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Introduction by the Organisers

The workshop Representations of Lie groups and supergroups was organized by
Joachim Hilgert (Paderborn), Toshiyuki Kobayashi (Tokyo), Karl-Hermann Neeb
(Erlangen), and Tudor Ratiu (Lausanne).

From the very beginning applications in physics were a major motivation for
the study of representations of Lie groups. Later also number theory, specifically
the Langlands program, became a driving force. A lot of effort has been invested
in the classification of unitary representations during the last two decades of the
20th century. There is a huge body of information available, but the central
classification problems are still not completely solved. At the moment research in
that direction is concentrated with some American research teams.

The majority of research nowadays is focused on benchmark problems and ex-
amples, such as branching, limit behavior, and dual pairs. Moreover, the extension
of the scope of representation theory to infinite dimensional groups on the one
hand, and supergroups on the other, plays an important role. A common feature
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of these efforts is the identification of relevant classes of examples which are gen-
eral enough to be interesting, but at the same time have enough restrictions to
allow a general theory. In many cases the choice of these benchmark examples is
guided by problems from theoretical physics. The focus of this workshop was on
these recent developments.

The meeting was attended by 51 participants from many European countries,
Canada, the USA, and Japan. The meeting was organized around a series of 23
lectures each of 50 minutes duration. The set of speakers chosen was a mix of
researchers in all stages of their careers, from very promising young post-docs to
senior scientists who have been contributing key results to the field over the last
45 years.

We feel that the meeting was exciting and highly successful. The quality of
the lectures was outstanding and the intensity of discussions was exceptional even
for Oberwolfach standards. A good indicator for this observation is the fact that
all the available blackboards were occupied by discussion groups until late every
evening of the meeting. What is even more remarkable is that the composition of
these discussion groups changed every day. In particular, the researchers who have
been focussing on either finite dimensional, infinite dimensional, or super contexts
in their recent research did not stay among themselves. New collaborations have
been started, and established research partners from different continents had the
opportunity to discuss further projects in person.

Without going too much into detail, let us mention some important new devel-
opments.

In the area of infinite-dimensional Lie groups things are moving on two mutu-
ally interacting levels, one is the analytic theory of unitary representations and the
other deals with geometric structures (symplectic, Poisson etc.) on manifolds with
group actions. Based on new systematic approaches to specific classes of represen-
tations, we have seen precise classification results for various classes of groups such
as oscillator groups, gauge groups and diffeomorphism groups (Janssens, Goldin,
Zellner). Particulary interesting new directions are concerned with the combi-
nation of methods from stochastic analysis and quantum field theory with Lie
theory (Gordina, Jorgensen, Vershik) and it also appears that, for certain classes
of infinite-dimensional Lie algebras the global categorical perspective can provide
deep new insights (Penkov). On the geometric side the powerful method of dual
pairs is now emerging for important classes of infinite dimensional Hamiltonian
systems (Gay-Balmaz), invariant theory for gauge groups is connected to singular-
ity theory (Iohara) and new regularity results for differential equations on infinite
dimensional groups have been obtained (Glöckner).

The analytic representation theory of Lie supergroups (as opposed to the al-
gebraic representation theory of Lie superalgebras, which is also a thriving field
but was not within the scope of this workshop) has made substantial progress
in recent years, fueled in particular by questions of harmonic analysis originat-
ing from mesoscopic physics. Through this development a rapprochement of the
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representation theory of supergroups and traditional representation theory of Lie
groups can be observed. A similar effect can be observed for the interplay between
representations of supergroups and Clifford analysis (Alldridge, de Bie, Przebinda,
Wurzbacher).

The main focus of the representation theory of finite dimensional Lie groups
has shifted from the classification problem of the unitary dual of reductive groups
(which is still unsolved) to structural results of representations such as branch-
ing problems to subgroups, and analysis on minimal representations of reductive
groups. The interactions of infinite dimensional representations with global analy-
sis on non-compact manifolds have been also actively studied, which often bring us
new geometric insights. Interesting progress includes generalized Cartan decompo-
sitions for visible actions on complex manifolds (A. Sasaki) and for real spherical
varieties (B. Krötz), analysis on branching laws to non-compact subgroups, and
conformally equivariant differential systems (T.Kubo).

More specific information is contained in the abstracts which follow in this
volume.
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Abstracts

Closed formulas for integral kernels of generalized Fourier transforms

Hendrik De Bie

Harmonic analysis in Rm is governed by the following three operators

∆ :=

m∑

i=1

∂2xi
, |x|2 :=

m∑

i=1

x2i , E :=

m∑

i=1

xi∂xi

with ∆ the Laplace operator and E the Euler operator. As observed in [8, 9], the
operators E = |x|2/2, F = −∆/2 and H = E + m/2 are invariant under O(m)
and generate the Lie algebra sl2:

[
H,E

]
= 2E,

[
H,F

]
= −2F,

[
E,F

]
= H.

Recently, there has been a lot of interest in other differential or difference opera-
tor realizations of sl2 or other Lie (super)algebras, such as osp(1|2). The focus is in
particular on the generalized Fourier transforms that subsequently arise. We men-
tion the Dunkl transform [7], various discrete Fourier transforms [1, 10], Fourier
transforms in Clifford analysis [3, 5, 6], etc. For a detailed review, we refer the
reader to [4].

A hard problem in this context is to find explicit closed formulas for the integral
kernel of the associated Fourier transforms. Here we are concerned with a partial
solution of this problem for one of the most important new realizations of this
type.

The set up is as follows. It can be observed that the sl2 relations also hold
for the generalized operators |x|a, |x|2−a∆ and E + a+m−2

2 , with a > 0 a real
parameter. One then has the following commutators

[
|x|2−a∆, |x|a

]
= 2a (E+

a+m− 2

2
)

[
|x|2−a∆,E+

a+m− 2

2

]
= a |x|2−a∆

[
|x|a,E+

a+m− 2

2

]
= −a |x|a.

This was first observed, in the context of minimal representations, for a = 1 in
[11, 12] and subsequently generalized to arbitrary a in [2].

This realization yields the so-called radially deformed Fourier transform

Fa = e
iπ(m+a−2)

2a e
iπ
2a (|x|2−a∆−|x|a),

where a suitable normalization has been added to make the transform unitary.
This transform can be written as an integral transform

Fa(f)(y) =
∫

Rm

Ka(x, y)f(x)|x|a−2dx
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defined on the function space L2(R
m, |x|a−2dx). A series expansion of Ka(x, y)

was obtained in [2].
Note that for a = 2 the kernel Ka(x, y) reduces to the usual exponential kernel

of the ordinary Fourier transform. Also when a = 1, a closed form is known, see
[11, 12]. For arbitrary a such a closed form is not available. Moreover, there are
no bounds known on Ka(x, y) for a 6= 1 or 6= 2. Also a characterization of the
kernel Ka(x, y) as the unique eigenfunction of a system of PDEs is not known.

The strategy we will follow to determine an explicit formula for the series ex-
pansion depends on two essential steps:

• find a recursion property on the dimension
• use a trick to find the explicit formula in dimension 2.

Using these two steps, we were able to find an explicit formula for the kernel of the
radially deformed Fourier transform in even dimension for a = 2/n with n ∈ N.

A comparison will also be made with similar results obtained for other classes
of transforms, in particular with the Clifford-Fourier transform [6].
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Weyl Calculus and Dual Pairs

Tomasz Przebinda

(joint work with Mark McKee and Angela Pasquale)

Let W be a vector space of finite dimension 2n over R with a non-degenerate
symplectic form 〈·, ·〉. Let W = X⊕Y be a complete polarization. Fix an element
J ∈ sp such that J2 = −I and the symmetric bilinear form 〈J ·, ·〉 is positive
definite. Let dw be the Lebesgue measure on W such that the volume of the unit
cube with respect to this form is 1. Similarly we normalize the Lebesgue measures
on X and on Y.

Each element K ∈ S∗(X × X) defines an operator Op(K) ∈ Hom(S(X),S∗(X))
by

Op(K)v(x) =

∫

X

K(x, x′)v(x′) dx′.

The map Op : S∗(X × X) → Hom(S(X),S∗(X)) is an isomorphism of linear topo-
logical spaces. This is known as the Schwartz Kernel Theorem, [1, Theorem 5.2.1].

Fix the unitary character χ(r) = e2πir, r ∈ R, and recall the Weyl transform
K : S∗(W)→ S∗(X× X) given by

K(f)(x, x′) =
∫

Y

f(x− x′ + y)χ(
1

2
〈y, x+ x′〉) dy.

The Weyl symbol of the operator Op ◦ K(f) is the symplectic Fourier transform,

f̂ , of f defined by

f̂(w′) = 2−n
∫

W

f(w)χ(
1

2
〈w,w′〉 dw (w′ ∈W).

A theorem of Calderon and Vaillancourt asserts that the operator Op ◦ K(f) is
bounded on L2(X) if its Weyl symbol and all its derivatives are bounded functions
on W, [2, Theorem 3.1.3]. One motivation for our work is to compute the Weyl
symbols of some obvious bounded operators which come from the Representation
Theory of Real Reductive Groups. Many of these symbols turn out to be singular
distributions. In order to introduce them we recall Weil Representation.

Denote by Sp ⊆ GL(W) the symplectic group. For an element g ∈ Sp let Jg =
J−1(g− 1). Then the adjoint with respect to the form 〈J ·, ·〉 is J∗

g = Jg−1(1− g).
In particular both have the same kernel. Thus the image of Jg is

JgW = (KerJ∗
g )

⊥ = (KerJg)
⊥.

Hence, the restriction of Jg to JgW defines an invertible element. Thus it makes

sense to talk about det(Jg)
−1
JgW

. Let

S̃p = {g̃ = (g, ξ) ∈ Sp× C, ξ2 = idim(g−1)W det(Jg)
−1
JgW
}

and let

χc(g)(u) = χ(
1

4
〈(g + 1)w, (g − 1)w〉 (u = (g − 1)w, w ∈W).
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For g̃ = (g, ξ) ∈ S̃p define

Θ(g̃) = ξ, T (g̃) = Θ(g̃)χc(g)µ(g−1)W, ω(g̃) = Op ◦ K ◦ T (g̃),
where µ(g−1)W is the Lebesgue measure on the subspace (g − 1)W normalized so
that the volume of the unit cube with respect to the form 〈J ·, ·〉 is 1. In these terms

(ω,L2(X)) is the Weil representation of S̃p attached to the character χ. A proof of
this fact based on previous work of [4] may be found in [5]. Conversely, one may
take the above definition of ω and check directly that we get a representation with
all the required properties. This was done in [7].

We consider a dual pair (G,G′), in the symplectic group Sp, with G compact.

Let G̃ be the preimage of G in the metaplectic group equipped with the Haar

measure of total mass 1. Fix an irreducible unitary representation Π of G̃. Then
the operator

ω(Θ̌Π) =

∫

G̃
ΘΠ(g̃

−1)ω(g̃) dg̃

is the orthogonal projection L2(X) → L2(X)Π onto the Π-isotypic component of
L2(X). The Weyl symbol of this projection is equal to a constant multiple of

T (Θ̌Π) =

∫

G̃
ΘΠ(g̃

−1)T (g̃) dg̃.

For example, if G = O1 = {±1} and G′ = Sp, then

G̃ = {(1, 1), (1,−1), (−1, in2−n), (−1,−in2−n)}
with the multiplication given by (g1, ξ1)(g2, ξ2) = (g1g2, ξ1ξ2C(g1, g2)), where

C(1,±1) = C(±1, 1) = 1 and C(−1,−1) = 22n. Hence, G̃ is isomorphic to the
four element group {(1, 1), (1,−1), (−1, in), (−1,−in)} with the coordinate-wise
multiplication. In these terms, the following two one dimensional representations

of G̃ occur in ω.

Π+(g, η) = η, Π−(g, η) = gη

A straightforward computation shows that

(1) T (Θ̌Π±) =
1

2

(
δ ± 2−ndw

)
,

where δ is the Dirac delta at the origin in W.
In general, Classical Invariant Theory says that the space L2(X)Π is irreducible

under the joint action of G̃ and G̃′, [3]. Hence L2(X)Π = L2(X)Π⊗Π′ for an irre-

ducible unitary representation Π′ of G̃′. We are interested in the character ΘΠ′ of
Π′.

Since the map τ ′ is quadratic and has compact fibers, the pull-back S(γ′) ∋
ψ → ψ ◦ τ ′ ∈ S(W) is well defined and continuous. Hence by dualizing we get a
push-forward of distributions τ ′∗ : S∗(W) → S∗(γ′). Then, for an appropriately
defined Fourier transform F on γ′,

(2)
1

Θ ◦ c̃ c̃
∗
−ΘΠ′ =

(central character of Π)(c̃(0))

dimΠ
F(τ ′∗(T (Θ̌Π))),
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as shown in [6, Theorem 6.7]. For example, if G = O1 then

1

Θ ◦ c̃ c̃
∗
−ΘΠ′

±
= Π±(c̃(0))

1

2
(δ ± µOmin

),

where µOmin
= τ ′∗(2

−ndw) is an invariant measure on one of the two non-zero
minimal nilpotent orbits in γ′ = sp and Π′

± are the corresponding two irreducible
pieces of the Weil representation ω.

In this paper we compute explicitly the distribution T (Θ̌Π) in terms of the GG′
orbital integrals on W. In particular we see that T (Θ̌Π) is a smooth function if and
only if (G,G′) is a pair of compact unitary groups. Also, modulo a few exceptions,
T (Θ̌Π) is a locally integrable function if and only if the rank of G is greater or
equal to the rank of G′.

Let τ : W→ γ∗ be the unnormalized moment map given by τ(w)(x) = 〈xw,w〉.
Similarly we have τ ′ : W → γ′∗. The variety τ−1(0) ⊆ W is the closure of a
single orbit O. There is a positive GG′ - invariant measure µO on this orbit which
defines a tempered distribution, homogeneous of degree deg µO. Let Mt(w) = tw,
w ∈W. Denote by M∗

t the corresponding pullback of distributions. In particular
M∗
t µO = tdegµOµO. We show that

tdegµOM∗
t−1T (Θ̌Π) →

t→0
const µO,

where const is a non-zero constant. This last statement leads to an elementary
proof of the equality WF1(ΘΠ′) = τ ′τ−1(0). This equality was already verified in
[6, Theorem 6.11], but the proof used some strong results specific for the repre-
sentation theory of real reductive groups, [8].
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Restriction of complementary series representations of O(1,N) to
symmetric subgroups

Jan Möllers

(joint work with Yoshiki Oshima and Bent Ørsted)

We decompose complementary series representations of the rank one group
G = SO0(1, n + 1), n ∈ N, under the restriction to symmetric subgroups. For
details we refer to our paper [4].

All irreducible unitary representations of G are obtained as subrepresentations
of representations induced from a parabolic subgroup P = MAN on the level of
(g,K)-modules. Up to conjugation P is unique and M ∼= SO(n), A ∼= R+ and
N ∼= Rn. We restrict our attention to representations induced from characters
of P . Denote by πGσ the representation of G, which is induced from the charac-
ter of P which is trivial on M and N and given by the character σ ∈ a∗

C
on A

(normalized parabolic induction). We identify a∗
C
∼= C such that πGσ is irreducible

and unitarizable if and only if σ ∈ iR ∪ (−n, n). By abuse of notation we de-
note by πGσ also the corresponding irreducible unitary representations. For σ ∈ iR
the representations πGσ are called unitary principal series representations and for
σ ∈ (−n, 0)∪ (0, n) they are called complementary series representations. We have
natural isomorphisms πG−σ ∼= πGσ for σ ∈ iR ∪ (−n, n).

Apart from the maximal compact subgroup any symmetric subgroup H ⊆ G
is (up to connected components) of the form H = SO0(1,m + 1) × SO(n −m),
0 ≤ m ≤ n. We find the decomposition of πGσ |H into irreducibleH-representations.
In the formulation of the branching law we use the convention [0, α) = ∅ for α ≤ 0.
Further denote by Hk(Rn−m) the representation of SO(n − m) on the space of
solid spherical harmonics of degree k on Rn−m. Note thatHk(Rn−m) is irreducible
for n − m > 2 and otherwise decomposes possibly into at most two irreducible
components.

Theorem. For σ ∈ iR ∪ (−n, n) the representation πGσ of G = SO0(1, n + 1)
decomposes into representations of H = SO0(1,m+ 1)× SO(n−m), 0 ≤ m < n,
as follows:

πGσ
∣∣
H
∼=

∞∑

k=0

⊕
(∫ ⊕

iR+

πSO0(1,m+1)
τ dτ

⊕
⊕

j∈Z∩[0, |Re σ|−n+m−2k
4 )

π
SO0(1,m+1)
|Reσ|−n+m−2k−4j

)
⊠Hk(Rn−m).

First of all, the restriction πGσ |H is decomposed with respect to the action of
SO(n−m), the second factor of H . Then the decomposition of each Hk(Rn−m)-
isotypic component into irreducible representations of SO(1,m+ 1) contains con-
tinuous and discrete spectrum in general. The continuous part is a direct integral
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of unitary principal series representations π
SO0(1,m+1)
τ . The discrete part appears

if and only if k < |Reσ|−n+m
2 and is a finite direct sum of complementary se-

ries representations. Therefore the whole branching law of πGσ |H contains only
finitely many discrete components and the discrete part is non-trivial if and only
if |Reσ| > n − m. In particular for m > 0 there is always at least one discrete
component if σ is sufficiently close to the first reduction point n or −n.

For σ ∈ iR the decomposition is purely continuous. In this case the branching
law is actually equivalent to the Plancherel formula for the Riemannian symmetric
space SO0(1,m + 1)/SO(m + 1) and therefore easy to derive. We remark that
a similar method was used in [3] for the branching laws of the most degenerate
principal series representations of GL(n,R) with respect to symmetric pairs. How-
ever, for the complementary series representations, i.e. σ ∈ (−n, 0) ∪ (0, n), the
decomposition cannot be obtained in the same way.

Our proof of the explicit Plancherel formula works uniformly for σ ∈ iR ∪
(−n, n). It uses the “Fourier transformed realization” of πGσ on L2(Rn, |x|−Reσ dx)
(see e.g. [1, 7]). For this consider first the non-compact realization on the nilrad-
ical N of the parabolic subgroup P opposite to P . We then take the Euclidean
Fourier transform on N ∼= Rn to obtain a realization of πGσ on L2(Rn, |x|−Reσ dx).
The advantage of this realization is that the invariant form is simply the L2-inner
product. The Lie algebra action in the Fourier transformed picture is given by
differential operators up to order two, the crucial operators being the second order
Bessel operators studied in [1]. Using these operators we reduce the branching law
to the spectral decomposition of an ordinary differential operator of hypergeomet-
ric type on L2(R+). The spectral decomposition of this operator is derived using
the Weyl–Titchmarch–Kodaira method and gives the the branching law and the
explicit Plancherel formula.

Up to now only partial results regarding the branching of πGσ , σ ∈ (−n, n), to
H were known:

• For n = 2 and m = 1 the full decomposition was given by Mukunda [5]
using the non-compact picture. This case corresponds to the branching
law SL(2,C)ց SL(2,R).
• For n ≥ 2 and m = n− 1 Speh–Venkataramana [6, Theorem 1] proved the

existence of the discrete component π
SO0(1,n)
σ−1 in π

SO0(1,n+1)
σ for σ ∈ (1, n)

(special case j = k = 0 in our theorem). They also use the Fourier trans-
formed picture for their proof. This is a special case of their more general
result for complementary series representations of G on differential forms,
i.e. induced from more general (possibly non-scalar) P -representations.
• The same special case was obtained by Zhang [8, Theorem 3.6]. He actu-
ally proved that for all rank one groups G = SU(1, n+ 1;F), F = R,C,H,
resp. G = F4(−20) certain complementary series representations of H =
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SU(1, n;F) resp. H = Spin(8, 1) occur discretely in some spherical com-
plementary series representations of G. His proof uses the compact picture
and explicit estimates for the restriction of K-finite vectors.
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[4] J. Möllers and Y. Oshima, Restriction of complementary series representations of O(1, N)
to symmetric subgroups, (2012), preprint, available at arXiv:1209.2312.

[5] N. Mukunda, Unitary representations of the Lorentz groups: Reduction of the supplemen-
tary series under a noncompact subgroup, J. Math. Phys. 9 (1968), 417–431.

[6] B. Speh and T. N. Venkataramana, Discrete components of some complementary series,
Forum Math. 23 (2011), no. 6, 1159–1187.

[7] A. M. Vershik and M. I. Graev, The structure of complementary series and special repre-
sentations of the groups O(n, 1) and U(n, 1), Uspekhi Mat. Nauk 61 (2006), no. 5(371),
3–88.

[8] G. Zhang, Discrete components in restriction of unitary representations of rank one
semisimple Lie groups, (2011), preprint, available at arXiv:1111.6406.

Diffeomorphism group representations and quantum mechanics: Some
current directions

Gerald A. Goldin

This talk reviews how unitary representations of diffeomorphism groups unify the
description of a wide variety of quantum-mechanical systems and predict some
new possibilities. Some directions for ongoing research are suggested.

Local current groups or gauge groups, diffeomorphism groups, and (sometimes)
their extensions describe local symmetry. Diffeomorphism groups associate space
or spacetime transformations with regions in a C∞ manifold M , according to the
support of the diffeomorphism. They can describe local kinematical symmetry.

Let M be the manifold of physical space, with dim[M ] = d; let G be the group
of compactly-supported C∞ diffeomorphisms of M under composition; and let S
be the additive group of compactly-supported, C∞ real-valued functions on M .
Among the systems studied over several decades that correspond to inequivalent
unitary representations of G, or its natural semidirect product with S, are:

(a)N -particle quantum mechanics, with particles distinguished by their masses;
(b) systems of particles obeying Bose or Fermi exchange statistics, for d ≥ 2;
(c) systems of particles obeying intermediate, or anyon statistics, for d = 2; (d)
systems of particles obeying parastatistics, for d ≥ 2; (e) systems of nonabelian
anyons, for d = 2; (f) systems of tightly bound charged particles – point dipoles,
quadrupoles, etc.; (g) particles with spin, arranged in spin towers, for d = 3,
according to representations of GL(3,R); (h) particles with fractional spin, for
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d = 2; (i) systems of infinitely many particles in locally finite configurations, corre-
sponding to a free or interacting Bose gas, Fermi gas, or more exotic possibilities;
(j) systems of infinitely many particles with accumulation points ; (k) quantized
vortex filaments when d = 2, or ribbons when d = 3, obtained from represen-
tations of area- (resp., volume-) preserving diffeomorphisms; (l) configurations of
extended objects, including loops and strings, knotted configurations, and sub-
manifolds having nontrivial topology and nontrivial internal symmetry; and (m)
quantum particles having nonlinear time-evolutions.

The unitary group representations give (under technical conditions) self-adjoint
representations of the “current algebra” of quantum mechanics — mass and mo-
mentum density operators in the physical spaceM , averaged with scalar functions
and vector fields respectively. The most elementary representation describes a sin-
gle particle, where we recover the usual quantum probability density and flux as
expectation values. For multiparticle systems, recovering probability density and
flux on configuration space involves expectation values of products of density and
current operators on M (i.e., correlation functionals).

Under general conditions, a unitary representation of G (or its semidirect prod-
uct with S) may be written by specifying a configuration space ∆ derived somehow
fromM , on which G acts naturally; ameasure µ on ∆ that is quasi-invariant under
the action of G, and a unitary 1-cocycle acting on the complex numbers (or, more
generally, on a complex inner product space). Understanding the representations
thus involves classifying possible configuration spaces and cocycles.

Let M be Euclidean space. For N -particle configuration space ∆, inequiva-
lent cocycles are obtained by inducing (generalizing Mackey’s method) from in-
equivalent unitary representations of the fundamental group π1[∆]. When d ≥ 3,
π1[∆] is the symmetric group SN ; alternating representations lead to fermions,
and higher-dimensional representations lead to the parastatistics of Greenberg
and Messiah. But when d = 2, the fundamental group is Artin’s braid group BN ,
whose 1-dimensional unitary representations (characters) lead to particles obeying
intermediate, or anyon statistics (where a counterclockwise exchange introduces
a fixed phase exp iθ in the wave function), confirming a conjecture of Leinaas and
Myrheim. The theoretical possibility of nonabelian anyons, also called plektons,
first arose from local current algebra (in joint work with Menikoff and Sharp); such
systems are obtained (with d = 2) from the higher-dimensional representations of
BN . These ideas now find application in quantum computing as well as in con-
densed matter physics. Of course, even more possibilities of interest occur when
M itself is multiply connected.

We consider various classes of configuration spaces: (A) Infinite but locally
finite subsets ofM describe the physics of gases. This space is standard in contin-
uum classical or quantum statistical mechanics. Quasi-invariant measures include
Poisson measures, associated with gases of noninteracting particles at fixed average
density, and Gibbs measures, associated with translation-invariant two-body inter-
actions. These describe equilibrium states and correlation functions in the classical
case, and specify the current algebra representations in the quantum theory. (B)
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Generalized functions or distributions over M include derivatives of δ-functions
and other configurations. (C) Embeddings or immersions, parameterized or unpa-
rameterized, of another manifold N in M , describe extended configurations such
as loops or branes. For N = S1 and d = 3, we have classes of orbits for different
knots. (D) Configuration spaces of closed subsets of M , as proposed by Ismagilov,
include the unparameterized (but not the parameterized) embeddings or immer-
sions, as well as infinite point configurations. (E) The space of countable subsets of
M (with no condition of local finiteness), that Moschella and I considered, gener-
alizes locally finite configurations to allow accumulation points. It also generalizes
closed subsets, in that (for M separable) a closed subset can be recovered as the
closure of different countable subsets. (F) Coadjoint orbits of the diffeomorphism
group, and their unions, provide another context for configuration spaces. In the
spirit of geometric quantization, the symplectic structure on coadjoint orbits pro-
vides a systematic way to obtain cocycles. (G) Considering the internal symmetry
of point particles motivates the more general category of bundles overM to which
one can lift the action of diffeomorphisms of M . In defining marked configura-
tion spaces, one identifies a manifold Q for the internal degrees of freedom, and
associates to each point in an ordinary configuration a value or “mark” in Q.

Each method of characterizing configuration spaces has some significant lit-
erature; some are associated with a point of view about quantization or about
quantum mechanics. Each has its own open questions, sometimes of a techni-
cal nature. The diffeomorphism group approach helps understand these distinct
but overlapping spaces in quantum theory. The overarching question remains of
selecting just one as a “universal configuration space.” for quantum mechanics.

Now a certain 1-cocycle leads to a modified 1-particle unitary representation of
the diffeomorphism group of Rd, and there results an interesting general nonlinear
(derivative) Schrödinger equations. This equation, discovered in joint work with
Doebner, includes or intersects with numerous specific but often ad hoc propos-
als that have been made over the years for nonlinear modifications of quantum
mechanics — proposals by Kibble, Guerra and Pusterla, Sabatier and Auberson,
Bialynicki-Birula and Mycielski, Kostin, Haag and Bannier, and Schuch. It also
has new features. To interpret it, we adopt a measurement theory suggested by
Mielnik, and determine the group of nonlinear gauge transformations. The no-
tion of physical equivalence classes (under gauge transformation) of the nonlinear
quantum time-evolutions provides a further unification of the many historically-
proposed nonlinear quantum theories, together with some newer ones. Finally, we
generalize Madelung’s 1927 formulation to obtain gauge-invariant hydrodynamical
equations for nonlinear quantum mechanics. Among new features, the quantum
potential term is now governed by two independent coefficients instead of one;
there is a term that moves us from Euler to Navier-Stokes hydrodynamics; and
forces can be exerted by two additional external vector fields. An explicit frictional
term derives from Kostin’s version of nonlinear quantum mechanics.

Directions for research include the following. (1) We need a general theory
of quasi-invariant measures on spaces of embeddings and immersions. (2) As
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far as I know we do not have a full theory of densely defined vector fields on
Hilbert manifolds defining flows, to generalize Stone’s theorem. (3) What are
the best special and general relativistic generalizations of the role played by the
diffeomorphism group in quantum mechanics? (4) Increasingly general nonlinear
gauge transformations can move quantum states out of Hilbert space; this needs
development. (5) An open question is how to extend nonlinear quantum time-
evolutions to composite systems, with or without the “no signal” property. (6)
Methods of differential geometry should be applied to explore generalized quantum
hydrodynamics as a (sometimes dissipative) dynamical system (this is a topic of
ongoing work with Gay-Balmaz and Ratiu).

The references below contain extensive bibliographic citations to the topics
reviewed here [1, 2, 3].
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Osterwalder-Schrader positivity in representation theory, in physics,
in stochastic processes, and in harmonic analysis

Palle E. T. Jörgensen

1. INTRODUCTION.

In the literature [2], the notion of Osterwalder-Schrader positivity (OS-positivity)
have come to refer to a condition for stochastic processes, for quantum fields, and
for representations. In the three contexts the respective positivity conditions in
the different contexts are equivalent, and the interconnections was the focus of this
Oberwolfach presentations.

While the subject of Osterwalder-Schrader positivity started in the seventies
[12, 13], and its ramifications have proved successful in the diverse areas, the
subject is now also part of harmonic analysis.

For example it is known that covariance functions of OS-positive stochastic pro-
cesses indexed by time may be characterized by an explicit integral representation,
[1, 3, 4, 7, 8, 9] .

In the setting of Wightman axioms, relativistic fields are operator valued tem-
pered distributions which satisfy invariance under the Poincare group; the sym-
metry group of space time. In the early decades in the subject, it became clear
that it would be difficult to realize concrete interacting fields directly in terms
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of the Wightman axioms; some of the difficulties having to do with families of
non-commuting unbounded operators.

OS-positivity suggests the possibilities of replacing the non-commuting opera-
tors in the Wightman system with commuting random variables, and also replace
the Poincare group with the Euclidean group, thus instead one is aiming for a
model of stochastic processes having Euclidean invariance. When time is contin-
ued to the imaginary line, the solution to the Euclidean model then turns into a
solution to the Wightman axioms.

As it turned out, this analytic continuation was successful in realizing solutions
to quantum fields in the setting of the Haag-Kastler axioms; i.e., von Neumann
algebras of local quantum fields.

Among the problems to be resolved in linking the two worlds of Euclidian
covariance and relativistic covariance is an analytic continuation of unitary rep-
resentations of the Euclidean group into unitary representations of the Poincare
group. At a formal level, one thinks of a continuation from real time to purely
imaginary time, and the initial paper by Osterwalder-Schrader gave a successful
framework for this, as well as a constructive procedure. This was the initial for-
mulation of what is now known as OS-positivity, and it deals with a property that
some representations of the Euclidean group may or may not have. When the
property holds we speak of OS-positivity.

In work between the author and Olafsson, [5, 6], it was suggested that OS-
positivity should be part of the theory of unitary representations of Lie groups
in general; hence we examined classes of unitary representations of Lie groups G
which allow OS-positivity. When it is made precise, we end up with a pair of Lie
groupsG andGc, whereGc is called the c-dual. With OS-positivity, we proved that
the unitary representations of G will then have c-duals, arising via OS-positivity
reflection as unitary representations of Gc; much in the same way we get unitary
representations of the Poincaré group from Osterwalder-Schrader’s original work.
In the papers by Jorgensen-Olafsson this was illustrated as follows: we obtained
the highest weight representations of semisimple Lie groups as reflections resulting
as c-duals of complementary series representations.

The aim of the talk was to link this insight to unitary representations with the
associated stochastic processes. Previously OS-positive stochastic processes had
been restricted to the initial setting of Osterwalder-Schrader in the context of the
two groups, the Euclidian group, and its c-dual, the Poincaré group.

One reason for why the adaptation of Osterwalder-Schrader to other Lie groups
has been slow in coming is that in its initial setup Osterwalder-Schrader relies of a
certain contractive selfadjoint representation of an abelian semigroup; and for the
corresponding problems of stochastic processes in the context of c-dual Lie groups
one is forced to work out the harmonic analysis of instead certain non-abelian
semigroups. The latter are part of the theory of non-compact causal symmetric
spaces.
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Some of these difficulties have been resolved in recent work between Neeb and
Olafsson [10, 11], and even more recent joint work between these two authors and
the speaker.

A key point in the new developments is carrying over the more traditional
OS-positivity analysis to Lie groups G with symmetry, and their unitary repre-
sentations associated to causal symmetric spaces. In this context, one must deal
with non-abelian subsemigroups S in G; and OS-positivity for both representa-
tions and for stochastic processes will be defined relative to this semigroup and its
representations.

2. The mathematical setting

We will use the following notation:

G: Lie group,
g: Lie algebra,
τ : period-2 automorphism in G, or in g,
H := {h ∈ G; τ(h) = h},
h = {x ∈ g; τ(x) = x}, q = {y ∈ g; τ(y) = −y},
H: Hilbert space,
J : H → H, unitary such that J2 = I,
π ∈ Rep(G,H) is a unitary representation, such that
Jπ(g) J = π(τ(g)), ∀g ∈ G,
C ⊂ g, cone such that C ∩ (−C) = {0},
C − C = g, AdHC ⊆ C.
Then S:= H expC is a semigroup in G.

Theorem 2.1. [5] If there is a closed subspace H+ ⊂ H invariant under π(S)
such that

〈f+, Jf+〉H ≥ 0, ∀f+ ∈ H+,(1)

then

gc:=h+ iq, and

πc(x+ iy) = π(x) + iπ(y), x ∈ h, y ∈ q

exponentiates to a unity representation of the simply connected Lie group Gc with
Lie algebra gc.

A useful tool in the study of these representations, and the associated stochastic
processes, is the operation

s# = τ(s)−1, s ∈ S.
A key lemma states that if (1) holds then S ∋ s 7→ π(s) turns into a #-semigroup

relative to the new inner product 〈·, ·〉new from (1); i.e., in the Hilbert space

H := (H+ with (1)/{f+ ∈ H+; 〈f+, Jf+〉 = 0})∼
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where ∼ stands for Hilbert-completion.
Indeed, 〈f+, π(s)h+〉new = 〈π(s#)f+, h+〉new, ∀f+, h+ ∈ H+, and ∀s ∈ S.
The issue about the unbounded operators π(x), x ∈ g coming from a unitary

representation π ∈ Rep(G,H) is subtle: Since g = Lie alg G; if x ∈ g, then π(x) is
skew-adjoint with respect to H, i.e., π(x)∗ = −π(x); but changing the inner prod-
uct, for y ∈ q, π(y) becomes selfadjoint with respect to 〈f+, h+〉new :=〈f+, Jh+〉,
f+, h+ ∈ H+.
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[5] Palle E. T. Jorgensen and Gestur Ólafsson. Unitary representations of Lie groups with
reflection symmetry. J. Funct. Anal., 158(1):26–88, 1998.
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A Natural Limit of Bruhat Poisson Structures on G/B

Arlo Caine

(joint work with Sam Evens)

Let G be a complex semi-simple Lie group and let B+ be a Borel subalgebra
of G. This project concerns real algebraic Poisson structures on the flag variety
X = G/B+. The Bruhat cells in X are the B+ orbits on X . Each Bruhat
cell is of the form Xw = B+wB+/B+ where w is an element of the Weyl group
W = NG(H)/H . Choosing a maximal complex torus H in B+ determines a
unique Borel subgroup B− such that B− ∩ B+ = H . The B− orbits on X have
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the form Xv = B−vB+/B+, for v ∈ W , and are called opposite Bruhat cells. The
intersections Xv ∩Xw, known as a Richardson varieties, are non-empty whenever
v ≤ w in the Bruhat order on W and are smooth and irreducible in X ([5]). Let
K be a compact real form of G. Then H = TA under the Cartan decomposition
associated to K. The Bruhat Poisson structure Π0 on X ([1],[2]) is real-algebraic,
T -invariant, and has symplectic leaves which are precisely the Bruhat cells Xw,
for all w ∈ W . We evolve this Poisson structure through a 1-parameter family of
T -invariant real algebraic Poisson structures Πt, all admitting the same symplectic
foliation, and show that this family limits to a real algebraic Poisson structure Π∞
on X . The real structure Π∞ turns out to be invariant under the action of the
complex torus H . Our main result is the following theorem.

Theorem. The symplectic leaves of (X,Π∞) are precisely the Richardson varieties
Xv ∩Xw, for all v and w with v ≤ w in W .

Typically, the Bruhat Poisson structure on X is constructed using the model
for X as a real quotient K/T instead of the complex quotient G/B+. These two
models are equivalent because of the Iwasawa decomposition G = KAN+, where
N+ is the nilpotent radical of B+. This decomposition defines two factorization
maps k : G → K and d+ : G → D+ (where D+ = AN+) by g = k(g)d+(g) for
each g ∈ G. The former induces a diffeomorphism k : G/B+ → K/T whose inverse
is induced from the inclusionK → G. A standard construction using the root data
from the choice of B+ and H produces a Poisson Lie group structure πK on K
which is left and right T -invariant. The quotient map (K,πK) → K/T then co-
induces a T -invariant Poisson structure ΠK on K/T . The dual group to (K,πK)
is D+ and the dressing action of D+ on K/T coincides with the action of D+ on
G/B+ projected to K/T . Since the D+-orbits coincide with B+-orbits on G/B+,
the symplectic leaves of (K/T,ΠK) are the Bruhat cells k(Xw), for w ∈ W .

Let d denote the Lie algebra g of G viewed as a real Lie algebra. Then the Lie
algebras k of K and d+ of D+ are Lagrangian subalgebras of d with respect to
the imaginary part of the Killing form on g. Using ideas in [3], we reinterpret the
construction of ΠK by constructing a T -invariant Poisson structure Π0 = Πk,d+ on
G/B+ depending on the choices of K and D+ which makes k : (G/B+,Πk,d+) →
(K/T, �K) into a Poisson equivalence. This allows us to compare Bruhat Poisson
structures associated to different choices of k on the same geometric model G/B+

of the flag variety. A one-parameter subgroup of A, generated by an element
on which each of the positive roots take negative values, acts by conjugation on
the compact real forms in the variety of Lagrangian subalgebras L(d) carrying
k to kt. Correspondingly, the left action of this group on G/B+ induces a flow
carrying the Bruhat Poisson structure Π0 to another Πt = Πkt,d+ . In the limit
as t → ∞ the compact real forms kt contract to d− = n− + t in the variety of
Lagrangian subalgebras L(d) and the corresponding Poisson structures converge
to Π∞ = Πd−,d+ on X .

Although Π∞ is co-induced from a Poisson Lie group structure πd−,d+ on G via
the quotient map G→ G/B+, the symplectic leaves are not the orbits of an action
of the dual group D+ since the dressing vector fields are incomplete. Instead,
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we apply a Lie theoretic formula from [4] to compute the rank of Π∞ at each
point of X and show that it agrees with the dimension of the Richardson variety
passing through that point. Since we can argue that the leaves are contained in
the Richardson varieties and the Richardson varieties are connected, the result
follows.
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Dual pairs in fluid dynamics and central extensions of diffeomorphism
groups

François Gay-Balmaz

(joint work with Cornelia Vizman)

The concept of dual pair, formalized by [W], is an important notion in Pois-
son geometry and has many applications in the context of momentum maps and
reduction theory, see e.g. [OR] and references therein. Let (M,ω) be a finite
dimensional symplectic manifold and let P1, P2 be two finite dimensional Poisson
manifolds. A pair of Poisson mappings

P1
J1←− (M,ω)

J2−→ P2

is called a dual pair if kerTJ1 and kerTJ2 are symplectic orthogonal complements
of one another, where kerTJi denotes the kernel of the tangent map TJi of Ji.
Dual pair structures arise naturally in classical mechanics. In many cases, the
Poisson maps Ji are momentum mappings associated to Lie algebra actions onM .
For example, in [M] (see also [CR], [GoS] and [Iw]) it was shown that the concept
of dual pair of momentum maps can be useful for the study of bifurcations in
Hamiltonian systems with symmetry.

We consider two fundamental “dual pairs” of momentum mappings arising in
fluid dynamics. Both of them have attractive properties but present additional
difficulties due to fact that the manifolds involved are infinite dimensional. This
is why we first describe them only at a formal level and we use the word “dual
pair” (with quotation mark) in a formal sense. The first “dual pair” is associated
to the Euler equations of an ideal fluid and was discovered by [MW] in the context
of Clebsch variables; the second one is associated to the n-dimensional Camassa-
Holm equations and was discovered by [HoM] in the context of singular solutions.
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(1) Consider the Euler equations for an ideal fluid on a domain S,

∂tu+ u · ∇u = − gradp, div u = 0,

where u is the velocity and p is the pressure. As shown in [A], the flow of the Euler
equations describe geodesics on the group of volume preserving diffeomorphisms
of S relative to the right invariant L2-metric. In [MW], the “dual pair” for Euler
equations is described as follows. Consider a symplectic manifold (M,ω), a volume
manifold (S, µ), and let F(S,M) be the space of smooth maps from S to M .
The left action of the group Diff(M,ω) of symplectic diffeomorphisms and the
right action of the group Diff(S, µ) of volume preserving diffeomorphisms are two
commuting symplectic actions on F(S,M). Their momentum maps JL and JR
form the “dual pair” for the Euler equation:

X(M,ω)∗
JL←− F(S,M)

JR−→ X(S, µ)∗.

While the right leg represents Clebsch variables for the Euler equations, the left
leg is a constant of motion for the induced Hamiltonian system on F(S,M).

(2) Consider the n-dimensional Camassa-Holm equations on a domain M ,

∂tm+ u · ∇m+∇uT ·m+m div u = 0, m = (1 − α2∆)u,

whose flow describes geodesics on the group of all diffeomorphisms of M relative
to a right invariant H1 metric, see [HoM]. For more general choices for m, these
equations are known under the generic name of EPDiff equations (standing for the
Euler-Poincaré equations associated with the diffeomorphism group). In [HoM],
the associated dual pair is described as follows. Let Emb(S,M) be the space of
embeddings of S into M and consider the left action of the diffeomorphism group
Diff(M) and the right action of the diffeomorphism group Diff(S). The dual pair
consists of the momentum maps associated to the induced actions on the cotangent
bundle T ∗ Emb(S,M) endowed with canonical symplectic form:

X(M)∗
JL←− T ∗ Emb(S,M)

JR−→ X(S)∗.

The left leg provides singular solutions of the EPDiff equation, whereas the right
leg is a constant of motion associated to the collective motion on T ∗ Emb(S,M). In
the one-dimensional case, JL recovers the peakon solutions of the one-dimensional
Camassa-Holm equation, [CaH].

More recently, the ideal fluid “dual pair” has been shown to apply for the
Vlasov equation in kinetic theory [HoT2]. On the other hand, the EPDiff dual
pair has been extended to the case of the Euler-Poincaré equations associated
with the automorphism group of a principal bundle in [GBTV], needed for the
study of the singular solutions of the two-component Camassa-Holm equation and
its generalizations, see [HoT1], [GBTV], and references therein.

As we mentioned above, the reader should be warned that we use here the word
“dual pair” (with quotation mark) in a formal sense for many reasons. Firstly,
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these examples are infinite dimensional and the concept of dual pair in infinite di-
mensions presents several difficult points that deserve further investigation. Sec-
ondly, the dual pair properties need to be shown in a rigorous way for the two
situations. This means that one has to prove that the left action is transitive
on the level subset of the right momentum map, and the right action is transi-
tive on the level subset of the left momentum map. Finally, the ideal fluid “dual
pair” reveals additional difficulties when one wants to check the momentum map
properties of its two legs in a rigorous way. In fact, a reformulation is needed in
this case. Interestingly enough, this reformulation leads naturally to well-known
central extensions of groups of diffeomorphisms. Our main goal is to overcome
these difficulties in order to rigorously show the dual pair properties. We proceed
in several steps.

(I) We define the concepts of weak dual pairs and dual pairs, appropriate in
the infinite dimensional setting, and give criteria for weak dual pair and dual pair
properties.

(II) We provide a reformulation of the ideal fluid dual pair that allows us to
show in a rigorous way that the two legs are momentum mappings. More precisely,
we replace the groups Diff(M,ω) and Diff(S, µ) by the subgroups Diffham(M,ω)
and Diffex(S, µ) of Hamiltonian and exact volume preserving diffeomorphisms,
respectively. This allows us to show the existence of nonequivariant momentum
maps.

(III) In order to have equivariance, required from the dual pair properties, we
need to consider central extensions. In this context the group of quantomorphisms,
central extension of Diffham(M,ω), and the Ismagilov central extension of the
group Diffex(S, µ) appear naturally.

(IV) We show that the pair of momentum maps obtained above forms a weak
dual pair. When restricted to the space of embeddings and under the condition
H1(S) = 0, the weak dual pair is shown to be a dual pair.

This study yields several new developments in infinite dimensional symplectic
geometry. For example, we are currently using the dual pair property to obtain a
coadjoint orbit correspondence and describe new classes of symplectic Grassman-
nians.
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Groupoids and algebroids associated to W ∗-algebras

Anatol Odzijewicz

The concepts of von Neumann algebra (W ∗-algebra), groupoid and algebroid play
the significant role in contemporary mathematics and mathematical physics. It is
well known that there exists an interesting relationship of this concepts with others
branches of mathematics. As examples let us mention the groupoid approach in
topology [1] or the application of algebroid language in differential geometry [2].

In this presentation, based on papers [3] and [4], we investigate the groupoid
and algebroid arising in a natural way from the structure of W ∗-algebra. The
results of this investigation we present in the series of statements. We also point
out their connection with the Banach-Poisson geometry [5].

Let us recall that

(1) Groupoid is a small category with inverse morphisms.
(2) An algebroid on manifold M is a vector bundle (A, q,M) with a vector

bundle map a : A → TM over M (anchor map) and a bracket [ , ] :
ΓA× ΓA→ ΓA which is
(a) R-bilinear, alternating, and satisfing the Jacobi identity;
(b) [X,uY ] = u[X,Y ] + a(X)(u)Y ;
(c) a([X,Y ]) = [a(X), a(Y )];
for X,Y ∈ ΓA, u ∈ C∞(M).

(3) W ∗-algebra is a C∗-algebra which posses a predual Banach space M∗,
[6]. An element p ∈ M is called a projection if p∗ = p = p2. The set
of projections of the W ∗-algebra M is the lattice which we will denote
by L(M). An element u ∈ M is called a partial isometry if uu∗ (or
equivalently u∗u) is a projection. The set of partial isometries of the W ∗-
algebra M we will denote by U(M).
The left support l(x) ∈ L(M) (right support r(x) ∈ L(M)) of x ∈ M
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is the least projection in M, such that l(x)x = x (resp. x r(x) = x).
If x ∈ M is selfadjoint, then support s(x) := l(x) = r(x). The polar
decomposition of x ∈M is x = u|x|, where u ∈M is partial isometry and
|x| :=

√
x∗x ∈M+. One has

l(x) = s(|x∗|) = uu∗, r(x) = s(|x|) = u∗u.

Let G(pMp) be the group of all invertible elements in the W ∗-subalgebra pMp ⊂
M. We define the subset G(M) of partially invertible elements in M by

G(M) := {x ∈M; |x| ∈ G(pMp), where p = s(|x|)}  M.

Proposition 1. The set of partially invertible elements G(M) with

(1) the source and target maps s, t : G(M)→ L(M)

s(x) := r(x), t(x) := l(x);

(2) the product defined as the product in M on the set

G(M)(2) := {(x, y) ∈ G(M)× G(M); s(x) = t(y)};
(3) the identity section ε : L(M) →֒ G(M) as the inclusion;
(4) the inverse map ι : G(M)→ G(M) defined by

ι(x) := |x|−1u∗;

is a groupoid over L(M).

Proposition 2. The U(M) ⇒ L(M) is a wide subgroupoid of the groupoid
G(M) ⇒ L(M).

Remark: The description of U(M)-orbits on L(M) leads to the Murray-von
Neumann classification of W ∗-algebras.

Proposition 3. (1) The groupoid U(M) of partial isometries is a topologi-
cal groupoid with respect to the s∗(U(M),M∗)-topology and the uniform
topology in M.

(2) The groupoid G(M) is not a topological groupoid with respect to any natural
topology in M.

Proposition 4. The groupoid G(M) is the Banach-Lie groupoid with the complex
Banach manifold structure modeled on the set of Banach spaces

(1 − p̃)Mp̃⊕ p̃Mp⊕ (1− p)Mp

indexed by the pairs (p̃, p) of the equivalent projections of L(M).

By Gp0(M) ⇒ Lp0(M) we denote the transitive subgroupoid of G(M) ⇒ L(M)
defined as follows

Lp0(M) := {l(x) : x ∈ G(M), r(x) = p0},
Gp0(M) := l−1(Lp0 (M)) ∩ r−1(Lp0(M)).

The open subset P0 := Gp0 (M)∩Mp0 ⊂Mp0 is the total space of the principal
bundle P0 (Lp0(M), mathcalG0, l), where G0 := G(p0Mp0). The group G0 is
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an open subset of the Banach space p0Mp0. So, it is a Banach-Lie group which
Lie algebra is p0Mp0. Thus, the tangent bundle TP0 can be identified with the
trivial bundle Mp0 × P0. The groupoid G0(M) ⇒ Lp0(M) is isomorphic to the

gauge groupoid P0×P0

G0
associated to the principal bundle P0 (Lp0(M), G0, l). This

isomorphism is given by

I :
P0 × P0

G0
∋ 〈η, ξ〉 ˜7→ ηξ−1 = η(ξ+ξ)−1ξ+ ∈ Gp0(M),

where 〈η, ξ〉 denotes the orbit of the G0-action:

P0 × P0 ×G0 ∋ (η, ξ, g) 7→ (ηg, ξg) ∈ P0 × P0

on the product P0 × P0.
Using the above isomorphism one can identify the Banach Lie algebroidAp0(M)→

Lp0(M) of the groupoid Gp0 (M) ⇒ Lp0(M) with the quotient vector bundle

Mp0 ×G0 P0
∼= TP0/G0 → Lp0(M).

Let us consider the vector bundle

ML
p0
(M) := {(x, p) ∈M× Lp(M) : x ∈Mp0} pr2−→ Lp0(M)

of the left M-ideals of the W ∗-algebra M over Lp0(M).

Proposition 5. One has an isomorphism of vector bundles Ap0(M)
π−→ Lp0(M)

and ML
p0
(M)

pr2−→ Lp0(M), where π is the canonical projection of the algebroid
Ap0(M) on the set of units Lp0(M). Hence one can consider π : Ap0(M) →
Lp0(M) as a bundle of left M-modules.

The vector bundleAp0∗(M)→ Lp0(M) predual to the algebroid bundleAp0(M)→
Lp0(M) one can identify with (Mp0)∗ ×G0 P0

∼= p0M∗ ×G0 P0 → Lp0(M).
For F,G ∈ C∞(T∗P ) one has the canonical Poisson bracket

{F,G}T∗P0(b, η) :=

〈
∂G

∂η
(b, η),

∂F

∂b
(b, η)

〉
−
〈
∂F

∂η
(b, η),

∂G

∂b
(b, η)

〉
,

where we identify the pre-cotangent bundle T∗P0 with p0M∗ × P0 and (b, η) ∈
p0M∗ × P0. Note here that ∂F

∂η
(b, η) ∈M∗ and ∂F

∂b
(b, η) ∈M.

Proposition 6. Let q : T∗P0 → Ap0∗(M) be the quotient projection. Then for
f, g ∈ C∞(Ap0∗(M)) there exists only one function {f, g}Ap0∗

(M) ∈ C∞(Ap0∗(M))

such that
{f ◦ q, g ◦ q}T∗P0 = {f, g}Ap0∗

(M) ◦ q.
We conclude from the above proposition that (Ap0∗(M), {·, ·}Ap0∗

(M)) is a Ba-

nach Poisson manifold. One can check that this is the linear Poisson structure
related to the algebroid structure of Ap0(M) → Lp0(M). So, it is the algebroid
version of Lie-Poisson structure on M∗ investigated in [5].
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[4] A. Odzijewicz, G. Jakimowicz, A. Sliżewska, Linear Poisson structure related to the

groupoid of partially invertible elements of W ∗-algebra, (to appear).
[5] A. Odzijewicz, T.S. Ratiu, Banach Lie-Poisson spaces and reduction, Comm. Math. Phys.,

243, (2003), 1-54.
[6] S. Sakai, C∗-Algebras and W ∗-Algebras, Springer-Verlag (1971).

Moderate growth representations of Lie supergroups

Alexander Alldridge

In this talk, we reported upon work in progress on the theory of smooth su-
pergroup representations and the use of certain convolution superalgebras. We
propose this as a framework for the study of infinite-dimensional supergroup rep-
resentations. This allows us to transpose with ease, several basic results from
the theory of infinite-dimensional representations of real reductive Lie groups to
the super world—whilst the algebraic theory of finite-dimensional Lie superalge-
bra representations differs sharply from the Lie algebra case. In particular, we
discussed the globalisation of Harish-Chandra supermodules.

Smooth supergroup representations. Let K be R or C. A K-superspace is by defini-
tion a pair X = (X0,OX) of a topological space and a sheaf of supercommutative
K-superalgebras; a morphism f : X → Y is a pair (f0, f

♯) consisting of a con-
tinuous map and a morphism of superalgebra sheaves. Supermanifolds form the
full subcategory of K-superspaces whose underlying topological space is Hausdorff,
and which are locally isomorphic to the model spaces Ap|q = (Rp, C∞

Rp ⊗
∧
(Kq)∗).

A Lie supergroup G is a group object in this category; equivalently, these can be
described in terms of pairs (g, G0) of a Lie superalgebra over K and real Lie group
with an action of G0 on g by Lie superalgebra automorphisms satisfying some
straightforward requirements.

Given a finite-dimensional super-vector space V = V0̄⊕V1̄ over C, an represen-
tation of G on V is an action π : G×V → V , which is linear in its second argument.
Equivalently, it can be described by a the data of a smooth G0-representation π0
on V , together with a G0-equivariant g-module structure extending the derived
representation of π0.

This equivalence can be generalised to infinite dimensions, at least if V carries
a reasonable locally convex topology (for instance, V is bornological and Mackey-
complete). Indeed, one may define for any such V a vector-space valued functor
V (−) on the category of supermanifolds, and this gives a notion of representations
of the group-valued functor G(−) associated with G. The category of representa-
tions thus obtained, called smooth G-representations, is equivalent to the category
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of smooth representations of the pair (g, G0), which may defined as in the finite-
dimensional case.

Traditionally, one is interested in unitary representations, a notion which makes
sense for supergroups in case K = R. However, unitarity is a very strong condition
in the super case [5] and for some applications (such as Plancherel formulæ), it is
necessary to consider more general representations [3], for instance such represen-
tations, which are unitary upon restriction to G0. Our intention in the research
presented here is to create a general framework, in which more special classes of
representations can be investigated.

Convolution algebras. At least in the Fréchet case, an alternative approach to
smooth representations, based on convolution superalgebras, is viable. Indeed,
given a Lie supergroup G, the space E ′(G) of continuous linear functionals on
the space of all global sections of the structure sheaf OG of G, inherits from
the supergroup multiplication a natural convolution product. As a super-vector
space, E ′(G) isomorphic to E ′(G0) ⊗U(g0̄) U(g). The categories of smooth Fréchet
G-representations and of Fréchet E ′(G)-modules are equivalent.

The superalgebra E ′(G) contains the space C∞c (G) of compactly supported sec-
tions of the sheaf of Berezinian densities as a subalgebra. In particular, the latter
superalgebra acts on any smooth Fréchet G-representation.

If V is a continuous Fréchet G0-representation, then any extension of the
G0-representation on the space V∞ of smooth vectors to a smooth Fréchet G-
representation is called a continuous Fréchet G-representation on V . If V is in ad-
dition reflexive, then C∞c (G) acts on V , and the following super Dixmier–Malliavin
theorem holds: We have V∞ = C∞c (G)V = C∞c (G)V∞. Thus, the categories
of reflexive continuous Fréchet G-representations and of non-degenerate reflexive
Fréchet C∞c (G)-modules are equivalent.

Moderate growth representations. From now on, we assume that G0 is endowed
with a scale [4]. One can then define a Schwartz convolution superalgebra S(G)
of Berezinian densities, similar to case of compact supports considered above. As
a super-vector space, one has S(G) = S(G0) ⊗U(g0̄) U(g), where S(G0) is the
algebra of Schwartz densities associated with the scale on G0. Moreover, one
can define the notion of moderate growth for smooth Fréchet G-representations.
If V is a continuous Banach G-representation, then V∞ has moderate growth.
Moreover, S(G) acts on smooth Fréchet representations of moderate growth, and
the corresponding category is thus equivalent to the category of non-degenerate
Fréchet S(G)-modules.

A pair (U, V ) of continuousG-representations is called contragredient if there ex-
ists a G0-invariant perfect pairing of U and V , which restricts to a G-invariant per-
fect pairing of U∞ and V∞. Given a contragredient pair of continuous Hilbert G-
representations, the matrix coefficient map U∞ × V∞ → T (G) (denoting by T (G)
the space of tempered superfunctions) extends uniquely to aG×G-equivariant map
from the distribution vectors to the tempered generalised superfunctions S ′(G). In
particular, continuous Hilbert G-representations admit a distributional character.
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Globalisation of Harish-Chandra supermodules. In the following, we assume that g0̄
is reductive and G0 admits a finite-dimensional linear representation with closed
image and finite kernel. Let K0 ⊆ G0 be a maximal compact subgroup. In
analogy with the even case, we call a super-vector space V a (g,K0)-module, if it
is endowed with a locally finite K0-module structure and with a K0-equivariant
g-module structure, which extends the derived representation of K0. A (g,K0)-
module is called Harish-Chandra if it has finite K0-multiplicities and is finitely
generated as a g-module.

A smooth Fréchet G-representation is called Casselmann–Wallach if it has
moderate growth and its (g,K0)-module of K0-finite vectors is Harish-Chandra.
Given V ∈ HC(g,K0), a CW globalisation of V is a Casselmann–Wallach G-
representationE, together with the choice of an isomorphism of V with the (g,K0)-
module of K0-finite vectors of E.

A basic fact is that U(g) is a Harish-Chandra (g0̄,K0)-module. Hence, if V ∈
HC(g,K0), then its restriction to (g0̄,K0) is again Harish-Chandra. Moreover, we
have an isomorphism S(G) ∼= S(G0)⊗U(g0̄) U(g) of super-vector spaces. (Here, we
fix the algebraic scale structure on G0.) Combined with the classical Casselmann-
Wallach globalisation theorem, we obtain the following super version thereof: Any
Harish-Chandra (g,K0)-module has a unique CW globalisation. The proof makes
use of the methods and results of Bernstein–Krötz [4].

In particular, the categories of smooth Casselmann–Wallach G-representations
and of Harish-Chandra (g,K0)-modules are equivalent. As another corollary, for
any G-equivariant continuous linear map φ : U → V of Casselmann–Wallach
G-representations, the induced map U/ kerφ → V is an isomorphism onto its
closed image. Moreover, any Casselmann–Wallach G-representation is the space
of smooth vectors of a Hilbert G0-representation.

Gelfand–Kazhdan criterion for Casselmann–Wallach representations. As an ap-
plication of the super Casselmann–Wallach theory sketched above, a generalisation
of the Gelfand–Kazhdan criterion of Sun–Zhu [6] was given.

Indeed, let H1, H2 be closed subsupergroups of G, χj characters of Hj , and σ
an anti-automorphism of G. Assume that these data satisfy the following property
(GK): Any tempered generalised superfunction T ∈ S ′(G), which is both relatively
H1 ×H2-invariant for the character χ−1

1 × χ−1
2 and an a joint eigenvector for the

even part of the centre of U(g)G, is fixed by σ. Then for any contragredient pair
(U, V ) of irreducible Casselmann–Wallach G-representations, we have

dimHomH1(U, χ1) · dimHomH2(V, χ2) ≤ 1.

In work in progress, we wish to apply this theorem to the study of multiplicity
freeness for pairs of supergroups, analogous to the recent results by Aizenbud et
al. [1], Aizenbud–Gourevich [2], and Sun–Zhu [7].
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Integration of vector fields on supermanifolds and the exponential
morphism of a Lie supergroup

Tilmann Wurzbacher

(joint work with Stéphane Garnier)

In this text supermanifolds are always understood in the sense of Berezin-Kostant-
Leites, i.e., a supermanifold M is a ringed space (M0,OM ), where M0 is a topo-
logical space, OM is a sheaf of supercommutative unital superalgebras, and M
is locally isomorphic, as a superringed space, to the standard model Rm|n. The
sheaf OM modulo the nilpotent ideal N yields the structure of a classical, un-
graded manifold on M0. By a slight abuse of language we will denote this latter
manifold simply by M0. Morphisms Φ :M → N are given by a pair (Φ0,Φ

♯) with
Φ0 :M0 → N0 a continuous map, and Φ♯ : Φ−1

0 ON → OM a morphism of sheaves
of superrings over M0. Furthermore, for i ∈ {0̄, 1̄},

DerΦ(ON (N0),OM (M0))i := {D : (ON (N0)→ OM (M0) |D is linear and ∀f, g ∈

OM (M0) homogeneous, D(f · g) = D(f) · Φ♯(g) + (−1)i·|f |Φ♯(f) ·D(g)},

is called the “space of derivations of parity i along Φ”. For Φ = idM we obtain the
vector fields of parity i on M . General derivations (resp. vector fields) are sums
of such homogeneous elements. We observe that an even vector field X on M
can also be considered as a section σX of the (super) tangent bundle TM → M .

Furthermore, if X is a vector field on M , then it induces a unique vector field X̃
on the underlying classical manifold M0.

In our article [1] we give a new, direct proof of the following result of J. Monterde
and coworkers (compare [2]): given a vector field X on a supermanifold M , there
exists a unique maximal flow domain Ω for X , an open sub supermanifold of
R1|1 ×M , containing {0} ×M , with a “flow morphism” F : Ω→M fulfilling
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F ◦ injR1|1×M
{0}×M = idM

and
(
injR

1|1×M
R×M

)♯
◦
((

∂

∂t
+

∂

∂τ

)
◦ F ♯ − F ♯ ◦X

)
= 0 ,

where t and τ are the natural coordinates on R1|1.

Our proof is based on the recursive solution of a finite number of systems of or-
dinary differential equations arising from the analysis of the coordinate expression
for the unknown morphism F . The first step consists in integrating the vector field
X̃ on the classical manifold M0, the body of the supermanifold M . The following
steps boil down to solving inhomogeneous linear systems. This procedure shows
immediately why the maximal flow domain of X is the open sub supermanifold of
R1|1×M , whose body is the maximal flow domain of the underlying vector field X̃ .

Our approach also yields the analogous conclusion in the case of a holomorphic
vector field on a complex-analytic supermanifold, hitherto not treated in the lit-
erature.

As an application of the integration result to Lie theory we deduce the existence
of an exponential morphism expG : TeG → G for every finite dimensional Lie
supergroup G. More precisely, let G = (G0,OG) be a Lie supergroup, i.e. a group
object in the category of supermanifolds. Then there is a canonical even vector
field X on G× TeG defined via the section

σX = (Tµ ◦ (σ0 × ιe), 0)

of T (G×TeG) = TG×T (TeG)→ G×TeG, where µ : G×G→ G is the multiplica-
tion morphism of G and Tµ its differential, ιe : TeG→ TG the natural inclusion,
σ0 : G → TG the zero-section of TG and the last zero denotes the zero-section
of T (TeG) → TeG. The vector field X is complete by an easy application of the

above result on the relation between the maximal flow domains of X and X̃ . Thus
the following makes sense:

Definition. Let G be a Lie supergroup with multiplication µ and neutral
element e, and with the even vector field X and its flow morphism F = FX . Then
the “exponential morphism of G” is defined as

expG := proj1 ◦ F ◦ injR×G×TeG
{1}×{e}×TeG

: TeG→ G,

where proj1 : G× TeG→ G is the projection on the first factor.
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Recall that, given a supermanifold M , we have a “hom functor”, associating
to every supermanifold S the set of S-points M(S) = Hom(S,M) of M , and to a
morphism Φ :M → N the map

Φ(S) :M(S)→ N(S), Ψ 7→ Φ(S)(Ψ) = Φ ◦Ψ .

Applying hom functors to superpoints, i.e. taking S = R0|k for k in N0, we get
a fundamental characterization of the exponential morphism:

Theorem. ([1]) The exponential morphism expG : TeG → G of a Lie super-
group G fulfills and is uniquely determined by the following condition: for all

k ≥ 0, expG(R0|k) : TeG(R0|k) → G(R0|k) is the exponential map expG(R0|k) of
the finite-dimensional, ungraded Lie group G(R0|k).

The above constructed exponential morphism enjoys crucial properties similar
to those of the exponential map of a classical, ungraded Lie group, as is shown by
the next result.

Theorem. (W.) Let G = (G0,OG) be a Lie supergroup with exponential
morphism expG. Then

(1) given a Lie supergroup H = (H0,OH) with exponential morphism expH

and a Lie supergroup morphism ρ : G→ H ,

expH ◦ Teρ = ρ ◦ expG ,
(2) T0exp

G : T0(TeG) = TeG → TeG equals idTeG and thus expG is a local
diffeomorphism near 0 in TeG,

(3) for G = GLm|n the morphism expG is given by the “usual exponential
series”.

We remark that the last property is to be interpreted as follows: denote, for an uni-
tal, supercommutative, associative superalgebra A, by Matm|n(A) = Hom(Am|n,

Am|n) the set of A-module endomorphisms of Am|n = Am⊕(ΠA)n, where Π is the
parity change functor for A-modules. Then for all supermanifolds S = (S0,OS),
the hom functors of the Lie superalgebra TeGLm|n resp. the Lie supergroupGLm|n
are given by Hom(S, TeGLm|n) = Matm|n(OS(S0)) resp.

Hom(S,GLm|n) =

{(
a b
c d

)
∈Matm|n(OS(S0))

∣∣∣ a, d are invertible

}
.

The third point of the above theorem is now tantamount to the statement that the
map expGLm|n(S) : Hom(S, TeGLm|n) = Matm|n(OS(S0)) → Hom(S,GLm|n) ⊂
Matm|n(OS(S0)) equals the (convergent) power series

ξ 7→
∑

j≥0

1

j!
ξj .
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By Yoneda’s lemma, this already specifies a unique morphism expGLm|n : TeGLm|n →
GLm|n. Furthermore, using the first point, property (3) yields, of course, the ex-
ponential morphism for all linear Lie supergroups.
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Brownian and energy representation for path groups

Maria Gordina

(joint work with S.Albeverio, B.Driver, A.M.Vershik)

Let G be a connected compact semi-simple Lie group. We consider two repre-
sentations of the infinite-dimensional group of paths from [0, T ] to G : one is
in L2(W (G), µ) where W (G) is the space of continuous paths in G and µ is the
Wiener measure, and the other is in L2(W (G), ν) where ν is the Gaussian measure.
The first representation comes from the quasi-invariance of µ with respect to the
shifts by elements in W (G), and the second representation is the energy represen-
tation studied before by Gelfand, Graev, Vershik, and Wallach. We prove that
these two representations are unitarily equivalent, and then proceed to analyse
their structures.

Unitary representations of gauge groups

Bas Janssens

(joint work with Karl-Hermann Neeb)

Let P → M be a smooth principal K0-bundle, with K0 a compact semisimple
Lie group. Then the gauge group Gau(P ) of vertical automorphisms of P is isomor-
phic to Γ(K), the group of smooth sections of the adjoint bundle K := P ×AdK0.
Let us denote k0 := Lie(K0), and g := k0 ⊗R C. Then the gauge Lie algebra of
infinitesimal vertical automorphisms is isomorphic to Γ(K), with K := P ×Ad k0
a bundle of Lie algebras. Both Γ(K) and its compactly supported version Γc(K)
are locally convex topological Lie algebras. We classify their bounded unitary rep-
resentations, i.e., the continuous homomorphisms π : Γ(K) → B(H) that satisfy
π(s)† = −π(s), (or alternatively, π(s)† = −π(s) on the complexification Γ(KC)).

The restriction of boundedness is quite severe, and will certainly exclude in-
teresting examples. However, we expect the more inclusive class of semibounded
representations, in which the Lie algebra has an open neighbourhood of elements
with a spectrum bounded from one side, to be holomorphically induced from the
bounded ones.
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Consider, for example, the bundle of Lie algebras K = (R × k0)/〈σ〉 over S1,
where σ ∈ Aut(k0) is a diagram automorphism of order 1, 2 or 3 acting by
σ(t, k) = (t + 2π, σ(k)). The unitary irreducible highest weight representations
of the associated twisted affine Kac-Moody algebra Cc⊕ψ Γ(K)C ⋊C

d
dt

are semi-
bounded, but not bounded. However, one can show that every such semibounded
irreducible unitary representation is holomorphically induced from a bounded rep-
resentation of the centraliser Z( d

dθ
) = Cc⊕ gσ ⊕ C d

dt
.

Analogously, consider a Lie algebra bundle K→M and its pullback p∗K along
the ‘spatial projection’ p : S1 ×M → M . In this context, Γ(K) < Γ(p∗K) is to
be thought of as the subalgebra of time-independent infinitesimal gauge transfor-
mations. We expect (and hope to prove in the near future) that the irreducible
unitary semibounded representations of the Lie algebra Cc⊕ψΓ(p∗K)C⋊C d

dt
(with

ψ an appropriate cocycle) are holomorphically induced from irreducible unitary
bounded representations of the centraliser Z( d

dθ
) = Cc⊕ Γ(K)C ⋊C

d
dt
.

This motivates our investigation [1] into the bounded representations of Γ(K),
where the more than casually interested reader may find proofs for the state-
ments below. We proceed in two steps. First, we note that for M compact and
K trivial, we have Γ(K)C = g ⊗ A, with A = C∞(M,C) a commutative involu-
tive commutative inverse algebra (cia). The first step is now to classify bounded
unitary irreducible representations in this setting. Examples of such representa-
tions are easily found; if χ is an involutive character of A, and (ρ, V ) a unitary
irreducible representation of g, then the representation π : g⊗A → B(V ) defined
by π(X ⊗ a) = ρ(X)χ(a) is called an evaluation representation. The following
theorem will constitute the backbone of our classification:

Theorem 1. Every bounded irreducible unitary representation of g⊗A is unitarily
equivalent to a finite tensor product of evaluation representations.

These representations are, of course, finite dimensional. For the cias C∞(M,C)
(if M is compact) and C∞

c (M,C) ⊕ C1 (if M is noncompact), all characters are
determined by points in M (resp. M ∪ {∞}) by χ(f) = f(x). Thus, for F in
C∞(M, g) or C∞

c (M, g)⋊ g, we have π(F ) = ρ(F (x)).
For the second step, we wish to use the above ‘local’ result to attack the ‘global’

case, in which the bundle need not be trivial. Let (π,H) be a bounded unitary
irreducible (or factor) representation of Γc(K). Let U be an open subset of M
such that K trivialises in an open neighbourhood of U . Then π restricts to a
representation of the subalgebra Γc(K|U )C ≃ g ⊗ C∞

c (U,C). We would like to
apply the previous lemma to the algebra A0 := C∞

c (U,C), but alas, A0 is not
a cia, due to the lack of a unit. This inconvenience is easily circumvented by
adjoining a unit, A+ := A0 ⊕ C1, but then the algebra g ⊗ A+ is no longer a
subalgebra of Γc(K). The following ‘localisation lemma’ breaks the deadlock:

Lemma 2. The restriction of π to g⊗A0 extends to a representation of g⊗A+.
Furthermore, there exist bounded irreducible (or factor) representations (π1,H1)
and (π2,H2) of Γc(K) such that π1 vanishes on Γc(K|U ), π2 is a finite tensor product
of evaluation representations at points in U , H = H1 ⊗H2, and π = π1 ⊗ π2.
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If M is a compact manifold, it can be covered by finitely many open sets Ui to
which the above lemma can be successively applied, yielding:

Theorem 3. Every bounded irreducible unitary representation of Γ(K) is equiv-
alent to a finite tensor product of evaluation representations.

This remains true even for noncompact manifolds.
For the Lie algebra Γc(M), however, the situation is quite different. Indeed,

we can construct infinite tensor products of evaluation representations as fol-
lows. Given a locally finite subset x ⊆ M and an irreducible unitary repre-
sentation (ρx, Vx) for each x ∈ x, we construct a Lie algebra homomorphism
η : Γc(K) → Ax,ρ, where the UHF C∗-algebra Ax,ρ is the (infinite) tensor prod-
uct of C∗-algebras

⊗
x∈x

B(Vx). It is given by η(s) =
∑
x∈x

ρx(s(x)), where
ρx(s(x)) ∈ B(Vx) is considered as an element of Ax,ρ. Any pure (factor) state φ
of Ax,ρ now gives rise to an irreducible (factor) representation of Γc(K) by con-
catenating η with the GNS-representation πφ : Ax,ρ → B(Hφ).
Theorem 4. Every bounded irreducible (or factor) unitary representation of Γ(K)
is equivalent to such an infinite tensor product of evaluation representations.

If x is a finite set, then every pure state is given by a vector in
⊗

x∈x
Vx, so

that up to unitary equivalence, there is a unique irreducible GNS representation.
If x is infinite, however, the situation is radically different.

Although any two pure states are related by a ∗-automorphism of Ax,ρ (see [2]),
this automorphism need not be inner, and there are many inequivalent irreducible
representations associated to the same x and ρ. For example, if φ =

⊗
x∈x

φx
with φx the pure state on B(Vx) given by the unit vector ψx ∈ Vx, then φ is
pure, and Hφ =

⊗
x∈x

(Vx, ψx). Two representations defined by {ψx} and {ψ′
x}

are unitarily equivalent [3] if and only if the fidelity approaches 1 sufficiently
fast,

∑
x∈x

1 − |〈ψx, ψ′
x〉| < ∞. Many non-equivalent irreducible representations,

although certainly not all, are obtained in this way.
It is not hard to see that the von Neumann algebras π(Γc(K))

′′ for different
states can be non-isomorphic factors of type I, II and III. For example, choose
g = sl2(C), K = M × k0 trivial, x ⊆ M a locally finite countably infinite subset,
and Vx = C2 the defining representation for all x ∈ x. Then we have Ax,ρ =⊗̂

x∈x
M2(C), so that by choosing the factor state φ =

⊗
x∈x

φx with

φx(A) = Tr

((
λ

1+λ 0

0 1
1+λ

)
A

)
,

one obtains the type I∞ factor for λ = 0 (when φ is pure), the hyperfinite type
II1 factor if λ = 1, and the hyperfinite type IIIλ factors (the ‘Powers factors’) if
0 < λ < 1.
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On the homomorphisms between generalized Verma modules arising
from conformally invariant systems

Toshihisa Kubo

In this talk we studied systems of differential operators that are equivariant under
an action of a Lie algebra. We call such systems of operators conformally invariant.
To explain the meaning of the equivariance condition, suppose that V → M is a
vector bundle over a smooth manifold M and g0 is a Lie algebra of first order
differential operators that act on sections of V . A system of linear differential
operators D1, . . . , Dn on sections of V is called a conformally invariant system
if, for each X ∈ g0, there are smooth functions CXij (m) on M so that, for all
1 ≤ i ≤ n, and sections f of V , we have

(1)
(
[X,Di]f

)
(m) =

n∑

j=1

CXji (m)(Djf)(m),

where [X,Dj] = XDj − DjX . By extending C-linearly, the identity (1) can be
applied equally well to the complexified Lie algebra g = g0 ⊗R C.

A typical example for a conformally invariant system of one differential operator

is the wave operator � = ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3
− ∂2

∂x2
4
on the Minkowski space R3,1.

(See for example the introduction of [4].)
The notion of conformally invariant systems generalizes that of quasi-invariant

differential operators introduced by Kostant in [3]. A systematic study of confor-
mally invariant systems recently started with the work of Barchini-Kable-Zierau
in [1] and [2].

Although the theory of conformally invariant systems can be viewed as an
analytic-geometric theory, it is also closely related to algebraic objects such as
generalized Verma modules. It has been shown in [2] that a conformally invariant
system yields a homomorphism between certain generalized Verma modules, one
of which is non-scalar. A homomorphism between generalized Verma modules is
called standard if it is induced from a homomorphism between the corresponding
(full) Verma modules.

In [5] we have built a number of systems of first and second order differen-
tial operators associated to a maximal parabolic subalgebra q of quasi-Heisenberg
type, that is, a maximal parabolic subalgebra q = l ⊕ n with nilpotent radical n
satisfying the conditions that [n, [n, n]] = 0 and dim([n, n]) > 1. Then, in [6], we
determined whether or not the homomorphisms between the generalized Verma
modules arising from the systems of operators constructed in [5] are standard. The
construction in [5] was uniform, but there were three open cases. Recently these
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gaps were filled in [7]. The standardness of the homomorphisms arising from the
systems in the open cases was also determined.

To describe our work more precisely, we now briefly review the results of [5],
[6], and [7]. Let G be a complex, simple, connected, simply-connected Lie group
with Lie algebra g. Give a Z-grading g =

⊕r
j=−r g(j) on g so that q = g(0) ⊕⊕

j>0 g(j) = l ⊕ n is a maximal parabolic subalgebra. Let Q = NG(q) = LN .
For a real form g0 of g in which the parabolic subalgebra q has a real form q0,
define G0 to be an analytic subgroup of G with Lie algebra g0. Set Q0 = NG0(q).
Our manifold is M = G0/Q0 and we consider a line bundle Ls → G0/Q0 for each
s ∈ C. By the Bruhat theory, the homogeneous space G0/Q0 admits an open
dense submanifold N̄0Q0/Q0. We restrict our bundle to this submanifold. The
systems that we construct act on smooth sections of the restricted bundle. By
slight abuse of notation, we refer to the restricted bundle as Ls.

We construct systems of kth order differential operators from L-irreducible con-
stituents of g(−r + k)⊗ g(r) for 1 ≤ k ≤ 2r. The systems of operators are called
Ωk systems. (For the details see Section 3 of [5].) The conformal invariance of
Ωk systems depends on the complex parameter s for the restricted line bundle
Ls → N̄0. We then say that an Ωk system has special value sk if the system is
conformally invariant on the line bundle Lsk .

In [5] and [7], we find the special values of the Ω1 system and Ω2 systems
associated to a maximal parabolic subalgebra q of quasi-Heisenberg type. The
special value s1 of the Ω1 system is s1 = 0. To describe the results for the Ω2

systems, let λi be the fundamental weight for the simple root αi that determines
the maximal parabolic subalgebra q. Tables 1 summarizes the line bundles Ls =
L(sλi) on which Ω2 systems are conformally invariant. For the details of the table
see Sections 4-7 of [5]. (Also see [7].)

Table 1. Line bundles with special values

Parabolic subalgebra Ω2|V (µ+ǫγ)∗ Ω2|V (µ+ǫnγ)∗

Bn(i), 3 ≤ i ≤ n− 2 L
(
(n− i− 1

2 )λi
)

L(λi)
Bn(n− 1) L

(
1
2λn−1

)
L(λn−1)

Bn(n) L(−λn) −
Cn(i), 2 ≤ i ≤ n− 1 L

(
(n− i+ 1)λi

)
L(−λi)

Dn(i), 3 ≤ i ≤ n− 3 L
(
(n− i− 1)λi

)
L(λi)

E6(3) L(λ3) L(2λ3)
E6(5) L(λ5) L(2λ5)
E7(2) L(2λ2) −
E7(6) L(λ6) L(3λ6)
E8(1) L(3λ1) −
F4(4) L(−λ4) −

In [6] and [7], for k = 1, 2, we classify the homomorphisms ϕΩk
between the

generalized Verma modules arising from the conformally invariant Ωk system(s) as
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Parabolic subalgebra Ω2|V (µ+ǫγ)∗ Ω2|V (µ+ǫ+nγ)∗
Ω2|V (µ+ǫ−nγ)∗

Dn(n− 2) L(λn−2) L(λn−2) L(λn−2)

standard or non-standard. The map ϕΩ1 is standard for each parabolic subalgebra
q under consideration. Tables 2 exhibits the classification for ϕΩ2 .

Table 2. The classification of ϕΩ2

Parabolic subalgebra Ω2|V (µ+ǫγ)∗ Ω2|V (µ+ǫnγ)∗

Bn(i), 3 ≤ i ≤ n− 2 standard non-standard
Bn(n− 1) standard non-standard
Bn(n) standard −

Cn(i), 2 ≤ i ≤ n− 1 non-standard standard
Dn(i), 3 ≤ i ≤ n− 3 non-standard non-standard

E6(3) non-standard non-standard
E6(5) non-standard non-standard
E7(2) non-standard −
E7(6) non-standard non-standard
E8(1) non-standard −
F4(4) standard −

Parabolic subalgebra Ω2|V (µ+ǫγ)∗ Ω2|V (µ+ǫ+nγ)∗
Ω2|V (µ+ǫ−nγ)∗

Dn(n− 2) non-standard non-standard non-standard

Now we have the following consequence:

Consequence. Let q be a maximal parabolic subalgebra of quasi-Heisenberg type.
The map ϕΩk

for k = 1, 2 is non-standard if and only if the special value sk of an
Ωk system is a positive integer.

Problem. Give a theoretical proof or understand mathematical significance of
the consequence.
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Stepwise Square Integrable Representations of Nilpotent Lie Groups

Joseph A. Wolf

The talk started with a quick review of Kirillov’s theory of unitary representa-
tions of nilpotent Lie groups [1], and my adaptation of this with Calvin Moore
for square integrable (modulo the center) representations [2]. Then we described
the conditions for a nilpotent Lie group to be foliated into subgroups that have
square integrable (relative discrete series) unitary representations, that fit together
to form a filtration by normal subgroups. We used that filtration to construct a
class of “stepwise square integrable” representations on which Plancherel measure
is concentrated and explicit. Further, we worked out the character formulae for
those stepwise square integrable representations, and we gave an explicit poly-
nomial Plancherel formula. Next, we used some structure theory to check that
all these constructions and results apply to nilradicals of minimal parabolic sub-
groups of real reductive Lie groups. Finally, we developed multiplicity formulae,
again explicit, for compact quotients N/Γ where Γ respects the filtration.

Very few real parabolic subgroups have nilradicals with square integrable repre-
sentations [4], and those are generally maximal parabolics, so it was a surprise that
all minimal parabolics have nilradicals with stepwise square integrable represen-
tations. Also, it is interesting that those nilradicals have such explicit Plancherel
formulae, and that many of the technical results on lattice subgroups (see, for
example, [3]) extend nicely to nilpotent groups with stepwise square integrable
representations.

Commutative nilmanifolds are of the form N ·K/K whereK is compact and the
normal subgroup N is 2–step nilpotent. Running through Vinberg’s classification
one sees that in all but a few cases N has square integrable representations. The
application of stepwise square integrable representation theory may help to explain
these few exceptions.
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Infinite-dimensional Schur–Weyl duality and the Coxeter–Laplace
operator

Anatoly M. Vershik

(joint work with N.Tsilevich)

We extend the classical Schur–Weyl duality between representations of the
groups SL(n,C) and SN to the case of SL(n,C) and the infinite symmetric group
SN. Our construction is based on a “dynamic,” or inductive, scheme of Schur–
Weyl dualities. It leads to a new class of representations of the infinite symmetric
group, which have not appeared earlier. We describe these representations and,
in particular, find their spectral types with respect to the Gelfand–Tsetlin alge-
bra. The main example of such a representation acts in an incomplete infinite
tensor product. As an important application, we consider the weak limit of the
so-called Coxeter–Laplace operator, which is essentially the Hamiltonian of the
XXX Heisenberg model, in these representations.
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Koszul tensor categories of representations of Mackey Lie algebras
and their dense subalgebras

Ivan Penkov

(joint work with Vera Serganova)

In [DPS] (see also Oberwolfach Report 51/2010, pp.3016− 3018) we introduced
the Koszul category of integrable representations Tg of the simple direct limit Lie
algebras g = sl(∞) = lim−→ sl(n), g = o(∞) = lim−→ o(n), g = sp(∞) = lim−→ sp(n).

In this report we describe an extension of our results from [DPS] to a class of
infinite-dimensional Lie algebras which we call Mackey Lie algebras. We also
consider dense subalgebras of Mackey Lie algebras and draw corollaries about
their respective categories of tensor representations.

The base field is C. Let V and W be two vector spaces with a non-degenerate
pairing V ×W → C. Then each of V and W can be considered as subspace of the
dual of the other:

V ⊂W ∗, W ⊂ V ∗.

Let EndW V denote the algebra of endomorphisms φ : V → V such that φ∗(W ) ⊂
W where φ∗ : V ∗ → V ∗ is the dual endomorphism. Clearly, there is a canonical
isomorphism of algebras

EndW V
∼→ EndV W, φ 7−→ φ∗|W .

We call the Lie algebra associated with the associative algebra EndW V a Mackey
Lie algebra and denote it by mV,W . G. Mackey calls the pair V, W a linear system
and was the first to study linear systems in depth [M].

If V and W are countable dimensional, then up to isomorphism there is only
one linear system [M]. In this case we set V∗ := W and write mV,V∗ . According
to Mackey, there exists a basis {v1, v2, . . . } of V such that V∗ = span{v∗1 , v∗2 , . . . },
where {v∗1 , v∗2 , . . . } is the set of linear functionals dual to {v1, v2, . . . }. Then it
is easy to check that mV,V∗ is identified with the Lie algebra of matrices X =
(xij)i≥0,j≥0 such that each row and each column of X has finitely many non-zero
entries. The Mackey Lie algebra mV,V ∗ (for a countable dimensional space V )
is identified with the Lie algebra of matrices X = (xij)i≥0,j≥0 each column of
which has finitely many non-zero entries. Alternatively, if a basis of V as above
is enumerated by Z (i.e we consider a basis {vj}j∈Z such that V∗ = span{v∗j }j∈Z

where v∗j (vi) = δi,j), then mV,V∗ is identified with the Lie algebra of matrices
X = (xij)i,j∈Z whose rows and columns have finitely many non-zero entries, and
mV,V ∗ is identified with the Lie algebra of matrices X = (xij)i,j∈Z whose columns
have finitely many non-zero entries.

The orthogonal and symplectic Mackey Lie algebras are introduced as follows.
If V is a vector space endowed with a non-degenerate symmetric (respectively,
antisymmetric) form, then omV (respectively, spmV ) is the Lie algebra

{X ∈ mV,V | (Xv,w) + (v,Xw) = 0 ∀ v, w ∈ V }.
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If V is countable dimensional, there always is a basis {vi, wj}i,j∈Z of V such that
span{vi}i∈Z and span{wj}j∈Z are isotropic spaces and (vi, wj) = δi,j for i 6= j.
The corresponding matrix form of omV consists of all block matrices

(
aij bkl
crs −aji

)

each row and column of which are finite and in addition bkl = −blk, crs = −csr
where i, j, k, l, r, s ∈ Z. The matrix form for spmV is similar: here bkl = blk, crs =
csr.

One verifies that there are the following exact sequences of Lie algebras:

0→ V ⊗W → mV,W → mV,W /(V ⊗W )→ 0,

0→ Λ2V → omV → omV /Λ
2V → 0,

0→ S2V → spmV → spmV /S
2V → 0.

In what follows, m̃ stands for one of the Lie algebras mV,W , omV , spV , and
m ⊂ m̃ is the respective subalgebra V ⊗W,Λ2V or S2V . When V and W are
countable dimensional we write g̃ instead of m̃, and g instead of m. Note that in
the letter case V ⊗ V∗ is isomorphic to the Lie algebra gl(∞) of finitary infinite
matrices, while Λ2V ≃ o(∞) and S2V ≃ sp(∞) in the respective cases when V is
endowed with a symmetric or simplectic non-degenerate form.

The following result describes the structure of the Mackey Lie algebras g̃.

Theorem 1. a) Let V have basis {vα}α∈Z and V∗ := span{v∗α}α∈Z where v∗α(vβ) =
δα,β. Set C =

∑
α vα ⊗ v∗α. Then (V ⊗ V∗) ⊕ CC is an ideal in mV,V∗ and the

quotient
mV,V∗/ ((V ⊗ V∗)⊕ CC)

is a simple Lie algebra.
b) If V is equipped with a non-degenerate symmetric (respectively, antisymmet-

ric) bilinear form then omV /Λ
2V (respectively spmV /S

2V ) is a simple Lie algebra.

A Mackey Lie algebra mV,W has two natural representations V and W (which
are non-isomorphic). For omV and spmV , V is the (unique up to isomorphism)
natural representation. We now define the category TmV,W

(respectively TomV

or TspmV
) of finite-length tensor modules as the full subcategory of the cate-

gory mV,W−mod (respectively, omV−mod or spmV−mod) whose objects are fi-
nite length subquotients of direct sums of copies of the tensor algebra T (V ⊕W )
(respectively T (V )). Note that TmV,W

(respectively TomV
and TspmV

) is a ten-
sor category with respect to usual tensor product of mV,W−modules (respectively
omV− or spmV−modules).

The following proposition provides equivalent characterizations of the category
Tg̃. We first need some definitions.

We call a subalgebra k of a Mackey Lie algebra g̃ large if it contains the annihila-
tor in g̃ of a pair of finite-dimensional subspaces V ′ ⊂ V,W ′ ⊂W . A g̃−moduleM
is g−integrable if any vectorm ∈M generates a finite-dimensional gfd−submodule
of M where gfd is any finite dimensional subalgebra of g. A g̃−module M is an
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absolute weight module if for every splitting Cartan subalgebra h of g (the defini-
tion see in [DPS]), M considered as an h−module is isomorphic to a direct sum of
(not necessarily finite-dimensional) weight spaces.

Proposition 2. The following conditions on a g̃-module M are equivalent:
-M is an object of Tg̃;
-M is a finite length g−integrable g̃−module and each vector m ∈ M has a large
annihilator in g̃;
-M is a finite length absolute weight-module.

Next we define dense subalgebras of Mackey Lie algebras. Let g′ be a Lie
algebra and M be a g′-module. A Lie subalgebra g′′ ⊂ g′ acts densely on M if for
any finite set of vectors m1, . . . ,mn ∈ M and any g′ ∈ g′ there is g′′ ∈≫′′ such
that g′′ · mi = g′ · mi for i = 1, . . . , n. We say that a Lie subalgebra a ⊂ mV,W
(respectively a ⊂ omV or a ⊂ spmV ) is dense in mV,W if a acts densely on V ⊕W
(respectively V ).

Examples of dense subalgebras:

(1) For any Mackey Lie algebra m̃, the subalgebra m ⊂ m̃ is dense in m̃.
(2) Let W = V∗. Then the Jacobi Lie algebra jV,V∗ consisting of matrices

J = (jkl)k,l∈Z such that jkl = 0 when |k − l| > mJ for some mJ ∈ Z>0, is
dense in mV,V∗ .

(3) The Lie algebra sl(2∞) (its definition see below) can be embedded into
mV,V∗ as a dense subalgebra. Recall that sl(2∞) can be defined as the
direct limit of the chain of inclusions

sl(2) ⊂ sl(4) ⊂ · · · ⊂ sl(2n) ⊂ sl(2n+1) ⊂ . . .
where A ∈ sl(2n) is being mapped to

(
A 0
0 A

)
.

Notice that if φn : V2n × V ∗
2n → C is the canonical pairing of the nat-

ural representation V2n of sl(2n) with its dual, then the mappings φn

2n−1

define a non-degenerate pairing between lim−→V2n and lim−→(V ∗
2n), where V2n

(respectively V ∗
2n) is embedded into V2n+1 (respectively V ∗

2n+1) via the for-
mula v 7→ v ⊕ v. Since the pairing (lim−→V2n) × (lim−→V ∗

2n) → C is clearly

sl(2∞)−invariant, we obtain an injective homomorphism

sl(2n)→ mV,V∗

for V := lim−→V2n , V∗ := lim−→(V ∗
2n).

If a ⊂ m̃ is a dense subalgebra, a category Ta is defined in the same way as
the category Tm̃ via the tensor algebra T (V ⊕ W ) (respectively T (V ) for m̃ =
omV , spmV ).

The following is the main result of this report.
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Theorem 3. Let m̃ be a Mackey Lie algebra and a ⊂ m̃ be a dense subalgebra.
Then the restriction functor

R : Tm̃ → Ta

is an equivalence of tensor categories.

Corollary 4. The subalgebra m ⊂ m̃ is dense in m̃, hence for any dense subalgebra
a ⊂ m̃ the tensor categories Tm and Ta are equivalent.

Corollary 5. If V and V∗ = W are countable dimensional, then Tg is a Koszul
tensor category in the sense of [DPS] and T (V ⊕ V∗) (respectively T (V ) for g̃ =
omV , spmV ) is an injective cogenerator of Tg. Hence the same applies to Tg̃ and
to Ta.

Corollary 6. Under the assumption of Corollary 5, the description of irreducible
objects of Tg from [DPS], as well as the explicit computation of the dimensions
of all Ext’s between irreducibles, applies to Tg̃ and Ta for any dense subalgebra
a ⊂ g̃.
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Elliptic Lie Algebras and Gauge Invariant Functions

Kenji Iohara

(joint work with N. Suzuki, H. Terajima and H. Yamada)

A surface singularity (X, ∗) is called a simple singularity if it is isomorphic to
(C2/Γ, 0) for a finite subgroup Γ of SU2. It is known that such singularities are
classified in terms of simply laced Dynkin diagram, i.e., of type Al, Dl and El. As
one may expect, such a singularity admits a Lie theoretic construction.

Let G be a connected and simply connected simple Lie group over C of type
Al, Dl or El, g be its Lie algebra, h ⊂ g be a Cartan subalgebra and W be the
Weyl group with respect to h. Recall that

χ : g −→ h/W ; x = xs + xn 7−→ G.xs ∩ h,

where x = xs + xn signifies the Jordan-Chevalley decomposition with semi-simple
xs and nilpotent xn, is called the adjoint quotient map. The next theorem was
proved by E. Breiskorn [1]:
Theorem Let x ∈ g be a subregular nilpotent element, i.e., a nilpotent element
x such that dimZg(x) = rank g + 2. Let S ⊂ g be a transversal slice of x to
the G-orbit G.x, i.e., S ⊂ g is a locally closed subvariety satisfying i) x ∈ S,
ii) G × S → g; (g, s) 7→ Ad(g)(s) is smooth, and iii) dimS = codimG.x.
Then, χ|S : (S, x)→ (h/W, 0) is a semi-universal deformation of the corresponding
singularity.
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The proof of this theorem can be found in [4] and [5]. An explicit choice of a
transversal slice, called a Slodowy slice nowadays, is also given.

Now, we consider a normal surface singularity (X, ∗), called a simple elliptic
singularity studied by K. Saito [3]. This is a singularity whose exceptional di-
visor of the minimal resolution consists of a single nonsingular elliptic curve. In
particular, we are interested in the case when (X, ∗) is an isolated hypersurface
singularity; there are 3 such cases

Ẽ6 x3 + y3 + z3 + λxyz = 0 (λ 6= −3)
Ẽ7 x4 + y4 + z2 + λxyz = 0

Ẽ8 x6 + y3 + z2 + λxyz = 0

The first aim of the work is to establish an analogous theorem to the above cited
theorem of Brieskorn and Slodowy for these 3 singularities. For this purpose, we
need

Step 1. the correct choice of a Lie algebra (and group),
Step 2. an analogue of the adjoint quotient map, and
Step 3. an analogue of a Slodowy slice.

The aim of this talk is to explain the Step 1. and the actual state of the Step 2.
which is a work in progress.

Step 1. The geometry of principal G-bundles over Eτ := C/Z⊕ τZ (Im τ > 0)
tells us what one should do.
Denote z = x + τy ∈ C (x, y ∈ R), ∂ = τ∂x − ∂y, w = e2π

√
−1z ∈ C∗ and

q := e2π
√
−1τ . Set

C(g)τ = {∂-connections on G-bundles over Eτ},
Lhol(G) := {g : C∗ → G; holomorphic}.

Notice that C(g)τ ∼= E(g) := C∞(Eτ , g) as affine space and the latter with point-
wise Lie algebra structure is called an elliptic Lie algebra. It is known that the
orbits of

(1) Lhol(G) by the q-twisted conjugation of Lhol(G): (g.h)(w) := g(qw)h(w)g(w)−1,
and of

(2) C(g)τ by the gauge action of E(G): (∂,A).g = (∂,Ad(g−1)A+ g−1∂g),

both parametrize the isomorphism classes of holomorphic principal G-bundles over
Eτ . See [2] and references therein, for detail.

This suggests that the right choice of a Lie algebra like object is C(g)τ and
of a Lie group is Lhol(G). But from view point of invariant theory, this is not a
good choice; we need a C∗

-extended version of these objects, i.e., a holomorphic

affine Lie group and a C∗-fibration C∗ → C̃(g)τ → C(g)τ !

Step 2. The gauge action of E(G) on C(g)τ lifts to C̃(g)τ and an analogue of the

adjoint quotient map should be an E(G)-invariant map χ : C̃(g)τ → Crank g+1, if

it exists. We observe that the restriction of χ on (∂, h)×C∗ ⊂ C̃(g)τ can be given
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by the characters of fundamental representations over the corresponding affine Lie
algebras. In our work in progress, we try showing the global existence of such
holomorphic maps (in the Fréchet sense). Suppose that this has been proved.
Then, we can deduce the following facts:

(1) The moduli space of holomorphic semi-stable principal G-bundles over Eτ
is isomorphic to the weighted projective space P(a∨0 , a

∨
1 , · · · , a∨rankg), where

a∨i are the co-labels of the corresponding affine Lie algebra, and

(2) χ−1(0) is the unstable locus of C̃(g)τ .
Thus, the unstable locus of C̃(g)τ plays a role of the nilpotent cone of g in the
classical setting and the singularity in question should be living there.

Step 3. At least, we have a candidate...
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Classical algebras as graded commutative algebras

Valentin Ovsienko

The starting point of this work is the following observation, see [5]. The quater-
nion algebra H is Z3

2-commutative in the following sense. Associate to the elements
of standard basis {1, i, j, k} of H the following elements of Z3

2:

1̄ = (000), ī = (011), j̄ = (101), k̄ = (110).

The usual product of quaternions then satisfies the condition of graded commuta-
tive algebra, i.e.,

(1) b · a = (−1)〈ã,b̃〉a · b,
where 〈 , 〉 is the usual scalar product of 3-vectors. This grading of H is different
from the usual Z2

2-grading [4, 1].
It turns out that the above example is universal. The following result was

obtained in [6].

Theorem 1. If the abelian group G is finitely generated, then for an arbitrary
G-commutative algebra A, there exists n such that A is (Z2)

n
-commutative in the

sense of (1), where the bilinear map 〈 , 〉 is the usual scalar product on (Z2)
n
.
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The above grading can be easily extended to any Clifford algebra. We then
show that every finite-dimensional simple associative G-commutative algebra over
C or over R is isomorphic to a Clifford algebra.

The problem of developing linear algebra with coefficients in the algebra of
quaternions is a classical problem formulated by Cayley. This subject was inten-
sively developed by many authors including Study, Dieudonné, Gelfand,... The
commonly accepted version of quaternionic determinant is that of Dieudonné [3].
However, the Dieudonné determinant lacks almost all usual properties of the de-
terminant, such as linearity in lines and columns, it is not polynomial. Therefore
it is not related to any notion of trace.

A new approach using the notion of graded commutative algebras was recently
developed in [2]. Every matrix with coefficients in H (or, more generally, in Clp,q)
corresponds to a homomorphism of graded modules and is written in the form:

(2) A =




A11 . . . A1p

. . . . . . . . .

Ap1 . . . App


 ,

One then obtains a natural notion of trace generalizing that of super trace.

Theorem 2. There exists a unique (up to multiplication by a scalar of degree 0)
Clp,q-linear map gtr : Mat(N,A)→ A, such that gtr ([A,B]) = 0. It is defined for
a homogeneous matrix A by

gtr(A) =

p∑

k=1

(−1)〈xk+Ā, xk〉 tr(Akk) ,

where xk are the degrees of the components of the module, tr is the usual trace and
Akk are diagonal blocks of A.

Furthermore, one has the notion of graded determinant and Berezinian related
to the draded trace by the usual Liouville formula. It is interesting that one re-
covers the Dieudonné determinant in the particular case of homogeneous matrices
of degree 0.
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[3] J. Dieudonné, Les dt́erminants sur un corps non-commutatif, Bull. Soc. Math. France, 71
(1943), 27–45.

[4] V. Lychagin, Colour calculus and colour quantizations, Acta Appl. Math. 41 (1995), 193–
226.

[5] S. Morier-Genoud, V. Ovsienko, Well, Papa, can you multiply triplets?, Math. Intelligencer,
31 (2009), 1–2.

[6] S. Morier-Genoud, V. Ovsienko, Simple graded commutative algebras, J. Alg. 323 (2010),
1649–1664.



Representations of Lie Groups and Supergroups 783

Spherical functions on compact Gelfand pairs of rank one

Maarten van Pruijssen

(joint work with Gert Heckman)

TheK-biinvariant functions on a compact connected Riemannian symmetric space
of rank one can be identified with families of Jacobi polynomials. The members
of such a family are orthogonal, they satisfy a recurrence relation and they are
eigenfunctions of a hypergeometric differential operator.

We generalize this construction. Let (G,K) be a pair of compact Lie groups
with G simple and K connected and let P+

G and P+
K be two choices of sets of

dominant integral weights. Given an irreducible representation π of G of highest
weight λ ∈ P+

G and τ an irreducible representation of K of highest weight µ ∈ P+
K

we denote by mG,K
λ (µ) the number of times that µ occurs in the decomposition of

the restriction π|K of π to K.

A triple (G,K, τ) is called a multiplicity free triple if mG,K
λ (µ) ≤ 1 for all

λ ∈ P+
G . If we can vary µ ∈ P+

K in a certain face F of the P+
K then we call

(G,K,F ) a multiplicity free system. By a face F ∈ P+
K we mean the integral span

of a number of fundamental weights of K in P+
K .

If (G,K,F ) is a multiplicity free system then (G,K) is automatically a Gelfand
pair. We classified the multiplicity free systems with (G,K) a Gelfand pair of rank
one in [6] and the forthcoming paper [5], the result is in Table 3. The spherical
weight λsph ∈ P+

G parametrizes all the irreducible G-representations that contain
the trivial K-representation upon restriction.

For each item in Table 3 we determine the set

P+
G (µ) = {λ ∈ P+

G |mG,K
λ (µ) = 1}.

In particular, P+
G (0) = Nλsph. In the generality of Table 3 we need a bit of

structure to determine the sets P+
G (µ). Let A ⊂ G be a circle outside K and let

M = ZK(A) be the centralizer of A in K. Let TM ⊂M be a maximal torus. The
torus TMA ⊂ G is maximal and if we use this torus to describe the representations
of G then we can decompose the highest weight λ = λA+λM ∈ P+

G of a G-type π
into an A- and an M -part. We show that the M -part is the highest weight of an
M -type that occurs in any K-representation τ that occurs in π.

On the other hand, if λ ∈ P+
G (µ) then so is λ + λsph. This shows that the

set P+
G (µ) is determined by the M -types that occur in µ and the spherical direc-

tion λsph. In the case P+
G (0) one considers the tensor products πλ ⊗ πλsph

of G-

representations with weights λ ∈ P+
G (0) and πλsph

the irreducible G-representation
of highest weight λsph. The decomposition of these tensor products lead to a three
term recurrence relation for the involved spherical functions, see e.g. [7].

We show that we get a recurrence relation for the spherical functions of type
µ if we multiply with the zonal spherical function that is associated to λsph. By
analyzing the sets P+

G (µ) we obtain information about the set of µ-spherical func-
tions. It turns out that that this set can be described in terms of vector valued
polynomials. By arranging the vector valued polynomials of degree d in a matrix
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G K λsph faces F
SU(n+ 1) U(n) ̟1 +̟n any
SO(2n) SO(2n− 1) ǫ1 any

SO(2n+ 1) SO(2n) ̟1 any
Sp(2n) Sp(2n− 2)× Sp(2) ̟2 dimF ≤ 2
F4 Spin(9) ̟1 dimF ≤ 1 or

F = 〈ω1, ω2〉
Spin(7) G2 ̟3 dimF ≤ 1
G2 SU(3) ̟1 dimF ≤ 1

Table 3. Classification of multiplicity free systems of rank one.

we obtain families of matrix valued polynomials. These families have properties
that are similar to the properties of families of Jacobi polynomials: they satisfy
orthogonality relations (deduced from Schur orthogonality), the satisfy a three-
term-recurrence relation (deduced from the decomposition of the tensor products)
and they are simultaneous eigenfunctions for a commutative algebra of differential
operators.

The description of the families of spherical functions can become fairly explicit,
see e.g. [1], [4], [2] and [3]. The construction that we described above depends
heavily on the structure of the set P+

G (µ). Ineed, the structure of P+
G (µ) manages

the degree of the involved polynomials. It would be desirable to have a better
understanding of this structure, instead of the case by case analysis that we have
used so far. This may then lead to a generalization of this construction to families
of matrix valued polynomials in multiple variables, possessing nice properties that
can be deduced from the Lie theory.
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Cartan decompositions for spherical spaces

Bernhard Krötz

(joint work with Thomas Danielson, Henrik Schlichtkrull)

Let G be a real reductive group, and H a reductive subgroup of G. We call the
homogeneous space G/H spherical provided H admits an open orbit on G/P ,
where P < G is a minimal parabolic subgroup. According to Wolf all symmetric
spaces are spherical.

Examples of non-symmetric spaces are provided by triple spaces: G = G0 ×
G0 ×G0 and H = diag(G0) for

(1) G0 = SL(2,R), SL(2,C), SOe(n, 1) (n = 2, 3, . . . )

It is interesting, in the non-symmetric setting, to explore properties which play an
important role for the harmonic analysis on symmetric spaces.

One important structural result for symmetric spaces is the polar decomposition
G = KAH . Here K ⊂ G is a maximal compact subgroup, and A ⊂ G is abelian.
Polar decomposition for a Riemannian symmetric space G/K is due to Cartan,
and it was generalized to reductive symmetric spaces in the form G = KAH by
Flensted-Jensen.

For triple spaces we show that indeed these spaces admit a polar decomposition
as above, and we determine precisely for which maximal split abelian subgroups
A the decomposition is valid. For the simplest choice of group A we describe the
indeterminateness of the A-component for a given element in G, and we identify
the invariant measure on G/H in these coordinates.

We conclude that there exist maximal split abelian subgroups A for which
G = KAH , and for which PH is open for all minimal parabolic subgroups P with
P ⊃ A, a property which plays an important role for estimating matrix coefficients
on G/H [2].

An interesting observation (which surprised us) is that in some cases there are
also maximal split abelian subgroups A for which PH is open for all minimal
parabolic subgroups P with P ⊂ A, but for which the polar decomposition fails.

Further, we introduce an infinitesimal version of the polar decomposition, and
show that in the current setting it is valid if and only if the global polar decom-
position G = KAH is valid.

For more general spherical spaces it is not clear whether polar decompositions
exist. However, in case G is quasisplit and H < G self-normalizing, then one can
show that there exists a compact subset Ω ⊂ G and finitely many A1, . . . , An such
that

n⋃

j=1

ΩAjH = G

and with PjAjH open for all parabolics Pj above Aj , j = 1, . . . , n.
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A characterization of non-tube type Hermitian symmetric spaces by
visible actions

Atsumu Sasaki

1. Introduction

Let us begin the talk with two facts on the relation between the multiplicity of
a representation and the geometry.

The first fact is proved by T. Kobayashi and T. Oshima [9]. Let G be a
reductive algebraic group and H its reductive algebraic subgroup. Then, for
a pair (G,H), the homogeneous space G/H is real spherical, namely, there ex-
ists an open P -orbit in G/H where P is a minimal parabolic subgroup of G, if
and only if the dimension of the intertwiners for any irreducible admissible rep-

resentation π ∈ Ĝad into the space C∞(G/H) of smooth functions on G/H is
finite, namely, dimHom(π,C∞(G/H)) < ∞. Moreover, the complexified GC/HC

of G/H is spherical, namely, GC/HC has an open Borel-orbit, if and only if
sup

π∈Ĝad
dimHom(π,C∞(G/H)) <∞.

The second fact is concerned with the complex geometry as follows. Let H
be a Lie group and V a H-equivariant Hermitian holomorphic vector bundle over
a complex manifold D. Now, we consider a unitary representation H which is
realized in the space O(D,V) of holomorphic sections of V → D. When is H
multiplicity-free? For this, we consider a unitary representation of the isotropy
subgroup Hx at x ∈ D on the fiber Vx. In general, the property of multiplicity-
freeness of the unitary representationH is not fulfilled although Vx is multiplicity-
free as a representation of Hx for any x ∈ D. However, this does hold if H acts
on the base space D in a strongly visible fashion. This theory is established by
T. Kobayashi (see [4, 5, 8]) and called propagation theorem of multiplicity-freeness
property from fibers to O(D,V). This idea goes back to Gelfand–Kazhdan, S.
Kobayashi [3], and Faraut–Thomas [1].

In summary, we have seen two different types of theorems, but both showing
interaction between the multiplicity of representations and geometry. The common
point is that one can expect some slice, or in other words, a kind of Cartan
decomposition. In my talk, we discuss some family of examples which sit in the
intersection of these two facts.
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2. Visible actions on complex manifolds

A holomorphic action of a Lie group H on a connected complex manifold D
is called strongly visible if there exists a slice S in D and an anti-holomorphic
diffeomorphism σ on D satisfying the following conditions:

S meets every H-orbit in D,(V.1)

σ|S = idS ,(S.1)

σ preserves each H-orbit in D.(S.2)

We allow that S meets every H-orbit twice or more, i.e. S is not necessarily a
complete representative of H-orbits in D.

In the Kobayashi’s original definition [5, Definition 3.3.1], the concept of strongly
visible actions is slightly broader, namely, he calls that this action is strongly visible
if a complex manifold D contains an open set satisfying the conditions (V.1)–(S.2).
For simplicity, we adopt this one in my talk.

3. A characterization of non-tube type Hermitian symmetric spaces

by visible actions

Let G/K be a bounded symmetric domain. Since K is not semisimple, K has
a non-trivial center. It is known that the dimension of its center is one. Then,
G/K is a Hermitian symmetric space of non-compact type. We set Ks := [K,K]
which does not coincides with K. Then, we consider the complexification GC/K

s
C

of G/Ks which is non-symmetric. By Matsushima’s theorem, GC/K
s
C
is a Stein

manifold.
We take a compact real form Gu of GC.

Theorem 3.1 ([12, Theorem 1.1]). The following are equivalent for non-compact
irreducible Hermitian symmetric space G/K:

(1) The Gu-action on GC/K
s
C
is strongly visible.

(2) G/K is of non-tube type.

Let us illustrate our construction of a slice for the Gu-action on GC/K
s
C

in
case of non-tube type G/K. For this, we find a subset A satisfying the group
decomposition GC = GuAK

s
C
.

The key idea for finding such an A is as follows. Due to Flensted–Jensen [2],
we have a Cartan decomposition for any symmetric pair (G,H) of a reductive Lie
group G, namely, there exists an abelian B such that G = KBH . If H = K, then
G = KBK is nothing but the classical Cartan decomposition. Further, we use the
herringbone stitch method which was initiated by Kobayashi in [6].

We return to the setting of Theorem 3.1. Since (GC,KC) is a symmetric pair,
there exists an abelian A1 whose dimension equals the rank of the symmetric space
G/K such that GC = GuA1KC. Next, we find one-dimensional subgroups ZT, ZR

of the centralizer ZKC
(A1) which are not contained in the semisimple part Ks

C
such

that KC = ZTZRK
s
C
and ZT ⊂ Gu. There exists such ZT and ZR if G/K is of
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non-tube type, and conversely. Using the herringbone stitch method, we get

GC = GuA1KC = GuA1(ZTZRK
s
C) = GuZT(A1ZR)K

s
C = Gu(A1ZR)K

s
C.

Hence, we take A as A := A1ZR = ZRA1. It follows from our construction that A
is an abelian. Therefore, we conclude:

Corollary 3.2 ([12, Corollary 4.1]). For a non-tube type Hermitian symmetric
space G/K, we can find an abelian A with dimension rankG/K +dimZ(K) such
that we have a generalization of a Cartan decomposition GC = GuAK

s
C
. In par-

ticular, the A-orbit is a slice for the strongly visible Gu-action on GC/K
s
C
.

Finally, we sketch the proof of the implication (2) ⇒ (1), namely, GC/K
s
C
is

spherical if G/K is of non-tube type. Suppose that the Gu-action on GC/K
s
C

is strongly visible. It follows from propagation theorem of multiplicity-freeness
property (see Section 1) that the Hilbert space L2(Gu/K

s) of square integrable
functions on the compact homogeneous spaceGu/K

s is multiplicity-free as a repre-
sentation of Gu. Thanks to Vinberg–Kimelfeld [14], GC/K

s
C
is a spherical variety.

In view of the classification of irreducible spherical varieties due to Krämer [10],
G/K is of non-tube type.
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Semibounded non-Fock representations of generalized oscillator groups

Christoph Zellner

The aim of this talk is to report on a certain class of representations of (generalized)
oscillator groups. These groups are defined as follows: Let (V, ω) be a locally
convex symplectic vector space and γ : R → Sp(V ) be a one-parameter group of
symplectomorphisms defining a smooth action of R on V . The Lie group

G := Heis(V, ω)⋊γ R

is called an oscillator group, where Heis(V, ω) = R×ω V is the Heisenberg group.
We briefly explain the concept of semibounded representations as introduced in [5].
Let π : G → U(H) be a smooth unitary representation and dπ : g → End(H∞)
its derived representation. Then π is called semibounded if the self-adjoint op-

erators idπ(x) are uniformly bounded above for x in a non-empty open subset
of the Lie algebra g. As a first result, it was shown in [6] that every oscillator
group G, which has a semibounded representation π satisfying [g, g] 6⊆ ker dπ,
embeds into a standard oscillator GA. A standard oscillator group is of the form
GA = Heis(C∞(A), ωA) ⋊γ R, where γ is a unitary one-parameter group on a
Hilbert space H , C∞(A) is the space of γ-smooth vectors equipped with its nat-
ural C∞-topology, ωA(x, y) = Im〈Ax, y〉 and A is the self-adjoint generator of
γ satisfying A ≥ 0 and kerA = {0}. Further considerations show that, under
some mild assumption on G, every semibounded representation π of G extends
to a semibounded representation of GA. Hence the standard oscillator groups are
those which are relevant to get an understanding of semibounded representations.
Moreover, one may assume that π is normalized which means that dπ(1, 0, 0) = i1,
and sup Spec(idπ(0, 0, 1)) = 0.

The canonical example of a normalized irreducible semibounded representation
of GA is the Fock representation, and if inf SpecA > 0, this turns out to be the
only one. If inf SpecA = 0, then twisting the Fock representation with certain
automorphisms of GA already yields examples which are not equivalent to the
Fock representation. To obtain further examples of non-Fock representations, we
shall consider holomorphic extensions of semibounded representations of GA to
certain complex semigroups.

In general, the group GA does not have a complexification. However, by passing
to the space V O ⊂ V := C∞(A) of γ-holomorphic vectors equipped with its natural
topology, we obtain the dense subgroup GO

A := Heis(V O, ωA) ⋊γ R of GA. The
group GO

A has a complexification

GA,C := C×(ωA)C V
O
C ⋊γC C,

which contains the open subsemigroup SA := {(z, x, s) ∈ GA,C : Im(s) > 0}.
Consider the cone W := R × V O×]0,∞[ in the Lie algebra gA of GA. Then we
have the polar decomposition

ψ : GO
A ×W → SA, (g, w) 7→ g exp(iw)
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of SA, where ψ is a diffeomorphism and both ψ and ψ−1 are analytic. For a nor-
malized semibounded representation π of GA it turns out that idπ(x) is bounded
above for all x ∈W and the following extension theorem holds:

Theorem 1. For a normalized semibounded representation π of GA the map

π̂ : SA → B(H), g exp(iw)→ π(g)eidπ(w)

is a holomorphic representation of the complex semigroup SA.

With the help of the preceding theorem, many semibounded non-Fock repre-
sentations of standard oscillator groups can be obtained by extending continuous
representations of countably infinite dimensional Heisenberg groups. This was de-
scribed in the talk in more detail. Let us present the main result in the following:

Let (V, ω) be a countably infinite dimensional symplectic vector space. It is well
known that V admits the structure of a pre-Hilbert space with ω(x, y) = Im〈x, y〉.
Moreover V contains an orthonormal basis en, n ∈ N, and we equip V = lim−→Vn,

where Vn := span{e1, . . . , en}, with the direct limit topology. We call a unitary
representation π : Heis(V, ω)→ U(H) regular if it is continuous (w.r.t. the direct
limit topology on V ) and satisfies dπ(1, 0, 0) = i1. Then the derived representation
dπ gives rise to the canonical commutation relations.

Theorem 2. Let π : Heis(V, ω) → U(H) be a regular representation. Then there
exist a standard oscillator group GA = Heis(C∞(A), ωA)⋊γ R and a dense inclu-
sion ι : V →֒ C∞(A) such that the induced inclusion

Heis(V, ω) →֒ GA, (t, x) 7→ (t, ι(x), 0)

is a morphism of Lie groups. Moreover there exists a semibounded representation
π̃ : GA → U(H) such that π̃|Heis(V,ω) = π and the von Neumann-algebras generated
by π and π̃ coincide.

There exist very many non-equivalent irreducible regular representations of
Heis(V, ω), cf. e.g. [2]. Moreover Heis(V, ω) has regular factor representations
of type II and III, cf. [3], [1], [4]. Hence the preceding theorem entails that
there exist many non-equivalent semibounded irreducible representations as well
as semibounded type II and III representations of certain oscillator groups.

The results presented in this talk can be found in [7].
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Regularity properties of infinite-dimensional Lie groups

Helge Glöckner

Let G be a Lie group modelled on a locally convex space, with neutral element e
and Lie algebra g := L(G) := Te(G). To g ∈ G and a tangent vector v ∈ Tg(G),
associate v.g−1 := Tgρg−1(v) ∈ g, using right translation ρg−1 : G→ G, x 7→ xg−1.

Let k ∈ N0∪{∞}. The Lie group G is called Ck-regular if the initial value problem

η′(t).η(t)−1 = γ(t), η(0) = e

has a (necessarily unique) Ck+1-solution EvolG(γ) := η : [0, 1] → G for each Ck-
curve γ : [0, 1]→ g, and the map

(1) evolG : Ck([0, 1], g)→ G, evolG(γ) := EvolG(γ)(1)

is smooth (if k = ∞, then G is simply called regular). If G is regular and H
a 1-connected Lie group with Lie algebra h, then every continuous Lie algebra
homomorphism h → g is the tangent map of a smooth group homomorphism
H → G, by a famous theorem of John Milnor from 1984 – with many applications.

Besides basic facts, this note compiles examples of Ck-regular Lie groups, along
with applications of regularity and Ck-regularity. It should be mentioned that the
Ck-maps we use are so-called “Keller Ckc -maps.” For regularity in the inequivalent
“convenient setting” of analysis, see works of Kriegl, Michor and Teichmann.

1. New regular Lie groups from given ones.

(a) Let G be a Ck-regular Lie group and H ⊆ G be a Lie subgroup (or initial
Lie subgroup) of G such that H = {x ∈ G : (∀j ∈ J) φj(x) = ψj(x)} for some
families (φj)j∈J and (ψj)j∈J of smooth homomorphisms from G to Lie groups.
Then also H is Ck-regular.

Applying this to complex conjugation σ, we get one half of:

(b) If G is a real analytic Lie group which is a real Lie subgroup of a complex
Lie group GC with L(GC) = L(G)C and admitting an anti-holomorphic involutive
automorphism σ with fixed point set G, then GC is Ck-regular if and only if G is
Ck-regular and evolG (as in (1)) is real analytic.

The same conclusion holds if G is a real analytic local Lie group and GC a complex
analytic local Lie group with Lie algebra L(G)C. The definition of Ck-regularity
for local Lie groups is as above, except that EvolG only needs to be defined on an
open 0-neighbourhood in Ck([0, 1], g).

(c) Let G be a Lie group G which is a projective limit of Ck-Lie groups Gj as a
C∞-manifold and a Ck+1-manifold, such that all bonding maps and all limit maps
qj : G → Gj are smooth homomorphisms and the maps L(qj) separate points on
L(G) (e.g., L(G) might be the projective limit of the L(Gj)). Then G is Ck-regular.
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2. Some classical examples. The theory of ODEs in Banach spaces implies
that every Banach-Lie group is C0-regular. In particular, Cℓ(M,H) is C0-regular
for each Banach-Lie group H , compact smooth manifold M and ℓ ∈ N0. Using
1.c, we see that also the projective limit C∞(M,H) of the Cℓ(M,H) is C0-regular
(as shown first by Omori and co-workers, who also proved that Diff(M) is C0-
regular). More generally, if r, k ∈ N0 ∪ {∞} and H is an arbitrary Ck-regular
Lie group with Lie algebra h, one can use recent exponential laws [1] to identify
Ck([0, 1], Cr(M, h)) with Cr(M,Ck([0, 1], h)) and finds that G := Cr(M,H) is
Ck-regular because evolG can be identified with the smooth map Cr(M, evolH).

3. Further examples.

(a) Direct limits G =
⋃
n∈N

Gn of finite-dimensional Lie groups G1 ⊆ G2 ⊆ · · ·
(such that all inclusions are smooth homomorphisms) are C1-regular (as shown by
the author in 2005). Dahmen gave criteria for C1-regularity (resp, C0-regularity)
of G if the Gn are Banach-Lie groups [2]. Notably, Cω(M,H) is C0-regular for each
real analytic compact manifold M and Banach-Lie group H (work in progress).
Dahmen also showed that certain groups GermDiff(K) of germs of analytic dif-
feomorphisms around a compact subset K 6= ∅ of a complex Banach space X is
C0-regular. For X = Cd, K = {0}, such groups were first studied by Pisanelli in
1976. The result solves an open problem in a 2006 survey by K.-H. Neeb.

(b) If (Gj)j∈J is a family of Lie groups, then the “weak direct product” G :=⊕
j∈J Gj := {(xj)j∈J ∈

∏
j∈J Gj : xj 6= e for only finitely many j ∈ J} is a Lie

group [4]; its Lie algebra is the locally convex direct sum g =
⊕

j∈J L(Gj). If J is
countable and k <∞, then the natural continuous isomorphism of vector spaces

(2) Φ:
⊕

j∈JC
k([0, 1], L(Gj))→ Ck([0, 1], g)

is bicontinuous. If also each Gj is Ck-regular, then so is G, as evolG = f ◦ Φ−1

with the C∞-map f :
⊕

j∈J C
k([0, 1], L(Gj))→ G, (γj)j∈J 7→ (evolGj

(γj))j∈J .

Remark. If each Gj is non-discrete, then Φ−1 is not continuous in the cases when
J is uncountable (D. Vogt) or k =∞. It is not known whether G is regular then.

(c) Let Diff(M) be the Lie group of all smooth diffeomorphisms of a paracom-
pact finite-dimensional smooth manifold M , modelled on the space of compactly
supported smooth vector fields, as discussed in P.W. Michor’s book from 1980. As
asserted by Milnor (without prooof) in a 1982 preprint, Diff(M) is regular (and
indeed C0-regular) if M is σ-compact, by an unpublished argument of the author
which has now been extended to diffeomorphism groups of σ–compact orbifolds [6].

Remark. If M has uncountably many components Mj, then
⊕

j∈J Diff(Mj) is an

open subgroup of Diff(M). It is not known whether Diff(M) is regular in this
case, due to the problems described in the previous remark.

(d) If M is a σ-compact finite-dimensional smooth manifold, r ∈ N0 ∪ {∞}
and H a Lie group, then the compactly supported H-valued Cr-maps on M form
a Lie group G := Crc (M,H) (the author, 2002). If (Mn)n∈N is a locally finite



Representations of Lie Groups and Supergroups 793

sequence of compact submanifolds with boundary whose interiors cover M , then

ρ : Crc (M,H)→⊕
n∈N

Cr(Mn, H), γ 7→ (γ|Mn
)n∈N

is an isomorphism of Lie groups onto a Lie subgroup of the weak direct product,
which is an intersection of equalizers of suitable point evaluations. Hence G is Ck-
regular (for k <∞) if H is Ck-regular, by 1.a, 2. and 3.b. An analogous reasoning
shows that the gauge group Gau(P ) (with Gauc(P ) as an open subgroup) is Ck-
regular for finite k if P →M is a smooth principal bundle over a σ-compact finite-
dimensional smooth manifold M whose structure group is a Ck-regular locally
exponential Lie group. Then also the full Lie group Aut(P ) of symmetries of the
bundle (constructed in [7], cf. Wockel 2007 for compactM) is Ck-regular. In fact,

1→ Gau(P )→ Aut(P )→ Diff(M)P → 1

with a suitable open subgroup Diff(M)P of Diff(M), and it is known that Ck-
regularity is an extension property [5].

(e) The Lie group DiffS(Rn) of diffeomorphisms φ of Rn such that φ− id is in
the Schwartz space S(Rn,Rn) of rapidly decreasing functions has been used in the
physics literature (G.A. Goldin), and corresponding mapping groups S(Rn, H)
modelled on S(Rn, L(H)) have been considered in the book Boseck et al. 1981.
My Ph.D.-student B. Walter published constructions of the Lie group structure
and proofs of regularity for both groups (with H a Banach-Lie group) in 2012.

4. Some recent applications.

(a) A Lie group G has the Trotter property if the Trotter product formula
for γ1, γ2 ∈ Hom(R, G) converges uniformly on compact sets to the one-parameter
group γ with γ′(0) = γ′1(0)+γ

′
2(0). The class of Lie groups which satisfy the Trotter

property and are C0-regular is closed under central extensions of Lie groups [5].

(b) Using Frobenius theorems for vector distributions on infinite-dimensional
manifolds [3], one can make G/H a manifold with G→ G/H a smoothH-principal
bundle wheneverH is a Lie subgroup of a Lie groupG andH is a Banach-Lie group
or H is regular and L(H) is complemented in L(G), with L(G)/L(H) Banach.

5. L∞-regularity. Using L∞-maps to Fréchet spaces [4] and working with
differentiability almost everywhere, one can define L∞-regular Fréchet-Lie groups
(replacing Ck-curves with L∞-maps γ : [0, 1] → g in the above definition of Ck-
regularity). Using tools from [4], one can show that all Banach-Lie groups are L∞-
regular, and hence so is the projective limit C∞(M,H) for all compact manifolds
M and Banach-Lie groups H . Conjecture: Diff(M) is L∞-regular.
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——————————————————————————-

Reporter: Aprameyan Parthasarathy



Representations of Lie Groups and Supergroups 795

Participants

PD. Dr. Alexander Alldridge

Mathematisches Institut
Universität zu Köln
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Université Claude Bernard Lyon 1
43 blvd. du 11 novembre 1918
69622 Villeurbanne Cedex
FRANCE

Prof. Dr. Hideyuki Ishi

Graduate School of Mathematics
Nagoya University
Chikusa-ku, Furo-cho
Nagoya 464-8602
JAPAN

Dr. Bas Janssens

Department Mathematik
FAU Erlangen-Nürnberg
Cauerstr. 11
91058 Erlangen
GERMANY

Prof. Dr. Palle E. T. Jorgensen

Department of Mathematics
University of Iowa
Iowa City, IA 52242-1466
UNITED STATES

Prof. Dr. Toshiyuki Kobayashi

Grad. School of Mathematical Sciences
IPMU
University of Tokyo
3-8-1 Komaba, Meguro-ku
Tokyo 153-8914
JAPAN

Prof. Dr. Bernhard J. Krötz
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