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Abstract. Quite a few independent investigations have been devoted re-
cently to the analysis and construction of structured function systems such as
e.g. wavelet frames with compact support, Gabor frames, refinable functions
in the context of subdivision and so on. However, difficult open questions
about the existence, properties and general efficient construction methods of
such structured function systems have been left without satisfactory answers.
The goal of the workshop was to bring together experts in approximation the-
ory, real algebraic geometry, complex analysis, frame theory and optimization
to address key open questions on the subject in a highly interdisciplinary,
unique of its kind, exchange.
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Introduction by the Organisers

We outline below some of the main themes and open problems which have guided
the participants during the workshop.

1. Several fundamental results by two groups of authors I. Daubechies, B. Han,
A. Ron, Z. Shen [5] and respectively C. Chui, W. He, J. Stöckler [2, 3] laid the
foundations of the theory of tight wavelet frames and address practical aspects of
their construction. The resulting characterizations of compactly supported tight
wavelet frames establish a novel connection between frame constructions and a
challenging algebraic problem of existence of sums of squares representations of
non-negative Laurent polynomials [8, 10]. In other words, the existence of the
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certificate of non-negativity, i.e. the existence of a sum of squares representation
for a given real Laurent polynomial which is non-negative on the d-dimensional
torus, became a necessary condition for the existence of such tight wavelet frames.
In the multivariate case, the difficult questions about their existence and general
efficient construction methods have been left unanswered. Another very promising
approach of dealing with non-negative polynomials was derived from techniques
of semi-definite programming [1, 13]. One of the aims of the workshop was to
reveal these interdisciplinary links to several groups of experts from different fields
of mathematics and to set up a new framework of addressing open problems in
wavelet frame theory. This was done in a truly open and interactive fashion.
Our anticipation of the success of cross-disciplinary cooperation strengthened after
three of the organizers (Charina, Putinar, Stöckler) joined by Claus Scheiderer
from the University of Konstanz spent three productive weeks in October 2011 in
Oberwolfach, as a part of the Research in Pairs program. The partial outcome is
a paper accepted for publication in the Journal of “Constructive Approximation”
which, e.g., gives an affirmative answer to the long standing open question about
the existence of bivariate tight wavelet frames satisfying the Unitary Extension
Principle.

2. Another open problem is to obtain the estimates for the number of frame
generators in the multivariate case. This problem of finding an upper bound for
the number of frame generators is closely related to getting an estimate of the
Pythagoras number of the ring of rational functions on a real algebraic subvariety
of the torus, [12].

3. Problems of multivariate Gabor frames lead to sampling and interpolation
questions for entire functions of several complex variables. The construction of
the multivariate interpolating functions requires much more precise growth esti-
mates of generalized Weierstrass products than currently known [6]. Moreover,
completely new types of sampling and interpolation problems arise [7].

4. Refinable functions arising in the context of subdivision are the starting point
of the multiresolution based wavelet frame constructions. Most properties of such
functions are encoded in the coefficients (so-called mask) of the corresponding re-
finable equations, or, equivalently, in the coefficients of the corresponding Laurent
polynomials, or polynomials after an appropriate mask shift. Important approxi-
mation properties of refinable functions can be characterized in terms of the struc-
ture of the associated polynomial ideals [15]. In the univariate case, the structure
of these polynomial ideals also determines the smoothness of the corresponding
refinable function [4], i.e. the derived wavelet frame. In the multivariate setting,
no such general results are available.

5. From the point of view of duality of locally convex spaces, the above ques-
tions can be interpreted as generalized moment problems pertaining to (usually)
positive measures supported by basic semi-algebraic sets of the Euclidean space.
This apparently innocent change of perspective brings into the focus a novel and
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powerful combination of operator theoretic methods and effective positivity crite-
ria circulating in real algebra. The recent generalization of the moment technique
beyond the classical setting of polynomial bases, see [9, 11, 16], is very encour-
aging for the specific aims of the workshop. Well studied integral transforms of
measures, such as the Fourier-Laplace or Fantappiè transforms [14] naturally ap-
pear in this context. The study of these transforms involve refined techniques of
bounded interpolation and approximation in spaces of analytic functions of sev-
eral variables. Particular attention was also paid to the entropy method in solving
truncated moment problems arising in continuum mechanics, control theory and
ergodic theory of dynamical systems.

6. Optimization and semi-definite programming methods, as developed during the
last decade [11], also offer unexpected methods for tackling several of the above
mentioned problems. The difficulties in solving these arise either at the early
modeling stage, e.g. when the problem is formulated as a generalized moment
problem or as a reconstruction or synthesis problem, and/or at the final stage
when the problem is formulated as a global optimization problem. In addition,
the techniques involved in the construction of structured function systems will be
general enough to have important applications to e.g., image processing, stability
of differential equations with a delay in the argument and mathematical finance
with Lévy driven processes. An important feature in all topics is the necessity of
working with systems of non-polynomial functions.

The workshop offered longer expository talks on recent advances in real alge-
braic geometry, complex analysis, frame theory, moment problems and optimiza-
tion. There were also shorter specialized talks. It was highly rewarding to be
present at the beginning of new cooperations, to experience genuine interest of the
participants from different fields in the research of others and their willingness to
find a common language. All these together will undoubtedly contribute to further
mathematical progress.

The reports below offer a more precise picture of the variety of questions ad-
dressed during the workshop. The open problems listed at the end of the report
also illustrate the viability and long term impact of this emerging new field of
interdisciplinary research.

References
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Abstracts

Introduction: trigonometric polynomials and multivariate tight
wavelet frames

Maria Charina and Mihai Putinar

(joint work with Claus Scheiderer and Joachim Stöckler)

The major theme of the workshop is derived from a technical question arising
in the construction of certain wavelet frames.

1. Motivation from frame theory.

In wavelet frame theory and its applications the constructions of compactly sup-
ported tight wavelet frames usually boil down to algebraic manipulations with
trigonometric polynomials. This is due to the fact that such multiresolution con-
structions are build upon refinable functions that in the frequency domain are
given by infinite products of factors all obtained by a simple group action from a
single trigonometric polynomial defined on the d-dimensional torus.

To be more specific, let M ∈ Zd×d be a general expansive matrix, i.e., all its
eigenvalues are strictly larger than 1 in absolute value. The order of the finite
abelian group

G := 2πM−T
Z
d/2πZd

is m = | detM |. The compactly supported refinable function φ ∈ L2(R
d) is given

and is assumed to satisfy the refinement equation

φ̂(MTω) = p(e−iω)φ̂(ω), e
−iω = (e−iω1 , . . . , e−iωd),

written in terms of its Fourier transform φ̂. The trigonometric polynomial p is
given by

p(e−iω) =
∑

α∈Zd

p(α)e−iα·ω , ω ∈ R
d,

and has only finitely many nonzero coefficients p(α) ∈ C. If p(1, . . . , 1) = 1, then

φ̂(ω) = φ̂(0, . . . , 0)

∞∏

j=1

p(e−iM
−Tω), ω ∈ R

d.

It is remarkable that most properties of the refinable function φ and the associated
wavelet tight frames are encoded in the corresponding trigonometric polynomials.
Indeed, the functions ψj ∈ L2(R

d), j = 1, . . . , N , that generate a tight wavelet
frame are assumed to be of the form

ψ̂j(M
Tω) = qj(e

−iω)φ̂(ω), ω ∈ R
d,

where qj are trigonometric polynomials as well. The trigonometric polynomials qj
are defined to satisfy the so-called Unitary Extension Principle from [12].
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Theorem 1. Assume that the trigonometric polynomial p satisfies p(1, . . . , 1) = 1.
If the trigonometric polynomials qj, 1 ≤ j ≤ N , satisfy the identities

δσ,τ − p(e−i(ω+σ))p(e−i(ω+τ)) =
N∑

j=1

qj(e−i(ω+σ))qj(e
−i(ω+τ)), σ, τ ∈ G, ω ∈ R

d,

then the family Ψ = {m1/2ψj(M
ℓ · −α) : j = 1, . . . , N, ℓ ∈ Z, α ∈ Zd} is a tight

wavelet frame of L2(R
d).

One of the well-known necessary conditions for the existence of the trigonomet-
ric polynomials qj , 1 ≤ j ≤ N , in Theorem 1 requires that

(1) f = 1−
∑

σ∈G
|p(e−i(ω+σ))|2 ≥ 0 for all ω ∈ R

d.

Our results in [4] and the result in [8], respectively, provide necessary and sufficient
conditions for the existence of qj , 1 ≤ j ≤ N , in Theorem 1 and state that in
this case f is a sum of hermitian squares of some trigonometric polynomials hj ,
j = 1, . . . ,K, i.e.

f =

K∑

j=1

|hj(e−i(ω))|2, K ∈ N.

This establishes a link between the recent advances in (real) algebraic geometry
and wavelet frame theory. In particular, in the 2−dimensional case, we show that
the result in [14] yields an affirmative answer to the long standing open problem of
existence of multivariate tight wavelet frames. In dimension d = 3, we construct a
class of counterexamples showing that, in general, the condition (1) is not sufficient
for the existence of tight wavelet frames. Our construction, on the one hand, relies
on the properties of the so-called Motzkin polynomial. On the other hand, we make
use of the following local-global result from algebraic geometry [11]: if the Taylor
expansion of f at one of its roots, in local coordinates, has a homogeneous part of
lowest degree which is the Motzkin polynomial, then f is not a sum of hermitian
squares. In dimension d ≥ 3, we use the results in [13] to derive stronger sufficient
conditions for determining the existence of tight wavelet frames.

The polynomial identities and polynomial inequalities in Theorem 1 and in (1)
can be recast in terms of positive semi-definite matrices. This allows us to use
the techniques of semi-definite programming, see [9, 10], to provide, for every d,
efficient numerical methods for checking the existence of multivariate tight wavelet
frames and for their construction.

It is still not known, if analogous existence results hold for the tight wavelet
frames constructed using the so-called Oblique Extension Principle in [5, 6].

Theorem 2. Assume that the trigonometric polynomial p satisfies p(1, . . . , 1) = 1.
If the trigonometric polynomials qj, 1 ≤ j ≤ N , and strictly positive trigonometric
polynomial s, s(1, . . . , 1) = 1, satisfy the identities

δσ,τs(e
−i(ω+τ))−s(e−iMTω)p(e−i(ω+σ))p(e−i(ω+τ)) =

N∑

j=1

qj(e−i(ω+σ))qj(e
−i(ω+τ))
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for all σ, τ ∈ G and ω ∈ R
d, then the family Ψ = {m1/2ψj(M

ℓ · −α) : j =
1, . . . , N, ℓ ∈ Z, α ∈ Zd} is a tight wavelet frame of L2(R

d).

The requirement that s is a trigonometric polynomial can be relaxed and one
could look for a rational function s with the above mentioned properties. A nec-
essary condition for the existence of the trigonometric polynomials qj and s can
be derived similarly to (1) by computing the determinant of the matrix version
of the identities in (2). It is not clear how to extend the sufficient conditions in
[8] to the case of Oblique Extension Principle to guarantee the existence of the
trigonometric polynomials qj in Theorem 2.

2. Positive trigonometric polynomials.

The Unitary Extension Principle has a straightforward generalization to the
vector valued case. Thus, the heart of the matter is a decomposition of a matrix
valued, non-negative trigonometric polynomial on the torus, namely

(2) I −
∑

σ∈G
P σ∗(e−iω)P σ(e−iω)

into the modulus square (of an analytic, rectangular, matrix valued trigonometric
polynomial). The good news is that this is a century old, well studied question,
but the bad news is that in higher dimensions (d ≥ 2) much remains to be done.

It all starts with an observation that cos θ ≤ 1 for all θ ∈ [0, 2π). Everybody
has an explanation for this inequality. Remarkably, the trigonometric identity
1− cos θ = 1

2 (1− cos θ)2 + 1
2 sin

2 θ is the leading tune of this workshop.
A celebrated Theorem of Riesz and Fejér asserts that every univariate trigono-

metric polynomial p(cos θ, sin θ) which is non-negative on the unit torus, can be
factored as

p(cos θ, sin θ) = |h(e−iθ)|2, θ ∈ R,

where h ∈ C[z] is a complex polynomial in the complex variable z. The appearance
of the complex variable z is not at all accidental: it brings into the structure of
positive polynomials on the torus the whole machinery of function theory and
operator theory. To give only a glimpse into this area, we remark that our positive
polynomial can be decomposed into a Fourier series in z and z, with the not less
remarkable result (solution of the Dirichlet problem):

p(cos θ, sin θ) = f(z) + f(z), z = e−iθ

and f ∈ C[z].
Thus, we are led to consider non-negative harmonic polynomials on the unit

disk, instead of its boundary. This is very fortunate indeed, as their structure is
unveiled by Riesz and Herglotz Theorem:

An analytic function f in the unit disk |z| < 1 has non-negative real part, if and
only if

f(z) = iℑf(0) +
∫ π

−π

eiθ + z

eiθ − z
dσ(θ),
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where σ is any positive Borel measure on the torus.

One step further, one can refer to the multiplication operator U by z, on L2(σ),
and obtain the matricial representation

f(z) = iℑf(0) + 〈(U + z)(U − z)−11,1〉 = f(0) + 2z〈(U − z)−11,1〉,
where 1 is the constant function. Again, the argument can be reversed, with the
result of allowing any unitary transformation U in the above formula.

The interplay alluded above between positive polynomials, analytic functions,
structured matrices and positive measures is amply reflected by the quasi-totality
of abstracts below. Without being exhaustive, we only hint in the next section on
some specific topics that will be discussed in the remaining part of the report.

3. Construction techniques of tight wavelet frames.

Returning to tight wavelet frames and the Unitary Extension Principle, we en-
counter at least three convergent methods of tackling the question of finding the
factorization of the matrix valued polynomial in (2). Of course the higher dimen-
sional case d ≥ 2 is more subtle and, hence, more interesting for future research.
After all, we seek flexible and effective constructions of positive polynomials on
tori, in arbitrary dimension.

3.1. Realization of non-negative pluriharmonic functions as transfer functions
of conservative, multivariate linear systems. This is a preferred territory of control
theory experts, and we only cite some recent references [1, 2, 3, 7] and promise to
give more details in a forthcoming continuation of [4].

3.2. Positivstellensätze in real algebraic geometry. Riesz-Fejér Theorem has far
reaching generalizations, obtained by algebraic and mathematical logic techniques.
They are revealed in the abstracts of Scheiderer, Plaumann, Schweighofer and
Netzer.

3.3 Duality and moment problems. Checking the non-negativity of a function
f defined on a topological support X amounts at verifying

∫

X

fdµ ≥ 0

for every positive Borel measure defined on X , so that f ∈ L1(µ). This naive
observation has deep consequences, moving the positivity of f question to the
space of (generalized) moments of the measures µ.

Moment problems of various sorts, including interpolation problems in spaces of
analytic functions with bounds, appear in the abstracts of Lyubarskii, Gröchenig,
Ambrozie, Junk, Budisic, Schmüdgen.

3.4. Semi-definite programming via Lasserre relaxations. The numerical imple-
mentation of optimization in the space of moments was advocated and carried out
by Lasserre, Henrion and their collaborators. In short, they propose a sequence of
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semi-definite programming approximations to any polynomial minimization prob-
lem, constrained also by polynomial inequalities. Their two abstracts explain the
idea and show its universality on some surprising applications.
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MRA based tight wavelet frame and applications

Zuowei Shen

Since the publication of [25] on the multiresolution analysis and the publication
of [16] on construction of the compactly supported orthonormal wavelet generated
by the multiresolution analysis (MRA), the wavelet analysis and its applications
lead the area of applied and computational harmonic analysis over the last two
decades and the MRA based wavelet methods become a powerful tool in various
applications in image and signal analysis and processing. One of the well known
examples is to compress image by using orthonormal or bi-orthogonal wavelet
bases generated by the MRA as given in [14, 16]. Another successful example is
noise removal by using redundant wavelet system by [15, 18].

The publication of the unitary extension principle of [26] generates a wide range
of interests in tight wavelet systems derived by multiresolution analysis. For exam-
ple, the oblique extension principle was presented in [13, 17]. Having tight wavelet
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frames with a multiresolution structure is very important in order to make any
use of them in applications, since this guarantees the existence of the fast decom-
position and reconstruction algorithms. Recently, tight wavelet frames derived by
the multiresolution analysis are used to open a new area of applications of frames.
The application of tight wavelet frames in image restorations is one of them that
includes image inpainting, image denoising, image deblurring and blind deburring,
and image decompositions (see e.g. [3, 2, 1, 7, 8, 10, 11, 6, 4, 9, 12]). In particular,
the unitary extension principle is used in [3, 10, 11, 9, 12] to design a tight wavelet
frame system adaptive to the real life problems in hand. Frame based algorithms
for image and surface segmentation, 3D surface reconstruction is give in [20, 21]
and CT image reconstruction in [19].

In this talk, we start with a brief survey of the theory of tight wavelet frames.
A characterization of the tight wavelet frame of [22, 24, 26] is given. We then
focus on the tight wavelet frames and their constructions via the multiresolution
analysis (MRA). In particular, the unitary extension principle of [26] and the con-
struction of tight wavelet frame from it is given. We also give a short overview of
the generalizations of the unitary extension principle. The second part of this talk
focuses on the recent applications of tight wavelet frames in image restorations. In
particular, the balanced approach of [3, 2, 1, 10, 11, 4, 9, 12] and the correspond-
ing algorithms for image denoising, deblurring, inpainting and decomposition is
discussed in details. The link of the frame based image restoration to the total
variational based image restoration is also discussed. Indeed, it is shown in [5]
that, by choosing parameters properly, a special case of the wavelet tight frame
approach can be seen as sophisticated discretization of minimizations involving
the TV regularization or their generalizations.

The interested reader should consult the survey article [27] and the lecture note
[20] for details of the theory and applications of MRA based tight wavelet frames.
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Refinable functions and algebraic aspects of subdivision

Kurt Jetter

(joint work with Maria Charina, Costanza Conti, Georg Zimmermann)

Refinable function systems are at the foundation of multiresolution methods. Such
functions φ, say, can be represented by dilated and translated versions of itself. In
order to avoid technical details, we concentrate here on translations with respect
to the multi-integer grid Zd, and to dilations with dilation matrix 2I. In this
situation, the refinability of φ may be expressed as

φ(x) =
∑

β∈Zd

mβ φ(2x− β)
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with a finitely supported sequence m = (mβ)β∈Zd , the so-called mask of the refin-
able function and of its related (binary) subdivision operator

Sm : ℓ∞(Zd) → ℓ∞(Zd) , c 7→ Smc , with (Smc)α =
∑

β∈Zd

mα−2β cβ .

The z-transform of the mask, viz. the Laurent polynomial

m(z) =
∑

β∈Zd

mβ z
β

and its restriction to the d-dimensional torus, the trigonometric polynomial

h(ξ) =
1

2d

∑

β∈Zd

mβ e
−iβ·ξ ,

are usually employed in order to describe algebraic properties of subdivision op-
erators.

Examples of refinable functions abound in the wavelet literature, and have
appeared earlier in the spline literature, with univariate B-splines and multivariate
box (or cube) splines being the most prominent examples. In particular, the
symbols of bivariate box splines based on the three-directional mesh appear in
a recent proper parametrization of bivariate subdivision schemes: they provide
a basis of the ideal of symbols representing any convergent subdivision scheme.
Other ideal bases have been described earlier in the literature, in particular by H.
M. Möller and T. Sauer in [2, 3], but the basis of box spline symbols used in [1]
is within the scope of refinable functions systems, since the basis itself consists of
symbols of refinable functions.

One sample result along these lines is the following
Theorem. Any bivariate subdivision scheme satisfying the sum rules of order k
has a symbol m(z) in the ideal Ik, which can be represented using the normalized
box spline symbols

N#
β,β,α, N

#
β,α,β, N

#
α,β,β , α = 0, 1, . . . , ⌊k

2
⌋ , β = k − α ,

as the generators of this ideal, within the ring of Laurent polynomials. Here,

N#
n1,n2,n3

(z1, z2) =

(
1 + z1

2

)n1
(
1 + z2

2

)n2
(
1 + z1z2

2

)n3

.

In the multivariate situation, an analogous results is still missing, and would be
highly desirable in the three-variable case. The basic ideal I, referring to the sum
rule of order 1, is here generated by normalized box spline symbols which refer to
d-variate box splines with corresponding directional matrix

Θ = (θ1 · · · θd)
a (d×d) integer matrix whose columns θi ∈ Zd, i = 1, . . . , d, consist of any possible
choices among

– the d-variate canonical unit vectors e1, . . . , ed, and
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– the combinations ei + ej , for i 6= j,

subject that the matrix Θ is unimodular.
Details and many more results along these lines can be found in the paper [1].
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Gabor Frames and Complex Analysis

Karlheinz Gröchenig

(joint work with Yura Lyubarskii)

1. Given a point z = (x, ξ) ∈ Rd × Rd = R2d, the time-frequency shift π(z)
acting on a function g is defined as

π(z)g(t) = e2πiξ·tg(t− x) x, ξ, t ∈ R
d .

Gabor analysis deals with structured function systems that are generated by time-
frequency shifts of a single function g. To impose more structure, one assumes that
the time-frequency shifts a generated by a lattice Λ = AZ2d, where A ∈ GL(2d,R).
Then G(g,Λ) = {π(λ)g : λ ∈ Λ} is a so-called Gabor family. For the separable
lattice Λ = αZd×βZd this is just the set of functions {e2πiβl·tg(t−αk) : k, l ∈ Zd}.
See [1] for an introduction.

The fundamental questions concern the spanning properties of G(g,Λ) in
L2(Rd). When is G(g,Λ) a Riesz basis for the generated subspace? Precisely,
G(g,Λ) is frame (a Gabor frame), if there exist constants A,B > 0, such that

A‖f‖22 ≤
∑

λ∈Λ

|〈f, π(λ)g〉|2 ≤ B‖f‖22 ∀f ∈ L2(Rd) ,

and G(g,Λ) is a Riesz sequence, if there exist constants A′, B′ > 0, such that

A′‖c‖22 ≤ ‖
∑

λ∈Λ

cλπ(λ)g‖22 ≤ B′‖c‖22 ∀c ∈ ℓ2(Λ) .

The frame property and the Riesz sequence property are not independent of each
other. Let

Λ◦ =

(
0 I
−I 0

)
(AT )−1

Z
2d

be the adjoint lattice of Λ. Then the fundamental duality principle of Janssen,
Ron and Shen [4] states that G(g,Λ) is a frame for L2(Rd), if and only if G(g,Λ◦)
is a Riesz sequence.

From the duality theory two important consequences can be derived:
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(i) The biorthogonality condition: The Riesz sequence property can be restated
by saying that there exists a dual window γ ∈ L2(Rd), such that

(1) 〈γ, π(µ)g〉 = δµ,0 ∀µ ∈ Λ◦ .

(In addition, G(γ,Λ◦) must also be a Bessel sequence).
(ii) The density theorem: If G(g,Λ) is a frame, then vol(Λ) = | detA| ≤ 1.

2. Transition to complex analysis. If g is chosen to be the Gaussian g(t) =
2d/4e−πt·t/2, then the problem of Gabor analysis is equivalent to an interpolating
problem in complex analysis.

A small computation reveals that

π(x,−ξ)g(t) = eπix·ξeπz
2/2

∫

Rd

f(t)e−πt
2

e2πt·zdt e−π|z|
2/2 .

The expression

Bf(z) = eπz
2/2

∫

Rd

f(t)e−πt
2

e2πt·zdt

is an entire function on Cd and is called the Bargmann transform of f . As a
consequence of Plancherel’s theorem one obtains the isometry property

‖f‖22 = ‖Bf‖2F :=

∫

Cd

|Bf(z)|2e−π|z|2 dz .

Then the biorthogonality condition (1) is equivalent to the following statement:
G(g,Λ) is a Gabor frame, if and only if there exists an interpolating function
Γ ∈ F , such that γ(µ̄) = δµ,0, ∀µ ∈ Λ◦.

3. In dimension d = 1 this interpolation problem is solvable with mathematics
from the 19th century. Let σ be the Weierstrass sigma function defined by

σΛ◦(z) = z
∏

µ∈Λ◦\{0}
(1− z

µ
)e

z
µ+ z2

2µ2 .

Then the function Γ(z) = σΛ◦ (z)
z is interpolating on Λ◦. Using the invariance

properties of the sigma function and standard tools from complex analysis, the
growth of Γ can be estimated by

|Γ(z)| ≤ C exp
(

π
2vol(Λ◦) |z|2

)

and |Γ(z)| ≥ c exp
(

π
2vol(Λ◦) |z|2

)
outside a neighborhood of the zeros of Γ. This

means that Γ ∈ F , if and only if vol(Λ◦) > 1. As a consequence one obtains a
complete characterization of all Gabor frames with Gaussian window in dimension
d = 1. Thus G(g,Λ) is a Gabor frame, if and only if vol(Λ) < 1. This result is
special case of the fundamental work of Lyubarskii [3] and Seip [5].
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4. In higher dimensions the situation is completely different and very little
is known. The problem is much more difficult, because the zero set of an en-
tire function of several complex variable is no longer discrete, but is an analytic
manifold.

To be able to use complex variable techniques, we restrict ourselves to complex
lattices, i.e., we identify a time-frequency pair (x, ξ) ∈ R2 with the complex vari-
able z = x+ iξ ∈ C and assume that the lattice is of the form Λ = A(Z+ iZ)d for
some A ∈ GL(d,C). Then the adjoint lattice is Λ◦ = (A∗)−1(Z+iZ)d. It is easy to
build an interpolating function for Λ◦. Abbreviating the sigma function on Z+ iZ
by σ, a natural interpolating function on the product lattice (Z + iZ)d is then

τ(z) =
∏d
j=1

σ(zj)
zj

. By a coordinate transformation, the function Γ(z) = τ(A∗z) is

is an interpolating function on Λ◦, but its growth depends on A, i.e., on the choice
of a basis for Λ◦, rather than on the lattice itself. In general this construction
yields an interpolating function that grows too fast and is not in Fock space. To
decide the frame property of G(g,Λ) requires more subtle constructions.

5. Let us now focus on dimension d = 2. After choosing a reduced basis
consisting of the shortest vectors in Λ and rotating the lattice, we may assume
without loss of generality that the matrix generating Λ has the form

A =

(
γ1 β
0 γ2

)
with γ1, γ2 > 0, |Reβ|, |Imβ| ≤ γ1/2, γ

2
1 ≤ |β|2 + γ22 .

In this parametrization we have the following results [2].

Theorem. Let g be the normalized Gaussian and Λ = A(Z + iZ)2 a complex
lattice with a reduced basis.

(i) If γ1 < 1 and γ2 < 1, then G(g,Λ) is a frame.
(ii) If γ2 ≥ 1, then G(g,Λ) is not a frame.

Hardly anything is known about the remaining cases. Since we are in a nice
situation with a maximum amount of structure, we would expect that, as in di-
mension d = 1, every lattice with vol(Λ) < 1 generates a Gabor frame.

However, consider the lattices Λj = Aj(Z+ iZ)2 with

A1 =

(
1 1

5

0
√
24
5

)
, A2 =

(
1 2

5

0
√
24
5

)
, A3 =

(
1 2

5

0
√
21
5

)
.

For all three lattices the necessary density condition is satisfied and vol(Λj) <
1. However, neither G(g,Λ1) nor G(g,Λ2) constitute a frame. For G(g,Λ3) we
conjecture that it is a frame, but we have no reliable proof of this statement.

A general negative result is the following.

Theorem. Let A =

(
δ1 0
0 δ2

)(
1 1

q

0 γ

)
with δ1, δ2 ≥ 1, q ∈ Z+ iZ, |q| ≥ 2 and

|q|−2 + γ2 = 1. Then G(g,A(Z + iZ)2) is not a frame for L2(R2).

Based on the known classes of examples, we envision that the generic lattice
Λ with vol(Λ) < 1 generates a frame. The non-generic examples as in the above
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theorem constitute “rare” cases. It remains a big challenge to prove a rigorous
result supporting this vision.
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Efficient characterizations of nonnegativity on closed sets

Jean B. Lasserre

Tractable characterizations of polynomials (and even semi-algebraic functions)
which are nonnegative on a set, is a topic of independent interest in Mathematics
but is also of primary importance in many important applications, and notably in
global optimization.

We will review two kinds of tractable characterizations of polynomials which
are nonnegative on a basic closed semi-algebraic set K ⊂ Rn. Remarkably, both
characterizations are through Linear Matrix Inequalities and can be checked by
solving a hierarchy of semidefinite programs or generalized eigenvalue problems.

The first type of characterization is when knowledge on K is through its defin-
ing polynomials, i.e., K = {x : gj(x) ≥ 0, j = 1, . . . ,m}, in which case some
powerful certificates of positivity can be stated in terms of some sums of squares
(SOS)-weighted representation. For instance, in global optimization this allows to
define a hierarchy of semidefinite relaxations which yields a monotone sequence of
lower bounds converging to the global optimum (and in fact, finite convergence is
generic). Another (dual) way of looking at nonnegativity is when knowledge on
K is through moments of a measure whose support is K. In this case, checking
whether a polynomial is nonnegative on K reduces to solving a sequence of gen-
eralized eigenvalue problems associated with a countable (nested) family of real
symmetric matrices of increasing size. When applied in global optimization over
K, this results in a monotone sequence of upper bounds converging to the global
minimum, which complements the previous sequence of lower bounds. These two
(dual) characterizations provide convex inner (resp. outer) approximations (by
spectrahedra) of the convex cone of polynomials nonnegative on K.
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Research Interests. I am mainly interested in optimization in a broad sense
and in particular, using some results and tools from algebraic geometry for solv-
ing global optimization problems defined through polynomials (and even semi-
algebraic functions). Concerning applications, we are especially interested in op-
timal control problems, and some inverse problems from moments.

References

[1] J.B. Lasserre, Moments, Positive Polynomials and Their Applications Imperial College
Press, London, 2009

[2] J.B. Lasserre, A new look at nonnegativity on closed sets and polynomial optimization,
SIAM J. Optim. 21 (2011), 864–885.

Positive Polynomials

Daniel Plaumann

This is a short survey about modern results on representations of positive poly-
nomials in real algebraic geometry. As in the talk, statements will be kept as
untechnical as possible, often at the expense of scope and precision. For a more
complete presentation, the reader might consult the books of Marshall [3], Prestel-
Delzell [5] and Lasserre [2], as well as Scheiderer’s survey [7]. All results here that
are not explicitly cited can be found in Marshall’s book.

The basic setup is as follows. Let

S =
{
a ∈ R

n | g1(a) ≥ 0, . . . , gk(a) ≥ 0
}

be a basic closed semi-algebraic set defined by real polynomials g1, . . . , gk ∈ R[x]
in n variables x = (x1, . . . , xn). Let always

Σ =
{
h21 + · · ·+ h2l | h1, . . . , hl ∈ R[x], l ∈ N

}

denote the cone of sums of squares of polynomials in R[x].
The full cone of positive polynomials

P(S) =
{
f ∈ R[x] | f ≥ 0 on S

}

on S is a notoriously difficult, inaccessible object. On the other hand, it clearly
contains the cone

M =M(g1, . . . , gk) =
{
s0 + s1g1 + · · ·+ skgk | si ∈ Σ

}

called the quadratic module generated by g1, . . . , gk. The principal question is how
close M is to P(S). There are two fundamental results for the compact case:

Schmüdgen 1991. If S is compact and M ·M ⊂M , then

f |S > 0 =⇒ f ∈M.

Note that, explicitly, M ·M ⊂M means M =
{∑

i∈{0,1}k sig
i1
1 · · · gikk | si ∈ Σ

}
.

Putinar 1993. If there is g ∈M with {a ∈ Rn | g(a) ≥ 0} compact, then

f |S > 0 =⇒ f ∈M.
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It is customary to refer to the hypothesis in Putinar’s theorem as the archimedean
property. It follows from the theorem that the archimedean property is equivalent
to the existence of R > 0 such that R−∑n

i=1 x
2
i ∈M .

Natural questions that arise next are the following.

• What if S is not compact?
• What about computations and complexity?
• What if f has zeros on S?

The first question played a role in the later talk of Schmüdgen and the second in
those of Netzer and Scheiderer, at this same workshop. The remainder of this note
focuses on the third question.

Subsets of the line. A non-negative polynomial f ∈ R[x] in one variable is
a sum of two squares. For such f must be of even degree, with positive leading
coefficient, and real zeros must be of even multiplicity. Hence it can be written as

f = c2 ·∏d
j=1(x− αj)(x − αj) = Re(p)2 + Im(p)2, where p = c ·∏d

j=1(x− αj).

If g = 1 − x2, then every polynomial f ∈ R[x] with f |[−1,1] ≥ 0 has a rep-
resentation f = s0 + s1g with s0, s1 ∈ Σ. This is easy to prove by induction.
By contrast, g̃ = (1 − x2)3 defines the same interval, but there does not exist an
identity x = s0 + s1g̃ with s0, s1 ∈ Σ.

In general, if S is any semialgebraic subset of R, the cone P(S) is a finitely
generated quadratic module, and one can precisely identify the generators. (A
complete analysis was first given by Kuhlmann, Marshall and Schwartz; see [3]).

The higher dimensional case. It is not too surprising that what really gov-
erns the behaviour of P(S) is not so much the number of variables but rather the
dimension of the semialgebraic set S. If dim(S) ≥ 3, then P(S) is never finitely
generated, i.e. there do not exist g′1, . . . , g

′
l describing S with P(S) =M(g′1, . . . , g

′
l).

With a localization argument, this essentially follows from the existence of a posi-
tive definite homogeneous polynomial in three variables (of degree at least 6) that
is not a sum of squares (Hilbert - Motzkin).

On the other hand, any non-negative polynomial can be represented as a sum
of squares of rational functions, i.e. with denominators. This was Hilbert’s 17th
problem, resolved by Artin in 1927. It generalizes to any preorder (multiplicative
quadratic module) without further assumptions.

Positivstellensatz (Krivine 1964, Stengle 1974). If M ·M ⊂M , then for
every f ∈ P(S) there exist s, t ∈M and an integer N ≥ 0 such that sf = f2N + t.

If S is compact andM ·M ⊂M (orM archimedean), a polynomial in P(S)\M
must necessarily have zeros on S. On the positive side, there exist local sufficient
conditions for membership in M in this case, such as the following.

Marshall 2006. Assume that M is archimedean, i.e. there exists R > 0 such
that R−∑n

i=1 x
2
i ∈M . Then M contains all f ∈ P(S) satisfying

(1) If a ∈ int(S) with f(a) = 0, then the Hessian D2f(a) is positive definite;
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(2) If a ∈ ∂S with f(a) = 0, then f satisfies a suitable boundary Hessian
condition in a.

For more refined versions of such results, see also [1].

Nie 2012 [4]. The conditions above hold for generic f (in a suitable sense).

Scheiderer 2003-2006 [8, 10]. If S is compact of dimension at most 2 and
sufficiently regular, then P(S) is finitely generated.

Here, “sufficiently regular” amounts to about the following: If dim(S) = 1, then
S should be contained in a smooth algebraic curve. If dim(S) = 2, then S should
be contained in a smooth algebraic surface V and the relative boundary of S in V
must satisfy a regularity condition (e.g. smooth boundary curves intersecting with
independent tangents).

Examples. 1) If h = x2 + y2 − 1 and T = {a ∈ R2 | h(a) = 0} is the unit circle,
then every f ∈ P(T) has a representation f = s + rh with s ∈ Σ and r ∈ R[x, y].
(Note here that, according to our definitions, we should take M = M(h,−h),
which is in fact equal to Σ+ (h), where (h) is the ideal generated by h.) This can
also be verified directly, for example by working in the complex plane or by taking
a stereographic projection onto a line.

2) Likewise, if h = y2+(2−x)(1−x)(1+x)(2+x), then S = {a ∈ R2 |h(a) = 0}
consists of two smooth ovals in the plane and every f ∈ P(S) has a representation
f = s + rh with s ∈ Σ and r ∈ R[x, y]. But this cannot be shown as easily by
elementary means, since the curve here does not admit any parametrization by
rational functions. (In fact, it has a node at infinity and its geometric genus is
1). The non-rationality precludes any direct analogue of the splitting of positive
polynomials into complex-conjugate linear factors.

3) Every polynomial f ∈ R[x, y] that is non-negative on the unit disc in R2

possesses a representation f = s0 + s1 · (1− x2 − y2) with s0, s1 ∈ Σ.
4) Every non-negative polynomial function f on the two-dimensional torus T×T

is a sum of squares in the ring R[T× T] of polynomial functions.

Remark. When looking for representations of the form

f = s0 + s1g1 + · · ·+ skgk

in M , one cannot in general bound the degrees of the sums of squares si in terms
of the degree of f . Suppose for example that M ·M ⊂ M and that S is compact
with non-empty interior. If f ∈ P(S), then f + ǫ is strictly positive on S for any
ǫ > 0. Thus, by Schmüdgen’s theorem, we can obtain representations

f + ǫ = s
(ǫ)
0 + s

(ǫ)
1 g1 + · · ·+ s

(ǫ)
k gk

where s
(ǫ)
0 , . . . , s

(ǫ)
k ∈ Σ depend on ǫ. If the degrees of s

(ǫ)
i were uniformly bounded

(i.e. independent of ǫ), one could make an argument for the existence of a conver-
gent subsequence and conclude f ∈ M . But we know that is not always possible
if dim(S) ≥ 3. However, for dim(S) ≤ 2 the situation is less clear. It turns out
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that uniform degree bounds usually exist if dim(S) = 1 (see [11] and the talk of
Scheiderer), but cannot exist if S is compact and dim(S) = 2 by [9].
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A generalized Prony method for sparse approximation

Gerlind Plonka

(joint work with Thomas Peter)

In many situations (e.g. in system theory or nonlinear approximation) one is
faced with the problem of determining parameters for a certain signal structure
from the measured data. One well-known method to tackle this problem is the
Prony method that indeed serves as the basic concept for a series of reconstruction
methods as e.g. MUSIC, ESPRIT, the matrix pencil method, the annihilating filter
method etc. We want to provide a universalized approach to the Prony method
that applies to a very general underlying signal structure.

Original Prony method. Let us first consider an exponential sum of the form

f(ω) =
∑M
j=1 cj e

ωTj

with (unknown) complex parameters cj and Tj, j = 1, . . . ,M , and assume that
−π < ImT1 < . . . < ImTM < π. We aim to reconstruct cj and Tj from a
given small amount of (possibly noisy) measurement values f(ℓ). Using Prony’s
method or one of its stabilized variants, we are able to reconstruct f with only
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2M function values f(ℓ), ℓ = 0, . . . , 2M − 1, see e.g. [2, 3, 4, 7] and references
therein. The solution of this problem involves the determination of a so-called
Prony polynomial

P (z) :=
∏M
j=1(z − λj)

with λj := eTj . Assuming that P (z) has the monomial representation P (z) =∑M
k=0 pkz

k, and using the structure of f , a short computation yields for m =
0, . . . ,M − 1,

∑M
k=0 pkf(k +m) =

∑M
k=0 pk

∑M
j=1 cje

(k+m)Tj =
∑M
j=1 cjλ

m
j

(∑M
k=0 pkλ

k
j

)

=
∑M

j=1 cjλ
m
j P (λj) = 0.

With pM = 1 we obtain the linear Hankel system
∑M−1
k=0 pk f(k +m) = −f(M +m), m = 0, . . . ,M − 1,

providing the coefficients pk of the Prony polynomial P (z). Now, the unknown
parameters Tj can be extracted from the zeros λj = eTj of P (z). Afterwards, the
coefficients cj are obtained by solving the overdetermined linear system

f(ℓ) =
∑M

j=1 cje
iℓTj , ℓ = 0, . . . , 2M − 1.

Generalized Prony method. Based on the above Prony approach, we want to
present a new very general approach for the reconstruction of sparse expansions
of eigenfunctions of suitable linear operators. In particular, we will show that
the Prony-like reconstruction methods for exponentials [3] and polynomials [1]
known so far, can be seen as special cases of this approach. Moreover, the new
insight into Prony-like methods enables us to derive reconstruction algorithms
for orthogonal polynomial expansions including Jacobi, Laguerre, and Hermite
polynomials, [5, 6]. The approach also applies to finite dimensional vector spaces,
and we derive a deterministic reconstruction method for M -sparse vectors from
only 2M measurements. Particularly, a stable numerical method based on matrix
pencils can also be transferred to this general Prony approach.

General approach. Let V be a normed vector space over C, and let A : V → V
be a linear operator. Let Λ := {λj : j ∈ I} be a (sub)set of pairwise distinct
eigenvalues of A, where I is a suitable index set. We consider the eigenspaces
Vj = {v : Av = λjv} to the eigenvalues λj , and for each j ∈ I, we predetermine a

one-dimensional subspace Ṽj of Vj that is spanned by the normalized eigenfunction
vj . In particular, we assume that there is a unique correspondence between λj and
vj , j ∈ I.

An expansion f of eigenfunctions of the operator A is called M -sparse if its
representation consists of only M non-vanishing terms, i.e. if

f =
∑

j∈J cjvj , with J ⊂ I and |J | =M.(1)
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Due to the linearity of the operator A, the k-fold application of A to f yields

Akf =
∑

j∈J cjAkvj =
∑
j∈J cjλ

k
j vj .

Further, let F : V → C be a linear functional with Fvj 6= 0 for all j ∈ I.

Theorem [5]. With the above assumptions, the expansion f in (1) of eigenfunc-

tions vj ∈ Ṽj, j ∈ J ⊂ I, of the linear operator A, with cj 6= 0 for all j ∈ J ,
can be uniquely reconstructed from the values F (Akf), k = 0, . . . , 2M −1, i.e., the
“active” eigenfunctions vj as well as the coefficients cj ∈ C, j ∈ J , in (1) can be
determined uniquely.
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A constructive approach to Putinar’s and Schmüdgen’s
Positivstellensätze with applications to degree bounds and matrix

polynomials

Markus Schweighofer

In the year 1900, Hilbert presented a list of 23 very influential mathematical prob-
lems [33]. In the 17th of these problems he mainly asked whether each (globally)
nonnegative (real) polynomial (in several variables) could be written as a sum of
squares of rational functions (already knowing that sums of squares of polynomials
are not enough [34, page 347], i.e. denominators are needed). Artin solved this
problem to the affirmative [31, Satz 6][8, 1.4.1][18, Thm. 2.1.12]. To do this, he
had to develop together with Schreier the theory of ordered fields [32]. In partic-
ular, he had to introduce the notion of a real closed field [32, p. 87]. Real closed
fields relate to ordered fields very much like algebraically closed fields relate to
fields. The real numbers form the prototype of a real closed field just like the com-
plex numbers build the prototype of an algebraically closed field. Real closed fields
seem to be an indispensable tool for answering Hilbert’s 17th problem. Moreover,
the answer to Hilbert’s 17th problem remains positive over an arbitrary real closed
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field (i.e. when one allows for coefficients from a real closed field instead of the
real numbers). By general arguments from model theory, this implies that the
degree of the numerator and denominator of the rational functions in a sums of
squares representation of a given nonnegative polynomial can be bounded in terms
of the number of variables and the degree of this polynomial. To get a concrete
bound however is extremely tedious (and the known bounds are horribly bad)
since Artin’s proof is highly non-constructive [23, 24].

At about the same time when Artin solved Hilbert’s 17th problem, Pólya proved
another theorem on positive polynomials of a totally different flavor. He charac-
terized (real) homogeneous polynomials (strictly) positive on an open orthant.
Namely, he showed that these can be written as a quotient of an homogeneous
polynomial with only (strictly) positive coefficients and a power of the sum of the
variables [30]. For the case of two variables this is easily seen to be equivalent to the
fact that a univariate polynomial positive on a given interval has only positive co-
efficients when expressed in the Bernstein basis of the vector space of polynomials
of sufficiently high degree (associated to the interval). In sharp contrast to Artin’s
theorem, in Pólya’s theorem it is self-evident how to compute the guaranteed rep-
resentation: One simply multiplies the polynomial repeatedly with the sum of the
variables until all coefficients get positive. Powers and Reznick proved an upper
bound for the number of repetitions needed [17]. This bound unfortunately de-
pends on a measure of how close the polynomial gets to zero (loosely speaking the
size of the coefficients divided by the minimum on the standard simplex). Pólya’s
theorem does not hold over any real closed field.

Just a few years after the discovery of Artin’s and Pólya’s theorems, Tarski
invented the method of real quantifier elimination. This was published only about
20 years later [29]. Then another thirteen years passed before this tool which is
omnipresent in modern real algebra showed its impact on the further developments
around Hilbert’s 17th problem.

Namely, the next major step in the theory of positive polynomials was Kriv-
ine’s seminal paper [28] where he introduces amongst others preordered rings and
their maximal real spectrum. Thus he introduced basic notions and indispensable
tools of modern real algebraic geometry in his very first scientific article. This
brilliant work came too early for people to understand what is going on and has
been neglected for a long time [18, Section 4.7]. Combining this newly developed
theory with Tarski’s real quantifier elimination, Krivine proves in the same article
both the Positivstellensatz [28, Thm. 7][18, 4.2.10][21, 4.4.2] and the archimedean
Positivstellensatz [18, Lemma 5.2.7].

The Positivstellensatz is a refinement and generalization of Hilbert’s 17th prob-
lem which might at first glance look like a technical improvement but actually it is
a very crucial and important enhancement of Artin’s theorem. The archimedean
Positivstellensatz at first sight looks like a variant of the Positivstellensatz but
actually it is more of a Pólya-like nature: Under the additional assumption that
the given preorder is archimedean, it provides a concrete denominator (namely a
natural number which in many rings can be assumed to be 1) and it does not hold
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over any real closed field. However, Krivine uses the Positivstellensatz to prove the
archimedean Positivstellensatz (combine [28, Thm. 11] with [28, Thm. 7]). Note
however, that in the archimedean setting one can easily avoid the use of Tarski’s
theorem to prove the Positivstellensatz. Krivine’s proof of the archimedean Posi-
tivstellensatz is completely constructive up to the starting point of the proof where
he applies the Positivstellensatz to the element one wants to represent. Much later
the author of this note gives a different and completely constructive proof of the
archimedean Positivstellensatz by reducing it to Pólya’s Theorem [16] (see also [1]
for a recent exposition). We will come back to this later.

The content of Krivine’s work was disremembered for about 35 years (though
the work has occasionally been cited even in [21, page 95]) until Prestel took notice
of this. Even now it continues to be ignored by many authors. Therefore the Posi-
tivstellensatz is often attributed to Stengle who rediscovered it ten years later [27].
Independently, Prestel rediscovered at about the same time the Positivstellensatz
[26, Thm. 5.10] and gave the modern standard proof.

Unexpectedly, the next major breakthrough in the theory of positive polyno-
mials came from functional analysis. In 1991, Schmüdgen used the Positivstel-
lensatz to prove that multiplication operators arising in a GNS construction are
bounded and used the spectral theorem and separating techniques for convex sets
to prove what is now the celebrated Schmüdgen’s Positivstellensatz [25, Cor. 3][18,
Thm. 5.2.9][8, Cor. 6.1.2]. It is a denominator-free version of the Positivstellen-
satz over compact semialgebraic sets. It took more than seven years until people
from real algebraic geometry could find an algebraic proof for Schmüdgen’s Pos-
itivstellensatz. Namely, Wörmann found in his thesis (see [19]) an amazingly
short but ingenious algebraic argument that allows to deduce Schmüdgen’s Posi-
tivstellensatz from the Positivstellensatz and the archimedean Positivstellensatz.
Using the Positivstellensatz Wörmann could show that the preorder involved in
Schmüdgen’s Positivstellensatz is archimedean and fulfills therefore the hypothe-
ses of the archimedean Positivstellensatz. In hindsight, Schmüdgen’s theorem is
thus a characterization of finitely generated archimedean preorderings in the real
polynomial ring [18, Thm. 5.1.17][8, Thm. 6.1.1] rather than a theorem about
positive polynomials. But the original proof worked very differently. In the orig-
inal proof there is a gap reported by Marshall in [8, pages x,88,89 and 98]. This
gap has been found by Prestel and shortly after it has been bridged by Schmüdgen
in an unpublished erratum which was apparently not known to Marshall.

Just two years later, in 1993, Putinar proved also with functional-analytic meth-
ods a sharpening of the archimedean Positivstellensatz which is now known as Puti-
nar’s Positivstellensatz [22][18, Thm. 5.3.8]. He uses quadratic modules instead
of preorderings. The sums of squares representation is therefore weighted only by
the defining polynomials of the semialgebraic set instead of all their exponentially
many products. It is a common misperception that Putinar’s Positivstellensatz is
a strengthening of Schmüdgen’s Positivstellensatz. In fact, it is a strengthening
of the archimedean Positivstellensatz although one could formulate it in a way
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that it would generalize at the same Schmüdgen’s Positivstellensatz (by impos-
ing condition (i) from [12, Thm. 1] instead of the archimedean condition as a
hypothesis). But any such phrasing of Putinar’s Positivstellensatz just borrows
from Schmüdgen’s characterization of archimedean preorderings which is much
deeper than Putinar’s theorem. In fact, the innovative aspect of Putinar’s article
was mostly something different and his Positivstellensatz was “just” a by-product.
Nevertheless it took again more than seven years until people from real algebraic
geometry could find an algebraic proof for Putinar’s Positivstellensatz. It was Ja-
cobi who found a very technical and long algebraic argument [18, Lemma 5.3.7].
Another seven years later Marshall found an ingenious argument that radically
shortened Jacobi’s proof [8, Thm. 5.4.4].

The author’s constructive approach. In 2002, the author found a new
proof of the archimedean Positivstellensatz which is completely constructive [13].
It uses Pólya’s theorem instead of the Positivstellensatz. It is therefore also an
algorithmic approach to the Positivstellensatz up to Schmüdgen’s characterization
of archimedean preorderings. The latter is still not constructive at all since it uses
the Positivstellensatz and Tarski’s real quantifier elimination (note that we said
above that Tarski could be avoided in the Positivstellensatz in the presence of the
archimedean condition, however this does not help since it is used at a point in
the proof before the archimedean condition is established).

In 2005, the author found a similar approach to Putinar’s Positivstellensatz.
The constructions involved are much more “dirty” than for the archimedean Pos-
itivstellensatz in the sense that there is an additional step with a polynomial of
potentially very large degree appearing even before Pólya’s procedure is applied.

The main advantages of these constructive approaches are the following:
(1) Computation of sums of squares representations. One can actually

try to compute the sums of squares representation in the archimedean Positivstel-
lensatz or in Putinar’s Positivstellensatz. Once a Positivstellensatz certificate for
the archimedean property is known, this then applies also to Schmüdgen’s The-
orem. Such a certificate can be found in many cases, and one gets it for free
by adding a redundant inequality defining a big ball to the description of the
semialgebraic set (if a ball containing the set is known).

(2) Complexity analysis. By taking much more care in the constructions,
one can take track of the degree complexity of the sums of squares representations
in the archimedean Positivstellensatz and in Schmüdgen’s Positivstellensatz [13].
One of the main ingredients is the upper bound on the exponent needed in Pólya’s
theorem proved by Powers and Reznick [17]. Therefore it is not surprising that
again the bound depends on a measure of how close the polynomial gets to zero on
the semialgebraic set (roughly speaking again the size of the coefficients divided
by the minimum on the semialgebraic set).

The same is true for Putinar’s Positivstellensatz [9]. However, the bound is
considerably worse. It seems that the price one has to pay for avoiding the expo-
nentially many products of the defining inequalities is an exponential in the degree
bound (though it is not known if the bounds are sharp).
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(3) Parameterized families of sums of squares representations. The
constructions, if performed carefully enough, can often be done uniformly for pa-
rameterized families of polynomials to represent. For the final stage of the proce-
dure, namely the repeated multiplication step in Pólya’s theorem, to terminate, it
is often advantageous if the parameters come from a compact space.

Applications. The applications of the author’s procedure seem to be numerous
and are by far not exhausted. We give here just a few examples.

A. Computing minima of polynomials on compact semialgebraic sets.
One can try to get a sums of squares representation of a polynomial minus an un-
known lower bound of the polynomial. After each multiplication step in Pólya’s
procedure, one solves a linear program in only two (!) variables with the objective
of maximizing the unknown lower bound. The second variable in the linear pro-
gram comes from a parameter introduced in the author’s constructions. This is an
example of (3) with a linearly parameterized family of polynomials, the parameter
ranging over an interval of the real line (namely the set of strict lower bounds of
the polynomial on the given semialgebraic set). This procedure was implemented
by Datta [15].

B. Positive polynomials on cylinders with compact cross section. Pow-
ers had the idea to consider a polynomial on a cylinder with compact cross section
as a parameterized family of polynomials on the same compact semialgebraic set
(namely the cross section). In this way she found mild and reasonable geomet-
ric conditions that guarantee the existence of sums of squares representations of
polynomials positive on such cylinders [14]. This is again an example of (3) with
a linearly parameterized family of polynomials, the parameter ranging over the
whole real line.

C. Positive matrix polynomials. A symmetric matrix polynomials in several
variables can be interpreted as a polynomial in the same variables with coefficients
which are quadratic forms in new variables (one for each row or column). Since
quadratic forms are given by their values on the unit sphere, one can therefore think
of symmetric matrix polynomials as parameterized polynomials with parameters
in the unit sphere which is a compact space. The ideas in (3) above therefore
apply. This was carried out by Hol and Scherer in order to prove a version of
Putinar’s theorem for matrix polynomials [10] (see also [13]).

D. Semidefinite representations. In two seminal articles, Helton and Nie
proved that many convex semialgebraic sets are semidefinitely representable [6, 5]
(attention: the two articles appeared in the wrong order). To prove this they need
sums of squares representation of bounded degree complexity for linear polynomi-
als nonnegative on the given semialgebraic set. The main focus lies on the linear
polynomials whose kernel is a supporting hyperplane of the convex set. There-
fore neither Schmüdgen’s nor Putinar’s Positivstellensatz is applicable since the
linear form is not strictly positive on the set. Although there are meanwhile a
lot of theorems generalizing these theorems by allowing for a certain kind of zeros
[11, 7, 2], there are no general complexity bounds available (perhaps one could
try to generalize the author’s constructive approach by using versions of Pólya’s
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theorems that allow for zeros [3] but this seems a long way to go). Helton and Nie
found a truly ingenious way to control the degree complexity by using Karush-
Kuhn-Tucker conditions (i.e., “Lagrange-multipliers” for inequalities) and a sums
of squares representation of the Hessian. The Hessian is a symmetric matrix poly-
nomial which can very roughly speaking be assumed to be positive with some
additional arguments given by Helton and Nie. This created the need for a matrix
version of Schmüdgen’s and Putinar’s Positivstellensatz with control on the degree
complexity. But with the observation made in the last point that matrix polyno-
mials fall under the general idea (3) above, the arguments in [13, 9] go through
almost literally as Helton and Nie observed.
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den Gesellschaft in Zürich 73 (1928), 141–145, reprinted in: Collected Papers, Volume 2,
309–313, Cambridge: MIT Press (1974)
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Introduction to Zonotopal Algebra

Amos Ron

General. The most common methodology for constructing multivariate splines
is via their definition as volume functions. One begins with a linear surjection

X : RN → R
n,

and restricts this map to a polyhedron Z ⊂ RN . In the theory of box splines,
Z = [0, 1]N . Two geometries underscore box spline theory: that of zonotopes, and
the dual geometry of hyperplane arrangements. The geometries are associated
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with dual algebraic structures, and results in a seamless cohesion of the geometry,
the algebra, the spline function and combinatorial properties of X .

Attempts to extend the aforementioned constructions beyond the original setup
of box spline theory began in the mid 90’s and reached their successful comple-
tion in [HR] where a three-layer theory that was coined there zonotopal algebra
is introduced. Box spline theory is the middle central layer and two novel con-
structions, external and internal, over the same pair of dual geometries were newly
introduced.

This report is devoted to the external theory within zonotopal algebra. In each
layer, one starts with a pair of homogeneous polynomial spaces; the first is a “P-
space”, and the second is a “D-space” and is defined as the joint kernel of an ideal
of differential operators known as a “J -ideal”.

Zonotopal algebra, central. Each column x ∈ X induces a form px : Rn →
R : t 7→ x · t, and a differential operator px(D) i.e., a directional derivative
Dx. For Z ⊂ X , pZ :=

∏
x∈Z px. The central zonotopal algebra partitions 2X

into the long subsets L(X) := {Z ⊂ X | rank(X\Z) < n}, and the short subsets:
S(X) := 2X\L(X). The central P-space P(X) is: P(X) := span{pZ : Z ∈ S(X)},
while the long polynomials pZ , Z ∈ L(X) generate the ideal J (X). The D-space
is then the kernel of J (X):

D(X) := {f ∈ Π | p(D)f = 0, ∀p ∈ J (X)} = {f ∈ Π | p(D)f(0) = 0, ∀p ∈ J (X)},
with Π the space of all polynomials in n variables. It is known, [DR], that the
pairing

(1) 〈·, ·〉 : Π×Π : (p, q) 7→ 〈p, q〉 := p(D)q(0)

induces a linear bijection between P(X) and D(X)′, and that, [DM], [DR],

dimP(X) = dimD(X) = #B(X),

with B(X) the set of bases of X , i.e., subsets of X that form a basis for Rn, and
I(X) the set of all independent subsets of X .

Connection with geometry and the least map. We discuss here the connec-
tion of D(X) with hyperplane arrangements; cf. [BDR] and [HR] for connections of
P(X) and related spaces to zonotopes. One starts, [DR], by associating each x ∈ X
with qx := px − λx, λx ∈ R. Each B ∈ B(X) defines a vertex b(B) ∈ Rn, viz, the
common zero of the polynomials (qx)x∈B. Assume that the map b : B(X) → Rn

is injective. The set b(B(X)) is then the vertex set of the hyperplane arrangement
H(X) generated by the zero sets Hx of qx, x ∈ X .

We apply then to the vertex set b(B(X)) the least map of [BR90]. The least
map associates each finite Θ ⊂ Rn with a polynomial space Π(Θ) such that the
restriction of functions defined on R

n to the set Θ induces a bijection between
Π(Θ) and CΘ (so, in particular, dimΠ(Θ) = #Θ). It is proved in [BR91] that
Π(b(B(X))) = D(X).

External zonotopal algebra. One first complements X with an ordered Y ⊂
Rn. In [HR] and [HRX], Y is an arbitrary ordered basis of Rn. In [LR], Y is a
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(sufficiently long) sequence in general position in X ∪ Y . Given Y , one selects a
subset B′ ⊂ B(X ∪ Y ). The corresponding J -ideal is then defined as

(2) JB′ := Ideal{pZ | Z ⊂ X ∪ Y, Z ∩B 6= ∅, ∀B ∈ B
′}.

The corresponding D-space DB′ is the kernel of JB′ . The selection is external
whenever B(X) ⊂ B′. While we are interested in particular, structured, choices of
B′, we have the following unqualified estimate on dimDB′ , from [BR91]:

dimDB′ ≥ #B
′.

We say that the external selection B(X) ⊂ B′ ⊂ B(X∪Y ) is coherent if dimDB′ =
#B′. Thus, the central selection B′ = B(X) is coherent. [HR] was the first to
consider an external setup. It chose Y to be a basis for Rn, and defined a set
injection

ex : I(X) → B(X ∪ Y ),

via a greedy extension of each independent set to a basis using the elements of Y .
The corresponding D-space is then denoted there as D+(X) and its corresponding
ideal J+(X). It is indeed proved in [HR] that B′ := ex(I(X)) is coherent:

dimD+(X) = #I(X).

P-spaces. The original external version P+(X) was introduced independently in
[PS] and [HR]. It is defined as

P+(X) := span{pZ | Z ⊂ X}.
It is proved in [HR] that P+(X) and D+(X) are dual, i.e., that J+(X)⊕P+(X) =
Π. It follows that dimP+(X) = dimD+(X), hence dimP+(X) = #I(X).

Homogeneous bases for P(X). There are no known explicit constructions of
bases for D-type spaces. In contrast, there are such basis constructions for P-
spaces, all of which follow the construction of bases for P(X) in [DR]: one fixes
an arbitrary order ≺ on the elements of X . Then, given B ∈ B(X), one defines

(3) X(B) := {x ∈ X\B | x 6∈ span{b ∈ B | b ≺ x}}.
The cardinality of X(B) is intimately connected to the external activity of B, [B].

Theorem [DR]. The polynomials pX(B), B ∈ B(X), form a basis for P(X).

The construction of homogeneous bases for external P-spaces is derived from
the above. Suppose that we have defined a D-space DB′ , corresponding to the
basis set B′ ⊂ B(X ∪ Y ), and a related PB′ and proved a duality between the D-
and the P- space. Now, necessarily,

PB′ ⊂ P(X ∪ Y ).

Thus, we construct a homogeneous basis for P(X ∪ Y ) as above, and select the
basis polynomials that correspond to B ∈ B′. These polynomials are automatically
linearly independent. Assuming that B′ is coherent, we combine this coherence
together with the assumed duality between PB′ and DB′ to conclude that

dimPB′ = dimDB′ = #B
′.
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Thus, the polynomials selected above will form a basis for PB′ once we show that
each of them actually lies in PB′ .

General external setup. The setup in [LR] provides a general unified theory
and analysis that captures all previous efforts as special cases. We begin with an
assignment κ : 2X → N.

Definition. An assignment κ as above is solid if, given Z,Z ′ ⊂ X , we have

spanZ ⊂ spanZ ′ =⇒ κ(Z) ≤ κ(Z ′).

κ is incremental if, for every Z ⊂ X and x ∈ X ,

κ(Z ∪ x) ≤ κ(Z) + 1.

We define the P-space as

Pκ :=
∑

Z⊂X
pX\ZΠκ(Z),

with Πk the space of polynomials of total degree k. The associated basis set
B′ := Bκ ⊂ B(X ∪ Y ) is defined as follows:

(4) Bκ := {B ∈ B(X ∪ Y ) | B ∩ Y ⊂ Ym(B∩X)},
where, for an independent I ∈ I(X), m(I) := κ(I) + n − #I, while Yi :=

{y1, . . . , yi}. It follows that each independent I ⊂ X can be extended in
(m(I)
κ(I)

)

different ways to a basis in Bκ, hence that #Bκ =
∑

I∈I(X)

(m(I)
κ(I)

)
.

The D-space Dκ is defined as

Dκ := DBκ = kerJBκ ,

where JBκ is defined in (2) with respect to the choice B′ = Bκ. As before, we
associate each z ∈ X ∪ Y with a constant λz and assume the assignment to be
generic. Every B ∈ B(X ∪ Y ) then corresponds to b(B) := the common zero of
the polynomials (qz)z∈B, and, by assumption, the map

b : B(X ∪ Y ) → R
n : B 7→ b(B)

is injective. We denote

Vκ := b(Bκ).

Theorem [LR]. Let κ be a solid assignment. Then:

• Bκ is coherent. Furthermore, Π(Vκ) = Dκ.
• Pκ + Jκ = Π.
• Pκ contains a Lagrange basis for Vκ: for each v ∈ Vκ there exists Lv ∈ Pκ,
such that Lv vanishes on Vκ\v, but not at v.

Assume further that κ is incremental. Set X ′ := X ∪ Y , and, for I ∈ I(X),
X ′
I := X ∪ Ym(I). Then

• The polynomials q(X′

B∩X )\B, B ∈ Bκ, form an inhomogeneous basis for
Pκ, hence dimPκ = #Bκ.

• The polynomials pX′(B), B ∈ Bκ, form a homogeneous basis for Pκ.
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It follows that Jκ⊕Pκ = Π, or in other words that Pκ and Dκ are dual to each
other.
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On the solvability of maximum entropy moment problems

Michael Junk

A variety of technical and physical problems leads to so called reduced moment
problems where one tries to reconstruct a function f ≥ 0 from a finite number of
weighted integral averages

(1)

∫
ai(x)f(x)ρ(dx) = bi, i = 1, . . . ,m.

Since the reconstruction of f from the values bi is not unique, (1) can be viewed
as an ill–posed inverse problem. A common way to regularize the problem is
the maximum entropy approach [4] in which a solution of (1) is singled out as
maximizer of the strictly concave entropy functional

H(f) = −
∫
f ln f − fρ(dx)

subject to the constraints (1). In particular, the original formulation (1) is embed-
ded in the well developed theory of optimization problems which offers a variety
of tools both theoretical and numerical [1, 2].

For example, it turns out to be quite useful to consider the dual formulation

min
λ∈Rm

z(λ), z(λ) =

∫
exp(λ · a(x))ρ(dx) − λ · b
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which is a finite dimensional convex optimization problem. Assuming that z is

differentiable, we see that its critical points λ̂ give rise to solutions of (1) in the

form of strictly positive exponential functions exp(λ̂ · a(x))

0 = ∂iz(λ̂) =

∫
ai(x) exp(λ̂ · a(x))ρ(dx) − bi.

Hence, standard minimization algorithms applied to z can be used to solve (1)
provided z has at least one critical point.

The crucial question of necessary and sufficient conditions for the existence of
critical points of z will be discussed in the following. For simplicity, we restrict
our considerations to the case where the measure ρ in (1) is finite and where the
weight functions ai are measurable and bounded.

An obvious necessary condition concerns the data b in (1). We only have a
chance to solve (1) with an exponential density if the problem admits at least one
solution f ≥ 0 which is not everywhere zero, i.e. if

(2) b ∈ M =

{∫
a(x)f(x) ρ(dx) : ‖a‖f ∈ L

1(ρ), f ≥ 0, ρ(f > 0) > 0

}
.

To illustrate a second necessary condition, assume that there exists some ξ ∈ R
m

such that g(x) = ξ · a(x) is a non-positive function which vanishes on a set V of
positive measure such that V c also has positive measure. Then the characteristic
function f(x) = 1V (x) of V is a bounded, non-negative density which does not
vanish ρ-a.e. Due to boundedness of the weight functions ai, we also have ‖a‖f ∈
L1(ρ) and hence b0 =

∫
afρ ∈ M with

ξ · b0 = ξ ·
∫
a(x)f(x)ρ(dx)

∫
g(x)f(x)ρ(dx) = 0.

However, z based on b0 cannot have a critical point λ̂ because otherwise

0 = ξ · b0 = ξ ·
∫
a(x) exp(λ̂ · a(x))ρ(dx) =

∫
g(x) exp(λ̂ · a(x))ρ(dx) < 0

which is a contradiction. We have thus found a second necessary condition

(3) ξ · a ≤ 0 ρ-a.e. ⇒ ρ(ξ · a < 0)ρ(ξ · a = 0) = 0.

We now show that the two necessary conditions are also sufficient.

Theorem 1. Assume ρ is a finite measure and ai are measurable and bounded.
Then the function z has a critical point if and only if (2) and (3) are satisfied.

Proof. The necessity of the conditions has already been shown. Conversely, if (2)
and (3) are satisfied, then the function z is strictly convex and coercive on the
subspace U⊥ ⊂ Rm with

U = {ξ ∈ R
m : ξ · a = 0 ρ-a.e.}

(up to the trivial case U⊥ = {0} where a = 0 ρ-a.e. so that z is constant and
has critical points everywhere). To see this, choose 0 6= ξ ∈ U⊥, and consider
Z(t) = z(tξ) for t > 0. In the case ξ · b < 0, the values Z(t) grow at least
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linearly for t → ∞. For ξ · b ≥ 0, the linear combination ξ · a must be positive
on a set of positive measure because, otherwise, condition (3) applies and yields
ρ(ξ · a < 0) = 0 or ρ(ξ · a = 0) = 0. Using (2), the second case contradicts ξ · b ≥ 0
while the first implies ξ ∈ U ∩U⊥ = {0} which contradicts our assumption ξ 6= 0.
But if ξ · a > 0 on a set P with positive measure, there exists ǫ > 0 such that
ξ · a > ǫ on P̃ ⊂ P with ρ(P̃ ) > 0. Thus

Z(t) ≥
∫

P̃

exp(tξ · a(x))ρ(dx) > ρ(P̃ ) exp(tǫ)

which also diverges for t→ ∞. The strict convexity follows from the strict positive
definiteness of the Hessian of z. In fact,

ξ · (∇2z(λ)ξ) =

∫
(ξ · a(x))2 exp(λ · a(x))ρ(dx) > 0

because (ξ · a)2 ≥ 0 cannot vanish ρ-a.e. if 0 6= ξ ∈ U⊥. As a consequence, z has a

unique minimizer λ̂ in U⊥ which means that ∇z(λ̂) is perpendicular to U⊥. Since
for ξ ∈ U , we have ξ · b = 0 and

ξ · ∇z(λ) =
∫
ξ · a(x) exp(λ · a(x))ρ(dx) − ξ · b = 0,

∇z(λ̂) is also perpendicular to U and hence λ̂ is a critical point of z. �

Since (3) is difficult to check in practice, as the non-positive linear combinations
of the weight functions are generally difficult to characterize, a simpler sufficient
condition is often used which is called pseudo-Haar property

(4) ρ(ξ · a = 0) > 0 ⇒ ξ = 0.

To see that (4) implies (3), we assume ξ · a ≤ 0 and ρ(ξ · a = 0) > 0. Then the
pseudo-Haar property implies ξ · a = 0 ρ-a.e. so that ρ(ξ · a < 0) = 0 and (3)
follows.

In [3] the solvability of the maximum entropy moment problem is shown in the
case where ρ is a regular Borel measure having full support on a compact Hausdorff
space with continuous weight functions ai satisfying the pseudo-Haar property.

Also in the case of non-compact domains, the pseudo-Haar condition is a typ-
ical assumption while the solvability of the maximum entropy problem is more
complicated [5, 7].

Finally, we mention [6] where the pseudo-Haar condition is shown for the im-
portant case where ρ is the Haar-measure on a locally compact group and ai are
natural representation functions.
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Conditioning of truncated moment sequences of singular measures for
input into entropy optimization

Marko Budǐsić

(joint work with Mihai Putinar)

We explain the main ideas behind our paper [4], which concerns truncated moment
problems for singular measures supported in subsets of RD. The paper shows
how the original moment sequence can be adapted to be a suitable input for
optimization of the entropy functional, which is used to obtain a measure that
approximates the measure generating the input moment sequence. We convey the
core concepts, tracing back to M. Krein [7, 8], by considering the special case of
dimension D = 1. In the end we describe what exists and what is presently missing
for extensions to any finite D > 1 and present a few future research direction.

Assume the case of the truncated moment problem: given is the subset of

power moments γµ(n) =
∫ 1

0 x
ndµ(x), n = 0, . . . , N < ∞ of a positive finite-mass

measure supported in [0, 1] ⊂ R. The problem is to find a measure µ̃ whose first
N + 1 moments match the given set, i.e.,

∫
xnµ̃(x) = γµ(n), ∀n ∈ {0, 1, . . . , N}.

Since we only have access to finite data, there exists a whole family of compatible
measures whose moments match the set we are given. The entropy optimization
is a deterministic procedure resulting in a positive smooth measure µ̃ satisfying
moment constraints.

A popular method [3, 9] for finding an absolutely continuous positive measure
dµ̃(x) = f(x)dx constrained by

∫
xnf(x)dx = γµ(n) is by optimizing the entropy

functional S(f) =
∫
f(x) ln f(x)dx . Solving the Lagrange dual problem, one can

obtain the ansatz for solutions f(x) = exp
∑N

n=0 λnx
n, where λn are Lagrange

multipliers. However, not all moment sequences γµ(n) can be matched by ex-

ponential polynomial densities eP (x). For example, a Dirac-δ measure at x = 0,∫
fdµ(x) = f(0), has the moment sequence containing γδ(n) = 0, ∀n > 0, how-

ever due to strict positivity of any ρ(x) = eP (x), γρ(n) > 0, ∀n > 0, therefore
moments of δ(x)dx cannot be matched by an entropy-optimizing density. More
general conditions are given in [6].

To be able to produce a measure dµ̃ that in some sense approximates the
unknown, possibly singular, measure dµ, we propose to regularize the problem.
Specifically, we seek an auxiliary regular measure ϕ(x)dx, such that first N + 1
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moments γϕ(n) can be computed from first N + 1 moments γµ(n) (conditioning),
and that the measure dµ̃ ≈ dµ can be evaluated from pointwise knowledge of den-
sity ϕ (inversion). If such a regularized density ϕ exists, then it can be obtained
from entropy optimization with moments constrained by

∫
ϕ(x)xndx = γϕ(n), n =

0, . . . , N .
We show that the regularized density ϕ(x) can be obtained by considering

the complex moment-generating function (Cµ)(z) :=
∫
(z − x)−1dµ(x). Function

Cµ is analytic in the upper-half plane with positive imaginary part (Nevanlinna
class), it can be represented by another Nevanlinna function ϕ(z) through relation
1+ (Cµ)(z) = expϕ(z). The boundary values of ϕ(z) as z → ℜz = x ∈ R produce
a function ϕ(x) such that ϕ(z) =

∫
(z−x)−1ϕ(x)dx = (Cϕ)(x). The paper [2] gives

a list of properties of ϕ; most importantly ϕ ∈ L1(R), ϕ(x) ∈ [0, π] pointwise, and
the support of ϕ is bounded whenever µ is of finite mass. These properties hold
regardless of regularity of µ.

To relate moments of µ to moments of ϕ, one interprets the relation 1 +
(Cµ)(z) = exp(Cϕ)(z) as a relation between moment generating functions, as
(Cµ)(z) = −∑∞

n=0 z
−(k+1)γµ(n). If MN (z) is the Laurent polynomial obtained

by generating moment function Cµ to N +1 coefficients, then the analogous trun-
cation PN for Cϕ can be obtained by summing N + 1-truncations of powers of
polynomials (MN)

k for k = 1, . . . , N , divided by k, i.e.,

{Cϕ(z)}N = PN (z) =
∑N
k=1

1
k{[MN(z)]

k}N ,
where we denote the truncation by {.}N . The moments γϕ can now be extracted
as coefficients of PN .

Moments γϕ are a feasible input to entropy optimization, as we saw that ϕ
was a compactly supported, bounded, positive integrable function. We obtain the
density ϕ̃ which approximates ϕ by matching its moments. It is important to notice
that ϕ̃ is more regular than even ϕ, in particular, ϕ̃ ∈ C∞ on (0, 1), as it is of form
eP (x) for some polynomial P . Now, the relation between two generating functions
still holds, 1 + F (z) = exp(Cϕ̃)(z). The density f(x) that the generating function
F (z) =

∫
(z − x)−1f(x)dx represents, we would need to evaluate the boundary

value of F (z) at the real line. The pointwise boundary (non-tangential) limits for
smooth densities exist, in particular they exist for (Cϕ̃)(z), and by analyticity of
exp-function, also for F (z) = exp(Cϕ̃)(z)− 1. Explicit formulas that evaluate the
boundary limits are known as Plemelj-Sokhotski formulas [5].

Applying Plemelj-Sokhotski formulas, we obtain the density f as

f(x) = π−1 exp[−π(Hϕ̃)(x)] sin[πϕ̃(x)],
where H denotes the Hilbert transform. Since an analytic expression for ϕ̃ is
known, as ϕ̃ is in the form of entropy-optimal ansatz on a compact support, we
can evaluate the Hilbert transform numerically from pointwise evaluations using
discrete Fourier Transform algorithms, e.g., FFT.

The generalization of the conditioning procedure to supports in subsets of
RD relies on the Fantappiè transform [1] as the representation of the moment-
generating function. Our paper [4] gives the explicit computations for several
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domains that contain supports of µ, in particular, positive orthant R
D
+ for un-

bounded supports, and ℓ2 and ℓ1 balls in RD for bounded supports. Presently, a
practical generalization of the inversion procedure is not known, however, we do
propose two possible approaches. The first approach would require a practically
computable version of the extension of the Plemelj-Sokhotski formulas to multi-
variate setting, in which the complex field is replaced by a Clifford algebra. The
second would be based on disintegration of measures over multidimensional do-
mains to measures along lines. The inversion on each line could be solved by the
presented one-dimensional method, followed by a tomographic approach for inte-
grating the one dimensional solutions into a fully supported measure, completing
the inversion.

In addition to completing the inversion step for measures supported in RD,
an interesting problem would be a concrete description of the manner in which
f(x)dx ≈ dµ(x). From current work, it is clear that f(x)dx ≈ dµ(x) in the sense
that moments of their respective phase functions ϕ̃ and ϕ are equal. It would be
clarifying to formulate the manner of approximation in terms of direct properties
of f(x)dx and dµ. A related question is the characterization of the density ϕ,
e.g., its differentiability dependent on properties of µ. A more practical direction
of research could explore whether approximation performance is improved if the
entropy optimization is replaced by optimization of another functional, or by an
alternative method of inversion of the truncated moment problem for continuous
measures.
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On the truncated problem of moments

Călin Ambrozie

The existence of the Lebesgue integrable solutions f = f(t) ≥ 0 where t =
(t1, . . . , tn) for a problem of moments [1], [4] with truncated data:

∫
T t

if(t)dt = gi
(i ∈ I) is known [2], [3], [5] – [8] to be characterized under certain hypothe-
ses by the existence of a (unique) solution f∗ maximizing Boltzmann’s entropy
H(f) = −

∫
T
f ln fdt, and hence by the existence of the maximum λ∗ of the La-

grangian L(λ) =
∑
i∈I giλi −

∫
T e

∑
i∈I λit

i

dt. In the present context T ⊂ Rn is
a closed subset, I ⊂ (Z+)

n a finite set of multiindices i = (i1, . . . , in) and gi are

the given data of the problem; as usual, ti = ti11 · · · tinn . We give certain applica-
tions of this idea for certain slightly modified versions of the functional H , under
various hypotheses on the data. In particular, in the case of two variables n = 2,
if T = R2 and for moments up to order four I = {i ∈ Z2

+ : |i| ≤ 4}, we give
recurrence relations g̃j =

∑
|i|≤4 rji(λ

∗)gi that provide the higher order moments

g̃j :=
∫
tjf∗(t)dt (|j| ≥ 5) in terms of the prescribed data gi, where rji are ratio-

nal functions that we can describe by concrete linear recurrence relations. These
could be used to improve the approximation process used in the computation of
λ∗, for instance by providing algebraic formulas for the second order derivatives
of L (∼ −g̃j for various j) in the usual application [6], [9] of Newton’s method to
the problem maxL = L(λ∗).
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Wavelet characterization of some spaces of distributions and its
applications

Eugenia Malinnikova

Besov spaces Let V0 ⊂ V1 ⊂ V2 ⊂ ... be a an r-regular multiresolution approx-
imation (MRA) of L2(Rn), and let Wj be the orthogonal complement of Vj in
Vj+1. We denote by Ej the orthogonal projection of L2(Rn) onto Vj and its ex-
tension to larger spaces of functions and distributions and let Dj = Ej+1 − Ej .
The characterization of functions in Besov spaces Bs,pq in terms of their projections
onto Wj is strikingly simple and efficient. A function (or distribution) f belongs
to Bs,pq if and only if ‖Djf‖p = 2−jsaj , {aj} ∈ lq, for a regular MRA with r > |s|,
[8, ch. 2.9]. It is even tempting to take this description as a definition of the
Besov spaces. The problem is that one has to specify an MRA or prove that the
definition does not depend on one.

We study the spaces of distributions B−s,∞
∞ for s ≥ 0 and its generalizations.

These spaces can be considered as spaces of boundary values of harmonic functions
in Rn+1

+ with some growth restrictions. We assume that all our distributions are of
finite order and satisfy some regularity at infinity such that they can be convolved
with the Poisson kernel Py(x) = y−nP (x/y) = cny(y

2 + |x|2)−(n+1)/2. Then for
s > 0 we have T ∈ B−s,∞

∞ if and only if ‖Py ∗ T ‖∞ ≤ Cy−s, y < 1. For s = 0 the
corresponding Besov space B0,∞

∞ = B is the Bloch space and T ∈ B if and only if
‖∇(Py ∗ T )‖∞ ≤ Cy−1.

Let φ be the father wavelet and ψ(p) be a finite system of generating wavelets

with ψ
(p)
jk (x) = 2nj/2ψ(p)(2jx−k), j = 0, 1, 2, ..., k ∈ Zn, p = 1, ..., q. The classical

Besov spaces can be also characterized in terms of the absolute values of wavelet
coefficients, for our case of the spaces B−s,∞

∞ with s ≥ 0 this characterization reads

like |(T, φ(· − k))| ≤ C and |(T, ψ(p)
jm)| ≤ C2−nj/22−js.

Weighted spaces of distributions and spaces of harmonic functions Let v
be a positive decreasing function on R+, v(y) = 1 when y > 1, limy→0 v(y) = ∞,
that satisfies v(y/2) ≤ Dv(y) for some D, in this case we say that v is a weight
function. Examples include max{1, y−s} = hs(y) and max{1, (log e/t)a} = la(y)
for s, a > 0. For each weight function we define the space of distributions D∞(v) =
{T : |Py∗T | ≤ C(T )v(y)}. Naturally, those appear as boundary values of harmonic
functions in the upper half-space with in the growth restriction |u(x, y)| ≤ v(y).
We define h∞v = {u : Rn+1

+ → R,∆u = 0, |u(x, y)| ≤ v(y)}. The corresponding
spaces of harmonic functions in the unit disk were introduced by Shields and
Williams in 1970s, [9]. Similar classes with v(y) = log 1/y and one-sided estimate
were studied by Korenblum [5]. We consider these spaces as generalizations of the
Besov spaces B−s,∞

∞ = D∞(hs). The wavelet characterization we obtain is now in
terms of the projections Ej that give partial sums of the wavelet series.

Theorem 1 (Eikrem, Mozolyako,M,[4]). Let T be a distribution of finite order s
that admits convolutions with the Poisson kernel and let Vj be an r-regular MRA,
r > s and 2r > D. Then T ∈ D∞(v) if and only if ‖EjT ‖∞ ≤ C(T )v(2−j).
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For slow growing weights like la there is no description in terms of wavelet
coefficients or in terms of projectionsDjT . The problem is ‖EjT ‖∞ ≤ C(T )v(2−j)
implies ‖DjT ‖∞ ≤ C1(T )v(2

−j) but the opposite is not true. To obtain a more
convenient characterization of D∞(v) we project only on a subsequence of V ′

j s.

We fix a sequence of positive integers nj such that v(2−nj+1) ≥ 2v(2−nj) and
v(2−nj+1) ≤ 2Dv(2−nj ). Then we take partial sums of the wavelet series on levels
nj only. We obtain T ∈ D∞(v) if and only if (Enj+1

− Enj )T ≤ C(T )v(2−nj ).
The main idea of the proof of Theorem 1 is to replace the Poisson kernel by the

father wavelet.

Lemma. Let T ∈ D∞(v) and g ∈ L1(Rn) such that supp ĝ ⊂ B1/y then

‖T ∗ g‖∞ ≤ C(T )‖g‖1v(y).
To prove the lemma we use Bourgain’s construction from [2]. We take a function

Σ ∈ L1(Rn) such that Σ̂P̂ = 1 on B1. Then Σ̂yP̂y = 1 on By−1 and we have for
g0(·) = g(x0 − ·)
|(T ∗ g)(x0)| = |(T̂ , ĝ0)| = |(T̂ P̂y, Σ̂y ĝ0)| = |(T ∗ Py,Σy ∗ g0)| ≤ Cv(y)‖Σ‖1‖g‖1.
Our interest in these spaces of distributions originated in the study of boundary

values of harmonic functions, see [1, 3, 6, 4]. Let us first consider the Bloch space
B. The wavelet description of B is well known, T ∈ B if and only if ‖DjT ‖∞ ≤ C.
This holds also for the Haar wavelet system when T = E0T +

∑
j DjT is the

martingale decomposition of T . For the case of Bloch functions the martingale
differences are bounded. Then the growth is subject to the law of the iterated
logarithm. The precise statement is the celebrated law of the iterated logarithm
for Bloch functions due to Makarov, [7].

Theorem (Makarov). Let u be a harmonic function in Rn+1
+ . Suppose that u

satisfies sup(x,y) y|∇u(x, y)| <∞. Then

lim sup
y→0

|u(x, y)|√
log y−1 log log log y−1

≤ C

for almost every x ∈ Rn.

Now we go back to the spaces h∞v . It is not difficult to construct examples of
functions u in h∞v such that lim supy→0 v

−1(y)|u(x, y)| > 0 almost everywhere. It
can be also observed that for all such examples function u(x, y) oscillates between
v(y) and −v(y). We try to catch this oscillation by the following weighted average

Iu(x, s) =

∫ 1

s

u(x, y)d(v−1(y)).

It is clear that Iu(x, s) ≤ C log v(s), we observe the cancellation that leads to the
following law of the iterated logarithm.

Theorem 2. Let u ∈ h∞v then

lim sup
y→0

|Iu(x, s)|√
log v(s) log log log v(s)

≤ C
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for almost every x ∈ Rn.

For the case of the unit disk in R2 and the weight v(y) = log y−1 the proof was
given in [6]. We still use the Haar wavelet expansion of the boundary values of u
(using results of Korenblum on premeasures) but we take superdyadic martingales,

it corresponds to taking wavelet sums on the levels 22
j

as it is explained after
Theorem 1. For the case of the upper-half space and arbitrary v Theorem 2
is proved in [4], using smooth multiresolution approximation and appropriately
chosen scale of wavelet generators, nj . Theorem 2 gives an analog of the law of
the iterated logarithm for spaces h∞v . Let us also point out three main differences
between Theorem 2 and Makarov’s law of the iterated logarithm. First, we measure
the oscillation of the function and not its growth; second, to obtain the result we
take an appropriate sub-scale of the dyadic scale and finally, we apply smooth
multiresolution approximation instead of Haar wavelets.
Open problems We hope that other weighted spaces can be treated in a similar
way, giving new results on description of dual spaces and multipliers. It would
be also interesting to get results in the spaces of harmonic functions with non-
homogeneous growth restrictions, |u(x, y)| ≤ v(x, y), where v now depends on x
but changes slowly in x variable. Another problem is to give the description of the
boundary values of functions in growth spaces in the unit ball. We would like to
know if there is an appropriate wavelet decomposition (or a more soft tool) that
can be applied to corresponding distributions on the unit sphere.
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A Construction of Locally Supported Tight Wavelet Frames on Sphere

Ming-Jun Lai

(joint work with T. Lyche)

Wavelets are functions in the Hilbert space L2(R
d) whose integer translates and

dilations form a basis for L2(R
d), where d ≥ 1. For example, if ψ ∈ L2(R) such

that
{2j/2ψ(2jx− k), j, k ∈ Z}

is an orthonormal basis for L2(R), ψ is called an orthonormal wavelet. A construc-
tion of such functions ψ with compact support was presented in [5] and see also
[6]. However, when d ≥ 2, compactly supported wavelet functions are difficult to
construct. When the orthonormal conditions are relaxed, biorthogonal wavelets,
prewavelets and even tight wavelet frames have been constructed in L2(R

d), d ≥ 1
for any order of regularity. More precisely,

• Biorthogonal Box Spline Wavelets (cf. [9], [11], and [10])
• Prewavelets and pre-Riesz basis (cf. [20], [4], [12], [13]);
• Prewavelets on Sphere (cf. [19]);
• Tight Wavelet Frames on Rd (cf. [21], [1], [2], [7], [16], [15]);
• Tight Wavelet Frames over Bounded Intervals (cf. [3] and [14]).

It is well known that compactly supported wavelet functions are extremely
useful for signal and image processing and many other applications. It is also
known that tight frames perform just as well as the orthonormal wavelets. Indeed,
if {fj, j ∈ J} is a tight frame for L2(Rd), then for any g ∈ L2(Rd),

(1) g =
∑

j∈J
〈g, fj〉fj ,

where 〈g, fj〉 =
∫
Rd gfjdσ. Note that (1) is the same as the Parseval representation

of functions in L2(Rd) using orthonormal functions fj, j ∈ J . A frame may not be
a basis and hence it may contain some redundancy which can be useful for certain
applications. Thus, it may have several representations for one function. However,
any other representation {cj, j ∈ J} of a function g will have a larger norm than
‖g‖2, i.e. if g =

∑
j∈J cjfj with cj 6= 〈g, fj〉 for some j ∈ J ,

‖{cj, j ∈ J}‖22 =
∑

j∈J
|cj |2 >

∑

j∈J
|〈g, fj〉|2 = ‖g‖2

(cf. [6]).
In this talk, we are interested in constructing smooth locally supported tight

wavelet frames over the unit sphere S in R3. To the authors’s knowledge, such
tight wavelet frame functions have not been available in the literature so far.
Our aim is to have a representation for L2(S) functions on the sphere like the
standard orthonormal wavelet representation in L2(S) so that they will be useful
to geoscience applications.

To construct smooth tight wavelet frames, we shall use the multi-resolution
approximation (MRA) of the L2 space on the sphere introduced in [19] which is
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built by using tensor product of polynomial spline space and trigonometric spline
space. It is worthy pointing out that the trigonometric B-splines are indispens-
able for any tensor product functions on the sphere to be C1, i,e, have continuous
tangent planes at the north and south poles. See [19], [8] and [22] for the in-
dispensability. As we have already known how to construct tight wavelet frames
based on polynomial B-splines (cf. [3] and [14]), the key step is to construct tight
wavelet frames based on trigonometric tight wavelet frames.

To do so, we need several properties of trigonometric B-splines (cf. [17]). In
particular, we need Fourier transform of trigonometric B-splines since our con-
structive method is based on the refinement matrix between two nested spaces.
To our knowledge, the Fourier transform of trigonometric B-splines is new and
so is the refinable mask. We shall explain some sufficient conditions to construct
tight wavelet frames over any bounded intervals. Several sufficient conditions will
be discussed including one which is weaker than the existing one given in [3]. We
verify that the refinement matrix associated with uniform trigonometric B-splines
satisfies the weaker sufficient condition and hence these trigonometric B-splines can
be used to construct tight wavelet frames. Together with a tight wavelet frame
based on polynomial B-spline, a smooth locally supported tight wavelet frame on
sphere is constructed.
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Structure of the set of PFWs

Hrvoje Šikić

Consider a system {ψjk(x)} := {2j/2ψ(2jx − k) : j, k ∈ Z}, where ψ ∈ L2(R).
We shall say that ψ ∈ P , the set of Parseval frame wavelets (PFW), if the system
{ψjk(x)} satisfies the reproducing property, i.e. , for every f ∈ L2(R),

(1) f =
∑

j,k∈Z

〈f, ψj,k〉ψj,k ,

unconditionally in L2(R). Our approach to the analysis of P has been outlined
already in [10], and utilizes multipliers in order to achieve positivity; which enables
us to treat various objects in a simpler manner.

Following [9], we can illustrate the idea of multipliers on a simple example. We
denote by 〈ψ〉 := span{ψ0k : k ∈ Z} the principal shift invariant space generated
by ψ (for more on shift invariant spaces in this contest see [2] and [6]). If ϕ ∈
span{ψ0k : k ∈ Z}, than ϕ =

∑ℓ
j=1 cjψ0kj . Taking Fourier transforms on both

sides leads to ϕ̂ = tψ̂, where t is a trigonometric polynomial (in particular, it is
also 1-periodic). Hence, using the L2-norm,

‖ϕ̂‖2 =

∫

R

|t|2 · |ψ̂|2 =

∫

T

|t|2
∑

k∈Z

|ψ̂(ξ + k)|2 dξ ,

where T := R /Z is a one-dimensional torus. We denote the periodization ξ 7−→∑
k∈Z

|ψ̂(ξ + k)|2 by pψ(ξ). Observe that pψ is a 1-periodic function and pψ ∈
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L1(T). If we extend above equality to the closure of trigonometric polynomials we
obtain that

(2) t 7−→ (tψ̂)∨

is an isometric isomorphism between the L2-space generated by measure pψ(ξ) dξ,
i.e., L2(T; pψ) and 〈ψ〉. Hence, we can describe all elements in 〈ψ〉 via multipliers
t; observe that multipliers arise through trigonometric polynomials.

In order to develop a successful theory of PFWs, one has to develop a corre-
sponding notion of an MRA; for basic definitions see [4] and for a different approach
to MRA PFWs, see [1]. Our approach, as developed in [5], relies on a notion of
a filter (again, see [4] for definitions and basic results on filters with respect to
wavelets). If we start with a generalized filter, i.e., a 1-periodic measurable func-
tion m◦ such that |m◦(ξ)|2 + |m◦(ξ +

1
2 )|2 = 1 a.e., then the key problem in the

construction of MRA wavelets is that the product

(3)

∞∏

j=1

m◦
( ξ
2j

)

may not exist (and even if it does it may not converge to the desired function). We
can avoid this by positivity (and multipliers). There is a filter multiplier µ such
that m◦(ξ) = µ(ξ)|m◦(ξ)| a.e. We define a function ϕ|m◦| via its Fourier transform

(4) ϕ̂|m◦|(ξ) :=
∞∏

j=1

∣∣∣m◦
( ξ
2j

)∣∣∣ ,

ξ ∈ R; observe that the product in (4) always exists because 0 6 |m◦(ξ)|. Fur-
thermore, it can be shown that lim

n→∞
ϕ̂|m◦|(2

−nξ) is either 0 or 1. If it is always 0,

then we say that m◦ is a generalized low pass filter. We continue by solving the
functional equation

(5) ν(2ξ)ν(ξ) = µ(ξ) a.e. ,

where ν is measurable and unimodular (i.e., |ν(ξ)| = 1 a.e.). We then define
ϕ ∈ L2(R) so that ϕ̂ corresponds to the idea of the product in (3). More precisely,

(6) ϕ̂(ξ) := ν(ξ)ϕ̂|m◦|(ξ) ,

ξ ∈ R. It follows that ϕ satisfies

(7) ϕ̂(2ξ) = m◦(ξ)ϕ̂(ξ) a.e.

We then define a function ψ ∈ L2(R) by

(8) ψ̂(2ξ) := e2πiξm◦(ξ +
1

2
)ϕ̂(ξ) ,

ξ ∈ R. It can be shown that if we start with a generalized low pass filter m◦, then
the construction above always leads to ψ ∈ P . Hence, we say that such ψ-s are
MRA PFWs. For detailed analysis of P and MRA PFWs see [7]. For implications
of these ideas with respect to the Zak transform see [3]. For the development of
these ideas in the context of the sampling theory see [8].
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Support maximization with linear programming in the cone of
nonnegative measures

Didier Henrion

(joint work with Milan Korda, Jean-Bernard Lasserre, Carlo Savorgnan)

We address the problem of maximizing (the volume) of the support of a linearly
constrained nonnegative measure. We show that this decision problem admits an
infinite-dimensional convex linear programming (LP) formulation, which implies
that it can be solved numerically with a converging hierarchy of finite-dimensional
semidefinite programming (SDP) problems if the problem data are semialgebraic.
We describe applications of these techniques to the computation of the moments
of a semialgebraic set, and to the estimation of the region of attraction of a poly-
nomial dynamical system.

In [1] an infinite-dimensional LP approach was introduced to compute the mo-
ments of a given compact set X0 ⊂ Rn. The basic idea was to notice that the
Lebesgue measure on X0 is the measure µ0 solving the LP

(1)

sup
∫
µ0

s.t. µ0 + µ̂0 = λ
µ0 ≥ 0, spt µ0 ⊂ X0

µ̂0 ≥ 0, spt µ̂0 ⊂ X

where the supremum is over nonnegative measures µ0(dx), µ̂0(dx) respectively
supported on X0 and a given compact set X (say, a ball) which contains X0, and
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such that µ0 and µ̂0 sum up to λ, the Lebesgue measure on X . The dual to this
LP is as follows

(2)
inf

∫
v0λ

s.t. v0(x) ≥ 1 on X0

v0(x) ≥ 0 on X

where the infimum is over a continuous function v0(x) nonnegative on X , which
can be interpreted as a dual Lagrange multiplier for the primal linear constraint
µ0 + µ̂0 = λ. Note that the supremum in problem (1) is attained by µ0 equal
to the Lebesgue measure on X0. In contrast, the infimum in problem (2) is not
attained, but it can be shown that the (continuous) function v0 converges almost
uniformly to the (discontinuous) indicator function of X0 (equal to one on X0 and
zero elsewhere).

In [1] it is explained that if setX0 is basic semialgebraic and described by finitely
many given polynomial inequalities, infinite-dimensional primal-dual LP problems
(1-2) can be solved by a converging hierarchy of finite-dimensional semidefinite
programming (SDP) problems (in turn solved numerically with powerful primal-
dual interior-point algorithms). At a given relaxation order d, the primal SDP is
a moment relaxation of LP (1), whereas the dual SDP is a polynomial sum-of-
squares restriction of LP (2). From the solution of the primal SDP of order d, we
obtain a vector approximating the moments of degree up to 2d of the Lebesgue
measure on X0.

In [2] we extended this approach to compute the region of attraction of a con-
strained dynamical system, defined as the set

X0 := {x0 ∈ R
n :

dx(t)

dt
= f(t, x(t)), x(0) = x0, x(1) ∈ X1, x(t) ∈ X, ∀t ∈ [0, 1]}

where the smooth vector field f , the compact state constraint set X (say, a ball)
and the target constraint set X1 ⊂ X are given. The basic idea was to notice that
the Lebesgue measure on X0 is the solution to the LP

(3)

sup
∫
µ0

s.t. µ0 + µ̂0 = λ
∂µ
∂t + div(fµ) = δ0µ0 − δ1µ1

µ0 ≥ 0, spt µ0 ⊂ X
µ̂0 ≥ 0, spt µ̂0 ⊂ X
µ1 ≥ 0, spt µ1 ⊂ X1

µ ≥ 0, spt µ ⊂ [0, 1]×X

where the supremum is over nonnegative measures µ0(dx), µ̂0(dx), µ1(dx) and
µ(dt, dx) respectively supported on X , X , X1 and [0, 1]×X , such that µ0 and µ̂0

sum up to λ, the Lebesgue measure on X . In problem (3), the linear constraint
∂µ
∂t +div(fµ) = δ0µ0−δ1µ1 is called Liouville’s equation, or the advection equation,
or the equation of conservation of mass in fluid dynamics, statistical physics or
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kinetic theory. It should be understood in the sense of distributions, i.e.
∫ 1

0

∫
X

(
∂v(t,x)
∂t + grad v(t, x) · f(t, x)

)
µ(dt, dx)

=
∫
X1
v(1, x)dµ1(dx) −

∫
X v(0, x)dµ0(dx)

for all sufficiently smooth test functions v(t, x) supported on [0, 1]×X . The dual
to LP (3) is as follows

(4)

inf
∫
v0λ

s.t. v0(x) ≥ 1 on X
v0(x) ≥ 1 + v(0, x) on X
v(1, x) ≥ 0 on X1

−∂v(t,x)
∂t − grad v(t, x) · f(t, x) ≥ 0 on [0, 1]×X

where the infimum is over continuous function v0(x) supported on X , interpreted
as a dual Lagrange multiplier for the primal linear constraint µ0+µ̂0 = λ, and over
continuous function v(t, x) supported on [0, 1]×X , interpreted as a dual Lagrange
multiplier for the primal Liouville equation. Note that the supremum in problem
(3) is attained by µ0 equal to the Lebesgue measure on X0. In contrast, the
infimum in problem (4) is not attained, but it can be shown that the (continuous)
function v0 converges almost uniformly to the (discontinuous) indicator function
of X0.

In [2] it is explained that if f is a given polynomial vector field and X , X1 are
basic semi-algebraic sets described by finitely many given polynomial inequalities,
infinite-dimensional primal-dual LP problems (3-4) can be solved by a converging
hierarchy of finite-dimensional semidefinite programming (SDP) problems. At
a given relaxation order d, the primal SDP is a moment relaxation of LP (3),
whereas the dual SDP is a polynomial sum-of-squares restriction of LP (4). From
the solution of the dual SDP of order d, we obtain a polynomial vd0(x) of degree 2d
which is an approximation of v0(x) such that the semi-algebraic set Xd

0 := {x ∈
X : vd0(x) ≥ 1} is a valid outer approximation of X0, i.e. X0 ⊂ Xd

0 . Moreover,
the approximation converges in Lebesgue measure, i.e. limd→∞ λ(Xd

0 ) = λ(X0).
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Real algebraic geometry and semidefinite programming

Tim Netzer

Many of the Positivstellensätze that have been proven in the context of real al-
gebraic geometry have applications in other areas of mathematics. One example
is Lasserre’s optimization method, which uses Positivstellensätze to solve an ar-
bitrary polynomial optimization problem by solving a sequence of semidefinite
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optimization problems. Other such examples come from the classification theory
of feasible sets of semidefinite programming, so-called spectrahedra and their pro-
jections. In my talk I will give an introduction to these topics, and an overview
over some of the most important recent results.
During the last years, my research has mostly been concerned with the problem
of classifying spectrahedra and their projections. The generalized Lax conjecture
states that each hyperbolicity cone is spectrahedral. Another conjecture, going
back to Helton and Nie, states that each convex semialgebraic set is the projection
of a spectrahedron. The first conjecture translates into an algebraic problem of
realizing polynomials as determinants of linear matrix polynomials. The second
conjecture is related to finding weighted sums-of-squares representations of linear
polynomials with additional degree bounds.

Degree bounds for sums of squares, and applications to convex sets

Claus Scheiderer

Let R[x] = R[x1, . . . , xn], let Σ ⊆ R[x] be the cone of sums of squares. Fix
polynomials 1 = g0, g1, . . . , gr ∈ R[x], letM = Σ+Σg1+· · ·+Σgr be the quadratic
module generated by the gi and K = {u ∈ Rn : g1(u) ≥ 0, . . . , gr(u) ≥ 0} the
associated basic closed set. For d ≥ 0 let R[x]d = {f ∈ R[x] : deg(f) ≤ d} and
Md =M ∩ R[x]d. Moreover write

M(d) =
{ r∑

i=0

sigi : si ∈ Σ, deg(sigi) ≤ d (i = 0, . . . , r)
}
.

ClearlyM(d) ⊆Md, but in general these two are not equal. Under a weak technical
assumption that we always assume to hold, M(d) is closed in R[x]d for all d. Write

δ(f) := inf
{
d ≥ 0: f ∈M(d)

}
.

Testing whether f ∈ M(d) is (the feasibility question of) a semidefinite program,
and hence is solved efficiently. Therefore, to have an effective membership test for
M , one would like to know an a priori upper bound for δ(f), when f ∈M .

If sup{δ(f) : f ∈ Md} < ∞, we say that M is stable in degree ≤ d. If this
holds for all d ≥ 0, M is called stable. Note that Md is closed if M is stable in
degree ≤ d.

When K contains a non-empty open cone then it is easy to see that M is
stable. More interesting are the cases where K is compact. For simplicity we
always assume thatM is archimedean (i.e., c−∑i x

2
i ∈M for some c > 0). When

f > 0 onK, there exist (large) upper bounds for δ(f) in terms of deg(f), min f(K)
and the size of the coefficients of f [8].

Theorem 1. [4] If M is archimedean and dim(K) ≥ 2, then M is not stable.

When dim(K) ≥ 3, there is f ∈ R[x] with f |K ≥ 0 and f /∈M [3]. For ǫ > 0 we
have f + ǫ ∈M by the theorems of Schmüdgen [7] and Putinar [2], and it follows
that δ(f + ǫ) → ∞ as ǫ→ 0. For dim(K) = 2 the proof is harder, since there are
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cases when M contains every polynomial that is nonnegative on K (e.g. when K
is a smooth surface or polygon or the like [5]). Here is a proof in a concrete sample
case:

Let n = 2 andM = Σ+Σ(1−x21−x22), soK ⊆ R2 is the closed unit disk. Choose
f ∈ R[x] strictly positive on R2 with f /∈ Σ, e.g. f = x41x

2
2 +x21x

4
2 − 3x21x

2
2 +2. For

c > 0 let fc(x) = f(cx), then fc ∈M [7]. If δ(fc) were bounded for c → ∞, there
would be identities

f(x) = s(c)
(x
c

)
+
(
1− x21 + x22

c2

)
t(c)
(x
c

)
, c > 0,

with sums of squares s(c)(x), t(c)(x) of uniformly bounded degrees. Passing to a
suitable sequence cν → ∞, we could then assume

s(cν)
( x
cν

)
→ s(x) ∈ Σ, t(cν)

( x
cν

)
→ t(x) ∈ Σ

coefficientwise (for ν → ∞). Then passage to the limit ν → ∞ would give f =
s+ t ∈ Σ, contradiction. Thus we have lim supc→∞ δ(fc) = ∞.

On the other hand, stability holds for dim(K) = 1 unless prevented by singu-
larities of K. For simplicity we only state the most basic case:

Theorem 2. [6] Let C ⊆ Rn be a compact and smooth real algebraic curve, let
I ⊆ R[x] be its vanishing ideal. Then M = Σ + I is stable.

It is also known that M contains all polynomials nonnegative on C. Using
Lasserre’s method of obtaining semidefinite representations of convex hulls via
moment relaxation [1], one deduces (see [6]):

Theorem 3. For every compact one-dimensional semi-algebraic set K ⊆ Rn, the
convex hull of K is a linear projection of a spectrahedron.

Theorem 4. The Helton-Nie conjecture holds in dimension two: Every convex
semi-algebraic subset of R2 is a linear projection of a spectrahedron.
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Approximation Bounds for Sparse Principal Component Analysis

Alexandre d’Aspremont

(joint work with Francis Bach, Laurent El Ghaoui)

We study approximation bounds for a semidefinite relaxation of the sparse eigen-
value problem, written here in penalized form

max
‖x‖2=1

xTΣx− ρCard(x)

in the variable x ∈ Rn, where Σ ∈ Sn and ρ ≥ 0. Sparse eigenvalues appear
in many applications in statistics and machine learning. Sparse eigenvectors are
often used, for example, to improve the interpretability of principal component
analysis, while sparse eigenvalues control recovery thresholds in compressed sensing
[4]. Several convex relaxations and greedy algorithms have been developed to
find approximate solutions (see [5, 6, 10, 9] among others), but except in simple
scenarios (where, e.g., ρ is small and the two leading eigenvalues of Σ are separated
in [5]), very little is known about the tightness of these approximation methods.
In particular, the results in [6] can test optimality a posteriori but do not produce
generic approximation bounds.

Here, using randomization techniques based on [2], we derive simple approxi-
mation bounds for the semidefinite relaxation derived in []dAsp08b. We do not
produce a constant approximation ratio and our bounds depend on the optimum
value of the semidefinite relaxation: the higher this value, the better the approx-
imation. A similar behavior was observed by [15] for the semidefinite relaxation
to MAXCUT, who showed that the classical approximation ratio of [8] can be
improved when the value of the cut is high enough.

We then show that, in some applications, it is possible to bound a priori the
optimum value of the semidefinite relaxation, hence produce a lower bound on the
approximation ratio. In particular, following recent works by [1, 3], we focus on
the problem of detecting the presence of a (significant) sparse principal component
in a Gaussian model, hence test the significance of eigenvalues isolated by sparse
principal component analysis. More precisely, we apply our approximation results
to the problem of discriminating between the two Gaussian models

N (0, In) and N
(
0, In + θvvT

)
,

where v ∈ Rn is a sparse vector with unit Euclidean norm and cardinality k. We
use a convex relaxation for the sparse eigenvalue problem to produce a tractable
statistic for this hypothesis testing problem and show that in a high-dimensional
setting where the dimension n, the number of samples m and the cardinality k
grow towards infinity proportionally, the detection threshold on θ remains finite.

More broadly speaking, in the spirit of smoothed analysis [13], this shows
that analyzing the performance of semidefinite relaxations on random problem
instances is sometimes easier and provides a somewhat more realistic description
of typical approximation ratios. Another classical example of this phenomenon is
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a MAXCUT-like problem arising in statistical physics, for which explicit (asymp-
totic) formulas can be derived for certain random instances, e.g., the Parisi formula
[12, 11, 14] for computing the ground state of spin glasses in the Sherrington-
Kirkpatrick model. It thus seems that comparing the performance of convex re-
laxations on random problem instances (e.g. in detection problems) often yields a
more nuanced understanding of their performance in cases where uniform approx-
imation ratios are either impossible to derive, or excessively conservative.

1. Sparse eigenvalues

We first formally define sparse eigenvalues. Let Σ ∈ Sn be a symmetric matrix.
We define the sparse maximum eigenvalues of the matrix Σ as

(1)
λkmax(Σ) , max xTΣx

s.t. Card(x) ≤ k
‖x‖2 = 1,

in the variable x ∈ Rn where the parameter k > 0 controls the sparsity of the
solution. Starting from a penalized version of problem (1), written

(2) φ(ρ) , max
‖x‖2=1

xTΣx− ρCard(x),

it was shown in [6] that

φ(ρ) = max
Rank(X)=1
X�0,Tr(X)=1

n∑

i=1

Tr
(
X1/2(aia

T
i − ρI)X1/2

)
+

and we write ψ(ρ) the semidefinite relaxation of this last problem

(3)
ψ(ρ) , max

∑n
i=1 Tr(X

1/2aia
T
i X

1/2 − ρX)+
s.t. Tr(X) = 1, X � 0,

which is equivalent to a semidefinite program [6] In the next section, we use this
quantity as a test statistic for detecting significant sparse eigenvectors.

2. Approximation Bounds

Using the randomization argument detailed in [2, 7], we can derive an explicit
bound on the quality of the semidefinite relaxation (3).

Proposition 1. Let us call X the optimal solution to problem (3) and let r =
Rank(X), we have

(4) nρ ϑr

(
ψ(ρ)

nρ

)
≤ φ(ρ) ≤ ψ(ρ),

where

(5) ϑr(x) , E

[(
xξ21 − 1

r−1

∑r
j=2 ξ

2
j

)
+

]

controls the approximation ratio, with ξ1, . . . , ξr i.i.d. standard normal.
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When r is large, we can approximate ϑr(·) by the function

(6) ϑ(x) , E
[(
xξ2 − 1

)
+

]
= 2e−1/2x

√
2πx

+ 2(x− 1)N
(
−x− 1

2

)
,

where ξ ∼ N (0, 1).

3. Detection problems

In this section, we focus on the problem of detecting the presence of a sparse
leading component in a Gaussian model. It was shown in [3] that the sparse eigen-
value statistic is minimax optimal in this setting. Computing sparse maximum
eigenvalues is NP-Hard, but we show here that the relaxation detailed in the pre-
vious section achieve detection rates that are a multiple of the minimax optimum,
in a high-dimensional setting where the ambient dimension n, the number of sam-
ples m and the sparsity level k all grow towards infinity proportionally. More
specifically, we focus on the following hypothesis testing problem, where

(7)

{
H0 : x ∼ N (0, In)
H1 : x ∼ N

(
0, In + θvvT

)
,

where θ > 0 and v ∈ Rn is a sparse vector satisfying Card(v) ≤ k∗ and ‖v‖2 = 1.

Givenm sample variables xi ∈ Rn, we let Σ̂ ∈ Sn be the sample covariance matrix,
with

Σ̂ =
1

m

m∑

i=1

xix
T
i .

We will now seek to bound the value of the statistics φ(ρ) and ψ(ρ) defined in (2)
and (3) respectively, under the two hypotheses above. The following proposition
shows that if θ is high enough, then this test discriminates between H0 and H1

with probability 1− 3δ.

Proposition 2. Suppose we set

(8) ∆ = 4 log(9en/k∗) + 4 log(1/δ) and ρ =
∆

m
+

∆√
k∗m(∆ + 4/e)

and define θφ such that
(9)

θφ =

(
2

√
k∗(∆ + 4/e)

m
+
k∗(∆ + 4/e)

m
+ 2

√
log(1/δ)

m

)(
1− 2

√
log(1/δ)

m

)−1

then if θ > θφ in the Gaussian model (7), the test statistic based on φ(ρ) discrim-
inates between H0 and H1 with probability 1− 3δ.

This detection level was shown to be minimax optimal in [3]. This is not
surprising, since the statistic φ(ρ) is simply a penalized formulation of λkmax(·)
which was shown to reach a similar detection level in [3]. Both φ(ρ) and λkmax(·) are
intractable however, and we will now focus on an efficiently computable statistic
based on ψ(ρ). We will control the quality of the approximation of φ(ρ) by ψ(ρ)
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for the value of ρ used in computing θφ. We suppose n = µm and k∗ = κn, where
µ > 0 and κ ∈ (0, 1). Setting ρ as in (8), we get

nρ = µ∆+

√
µ∆√

κ(∆ + 4/e)
and ψ(ρ) ≥ 1− µ∆κ−

√
µκ√

(∆ + 4/e)
− 2

√
log(1/δ)

m
.

This means that the approximation ratio is bounded below by β(µ, κ), with

(10) β(µ, κ) =
ϑ(c)

c
with c =

1− µ∆κ−
√
µκ√

(∆+4/e)
− 2
√

log(1/δ)
m

µ∆+ µ∆√
κ(∆+4/e)

,

The following proposition shows that if θ is high enough, then this test discrimi-
nates between H0 and H1 with probability 1− 3δ.

Theorem 3. Suppose n = µm and k∗ = κn, where µ > 0 and κ ∈ (0, 1) are fixed
and n is large. Define the detection threshold θψ such that

(11) θψ ≥ β(µ, κ)−1θφ

where β(µ, κ) is defined in (10) and θφ is defined in (9), then if θ > θψ in the
Gaussian model (7) the test statistic based on ψ(ρ) discriminates between H0

and H1 with probability 1− 3δ.

Observe that whenever µ is small enough, β(µ, κ) > 0 for all values of κ ∈ (0, 1)
and the approximation ratio converges to one as µ goes to zero. This means
that the detection threshold θ of the statistic ψ(ρ) remains finite when n goes to
infinity in the proportional regime. By contrast, the detection threshold of the
MDP statistic in [3] blows up to infinity when k goes to infinity in this scenario.
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The moment problem of closed semi-algebraic sets

Konrad Schmüdgen

Let K be a closed subset of Rd and letM(K) denote the set of positive Borel mea-
sures µ on Rd such that supp µ ⊆ K and all polynomials p ∈ R[x] := R[x1, · · · , xd]
are in L1(Rd, µ). For µ ∈ M(K), the number sα =

∫
xαdµ(x), where α ∈ Nd

0 ,
is the α-th moment and the multisequence s = (sα)α∈Nd

0
is called the moment

sequence of µ. The K-moment problem asks whether or not a given multisequence
s is the moment sequence of some measure µ ∈M(K). An equivalent formulation
is that the linear functional Ls defined by Ls(x

α) := sα, α ∈ Nd
0 , is of the form

Ls(p) =
∫
K p dµ for all p ∈ R[x].

Such a K-moment sequence s and the corresponding measure µ ∈ M(K) are
called determinate if there is no other measure ν ∈ M(K) which has the same
moment sequence s as µ. If the set K is compact, then the polynomials are dense
in C(K) and hence each K-moment sequence is determinate.

This talk is concerned with the existence and the uniqueness of the K-moment
problem with a particular emphasize on non-compact basic closed semi-algebraic
sets. The main aim is to discuss the two fibre theorems obtained in [1] and [2].

Let f = {f1, . . . , fk} be a k-tuple of polynomials fk ∈ R[x]. Then

Kf := {x ∈ Rd : f1(x) ≥ 0, . . ., fk(x) ≥ 0}
is the associated basic closed semi-algebraic set and

Tf = {sums of f ε11 · · ·f εkk g2; g ∈ R[x], εj = 0, 1}
is the corresponding preorder. We consider the following properties of f :

(MP): Moment Property
For each linear functional L on R[x] such that L(Tf ) ≥ 0 there is a measure
µ ∈M(Rd) such that L(p) =

∫
p(x)dµ(x) for all p ∈ R[x].

(SMP): Strong Moment Property
For each linear functional L on R[x] such that L(Tf ) ≥ 0 there is a measure
µ ∈M(Kf ) such that L(p) =

∫
p(x)dµ(x) for all p ∈ R[x].
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Suppose that h1, · · · , hn ∈ R[x] are bounded polynomials on the set Kf .
Put h = (h1, . . . , hn) and H := h(Kf ). For λ ∈ H set

f(λ) = (f1, · · ·, fk,−(h1−λ1)2, · · ·,−(hn−λn)2)
The following result is the first fibre theorem [1].

Theorem 1: If the fibre sequence f(λ) has property (MP) (resp. (SMP)) for
all λ ∈ H, then f has property (MP) (resp. (SMP)) as well.

The original proof in [1] uses Stengle’s Positivstellensatz and unbounded reduc-
tion theory. Elementary proofs are given by T. Netzer (2007) and M. Marshall
(2009).

The second fibre theorem is based on the following disintegration theorem:
Suppose that X and T are closed subsets of Euclidean spaces. Let ν be a finite
positive Borel measure on X, p : X → T a ν-measurable mapping, µ := p(ν) the
push-forward of ν by the map p. Then there exist a mapping t→ λt of T into the
set of positive Borel measures on X such that:

(i) supp λt ⊆ p−1(t),
(ii) λt(p

−1(t)) = 1 µ− a.e.,
(iii)

∫
X f(x) dν(x) =

∫
T dµ(t)

∫
X f(x) dλt(x).

Now we specialize the preceding. Let X and T be closed subsets of Rd and Rm,
respectively, and let p : X → T be a polynomial mapping p(x) = (p1(x), . . . , pm(x)).
In the case X = Rm the fibres are just the real algebraic varieties

p−1(t) = {x ∈ Rn : p1(x) = t1, . . . , pk(x) = tk}, t ∈ T.

Then the second fibre theorem [2] is the following result.
Theorem 2: Suppose that ν ∈ M(X) and let µ and λt be the corresponding

measures. If µ ∈ M(K) is determinate, the polynomials C[x1, · · · , xm] are dense
in L2(T, µ), and λt ∈ M(p−1(t)) is determinate for µ-almost all t ∈ T , then the
measure ν ∈M(X) is determinate on Rd.

We mention two important applications of this theorem.
1. Suppose that p(x) = x21 + · · ·+ x2n, X = Rn and T := p(X) = [0,∞). Then

ν is determinate if µ = p(ν) ∈M([0,+∞)) is determinate.
2. Suppose p1, . . . , pm are bounded polynomials on X . Put T = p(X). Then

ν ∈ M(X) is determinate if the fibre measures λt ∈ M(p−1(t)) are determinate
µ-a.e. on T .

Finally we restate another result from [2] which is based on some growth
condition for the sequence s. Recall that a positive semi-definite 1-sequence
s = (sn)n∈N0

is said to satisfy Carleman’s condition if
∞∑

n=1

s
−1/2n
2n = +∞.

This condition holds if there exists aM > 0 such that |s2n| ≤Mn(n!)2 for n ∈ N0.
Theorem 3: Suppose that s = {sn;n ∈ Nd

0 } is a positive semi-definite multi-
sequence such that the first d−1 marginal 1-sequences

{s(n,0,...,0));n ∈ N0}, {s(0,n,...,0);n ∈ N0}, . . . , {s(0,...,0,n,0);n ∈ N0}
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satisfy Carleman’s condition. Then s is a Rd-moment sequence.
If in addition the last marginal 1-sequence {s(0,...,0,n);n ∈ N0} satisfies also Car-
leman’s condition, then s is determinate.
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Rational moment generating functions and nonconvex compact
polyhedra

Dmitrii Pasechnik

(joint work with N.Gravin, J.B.Lasserre, S.Robins, B.Shapiro, M.Shapiro)

We report on an approach to inverse moment problems for polynomial density
measures supported on compact polyhedra, i.e. finite unions of convex polytopes,
via Fantappiè transformations. The corresponding moment generating function
turns out to be rational, with denominator encoding vertices of the polyhedron.
This leads to exact procedures for reconstructing these measures, as well as appli-
cations in geometry of non-convex polyhedra.

A similar technique applied to harmonic moments of plane measures supported
on polygons allows to quantify the well-known phenomenon of absense of deter-
minancy for such measures.

The material presented here is based on [2, 3, 4].

Let P ⊂ Rd be compact, and µ a measure supported on P . It is natural to

consider the transform F (u) =
∫
P

dx
1−〈u,x〉 =

∑
m

(|m|
m

)
µmu

m, relating P and the

moments µm :=
∫
xmdµ(x) of µ. It is well-known that if µ is atomic with finite

support then it can be recovered from sufficiently many moments, as F (u) has a
particularly simple form in this case. This is related to the moment matrix of µ
having finite rank. However, this idea does not work for more general measures.
We can nevertheless remedy this for a large class of measures, as follows.

Definition. The Fantappiè transformation (“rationalized”moment generating func-
tion) of P ⊂ Rd w.r.t. the measure µ supported on P is

Fk
µ := (d + k)!

∫

P

dµ(x)

(1− 〈u, x〉)d+1+k
=

∑

m

(|m|+ d+ k)!∏
jmj !

µmu
m.

In fact, the following example is well-known, and can be found in e.g. [1].
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Example. Fantappiè transformation of the unit density measure supported on a
simplex ∆ = conv(v1, . . . , vd+1) ⊂ Rd is

F0
∆(u) =

∫

∆

d!dx

(1− 〈u, x〉)d+1
=

d!Vol(∆)∏
k(1− 〈vk, u〉)

.

Thus we have the following.

Theorem 1. Let P ⊂ Rd be a compact polyhedron, i.e. a finite union of convex
polytopes. Then F0

P (u), the Fantappiè transformation of the unit density measure
supported on P , is a rational function with denominator Ω(u) dividing

∏
v∈V (1−

〈v, u〉), where V is the set of vertices of a triangulation of P .
Equally, V := V (P ) is the intersection of the sets of vertices of triangulations of
P .

Usually, but not always, as the following example shows, Ω(u) =
∏
v∈V (1 −

〈v, u〉).

Example. Let A = {0, a1, a2, a3} ⊂ R3 be a spanning set, and v ∈ R3. Let
P± := conv(v ± A) and P := P+ ∪ P−. Then 1 − 〈u, v〉 does not appear in Ω(u),
as

F0
P (u) = F0

P+
(u) + F0

P−
(u) = K

∑
1≤i<j≤3

〈u, ai〉〈u, aj〉+ (1− 〈u, v〉)2
∏

1≤i≤3

((1 − 〈u, v〉)2 − 〈u, ai〉2)
,

where K 6= 0 is a real constant.

Question 1. Give a geometric characterization for the case Ω(u) =
∏
v∈V (1 −

〈v, u〉).

The set V (P ) has geometric significance, i.e. it is basically a generalization
of the set of vertices of a polytope. Recall that a polytope can be triangulated
without adding any extra vertices—this ceases to be true in the non-convex case
as soon as d ≥ 3, (classical example is Schönhardt polyhedron). Thus the uniform
probability measure µP supported on a polytope P = conv(V ) can be written as
a sum of uniform probability measures µT supported on simplices T with vertices
in V .

Theorem 2. Let P ⊂ Rd be a compact polyhedron, with V = V (P ) as in Theorem
1, such that any d + 2-subset of T (affinely) spans Rd, and |V | ≥ d + 2. Then
µP =

∑
T⊆V αTµT , where the sum is taken over d+ 1-subsets of V spanning Rd,

and αT ∈ R.

Question 2. Theorem 2 says that µP can be represented as a signed measure, with
coefficients αT ∈ R. In all examples we know nonzero αT are ±1. Is this always
the case? If not, is it possible to say more about αT ?
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Question 3. Can the spanning condition on d + 2-subsets of V be removed or
weakened?

Theorem 1 is not limited to uniform measures. Indeed, the following holds,
implying that in the case of polynomial density measure supported on a polyhedron
one can still choose an appropriate transform with the rational moment generating
function.

Theorem 3. Let P ⊂ R
d be compact, µ a measure supported on P , and ρ a

homogeneous polynomial of degree δ. Then

Fδ
ρµ(u) = (d+ δ)!

∫

P

ρ(x)dµ(x)

(1− 〈x, u〉)d+δ+1
= ρ

(
∂

∂u

)
◦ F0

P (u).

Thus, if one knowns, exactly, sufficiently many moments of a polynomial density
measure µ supported on a polyhedron P , then Fµ(u) by can be recovered by
multivariate Padé approximation, and µ and P by factoring the denominator Ω(u)
of Fµ(u). However, in practice moments are always known with an error, and thus
approximately recovered Ω(u) would not factor into linear factors. An approach
to overcome this for convex P , based on a sequence of projections of P onto lines,
is developed in [2].

Problem. Develop efficient algorithms for direct recovery of µ and P , in particular
in the case of non-convex P .

Similar technique can be used to reconstruct polynomial density measures µ
supported on plane polygons from their harmonic moments µk :=

∫
zkdxdy,

where z := z(x, y) = x+ iy. An interesting feature of this class of problems is non-
determinancy, i.e. two unequal measures can have the same sequence of harmonic
moments. In [4] we were able to quantify this non-uniqueness, cf. Theorem 4
below.

A measure µ can be described by its transform

Ψµ(u) =

∞∑

j=0

(
j + 2

2

)
µju

j =

∫ ∫
dµ(z)

(1 − uz)3
,

which is our main tool. Let V ⊂ R2 be finite. If µ := µP is a uniform measure
supported on a polygon P with vertices from V then Ψµ(u) is a rational function
with denominator dividing

∏
v∈V (1− vu).

Similarly to the general case above, if V is non-degenerate, then µP can be
expressed as a weighted linear combination

(1) µP =
∑

T⊆V
αTµT , αT ∈ R

of uniform measures µT supported on triangles T with vertices in V . Let µ and µ′

be two uniform measures supported on polygons with vertices from V , so that they
have the same harmonic moments. Then µ−µ′ has all its harmonic moments equal
to 0. This prompts the question of investigating such kinds of signed measures,
which, as we just mentioned, can be written as in (1).
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Theorem 4. Let |V | = n and no 3 points of V are collinear. Then the dimension
of the space of signed measures as in (1) equals

(
n−1
2

)
.

References

[1] M. Andersson, M. Passare, and R. Sigurdsson. Complex convexity and analytic functionals,
volume 225 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2004.
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Moment problems and entropy functionals

Tryphon T. Georgiou

Moments are linear constraints on a nonnegative measure and the moment problem
is to determine whether such a measure exists, and if so, to provide a parametriza-
tion of admissible solutions. Entropy functionals on the other hand represent
barrier functions on the positive cone of measures, and therefore, explicit solu-
tions to moment problems are often presented as extrema of such functionals;
these extrema are typically absolutely continuous.

Our interest in entropy functionals stems from the fact that a converse is of-
ten true, namely, absolutely continuous solutions to moment problems can be
expressed as extrema of suitably chosen functionals. This provides an approach
to the parametrization of rational solutions to moment problems –a problem mo-
tivated by R.E. Kalman in the context of stochastic partial realization theory [1].
The parametrization of rational solutions in the context of the truncated trigono-
metric moment problem is as follows ([2, 3, 4]): Let {rk | rk = r̄−k ∈ C, 0 ≤ k ≤ n}
be such that the Toeplitz matrix [rk−ℓ]

n
k,ℓ=0 is positive definite. Then, for any set

{σk | σk = σ̄−k ∈ C, 0 ≤ k ≤ n} such that

σ(x) :=

n∑

k=−n
σke

ikx > 0

for x ∈ [−π, π], there exists a unique set of values {λk | λk = λ̄−k ∈ C, 0 ≤ k ≤ n}
such that

ρ(x) :=

∑n
k=−n σke

ikx

∑n
k=−n λke

ikx
> 0

for x ∈ [−π, π] and satisfies rk =
∫ π
−π e

ikxρ(x)dx for k ∈ {0,±1, . . . ,±n}. Thus,
modulo possible cancellations between the numerator and denominator polyno-
mials of ρ(x), this result characterizes rational solutions of degree ≤ n of the
truncated trigonometric moment problem.
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The original approach in [2, 3] was based on topological degree theory whereas
the subsequent one in [4] identified ρ(x) as the minimizer of

−
∫ π

−π

(
n∑

k=−n
σke

ikx

)
log (ρ(x)) dx

subject to the moment constraints and established uniqueness by appealing to
the convexity of the functional; the λ’s correspond to Lagrange multipliers. The
implications of this result and its extension to Nevanlinna-Pick and Sarason-Nagy-
Foias analytic interpolation have been carried out in [5, 6, 7].

This program has also been followed up in [8] for matrix-valued moment prob-
lems

R =

∫

S
gleft(x)ρ(x)gright(x)dx,

i.e., for problems where ρ is a matrix-valued distribution and gleft, gright are like-
wise well-behaved matrix-valued functions. In this, solutions were sought that
correspond to minimizers of the (quantum) relative entropy

∫

S
trace (ρ0(x) log(ρ0(x))− ρ0(x) log(ρ1(x))) dx

between (matrix-valued) density functions ρ0, ρ1 defined on more general, yet
compact, domains S. Two alternative functional representations for solutions were
identified, an exponential and a rational one. The exponential form of solutions
corresponds to minimizers of the relative entropy with respect to ρ = ρ0 for a
choice of a (matrix-valued) ρ1 = σ. The rational form on the other hand, which
equally well parametrizes solutions by a choice of a (matrix-valued) σ, is of the form
σ1/2L∗(λ)−1σ1/2∗ where L represents the linear map ρ 7→ R and L∗ its adjoint
(see [8, Section IV]). However, this form of solution corresponds to minimizers
of the relative entropy with respect to ρ = ρ1 for ρ0 = σ only when σ is a
scalar multiple of the identity. It is an open question as to whether this form of
rational solutions for matrix-valued moment problems corresponds to minimizers of
a new type of “non-commutative” analog of the relative entropy functional. Finally,
inverse barrier functions of the form

∫
S ρ(x)

−1dx are also relevant to moment
problems and have been considered in a one-dimensional context in [9].
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Gabor Frames and Complex Analysis II

Yurii Lyubarskii

This is a survey lecture closely related to the previous lecture of Karlheinz Grö-
chenig with the same title. The lecture includes the following topics:

• Gabor frames generated by time frequency shifts of the Gaussian functions
• Fock space and Bargman transform
• Reduction to problems of sampling and interpolation in the Fock space
• Beurling densities
• Various approaches to proofs of sampling theorems
• Frame constants

Semidefinite Relaxations for the Grassmann Orbitope

Philipp Rostalski

(joint work with Raman Sanyal, Bernd Sturmfels)

The Grassmann orbitope is the convex hull over the Grassmann variety of de-
composable skew- symmetric tensors of unit length. This variety parametrizes
k-dimensional linear subspaces of Rn, and it is the highest weight orbit under the
k-th exterior power representation of the group SO(n). In this talk we discuss
semidefinite relaxations of the Grassmann orbitope. That convex body can be ap-
proximated and represented surprisingly well by projections of spectrahedra (using
Lasserre’s moment matrices). We show that the first relaxation is exact for k = 2,
we present numerical evidence that this result extends to higher k, and we discuss
relations to a longstanding conjecture on calibrations by Harvey and Lawson, cf.
[1, conj. 6.5, p.68].
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From Gabor frames to wavelet frames and vice versa

Ole Christensen

(joint work with Say Song)

We will discuss a procedure that allows us to construct dual pairs of wavelet
frames based on certain dual pairs of Gabor frames. The talk is based on the
paper [1].

A Gabor system in L2(R) has the form {e2πimbxg(x − na)}m,n∈Z for some pa-
rameters a, b > 0 and a given function g ∈ L2(R). Using the translation operators
Taf(x) := f(x−a), a ∈ R, and the modulation operators Ebf(x) := e2πibxf(x), b ∈
R, we will denote a Gabor system by {EmbTnag}m,n∈Z. A wavelet system in L2(R)

has the form {aj/2ψ(ajx− kb)}j,k∈Z for some parameters a > 1, b > 0 and a given

function ψ ∈ L2(R). Introducing the scaling operators (Daf)(x) := a1/2f(ax),
a > 0, the wavelet system can be written as {DajTkbψ}j,k∈Z.

Let θ > 1 be given. Associated with a function g ∈ L2(R) for which g(logθ | · |) ∈
L2(R), we define a function ψ ∈ L2(R) by

(1) ψ̂(γ) =

{
g(logθ(|γ|)), if γ 6= 0,

0, if γ = 0.

For fixed parameters b, α > 0, consider two bounded compactly supported func-
tions g, g̃ ∈ L2(R) and the associated Gabor systems {EmbTnαg}m,n∈L2(R) and

{EmbTnαg̃}m,n∈Z. For a fixed θ > 1, define the functions ψ, ψ̃ ∈ L2(R) by (1) from
g, g̃ respectively.

Theorem 1 Let b > 0, α > 0, and θ > 1 be given. Assume that g, g̃ ∈ L2(R) are
bounded functions with support in the interval [M,N ] for some M,N ∈ R and that
{EmbTnαg}m,n∈Z and {EmbTnαg̃}m,n∈Z form dual frames for L2(R. With a := θα,

if b ≤ 1
2θN , then {DajTkbψ}j,k∈Z and {DajTkbψ̃}j,k∈Z are dual frames for L2(R).

Based on Theorem 1, the rich theory for construction of dual pairs of Gabor
frames enables us to provide explicit constructions of wavelet frame pairs. Con-
sider, for example, exponential splines of the form

EN (·) := eβ1(·)χ[0,1](·) ∗ · · · ∗ eβN (·)χ[0,1](·),
where βk = (k − 1)β, k = 1, . . . , N , for some β > 0. It is well known that for
any N ≥ 2 and b ≤ 1

2N−1 , the Gabor system {EmbTnEN}m,n∈Z is a Gabor frame,

having a dual {EmbTnẼN}m,n∈Z for a function ẼN of the form

ẼN =

N−1∑

k=−N+1

anTnEN .

Using Theorem 1 we obtain a pair of dual wavelet frames, generated by functions

ψ, ψ̃ for which ψ̂ and
̂̃
ψ are explicitly given compactly supported splines with

geometrically distributed knot sequences.
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It is possible to reverse the above process and construct Gabor frames based
on certain wavelet frames. This can, e.g., be applied to the Mayer wavelet, which
yields a compactly supported smooth function that generates a Gabor frame with
redundancy two. We refer to [1] for details.

Note that the idea of the log-transform appears already in the paper [2], in a
less elaborated form and in the setting of tight frames. The exact relationship to
[2] is explained in [1].
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Directional Tight Framelets and Image Denoising

Bin Han

(joint work with Qun Mo, Zhenpeng Zhao)

High-dimensional wavelets and framelets are often obtained from one-dimen-
sional wavelets and framelets through the simple tensor product. The main ad-
vantages of tensor product wavelets and framelets lie in that they have a straight-
forward fast numerical algorithm and the construction of one-dimensional wavelets
and framelets is often relatively easy. To our best knowledge, almost all success-
ful wavelet-based methods in applications have used tensor product wavelets and
framelets, mainly due to their simplicity and fast implementation. Despite the
fact that real-valued tensor product wavelets and framelets have been widely used
in many applications, they have some shortcomings, in particular, they lack direc-
tionality: they cannot capture directionality very well except the horizontal and
vertical directions. There are many different approaches to try to improve the
performance of real-valued tensor product wavelets and framelets, for example,
bandlets, contourlets, curvelets, dual-tree complex wavelets, shearlets, steerable
filter banks, etc.

In this talk, we propose a simple approach by using tensor product complex
tight framelets. For any sequence u = {u(k)}k∈Z : Z → C, we define û(ξ) :=∑

k∈Z
u(k)e−ikξ, which is a 2π-periodic measurable function if u ∈ l2(Z). We say

that {a; b1, . . . , bs} (or simply {â; b̂1, . . . , b̂s}) is a tight 2-framelet filter bank if

|â(ξ)|2 + |b̂1(ξ)|2 + · · ·+ |b̂s(ξ)|2 = 1,

â(ξ)â(ξ + π) + b̂1(ξ)b̂1(ξ + π) + · · ·+ b̂s(ξ)b̂s(ξ + π) = 0

for almost every ξ ∈ R. The tensor product complex tight framelet filter banks in
2D are given by

{a⊗ a; a⊗ b1, . . . , a⊗ bs, . . . , bs ⊗ b1, . . . , bs ⊗ bs}.
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Let θ ∈ C∞(R) such that (θ(x))2 + (θ(−x))2 = 1 and θ(x) = 0, x < −1. Define

χ[cL,cR];ǫL,ǫR(ξ) :=





θ( ξ−cLǫL
), ξ < cL + ǫL,

1, cL + ǫL ≤ ξ ≤ cR − ǫR,

θ( cR−ξ
ǫR

), ξ > cR − ǫR.

A (complex) tight framelet filter bank {a; bp1, . . . , bps, bn1 , . . . , bns } is constructed in
the frequency domain: for ℓ = 1, . . . , s,

â := χ[−c,c];ǫ,ǫ, b̂pℓ := χ[c+π−c
s (ℓ−1),c+π−c

s ℓ];ǫ,ǫ, b̂nℓ := b̂pℓ (−·).

and have 2(s2 − s+ 2) directions.
Another family of tight framelet filter banks {ap, an; bp1, . . . , bps, bn1 , . . . , bns } with

two low-pass filters is constructed in the frequency domain: for ℓ = 1, . . . , s,

âp := χ[0,c];ǫ,ǫ, ân := âp(−·), b̂pℓ := χ[c+π−c
s (ℓ−1),c+π−c

s ℓ];ǫ,ǫ.

The tensor product tight framelet in 2D has 2(s2+s+1) directions. In particular,
when s = 1, the tight framelet has 6 directions and its performance for image
denoising with s = 1 (6 directions) is almost the same as dual-tree complex wavelet
transform (DT-CWT) in [6].

UD-DWT DT-CWT 6d Frame 4d Frame TP-CWT
Lena
σ = 10 34.83 35.21 35.17 34.83 35.49
σ = 20 31.87 32.26 32.37 31.98 32.57
σ = 30 30.14 30.49 30.65 30.36 30.83
σ = 50 27.89 28.22 28.46 28.27 28.58

Barbara
σ = 10 32.67 33.53 33.66 33.22 34.17
σ = 20 28.72 29.91 29.96 29.34 30.52
σ = 30 26.60 27.82 27.80 27.11 28.35
σ = 50 24.25 25.32 25.26 24.62 25.74
Table 1. PSNR values for several directional transforms using the
same bivariate shrinkage thresholding as in DT-CWT. UD-DWTmeans
undecimated discrete wavelet transform using Haar wavelet filter bank,
DT-CWTmeans dual tree complex wavelet transform. 6d Frame means
using the complex tight framelets in the second family with s = 1
having 6 directions. 4d Frame means using the complex tight framelets
in the first family with s = 1 having 4 directions. TP-CWT means
using the complex tight framelets in the second family with s = 2
having 14 directions.

To measure directionality of any tight framelet filter bank, we have the following
result:
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Theorem: For any tight 2-framelet filter bank {a; bp, bn},
|b̂p(ξ + π)|2 + |b̂n(ξ)|2 ≥ B(ξ), ∀ ξ ∈ [0, π]

with the lower bound being sharp, where

2B(ξ) :=2− |â(ξ)|2 − |â(ξ + π)|2

−
√
4(1− |â(ξ)|2 − |â(ξ + π)|2) + (|â(ξ)|2 − |â(ξ + π)|2)2.

That is, there exists a tight framelet filter bank {â; ̂̊bp, ̂̊bn} such that

(1) | ̂̊bp(ξ + π)|2 + | ̂̊bn(ξ)|2 = B(ξ), a.e.ξ ∈ [0, π].

For many known filters, it turns out that B(ξ) is very small. Using optimization
techniques, we can construct directional finitely supported complex tight framelets
such that (1) holds. For more detail on directional tensor product complex tight
framelets, see [4].

In this talk, we also propose another approach by directly using 2D tight
framelets having filter banks.

Let M denote a d× d real-valued invertible matrix. We shall use the following
notation:

fM ;k(x) := | detM |1/2f(Mx− k), x, k ∈ R
d.

Theorem: For any sequence {sj}∞j=0 in N (that is, at the scale level j, we require sj
directions), AS0({φ}; {ηsj ,ℓ : ℓ = 1, . . . , sj}∞j=J ) is a tight 2I2-framelet for L2(R

2),
that is,

∑

k∈Z2

|〈f, φ2J I2;k〉|2 +
∞∑

j=J

sj∑

ℓ=1

∑

k∈Z2

|〈f, ηsj ,ℓ2jI2;k
〉|2 = ‖f‖2L2(R2), ∀ f ∈ L2, J ∈ N∪ {0},

If sj ≈ 2j/2, then the width and length of the support of η
sj ,0

2jI2;k
are approximately

2−j and 2−j/2, obeying the hyperbolic rule width1/2 = length. Moreover, φ is
a refinable function and the affine system has an underlying filter bank and fast
algorithm.

See [5] for more details on directional tight framelets.
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Problem Session

1. An extension problem for wavelet frames

O. Christensen

A sequence {fk}k∈I in a separable Hilbert space H is called a frame if there
exist constants A,B > 0 such that

A ||f ||2 ≤
∑

k∈I
|〈f, fk〉|2 ≤ B ||f ||2, ∀f ∈ H.(1)

The sequence {fk}k∈I is a Bessel sequence if at least the upper inequality is sat-
isfied. For any frame {fk}k∈I , there exists at least one dual frame, i.e., a frame
{gk}k∈I such that

f =
∑

k∈I
〈f, gk〉fk ∀f ∈ H.(2)

We consider systems of functions in L2(R) having wavelet structure, and ask
the following

Question: Assume that ψ1, ψ̃1 ∈ L2(R) and that the wavelet systems

{2j/2ψ1(2
jx− k)}j,k∈Z and {2j/2ψ̃1(2

jx− k)}j,k∈Z

are Bessel sequences in L2(R). Is it always possible to find functions ψ2, ψ̃2 ∈
L2(R) such that the multi-generated wavelet systems

{2j/2ψ1(2
jx− k)}j,k∈Z ∪ {2j/2ψ2(2

jx− k)}j,k∈Z

and

{2j/2ψ̃1(2
jx− k)}j,k∈Z ∪ {2j/2ψ̃2(2

jx− k)}j,k∈Z

form dual frames for L2(R)?

The open question is clearly strongly connected with the following conjecture by
Deguang Han:

Conjecture by Deguang Han: Let {2j/2ψ1(2
jx− k)}j,k∈Z be a wavelet frame

with upper frame bound B. Then there exists D > B such that for each K ≥ D,
there exists ψ2 ∈ L2(R) such that

{2j/2ψ1(2
jx− k)}j,k∈Z ∪ {2j/2ψ2(2

jx− k)}j,k∈Z

is a tight frame for L2(R) with bound K.

Questions of the above type are well studied in the literature in the context of
multiresolution analysis, typically starting with the unitary extension principle
by Ron & Shen or one of its variants. However, the problems above are stated
for general wavelet systems without the assumption of an underlying refinable
function. Much less is known about this case.
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2. Comparing supports of measures from their respective moments

J. B. Lasserre

To motivate the above research issue, consider two finite Borel measures µ1, µ2

on a box B ⊂ R2, with µ1(O) > 0 for some open Borel set O ∈ B(B), and where
µ2 absolutely continuous with respect to the Lebesgue measure on B. Hence it is
fair to say that µ1 and µ2 are qualitatively different.

If we let yi = (yiα), α ∈ N2 and i = 1, 2, with

yiα =

∫
xα dµi, ∀α ∈ N

2; i = 1, 2,

be the respective moment sequences associated with µ1 and µ2,

is this qualitative difference between µ1 and µ2

reflected in the sequences y1 and y2? And if yes, how?

In other words:

• What kind and what amount of information on the support sup(µ) of a
measure µ on Rn, can we extract from the only knowledge of:

– the whole sequence y = (yα), α ∈ Nn, of its moments
– a truncated sequence y = (yα), α ∈ N

n
d , of its moments (i.e., when

|α| ≤ d).
• If extraction of some information is possible, is there any efficient compu-
tational procedure to extract this information?

• How to detect whether µ1 is singular with respect to another measure µ2?

Of course some results are already available.
• In particular, if the vector p of coefficients of some polynomial p ∈ R[x]

belongs to the kernel of some moment matrix Md(y) associated with the moment
sequence y, then sup(µ) ⊂ {x : p(x) = 0} because

0 ≤
∫
p2(x)dµ(x) = 〈p,Md p〉 = 0,

and of course p ∈ Ker(Mℓ(y)) for all ℓ ≥ d.
• Also, if sup(µ) is compact, then for any polynomial p ∈ R[x], the smallest

(resp. the largest) generalized eigenvalue associated with the moment matrix
Md(y) and the localizing matrix Md(y p), provides a lower bound p

d
(resp. an

upper bound pd) on min{p(x) : x ∈ sup(µ)} (resp. max{p(x) : x ∈ sup(µ)}).
Hence by playing with several polynomials p, one may distinguish between two
different supports.
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3. Factorization of nonnegative matrix polynomials on the 2D torus

C. Scheiderer

Let M =M(ω1, ω2) be a symmetric trigonometric matrix polynomial in two vari-
ables, i.e., a symmetric m ×m-matrix whose coefficients are trigonometric poly-
nomials in ω = (ω1, ω2). Assume that M(ω) is positive semidefinite for all ω.
Does there exist a trigonometric matrix polynomial S = S(ω) of size N ×m (for
some N) such that M = StS?

More generally, one may consider the analogous question for trigonometric ma-
trix polynomials in d variables, for any integer d ≥ 1. It has an affirmative answer
for d = 1 (by the celebrated Fejér-Riesz theorem), and a negative answer for d ≥ 3,
even in the scalar case m = 1 (see [1]). For d = 2, the answer is known to be pos-
itive in the scalar case m = 1 (see [2]). But the question is open for d = 2 and
m ≥ 2.
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4. K. Schmüdgen

Suppose that A is a (complex or real) unital ∗-algebra with involution denoted
by a → a+. Let

∑
A2 denote the set of all finite sums of hermitian squares a+a,

where a ∈ A. Let R be a fixed separating family of ∗-representation π of A. (A ∗-
representation π of A on a unitary space (D(π), 〈·, ·〉) is an algebra homomorphism
of A into the algebra L(D(π)) of linear operators on D(π) such that π(1)ϕ = ϕ
and 〈π(a)ϕ, ψ〉 = 〈ϕ, π(a+)ψ〉 for all a ∈ A and ϕ, π ∈ D(π). That R is separating
means that π(a) = 0 for all π ∈ R implies that a = 0.) Let

A+(R) = {a = a+ ∈ A : 〈π(a)ϕ, ϕ〉 ≥ 0 for ϕ ∈ D(π), π ∈ R}.
The ∗-algebra of n×n matrices over A is denoted byMn(A). Any ∗-representation
π gives a unique ∗-representation ofMn(A), denoted also by π, onD(π)⊕· · ·⊕D(π)
(n times) by π((aij)) := (π(aij)), where (aij) ∈Mn(A).

The following problem is stated as Problem 4 on p. 786 in [1]:

Problem: Does A+(R) ⊆
∑
A2 imply that Mn(A)+(R) ⊆

∑
Mn(A)

2 ?



650 Oberwolfach Report 11/2013

In particular, this problem is of interest when A is real ∗-algebra of polynomials
of the 2-sphere in R3 or the ∗-algebra of trigonometric polynomials in two variables.
In these cases R consists of all point evaluations of A and the assumption A+(R) ⊆∑
A2 holds a result of C. Scheiderer [2]. Various versions of Positivstellensätze for

algebras of matrices has been investigated in [1].
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5. Schauder bases of translates and Ap-weights

H. Šikić

This problem developed from the collaboration with Morten Nielsen from Aal-
borg (Denmark). Consider ψ ∈ L2(R) and Bψ := {ψk(x) := ψ(x − k) | k ∈ Z}.
Define 〈ψ〉 := spanBψ and pψ(ξ) :=

∑
k∈Z

|ψ̂(ξ + k)|2, ξ ∈ R; where ψ̂ denotes
the Fourier transform of ψ. Suppose that Bψ is a Schauder basis for 〈ψ〉. This
is equivalent to pψ being an A2-weight; see [2] for details. For the definition of
Ap-weight see [4]. For extensions of these notations to higher dimensions, vector
– and matrix-valued functions, as well as for the extension of the present problem
consult [5], [1] and [3].

Define qψ := inf {p > 1 pψ is an Ap-weight}. It can be shown that 1 6 qψ < 2.
Given q ∈ [1, 2〉, what are the properties of Bψ such that qψ = q ? Can one
characterize, through properties of Schauder bases, those Bψ such that qψ = q ?

Observe that it is known that if pψ and 1/pψ are both A1-weight, then Bψ is a
Riesz basis for 〈ψ〉. Observe also that qψ = 1 does not necessarily imply that pψ
is an A1-weight.
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6. Rank minimization for Gram matrices
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J. Stöckler

Let p ∈ C[z±1
1 , . . . , z±1

d ] be a Laurent polynomial which is nonnegative on the
torus, that is

p(a1, . . . , ad) ≥ 0 for all |a1| = · · · = |ad| = 1.

By definition, p is a sum of hermitian squares, if there exists r ∈ N and qk ∈
C[z±1

1 , . . . , z±1
d ], k = 1, . . . , r, such that

p =

r∑

k=1

q∗kqk,

where involution is defined by (cαz
α)∗ = cαz

−α (in usual multi-index notation).
Equivalently, in terms of Gram matrices, there exists a finite set K ⊂ Z

d and a
positive semi-definite matrix MK ∈ C|K|×|K| of rank ≤ r, such that p = z∗MKz,
where z = (zα; α ∈ K) is a column vector of monomials and z∗ = (z−α; α ∈ K)T .

Problem: Among all Gram matrices that are associated with index set K, find
one with minimal rank r.

For d = 1 and K = {0, 1, . . . , n}, the minimal rank is r = 1 according to the
Riesz-Fejer lemma. A constructive proof can be obtained by the “method of Schur
complements” following Dritschel and Woerdemann, Trans. AMS 357 (2005) pp.
4661-4679.

Reporter: Tobias Springer
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Institut für Angewandte Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44227 Dortmund
GERMANY

Dr. Giorgio Valmorbida

Department of Engineering Science
Oxford University
24-29 St. Giles
Oxford OX1 3LB
UNITED KINGDOM

Dr. John Paul Ward

EPFL STI IMT LIB
BM 4140 (Bâtiment BM)
Station 17
1015 Lausanne
SWITZERLAND




