < 0 and D(x) =
D+ for x > 0. The concentration of a fluid evolving in the media is governed by
the Fick’s second law

(⋆) ∂tC(t, x) = ∇(D(x)∇C(t, x)), x 6= 0, t > 0 and C(0, x) = C0(x).

As such, (⋆) does not define properly the PDE unless one specifies some conditions
at 0. There are two kind of interfaces conditions we consider here:

(I1)
{
C(t, 0−) = C(t, 0+),

(1− q)D−∇C(t, 0−) = (1 + q)D+∇C(t, 0+)

for some q ∈ (−1, 1) and

(I2)





D+ = D−,

∇C(t, 0−) = ∇C(t, 0+),

λ(C(t, 0+)− C(t, 0−)) = D±∇C(t, 0±).

With q = 0 in condition (I1), it is a rewriting of (⋆) on R with the divergence
form operator ∇(D∇·), where this equation is interpreted as a diffraction problem
(See e.g. [3]). With q = (D(0−)−D(0+))/(D(0+)+D(0−)), then it corresponds
indeed in solving ∂tC(t, x) = D(x)∇C(t, x) over the whole domain. In general,
this interface condition can be reached as the limit by homogenization of a process
with constant diffusivity and a drift periodic on each side of the interface [2].

Condition (I2) is obtained as the limit of a thin layer problem, that is when
the diffusivity is equal to ǫλ on the layer of width ǫ around 0 decreases to 0 (See
e.g. [9]).

Monte Carlo simulations. We are looking at simulating particles starting
from x whose positions at time t have for density the fundamental solution p(t, x, ·)
of the problem (⋆), with respect to the x variable, with the appropriate interface
condition.

The successive positions of the particles t 7→ Xt form continuous but irregular
paths. We then aim at simulating a discretized version (X0, Xδt, X2δt, . . . , XT ) of
(Xt)t∈[0,T ] for a small time step δt.

For both interfaces conditions, X is a (strong) Markov process so that the
distribution of X(k+1)δt given (X0, . . . , Xkδt) depends only on Xkδt. However, X
is not in general solution to a Stochastic Differential Equation (SDE).

Here, we are interested in the behavior of the particle at the interface. Our
results are easily generalized when D varies smoothly away from 0, in presence
of several interfaces or boundary conditions. This is why we take D piecewise
constant for the sake of simplicity.

Until it reaches the interface, the particle moves like a Brownian motion of
diffusivity 2D±. Thus, the successive positions of the particles are easily simulated
by X(k+1)δt = Xkδt +

√
2D(Xkδt)δt × ξ where ξ is a centered, unit, Gaussian

random variable independent fromXkδt. Yet this is only an approximation as there
is always a positive probability that the particle crosses the interface between kδt
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and (k+1)δt. However, as long as |Xkδt| ≫
√
δt, this probability is exponentially

small and may be neglected.
We are then concerned by setting up algorithms when Xkδt belongs to an in-

terval of length proportional to
√
δt around 0.

Condition (I1). With Φ(x) =
∫ x

0 dy/
√
2D(y), the stochastic process Yt = Φ(Xt)

is solution to the SDE with local time

Yt = Y0 +Wt + θL0
t (Y ),

where W is a Brownian motion, L0
t (Y ) is the local time of Y at 0 and θ ∈ (−1, 1)

is a function of D+, D− and q. For example, with a divergence form operator
∇(D∇·), θ = (

√
D+ −

√
D−)/(

√
D+ +

√
D−) while with a non-divergence form

operator D△, θ = (
√
D− −

√
D+)/(

√
D+ +

√
D−).

The local time L0
t (Y ) characterizes the time spend at 0 by the process: L0

t (Y ) =
limǫ→0(2ǫ)

−1λ({s ≤ t;Ys ∈ [−ǫ, ǫ]}), where λ is the Lebesgue measure. The paths
t 7→ L0

t (Y ) of this process are continuous and non-decreasing. They increase only
on a set of measure 0 which is the closure of {t ≥ 0;Yt = 0}. These properties are
a by-product of the irregularities of the paths of the Brownian motion.

The process Y is called a Skew Brownian motion [6]. Using its properties,
several algorithms may be given. Also, its density has a simple form: p(t, x, y) =
γ(t, y−x)+ sgn(y)θγ(t, |x|+ |y|), where γ(t, x) = (2πt)1/2 exp(−|y−x|2/2t) is the
Gaussian density.

In [8], we propose a simulation method in which Y(k+1)δt is exactly simulated
when Ykδt = x is known using the expression of its density p(δt, x, ·). Other algo-
rithms, either based on probabilistic or analytic considerations, are also possible
(See [8] for references).

These works justify the old heuristic that the interface acts like a permeable
barrier. But due to the irregularities of the path, one has to look more closely to
the properties of the process X or Y to give a sound meaning to this statement.

Although we present here some results specific to one-dimensional media, other
algorithms have been proposed for multi-dimensional media with locally isotropic
or orthotropic coefficients with a flat interface. In particular, in [7], we propose
schemes with a better order of convergence than just moving the component of
the process in the normal direction of the interface as in the one-dimensional case.
For layered media, the scheme proposed in [5], which relies on some considerations
of stochastic analysis, provides a simple and exact simulation technique.

Condition (I2). The interface condition (I2) is seen as a semi-permeable barrier:
the particle is reflected on the interface until it crosses it and starts afresh on the
other side.

Using tools from stochastic analysis and the properties of the elastic Brownian
motion which is linked to the Robin boundary conditions, we construct in [4] a
diffusion process X associated to (⋆) with the interface condition (I2) by gluing
together elastic Brownian motions. The time at which the particle passes for the
first time to the other side of the interface is the smallest time at which the local
time of the Brownian motion is greater than an independent exponential random
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variable of parameter λ when D = 1/2. We also provide a simple simulation
algorithm.

Open problems. Many problems remain open regarding interface conditions,
among them:

• The presence of a drift/convection term (See however [1]).
• The multi-dimensional case when the diffusivity tensor is not diagonal on
each side of the interface.

• High contrasts (D+ ≫ D−), where some techniques related to rare events
simulations shall be used.

Acknowledgment. The body of work presented here has been initiated years ago and has been

the subject to several collaborations. I then wish to thank M. Martinez, P. Étoré in addition to
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Variance reduction approaches in stochastic homogenization

Frédéric Legoll

(joint work with William Minvielle)

This work is concerned with the construction of variance reduction approaches
in stochastic homogenization, that aim at better approximating the homogenized
coefficients.

1. Introduction

Let D be a smooth bounded domain in Rd and let f ∈ L2(D). We consider the
elliptic boundary value problem

(1) − div
(
A
(x
ε
, ω
)
∇uε

)
= f in D, uε = 0 on ∂D,
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where ε is a small parameter. The matrix A is assumed to be bounded, uniformly
elliptic, random and stationary in the sense that

(2) ∀k ∈ Zd, A(x + k, ω) = A(x, τkω) a.e. in Rd and a.s.,

where (τk)k∈Zd is a group action on the ambient probability space which is assumed
to preserve the measure and be ergodic. We refer e.g. to [1] for all details on the
probabilistic setting, which we skip here for the sake of brevity. We simply point
out that we adopt here a discrete stationary setting, in contrast to many works in
the literature, where a continuous stationary setting is used. The former is indeed
more adapted to our work than the latter.

In that setting, it is well-known (see e.g. [5, 11]) that the solution uε(·, ω) to (1)
converges (weakly in H1

0 (D) and strongly in L2(D), almost surely) to u⋆, solution
to the homogenized problem

(3) − div (A⋆∇u⋆) = f in D, u⋆ = 0 on ∂D,
where the homogenized matrix A⋆ is deterministic and given by

(4) A⋆
ij = E

[∫

Q

eTi A(y, ·) (∇wej (y, ·) + ej) dy

]
, Q = (0, 1)d, 1 ≤ i, j ≤ d,

where {ei}di=1 is the canonical basis of Rd and where, for any vector p ∈ Rd, the
corrector wp is the solution (unique up to the addition of a random constant) to

(5)





− div [A(∇wp + p)] = 0 on Rd,

∇wp is stationary in the sense of (2),

∫

Q

E(∇wp) = 0.

The corrector problem (5) is set on Rd, and thus challenging to solve in practice.
A standard approximation is to consider a truncated version of that problem on
the so-called supercell QN = (−N,N)d,

(6) − div
[
A(·, ω)

(
p+∇wN

p (·, ω)
)]

= 0, wN
p (·, ω) is QN -periodic,

and infer the apparent homogenized matrix A⋆
N defined by

(7) [A⋆
N (ω)]ij :=

1

|QN |

∫

QN

eTi A(y, ω)
(
ej +∇wN

ej (y, ω)
)
dy.

We note that, although A⋆ itself is a deterministic object, its practical approxima-
tion A⋆

N is random. It is only in the limit of infinitely large domains QN that the
deterministic value is attained. Indeed, we know from [8] that lim

N→∞
A⋆

N (ω) = A⋆

a.s. Questions about rates of convergence in terms of the truncation size N have
been addressed in [8], and in a recent series of works by A. Gloria and F. Otto [10].

Our aim is to design a technique that, for finite N , allows to compute A⋆
N more

effectively, i.e. with a smaller variance. More precisely, we decompose the error as

A⋆ −A⋆
N (ω) =

(
A⋆ − E [A⋆

N ]
)
+
(
E [A⋆

N ]−A⋆
N (ω)

)
,
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where the first term is a systematic error and the second term is a statistical error.
In what follows, we focus on how to efficiently compute E [A⋆

N ].
To that aim, a direct approach is the standard Monte Carlo approach, which

consists in considering M independent realizations Am(y, ω) of the random co-
efficient, and computing for each of them the approximate homogenized matrix
A⋆

N,m(ω) using (6)–(7). In turn, the expectation E(A⋆
N ) is approximated by

IM :=
1

M

M∑

m=1

A⋆
N,m(ω).

Using the Central Limit Theorem, it is commonly admitted that, for any 1 ≤ i, j ≤
d, we have (with a probability equal to 95 %),

(8)
∣∣∣E([A⋆

N ]ij)− [IM ]ij

∣∣∣ ≤ 1.96

√
Var([A⋆

N ]ij)√
M

.

Variance reduction techniques aim at improving on this estimate, by decreasing
the prefactor in the above right-hand side. We have shown in [9, 6, 7, 13] that the
technique of antithetic variables can be used to design more efficient approaches.
In this work, we use another variance reduction technique, the so-called control
variate approach, which builds on a surrogate model.

2. A weakly stochastic case: rare defects in a periodic structure

We describe here a model introduced in [2, 3, 4], that we will use in Section 3
to build our surrogate model. Consider the case when the random coefficient A
writes

A(x, ω) = Aper(x) + bη(x, ω)Cper(x),

where both Aper and Cper are Zd-periodic matrices, and

bη(x, ω) =
∑

k∈Zd

1Q+k(x)B
k
η (ω), Q = (0, 1)d,

where
{
Bk

η

}
k∈Zd are i.i.d. Bernoulli random variables:

P(Bk
η = 1) = η, P(Bk

η = 0) = 1− η.

When η is a small parameter, A = Aper “most of the time”. This model represents
a periodic structure (described by A = Aper) that may contains defects (modelled
by Aper + Cper). When η is small, these defects are rare.

The above setting allows to model a large class of materials (including composite
materials where some fibers have been deleted). The random checkerboard case
also falls within that setting, by taking Aper(x) = α, Aper(x) + Cper(x) = β, and
η = 1/2: on each cell Q+ k, A is equal to α or β with equal probability.

We now return to the computation of the apparent homogenized matrix A⋆
N (ω)

on the supercell QN , following (6)–(7). We first observe that a realization of
the matrix A on QN is uniquely determined by the collection of the Bη

k (valued
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in {0, 1}) in each cell k + Q of QN . By enumerating all possible realizations of
A(x, ω) on QN , one obtains an expansion of E [A⋆

N ] in powers of η (see [2, 3]):

E [A⋆
N ] =

∑

ω s.t. 0 defect

A⋆
N (ω)P(ω) +

∑

ω s.t. 1 defect

A⋆
N (ω)P(ω) + . . .

= A⋆
per + ηA

⋆,N

1 + η2A
⋆,N

2 +O(η3).(9)

The leading order term is given by periodic homogenization: for any p ∈ Rd,

A⋆
perp =

∫

Q

Aper(∇w0
p + p) with − div

[
Aper

(
p+∇w0

p

)]
= 0, w0

p is Q-periodic.

The first-order correction writes

A
⋆,N

1 =
1

|QN |
∑

k∈IN

A1 def
k , IN =

{
k ∈ Zd, k +Q ⊂ QN

}
,

where A1 def
k is the contribution of a configuration with a unique defect located in

the cell k +Q:

∀p ∈ Rd, A1 def
k p =

∫

QN

Ak
1(∇w1,k

p + p)−
∫

QN

Aper(∇w0
p + p)

where Ak
1 = Aper + 1Q+kCper and

(10) −div
[
Ak

1

(
p+∇w1,k

p

)]
= 0, w1,k

p is QN -periodic.

Remark 1. The first order correction A
⋆,N

1 in (9) involves configurations with one

defect. Likewise, the second order correction A
⋆,N

2 involves configurations with two
defects. See [2, 3, 4, 12] for more details. On a different note, we observe that the
contribution A1 def

k is actually independent of k, due to the use of periodic boundary
conditions in (10).

3. A control variate approach

Using the above defect-type model, we now build an approximate model for
A⋆

N (ω). We observe that, in the expansion (9), the first order correction satisfies

(11) ηA
⋆,N

1 =
η

|QN |
∑

k∈IN

A1 def
k = E

[
A⋆,N

1

]
,

where we have introduced the random variable

A⋆,N
1 (ω) :=

1

|QN |
∑

k∈IN

Bk
η (ω) A1 def

k .

We recall that Bk
η = 1 if there is a defect in the cell Q + k (which happens with

probability η) and Bk
η = 0 otherwise. We hence introduce

A⋆
app(ω) := A⋆

per +A⋆,N
1 (ω) = A⋆

per +
1

|QN |
∑

k∈IN

Bk
η (ω) A1 def

k ,
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notice that, in view of (9) and (11),

E [A⋆
N ] = E

[
A⋆

app

]
+ η2A

⋆,N

2 + · · ·
and think ofA⋆

app(ω) as a good approximation ofA⋆
N (ω). This is actually confirmed

by the fact that, for any function ϕ,

E [ϕ (A⋆
N )] = E

[
ϕ
(
A⋆

app

)]
+O

(
η2
)
.

The outline of our approach is as follows:

• draw Bk
η (ω) in each cell Q + k ⊂ QN . This determines the field A(x, ω)

on QN .
• compute the associated approximate homogenized coefficient A⋆

N (ω) by
solving (6)–(7).

• in parallel to this task, reconstruct from the specific realization of the set
of Bk

η (ω) the field A⋆
app(ω) and introduce the random variable

(12) C⋆
N (ω) := A⋆

N (ω)− ρ
(
A⋆

app(ω)− E
[
A⋆

app

])
,

where ρ is a deterministic parameter. Note that E
[
A⋆

app

]
is analytically

computable.

Observing that E [A⋆
N (ω)] = E [C⋆

N (ω)], we next run the Monte Carlo approach on
the random variable C⋆

N (ω). We hence introduce the estimator

JM :=
1

M

M∑

m=1

C⋆
N,m(ω),

which satisfies ∣∣∣E([A⋆
N ]ij)− [JM ]ij

∣∣∣ ≤ 1.96

√
Var([C⋆

N ]ij)√
M

.

Comparing this confidence interval with (8), we see that the accuracy has been
improved if Var([C⋆

N ]ij) < Var([A⋆
N ]ij). This condition is satisfied when choosing

the deterministic parameter ρ in (12) as the one that minimizes the variance of
[C⋆

N (ω)]ij .

We refer to [14] for a complete description of the approach, some elements of
analysis, and comprehensive numerical results that demonstrate its efficiency in the
regime η ≈ 1/2: in that regime, defects are not rare, the asymptotic approximation
described in Section 2 (namely, (9)) may be inaccurate, but it still can be used to
define a surrogate model.
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Optimal Local Bases for Heterogeneous Media and Hierarchical

Structures

Robert Lipton

(joint work with Ivo Babǔska)

Large multi-scale systems exhibit a cascade of substructure spread across several
length scales. The importance of accurate numerical simulation for these systems is
ever increasing due to the high cost of experimental testing of large structures made
from heterogeneous materials. The computational modeling of such heterogeneous
systems or structures is a very large problem that requires the use of parallel
computers.

In order for a numerical method to be adequate it must be able to utilize many
local computations performed independently on single processors or clusters of
processors of reasonable size. Additionally because of their multi-scale nature these
problems have many degrees of freedom and one seeks numerical approaches based
upon dimension reduction. Unfortunately in many cases no clear scale separation
is present and “the standard” methods of homogenization do not apply.
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In this research effort we address both the problems of parallelization and di-
mension reduction and introduce a multi-scale finite element method composed
of a global Galerkin scheme using optimal local basis functions. The local bases
are supported on subdomains of prescribed diameter within the computational
domain. There is great flexibility as there is no apriori restriction on the choice of
subdomains. The notion of the Kolmogorov n-width is used to characterize a new
optimal class of local bases. It is shown that these bases provide local approxima-
tions to the actual solution with exponentially decreasing error. For this choice
the global Galerkin approximation converges exponentially with the coarse scale
degrees of freedom.
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MsFEM à la Crouzeix-Raviart on perforated domains

Alexei Lozinski

(joint work with Claude Le Bris, Frédéric Legoll)

We are intereseted in the numerical solution of two following multicale problems

(1)

{
−∇ · (aε∇u) = f in Ω
u = 0 on ∂Ω

(2)

{
−∆u = f in Ωε := Ω \Bε

u = 0 on ∂Ωε

In both cases, Ω represents a bounded domain in R2; a in Problem (1) is a highly
oscillating coefficient (0 < α ≤ aε(x) ≤ β with some positive constants α and β)
and Bε in Problem (2) represents numerous holes in Ω. The first problem has been
extensively studied both theoretically and numerically. One of the most popular
numerical approaches for it is the multiscale finite element method (MsFEM), see
the book [1] for a review. In this presentation, we discuss a new variant of this
method [2], which is inspired by the classical Crouzeix-Raviart finite elements.
The results that we obtain with this method for problems of type (1), although
good, are less accurate than those by oversampling MsFEM. Nevertheless, the
study of Crouzeix-Raviart MsFEM for this problem is useful at least as a starting
point for developing an efficient MsFEM approach for problems of type (2), which
have not yet been studied numerically in the context of MsFEM-type approaches
to the best of our knowledge. We show in [3] that Crouzeix-Raviart MsFEM can
be easily adapted to this context if we enrich the multiscale finite element space
by carefully chosen bubble functions.
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Let us describe in more detail our method for Problem (1). We introduce a
regular mesh TH (which may consist of triangles or quadrangles) on Ω and denote
by EH the ensemble of irs internal edges. The size H of the mesh cells in TH is
supposed to be larger than ε (the characteristic length of oscillations in a) so that
usual finite elements cannot be efficiently used on this mesh. We are thus looking
for a new approximating space VH which is well adapted to Problem (1) and has a
localized basis, i.e. a basis consisting of functions with supports covering a small
number of cells of TH . We allow VH to be non-conforming, i.e. to contain the
functions that are discontinuous on the edges of the mesh TH (note that it is also
the case for the oversampling MsFEM). We enforce however a “weak” continuity
of our numerical solution by requiring that the average of the jump vanishes on
each edge. The natural functional space for our purposes is thus larger than H1

0 (Ω)
and can be introduced as

WH =

{
u ∈ L2(Ω) : uH |T ∈ H1(T ) ∀T ∈ TH and

∫

E

[u] = 0 ∀E ∈ EH
}

[u] denoting the jump of u over an edge. Decompose now WH into the sum of
resolved and unresolved scales WH = VH ⊕⊥a W 0

H where

W 0
H = {u ∈ WH :

∫

E

u = 0, ∀E ∈ EH}, VH = {u ∈WH : aH(u, v) = 0, ∀v ∈ W 0
H}

with aH(u, v) =
∑

T∈TH

∫
T aε∇u·∇v. It is easy to see that the space VH is of finite

dimension and it has a localized basis. Indeed, VH = span (φe, e ∈ EH) where φe
is constructed for any internal edge e of the mesh as follows: denoting by T1 and
T2 the two mesh elements that share the edge e and by by Γk

i (i = 1, . . . , NΓ) the
edges composing the boundary of Tk (k = 1 or 2) numbered so that Γ1

1 = Γ2
1 = e,

we define φe as the function with support in T1 ∪ T2 that solves

−∇ · [aε(x)∇φe] = 0 in Tk, k = 1, 2(3) ∫

Γk
i

φe = δi1 for i = 1, . . . , NΓ, k = 1, 2(4)

n · aε∇φe = λki on Γk
i , i = 1, . . . , NΓ, k = 1, 2(5)

with some constants λki . In practice, the basis functions φe should be precomputed
numerically using a sufficiently fine mesh. Then, the approximated solution uH to
(1) is found as

(6) uH ∈ VH : aH(uH , vH) = (f, vH)L2(Ω) ∀vH ∈ VH .

We have proved the following error estimate in the periodic case:
Theorem 1. Under the hypothesis aε(x) = a1-periodic(

x
ε ), the MsFEM solution

uH satisfies

|u− uH |H1 ≤ CH‖f‖L2 + C

(√
ε+H +

√
ε

H

)
‖∇u⋆‖C1 ,

where C is a constant independent of H and u⋆ is the homogenized solution to
(1) in the limit ε→ 0.
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We now turn to Problem (2). One could apply to this problem exactly the
same method as before. The only difference would be that one replaces the bi-
linear form by aH(u, v) =

∑
T∈TH

∫
T\Bε

∇u · ∇v and the MsFEM basis functions

are constructed as the solutions of local problems on perforated mesh cells, i.e. φe
for any edge e ∈ EH satisfies −∆φe = 0 in Tk \ Bε, k = 1, 2, φe|∂Bε

= 0 accom-
panied with boundary conditions similar to (4)–(5). This method turns out to be
unsatisfactory in practice since the basis functions computed in this way decay
exponentially fast when one moves away from an edge, and thus a Galerkin ap-
proximation on such a basis can miss completely the exact solution in the regions
well inside the mesh elements. We need therefore to enrich the approximation
space. This enrichment can be still presented as a decomposition of WH into the
sum of resolved and unresolved scales WH = ṼH ⊕⊥a W̃ 0

H where the new space of

unresolved scales W̃ 0
H is smaller than before

W̃ 0
H = {u ∈ WH such that

∫

E

u = 0, ∀E ∈ EH and

∫

T

u = 0, ∀T ∈ TH}

and the new approximation space is still the orthogonal (with respect to the form

aH) complement of W̃ 0
H . One can see that ṼH = span (φe, e ∈ EH)⊕span (φbT , T ∈

TH) where φe are constructed for any internal edge e as outlined above and the
new basis functions φbT are associated to each element T of the mesh and are
constructed as solutions to

−∆φbT = 1 in T \Bε, φbT |∂Bε
= 0, φbT |∂T = 0.

We call φbT the MsFEM bubble functions as they share with classical finite element
bubble function the property of vanishing on all the edges of the mesh. We have
proved the following error estimate in the periodic case:
Theorem 2. Under the hypothesis of a periodic micro-structure, i.e. Bε being an
ε- periodic array of identical holes, and under some technical assumption on the
mesh TH , the MsFEM solutions uH ∈ ṼH to (6) with VH replaced by ṼH satisfies

|u− uH |H1(Ω) ≤ Cε

(√
ε+H +

√
ε

H

)
||f ||W 2,∞(Ω)

where C is a constant independent of H.
The numerical experiments confirm a similar behavior of the method also in the
non-periodic case. As an example, the following figure presents the results for
Problem (2) with Ω = (0, 1)2 and the holes Bε as in the picture on the left. The
picture on the right gives the convergence curves (|u − uH |H1 versus H) on rect-
angular meshes of step H for a variety of methods, “FEM” for standard Q1 FEM,
“noOS”, “osc”, “OS” for classical MsFEM variants with respectively linear, oscil-
lating and oversapling boundary conditions, and “CR” for our Crouzeix-Raviart
MsFEM. In all the cases, the dashed curves stand for the variants of the corre-
sponding method enriched by the bubble functions.
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Kinetic theory and the discrete nonlinear Schrödinger equation

Jani Lukkarinen

It is common practice to approximate a weakly nonlinear wave equation through
a kinetic transport equation of the Boltzmann type. The precise mathematical
meaning and domain of applicability of such approximations is still an open ques-
tion. In this talk, I present an overview of the present understanding of how such
transport equations may arise from wave equations with weak interactions, and
comment on how the problem is related to the larger research program of under-
standing the origin of diffusive transport of energy in these systems, i.e., to proving
the validity of Fourier’s law.

The following presents a physical scenario for the expected time-evolution of a
dynamical system with normal thermal conductivity:

t = 0: The system is started with a “typical”, sufficiently well-behaved, initial
state. This can be either deterministic or stochastic.

t = O(1): The state of the system should approach local equilibrium: time-
averaged, local observables should be well approximated by the corre-
sponding expectation in some thermal equilibrium state. The choice of
state typically still depends on time and spatial position. For instance, in
the “simplest” Hamiltonian examples, this would lead to approximation of
the evolution of the full system via evolution of a temperature distribution
T (x, t), considered as parameters of canonical Gibbs states for the local
statistics.

t = O(L2): For macroscopic times, the system should relax towards equilib-
rium, unless some outside forcing is imposed (here L≫ 1 is a macroscopic
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length, for instance, the diameter of the system). The relaxation should
happen via local equilibrium states and involve diffusion of energy; for in-
stance, Fourier’s law should hold and the above parameters T (x, t) satisfy
a heat equation with some thermal conductivity function κ(T ).

Very little of the validity of the above scenario has been mathematically proven
so far. Most of the progress has been in studies of systems with stochastic dy-
namics which allows for various new tools and simplifications compared to purely
Hamiltonian dynamical systems.

One motivation for introduction of stochastic states, even when the dynamics
is deterministic, is due to the following practical obstacles present in any real
physical experiment or simulation.

(1) The initial data may be only partially prepared or measured .
(2) Measurements have only a finite time-resolution t0 > 0.
(3) Most of the above systems involve a vast number of degrees of freedom, and

even though one can prove that the problem is mathematically well-posed,
the actual computation of the solution for a given initial state at a given
time is often not possible, not even in any meaningful approximation. A
simple oscillator serves to illustrate the point: suppose ω ∈ R+ is irrational
and consider ψt := ei2πωt, t ≥ 0. To compute the value of ψt, it is necessary
to compute the fractional part of ωt. At the very least, this requires storing
the value of ω in accuracy which is greater than 1/t. Thus for large enough
t ≫ 1 this becomes impossible using any physical computing device with
finite memory.

Hence, when studying large scale properties of macroscopic systems, it looks more
reasonable to aim at descriptions using a stochastic state µt (a probability measure)
for the dynamical degrees of freedom ψt. These could be defined (using the Riesz-
Markov representation theorem) by

∫
dµt(ψ)F (ψ) :=

1

t0

∫ t+t0

t

ds

∫
dν0(ψ0)F (ψs[ψ0]) ,(1)

where F is any observable, ν0 describes the uncertainty in the initial data and t0 > 0
the time-resolution. In the simple oscillator example in item 3, ψs[ψ0] = ei2πωs,
and as soon as ωt0 ≫ 1, the measure µt is very well approximated, uniformly in
t, by the uniform measure on the unit circle. In other words, as long as one is not
interested in time-scales shorter than the period of oscillation, the uniform measure
serves as an accurate approximation for any t, even though the exact value of ψt

could never be computed. In addition to (1), other definitions for µt are certainly
possible, and depending on the problem a well-chosen averaging procedure might
simplify the estimates considerably.

One instance in which a mathematical control of some parts of the physical
scenario has begun to look feasible, is given by kinetic scaling limits of weakly
perturbed wave-equations. There one considers a small perturbation (strength
λ > 0) of a transport dominated system (a system where the motion is described
by constant velocity, i.e., ballistic, motion). The goal is to see some remnants of
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the above physical scenario by suitably rescaling time and taking λ → 0. More
precisely, for weakly perturbed wave-type equations we expect to find the following
behaviour:

t = 0: Assume a random initial state with fast spatial decay of correlations .
t = O(λ−1): Wave motion continues, but with a possibly modified disper-

sion relation. The state approaches a Gaussian distribution and becomes
homogenized , with variation on the scale t.

t = O(λ−2): Wavemotion gets interrupted by “collisions”. Effect of collisions
on the covariance is described by some wave Boltzmann equation.

t = o(λ−3): The Boltzmann equation should force the covariance locally to-
wards an equilibrium covariance.

Should the above scheme work, one would expect the state of the system to remain
close to a local equilibrium state also for later times, although exceptions to this
rule are also possible (such as the exponentially slow “freezing” expected in two-
dimensional Anderson models).

As an explicit test-case of the above scheme, I refer to a joint work with Herbert
Spohn concerning a discrete Schrödinger equation with a weak nonlinear interac-
tion [1]. We derive an explicit equation—indirectly related to the conjectured
Boltzmann equation of the system—for the decay of field-field time-correlations in
a regular thermal Gibbs state, compensated for fast oscillations and in the kinetic
scaling limit. The proof is based on a regularized perturbation expansion and uses
heavily the stationarity of the initial state which implies ℓ1-summability of the
cumulants of the field at any fixed time.

The result in [1] describes a compensated scaling limit of time-correlations. The
chosen observable might appear somewhat artificial since it involves taking λ→ 0
with t = O(λ−2). However, the result could become useful for development ofmore
efficient numerical algorithms for small λ by resolving fast oscillations and lowest
order effects. More precisely, the result proven in [1] implies that for t = O(λ−2)

E[ψ̂0(k
′)∗ψ̂t(k)] ≈ δΛ(k

′ − k)W (k)e−iωλ
ren

(k)te−|λ2t|Γ1(k) ,

where the equilibrium covarianceW (k), the renormalized dispersion relation ωλ
ren(k)

and the decay rate Γ1(k) ≥ 0 are explicitly computable functions of the wave-vector
k ∈ Td. To see what happens at later times, it might help to cancel out the known
oscillations and to study

E[φ̂0(k
′)∗φ̂t(k)]− δΛ(k

′ − k)W (k)e−|λ2t|Γ1(k) ,

where φ̂t(k) := eiω
λ
ren

(k)tψ̂t(k).
If the full kinetic conjecture could be proven, this should be of even greater

use since it would allow experimenting with algorithms which start by solving the
limit Boltzmann equation for the given initial data and then employ the approxi-
mation which is obtained from the solution by scaling back powers of λ. However,
as with most of the above discussion, at present such considerations should be at
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best considered as conjectures, and much more work is needed before a full math-
ematical understanding, including domain of validity, of such schemes will have
been developed.
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Multiscale methods for transport processes through membranes

Maria Neuss-Radu

In this paper we develop multiscale methods appropriate for the homogenization
of processes in domains containing thin heterogeneous layers. Our model problem
consists of a reaction-diffusion system in such a domain. Both, the size of the
heterogeneities and the thickness of the layer are of order ε. Performing an asymp-
totic analysis with respect to the scale parameter ε, we derive an effective model
which consists of reaction-diffusion equations on two domains separated by an
interface, together with appropriate transmission conditions across this interface.
These conditions are determined solving micro-problems on the standard period-
icity cell in the layer. Thereby, the techniques developed in [1, 2] for the derivation
of effective transmission conditions across flat interfaces are further extended to
include curved membranes. This step requires new concepts like periodicity on
thin curved layers, and two-scale convergence with respect to manifold charts, see
[3].

Let ε > 0 be a sequence of strictly positive numbers which goes to zero. We
consider a bounded domain Ω ⊂ Rn, n ≥ 2, consisting of three subdomains: the
bulk regions Ω+

ε , Ω−
ε , and the thin heterogeneous layer ΩM

ε , separated by the
interfaces S+

ε and S−
ε , see Figure 1 (left). Thus we have

Ω = Ω+
ε ∪Ω−

ε ∪ ΩM
ε ∪ S+

ε ∪ S−
ε .

The outer unit normal at the boundaries of the domains Ω and ΩM
ε is also denoted

by ν. The restrictions of functions defined on Ω to the subdomains Ω+
ε , Ω

−
ε , and

ΩM
ε are denoted by the superscripts +, −, and M respectively. In the domain

Ω, we consider the following reaction-diffusion equation for the unknown function
uε : (0, T )× Ω → R :

(1)

∂tu
+
ε −D+∆u+ε = f(x, u+ε ) in (0, T )× Ω+

ε

∂tu
−
ε −D−∆u−ε = f(x, u−ε ) in (0, T )× Ω−

ε
1
ε∂tu

M
ε −∇ · (εDM

ε (x)∇uMε ) = 1
ε gε

(
x, uMε

)
in (0, T )× ΩM

ε

subjected to the following boundary conditions:

(2) uε = uD on∂Ω
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Figure 1. Left: The microscopic domain Ω composed of the two
bulk domains Ω+

ε , and Ω−
ε , and the membrane domain ΩM

ε . Right:
The macroscopic domain consisting of the two bulk regions Ω+,
and Ω− separated by the interface Σ.

and initial conditions:

(3) uε(0, x) =





U0(x), x ∈ Ω+
ε

UM
0

(
x̄, xn

ε

)
, x ∈ ΩM

ε

U0(x), x ∈ Ω−
ε

On the interfaces S+
ε and S−

ε we require the natural transmition conditions, i.e.
the continuity of the solutions and of the normal fluxes:

(4)
u±ε = uMε on S±

ε

D±∇u±ε · ν = εDM
ε (x)∇uMε · ν on S±

ε .

The microscopic heterogeneous structure of the membrane ΩM
ε is reflected in

the diffusion coefficients DM
ε and the reaction term gε, which we assume to be

locally ε-periodic, see Definition 1 below.

Definition 1 (Locally periodic functions on thin curved layers). A sequence of
functions aε : ΩM

ε → R is called locally ε-periodic if there exists an atlas AΣ =
{(Ui, ϕi)}i=1,...,N of Σ consisting of charts

(5) Ui ∋ x′ 7→ σ = ϕi(x
′) ∈ Vi ⊂ Σ

mapping open sets Ui ⊂ Rn−1 to open sets Vi ⊂ Σ such that

(6) aε(x) = aε(T (σ, ρ)) = ai

(
ϕ−1
i (σ),

ϕ−1
i (σ)

ε
,
ρ

ε

)
,
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with smooth functions ai : Ui × [0, 1]n−1 × [−1, 1] → R, i = 1, . . . , N , which are
1-periodic in the second variable. We denote by

Z = Y × [−1, 1] = [0, 1]n−1 × [−1, 1],

the standard cell in the chart domain.

To model the behavior of the solutions uε for small values of the parameter ε, we
investigate the asymptotic behavior of the sequence uε when ε→ 0. Then, the thin
layer ΩM

ε approaches the interface Σ. The domains Ω+
ε and Ω−

ε tend to the domains
Ω+ and Ω− respectively, see Figure 1, (right). We extend the notion of two-scale
convergence introduced in [1] to curved thin layers. Furthermore, we are able to
show strong two-scale convergence of the sequence uε in the membrane domain.
Using these results, we prove that for ε → 0 the sequence (u+ε , u

−
ε , u

M
ε ) converges

to the limit (u+0 , u
−
0 , (u

M
i )i=1,...,N ) satisfying the following effective model:

Theorem 2. The limit functions u+0 and u−0 satisfy the following initial-boundary-
value problem on Ω+ respective Ω− :

∂tu
±
0 (t, x) −D±∆u±0 (t, x) = f(x, u±0 (t, x)), (t, x) ∈ (0, T )× Ω±

u+0 (t, x) = uD(t, x), (t, x) ∈ (0, T )× ∂Ω

u±0 (0, x) = U0(x), x ∈ Ω±,

together with the effective transmission conditions on the interface Σ, formulated
in the chart coordinates of the atlas AΣ

D±∇u±0 (t, Ti(x′, 0)) · ν(Ti(x′, 0)) =
∫

S±

DM
i (x′,y)

∂uMi
∂yn

(t,x′,y)dy′,

for x′ ∈ Ui, i = 1, . . . , N , and t ∈ (0, T ).
The limit functions uMi , i = 1, . . . , N which enter the transmission conditions

are solutions to the following local problems, also given with respect to the chart
coordinates

∂tu
M
i (t,x′,y)−

n−1∑

j=1

∂

∂yj

{
DM

i (x′,y)gjki (x′)
∂uMi
∂yk

(t,x′,y)

}

− ∂

∂yn

{
DM

i (x′,y)
∂uMi
∂yn

(t,x′,y)

}
= gMi (x′,y, uMi (t,x′,y)),

(t,y) ∈ (0, T )× Z, a.e. x′ ∈ Ui

uMi (t,x′,y′,±1) = u±0 (t, Ti(x′, 0)), (t,y′) ∈ (0, T )× Y, a.e. x′ ∈ Ui

uMi periodic in Y = [0, 1]n−1

uMi (0,x′,y) = UM
0 (x′,yn), y ∈ Z, a.e. x′ ∈ Ui.

where the tensor

(7) Gi(x
′) =

(
gjki (x′)

)
j,k=1,...,n−1
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is the inverse of the metric tensor Gi(x′) of Σ in the chart (Ui, ϕi) defined by

Gi(x′) =
(
gijk(x

′)
)
j,k=1,...,n−1

=

(
n∑

l=1

∂ϕil

∂xj
(x′)

∂ϕil

∂xk
(x′)

)

j,k=1,...,n−1

.
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Random fields representations for stochastic elliptic boundary value

problem and statistical inverse problems

Anthony Nouy

(joint work with Christian Soize)

We present new results for the identification of random fields through statistical
inverse problem involving a stochastic elliptic boundary value problem [2]. A gen-
eral class of non-Gaussian positive-definite matrix-valued random fields adapted
to the statistical inverse problems is introduced and its properties are analyzed.
Using a parametrization of discretized random fields in this class, a complete iden-
tification procedure is proposed. New results of the mathematical and numerical
analyzes of the parameterized stochastic elliptic boundary value problem are pre-
sented. The numerical solution of this parametric stochastic problem provides
an explicit approximation of the application that maps the parameterized general
class of random fields to the corresponding set of random solutions. This ap-
proximation can be used during the identification procedure in order to avoid the
solution of multiple forward stochastic problems. Since the proposed general class
of random fields possibly contain random fields which are not uniformly bounded,
a particular mathematical analysis is developed [3] and dedicated approximation
methods are introduced. In order to make affordable the construction of an ap-
proximation of a very high-dimensional map, complexity reduction methods are
introduced and are based on the use of low-rank approximation methods [1] that
exploit the tensor structure of the solution which results from the parametrization
of the general class of random fields.
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From averaging to homogenization in cellular flows.

Alexei Novikov

(joint work with G.Iyer, T.Komorowski, L.Ryzhik)

Consider an advection diffusion equation of the form

(1) ∂tϕ+Av(x) · ∇ϕ−∆ϕ = 0.

where A is the non-dimensional strength of a prescribed vector field v(x). Under
reasonable assumptions when A → ∞, the solution ϕ becomes constant on the
trajectories of v. Indeed, dividing (1) by A and passing to the limit A → ∞
formally shows

v(x) · ∇ϕ = 0,

which, of course, forces ϕ to be constant along trajectories of v. Well known “av-
eraging” results [2] study the slow evolution of ϕ(t, x) across various trajectories.

On the other hand, if we fix A = 1, classical homogenization results (see e.g. [1])
determine the long time behavior of solutions of (1). For such results it is usually
convenient to choose ε≪ 1 small, and rescale (1) to time scales of order 1/ǫ2, and
distance scales of order 1/ǫ. This gives

(2) ∂tϕε +
1

ε
v
(x
ε

)
· ∇ϕε −∆ϕε = 0.

Assuming v is periodic and mean-zero, and that the initial condition varies slowly
(i.e. ϕǫ(x, 0) is independent of ǫ), standard homogenization results show that ϕǫ →
ϕ̄, as ǫ→ 0. Further, ϕ̄ is the solution of the effective problem

(3)
∂ϕ̄

∂t
= ∇ · (σ̄∇ϕ),

and σ̄ is the effective diffusion matrix, which can be computed as follows. Define
the correctors χ1, . . . , χn to be the mean-zero periodic solutions of

(4) −∆χj + v(x) · ∇χj = −vj(x), j = 1, . . . , n.

Then

(5) σ̄ij = δij +
1

|Q|

∫

Q

∇χi · ∇χj dx, i, j = 1, . . . , n.

Q is the period cell of the flow v(x), and δij is the Kronecker delta function.
The main focus of this work is to study a transition between the two well known

regimes described above. To this end, rescale (1) by choosing time scales of the
order 1/ǫ2 and length scales of order 1/ǫ. This gives

(6) ∂tϕε,A +
A

ε
v
(x
ε

)
· ∇ϕε,A −∆ϕε,A = 0,
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where A ≫ 1 and ε ≪ 1 are two independent parameters. Of course, if we keep
ǫ fixed, and send A → ∞, the well known averaging results apply. Alternately, if
we keep A fixed and send ǫ→ 0, we are in the regime of standard homogenization
results. The present paper considers (6) with both ǫ → 0 and A → ∞. Our main
result [3] shows that if v is a 2D cellular flow, then we see a sharp transition
between the homogenization and averaging regimes at A ≈ 1/ǫ4.
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A quantitative theory in stochastic homogenization

Felix Otto

We consider a scalar elliptic equation ∇∗a∇u = f on the d-dimensional lattice Zd

with a random coefficients field a, that is assumed to be uniformly elliptic in the
sense of λid ≤ a(x) ≤ id for all sites x ∈ Zd for some fixed λ > 0. Under the
mere assumption of stationarity and ergodicity of the ensemble 〈·〉, Kozlov and
Papanicolaou & Varadhan have shown that for a right hand side f that varies on
a length large scale L, the solution u converges to a deterministic solution of a
homogenized problem.

In this talk, we optimally quantify this convergence: If the correlations are
integrable, the fluctuations u(x)−〈u(x)〉 satisfy a Central Limit Theorem scaling.
The integrability of correlations is encoded by the assumption that the ensemble
〈·〉 satisfies a Logarithmic Sobolev Inequality (LSI). This means that there exists
a constant ρ > 0 such that for all functions ζ(a) > 0 of the coefficient field a, one
has

〈ζ ln ζ

〈ζ〉 〉 ≤
1

2ρ

〈 ∑

x∈Zd

∣∣ ∂ζ

∂a(x)

∣∣2
〉
,

where ∂ζ
∂a(x) denotes the partial derivative of ζ with respect to the value a(x) of

the coefficient field at site x. In fact, we appeal to a slightly weakened version of
LSI that is in particular satisfied for any independently and identically distributed
{a(x)}x∈Zd .

The main insight is that the assumption of LSI allows to upgrade the annealed
estimates on first and (mixed) second derivatives of the Green’s function G(a;x, y)
by Delmotte & Deuschel, namely

〈|∇xG(x, y)|2〉
1

2 ≤ C(d, λ)|x − y|1−d,

〈|∇x∇yG(x, y)|〉 ≤ C(d, λ)|x − y|−d
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to stochastic moments of arbitrary order p <∞:

〈|∇xG(x, y)|p〉
1

p ≤ C(d, λ, ρ, p)|x − y|1−d,

〈|∇x∇yG(x, y)|p〉
1

p ≤ C(d, λ, ρ, p)|x − y|−d.

The latter is of independent interest since is shows that with high probability,
the variable-coefficient Green’s function G decays like the constant coefficient one,
despite the fact that there are — necessarily ungeneric coefficient fields a — for
which the Green’s function has a worse decay.

This is joint work with Daniel Marahrens, see MPI MIS Preprint 69/2012 “An-
nealed estimates on the Green’s function”.

Random homogenisation of a highly oscillatory singular potential

Etienne Pardoux

(joint work with M. Hairer and A. Piatnitski)

We consider the parabolic PDE with space-time random potential given by

∂tu
ε(x, t) = ∂2xu

ε(x, t) + ε−βV

(
x

ε
,
t

εα

)
uε(x, t) ,

uε(x, 0) = u0(x) ,

(1)

where x ∈ R, t ≥ 0 and V is a stationary centred random field. The homogenisa-
tion theory of equations of this type has been studied by a number of authors. The
case when V is time-independent was considered in [6] and [1]. The articles [3], [4]
considered a situation where V is a stationary process as a function of time, but
periodic in space. Purely periodic / quasiperiodic operators with large potential
were also studied several authors. A problem similar to ours, but with a Gaussian
potential, was considered in [2].

For α ≥ 2 and β = α
2 , (1) was studied in [7], where it was shown that its

solutions converge as ε→ 0 to the solutions to

(2) ∂tu(x, t) = ∂2xu(x, t) + V̄ u(x, t) , u(x, 0) = u0(x) ,

where the constant V̄ is given by

V̄ =

∫ ∞

0

Φ(0, t) dt ,

in the case α > 2 and

V̄ =

∫ ∞

0

∫ ∞

−∞

e−
x2

4t

2
√
πt

Φ(x, t) dx dt ,

in the case α = 2. Here, Φ(x, t) = EV (0, 0)V (x, t) is the correlation function of V
which is assumed to decay sufficiently fast.

In the case 0 < α < 2, it was conjectured in [7] that the correct scaling to use in
order to obtain a non-trivial limit is β = 1/2+α/4, but the corresponding value of
V̄ was not obtained. Furthermore, the techniques used there seem to break down
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in this case. The main result of the present article is that the conjecture does
indeed hold true and that the solutions to (1) do again converge to those of (2) as
ε→ 0. This time, the limiting constant V̄ is given by

V̄ =
1

2
√
π

∫ ∞

0

Φ(t)√
t
dt ,

where we have set Φ(s) :=
∫
R
Φ(x, s)dx.

The techniques employed in the present article are very different from [7]: in-
stead of relying on probabilistic techniques, we adapt the analytical techniques
from [5].
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Spectrum-preserving two-scale decompositions with applications to

numerical homogenization and eigensolvers

Daniel Peterseim

(joint work with A. Målqvist)

This note summarizes some recent results on linear elliptic problems with rough
multiscale coefficients in the absence of strong assumptions such as periodicity
or scale separation. Given a polyhedral domain Ω ⊂ Rd and functions A ∈
L∞(Ω,Rd×d

sym) with uniform spectral bounds σ(A(·)) ⊂ [α, β] ⊂]0,∞[ and g ∈
L2(Ω), consider the second order linear elliptic problem

(LP) find u ∈ V := H1
0 (Ω) such that

a(u, v) :=
∫
Ω
(A∇u) · ∇v =

∫
Ω
gv =: (g, v) for all v ∈ V,

and the associated eigenproblem

(EP) find pairs (λ(ℓ), u(ℓ)) ∈ R>0 × V \ {0}, ℓ ∈ N such that

a(u(ℓ), v) = λ(ℓ)
∫
Ω u

(ℓ)v =: (λ(ℓ)u(ℓ), v) for all v ∈ V.

If the diffusion coefficient A is highly variable then the numerical approximation
of either problem is challenging. The underlying mesh width has to be sufficiently
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small to resolve the oscillations and heterogeneities of A. For problems in geo-
physics or material sciences with characteristic geometric features on microscopic
length scales, this so-called resolution condition is often so restrictive that the
initial mesh must be chosen very fine and further refinement exceeds computer
capacity.
In this note, a new numerical homogenization method is presented. It is related to
some low-dimensional macroscopic generalized finite element space. The assem-
bling of the corresponding linear system of equations requires microscopic compu-
tations only in local vertex patches of diameter H log(1/H); H being the macro-
scopic mesh size. The energy error of the method converges linearly with respect
to H without any pre-asymptotic effects. Moreover, small (leading) eigenvalues of
the operator are preserved on the macroscopic level in a superconvergent way (at
least quartic with respect to H).
The framework presented here was mainly developed in [4, 5] and further investi-
gated in [2, 3, 1]. References to alternative methods for numerical homogenization
or upscaling may be found therein and in several contributions to this Oberwolfach
workshop, e.g., by A. Abdulle, L. Berlyand, Y. Efendiev, R. Lipton, A. Lozinski,
or L. Zhang. The question of how the different approaches compare in certain
scenarios remains open. As major advantages of our approach we consider its
generality, rigorousness and spectral properties.

1. Two-scale Decompositions

Our method is based on novel multiscale decompositions of H1 into some macro-
scopic/coarse part Vcs plus some microscopic/fine part Vfs. Let VH ⊂ V denote
the classical P1 finite element space with respect to some coarse mesh of width
H . It is spanned by nodal basis functions φz for interior vertices z ∈ N . The
key tool is the Clément-type (quasi-)interpolation operator IH : V → VH with

IHv :=
∑

z∈N
(v,φz)
(1,φz)

φz . Throughout this note, its kernel Vfs := kernelIH defines

microscopic functions.

Lemma 1 (L2-orthogonal two-scale decomposition).

V = VH ⊕ Vfs and (Vcs, Vfs) = 0.

The decomposition is orthogonalized with respect to the scalar product a induced
by the problems (LP) and (EP). Let F : V → Vfs denote the a-orthogonal pro-
jection onto the finescale space Vfs, that is a(Fv, w) = a(v, w) for all w ∈ Vfs. A
modified (operator-dependent) coarse space is then given by

Vcs := (1 − F)VH = span{(1− F)φz | z ∈ N}.
Lemma 2 (a-orthogonal two-scale decomposition).

V = Vcs ⊕ Vfs and a(Vcs, Vfs) = 0.

The lemma immediately yields the desired error estimates for the Galerkin method
with respect to Vcs (see Section 2). A further main observation is that the a-
orthogonal decomposition remains almost orthogonal in L2.
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Lemma 3 (L2-quasi-orthogonality of the a-orthogonal decomposition).

∀vcs ∈ Vcs∀vfs ∈ Vfs : (vcs, vfs) . α−1H2
∣∣∣∣A1/2∇vcs

∣∣∣∣ ∣∣∣∣A1/2∇vfs
∣∣∣∣ .

Here and throughout the paper, the constant hidden in the notation . only de-
pends on Ω and interior angles of the finite element mesh. Lemma 3 indicates that
Vcs is suitable for the discretization of the eigenproblem (see Section 3).

2. Galerkin approximation and sparse representation of Vcs

Let ucs ∈ Vcs denote the Galerkin approximation of u with respect to Vcs, i.e.,

a(ucs, v) = (f, v) for all v ∈ Vcs.

The error of this discretization is small (of order H) because g ∈ L2(Ω) and ucs is
exactly the coarse part of u in the decomposition of Lemma 2.

Lemma 4 (Discretization error).
∣∣∣∣A1/2∇(u− ucs)

∣∣∣∣ . α−1/2 ||Hg|| .

Observe that V may be replaced with any subspace Vh ⊃ VH . In practical com-
putations, Vh is some high resolution FE space that is sufficiently rich to capture
the characteristic scales of the problem. In addition to this finescale discretiza-
tion, we need to find approximations of the corrector function Fφz with local
support in order to turn (2) into a feasible method. We introduce a new param-
eter, the localization parameter k ∈ N and define nodal patches ωz,1 := suppφz
and ωz,k := ∪{T ∈ TH | T ∩ ωz,k−1 6= ∅} for k ≥ 2.

Lemma 5 (Decay of correctors).

∀z ∈ N∀k ∈ N :
∣∣∣∣A1/2∇Fφz

∣∣∣∣
L2(Ω\ωz,k)

. e−
√

α/βk
∣∣∣∣A1/2∇Fφz

∣∣∣∣ .

The exponential decay motivates the approximation of ψz = Fφz ∈ Vfs by ψz,k ∈
Vfs(ωz,k) := {v ∈ Vfs | v|Ω\ωx,k

= 0}, where
a(ψz,k, v) = a(φz , v) for all v ∈ Vfs(ωz,k).

Thus, the approximate modified coarse space V k
cs has a local basis

V k
cs = span{φz − ψz,k | z ∈ N}.

The corresponding Galerkin approximation of (LP) is denoted ukcs.

Theorem 6 (Discretization error after localization).

If k &
√
β/α| log(H)| then

∣∣∣∣A1/2∇(u− ukcs)
∣∣∣∣ . H ||g|| .

Estimates for fully discrete version and estimates in L2-norm can be found in
[4] (see [3] for improved results with regard to hidden constants).
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3. Approximation of Eigenvalues and Eigenvectors

A third characterization of a macroscopic functions may be given via the eigenfunc-
tions related to the ℓ smallest eigenvalues Eℓ := span{u(1), . . . , u(ℓ)}. By revisiting
Lemma 3 we observe that those macroscopic functions are already represented
very accurately by Vcs (or V

k
cs for k sufficiently large).

Corollary 7 (L2-quasi-orthogonality of the a-orthogonal decomposition of macro-
scopic functions). Let ℓ ∈ N and let u = ucs + ufs ∈ Eℓ with ||u|| = 1, where
ucs ∈ Vcs (resp. ufs ∈ Vfs) denotes the coarse scale part (resp. fine scale part) of u
according to the a-orthogonal decomposition in Lemma 2. Then it holds

(ucs, ufs) .
√
ℓα−2(λ(ℓ))2H4.

We approximate eigenpairs by solutions of the discrete eigenvalue problem: find

λ
(ℓ)
H ∈ R and non-trivial u

(ℓ)
cs ∈ Vcs such that

a(u(ℓ)cs , v) = λ
(ℓ)
H (u(ℓ)cs , v) for all v ∈ Vcs.

Theorem 8 (Bound for the eigenvalue error). Let H be sufficiently small so that

H . ℓ−1/4
√
α/λ(l). Then it holds

λ
(ℓ)
H − λ(ℓ) .

√
ℓ(λ(ℓ))3α−2H4 for all ℓ = 1, 2, . . . , NH .

See [5] for estimates of the error in the corresponding eigenfunctions. Again,
discretization (V → Vh) and localization (Vcs → V k

cs) as in Section 2 are applicable.
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Anomalous diffusion approximation for kinetic equations

Marjolaine Puel

(joint work with N. B. Abdallah, A. Mellet)

We consider diffusion approximation for kinetic equations like linear Boltzmann
or Fokker-Planck in the case where the equilibria are heavy tail functions, In the
case, the classical diffusion scaling leads to an infinite diffusion coefficient. Then,
we have to adapt the scaling and reorganize the different terms to obtain at the
limit that the solution may be approximated by a equilibrium as a velocity profile
multiplied by a density satisfying a fractional diffusion equation.
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Homogenization of Fluid Flow and Transport in Porous Media

including an Evolving Microstructure

Nadja Ray

(joint work with Tycho van Noorden, Peter Knabner)

1. Introduction

In recent years, there has been an increased interest in porous media applica-
tions that contain multiple evolving phases. Examples are unsaturated flow and
two/multi-phase flow. Likewise, the evolution of the solid phase is an important
aspect. Because of such structural changes, the pore space that is accessible for the
phases and consequently the transport properties of the porous medium change. In
order to capture effects of non-periodic media or of the underlying geometry’s evo-
lution in a macroscopic model, numerous extensions of classical upscaling methods
have been applied.

In this work, we discuss the upscaling of a coupled fluid flow and transport prob-
lem using a level set formulation following [2]. In our model the evolving geometry
is controlled by attachment/detachment processes or due to chemical surface re-
actions. Moreover, interaction potentials between particles and the porous matrix
(e.g. electric forces) have to be taken into account additionally.

2. Pore Scale Model

2.1. Notation.
cε, u0 concentration, transformed conc. Lε, L0 level set function
vε, v̄0 fluid velocity, averaged fluid velocity pε, p0 pressure
Φε, Φ0 prescribed total interaction potential f surface reaction rate
η kinematic viscosity D diffusivity
kT Boltzmann constant times temperature m molecular mass
ρ(l) density of the liquid (l)/solid phase ε scale parameter
x, y, t global/local space, time variable νε normal vector

Similar as in standard homogenization theory, in the non-rigid framework, the

unit cell Y =
[
− 1

2 ,+
1
2

]2
is made up of two open sets which vary in time: the

liquid part Yl = Yl(t,x) and the solid part Ys = Ys(t,x). Moreover, the internal
boundary is defined by Γ(t,x) = Y l(t,x) ∩ Y s(t,x). This implies that, the fluid
part/pore space, the solid part, and the interior boundary of the porous medium

are defined by Ωε = Ωε(t,x) :=
⋃

ij Y
ij
ε,l, Ω\Ωε = Ω\Ωε(t,x) :=

⋃
ij Y

ij
ε,s, and Γε =

Γε(t,x) :=
⋃

ij Γ
ij
ε , letting ·ijε denote the ε-scaled and shifted versions of Ys, Yl,

and Γ respectively. At initial time t = 0, we assume that the solid parts do not
touch or intersect the boundary of the unit cell Y , i.e. the fluid part Ωε(0,x) is
connected.

2.2. Outline of the Model Equations. The following ε-scaled and coupled
system of partial differential equations describes flow flow and transport at the pore
scale: Incompressible Stokes equations (1a), (1b) determine the fluid velocity vε
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Figure 1. Geometrical setting and scale parameter ε: Do-
main Ω0 and representation of a porous medium with porous ma-
trix Ω0\Ωε and unit cells Y .

and the pressure pε while the transport equation (1d) for the concentration cε
takes the processes of convection, diffusion into account. Moreover, a drift term
with given interaction potential Φε and a surface reaction rate f accounts for
interaction with the porous matrix. Finally, the physically meaningful boundary
conditions (1c), (1e) are carried out by conservation laws on the evolving solid-
liquid interface Γε := {x : Lε(t, x) = 0}, which is characterized by means of the
level set function Lε via (1f). Moreover, the liquid phase is given by Ωε(t) = {x :
Lε(t, x) > 0}.

−ε2η∆vε +
1
ρl

∇pε = −ε 1
ρlm

cε∇Φε x ∈ Ωε(t), t ∈ (0, tend)(1a)

∇ · vε = 0 x ∈ Ωε(t), t ∈ (0, tend),(1b)

vε = −ερl−ρ
ρlρ

f(cε, ρ)νε x ∈ Γε(t), t ∈ (0, tend),(1c)

∂tcε −∇ · (−vεcε +D∇cε + D
kT cε∇Φε) = 0 x ∈ Ωε(t), t ∈ (0, tend),(1d)

(−vεcε +D∇cε + D
kT cε∇Φε) · νε

= ε 1
ρf(cε, ρ)(cε − ρ) x ∈ Γε(t), t ∈ (0, tend),(1e)

∂tLε − ε 1
ρf(cε, ρ)|∇Lε| = 0 x ∈ Ω0, t ∈ (0, tend).(1f)

3. Effective Model

3.1. Two-scale Asymptotic Expansion. In an attempt to identify the limit
of system (1) for ε → 0, we assume that a two-scale asymptotic expansion exists
for all variables ϕε ∈ {vε, pε, cε,Φε}. In addition to these series in the scale
parameter ε, we employ the following expansion for the spatial derivative:

ϕε(t,x) = ϕ0(t,x,y) + εϕ1(t,x,y) + . . . , ∇ = ∇x + 1
ε∇y, y = x/ε.(2a)

In the framework of a level set description, also the level set function Lε itself and
the normal vector νε have to be expanded according to the evolving microstruc-
ture. The expansion of the outer normal vector νε is expressed in terms of the
level set function Lε and for the two-dimensional setting the following relations
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hold [2]:

Lε(t,x) = L0(t,x,y) + εL1(t,x,y) + ε2L2(t,x,y) + . . . , y = x/ε,(2b)

νε = ν0 + εν1 + . . . , ν0 =
∇yL0

|∇yL0| , ν1 = τ 0
τ0·(∇xL0+∇yL1)

|∇yL0|(2c)

with τ 0 := ν
⊥
0 denoting the unit tangent on Γ0. We restrict ourselves to the two-

dimensional setting here, since the representations (2b) together with the Lemmas
3.1 and 3.2 in [2] make it possible to simplify the following technical calculations
considerably and to obtain reasonable upscaling results.

3.2. Upscaling Results. After inserting and evaluating the expansions (2) into
system (1), the fully coupled Darcy-Convection-Diffusion system (3) is obtained by
the upscaling procedure [1] which determines the averaged velocity v̄0, the pressure

field p0, the transformed concentration c0 = e−
1
kT Φ0(t,x,y)u0, and the level set L0

on an averaged scale.

v̄0 = − 1
ηρl

K(t, x)∇xp0 t ∈ (0, tend), x ∈ Ω0,(3a)

∇x · v̄0 = ρl−ρ
ρl

F (t, x) t ∈ (0, tend), x ∈ Ω0,(3b)

∂t(A(t, x)u0) +∇x · (V (t, x)u0)

−∇x · (D̄(t, x)∇xu0) + F (t, x) = 0 t ∈ (0, tend), x ∈ Ω0,(3c)

∂tL0 − f(c0(t, x), ρ)|∇yL0| = 0 t ∈ (0, tend), x ∈ Ω0, y ∈ Y.(3d)

The time and space dependent, effective coefficients K,A, V, D̄, F are calculated
by integrating solutions of time and space dependent cell problems [1].

Moreover, in [1] upscaling results are interpreted in the situation of clogging
and numerical simulations are presented.

4. Concluing remarks

Our attempt can be seen as a first step toward capturing directly structural
changes in a porous medium in a macroscopic model description. Moreover, the
particular strength of our model lies in the fact that it is applicable for general
interaction forces between the porous matrix and the concentration. However, the
most important limitation lies in the fact that processes in a realistic 3D setting
can not be considered. Consequently, further research is required to extend our
model approaches from 2D to 3D. Another important issue for future research is
the integration of intra particle interaction.
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Homogenization of plasticity equations with hardening using

Finite-Element approaches

Ben Schweizer

(joint work with Marco Veneroni)

Plasticity equations describe the deformations e.g. of metal [1, 3]. As in elasticity,
one describes the body at rest with a domain Ω ⊂ Rn, the deformation of the
material point x ∈ Ω by u(x) ∈ Rn, uses the symmetric gradient ∇su(x) =
(∇u(x) + ∇u(x)T )/2 to describe local deformations, and the stress tensor σ(x)
to describe inner forces. The balance of linear momentum is as in elasticity, (1a)
with density ̺ and load f .

In contrast to elasticity, the stress tensor is not in a linear relation with ∇su(x).
Instead, the deformation is decomposed (here: additively) into two parts, an elastic
strain and a plastic strain, ∇su(x) = e(x) + p(x), such that with e(x) Hooke’s
law is satisfied, σ(x) = De(x) for some elasticity tensor D. The plastic strain
can be considered as a component of a possibly larger vector of interior variables
ξ ∈ RN ; with a linear operator B : RN → Rn×n

s that maps into the space of
symmetric matrices, we write p = Bξ and obtain (1b) as stress-strain relation.
Finally, in order to close the system, we have to introduce a flow-rule in (1c). It
provides an ordinary differential equation for the internal variables ξ(x, t) ∈ RN .
The nonlinear function g : RN → RN is assumed to be monotone and can be
multi-valued. The flow rule expresses changes of the internal variables ξ under
the influence of the forces σ. Hardening models include Lξ in the argument of g,
strictly monotone operators L : RN → RN contribute to regularity properties of
solutions. In particular, p need not be regarded as a measure, but can be expected
to be an element of L2(Ω) for every time instance.

In the homogenization analysis, one is interested in oscillatory dependence of
the material parameters on x ∈ Ω, we therefore provide the material variables with
a subscript η where η > 0 stands for the typical length scale in the heterogeneous
model. Since the solution depends on the coefficients, we mark also the solution
variables uη, ση, and ξη with a superscript η. The system under consideration
reads

̺η∂
2
t u

η = ∇ · ση + f(1a)

ση = Dη(∇suη −Bηξ
η)(1b)

∂tξ
η ∈ gη(B

T
η σ

η − Lηξ
η)(1c)

For a time horizon T > 0, the equations are posed on ΩT = Ω× (0, T ).
The homogenization of the plasticity system (1) was analyzed recently by sev-

eral authors. The method of two-scale convergence was used in [9, 10, 11], quasi-
stationary evolutions were the underlying concept in [4, 5], and a phase-shift con-
struction was used in [2, 6]. Another method to derive similar results was intro-
duced in [8]: Based on Tartar’s original method of oscillating test functions in
homogenization, we constructed oscillating test-functions from the two-scale limit
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problem in order to prove the homogenization result. We note that all the ap-
proaches mentioned above have their own strengths. A strength of the approach
in [8] is the simplicity and flexibility. In particular, the treatment of the wave
equation (inclusion of ̺∂2t u in (1a)) is possible without any additional difficulties.

Why is the homogenization of the plasticity problem difficult? It is astonishing
that the homogenization of this problem was only recently performed. Difficulties
lie in the non-linear character of the equations and, in particular, in the differential
inclusion (1c), which is typically formulated by imposing an energy-dissipation
inequality. From our view-point, the main problem lies in the fact that solutions
(of the two-scale problem) do not have sufficient regularity properties (in (x, y)).
We circumvent this problem as follows: we do not use the solution of the two-scale
problem to construct an oscillatory test-function, but we do use a Finite-Element
approximation of the two-scale problem. This approximation has all the regularity
properties that we need.

Results. We consider periodic homogenization. With the periodicity cell Y =
[0, 1)n we assume that the material parameters are given as

Dη(x) = D

(
x,
x

η

)
, Lη(x) = L

(
x,
x

η

)
, Bη(x) = B

(
x,
x

η

)
,

̺η(x) = ̺

(
x,
x

η

)
, gη( · ;x) = g

(
· ; x
η

)
.

The limit system for plasticity consists in a two-scale problem. In general, this
problem cannot be decoupled — we do not obtain a single macroscopic plasticity
system as an effective equation (except for the one-dimensional case, [7]). The
unknowns in the two-scale problem are the macroscopic deformation u : ΩT → Rn,
a corrector for the deformation v : ΩT × Y → Rn, the two-scale internal variables
w : ΩT × Y → RN , and the two-scale stress z : ΩT × Y → Rn×n

s . The two-scale
system reads, for the averaged density ¯̺(x) > 0,

¯̺∂2t u = ∇ ·
(∫

Y

z dy

)
+ f(2a)

z = D(∇s
xu+∇s

yv −Bw)(2b)

∇y · z = 0(2c)

∂tw ∈ g(BT z − Lw ; y)(2d)

The homogenization result takes the following form. We are currently working
on optimal assumptions on the coefficients, the following formulation is meant to
indicate work in progress (but we note that precise assumptions for a less general
model with an indicatrix map g are given in [8]).

Theorem 1. Let Ω ⊂ Rn be a bounded polygonal domain, T > 0. Let the maps
D(x) and L(x) be monotone, uniformly bounded with uniformly bounded inverse
operators. Let g : RN × Y → RN be a multi-valued monotone operator. Let the
density ̺ be strictly positive, we use ¯̺(x) =

∫
Y
̺(x, y) dy. Let initial data and

boundary conditions be such that solutions to the oscillatory system and to the
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two-scale system exist. Let (uη, ση, ξη) and (u, v, w, z) be solutions of problems (1)
and (2). Then, as η → 0,

∂tu
η → ∂tu strongly in L2(ΩT ),

ση ⇀

∫

Y

z dy, ξη ⇀

∫

Y

w dy weakly in L2(ΩT ).

As indicated, the proof of the theorem is based on solutions of a semi-discrete
version of the two-scale problem. More precisely, we define a space of piecewise
affine finite elements Uh ⊂ H1(Ω) and search for uh(., t) ∈ Uh. The other vari-
ables, vh(x, y, t), zh(x, y, t), and wh(x, y, t) are searched for in spaces of piecewise
constant function in x. We solve∫

Ω

(∫

Y

zh dy

)
: ∇ψ =

∫

Ω

(f − ¯̺∂2t uh) · ψ ∀ψ ∈ Uh(3a)

zh = Dh(∇suh +∇s
yvh −Bwh)(3b)

∇y · zh = 0(3c)

∂twh ∈ g(BT zh − Lwh; y)(3d)

For any function φ : Ω × Y × (0, T ) → Rm, we construct an oscillatory test-
function by setting φη(x, t) := φ(x, x/η, t). Using the solution (uh, vh, zh, wh) of
(3), constructing the oscillatory functions (uh,η, vh,η, zh,η, wh,η), and using them
as test-functions in the original system and in (3), we can derive Theorem 1 with
energy methods, using taylored div-curl-lemmas to show smallness of error terms.
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Performance of the Metropolis algorithm on a disordered tree: The

Einstein relation

Ofer Zeitouni

(joint work with Pascal Maillart)

Consider a d-ary rooted tree (d ≥ 3) where each edge e is assigned an i.i.d.
(bounded) random variable X(e) of negative mean. Assign to each vertex v the
sum S(v) of X(e) over all edges connecting v to the root, and assume that the
maximum S∗

n of S(v) over all vertices v at distance n from the root tends to infinity
(necessarily, linearly) as n tends to infinity. We analyze the Metropolis algorithm
on the tree and show that under these assumptions there always exists a temper-
ature 1/β of the algorithm so that it achieves a linear (positive) growth rate in
linear time. This confirms a conjecture of Aldous [1]. The proof is obtained by
establishing an Einstein relation for the Metropolis algorithm on the tree. The
full paper is available at [2].
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Localized bases for numerical homogenization with arbitrary

coefficients

Lei Zhang

(joint work with Houman Owhadi, Leonid Berlyand)

We introduce a new variational method for the numerical homogenization of diver-
gence form elliptic, parabolic and hyperbolic equations with arbitrary rough (L∞)
coefficients. Our method does not rely on concepts of ergodicity or scale-separation
but on compactness properties of the solution space and a new variational approach
to homogenization. The approximation space is generated by an interpolation ba-
sis (over scattered points forming a mesh of resolution H) minimizing the L2 norm
of the source terms; its (pre-)computation involves minimizing O(H−d) quadratic
(cell) problems on (super-)localized sub-domains of size O(H ln(1/H)). The re-
sulting localized linear systems remain sparse and banded. The resulting inter-
polation basis functions are biharmonic (for d ≤ 3 and polyharmonic for d ≥ 4)
for the operator −div(a∇·) and can be seen as a generalization of polyharmonic
splines to differential operators with arbitrary rough coefficients. The accuracy of
the method (O(H) in energy norm and independent from aspect ratios of the mesh
formed by the scattered points) is established via the introduction of a new class
of higher-order Poincaré inequalities. The method bypasses (pre-)computations
on the full domain and naturally generalizes to time dependent problems, it also
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provides a natural solution to the inverse problem of recovering the solution of a
divergence form elliptic equation from a finite number of point measurements.
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Université Paul Sabatier
118 route de Narbonne
31062 Toulouse Cedex 4
FRANCE

Nadja Ray

Institut f. Angewandte Mathematik I
Universität Erlangen
Cauerstr. 11
91058 Erlangen
GERMANY

Prof. Dr. Lenya Ryzhik

Department of Mathematics
Stanford University
Stanford, CA 94305-2125
UNITED STATES

Prof. Dr. Ben Schweizer

Fakultät für Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44227 Dortmund
GERMANY

Prof. Dr. Ofer Zeitouni

Department of Mathematics
University of Minnesota
127 Vincent Hall
206 Church Street S. E.
Minneapolis, MN 55455
UNITED STATES

Prof. Dr. Lei Zhang

Shanghai Jiaotong University
Department of Mathematics
No. 800 Dong Chuan Road
200 240 Shanghai
CHINA




