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Introduction by the Organisers

Built on decades of research in ergodic theory, Szemerédi’s regularity theory and
statistical physics, a new subject is emerging that considers very large finite struc-
tures as approximations of infinite analytic objects. More precisely, one can intro-
duce various convergence notions and limit objects for growing sequences of graphs,
hypergraphs, permutations, and for several kinds of other important structures.
Many properties of these structures are easier to study in the limiting setting
since powerful tools from analysis become available. This approach creates new
connections between analysis, combinatorics and group theory. The goal of the
Arbeitsgemeinschaft is to present a landscape of beautiful ideas developed by re-
searchers from diverse fields. The subject is very rich and many of its aspects are
covered in the recent book [1] by L. Lovász.

The presentations at the workshop discussed a number of applications in ex-
tremal combinatorics, Fourier analysis (also in a higher order version of it), group
theory, ergodic theory, topology and probability. The workshop was well attended
with over 40 participants. It brought together researchers with backgrounds in
Probability, Combinatorics, Ergodic theory, group theory and logic. Besides talks
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there was a problem session and an informal discussion of recent progress in ran-
dom regular graphs.
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László Miklós Lovász
Root measures of graph polynomials and Benjamini–Schramm
convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003

Nathan Bowler
Ultrafilters and hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004

Cameron Freer
Topological aspects of dense graph limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007
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Abstracts

Introduction to Szemerédi’s regularity lemma

Heinrich-Gregor Zirnstein

The aim of this talk was to give a short introduction to the celebrated Szemerédi
Regularity Lemma in the context of dense graphs limits [3]. To keep things simple,
we will focus on a weaker version of the Regularity Lemma [1] which has a direct
application to the problem of finding a maximum cut of a graph. The essence of
its proof is a simple lemma about approximations in Hilbert space [3].

We make no attempt to explain traditional applications of the regularity lemma
in graph theory; we refer to Ref. [2] for more on those.

1. A Weak Regularity Lemma and the Maximum Cut Problem

We now present a weak version of the Regularity Lemma due to Frieze and Kannan
[1] and explain how it can help in approximating the maximum cut of a dense
graph. But first, we must fix some notation.

To each graph, we can associate its adjacency matrix A, whose rows and columns
are the vertices of the graph and whose entries A(i, j) record whether the vertices
i and j are directly connected to each other:

A(i, j) =

{
1 if there is an edge between i and j;
0 otherwise.

Without loss of generality, we assume that the vertices of the graph are labelled
by natural numbers V = {1, . . . , n}.

Anticipating the limit of a large vertex count n, we can represent the adjacency
matrix A just as well by a functionW : [0, 1]2 → [0, 1] on the unit square as follows

W (x, y) = A(⌈nx⌉, ⌈ny⌉).
In other words, each graph corresponds to a symmetric, measurable functionW on
the unit square. Moreoever, this function is a 0, 1-valued step function supported
on a grid of squares with side lengths 1/n.

More generally, let W0 denote the set of all measurable and symmetric functions
W : [0, 1]2 → [0, 1]. Elements of this set are also called graphons. They arise as
limits of a sequence of dense graphs, but that’s the subject of a subsequent talk;
here we will focus on ordinary graphs represented as above.

Now, the Regularity Lemma is a statement about approximating any function
in W0, which can be very complicated on a fine scale, by step functions which only
vary on a coarse scale. A step function W is just a function on the unit square
such that for some partition P = {P1, . . . , Pk} of the unit interval [0, 1], the values
are constant W (x, y) = W (x′, y′) whenever the two points (x, y) and (x′, y′) are
contained in the same part Pi × Pj .

The quality of the approximation is measured by the following norm.
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Definition 1 (Cut norm). Let W : [0, 1]2 → R be a measurable and symmetric
function, for instance a graphon W ∈ W0. Its cut norm is defined as

‖W‖� = sup
S,T⊂[0,1]

∣∣∣∣
∫

S×T

W (x, y) dx dy

∣∣∣∣ .

In other words, the cut norm measures whether two functions can be distin-
guished by averaging over all rectangles S×T . These integrals naturally correspond
to the number of edges between the vertex sets corresponding to S and T .

We can now state the weak form of the Regularity Lemma.

Lemma 1 (Weak Regularity Lemma). Let ε > 0 be a real number. Then, for
every function W ∈ W0, there exists a partition P = {P1, P2, . . . , Pk} of the unit

interval [0, 1] into k ≤ ⌈2c/ε2⌉ many parts and a step function W̃ constant on this
partition such that

‖W − W̃‖� ≤ ε

for some constant c ∈ R independent of ε.

As the name may suggest, the cut norm is useful for controlling the maximum
cut of a graph. Given a graph G = (V,E), a cut is just a collection of edges
obtained from a partition of the vertex set into two parts V = S ⊎ Sc. If A is the
adjacency matrix of the graph, then the quantity

A(S, Sc) =
∑

i∈S,j∈Sc

A(i, j)

is called the weight of the cut. The maximum cut problem is the problem of
finding a cut with maximum weight. In other words, the goal is to “cut away” the
maximum number of edges by separating the graph into two parts. This problem is
NP-hard and one of the most famous long-standing problems in computer science:
currently, there is no known algorithm that can solve this problem in polynomial
time, and if we had such an algorithm, then we would also be able to solve all
other NP-hard problems in polynomial time.

Since the maximum cut problem is hard to solve exactly, one can try to find
approximative solutions instead. Now, the cut norm controls the maximum cut
since

|W (S, Sc)− W̃ (S, Sc)| ≤ ‖W − W̃‖�
by considering the rectangle S × T = S × Sc. In other words, if two graphs are
close in the cut norm, then the weights of their cuts are also close. The weak
regularity lemma says that the (scaled) adjacency matrix W of a graph can be

approximated by a simpler step function W̃ with a similar cut weights. Frieze and
Kannan [1] have shown that this yields approximation algorithms for the maximum
cut problem in a straightforward manner. Unfortunately, the Regularity Lemma,
and hence these approximation algorithms only work well for dense graphs as the
function W was obtained from the adjacency matrix A by scaling with a factor of
1/n.
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2. Hilbert-Space Proof of the Regularity Lemma

We can actually deduce the Regularity Lemma from a very general result about
approximating vectors in Hilbert spaces [3].

Lemma 2 (Regularity Lemma in Hilbert Space). Let H be a real Hilbert space
and A1, A2, . . . be arbitrary nonempty subsets. Then, for every ε > 0 and vector
f ∈ H, we can find m < ⌈2/ε2⌉ many vectors fi ∈ Ai with coefficients λi ∈ R such
that

|〈g, f − (λ1f1 + λ2f2 + · · ·+ λmfm)〉| ≤ ε‖f‖‖g‖
for every g ∈ Am+1.

Essentially, the lemma says that we can approximate the vector f by a linear
combination of elements from A1, . . . , Am such that the remaining error is almost
orthogonal to the set Am+1. At first sight, this may seem too good to be true,
because the set Am+1 can be arbitrary and has no relation to the previous sets
A1, . . . , Am. However, keep in mind that the index m is not a parameter that we
can choose; it is the lemma that will choose the linear combination to be as long
as needed.

Proof. (Regularity Lemma in Hilbert Space)
Let

ηk := inf
λi∈R,fi∈Ai

∥∥∥∥∥f −
k∑

i=1

λifi

∥∥∥∥∥

2

denote the squares of the norms of the errors. They form a decreasing sequence

‖f‖2 ≥ η1 ≥ η2 ≥ · · · ≥ 0.

Since the norms of the errors cannot decrease indefinitely, we can find an index
m < ⌈2/ε2⌉ where the error fails to improve significantly

ηm − ηm+1 <
ε2

2
‖f‖2.

Choosing a good approximation f̃ =
∑m

i=1 λifi with ‖f − f̃‖2 ≤ ηm + ε2

2 ‖f‖2
yields, for any vector g ∈ Am+1 and coefficient λ ∈ R,

‖f − f̃ − λg‖2 ≥ ηm+1 ≥ ‖f − f̃‖2 − ε2‖f‖2

⇐⇒ λ2‖g‖2 − 2λ〈g, f − f̃〉+ ε2‖f‖2 ≥ 0.

The discriminant of the quadratic polynomial must be positive, which concludes
the proof. �

We can now prove the Weak Regularity Lemma.

Proof. (Weak Regularity Lemma) Consider the Hilbert space H = L2([0, 1]2) and
let thet set An be equal to the set of characteristic functions of squares

An = {1S×S : S ⊂ [0, 1] measurable} ⊂ H.
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Applying the previous lemma to the function W ∈ W0 ⊂ H yields a function

W̃ =

m∑

i=1

λi1Ti×Ti , m < ⌈c/ε2⌉ for a constant c ∈ R

with the property that ∣∣∣∣
∫

S×S

(W − W̃ )

∣∣∣∣ ≤ ε

for every square S × S. This is a step function with at most 2m steps. Since a
(symmetric) rectangle can be obtained by removing squares from a larger square,
this implies that

‖W − W̃‖� ≤ ε,

though perhaps at the cost of increasing ε by some constant factor. �
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Limits of dense graph sequences

Llúıs Vena

The Regularity Lemma, both the strong [6] and the weak versions [1], has seen
many applications in combinatorics and graph theory [2], as well as in number
theory [5]. In [4], Lovász and Szegedy gave an analytical interpretation of the
Regularity Lemma and deduced some consequences regarding the space of objects
naturally arising as limits of homomorphisms densities of graph sequences. In this
talk we present some of these analytic consequences.

Given finite graphs F andG, we define t(F,G) as the probability that a function,
picked uniformly at random from the vertex set of F to the vertex set of G, is a
graph homomorphism; this is, that the function preserves the edge set of F as edges
of G. A sequence of finite graphs {Gn} is said to be convergent if limn→∞ t(F,Gn)
converges for every finite graph F (see [3]). However, it can be checked that there
are some convergent sequences of graphs that converge to a limit that no finite
graph attains. For instance, a sequence of random graphs with increasing number
of vertices and with the probability of any edge to appear being 1/2 is a convergent
sequence, but there is no finite graph G that has t(F,G) = (1/2)|E(F )| for all finite
graph F .

Let W0 be the set of symmetric measurable functions W : [0, 1]2 → [0, 1], called
graphons. A graph G over n vertices can be seen as an element of W0 by dividing
the interval [0, 1] into n equal-sized intervals [i/n, (i+1)/n], i ∈ {0, . . . , n−1}, and
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W (x, y) = 1 for any (x, y) ∈ [(i − 1)/n, i/n]× [(j − 1)/n, j/n] with {i, j} ∈ E(G)
and W (x, y) = 0 otherwise.

Let k be the size of the vertex set of F . Given W ∈ W0, we can extend the
homomorphism density notion to the set of graphons with

t(F,W ) =

∫

[0,1]k

∏

(i,j)∈E(F )

W (xi, xj) dx1 · · · dxk.

Thus, the graphons are candidates for the closure of the finite graphs with the
homomorphism density as a limit notion.

In W , the space of bounded symmetric measurable functions W : [0, 1]2 → R,
we can introduce the cut norm

||W ||� = sup
S,T⊂[0,1]

∣∣∣∣
∫

S×T

W (x, y)dxdy

∣∣∣∣ , S, T measurable.

In particular, in [4] it is shown that

|t(F,W )− t(F,U)| ≤ |E(F )| ||W − U ||�,
so the cut norm controls the differences in t(F, ·). The space W can also be
endowed with the L1 norm. In particular, ||W ||� ≤ ||W ||1.

Let φ : [0, 1] → [0, 1] be a measure preserving transformation and denote Wφ =
W (φ(x), φ(y)). It can be noted that t(F,W ) is invariant under φ; t(F,Wφ) =
t(F,W ). Thus, it is natural to define

δ�(U,W ) = inf
φ

||U −W ||�, φ measure preserving bijection

and

δ1(U,W ) = inf
φ

||U −W ||1, φ measure preserving bijection.

After identifying points with zero distance in (W0, δ�), we obtain a metric space
X0 that Lovász and Szegedy [4] showed to be compact. Moreover, the set of finite
graphs is dense in this space.

The proof shows that any sequence of graphons has a subsequence that con-
verges to a limit object. The analytic interpretation of the Regularity Lemma as an
approximation result in the square norm, using step-functions with finitely-many
steps, provides a finite-information approximation of the original graphons. For
those approximations, a subsequence can be shown to converge in the L1 norm.
These approximations can be tweaked to provide a sequence of graphons that can
be interpreted as a martingale. The existence of the limit object appears as a
consequence of the Martingale Convergence Theorem.
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Benjamini–Schramm limits

Johannes Carmesin

Benjamini and Schramm define a metric on the connected bounded degree graphs
with a specified vertex called the root. Two such rooted graphs are near if there is
a large radius such that the balls of that radius around the two roots of the graphs
are isomorphic.

This can be made a metric on the finite connected bounded degree graphs G
without a root. For this, we associate with G the probability measure µG that
for each vertex o ∈ V (G) gives back the rooted graph (G, o) with probability
1/|V (G)|. More generally, Benjamini and Schramm consider probability measures
on the space of connected bounded degree rooted graphs. Such measures will
be called random rooted graphs. Informally, a random rooted finite graph (G, o)
is unbiased if given G, the root is distributed uniformly at random amongst the
vertices. For example, µG is unbiased.

Benjamini and Schramm proved the following theorem. Let M > 0. Let (G, o)
be the Benjamini–Schramm limit of a sequence (Gj , oj) of random rooted finite
planar unbiased graphs of degree bounded by M . Then G is recurrent with prob-
ability one.

The main tool in the proof of this theorem is that of circle packings. Very
roughly, the circle packing for each (Gj , oj) gives a random circle packing Pj with
random root oj . In a certain sense, (Pj , oj) converges to a probability distribution
P of circle packings for G with random root o.

Using a theorem of He and Schramm, it can be shown that it suffices to prove
that P has at most one accumulation point with probability one. To prove this,
Benjamini and Schramm introduce the key notion of a (δ, s)-supported point. Very
informally, given a finite set of points in the plane, one of those points is (δ, s)-
supported if the points nearby spread out a lot. This spreading out is measured by
the real δ > 0 and the natural number s, where it gets easier to be (δ, s)-supported
the smaller δ is and the larger s is.

If P has at least 2 accumulation points with a positive probability, then it can
be shown that from the set of midpoints of circles in Pj at least a constant fraction
has to be (δ, s)-supported. Here δ is fixed and for every s there is some j such that
the above is true for δ, s and j.
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However, Benjamini and Schramm prove for any arbitrary arrangements of
points in the plane that less than a constant fraction of these points are (δ, s)-
supported (for sufficiently large s). Hence P has at most one accumulation point,
which completes the very rough sketch.
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Spectral aspects of the regularity lemma and dense graph limits

Oleg Pikhurko

This is a very brief and informal account of some of the ideas from the pa-
per ”Limits of kernel operators and the spectral regularity lemma” by Balázs
Szegedy [1].

We view a graphon M : [0, 1]2 → [0, 1] as a self-adjoint integral kernel operator
on L2([0, 1]) that maps a function f to

(Mf)(x) :=

∫
M(x, y)f(y) dy.

Here L2([0, 1]) is the real Hilbert space with the scalar product

(f, g) :=

∫
f(x)g(x) dx.

In addition to the standard L2-norm ‖f‖2 = (f, f)1/2, we will use the following
version of the cut-norm (for bounded measurable M : [0, 1]2 → R):

‖M‖� := sup
‖f‖∞≤1,‖g‖∞≤1

|(f,Mg)|.

The Cauchy-Schwartz inequality shows that the L2-convergence implies the cut-
norm and weak convergences while, for example, the adjacency functions of random
graphs show that the converse is not true. Also, one can come up with examples
that neither of the cut-norm and weak convergences implies the other. However,
further implications can be shown under extra assumptions. For example,

(1) if fi → f weakly, then lim sup ‖fi‖2 ≥ ‖f‖2 and the equality implies that
fi → f in L2 (cf. [1, Lemma 1.1]);

(2) if fi → f weakly, then Mfi →Mf in L2 [1, Lemma 1.2].

The graphon M (and more generally every symmetric M ∈ L2([0, 1]
2)) admits

a spectral decomposition

M(x, y) =

∞∑

i=1

λifi(x)fi(y) (in L2),
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where λi are reals tending to 0 and {fi} is an orthonormal basis made of eigen-
functions of M . This decomposition can be derived by considering the spectral
radius

rad(M) = sup
‖f‖2≤1

|(f,Mf)|.

By using the above properties and the compactness of the unit ball in the weak
topology, one can show that the supremum is in fact maximum. Some work shows
that any optimal f is an eigenvector of M and f⊥ is M -invariant, allowing to
iterate the argument. In particular,

rad(M) = max
i

|λi| = max
‖f‖2=1

‖Mf‖2.

The last formula implies, again by Cauchy-Schwartz, that ‖M‖� ≤ rad(M) [1,
Lemma 1.5]. This immediately leads to some version of a regularity lemma: the
graphon M is approximated within ε (in the cut-norm) by a “simpler” function

(1) [M ]ε :=
∑

i:|λi|>ε

λifi(x)fi(y).

Note that ‖M‖∞ ≤ 1 implies that ‖fi‖∞ ≤ |λi|−1. Indeed,

|λifi(x)| =
∣∣∣∣
∫
M(x, y)fi(y) dy

∣∣∣∣ ≤ ‖fi‖2 = 1

for a.e. x. Also, by Parselval’s identity, the number of terms in the right-hand side
of (1) is at most 1/ε2.

This allows us to derive a version of the weak regularity lemma as follows. First,
each fi in (1) can be approximated within δ in L∞-norm by a step function gi
with at most ‖fi‖∞/δ ≤ 1/(εδ) steps (just partition the essential range of fi into
at most 1/(εδ) intervals of length 2δ and take the pre-image of each). We can
assume ‖g‖∞ ≤ ‖f‖∞. Next,

‖gi(x)gi(y)− fi(x)fi(y)‖∞ ≤ ‖gi − fi‖∞ ‖fi‖∞ ≤ δ

ε
.

Combine the partitions of the step-functions gi into one partition P of [0, 1] that

has at most (εδ)−1/ε2 parts. We obtain a step-function

S(x, y) :=
∑

i:|λi|>ε

λigi(x)gi(y),

which is constant on each element of P ×P and (since each |λi| ≤ 1) satisfies that

‖M − S‖� ≤ ‖M − [M ]ε‖� + ‖[M ]ε − S‖∞ ≤ ε+
δ

ε
× 1

ε2
.

By taking, for example, δ = ε4, we derive that ‖M −S‖� ≤ 2ε, where the number
of steps of S can be bounded by a function of ε independent of M (recall that we
assumed that ‖M‖∞ ≤ 1).

One advantage of this approach is that if M has some symmetries, then these
are inherited by [M ]ε and almost inherited by S (within L∞-error of at most
2 ‖S − [M ]ε‖∞). So we obtain a “symmetry preserving” regularity lemma.
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The paper [1] builds further upon this argument to derive a strong symmetry
preserving regularity lemma [1, Theorem 3] and presents many other interesting
results.
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Graph algebras and reflection positivity

Péter E. Frenkel

1. The moment problem in graph theory

As a basis for analogy, let us recall Hausdorff’s solution [1] of the classical
moment problem.

Theorem 1. For a sequence (ai)
∞
i=0 of real numbers, the following are equivalent.

(1) There exists a random variable W such that EW i = ai for all i.
(2) We have a0 = 1, and the matrix (ai+j)

∞
i,j=0 is positive semidefinite.

We shall be discussing the graph-theoretic analogue of this. Graphs will always
be finite, undirected, and will have no loops, but may have multiple edges. In the
graph F , the number of edges connecting node i to node j is denoted Fij .

We write [k] = {1, 2, . . . , k}. A partially k-labeled graph is a graph whose vertex
set contains [k]. We write Gk for the set of isomorphism types of partially k-labeled
graphs, where isomorphisms are required to restrict to the identity on [k]. There
is a natural map E : Gk → G0 that forgets the labels. There is a natural semigroup
structure on Gk: if F1 ∩ F2 = [k], then we define F1F2 = F1 ∪ F2. The graph
algebra Qk is the semigroup algebra RGk.

A graph parameter f : G0 → R is normalized if f(K1)=1. It is multiplicative
if f(F1F2) = f(F1)f(F2) for all F1, F2 ∈ G0. The kth connection matrix of f is
M(k, f) = (f(E(F1F2)))F1,F2∈Gk . The parameter f is reflection positive if all its
connection matrices are positive semidefinite.

Let Ω be a probability space. A kernel is a function W ∈ L∞(Ω2) such that
W (x, y) = W (y, x) for almost all (x, y) ∈ Ω2. When Ω has finitely many points,
the kernel W is also called a normalized weighted graph on the node set Ω.

A kernel W has moments, also known as homomorphism densities,

t(F,W ) = E

∏

{i,j}⊆V (F )

WFij (Xi, Xj) (F ∈ G0),

where Xi : Ω
V (F ) → Ω is the ith projection.

Theorem 2 (Freedman, Lovász and Schrijver [4, 5]). For a graph parameter f :
G0 → R and a natural number q, the following are equivalent.
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(1) There exists a normalized weighted graph W on at most q nodes such that
f = t(−,W ).

(2) The graph parameter f is normalized, multiplicative, reflection positive
and M(k, f) has rank at most qk for all k.

One might naively hope that the theorem remains true if we allow arbitrary ker-
nels on probability spaces in (1) and replace the rank condition in (2) by requiring
that f grows at most exponentially with the number of edges. However, it turns
out that for this, we have to allow randomized kernels, i.e., probability measures
on Π = Ω2×Ξ such that the first marginal is the product measure on Ω2, and the
reflection (x, y, ξ) 7→ (y, x, ξ) is measure-preserving. Here Ξ is a compact subset
of R. Let X , Y and W be the projections from Π to Ω, Ω and Ξ respectively, and
let W [n] = E(Wn|X,Y ) be the nth moment considered as a function on Ω2. We
define the moment

t(F,W ) = E

∏

{i,j}⊆V (F )

W [Fij ](Xi, Xj),

where Xi : Ω
V (F ) → Ω is the ith projection.

Theorem 3 (Lovász and Szegedy [7]). For a graph parameter f : G0 → R and a
number d ∈ [0,∞), the following are equivalent.

(1) There exist normalized weighted graphs, i.e. kernels Wn on suitable finite
probability spaces Ωn, with |Wn| ≤ d and f(F ) = lim t(F,Wn) for all F .

(2) There exists a randomized kernel W with Ω = [0, 1] and Ξ ⊆ [−d, d], such
that f = t(−,W ).

(3) The parameter f is normalized, multiplicative, reflection positive and the
inequality |f(Kn

2 )| ≤ dn holds for all n, where Kn
2 is the graph with two

nodes and n edges.

Let us prove the easy implication (2) =⇒ (3). (It will then clearly follow
that (1) =⇒ (3). We refer to the original paper for the proof of the difficult
implications (3) =⇒ (1), (2).) Only reflection positivity requires a proof. En-

dow Ωk × Ξ(
k
2) with the probability measure whose first marginal is the product

measure on Ωk and which satisfies that all projections Wij (1 ≤ i < j ≤ k) to
Ξ are independent when conditioned on the projection (X1, . . . , Xk) to Ωk, with
(Wij |X1 = x1, . . . , Xk = xk) having the same distribution as (W |X = xi, Y = xj).

For F ∈ Gk, define the random variable F (W ) ∈ L∞
(
Ωk × Ξ(

k

2)
)
to be

E


 ∏

{i,j}⊆V (F ),{i,j}6⊆[k]

W [Fij ](Xi, Xj)

∣∣∣∣∣∣
X1, . . . , Xk


 ·

∏

{i,j}⊆[k]

W
Fij
ij .

Then f(E(F1F2)) = E(F1(W )F2(W )) and the claim follows.
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2. Simple graphs

Let Gsimp
k ⊂ Gk be the set of partially k-labeled simple graphs. For F ∈ Gk, let

F simp ∈ Gsimp
k be the underlying simple graph.

A simple graph parameter f : Gsimp
0 → R is reflection positive if its simple

connection matrix (f(E(F1F2)
simp))F1,F2∈Gsimp

k

is positive semidefinite for all k.

The limit objects for dense simple graphs are graphons, i.e., kernels W with
0 ≤ W ≤ 1. Simple graph parameters representable as t(−,W ) with a suitable
graphon W can be characterized by reflection positivity, or, alternatively, by a
nonnegativity condition arising from an inclusion-exclusion formula. The latter
description is analogous to the following classical

Theorem 4 (Hausdorff [1], new proof given by Diaconis and Freedman [2]). For
a sequence (ai)

∞
i=0 of real numbers, the following are equivalent.

(1) There exists a random variable 0 ≤W ≤ 1 such that EW i = ai for all i.

(2) We have a0 = 1, and
∑k

j=0(−1)j
(
k
j

)
an+j ≥ 0 for all n and k.

The analogous signed sum for a simple graph parameter f is

f †(F ) =
∑(

(−1)|E(F ′)−E(F )|f(F ′)
∣∣∣V (F ′) = V (F ), E(F ′) ⊇ E(F )

)
.

Theorem 5 (Lovász and Szegedy [6, 5]). For a simple graph parameter f :

Gsimp

0 → R, the following are equivalent.

(1) There exist simple graphs Wn such that f(F ) = lim t(F,Wn) for all F .
(2) There exists a graphon W with Ω = [0, 1], such that f = t(−,W ).
(3) The parameter f is normalized, multiplicative and reflection positive.
(4) f †(F ) ≥ 0 for all F .

Let us prove the easy implication (2) =⇒ (3). Only reflection positivity
requires a proof. Define a randomized graphon as follows. Let Ξ = {0, 1}. En-
dow Π = Ω2 × Ξ with the probability measure such that the distribution of the
projection W̃ : Π → Ξ conditioned on the projection to Ω2 is a Bernoulli distri-
bution with parameter W . Then the kth simple connection matrix of f is the kth
connection matrix of t(−, W̃ ), and the reflection positivity follows.

Even the easy implications (1), (2) =⇒ (3), (4) have important applications
in extremal graph theory. The simplest ones are the reproving [3] of the Goodman
inequality t(K3) ≥ t(K2)(2t(K2)−1) and the Katona–Kruskal inequality t(K3)

2 ≤
t(K2)

3, where t = t(−,W ) for a simple graph or a graphon W , and Kn is the
complete graph on n nodes.
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Limits of permutations

Gergely Ambrus

Let Sn denote the set of permutations on [n] = {1, 2, . . . , n}, and let S be the union
of the Sns for n ∈ N. For σ ∈ S, its length |σ| is the cardinality of its base set.
To any σ ∈ Sn, we associate a probability measure µσ on the unit square [0, 1]2,
whose density is constant n on the squares [(i− 1)/n, i/n]× [(σ(i)− 1)/n, σ(i)/n],
and 0 elsewhere.

A sample of length k from σ ∈ Sn is the induced permutation on a subset
with k elements of [n]. Accordingly, a sample of length k from a probability
measure µ on [0, 1]2 is the permutation given by the y-coordinates of k points
chosen independently according to µ, ordered by their x-coordinates – if µ is non-
atomic, then the probability that two of the y-coordinates are the same is 0.

For given permutations σ ∈ Sn and π ∈ Sk, where k ≤ n, the density of π in
σ, denoted by t(π, σ), is the probability that a uniformly chosen random k-sample
from σ agrees to π. Thus, the k-samples of σ determine a probability distribution
on Sk. In case k > n, we set t(π, σ) = 0. Similarly, a probability measure µ on
[0, 1]2 leads to the subpermutation densities t(π, µ) via k-samples from µ. It is not
hard to show that the difference between t(π, σ) and t(π, µσ) is of order |σ|−1.

Let {σj}∞j=1 be a sequence of permutations. We say that {σj} is convergent, if

the sequence t(π, σj) converges for every fixed permutation π. This is equivalent
to requiring that the measures µσj weakly converge to a probability measure µ on
the unit square. If it exists, the limit measure satisfies an important property;
namely, it belongs to the set Z of probability measures on [0, 1]2 which have
uniform marginals, that is, µ(A × [0, 1]) = µ([0, 1]× A) = λ(A) for any Borel set
A ⊂ [0, 1]. Also, it easily follows by a standard diagonal argument that any infinite
sequence of permutations contains a convergent subsequence.

Hoppen et al. [3] proved that Z is exactly the set of limit permutations: If
{σj} is convergent, then µσj ⇒ µ for some µ ∈ Z, and, on the other hand, every
µ ∈ Z arises as the limit in the above sense of a convergent permutation sequence.
If µσj ⇒ µ, it also follows that t(π, σj) → t(π, µ) for every π ∈ S. This notion
of convergence is also metrizable: Let I[n] denote the set of intervals contained
in [n]. The rectangular distance of σ1, σ2 ∈ [n] is defined by

d�(σ1, σ2) =
1

n
max

S,T∈I[n]
||σ1(S) ∩ T | − |σ2(S) ∩ T || .
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Accordingly, for µ1, µ2 ∈ Z, their rectangular distance is expressed as

d�(µ1, µ2) = sup
S,T∈I[0,1]

|µ1(S × T )− µ2(S × T )|,

where I[0, 1] denotes the set of intervals on [0, 1]. For given σ1, σ2 ∈ Sn, the
difference |d�(σ1, σ2) − d�(µ1, µ2)| is of order at most n−1. Convergence of a
permutation sequence is then equivalent to convergence of the associated measures
with respect to d�.

Our final notion to be introduced is quasi-randomness, following Cooper [2].
The discrepancy of a permutation σ ∈ Sn is

d(σ) =
1

n
max

S,T∈I[n]

∣∣∣∣|σ(S) ∩ T | −
|S||T |
n

∣∣∣∣ ;

intuitively, it expresses how much σ jumbles the elements of [n]. For µ ∈ Z, its
discrepancy is simply given by d(µ) = d�(µ, λ), where λ is the Lebesgue measure
on [0, 1]2. Once again, the difference between the discrepancy of σ and that of µσ
is at most of order |σ|−1.

A sequence of permutations {σj} is quasi-random, if |σj | → ∞ and d(σj) →
0. By virtue of the above connections, this is equivalent to the fact that {σj}
converges to the Lebesgue measure λ on [0, 1]2.

A natural question of R. Graham asks if there exists a finite k, so that the
density of permutations of length k in any sequence of permutations {σj} deter-
mines the quasi-randomness of {σj}. To be precise, we say that {σj} satisfies
the property P (k), if for every π ∈ Sk, t(π, σj) = 1/k! + o(1). Using this notion,
quasi-randomness is equivalent to the fact that P (k) holds for every k ≥ 1.

The analogue property for graphs was proven by Chung, Graham and Wilson
[1], who showed that the density of subgraphs with 4 vertices already characterizes
quasi-randomness. Král and Pikhurko proved that the same situation holds for
permutations.

Theorem 1 (Král, Pikhurko [4]). If the sequence of permutations {σj} with
|σj | → ∞ satisfies P (4), then it is quasi-random.

On the other hand, examples [2, 4] show that neither P (2) nor P (3) imply P (4),
thus, the above theorem gives the optimal answer for Graham’s question.

References

[1] F. R. K. Chung, R. L. Graham, R. M. Wilson, Quasi-random graphs, Combinatorica 9

(1989), 345–362.
[2] J. N. Cooper, Quasirandom permutations, Journal of Combinatorial Theory Series A 106

(2004), 123–143.
[3] C. Hoppen, Y. Kohayakawa, C. G. Moreira, B. Ráth, R. M. Sampaio, Limits of permutation
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Sofic groups and invariant random networks

Andreas Thom

Let Gd,• be the set of isomorphism classes of rooted, connected graphs with
degree bounded by d. For every r ∈ N, there are only finitely many possibilities
for the r-neighborhood of the root (up to isomorphism). This easily implies that
Gd,• can be endowed with a natural topology which makes it into a compact, sepa-
rable, and Hausdorff topological space. We denote by RN the space of probability
measures on Gd,•. Every finite graph G = (V,E) gives rise to an element µG ∈ RN
via the formula

µG :=
1

|V |
∑

v∈V

δ(G,v),

where δ(G,v) denotes the rooted graph given by the connected component of v ∈ G.
A sequence of finite graphs (Gn)n is said to be Benjamini–Schramm convergent,

if the probability measures (µGn)n converge in the weak-∗-topology on RN. An
element µ ∈ RN is called sofic if µ is a Benjamini–Schramm limit of a sequence of
finite graphs.

It is a fundamental open question of characterize sofic measures in terms of
intrinsic properties. For each µ ∈ RN, one can define two measures µ1 and µ2 on
Gd,•,•, the space of connected graphs equipped with two roots o1 and o2. This
space is locally compact and comes endowed with two maps πi : Gd,• → Gd,•,•

(i ∈ {1, 2}), which just forget one of the roots. For any Borel set E ⊂ Gd,•,•, we
set

µi(E) :=

∫

Gd,•

|E ∩ π−1
i (x)| dµ(x).

We say that µ is unimodular if µ1 = µ2. For a finite graph G = (V,E), a basic
double counting argument shows that µG is unimodular. Hence, every sofic mea-
sure is unimodule. It is a famous open problem (first raised in [1]) whether all
unimodular measures are sofic.

The notions above admit various generalizations. For example, one can put
labels from a compact set on edges and vertices or direct edges; essentially using
the same arguments. A finitely generated group Γ, generated by a finite symmetric
set S ⊂ Γ is called sofic if the Cayley graph Cay(Γ, S) is sofic as an S-labelled
directed graph. This notion goes back to Gromov and was further clarified in work
of Weiss [3]. As for now, there is no group known to be non-sofic.

Elek and Szabó [2] showed that sofic groups satisfy one of the longstanding
conjectures of Kaplansky. Indeed, it can be shown that the group ring of a sofic
group Γ with coefficients in an arbitrary skew field k is directly finite. This means,
that for any n ∈ N and any a, b ∈Mn(kΓ), the equation ab = 1 in Mn(kΓ) implies
that ba = 1. This is known to hold for any group Γ if the characteristic of k is
zero, and remains open in general.
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Graphings and local-global limits of bounded degree graphs

Endre Csóka

A graph sequence (Gn)
∞
n=1 is Benjamini–Schramm convergent [1] if the distribu-

tion of the isomorphism types of neighborhoods of radius r (when a vertex is
chosen uniformly at random in Gn) converges for every fixed r. Benjamini and
Schramm described a limit object for locally convergent sequences in the form of an
involution-invariant distribution on rooted countable graphs with bounded degree.
One can also describe this limit object as a graphing [2], which is a bounded degree
graph on a Borel probability space such that the edge set is Borel measurable and
it satisfies a certain measure preservation property.

Graphings are Borel graphs with an additional measure preserving property.
They seem to be the right generalizations of finite bounded degree graphs to the
infinite setting. It is a broad research direction to generalize facts from finite graph
theory to this measurable setting. Graphings contain more information than local
statistics of neighborhoods. There is a strengthening of the Benjamini–Schramm
convergence called local-global convergence by Hatami, Lovász and Szegedy [3],
and limit objects for this convergence notion can be represented by graphings.

In local-global convergence, instead of the neighborhood-statistics, we consider
the set of all colored neighborhood-statistics of the graph with all possible vertex
colorings. For example, an expander graph has the same neighborhood-statistics
than the disjoint union of two instances. But the latter one can be 2-colored so
that all colored neighborhoods are monochromatic and both colors have probability
1/2, while there is no coloring for the former case which provides approximately
the same colored neighborhood distribution. For another example, a sequence of
d-regular random graphs and d-regular random bipartite graphs have the same
Benjamini–Schramm limits: the random d-regular infinite tree. In contrast, the
local-global topology can distinguish them, because a d-regular random graph has
no proper 2-coloring, not even almost proper 2-coloring with high probability, but
a random bipartite graph does have a proper 2-coloring, by definition.

The formal definition is the following. For a finite graph G, let K(k,G) denote
the set of all vertex colorings with k colors. Fix integers k and r, and let U r,k

be the set of all triples (H, o, c) where (H, o) is a rooted graph of radius at most
r and c is an arbitrary k-coloring of V (H). Consider a finite graph G together
with a c ∈ K(k,G). Pick a random vertex v from G. Then the restriction of
the k-coloring to NG,r(v) is an element in U r,k, and thus for the graph G, every
c ∈ K(k,G) induces a probability distribution on U r,k which we denote by PG,r[c].

QG,r,k =
{
PG,r[c] : c ∈ K(k,G)

}
⊆M(U r,k).
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Definition 1. A sequence of finite graphs (Gn)
∞
n=1 with all degrees at most d is

called locally-globally convergent if for every r, k ≥ 1, the sequence (QGn,r,k)
∞
n=1

converges in the Hausdorff distance in the compact metric space (M(Ur,k), dvar).

Definition 2. Let X be a Polish topological space and let ν be a probability mea-
sure on the Borel sets in X. A graphing is a graph G on V (G) = X with Borel
measurable edge set E(G) ⊂ X ×X in which all degrees are at most d and

∫

A

e(x,B)dν(x) =

∫

B

e(x,A)dν(x)

for all measurable sets A,B ⊆ X, where e(x, S) is the number of edges from x ∈ X
to S ⊆ X.

The following theorem says that for each sequence of graphs, there exists a limit
graphing.

Theorem 1. Let (Gi)
∞
i=1 be a local-global convergent sequence of finite graphs with

all degrees at most d. Then there exists a graphing G such that QGn,r,k → QG,r,k

(n→ ∞) in Hausdorff distance for every r and k.

Given a Benjamini–Schramm limit, we can define a hierarchy of the local-global
limits, as follows.

Definition 3 (Local-global partial order). Assume that G1 and G2 are two graph-
ings of maximal degree at most d. We say that G1 ≺ G2 if cl(QG1,r,k) ⊆ cl(QG2,r,k)
for every r, k ≥ 1. In particular, G1 and G2 are locally-globally equivalent if and
only if both G1 ≺ G2 and G2 ≺ G1 hold.

Roughly, a graphing is “larger” if this contains more structure. It is known that
this partial ordering forms a lattice with a smallest and a largest element, namely
there exists a graphing with a richest, and a graphing with the smallest structure
within the same Benjamini–Schramm equivalence class.
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A model theory approach to structural limits

Cameron Freer

While the theories of dense and of bounded-degree graph limits are often pre-
sented in parallel, even the key definitions of convergence are strikingly different.
In this talk, we present an approach of Nešetřil and Ossona de Mendez [1, 3], which
aims to unify these approaches using model theory and notions from first-order
logic.
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Fix a first-order language. Given a first-order formula φ and a finite structure
G in this language, define 〈φ,G〉 to be the probability that φ is satisfied in G
when its free variables are instantiated by a tuple chosen uniformly independently
at random from the elements of G. We say that a sequence of such structures
(Gn)n∈N is first-order convergent when the sequence (〈φ,Gn〉)n∈N converges for
every first-order formula φ. One may define a notion of a measurable structure,
known as amodeling, to which the concept 〈φ, ·〉 extends in a natural way, providing
a notion of limit object.

By examining sub-boolean algebras of the boolean algebra of first-order for-
mulas (over the relevant language), one can obtain corresponding weaker notions
of convergence, which recover dense graph limits (for quantifier-free formulas),
Benjamini–Schramm convergence (for local formulas), and elementary convergence
(for sentences).

Besides providing a unifying framework for treating these various notions of
convergence, the approach can also expand the class of sparse graphs that can be
handled beyond the bounded-degree case. In particular, graphs of bounded tree-
depth admit natural notions of convergence and limit structure via this theory.
This may be viewed as one step towards treating the more general setting of
nowhere dense graphs [2].

When constructing graph limits using ultralimits, one naturally obtains objects
that retain first-order convergence information, and so this approach may also be
viewed as the study of this additional structure, already present.

Finally, by describing the notions of convergence using model-theoretic meth-
ods, one obtains definitions that uniformly treat the case of multiple relations and
other more complex settings.
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The graph limit approach to Sidorenko’s conjecture

Christian Reiher

A rather general problem from extremal graph theory asks the following: fix a
(small) graph F and consider another (large) graph G on n vertices possessing at
least ̺ · n2/2 edges. What is the minimum number of homomorphisms from F
to G? What we mean here by a homomorphism from F to G is just a function
from V (F ) to V (G) sending edges of F to edges of G. Note that we did not
demand our homomorphisms to be injective or to send non–edges to non–edges.
It is plain that the number of such homomorphisms, which we denote by t(F,G),
can be bounded from above by nvF , where vF refers to the number of vertices of
F ; traditionally one thus studies the normalized quotient t(F,G)/nvF and seeks
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to give lower bounds for it that depend on ̺ alone, the ultimate goal being to find
the pointwise minimal function MF (̺) arising in this way.

A naive guess as to what this function might be can be obtained by taking G
to be a large quasirandom graph of edge density about ̺. Due to the counting
lemma, the quotient t(F,G)/nvF is in this case known to roughly equal ̺eF , where
eF stands for the number of edges of F . So optimistically one might hope that
MF (̺) ≥ ̺eF holds in general. Another example, however, shows that this is
most of the time false: taking G to be a balanced complete bipartite graph one
realizes that the function MF vanishes on the interval γ ∈ [0, 1/2] provided that
the chromatic number of F is at least 3.

Still this does not rule out that the following statement, which was conjectured
by Sidorenko in [10], could be true: If F denotes a bipartite graph, and G denotes
an arbitrary graph on n vertices with at least ̺ ·n2/2 edges, then t(F,G) ≥ ̺eF nvF .
This is known to hold by now for several large classes of bipartite graphs F recalled
below. It is customary to remark at this point that a precise formula for the
function MF is known for just quite a few few non–bipartite graphs, the most
notable examples being cliques (see [7] for F = K3, [6] for F ∈ {K3,K4} and [8]
for F = Kr.)

It was already known to Sidorenko [10] that this problem is equivalent to some
of its analytical reformulations, the most general of which appears to be the follow-
ing: Let Ω = (X,B, µ) denote a measure space whose total measure equals 1, W
a graphon on Ω, i.e. a symmetric measurable function from X2 to the unit inter-
val, and F a bipartite graph with set of vertices {v1, . . . , vn}. Then t(F,W ) ≥ ̺eF ,
where

t(F,W ) =

∫ ∏

vivj∈E(F )

W (xi, xj)dµ
⊗n(x1, . . . , xn)

and ̺ =
∫
W (x, y)d(µ ⊗ µ)(x, y).

The cases of equality are easiest to discuss in this setting and conjecturally they
depend in the following way on the structure of F :

• If F is a matching, then equality holds for all graphons W .
• If F is forest but not a matching, then equality holds if and only if W is
regular in the sense of having essentially constant vertex degree, i.e. if the
set of all x from X satisfying

∫
W (x, y)dµ(y) 6= ̺ has measure zero.

• Finally, if F contains any cycle, then equality holds precisely if W is es-
sentially constant.

The first of these statements is, of course, trivial; as to the second one, it was
proved in [1] that Sidorenko’s conjecture holds for forests, and in the eight–author
article [3] the case of equality was settled as well. The strengthening of Sidorenko’s
conjecture provided by the third statement is known as the forcing conjecture and
as of today it is known to hold for all graphs F that are known to satisfy Sidorenko’s
conjecture.1 This is the case for

1This has not always been the case and may temporarily change in the future again.
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• All complete bipartite graphs (by Hölders inequality).
• All bipartite graphs one of whose vertex classes contains at most four
vertices, [9].

• All forests, [1].
• Even cycles (applying the Cauchy–Schwarz inequality to the corresponding
result for paths).

• Hypercubes, [4] (iterating the Cauchy–Schwarz inequality in some tricky
way).

• Bipartite graphs having one vertex that is complete vertex class opposite
to it (see [2] for a proof using the tensor power trick, and [5] for an entirely
different proof yielding the forcing conjecture for such graphs as well).

• Reflection trees (a class of bipartite graphs defined and studied in [5]).

In the talk we mainly discuss the new approach to Sidorenko’s conjecture de-
veloped in [5] dubbed the “logarithmic calculus” by Li and Szegedy. It is based
on two well known cases of Jensen’s inequality, namely

∫ f log gdµ ≤ log ∫ fgdµ and ∫ fg log gdµ ≥ (∫ fgdµ) log(∫ fgdµ),

that are valid for all measurable functions f, g : X −→ R+ with ∫ fdµ = 1. Typ-
ically these estimates are applied to some power of Ω rather than to Ω itself.
To illustrate how this approach works, we take T to denote any tree with set of
vertices {v1, . . . , vn} and define fT to be the function from Xn to R+ given by

fT (x1, . . . , xn) =

∏
vivj∈E(T )W (xi, xj)

̺
∏

1≤i≤n d(xi)
1−ri

,

where W refers to the graphon under discussion, ̺ is defined as above, d(x) =∫
W (x, y)dµ(y) is the “degree of x”, and ri denotes the ordinary degree of vi

in T . Arguing by induction on T and removing leaves in the induction step it is
straightforward to check that

∫
fT (x1, . . . , xn)µ

⊗(n−1)(x̂i) =
d(xi)

̺
for i = 1, . . . , n,

which in particular implies
∫
fTdµ

⊗n = 1. More or less the same computation
also shows

∫
fT (x1, . . . , xn) log(d(xi))µ

⊗(n−1)(x̂i) =
d(xi) log(d(xi))

̺
for i = 1, . . . , n.
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Thus we have

log t(T,W ) = log

∫
̺fT

∏

1≤i≤n

d(xi)
ri−1dµ⊗n

≥ log ̺+

∫
fT log

∏

1≤i≤n

d(xi)
ri−1

= log ̺+
∑

1≤i≤n

(ri − 1)

∫
fT log(d(xi))dµ

⊗n

= log ̺+
1

̺

∑

1≤i≤n

(ri − 1)

∫
d(z) log(d(z))dµ(z)

≥ log ̺+
n− 2

̺
· ̺ log ̺ = (n− 1) log ̺,

proving that T is indeed Sidorenko1. The main advantage of this approach lies in
the circumstance that it may be generalized to many other bipartite graphs that
can be broken up into manageable pieces. The basic idea here is to prove inequal-
ities that are stronger than Sidorenko’s for certain graphs, that can be sticked
together in such a manner that the resulting inequalities imply Sidorenko’s con-
jecture for larger graphs that are in a corresponding appropriate way constructible
from the pieces we started with. Employing this strategy, Li and Szegedy managed
to prove, e.g., that if you take two bipartite graphs satisfying Sidorenko’s conjec-
ture and glue them together along an edge, then the graph you obtain is Sidorenko
as well. An important concept appearing in such arguments, called “smoothness”
in [5], is defined as follows: Let H be a bipartite graph and let T be an induced
subtree of H . Enumerate the set of vertices ofH in such a way as {v1, . . . , vn} that
S = {v1, . . . , vm} is the set of vertices of T for some m ≤ n, set H∗ = H − E(T ),
and define the function tS(H

∗,W ) from Xm to R+ by

tS(H
∗,W )(x1, . . . , xm) =

∫ ∏

vivj∈E(H∗)

W (xi, xj)dµ
⊗(n−m)(xm+1, . . . , xn).

Then T is said to be smooth in H provided that∫
fT log tS(H

∗,W )dµ⊗m(x1, . . . , xm) ≥ |E(H∗)| · log ̺.

For example, the empty tree being smooth inH is equivalent toH being Sidorenko.
It is not hard to see that if one glues two graphs together along isomorphic smooth
subtrees that tree is going to be smooth in the resulting graph again. The above
mentioned statement on gluing graphs together along edges follows from the non–
trivial observation that every edge is smooth in any Sidorenko graph.

Now the natural question arises as to what pairs (T,H) have the property
that T is smooth in H . A rather obvious necessary condition for this to happen

1Strictly speaking some care is required when dealing with “vertices of W of degree zero”,
but there are various standard ways to handle this minor hurdle.
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is that H has to “retract to T ”, which is intended to mean that there has to
exist some homomorphism from H to T whose restriction to T is the identity. A
conjecture due to Li and Szegedy vastly generalizing Sidorenko’s conjecture asserts
that conversely if T is an induced subtree of another graphH retracting to T , then
T is smooth in H . It seems conceivable that this more general hypothesis, which
seems to be easier to approach inductively than the original conjecture, may play
a decisive rôle, in the eventual proof of Sidorenko’s conjecture (provided the latter
will turn out to be true).
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Profinite actions and applications in cost and rank gradient

Nhan-Phu Chung

We discuss here one of the main results of Abért and Nikolov about relations of cost
and rank gradient via profinite actions [1]. We also present two of its applications:
the new calculation of cost for free groups [5] and an example of non-amenable
groups containing no free subgroups in the class of residually finite groups [9].

First, we review the definition of rank gradient. It was first introduced by
Lackenby with motivation from 3-dimensional geometry [6]. Let Γ be a finitely
generated group. A chain in Γ is a sequence Γ = Γ0 ≥ Γ1 ≥ . . . of subgroups of
finite index in Γ.

Definition 1. The rank gradient of Γ with respect to (Γn) is defined as

RG(Γ, (Γn)) = lim
n→∞

d(Γn)− 1

|Γ : Γn|
,

where d(G) denotes the minimal number of generators (or rank) of G.
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Let H,K ≤ Γ be subgroups of finite index with H ≤ K. From Neilsen–Schreier
theorem on H and K, we get d(H)− 1 ≤ |K : H |(d(K)− 1) yielding

d(H)− 1

|Γ : H | ≤ d(K)− 1

|Γ : K| .

Thus the definition of RG(Γ, (Γn)) makes sense.

Definition 2. The absolute rank gradient of Γ is defined as

RG(Γ) = inf
H≤Γ,[Γ:H]<∞

d(H)− 1

[Γ : H ]
.

Now we define briefly a definition of cost of a group. The cost was introduced by
Levitt [7] and has been studied deeply by Gaboriau [4]. Let an infinite countable
group Γ act on a standard Borel space (X,B, µ) by measure preserving automor-
phisms. An action of Γ on (X,B, µ) is called essentially free if for each γ ∈ Γ\{eΓ},
µ{x ∈ X : γx = x} = 0.

Example 1. When Γ is infinite, the Bernoulli shift action of Γ on ({0, 1}Γ, µ) is
essentially free, where µ is the product measure on {0, 1}Γ having the (1/2, 1/2)-
measure.

A relation R on X is a set of ordered pairs from X , R ⊂ X ×X . Let us define
the relation E on X by

xEy ⇔ ∃γ ∈ Γ, y = γx.

Let S ⊂ X×X be an arbitrary relation on X . A path from x to y in S is a finite
sequence x0 = x, x1, . . . , xk = y ∈ X such that (xi, xi+1) ∈ S or (xi+1, xi) ∈ S for
0 ≤ i ≤ k − 1. We say that a sub-relation S of E spans E, if for any (x, y) ∈ E
with x 6= y there exists a path from x to y in S. The edge measure of a Borel
sub-relation S of E is defined as e(S) =

∫
x∈X degS(x)dµ, where degS(x) = |{y ∈

X : (x, y) ∈ S}|. The cost of E is defined as cost(E) = cost(Γ, X) = inf e(S),
where the infimum is taken over all Borel sub-relations S of E that span E.

If Γ is generated by g1, . . . , gd then the set S =
⋃d
i=1

⋃
x∈X{(x, gix)} is a span-

ning Borel sub-relation of E with e(S) = d. Thus cost(Γ, X) ≤ d(Γ).
The cost of Γ is defined as cost(Γ) = inf cost(Γ, X), where the infimum is taken

over all essentially free actions of Γ on a standard Borel space. We say that Γ has
fixed price c if all essentially free actions of Γ on a standard Borel space X have
cost c.

Example 2. (1) Every infinite amenable group has fixed price 1.
(2) The free group Fn, 1 ≤ n <∞ has fixed price n [4].

Before discussing the main theorem of [1] we review notions of profinite actions
and Farber chains. Let (Γn) be a chain in Γ. Then we define the tree structure
T = T (Γ, (Γn)) of Γ with respect to (Γn) as follows: the vertex set of T is {Γnγ :
n ∈ N, γ ∈ Γ} and (Γng,Γmh) is an edge in T if m = n+ 1 and Γmh ⊂ Γng. The
right actions of Γ on the coset space Γ/Γn respect to the tree structure and so Γ
acts on T by automorphisms.
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The boundary ∂T of T is defined as the set of infinite rays starting from the
root. For any t = Γnγ ∈ T we define Sh(t) ⊂ ∂T , the shadow of t as Sh(t) :=
{x ∈ ∂T : t ∈ x}. Set the base of topology on ∂T to be the set of shadows
and define the measure of a shadow as µ(Sh(t)) = 1

|Γ:Γn|
. Then ∂T is a totally

disconnected compact, metrizable space. The group Γ acts on ∂T by measure
preserving homeomorphisms and this action is called the profinite action of Γ
with respect to (Γn).

We say that the chain (Γn) is Farber if its profinite action is essentially free

or equivalently ∀g ∈ Γ, g 6= 1, |{h∈Γ/Γn:gh=h}|
[Γ:Γn]

→ 0 as n → ∞. Note that the

Farber condition was introduced by Farber in another equivalent form [3] and the
existence of Farber chain implies that Γ is residually finite: let Λn =

⋂
h∈Γ hΓnh

−1

then
⋂
n∈N

Λn = {1}. If (Γn) is a normal chain such that
⋂
Γn = {1} then (Γn) is

a Farber chain.

Theorem 1. [1] Let (Γn) be a Farber chain. Then

RG(Γ, (Γn)) = cost(Γ y ∂T (Γ, (Γn))− 1.

Let Γ̂ be the profinite completion of Γ which is defined as the inverse limit of

the groups Γ/N,N ⊲ Γ, [Γ : N ] <∞, i.e, Γ̂ = {(gi)i∈I ∈
∏
i∈I Γ/Ni : for all Nj ≤

Ni, gi = gj(mod Ni)}. Then Γ̂ is a compact group. Let µΓ be its normalized

Haar measure. Then the left translation action pΓ of Γ on (Γ̂, µΓ) is a measure
preserving action.

Corollary 2. [1] Let Γ be a finitely generated infinite residually finite group. Then

RG(Γ) = cost(pΓ)− 1.

Now we present a new calculation of cost for free groups [5]. Let 1 ≤ n <∞ and
let Γ = Fn be the free group with n generators. Let H be a subgroup of Γ of finite

index, then d(H)−1
|Γ:H| = n − 1. And hence by Corollary 2, we have cost(pFn) = n.

We also have cost(a) ≥ cost(pFn) [5] and cost(a) ≤ n for any action a of Fn. It
follows that Fn has fixed price n.

Next we discuss Osin’s examples for von Neumann–Day problem in the class
of residually finite groups. Recall that the original problem asks if there exists a
non-amenable group without non-abelian free subgroups. The affirmative answer
was obtained by Olshanskii [8]. Recently, Ershov [2] gave the first example for the
problem in the class of residually finite groups. Another example of the problem
in the class of residually finite groups has been constructed by Osin [9] when he
combined the two following theorems.

Theorem 3. [1] If Γ is a finitely generated infinite residually finite and amenable
group then RG(Γ) = 0.

Theorem 4. [9] There exists a finitely generated infinite residually finite torsion
group with positive rank gradient.
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Vertex and edge coloring models

Peter Gmeiner

1. Vertex Coloring Models

A vertex coloring model is a weighted graph H equipped with weights αH(u) ∈
R≥0 for each vertex u ∈ V (H) and βH(u, v) ∈ R for each edge uv ∈ E(H).
Without loss of generality we can completely describe H by d := |V (H)|, a :=

(αH(1), . . . , αH(d)) ∈ Rd≥0 and B := (βH(i, j))
d
i,j=1 ∈ Rd×d. The vertices V (H)

are often interpreted as colors or states of the vertices of another unweighted graph
G (which can have multiple edges but no loops). A coloring of the vertices V (G)
is then given by a mapping φ : V (G) → V (H). To φ we assign a weight

αφ :=
∏

u∈V (G)

αH(φ(u))

and a homomorphism function

homφ(G,H) :=
∏

uv∈E(G)

βH(φ(u), φ(v)).

The partition function or homomorphism function of a vertex coloring model is
defined as

fH(G) := hom(G,H) :=
∑

φ:V (G)→V (H)

homomorphism

αφ homφ(G,H).

If αH(u) = 1 for all u ∈ V (H) and βH(u, v) = 1 for all uv ∈ E(H) then hom(G,H)
is the number of homomorphisms from G to H . A graph parameter is a real-valued
function f : G → R on the set of finite graphs G (which are invariant under graph
isomorphism) and is called multiplicative if f(G1 ∪ G2) = f(G1)f(G2) for graphs
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G1, G2, where G1 ∪G2 is the disjoint union of the graphs. The set of isomorphism
classes of k-labeled graphs (a graph is k-labeled if k vertices are labeled by 1, . . . , k)
is denoted by Gk. By Kk we denote a k-labeled complete graph on k vertices.

We define a natural gluing operation for two k-labeled graphs G1, G2 with
the gluing-operator gk : Gk × Gk → Gk with gk(G1, G2) := G1 ∪ G2 where we
identify vertices with the same labels. A k-labeled graph G is vertex reflection
symmetric, if G = gk(H,H) for some k-labeled graph H and k ≥ 0, in particular
fH(G) is vertex reflection positive. The (infinite) matrix f ◦ gk : Gk × Gk → R is
called vertex connection matrix for a graph parameter f and an entry is given by
M(f, k)G1,G2 := f(gk(G1, G2)), where the rows and columns are indexed by base
elements of Gk. A graph parameter f is vertex reflection positive, if M(f, k) is
positive semidefinite for all k ≥ 0. The function k 7→ r(f, k) := rk(M(f, k)) is the
rank connectivity function of f .

We list some properties of the vertex connection matrix [1]:

• Let f 6= 0 be a graph parameter. Then f is multiplicative if and only if
M(f, 0) is positive semidefinite, f(K0) = 1 and r(f, 0) = 1.

• Let f be a multiplicative graph parameter, k, l ∈ N0, then r(f, k + l) ≥
r(f, k)r(f, l).

For a k-labeled graph G and a partial coloring φ : [k] → V (H) (with [k] :=
{1, . . . , k}) let homφ(G,H) :=

∑
ψ:V (G)→V (H)

ψ extends φ

αψ
αφ

homψ(G,H). The homomorphism

function then reads hom(G,H) :=
∑
φ:[k]→V (H) αφ homφ(G,H).

Let G be any k-labeled graph then fH(G) := hom(G,H) is vertex reflection
positive and r(fH , k) ≤ |V (H)|k. This condition is also sufficient.

Theorem 1 ([1, 2], Characterization for finite vertex coloring models). Let f be
a vertex reflection positive graph parameter for which there exists a number q ∈ N

such that r(f, k) ≤ qk for all k ≥ 0. Then there exists a weighted graph H with
|V (H)| ≤ q such that f(G) = fH(G).

Examples.

• Matching. Let Φ(G) be the number of perfect matchings in a graph G.
By definition it follows that Φ(G) is multiplicative. We can show that
r(Φ, k) ≤ 2k. On the other hand for 1-labeled graphs K1,K2 we have

M(Φ, 1)K1,K2 =

(
0 1
1 0

)
, which is not positive semidefinite and hence

M(Φ, k) is not positive semidefinite for all k ≥ 0. In particular Φ is not
vertex reflection positive and cannot be represented as a homomorphism
function.

• Chromatic polynomial. Let p(G, x) be the chromatic polynomial for a
graph G. For x fixed, p(G, x) is multiplicative. For k, q ∈ Z+ set Bk,q as
the number of partitions of a k-element set into at most q parts (Bk := Bk,k
is the kth Bell number), then one can show that

r(p, k) =

{
Bkx if x ∈ Z+,
Bk else.
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In particularM(p, k) is vertex reflection positive if and only if x ∈ Z+ and
so p(G, x) = hom(G,Kx) if and only if x ∈ Z+.

• Flows. Let Γ be a finite abelian group, S ⊆ Γ which is closed under
inversion (S = −S). For a directed graph G we fix the orientation of the
edges. An S-flow is a function f : E(G) → S such that f(uv) = −f(vu)
for each edge uv ∈ E(G) and

∑
u∈N(v) f(uv) = 0 for all v ∈ V (G), where

N(v) is the set of all neighbour vertices of v.
flo(G) is the number of S-flows in G and independent from the ori-

entation of G. Let Γ∗ be the character group of Γ and H a complete,
looped directed graph on Γ∗. Define αχ := 1

|Γ| for all χ ∈ Γ∗ and

βχ,χ′ :=
∑

s∈S χ(−s)χ′(s) for all χ, χ′ ∈ Γ∗. From S = −S it follows that
β is symmetric and βχ,χ′ ∈ R. We can show that flo(G) = hom(G,H).

2. Edge coloring models

A circle edge is an edge which is not incident to any vertex. It is an edge with
no endpoints. Let GE be the set of isomorphism classes of graphs with circles,
loops and multiple edges.

We call an edge an outgoing edge or open end if it goes out from a graph but is
not finished (it is possible that both ends are open). We define GEk := {G ∈ GE |
G has k open ends labeled by 1, . . . , k}. A gluing operator along edges is defined
by gEk : GEk ×GEk → GE , where gEk (G1, G2) is the disjoint union of G1, G2 and then
we glue together the labeled open ends of both graphs (we identify open ends with
same labels and replace them by an edge). Note that gEk (G1, G2) has no open
ends, but can have circles (gluing together two edges with both ends open gives a
circle).

With QE := {G | G =
∑n

i=1 µiG̃i, µi ∈ R, G̃i ∈ GE ∀ i ∈ {1, . . . , n}}
we define the space of quantum graphs. Analogously we define the space QEk
of quantum graphs with k-labeled open ends. The gluing operator gEk extends
linearly to gEk : QEk × QEk → QE and is symmetric and bilinear. G ∈ QE is
edge reflection symmetric, if G = gEk (H,H) for some H ∈ QEk and k ≥ 0. A
graph parameter f is edge reflection positive, if its linear extension f : QE → R

takes nonnegative values on all edge reflection symmetric quantum graphs. The
matrix f ◦ gEk : QEk × QEk → R is called edge connection matrix and is given by
ME(f, k)G1,G2 := f(gEk (G1, G2)) where the rows and columns are indexed by base
elements of GEk . An R-valued edge coloring model is given by a function t : Nd → R

(with colorset C = {c1, . . . , cd}). For a coloring of edges ψ : E(G) → C in G and a
vertex v ∈ V (G) we define degc(ψ, v) as the number of edges e incident to v with
color ψ(e) = c. We get a vector deg(ψ, v) := (degc1(ψ, v), . . . , degcd(ψ, v)) ∈ Nd.
Furthermore we define tψ(G) :=

∏
v∈V (G) t(deg(ψ, v)) and the partition function

for edge coloring models is t(G) :=
∑
ψ:E(G)→C tψ(G) and is a multiplicative graph

parameter. The following theorems give a characterization of graph parameters in
terms of edge coloring models.
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Proposition 2 ([3]). Let t : Nd → R be an edge coloring model then the partition
function t : GE → R is edge reflection positive.

Theorem 3 ([3]). Let f : GE → R be an edge reflection positive and multiplicative
graph parameter. Then there exists an edge coloring model t : Nd → R such that
t : GE → R equals f .
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Factor of i.i.d. processes

Ágnes Backhausz

1. Local algorithms on finite graphs

Local algorithms on bounded degree graphs are strongly connected to paral-
lelized algorithms in constant running time. In this case the vertices of a large
graph can send messages to their neighbours, and this is repeated constantly many
times. Then every vertex produces a label based on the information it has received.

In a local algorithm each vertex produces a new label based on the isomorphism
class of its neighbourhood of radius r. Each vertex applies the same rule.

For symmetric graphs (e.g. for a large circle) every vertex gets the same label.
Therefore we use randomness to break symmetry. More precisely, we start from
an independent identically distributed random labelling of the graph, and then we
apply a local rule: each vertex produces a new label based on the isomorphism class
of its labelled neighbourhood of radius r. For example, we can get independent
sets, dominating sets, matchings, colorings this way; see e.g. [1, 2, 6].

We need some notation for the precise definition. Let S, T be arbitrary sets.
An S-labelled graph G is given by h : V (G) → S. A rooted graph is (G, o), where
o is a distinguished vertex of G. For r, d ∈ N the set N (r, d, s) consists of the
isomorphism types of rooted S-labelled graphs of maximum degree d such that
each vertex is of distance less than or equal to r from the root.

A function f : N (r, d, s) → T is the rule. For a labelling h we define hf :
V (G) → T such that hf (v) is the value of f on the S-labelled rooted neighbourhood
of radius r with the root placed on v.

Definition 1. A randomized local algorithm of radius r and degree d is as follows.
A measurable function f : N (r, d,Ω) → L is given, where Ω is a probability space
and L is a measure space. The input is a graph G of degrees bounded by d; the
output is hf , where h is a labelling of G with independent random elements of Ω.
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This works on arbitrary finite graphs, since f is defined for all possible configu-
rations. Moreover, it works on infinite graphs with bounded degree. However, for
bounded degree infinite graphs one can do more: using measurable functions as
rules, the finiteness of the radius can be omitted. We will discuss the case of the
infinite d-regular tree for sake of simplicity.

2. Factor of i.i.d. processes on the d-regular tree

Let T be the infinite d-regular tree with a distinguished root o, and Ω =
[0, 1]V (T ). This is a compact topological space.

We choose a measurable function f : Ω → {1, . . . , k}, which depends only on
the isomorphism class of the labelled rooted tree. To put it in another way, it is
invariant under the action of the root preserving automorphisms of T .

We put random independent uniformly distributed elements from [0, 1] on the
vertices of T . This is a random element of Ω. Then for every v ∈ T we define a
color (new label) c(v) ∈ {1, . . . , k} as the value of f on the labelled rooted tree
obtained from T by assigning labels ω and placing the root on v. f is the rule of
the coloring. It has radius r if it depends only on the labels of vertices of T that
are of distance less than or equal to r from the root. We get a random labelling
of T ; this is called a factor of i.i.d. process.

We use the weak topology for random processes on the tree. Two processes
are close to each other if the neighbourhood statistics are close to each other.
Factor of i.i.d. processes can be approximated in the weak topology with factor of
i.i.d. processes given by a rule of finite radius. These rules are defined on trees,
therefore they work only on locally tree-like graphs. That is, if the rule f has
radius r, and the shortest circle in the graph has length larger than 2r, then every
neighbourhood of radius r is a tree, and we can apply f . Thus these algorithms
may be applied on finite large girth graphs.

This will help us to check that not every process on the tree is factor of i.i.d. Put
a random 0 or 1 on the root, and put labels periodically on the infinite tree such
that the endpoints of edges have always different labels. Note that the correlation
does not decay, as it does in factor of i.i.d. processes. On the other hand, if it
were a factor of i.i.d. process, we would be able to approximate it with an f of
finite radius, and then apply f for finite random large girth graphs. We would
obtain that these finite graphs are close to a bipartite graph, which contradicts a
result of Béla Bollobás. This states that the size of the maximal independent set
that can be produced by local algorithms in a random d-regular graph is at most
C times the number of vertices, where C is a constant strictly less than 1/2 which
does not depend on the algorithm.

3. Independent sets and other structures

It is not hard to construct an independent set of density 1
d+1 in d-regular graphs.

Let f : Ω → [0, 1] such that f(ω) = 1 holds if and only if the label of the root is
smaller than the labels on all the neighbouring vertices. This is a rule of radius 1.
f−1(1) is an independent set: at most one of the endpoints of an edge can belong
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to it. Each vertex is in the set with probability 1
d+1 : if it gets the smallest label

in the set consisting of its neighbours and the vertex itself.
One can do much better. Csóka, Gerencsér, Harangi and Virág have a result for

finding an independent set containing 43, 52% of the vertices with a local algorithm
in d-regular large girth graphs. It is an open question if it is the maximum that
can be obtained by a local algorithm. See also the recent paper of Gamarnik and
Sudan [4].

4. Graphings

We now show the connection between factor of i.i.d. processes and graphings.
We use the definition of [5].

Definition 2. X is a Polish topological space, ν is a probability measure on the
Borel sets in X. A graphing is a graph on V (G) = X with Borel measurable edge
set E(G) ⊂ X ×X in which all degrees are at most d and

∫

A

e(x,B)dν(x) =

∫

B

e(x,A)dν(x)

for all measurable sets A,B ⊆ X, where e(x, S) is the number of edges from x ∈ X
to S ⊆ X.

Every finite graph is a graphing with the uniform distribution on the sets of
vertices. For example, take the unit circle and connect points that are at distance
α.

The Bernoulli graphing of the infinite d-regular tree T is defined as follows. Let
X be the set of isomorphism classes of T with vertices labelled with elements of
[0, 1]; two labelled trees are isomorphic if there is a root-preserving automorphism
from one to the other. We get measure ν by putting uniform labels from [0, 1]
independently on the vertices of T . Finally, two points of X are connected if they
can be obtained from each other by moving the root to a neighbouring vertex.

5. Connection of graphings and factor of i.i.d. processes

We have seen that the vertices of the Bernoulli graphing are the isomorphism
classes of the infinite d-regular tree. Hence a random vertex of the Bernoulli
graphing is a random labelling of the tree; moreover, in its connected component
we see the labellings that can be obtained by moving the root along the edges.
We consider the measurable colourings of the vertices of the Bernoulli graphing.
This gives a measurable function, which may be used as the rule of a factor of
i.i.d. process, based on the previous argument.

On the other hand, we can take graphings as operators [5]. Let f : X → C be
a measurable function, and

Gf(x) =
∑

(x,v)∈E(G)

f(v).
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The operator G acts on the Hilbert space L2(X, ν) as a bounded self-adjoint oper-
ator, and its norm is smaller or equal to the maximal degree. The self-adjointness
of G follows from the graphing axiom in Definiton 2.

Spectral properties of the operator corresponding to the Bernoulli graphing of
T may be used to prove certain properties of factor of i.i.d. processes, which have
consequences for randomized local algorithms on finite graphs as well.
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Ramanujan graphs

Péter Csikvári

1. Introduction

In this talk, we surveyed the classical theory of Ramanujan graphs together
with certain recent developments.

In this abstract, G is a d-regular graph. Let A be its adjacency matrix: Aij is
the number of edges between the vertices i and j. Let

d = λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G)

be the eigenvalues of the adjacency matrix of G, where the number of vertices is
v(G) = n.

The d-regular graphG is said to be Ramanujan if all of the nontrivial eigenvalues
of its adjacency matrix lie in the interval [−2

√
d− 1, 2

√
d− 1]. If the graph G is

nonbipartite then its only trivial eigenvalue is λ1(G) = d, whereas if the graph G
is bipartite then its trivial eigenvalues are λ1(G) = d and λn(G) = −d.

The classical theory of Ramanujan graphs started with a theorem of Alon and
Boppana claiming that if (Gn) is a sequence of d-regular graphs such that v(Gn) →
∞, then

lim sup
n→∞

λ2(Gn) ≥ 2
√
d− 1.

Subsequently, Noga Alon published refinements of the above theorem under the
name Alon Nilli [9, 10]. From these theorems one can deduce the following theorem
of Serre which is also a strengthening of the original Alon–Boppana theorem.
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Theorem 1 (Serre [11]). For each ε > 0, there exists a positive constant c =
c(ε, d) such that for any d-regular graph G, the number of eigenvalues λ of G with
λ ≥ (2− ε)

√
d− 1 is at least c · v(G).

A particularly simple proof of this theorem was given by Sebastian Cioaba [3]
together with a nice counterpart of the Alon–Boppana theorem which relates the
smallest eigenvalue and the so-called odd girth of the graph. In the talk, we outline
Cioaba’s proof to Serre’s theorem.

2. Expanders, random and pseudorandom graphs

Ramanujan graphs are strongly related to expanders and pseudorandom graphs.
In fact, it turns out that Ramanujan graphs are the best possible pseudorandom
graphs. A graph G is called (n, d, λ)-pseudorandom if it is a d-regular graph on
n vertices such that all nontrivial eigenvalues are at most λ. Since the concept of
pseudorandom graphs was introduced to give a better insight to random graphs,
it is natural to ask whether random graphs are Ramanujan graphs. It turns out
that they are indeed close to being Ramanujan. J. Friedman [4] proved that for
every positive ε, a random d-regular graph on n vertices satifies that

|λi(G)| ≤ 2
√
d− 1 + ε (i ≥ 2)

with very high probability. In fact, it is conjectured that positive proportion of
the d-regular graphs are Ramanujan.

After all, it can be surprising that there are not many known constructions for
Ramanujan graphs. In fact, the first such constructions were given by Lubotzky,
Phillips and Sarnak [5] and independently by Margulis [7]. The Lubotzky–Phillips–
Sarnak construction was subsequently extended to all d of the form q + 1, where
q is a prime power. It is still an open problem to construct infinite family of
d-regular nonbipartite Ramanujan graphs for all d.

3. Girth of the Ramanujan graphs

In a recent paper of Abért, Glasner and Virág [1], the authors found several
connections between the number of cycles and the second largest eigenvalue. Their
results imply that Ramanujan graphs has large essential girth. The precise state-
ment is the following.

Theorem 2 (Abért–Glasner–Virág [1]). Let d ≥ 3 and β = (30 log(d − 1))−1.
Then for any d-regular finite Ramanujan graph G, the proportion of vertices in G
whose β log log |G|-neighborhood is a d-regular tree is at least 1− c(log |G|)−β.

The authors also introduced the concept of weakly Ramanujan graph sequences.
We say that a sequence (Gn) of finite d-regular graphs is weakly Ramanujan if

lim
n→∞

µGn([−2
√
d− 1, 2

√
d− 1]) = 1.

They showed that if (Gn) is a weakly Ramanujan sequence of finite d-regular
graphs, then (Gn) has essentially large girth. In fact, it follows from their another
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theorem claiming that if G is a d-regular unimodular random graph that is infinite
and Ramanujan almost surely, then G is the infinite tree almost surely.

4. Addendum to the talk and to the abstract

At the end of the talk, I had a few minutes left and László Lovász suggested
me to speak about Nathan Linial’s signing conjecture [2]. The signing conjecture
says that for every d-regular graph G, it is always possible to put ±1 values on the
edges such that all eigenvalues of the obtained signed matrix are in the interval
[−2

√
d− 1, 2

√
d− 1]. One can deduce from the signing conjecture that from a

Ramanujan graph G, one can construct another Ramanujan graph on two times
as many vertices. Hence the conjecture implies that there are infinitely many d-
regular Ramanujan graphs. Only two weeks after the Arbeitsgemeinschaft, the
signing conjecture was proved for bipartite graphs by Adam Marcus, Daniel A.
Spielman and Nikhil Srivastava [6]. Hence there are infinitely many d-regular
bipartite Ramanujan graphs for all d.
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Statistical physics and graph limits convergence from the right

Fiona Skerman

The convergence of a sequence of bounded degree graphs (Gn)n can be defined
by counting the number of maps F → Gn from a fixed graph F into Gn or by a
weighted count of maps Gn → H into a fixed weighted graphH . These two notions
are referred to as left and right convergence respectively. In their paper [3] Borgs,
Chayes, Kahn and Lovász show that left convergence implies right convergence
under some conditions on the weights of the graph H .
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A sequence is left convergent if for all connected graphs F , the sequence

hom(F,Gn)

v(Gn)

converges. It will be easier to work with the equivalent notion of convergence
defined by Benjamini and Schramm [1]. Let BG(v, r) denote the subgraph of G
on vertices at distance ≤ r from root vertex v.

Definition 1 (local/Benjamini–Schramm convergence). A sequence of bounded
degree graphs (Gn)n is locally convergent if ∀r, ∀ rooted graphs U , ∃µ(U) such
that

µ(Gn, U) := |{v ∈ Gn : BGn(v, r) = U}|/v(Gn) → µ(U).

We define right convergence via homomorphism entropy, ent(G,H). Let φ : G →
H be a graph homomorphism from graph G to weighted graph H , where a non-
edge is indicated by weight zero. Write hom(G,H) to denote the weighted counts
of maps φ based on the weightings of image vertices (αi) and edges (βij) in H ,
using W (φ) as shorthand.

ent(G,H) =
ln hom(G,H)

v(G)
, hom(G,H) =

∑

φ:V (G)→V (H)

W (φ),

W (φ) :=
∏

u∈V (G)

αφ(u)
∏

uv∈E(G)

βφ(u),φ(v).

Definition 2 (right convergent). A sequence of bounded degree graphs (Gn)n is
right convergent if the homomorphism entropy, ent(Gn, H), converges for weighted
graphs H.

Example 1 (cycles). Take the sequence of cycles {Cn} where Cn is the cycle on
n vertices. Then {Cn} is left convergent, as seen by showing local convergence.

µ(Cn, U) →
{

1 if U is a path rooted at central vertex;
0 otherwise.

However, the number of graph homomorphisms from a cycle Cn into the graph
K2 depends on the parity of n (K2 is the graph with two vertices u, v and an edge
between them, set αu = αv = βuv = 1).

hom(Cn,K2) =

{
2 n even
0 n odd

⇒ ent(Cn,K2) =

{
1
n ln 2 n even
∞ n odd

Note ent(Cn,K2) does not converge. Thus left-convergence need not imply
right-convergence. The result by Borgs et.al. [3] shows this implication holds after
imposing conditions on the weights of the image graph H .

Theorem 1 (Left convergence implies right convergence [3]). Let (Gn)n be a left
convergent sequence with max degree ≤ D. Let H be a graph with positive vertex
weights

∑
j αj = 1, edge weights 0 ≤ βij ≤ 1 and for each i,

∑
j∈V (H) αj(1−βij) <

1/2D. Then ent(Gn, H) converges as n → ∞ i.e. (Gn)n is right convergent with
respect to H.
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Two proofs are given in [3], one using the cavity method which relies on the
Dobrushin uniqueness Theorem. To state Dobrushin we need some new terms.

Definition 3. Given a fixed partial graph homomorphism α : Λ → V (H) for some
Λ ∈ V (G) we define a random extended map φα : V (G) → V (H). This is done by
conditioning on an underlying distribution of maps φ : V (G) → V (H) defined by
the weights of H .

P(φ̃α = τ) := PG(φ = τ | φ = α off Λ), where PG(φ) :=W (φ)/t(G).

Also, for each subset Z ⊆ V (H), we define a distribution νZ on V (H) which is
proportional to the product of the weight of the vertex and the weights of edges
incident to it in the subgraph induced by Z.

P(νZ = i) =
αi

∏
z∈Z βi,z∑

h αh
∏
z∈Z βh,z

, ∀i ∈ V (H).

We are now in a position to state the Dobrushin uniqueness theorem, note
d(v,Ω′) is the length of the shortest path from vertex v to any vertex in Ω′. The
following formulation of the theorem is from [3].

Theorem 2 (Dobrushin Uniqueness Theorem). Let graph G have maximum de-
gree △(G) ≤ D and graph H have non-negative vertex weights αi, and real edge
weights βij . Suppose there exists 0 < κ < 1 so that for any s ≤ D and s-subsets
Z,Z ′ ⊆ V (H) with set difference one |Z△Z ′| = 1,

(1)
∑

u∈V (H)

|νZ(u)− νZ′(u)| ≤ 2κ/D.

Then for any bipartition of the vertex set of G, i.e. Λ∪̇Λ′ = V (G), and partial

maps from G to H , α, β : Λ′ → V (H), there exists a coupling φ̃α, φ̃β of the random
extended maps φα, φβ : V (G) → V (H) such that for Ω ⊆ Λ ⊆ V (G);

∑

v∈Ω

|φ̃α(v)− φ̃β(v)| ≤ 2
∑

v∈Ω

κd(v,Ω
′).

In Proposition 3.4 in [3], the following statement is proved and so the Dobrushin
Uniqueness Theorem applies.

Proposition 3. Conditions on H in Theorem 1 imply (1) is satisfied with κ =
2Dmaxu∈V (H)

∑
w∈V (H) αu(1− βuw).

Intuitively, a consequence of the Dobrushin Uniqueness Theorem can be de-
scribed as follows. If our large graph G is a large cubic lattice, say, then the values
(image in V (H)) of the vertices on the outer shell (Λ′) have little affect on the
images of the values of vertices around a small neighbourhood about the centre of
the cube (Ω) and that this dependence drops off exponentially. So we are bounding
the affect of boundary values on the values inside the cavity. The Dobrushin proof
of Theorem 1 in [3] is made by application of Dobrushin Uniqueness Theorem as
well as analysis that shows certain properties of G are predominantly local, i.e.
only dependent on their r-neighbourhoods within small error bounds.
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On the growth of L2-invariants for sequences of lattices in Lie groups

Miklós Abért

In the talk we discussed Benjamini–Schramm (BS) convergence for sequences
of finite graphs of bounded degree and finite volume Riemannian manifolds (orb-
ifolds) of bounded geometry, with a special emphasis on locally symmetric spaces.

In both cases, we first turn the object to a random rooted or pointed object (by
choosing the root uniformly randomly against the volume). Then BS convergence
can be defined as weak convergence of the random rooted objects. So the BS limit
of a sequence is a random rooted object. The absolute bound on the degree (or
the geometry) ensures that every sequence has a BS convergent subsequence (see
[2] and [3]).

A general question is to understand which invariants are continuous in the BS
topology. For graphs, examples are the normalized size of a maximal matching, or
the normalized log of the number of proper colorings with a large enough number
of colors (compared to the degree, see [4]). A negative example is the normalized
maximal size of independent subsets.

The general picture is that BS convergence implies spectral convergence. For
graphs, by the work of Lyons [6], this implies that the normalized log of the
number of spanning trees is BS-continuous. For locally symmetric spaces, we get
the following.

Let G be a connected center-free semisimple Lie group without compact factors,
K ≤ G a maximal compact subgroup and X = G/K the associated Riemannian
symmetric space. Let (Γn) be a sequence of lattices in G. We say that the X-
orbifolds Mn = Γn\X BS-converge to X if for every R > 0, the probability that
the R-ball centered around a random point in Mn is isometric to the R-ball in X
tends to 1 when n→ ∞. In other words, if for every R > 0, we have

lim
n→+∞

vol((Mn)<R)

vol(Mn)
= 0,

where M<R = {x ∈M : InjRadM (x) < R} is the R-thin part of M .
A straightforward, and well studied, particular case is when Γ ≤ G is a lattice

and Γn ≤ Γ is a chain of normal subgroups with trivial intersection; in this case,
the R-thin part of Γn\X is empty for large n.

A family of lattices (resp. the associated X-orbifolds) is uniformly discrete if
there is an identity neighborhood in G that intersects trivially all of their con-
jugates. For torsion-free lattices Γn, this is equivalent to saying that there is a
uniform lower bound for the injectivity radius of the manifolds Mn = Γn\X . In
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particular, any family (Mn) of covers of a fixed compact orbifold is uniformly
discrete. Margulis has conjectured that the family of all cocompact torsion-free
arithmetic lattices in G is uniformly discrete.

For an irreducible unitary representation π ∈ Ĝ and a uniform lattice Γ in G
let m(π,Γ) be the multiplicity of π in the right regular representation L2(Γ\G).
Define the relative Plancherel measure of Γ\G as the measure

νΓ =
1

vol(Γ\G)
∑

π∈Ĝ

m(π,Γ)δπ

on Ĝ. Finally denote by νG the Plancherel measure of the right regular represen-
tation L2(G).

In a joint work with Bergeron, Biringer, Gelander, Nikolov, Raimbault and
Samet [1] we show the following.

Theorem 1. Let (Γn) be a uniformly discrete sequence of lattices in G such that
the spaces Γn\X BS-converge to X. Then for every relatively quasi-compact νG-

regular subset S ⊂ Ĝ, we have:

νΓn(S) → νG(S).

The next theorem shows that there is also pointwise convergence. Let d(π)
be the multiplicity of π in the regular representation L2(G) with respect to the
Plancherel measure of G. Thus, d(π) = 0 unless π is a discrete series representa-
tion.

Theorem 2. Let (Γn) be a uniformly discrete sequence of lattices in G such that

the spaces Γn\X BS-converge to X. Then for all π ∈ Ĝ, we have

m(π,Γn)

vol(Γn\G)
→ d(π).

In the special situation when (Γn) is a chain of normal subgroups with trivial
intersection in some fixed cocompact lattice Γ ≤ G, this is the classical theorem of
DeGeorge and Wallach. In that very same situation Theorem 1 is due to Delorme
[5].
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Root measures of graph polynomials and Benjamini–Schramm
convergence

László Miklós Lovász

In this talk, we examine what happens to the uniform measure on the roots of
a graph polynomial in a Benjamini–Schramm convergent graph sequence.

A graph polynomial is a function f(G, z), where G is a graph, z is a (complex)
variable, and for a fixed G, the function z → f(G, z) is a polynomial, we will denote
this as fG. A classic example is the chromatic polynomial chG. For a positive
integer q, define chG(q) to be the number of proper colorings of the vertices of
G with colors from the set [q]. It can be shown that this is a graph polynomial.
Another example is the (modified) matching polynomial: letmk(G) be the number
of matchings of size k, and let

M(G, x) = xn −m1(G)x
n−1 +m2(G)x

n−2 − . . .

There are a few properties we can define for these polynomials. First, we want
it to only depend on the isomorphism class of G. We call a graph polynomial f
monic if fG has degree |V (G)|, and the leading coefficient is 1. A graph polynomial
is said to be of exponential type if the following polynomial equation holds:

f(G, x+ y) =
∑

S⊂V (G)

f(G[S], x)f(G[V (G)− S], y).

It is easy to see that this holds for the chromatic polynomial, and it also holds
for the matching polynomial. A graph polynomial is said to be multiplicative if
for any G1, G2:

f(G1 ⊎G2, x) = f(G1, x)f(G2, x).

Again, it is not hard to see that both the chromatic polynomial and the match-
ing polynomial are of exponential type.

Given a (complex) graph polynomial, we can look at the uniform distribution on
its roots (with multiplicities), call this µ(f,G), and what happens with a Benjamini–
Schramm convergent graph sequence.

The best equivalent definition of Benjamini–Schramm convergence to use here
is the following: a sequence G1, G2, . . . , Gn, . . . is convergent if and only if for any

connected graph F , the sequence inj(F,Gn)
|V (Gn)|

converges. We can divide by the number

of automorphisms of F to define the function F (G), the number of subgraphs of
G isomorphic to F .

The question arises whether given a Benjamini–Schramm convergent graph se-
quence {Gn}, and a graph polynomial f , does µ(f,Gn) converge? This is not the
case, for example, in the case of the chromatic polynomial: as shown in [1]. If
we look at the uniform distribution on the chromatic polynomial of Pn, and the
chromatic polynomial of Cn (the path and the cycle on n vertices), they converge
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to a different distribution, but the sequence P1, C1, P2, C2, P3, C3, ... is Benjamini–
Schramm convergent.

However, in [1], Abért and Hubai prove a weaker result: for the chromatic
polynomial, the root moments converge, that is,

∫
zkdµch,Gn is convergent for each

positive integer k. This also implies that if there is a compact set K containing all
the roots of all fGn , then for any holomorphic function g, the sequence

∫
gdµch,Gn is

convergent. The way they prove this is by showing with some calculation that given
a positive integer k, sum of the k-th powers of the roots of chG can be expressed as
a finite sum of the form

∑
F∈Hk

F (G), where Hk is a finite set of graphs depending
on k, and contains only connected graphs. Since the k-th moment is the sum of the
k-th powers divided by |V (G)|, this shows that Benjamini–Schramm convergence
implies that the k-th moments converge.

In [2], Csikvári and Frenkel generalize this to all monic, multiplicative graph
polynomials of exponential type. First, they classify all monic graph polynomials
of exponential type, and use this to show that for a fix l, the coefficient of xn−l can
be expressed as a linear combination of functions F (G), for a finite set of graphs
F . Using the fact that the product of two such functions can also be expressed
as a linear combination of such functions, this implies that for any k, the sum of
the k-th powers of the roots can be expressed as a linear combination of functions
F (G). Now, if the polynomial is multiplicative, then the sum of the k-th powers is
clearly additive: given a disjoint union G = G1 ⊎G2, the sum of the k-th powers
of the roots of fG is the sum of the two sums of k-th powers on G1, G2. The last
step in the proof is to show that if we have a linear combination of functions of the
form F (G), then it is additive if and only if each F that has a nonzero coefficient
is connected. All these together imply that for a monic graph polynomial of
exponential type, if it is multiplicative, then the root moments converge.
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Ultrafilters and hypergraphs

Nathan Bowler

There are a number of different versions of the hypergraph regularity lemma (Rödl–
Skokan [4], Rödl–Schacht [3], Gowers [2], Tao [6]). The idea being captured by
these lemmas is that large k-uniform hypergraphs can be approximated to any
resolution ǫ by boundedly many random-looking parts. In each case, there is a
corresponding counting lemma, saying roughly what the homomorphism density
from a given hypergraphH to a hypergraph built in this way from random-looking
parts will be. (Recall that a function from the vertex set of K to the vertex set of
another k-uniform hypergraph H is a homomorphism if and only if the image of
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any edge of H is an edge of K, and that the homomorphism density t(K,H) from
K to H is the proportion of functions V (K) → V (H) which are homomorphisms.)

As you might expect, the applications of hypergraph regularity lemmas are
similar to the applications of graph regularity lemmas, but for hypergraphs. Thus,
for example, the framework sketched below has applications in property-testing for
hypergraphs. We will state a version of the hypergraph regularity lemma at the
end after giving some motivation, but since the statement is technical we will
limit ourselves for now to stating a consequence of this Lemma which is sufficient
for many of the applications. The hypergraph removal lemma states that for
any ǫ > 0 and any k-regular hypergraph K there is some δ such that for any
k-regular hypergraph H with t(K,H) < δ there is a subhypergraph I of H such

that the number of edges in H \ I is at most ǫ
(
|V (H)|
k

)
but t(K, I) = 0. Using an

argument of Solymosi [5], we derive the multidimensional Szemerédi theorem from
the hypergraph removal lemma.

We can get a helpful perspective on the hypergraph regularity lemma by con-
sidering measures on ultralimits, as explained by Elek and Szegedy [1]. Fix a
nonprincipal ultrafilter U on N. For any formula φ we define (∀Un)φ to mean
{n ∈ N|φ} ∈ U . For any sequence (δi ∈ [0, 1]|i ∈ N), we define the ultralimit
limU δn to be sup{δ ∈ [0, 1]|(∀Un)δ ≤ δn}. For any sequence (Xn|n ∈ N) of
nonempty sets, we define the relation ∼ on

∏
n∈N

Xn by x ∼ y if and only if
(∀Un)xn = yn, and we define the ultraproduct X to be the quotient of

∏
n∈N

Xn

by ∼.
If each Xi is finite, and we have subsets Yi ⊆ Xi, then we can identify Y with a

subset of X. Although the subsets arising in this way do not form a σ-algebra, we
can extend them to a σ-algebra σX with a measure µX on it such that for any such

Y we have µX(Y) = limU
|Yn|
|Xn|

and such that for any set N of measure 0 there

are such Y of arbitrarily small measure with N ⊆ Y. We use µXk to denote the
measure obtained by considering Xk as the ultraproduct of the Xk

i rather than as
the kth power of X.

The key fact we need is that separable parts of these measures can be simulated
using the standard measure on powers of [0, 1]. More precisely, let A be any
separable sub-σ-algebra of σXk . Then there is a measure-preserving function f :
Xk → [0, 1]P

∗[k], where P∗[k] is the set of nonempty subsets of [k], such that

• for any H ∈ A there is a Borel subset W of [0, 1] with H△f−1W of
measure 0;

• for A a nonempty subset of k, the Ath component fA of f only depends
on the restriction of the input to A;

• for any measurable subset W of [0, 1], the set f−1
A (W ) is independent of

the σ-algebra σ∗
A generated by the σ-algebras σXB with B a nonempty

proper subset of A;
• f is equivariant with respect to the natural actions of the symmetric group
Sk on Xk and [0, 1]P

∗[k].

The reason for introducing additional coordinates for subsets of [k] of size at
least two is that the σ-algebra σ∗

A is always a proper subalgebra of σXA . Thus,
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for example, if k = 2, (Xn) is a sequence of sets whose sizes tend to infinity, and
a sequence (Yi ⊆ X2

i ) is obtained by picking elements at random with probability
1
2 , then Y almost surely has measure 1

2 and is independent of σ∗
[2].

The fact mentioned above gives a method for proving lemmas like the regularity
lemma. Take a sequence (Hn) of counterexamples, where we consider Hn as a
subset of the kth power of its vertex set Xn, and derive a contradiction by applying
standard measure-theoretic results to a set W ⊆ [0, 1]P

∗[k] simulating H ⊆ Xk.
For example, the removal lemma can be proved in this way, using the Lebesgue

density theorem, which entails that for any measurable subset W of [0, 1]p the set
{w ∈ W | limǫ→0 λ(Bǫ(w)∩W )/λ(Bǫ(w)) = 1} of density points ofW has the same
measure as W itself.

To obtain a regularity lemma with such an argument, we use instead the fact
that any measurable subset of [0, 1]p can be approximated arbitrarily closely by
unions of l-blocks (an l-block is a product of intervals of the form [ il ,

i+1
l ]). Consid-

eration of what the inverses of l-blocks under a function f of the kind introduced
above would look like suggests the following regularity lemma:

Definition 1. If B1, . . . , Br are (r−1)-uniform hypergraphs on X, their r-cylinder
intersection is the r-uniform hypergraph consisting of those sets e = {x1, . . . , xr}
such that for each i we have e− xi ∈ Bi.

Lemma 1 (Hypergraph regularity). Let k > 0, ǫ > 0, and F : N → (0, 1). Then
there are c and N0 such that for any k-uniform hypergraph H on a set X of size

at least N0 there are l ≤ c, partitions K
(r)
X =

⋃̇
P ir for each 0 < r ≤ k and a

k-uniform hypergraph T on X such that

• |H△T | < ǫ|K(k)
X |;

• T is a union of equivalence classes for the relation ∼, where {x1 . . . xk} ∼
{y1 . . . yk} if {xi|i ∈ A} is in the same class of the partition of X |A| as
{yi|i ∈ A} for every nonempty subset A of [k];

• for any i and r and any r-cylinder intersection L with |L| ≥ F (l)|K(r)
X |,

∣∣∣∣
|P ir ∩ L|

|L| − 1

l

∣∣∣∣ < F (l).
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[4] V. Rödl, J. Skokan, Regularity lemma for k-uniform hypergraphs, Random Structures Algo-
rithms 25 (2004), no. 1, 1–42.

[5] J. Solymosi, A note on a question of Erdős and Graham, Combin. Probab. Comput. 13
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Topological aspects of dense graph limits

Cameron Freer

Although graphons are defined as measurable functions, it turns out that they
have natural topological aspects as well. In this talk we present the basic concepts
and results of the topological aspects of graphons, as developed by Lovász and
Szegedy [1].

Let J = (Ω,A, π) be a probability space. Given a graphon W : J × J → [0, 1],
we endow the kernel (J,W ) with the distance function

rW (x, y) = ||W (x, ·) −W (y, ·)||1.

We say that (J,W ) is pure when (J, rW ) is a complete separable metric space
and the probability measure has full support. In this case, we may consider the
topology of this metric space, and examine its properties.

This notion of the topology of a graphon leads to many interesting and use-
ful developments. It simplifies some proofs, as the purified kernel is sometimes
better behaved. In many cases, naturally defined graphons have topologies other
than [0, 1], and are more intuitively considered as kernels on their corresponding
topological space. Furthermore there is a notion of dimension, which corresponds
closely with the complexity of Szemerédi partitions.

Finally, the topology of graphons allows us to describe a surprising situation
with finitely forcible graphons [2], which so far always seem to be compact and
finite-dimensional.
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The combinatorial cost

Gábor Kun

We study a combinatorial analogue of the cost. We calculate the cost of hyperfi-
nite and large girth graph sequences. We introduce the finite L2 Betti number and
the rank gradient of residually finite groups (with a given Farber chain of normal
subgroups). We show that Betti number ≤ combinatorial cost ≤ rank gradient.
Based on the paper of Gábor Elek [2].

We will work with the graph sequences G = {Gn}∞n=1,H = {Hn}∞n=1, where
V (Gn) = V (Hn) for every n. We will assume that these graphs are connected and
have uniformly bounded degree. We will define an equivalence relation on graph
sequences that is the analogue of bi-Lipschitz equivalence.
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Definition 1. We say that the graph sequences {Gn}∞n=1 and {Hn}∞n=1 are equiva-
lent if V (Gn) = V (Hn) and there is an L such that for every n and (x, y) ∈ E(Gn)
the inequality distHn(x, y) ≤ L holds, and for every n and (x, y) ∈ E(Hn) the in-
equality distGn(x, y) ≤ L holds.

Definition 2. Given a graph sequence G set e(G) = lim infn→∞
|E(Gn)|
|V (Gn)|

. The cost

of G is c(G) = inf{e(H) : H is equivalent to G}. We say that G has large girth if
the length of the shortest cycle in Gn goes to infinity (as n→ ∞).

The cost is not less mysterious in the finite case than for measurable group
actions. First we show that a large girth graph sequence realizes its cost. This is
the finite analogue of the theorem about the cost of a free group [3].

Theorem 1. If G has large girth then c(G) = e(G).
We introduce finite β-invariants: this will turn out to be handier and gives a

lower bound on the cost. Let K be an arbitrary field and G a connected graph.
Let CK(G) denote the cycle space of G: a subspace of KE(G) generated by cy-
cles. (We use the convention (x, y) = −(y, x) for every edge (x, y) ∈ E(G).) Let
CqK(G) denote the subspace generated by cycles shorter than q. Set sqK(G) =

lim infn→∞
|E(Gn)|−dimKC

q
K(Gn)−|V (Gn)|

|V (Gn)|
. Finally, we can define the beta-invariant:

Definition 3. βK(G) = infq s
q
K(G).

Note that βK(G) = βL(G) if char(K) = char(L).

Remark 2. βQ(G) ≥ βFp(G).
Question 1: Is this inequality strict for any graph sequence βK(G)?
Theorem 3. If G and H are equivalent then βK(G) = βK(G)
Corollary 4. βK(G) + 1 ≤ c(G).
Question 2: Is this inequality strict for any graph sequence βK(G)?

Theorem 1 follows from Theorem 3, since CqK(G) = {0} if the girth is larger
than q.

Given a Farber chain {Γn}∞n=1 of normal subgroups of Γ of finite index consider
the sequence G of Cayley graphs: Gn = Γ/Γn.

Theorem 5. [1, 2] rkgrad{Γ, {Γn}∞n=1} = c(G)− 1.

Question 3: Does the rank gradient depend on the Farber chain or on Γ only?

Theorem 6. The finite beta invariant of the graph sequence equals to the L2 Betti
number of Γ: βQ(G) = β1

(2)(Γ).

We know that the cost of amenable groups is 1, see e.g. [3]. Now we prove this
for the finite graph theoretical analogue, hyperfinite sequences.

Definition 4. We say that G is hyperfinite if for every ε > 0 there is a K such
that every Gn has components of size < K after the removal of < ε|V (Gn)| edges.
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Planar graphs are hyperfinite. Hyperfinite graphs play an important role in the
theory of property testing.

Theorem 7. Hyperfinite graph sequences have cost 1. A residually finite group is
amenable if and only if the sequence G is hyperfinite.
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Large deviations and the exponential graph model

Júlia Komjáthy

In the paper [2], Chatterjee and Varadhan develop the large deviation principle
(LDP) for the Erdős–Rényi random graph on the space of graphons with the cut
metric. Here we summarize their results. Let G(n, p) be the random graph on
n vertices where each edge is present with probability p independently. Let us
introduce the notation W for the space of measurable symmetric functions from
[0, 1]2 to [0, 1]. A graph G = (V,E) on n vertices can be embedded in this space
with the natural map, i.e.

(1) fG(x, y) :=

{
1 if (⌈nx⌉, ⌈ny⌉) ∈ E(G);

0 otherwise.

We define the cut distance on the space of W by

d�(f, g) := sup
S,T⊂W

{∫

S×T

|f(x, y)− g(x, y)|dxdy
}
.

However, this distance is not stable under the relabeling of vertices, so let us
introduce the equivalence relation by f(x, y) ∼ g(x, y) if there exists a measure
preserving bijection σ : [0, 1] → [0, 1] such that f(x, y) = gσ(x, y) := g(σx, σy).
We denote the space of measure preserving bijections from [0, 1] → [0, 1] by Σ. We

write f̃ for the closure of the orbit {fσ} in (W , d�). We denote the quotient space

by W̃ := W/∼ and since d� is invariant under σ, we can define on W̃ the metric

δ�(f, g) := inf
σ
d�(f, gσ) = inf

σ
d�(fσ, g) = inf

σ1,σ2

d�(fσ1 , gσ2).

A very important theorem is the following:

Theorem 1 ([1, Theorem 5.1]). The space (W̃ , δ�) is compact.

The main result of the paper is as follows. The random graph G(n, p) induces

the probability distributions Pn,p on the space (W , d�) and P̃n,p on (W̃ , δ�) by

the maps G → fG and G → fG → f̃G. The space W is compact in the weak
topology and the large deviation principle for Pn,p on W is as follows:
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Theorem 2 ([2, Theorem 2.2]). The sequence Pn,p on W satisfies a large deviation
principle in the weak topology. That is, for every weakly closed set F ⊂ W and
weakly open set U ∈ W

lim sup
n→∞

1

n2
logPn,p(F ) ≤ − inf

f∈F
Ip(f),

lim inf
n→∞

1

n2
logPn,p(U) ≥ − inf

f∈U
Ip(f),

where the rate function Ip(f) is well defined and lower semicontinuous on W and
given by

(2) Ip(f) =
1

2

∫ 1

0

∫ 1

0

∣∣∣∣f(x, y) log
f(x, y)

p
+ (1 − f(x, y)) log

1− f(x, y)

1− p

∣∣∣∣ dxdy.

Proof. The proof follows from applying the abstract Gärtner–Ellis theorem on the
Bernoulli random variables arising through the map in (1) and seeing that the
log-moment generating function properly scaled converges. �

However, the LDP on W is not so strong since it is not stable under re-labeling
the vertices. The stronger result is

Theorem 3 ( [2, Theorem 2.3]). The sequence P̃n,p on (W̃ , δ�) satisfies a large
deviation principle with rate function defined in (2). That is, for every weakly

closed set F̃ ⊂ W̃ and weakly open set Ũ ∈ W̃

lim sup
n→∞

1

n2
log P̃n,p(F̃ ) ≤ − inf

f̃∈F̃
Ip(f̃),

lim inf
n→∞

1

n2
logPn,p(Ũ ) ≥ − inf

f̃∈Ũ
Ip(f̃),

where the rate function Ip(f) is well defined and lower semicontinuous on (W̃ , δ�).

The proof of this theorem relies on two things: the compactness of the space
and Szemerédi’s regularity lemma. For the lower bound it is enough to show that

for any f̃ ∈ W̃ and for any ε > 0

lim inf
n→∞

1

n2
log P̃n,p(Bδ�(f̃ , ε)) ≥ −Ip(f̃),

with Bδ�(f̃ , ε) = {g̃ : δ�(g̃, f̃) < ε}. The sketch of the proof goes by a tilting

argument: one generates a sequence of stepfunctions fn approximating f̃ on an
1
n× 1

n grid of [0, 1] and shows that the corresponding inhomogeneous graphG(n, fn)

sequence converges to the graphon f̃ in the d� distance. Then, the rest is an
entropy-cost tilting argument by taking the Radon–Nikodym derivative of the
measures Pn,p and Pn,f̃n

. For the upper bound one needs to show that for any

f̃ ∈ W̃
lim
ε→0

lim sup
n→∞

1

n2
log P̃n,p(Bδ�(f̃ , ε)) ≥ −Ip(f̃).



Arbeitsgemeinschaft: Limits of Structures 1011

To do so one can make use of the Regularity Lemma: every ball Bδ�(f̃ , ε) meets
a Szemerédi-regular g ∈ W , i.e. a step function with at most M ×M different

possible values, on a grid of 1
M × 1

M . Then, the LDP for f̃ follows from the LDP
of g on W established by Theorem 2 and the fact that we only loose a factor of
n! by the re-labelings of a given graph, which clearly vanishes in the LDP since
1
n2 log(n!) → 0.

The other main result is about conditional distributions. Let us introduce the
notation

F̃ ∗ := {f̃ ∈ F̃ : Ip(f̃) = inf
g̃∈F̃

Ip(g̃)}.

Since W̃ is compact and Ip is lower semicontinuous, the set of minimizers F̃ ∗ 6= ∅.
The following theorem says that conditioned on that some rare event happens, the
graph with high probability looks like on of the minimizers in the set defined by

the rare event in W̃ .

Theorem 4. Let p ∈ (0, 1) fixed, F̃ ⊂ W̃ satisfying

inf
f̃∈

∫
(F̃ )

Ip(f̃) = inf
f̃∈F̃

Ip(f̃) > 0.

Then for each n, ε > 0 there exists a C(ε, F̃ ) such that

P

(
δ�(f̃

G(n,p), F̃ ∗) > ε
∣∣∣f̃G(n,p) ∈ F̃

)
≤ exp{−C(ε, F̃ )n2}.

The proof follows from the lower-semicontinuity of Ip: the minimizer set F̃ ∗ is

compact, and the infinum value of Ip on F̃ \ Bδ�(F̃ ∗, ε) must be larger than the
value of Ip on F ∗.

The rest of the paper is devoted to determine the rate function for upper tail for
Tn,p, the number of triangles in G(n, p): An immediate consequence of Theorem
3 is that the rate function defined as

φ(p, t) := − lim
n→∞

1

n2
logP

(
Tn,p ≥ tn3

)

satisfies

(3) φ(p, t) = inf{Ip(f) : f ∈ W ,
1

6

∫
f(x, y)f(y, z)f(z, x)dxdydz ≥ t}.

The authors further show that φ is continuous, increasing in (p3/6, 1/6) and de-
termine a sufficient criterion when the constant function ct := (6t)1/3 gives the
minimizer for (3). Further, there is a p0 such that for all p < p0 there is a region
(t, t′) with p3/6 < t < t′ < 1/6 where the constant function ct is not the minimizer
of (3).
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Higher order Fourier analysis

Gábor Elek

The talk is based on the first (easier!) part of a paper of Balázs Szegedy [1].
Our objects of study are pairs (A, f), where A is a compact Abelian group and
f is a complex Borel function on A with ‖f‖∞ ≤ 1. First, we define a notion of
convergence on these objects. For a positive natural n, we sample out a symmetric
matrix from A the following way. Choose n elements x1, x2, . . . , xn of A uniformly
randomly (with respect to the Haar probability measure) and consider the n× n
matrix

Mi,j = f(xi, xj) .

The sampling procedure gives rise to a random matrix of coefficents bounded by
one in absolute value. That is, we obtain a probability measure µA,f,n on the
compact space of symmetric complex n × n matrices of entries bounded by one.
We say that a sequence of objects {(Ak, fk)} converges, if for any fixed n, the
sequence µAk,fk,n converges weakly. Note that any element (Ak, fk) represents
a graphon [3]. Hence, we know that the limit object can be represented by a
graphon as well. However, the point is, that the limit object can be represented
on an Abelian group. Note that even if all the groups Ak are isomorphic to S1, it
is possible that the limit group is a higher dimensional torus.
The construction of the limit group uses the ultraproduct technique developed in
[2]. Let us consider the ultraproduct of our Abelian groups {Ak} = A. This is, in
general, an enormous Abelian group with a σ-algebra A and a probability measure
µA. Szegedy observes the following fact.
Fact 1: The ultralimits of the characters of Ak are measurable functions with
respect to A.
Then he considers the smallest σ-algebra B1 such that all the limit characters are
measurable.
Fact 2: If B ∈ B1 then the translates of B generate a separable σ-algebra. Vice
versa, this property characterizes the elements of B.
Now let us consider the ultralimit f of the functions fk. This function is, in general,
not B1-measurable. For an example, it is possible that f is orthogonal to all the
limit characters. This is the case, if the Fourier coefficients of fk tend uniformly
to zero. Nevertheless, there is always at most countably many limit characters
f is not orthogonal to. These characters generate a countable Abelian group T .

Its dual group T̂ will be the limit of the groups Ak. The limit function f̂ is the
measure valued Radon–Nikodym derivative of f with respect to the separable σ-
algebra C, where C is the algebra generated by the countably many characters
above. In the case when all the fk’s are indicator functions, the Radon–Nikodym
derivative is a scalar function and the random matrices µT̂ ,f̂,µA associated to the

pair (T̂ , f̂) are indeed the weak limits of the measures µAk,fk,n.
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Flag algebras

Benjamin Matschke

Asymptotic extremal combinatorics studies densities of small combinatorial
structures in large ones of the same type. This talk surveys Razborov’s so called
flag algebras [2], which formalize common proof and calculation methods in that
area.

For simplicity we restrict to the category of simple undirected graphs (and some
subcategories). Razborov treats more generally any finite model theory.

1. Definitions

Definition 1. A type σ is a graph with labeled vertices 1, . . . , |σ|. A flag F over
σ is a pair of graphs (G, σ), σ being an induced subgraph of G (G is unlabeled). We
write |F | := |V (G)|. A morphism between two flags F = (G, σ) and F ′ = (G′, σ)
is an injective graph homomorphism m : G → G′ that is the identity on σ. This
also clarifies what we mean by isomorphisms. We define the sum F ∪σ F ′ as
(G ∪σ G′, σ). A sunflower over σ is a sum of σ-flags F1 ∪σ . . . ∪σ Fn; here
F1, . . . , Fn are called petals. Let Fσ

ℓ be the set of flags with |F | = ℓ, and Fσ :=⋃
ℓ Fσ

ℓ . For F1, . . . , Fn, F ∈ Fσ, define

p(F1, . . . , Fn;F )

as the probability that a uniformly randomly chosen injective map V (F1 ∪σ . . . ∪σ
Fn) → V (F ) extending idσ yields an induced subgraph of F whose restriction to
V (Fi) is isomorphic to Fi, for all i.

Lemma 1 (Chain rule). If |F1 ∪σ . . . ∪σ Fn| ≤ ℓ ≤ |F |,
p(F1, . . . , Fn;F ) =

∑

F̃∈Fσ
ℓ

p(F1, . . . , Fn; F̃ )p(F̃ ;F ).

Definition 2. For a type σ, we define the flag algebra

Aσ := (RFσ)/Kσ,

where Kσ := 〈F −∑
F̃∈Fσ

ℓ

p(F ; F̃ )F̃ | F ∈ Fσ and ℓ ≥ |F |〉.

It is instructive to think of the basis elements F ∈ RFσ as densities of F in
some large fixed σ-flag X . Modding out Kσ then implements the chain rule.

Lemma 2 (Product). There is a product Aσ ⊗Aσ → Aσ defined by

F1 · F2 :=
∑

F∈Fσ
ℓ

p(F1, F2;F )
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for any ℓ ≥ |F1 ∪σ F2|. This makes Aσ into a commutative R-algebra with unit
1σ := (σ, σ).

Lemma 3. A flag F = (G, σ) is called connected if G\σ is a connected graph.
Fix a connected flag F0 ∈ Fσ

|σ|+1. Then Aσ is a polynomial algebra over R, freely

generated by all connected flags except for 1σ and F0.

2. Motivation

Let Hom(Aσ ;R) denote all algebra homomorphisms from Aσ to R. Define

Hom+(Aσ;R) := {ϕ ∈ Hom(Aσ;R) | ϕ(F ) ≥ 0 for all F ∈ Fσ}.
We define the semantic cone as

Csem(Aσ) := {f ∈ Aσ | ϕ(f) ≥ 0 for all ϕ ∈ Hom+(Aσ;R)}.
Thus, Csem(Aσ) is obtained by polarizing twice the cone in Aσ spanned by all
σ-flags. We write f �σ g if f − g ∈ Csem(Aσ).

The following theorem is Razborov’s version of a theorem of Lovász and Szegedy
[1]. It follows from the fact that Hom+(Aσ;R) ⊆ [0, 1]F

σ

is the set of all limit
point (with respect to the product topology in [0, 1]F

σ

) of sequences (p( ;Fi))i∈N.

Theorem 4. Let f ∈ R[x1, . . . , xn]. Then f(F1, . . . , Fn) ∈ Csem(Fσ) if and only
if

(1) lim inf
F∈Fσ

f(p(F1, F ), . . . , p(Fn, F )) ≥ 0.

Several interesting statements in asymptotic extremal combinatorics can be
written in the form (1). Theorem 4 then gives us a reformulation of that in
terms of Csem(Fσ). Below we review some criteria for when an element of Aσ lies
in Csem(Fσ).

3. Cauchy–Schwarz inequality

Definition 3 (Restriction operator). Let σ0 ⊆ σ be a sub-type. We define a
linear map (in general not an algebra homomorphism) [ ]σ,σ0 : Aσ → Aσ0 via
[F ]σ,σ0 := qσ,σ0(F )F |σ0 , where F = (G, σ), F |σ0 := (G, σ0), and qσ,σ0(F ) ∈ [0, 1]
is the probability that a (uniformly) random extension V (σ) →֒ G of the embedding
V (σ0) →֒ G induces a flag that is isomorphic to F .

For σ0 ⊆ σ1 ⊆ σ2, we have [F ]σ2,σ0 = [[F ]σ2,σ1 ]σ1,σ0 .

Theorem 5 (Cauchy–Schwarz inequality for Aσ). For any f, g ∈ Aσ and σ0 ⊆ σ,

[f2]σ,σ0 · [g2]σ,σ0 �σ0 [fg]2σ,σ0
.

As an application, one obtains Goodman’s bound relating the asymptotic edge–
and triangle densities, which states (as flags over σ = ∅) that K3 � K2(2K2−K1).
For the proof one applies the Cauchy–Schwarz inequality for the flags (K2,K1) and
(K1,K1) with σ = K1 and σ0 = K0.
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4. Differential method

We write the types K0, K1, K2 and K̄2 as 0, 1, E and Ē, respectively.
We define a linear map (in general not multiplicative) ∂1 : A0 → A1 by

∂1G := ℓ
( ∑

(H,1)∈F1
ℓ+1

G∼=H\1

(H, 1)−
∑

(H,1)∈F1
ℓ

H∼=G

(H, 1)
)
,

where ℓ := |G|.
Further, define a linear map ∂E : AĒ → AE by

∂E(G, Ē) :=

(
ℓ

2

)( ∑

(H,Ē)∈F Ēℓ
H∼=G

(H ∪Ē E,E)−
∑

(H,E)∈FEℓ
H∼=G

(H,E)

)
.

Theorem 6. Let G1, . . . , Gn be finite graphs. Consider ϕ0 ∈ Hom+(A0;R) and
f ∈ C1(U) for some open subset U ⊆ Rn, such that Φ : Hom+(A0;R) → R

given by Φ(ϕ) := f(ϕ(G1), . . . , ϕ(Gn)) is maximal at ϕ0 among all ϕ such that
(ϕ(G1), . . . , ϕ(Gn)) ∈ U . Then, for any g ∈ A1,

ϕ0([g · ∂1〈∇f, (G1, . . . , Gn)〉]1,0) = 0.

Furthermore, for any g ∈ Csem(AE),

ϕ0([g · ∂E〈∇f, (G1, . . . , Gn)〉]E,0) ≥ 0.

As an application, Razborov [2, 3] calculated the asymptotically minimal pos-
sible triangle density in a graph for any given edge density. Based on a similar
ideas, Reiher [4] calculated more generally the minimal possible Kk-density in a
graph with a given edge density, and this not only asymptotically.
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Finite graphs and amenability

Ostap Chervak

Notion of convergence of bounded degree graphs was defined by Benjamini and
Schramm. For the rest of our talk we will suppose that degree of mentioned graphs
is bounded by some constant d. This talk is based on [2].

Let G be a finite graph and H⊙ be a finite rooted graph of radius r. By a local

statistics t(G,H⊙) we denote a number |{v∈V (G): Br(v) H⊙}|
|V (G)| which is a probabitity

that an r-ball around a random vertex is isomorphic to a fixed graph H⊙.
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A sequence (Gn) of finite graphs is called Benjamini–Schramm convergent (BS-
convergent) if for all rooted graphs H⊙ local statistics t(Gn, H⊙) is convergent.

In fact, one can introduce a metric on the set of finite graphs, such that sequence
is BS-convergent iff it is a Cauchy sequence. To study the complection of this space
we will introduce a notion of graphing [6].

Let X be a standard Borel set endowed with probability measure µ, we will say
that triple G = (X,E, µ) is a graphing iff

• E ⊂ X × X is a measurable symmetric subset which does not intersect
the diagonal {(x, x) : x ∈ X}.

• Degrees of all vertices are bounded by d.
• Whenever A,B ⊂ X the following equality holds (double counting princi-
ple)

∫

x∈A

|{y : (x, y) ∈ E}|dµA =

∫

y∈B

|{x : (x, y) ∈ E}|dµB.

By a local statistics of graphing t(G, H⊙) one may define a probability p(G, H⊙)
that an r-ball around random (corresponding to measure µ) vertex is isomorphic
to H⊙. That way, a notion of BS-convergence extends to set of graphings.

Two graphings will be called weakly equivalent if they have same local statistics.

Theorem 1. For every convergent sequence of finite graphs there exist a limit
graphing [3].

One of examples of graphings are ”convex combinations” of finite graphs. Let
G1, G2, . . . , Gk be a finite graphs and let α1, . . . αn be a sequence of positive reals
such that

∑
αi = 1. Let Xi be a union of products Gi × [0, αi] (endowed with

a product measure, such that µi(Xi) = αi), and let X be a disjoint union of Xi

endowed with measure µ(S) =
∑
µi(S ∩Xi). Let E be a set

E = {((v1, t1), (v2, t2)) : ∃i : v1, v2 ∈ Gi, t1 = t2, (v1, v2) ∈ E(Gi)}.
It is easy to see that (G) = (X,E, µ) is indeed a graphing, and local statistics

of G is a convex combination of local statistics of Gn. If all αis are rational then
G is weakly equivalent to a finite graph.

Conjecture 2 (Aldous-Lyons). Assume that G is a graphing. Does there exist a
sequence of finite graphs converging to G?

Though Aldous–Lyons conjecture [1] is still open, it is true for many families,
for example for ”convex combinations” of graphs defined above. Much wider class
of graphings with positive answer to Aldous–Lyons conjecture is the main object
of this talk.

Definition 1. Graphing G = (X,E, µ) will be called hyperfinite if for every posi-
tive real ε there exist a natural number K and a set Tε ⊂ X of measure µ(Tε) < ε
such that after removing all edges incident to points in Tǫ, all components in re-
sulting graphing Gε will have diameter smaller than K.
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Definition 2. Sequence of finite graphs Gn will be called hyperfinite if for every
positive real ε there exist a natural number K and a set Tε,n ⊂ Gn with number of
elements |Tε,n| < ε|V (Gn)| such that after removing all endes encident to points
in Tǫ, all components in resulting graphs will have diameter smaller than K.

Important examples of hyperfinite families are Folner sequences of amenable
group, planar graphs.

To see that Aldous–Lyons conjecture is true for hyperfinite graphings note that
G is a limit of graphings Gε and the later are weakly equivalent to convex combina-
tion of finite graphs (there are only finite number of graphs with diameter smaller
than K, so this combination will be finite).

Theorem 3 (Kaimanovich). A graphing is hyperfinite iff for every subgraphing of
positive measure almost all components have isoperimetric constant zero [5].

As a consequence of previous theorem one can prove that if there exist a
measure-preserving map G1 → G2 graphing G1 will be hyperfinite iff G2 is hyperfi-
nite. In fact, hyperfiniteness is preserved by the weak equivalence of graphings.

Theorem 4. Assume that G1 and G2 are weakly equivalent, then there exists a
graphing G3 and two measure preserving maps f1 : G3 → G1 and f3 : G3 → G2.

For bounded degree graphs there exists an other, stronger notion of convergence,
the so-called local-global convergence. To define it, we need to introduce some
technical notions.

Let G be finite k-colored graph, and H⊙ be rooted k-colored graphs. Define
local statistic for colored graphs tk(G,H⊙) similarly to it for ordinary graphs,
namely put

tk(G,H⊙) =
|{v ∈ V (G) : Br(v) H⊙}|

|V (G)| .

Now let us define a metric on space of all k-colored graphs. Enumerate all
rooted graphs H⊙ to form a sequence H⊙

n and put

dcolored(G1, G2) =
∑ |tk(G1, H

⊙
n )− tk(G2, H

⊙
n )|

2n
.

Now, if G1 andG2 are two graphs, define their k-color local-global distance to be
smallest such number dk(G1, G2) such that for every k-coloring of G1 there exists a
coloring ofG2 (and vice versa) such that for those two colorings dcolored(G1, G2) ≤
dk(G1, G2).

Now, local-global distance of two graphs dlg(G,H) is a
∑ dk(G,H)

2k
. Notion of

local-global convergence (convergence with respect to local-global metric) is rather
strong, for example it is easy to see (k=2 is sufficient) that a local-global convergent
hyperfinite family converges to a hyperfinite graphing. Though much more is true.

Theorem 5. If a sequence of finite graphs Gn converges to G then limit graphing
is hyperfinite iff sequence Gn is hyperfinite and in this case Gn converges locally-
globally.
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Nilmanifolds and nilspaces

Yonatan Gutman

Recently Camarena and Szegedy have developed a beautiful theory of nilspaces -
a certain generalization of nilmanifolds. The goal of this report is to present very
succinctly, the elements of a new proof of the main case of a fundamental theorem
appearing in [1], about the relation between nilmanifolds and nilspaces. I would
like to thank Freddie Manners and Péter Varjú who worked with me on the new
proof. I am grateful to Ben Green, Bernard Host and Balázs Szegedy for helpful
discussions.

1. The prenilspace and k-step nilspace axioms

Define the functions ρi : {0, 1} → {0, 1}, i = 0, 1, 2, 3, by ρ0(x) ≡ 0 , ρ1(x) ≡
1 , ρ2(x) = x , ρ3(x) = 1− x. Let m,n ∈ N. A map f : {0, 1}m → {0, 1}n between
discrete cubes is called a discrete cube morphism if for every 1 ≤ i ≤ n
there exist 1 ≤ j ≤ m and k ∈ {0, 1, 2, 3} (depending on i) so that for any
(x1, . . . , xm) ∈ {0, 1}m, f(x1, . . . , xm)|i = ρk(xj). Observe that discrete cube
morphisms are closed under composition. Let (X, d) be a compact metric space.
Let Cn(X) ⊂ X{0,1}n , n ∈ Z+ be closed sets. The elements of Cn(X) are referred
to as the (n)-cubes. X is referred to as the base space. We define the following
axioms (n, k ∈ Z+): n-Cube invariance (I)n: For any m ∈ Z+, f ∈ Cm({0, 1}n)
and c ∈ Cn(X) c ◦ f ∈ Cm(X). k-Ergodicity (E)k: Ck(X) = X{0,1}k . n-

Completion (C)n: If f̃ : {0, 1}n\{~1} → X has the property that for every 1 ≤ i ≤
n, f̃|Fi ∈ Cn−1(X) where Fi = {~x ∈ {0, 1}n|xi = 0}, then there exists c ∈ Cn(X)

with c∗ := c|{0,1}n\{~1} = f̃ . c is referred to as a completion of f̃ . n-Uniqueness

(U)n: If h, f ∈ Cn(X) and h∗ = f∗ then h = f . Let X = (X, {Cn(X)}∞n=0).
Define the following objects: Prenilspace: [(I)n for all n ∈ Z+], (E)1, [(C)n for
all n ∈ N]. k-step Nilspace: [(I)n for all n ∈ Z+], (E)1, [(C)n for all n ∈ N],
(U)k+1. A morphism between two prenilspaces f : X → Y consists of a continuous
mapping f : X → Y such that f(Cn(X)) ⊂ Cn(Y ) for all n ∈ N.
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2. The structure of k-step nilspaces

Let X be a 1-step nilspace. Fix an arbitrary element e ∈ X and let a, b ∈ X
arbitrary. Taking advantage of the fact that ã : {0, 1}2 \ {~1} → X given by
ã(0, 0) = e, ã(1, 0) = a, ã(0, 1) = b has a unique completion, one obtains a
continuous binary operation on X . It is not hard to show, using the axioms, this
binary operation turn X into a compact Abelian group. For k-step nilspaces with
k > 1 the situation is more complicated. Define a principal bundle to be a
quadruple E = (E,B, π,G), where E,B are topological spaces, G is a topological
group acting continuously on E and π : E → B a is continuous surjection such
that, G preserves the fibers π−1(b), b ∈ B and acts freely and transitively on each
one of them. A (G)-bundle map φ : E → E is a continuous G-equivariant map.

The Camarena–Szegedy Structure Theorem. Given a k-step nilspace Xk,
there is a finite series of finite-step nilspaces Xk−1, . . .X0 = {•} and compact

Abelian groups Ak, . . . A1 as well as continuous prenilspace epimorphisms Xk πk→
Xk−1

πk−1→ Xk−2 → · · · π1→ X0 such that (Xj , Xj−1, πj , Aj) is a Aj -principal bundle
for j = 1, . . . , k. �

Xk is said to be toral if all structure groups A1, . . . Ak are tori (of various di-
mensions). Recall that a nilmanifold X is a quotient X = G/Γ where G is a
finite-step nilpotent Lie group and Γ a cocompact discrete subgroup. Our goal is
to prove the following theorem:

Theorem 1. The base space of a toral k-step nilspace is a nilmanifold.

Proof. (Sketch.) The result is proven by induction. The base case k = 1: From
the Camarena–Szegedy Structure Theorem it follows X1 = A1 is a torus. Assume
the theorem has been established for k − 1. Let Xk = (Xk, {Cn(Xk)}∞n=0) be a
k-step compact nilspace. We call a homeomorphism α : Xk → Xk a translation
if for any c ∈ Ck(Xk), [c, α(c)] ∈ Ck+1(Xk) and [c, α−1(c)] ∈ Ck+1(Xk) where
the concatenation [c0, c1] : {0, 1}k+1 → Xk is given by [c0, c1](v, 0) = c0(v) and
[c0, c1](v, 1) = c1(v) for all v ∈ {0, 1}k. Note that translations are Ak-bundle

maps. Let G̃k be the group of translations of Xk equipped with the supremum
metric d∞. Let Gk be the identity component of G̃k. Gk will turn out to be the
desired nilpotent Lie group for which Xk = Gk/Γk (for suitable cocompact discrete
Γk). Going through the proof of [1, Theorem 7] it is clear that the difficulty
lies in establishing that the natural projection πk : Gk → Gk−1 is onto. Let
αk−1 ∈ Gk−1. By the inductive assumption GXk−1

is a connected Lie group and
therefore path connected. As a consequence one can find a (continuous) homotopy
between Id and αk−1, H : Xk−1×I → Xk−1. By Gleason’s Theorem ([2, Theorem
3.3]), (Xk, Xk−1, πk, Ak) is a fiber bundle. Thus according to the First Covering
Homotopy Theorem ([3, §11.3]), as Xk−1 is compact, one can lift the homotopy
H to a homotopy which is a bundle map. In particular there is a bundle map lift
hk : Xk → Xk of αk−1 (πk ◦ hk(x) = αk−1 ◦ πk(x)). However hk may not be a
translation. We associate to hk the ”cocycle” ρk : Ck(Xk) → Ak, measuring its

deviation from being a translation, defined by ρk(c) = a iff [c, (hk(c
∗), hk(c(~1)) +
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a)] ∈ Ck+1(Xk), where (hk(c
∗), hk(c(~1)) + a) is the configuration achieved from

hk(c) by adding the element a to hk(c(~1)). Using the (C)k+1 and (U)k+1 axioms,
one can easily show that such an element a exists and that it is unique. This
implies ρk(c) is continuous. As ρk is constant on cubes with identical projection on
Ck(Xk−1), one obtains a map ρk : Ck(Xk−1) → Ak. It turns out that if d∞(Id, hk)
is small enough (which can be assumed w.l.o.g) then there exists a continuous
g : Xk−1 → Ak such that the αk−1-lift αk := hk + g : Xk → Xk is a translation
iff one can solve the equation ρk(c) = ∂k(g)(c) :=

∑
v∈{0,1}k g(c(v))(−1)

∑
i vi for

all c. This equation is indeed solvable following the procedure in [1, Lemma 3.19]
as one can explicitly write g as a certain average of ρk. Without getting into the
details let us point out that the continuity of g is a consequence of the continuity
of ρk.
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