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Abstract. The field of mathematical and numerical analysis of systems of
nonlinear partial differential equations involving interfaces and free bound-
aries is a flourishing area of research. Many such systems arise from mathe-
matical models in material science, fluid dynamics and biology, for example
phase separation in alloys, epitaxial growth, dynamics of multiphase fluids,
evolution of cell membranes and in industrial processes such as crystal growth.
The governing equations for the dynamics of the interfaces in many of these
applications involve surface tension expressed in terms of the mean curvature
and a driving force. Here the forcing terms depend on variables that are solu-
tions of additional partial differential equations which hold either on the in-
terface itself or in the surrounding bulk regions. Often in applications of these
mathematical models, suitable performance indices and appropriate control
actions have to be specified. Mathematically this leads to optimization prob-

lems with partial differential equation constraints including free boundaries.
Because of the maturity of the field of computational free boundary problems
it is now timely to consider such control problems.

In order to carry out design, control and simulation of such problems in-
teraction is required between distinct mathematical fields such as analysis,
modeling, computation and optimization. By bringing together leading ex-
perts and young researchers from these separate fields we intended to develop
novel research directions in applied and computational mathematics. The aim
of the workshop here was to focus on emerging new themes and developments
in these fields and to establish and extend links between them.

Mathematics Subject Classification (2010): MSC: 35-XX, 49-XX, 65-XX; IMU: 11, 16, 17.



868 Oberwolfach Report 15/2013

Introduction by the Organisers

The meeting was attended by 51 participants from Austria, France, Germany,
Great Britain, Japan, and the United States, with expertise from three main areas:
optimal control of partial differential equations, modeling involving free boundary
problems and mathematical and numerical analysis of free boundary problems.
Apart from discussing current problems, techniques and issues across the differing
communities the focus of the workshop was set on

(1) Computational and analytical approaches to interfaces and free bound-
aries,

(2) Control and optimization of interfaces and free boundaries,
(3) Numerical treatment and control of surface partial differential equations.

The presentations of Abels, Bellettini, Chambolle, Fischer, Giga, Hamamuki, Mon-
neau, Nakayasu, Ohtsuka, Rocca, and Röger concerned analytical approaches to
interfaces and free boundaries. While Bartels, Forcadel, Gräser, Ranner, Reusken,
Sethian, Stinner, and Venkataraman gave talks on numerical approaches to inter-
faces and free boundaries. Control and optimization with focus on interfaces and
free boundaries was the subject of the talks of Brett, Kahle, Leugering, Meyer,
Pinnau, and Yamamoto. Kenmochi and King considered mathematical modeling
of problems from biology. Finally, Garcke and Leugering in their talks reported
on the state of the art in material and topology optimization.

To offer young researchers a stage for presenting their research, a young re-
searcher session was organized on Wednesday evening where Brett, Gräser, Venka-
taraman together with the Heizaemon Honda Scholar Nakayasu and the Oberwol-
fach Leibniz Graduate Students Fischer, Hamamuki, Kahle, and Ranner took this
opportunity and gave talks on their current research results.

Surveys and articles concerning mathematical and numerical approaches to in-
terfaces and free boundary problems may be found in the conference proceedings
[5, 6, 2, 8]. The level set approach to related problems of optimal design are
surveyed in [3]. The book [1] contains theoretical results for optimal control of
variational inequalities. Modern mathematical concepts of control and optimiza-
tion with partial differential equation constraints are developed in the book [7].
Also we mention a survey of numerical methods for interface evolution involving
curvature, [4]. Finally we remark that many recent references concerning the issues
of the workshop are provided at the end of the each extended abstract.
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Abstracts

On Sharp Interface Limits for Diffuse Interface Models

Helmut Abels

(joint work with Daniel Lengeler, Stefan Schaubeck)

We consider the sharp interface limit “ε→ 0” for the following diffuse interface
model

ρ∂tv + ρv · ∇v − div(2ν(c)Dv) +∇p = −ε div(∇c⊗∇c),(1)

div v = 0,(2)

∂tc+ v · ∇c = mε∆µ,(3)

µ = ε−1f ′(c)− ε∆c,(4)

together with no-slip boundary condition for v and Neumann boundary conditions
for c and µ in a sufficiently smooth bounded domain Ω ⊆ Rd, d = 2, 3. Here v is
the mean velocity, Dv = 1

2 (∇v+∇vT ), p is the pressure, c is an order parameter
related to the concentration of the fluids (e.g. the concentration difference or
the concentration of one component), and µ is a chemical potential. Moreover,
ν(c) > 0 is the viscosity of the mixture, ε > 0 is a (small) parameter, which will be
related to the “thickness” of the interfacial region, mε > 0 is a mobility coefficient,
and f the homogeneous free energy density. Furthermore ρ is the density of the
fluids, which is chosen constant for simplicity. The model is known as “Model
H” in the literature and goes back to Hohenberg and Halperin [6], cf. also [5]. It
describes the flow of a binary mixture of two partly miscible viscous incompressible
Newtonian fluids. For analytic results for the system and further reference we refer
to [1]. The following results are also true for the generalization of this model to
the case of different densities that was derived in [2].

In applications the parameter ε > 0 is often very small. Therefore a rigorous
understanding of the limit ε→ 0 and the relation to classical sharp interface models
is of interest. But convergence and the limit system as ε→ 0 depends on the choice
of the scaling of mε. Using the method of matched asymptotic expansions it was
shown in [2] formally that solutions of (1)-(4) converge to solutions of

∂tv + v · ∇v − div(ν±Dv) +∇p = 0 in Ω±(t),(5)

div v = ∆µ = 0 in Ω±(t),(6)

−
[
n · (ν±Dv − pI)

]
= σHn on Γ(t),(7)

V = n · v|Γ(t) −m0[n · ∇µ] on Γ(t),(8)

[v] = 0, µ|Γ(t)= σH on Γ(t)(9)

provided that mε = m̃ε for some m̃ > 0 and m0 = 0 or mε = m0. Here Ω±(t) are

two disjoint domains such that Ω+(t)∩Ω−(t) = Γ(t) is a smooth (d−1)-dimensional
manifold (the interface), n denotes a normal field on Γ(t), V is the normal velocity
and H denotes the mean curvature of Γ(t). Furthermore, [.] denotes the jump of
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a function across the interface Γ(t) and σ > 0 depends explicitly on f . In the first
case m0 = 0 the system is a classical sharp interface model for a two-phase flow
of two immiscible, viscous, incompressible Newtonian fluids with surface tension.
While the case m0 > 0 is a non-classical variant, where the Navier-Stokes system
is coupled to a convective Mullins-Sekerka system. In this case diffusion of mass
particle through the bulk phases and the Ostwald ripening effect can occur.

In the joint-work with D. Lengeler [3] it is shown that weak solutions of (1)-
(4) converge (for a suitable subsequence) to so-called varifold solutions of (5)-(9)
provided the initial energy is bounded uniformly in ε > 0 and mε →ε→0 m0 as well
as limε→0 εm

−1
ε = 0. We note that the latter condition means that mε converges

sublinearly to 0 as ε → 0 in the case m0 = 0. In the notion of varifold solutions
all equations are satisfied in a usual weak sense accept for the equations involving
the mean curvature H of the interface, which are satisfied as first variation of a
general varifold in the same manner as in [4]. Furthermore it is shown that in
general solutions of (1)-(4) do not converge to solutions of (5)-(9) if mε = m0ε

α

with α > 3. To this end radially symmetric solutions of (5)-(9) in an annulus

Ω = {x ∈ R
d : 1 < |x| < R}

are considered together with inflow and outflow boundary conditions for v and
Dirichlet boundary conditions for c. In this case it is shown that the solutions do
not satisfy the Young-Laplace law (7) in the limit.

Finally, we considered the following simplified question: For which α > 0 do so-
lutions (cε)ε>0 of the convective Cahn-Hilliard equation (3)-(4) for a given smooth,
solenoidal velocity field v converge to the transport equation

∂tχΩ+(t) + v · ∇χΩ+(t) = 0

and

(10) ε

∫

Ω

∇c⊗∇c : ∇ϕ dx→ε→0 σ

∫

∂Ω+(t)

n⊗ n : ∇ϕ dx

holds for all divergence free smooth test vector fields ϕ? We note that the right-
hand side is a weak formulation of σHn. This convergence is essential to prove
convergence for the full system. In [7] it is shown that, if k = 1, then solutions
converge and (10) holds. Moreover, it is proved that (10) does not hold in general
if α > 3.

References

[1] H. Abels. On a diffuse interface model for two-phase flows of viscous, incompressible fluids

with matched densities. Arch. Rat. Mech. Anal., 194(2):463–506, 2009.
[2] H. Abels, H. Garcke, and G. Grün. Thermodynamically consistent, frame indifferent diffuse

interface models for incompressible two-phase flows with different densities. Math. Models
Methods Appl. Sci., 22(3):1150013 (40 pages), 2012.

[3] H. Abels and D. Lengeler. On Sharp Interface Limits for Diffuse Interface Models for Two-
Phase Flows. Preprint, arXiv:/1212.5582.

[4] X. Chen. Global asymptotic limit of solutions of the Cahn-Hilliard equation. J. Differential
Geom., 44(2):262–311, 1996.



Interfaces and Free Boundaries: Analysis, Control and Simulation 875

[5] M. E. Gurtin, D. Polignone, and J. Viñals. Two-phase binary fluids and immiscible fluids
described by an order parameter. Math. Models Methods Appl. Sci., 6(6):815–831, 1996.

[6] P.C. Hohenberg and B.I. Halperin. Theory of dynamic critical phenomena. Rev. Mod. Phys.,
49:435–479, 1977.

[7] S. Schaubeck. Forthcoming PhD thesis

Total variation minimization with finite elements

Sören Bartels

(joint work with Ricardo H. Nochetto, Abner J. Salgado)

Functions of bounded variation provide a useful framework to describe processes
in which quantities may be discontinuous or to model functions that jump across
lower dimensional subsets. A function u ∈ L1(Ω) is of bounded variation denoted
u ∈ BV (Ω) if it has bounded total variation, i.e., if

|Du|(Ω) = sup
{
−
∫

Ω

udivφdx : φ ∈ C1
c (Ω;R

d), |φ| ≤ 1
}
<∞.

A simple model problem proposed in [ROF92] to denoise a given gray-level image
g ∈ L∞(Ω) seeks a function u ∈ BV (Ω) ∩ L2(Ω) that minimizes the functional

I(u) = |Du|(Ω) + α

2
‖u− g‖2L2(Ω).

The weak lower semicontinuity of the total variation and a compactness property
of BV (Ω) imply the existence of a minimizer. The strong convexity of the lower
order term implies that the minimizer u ∈ BV (Ω) ∩ L2(Ω) is uniquely defined. It
satisfies u ∈ L∞(Ω).

Numerical approximations are typically obtained by replacingBV (Ω)∩L2(Ω) by
a finite dimensional subspace Vh, e.g., continuous or discontinuous finite element
functions that are piecewise polynomial on a given triangulation. If uh ∈ Vh
denotes the uniquely defined minimizer in the subspace then the convexity of the
total variation and the strong convexity of the lower order term imply

α

2
‖u− uh‖2L2(Ω) ≤ I(uh)− I(u) = min

vh∈Vh

I(vh)− I(u).

Provided that one can construct a sequence (vh)h>0 ⊂ BV (Ω) ∩ L2(Ω) such that
vh ∈ Vh for all h > 0 and vh → u ∈ L1(Ω) and |Dvh|(Ω) → |Du|(Ω) as h → 0 it
follows that the numerical approximations converge to the exact solution. These
requirements are equivalent to the condition that the finite element spaces are
intermediately dense in BV (Ω). This property is satisfied whenever the spaces
Vh, h > 0, contain continuous, piecewise affine finite element functions. One can
show that the intermediate density is not satisfied if Vh contains only piecewise
constant functions.

Letting S1(Th) denote the space of piecewise linear, globally continuous finite
element functions a construction in [BNS12] implies that there exists for every
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u ∈ BV (Ω) and ε > 0 a function ũh ∈ S1(Th) such that ‖ũh‖L∞(Ω) ≤ c‖u‖L∞(Ω)

and

|Dũh|(Ω) ≤ (1 + cε+ cε−1h)|Du|(Ω),
‖ũh − u‖L1(Ω) ≤ c(h2ε−1 + ε)|Du|(Ω).

Using the particular structure of the functional I we then deduce that

α

2
‖u− uh‖2L2(Ω) ≤ |Dũh|(Ω)− |Du|(Ω) + α

2

∫

Ω

(u − ũh)(u + ũh + 2g) dx

≤ c(ε+ hε−1) ≤ ch1/2

for the optimal choice ε = h1/2. This estimate is suboptimal in the sense that
infvh∈S1(Th) ‖u − vh‖L2(Ω) ≤ ch1/2. For generic discontinuous functions the con-
vergence rate 1/2 is sharp. The optimal convergence rate can be obtained for the
minimization problem if one can construct an approximation ũh ∈ S1(Th) such
that |Dũh|(Ω) ≤ |Du|(Ω) and ‖u − ũh‖L1(Ω) ≤ ch. Such a construction is given
in [NS12] for partitions consisting of rectangles. For less symmetric partitions or
triangulations consisting of triangles this cannot be expected to hold in general.

The numerical solution of the finite-dimensional minimization problem is often
based on a regularization of the total variation norm, e.g., by considering for δ > 0
the modified functional

Iδ(uh) =

∫

Ω

(|∇uh|2 + δ2)1/2 dx+
α

2
‖uh − g‖2L2(Ω).

A large class of iterative methods can be used to compute minimizers for this
differentiable modification of the functional I. A drawback is that minimizers lose
the desired properties such as sharp practical discontinuities or sparsity properties
of the gradient. It is therefore desirable to compute minimizers without modi-
fications of the functional. A successful approach is based on a discrete duality
argument. The total variation of uh ∈ S1(Th) is given by

|Duh|(Ω) = ‖∇uh‖L1(Ω) = sup
{∫

Ω

∇uh · ph dx : ph ∈ L0(Ω)d, |ph| ≤ 1
}
.

Here, L0(Th)d denotes piecewise constant vector fields on Th. The minimization
problem can thus be formulated as a saddle-point problem, i.e., we have

inf
uh

I(uh) = inf
uh

sup
ph

∫

Ω

∇uh · ph dx+
α

2
‖uh − g‖2L2(Ω) − IK1(0)(ph),

where IK1(0) denotes the indicator funcional of the set K1(0) = {q ∈ HN (div ; Ω) :
|q| ≤ 1 a.e. in Ω}. We let the expression in the min-max problem be denoted
by L(uh, ph). Classical arguments imply the existence of a saddle-point (uh, ph).
These can be found with primal-dual methods but it is not obvious to define such
an iteration that converges under moderate conditions on step sizes and which
only leads to equations that are linear or can be solved explicitly. An appropriate
semi-implicit discretization of the time-dependent problems

∂tuh = −δuL(uh, ph), ∂tph ∈ ∂pL(uh, ph),
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where δuL and ∂pL denote the Fréchet derivative and the subdifferential of L
with respect to u and p, respectively, has been proposed and analyzed in [CP11].
Letting dt denote the backward difference quotient defined through a step size
τ > 0 it leads to the equations

(1) ûnh = un−1
h + τdtu

n
h,

(2) (−dtpnh +∇ûnh, qh − pnh) + IK1(0)(p
n
h) ≤ IK1(0)(qh),

(2) (dtu
n
h, vh) + (pnh,∇vh) = −α(unh − g, vh).

The equations can be solved successively and the solution of the variational in-
equality in step (2) is given by

pnh =
pn−1
h + τ∇ûnh

max{1, |pn−1
h + τ∇ûnh|}

which can be evaluated elementwise. Convergence of the iteration follows if τ ≤
chmin in the sense that ∑

n≥0

‖unh − uh‖2L2(Ω) ≤ c,

cf. [CP11, Bar12]. In general, a large number of iterations is required to guarantee a
small residual in the discrete equations. An algorithm that approximates solutions
of the dual problem on cartesian grids has been devised and analyzed in [Cha04].

A continuous duality argument shows that the dual formulation of the mini-
mization of I consists in the maximization of the functional

D(p) =
−1

2α
‖div p+ αg‖2L2(Ω) +

α

2
‖g‖2L2(Ω) − IK1(0)(p)

among vector fields p ∈ HN (div ; Ω). The duality relation D(q) ≤ I(u) for all
q ∈ HN (div ; Ω) leads to the fully computable a posteriori error estimate

(α/2)‖u− uh‖2L2(Ω) ≤ I(uh)−D(qh)

with an arbitray vector field qh ∈ HN (div ; Ω). The above described primal-dual
method computes a non-conforming approximation ph of solutions of the dual
problem and is therefore not admissible in the error estimate. The construction of
a conforming approximation p̃h ∈ S1(Th)d is discussed in [Bar13]. Related adap-
tive mesh-refinement strategies refine the triangulation in regions where disconti-
nuities occur and lead to optimally convergent approximations, i.e., experimental

convergence rates h
1/2 ∼ N−1/4 with respect to the number of unknowns N .

The described techniques are also useful for evolution problems that are defined
through the subdifferential of functionals similar to I possibly not involving a
strongly convex lower order term. An implicit discretization in time leads to a
recursive sequence of minimization problems of the form

unh = argminvh∈S1(Th)

1

2τ
‖vh − un−1

h ‖2L2(Ω) + I(vh).
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A combination of the estimates outlined above with error estimates available
from [NSV00] lead to the error estimate

max
n=0,1,...,N

‖u(tn)− unh‖L2(Ω) ≤ c(τ1/2 + h1/6)

with tn = nτ and provided that u0 ∈ BV (Ω) ∩ L∞(Ω). In certain situations the
estimate can be improved to the optimal bound τ + h1/2. We refer the reader
to [BNS12] for details.
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On the area of the graph of a map from the plane to the plane with a
line discontinuity

Giovanni Bellettini

(joint work with Maurizio Paolini and Lucia Tealdi)

In [4] De Giorgi drawn attention on the possible nonlocality of the relaxed area
of the graph of a discontinuous map from the plane to the plane. More precisely,
given a bounded open set Ω ⊂ R2 recall that the area functional A(·,Ω) is given
by

A(v,Ω) :=

∫

Ω

√

1 + |∇v1|2 + |∇v2|2 +
(
∂v1
∂x

∂v2
∂y

− ∂v1
∂y

∂v2
∂x

)2

dxdy

if v = (v1, v2) ∈ C1(Ω;R2); let us extend for convenience A(·,Ω) to +∞ in
L1(Ω;R2) \ C1(Ω;R2). Consider next the L1-lower semicontinuous envelope of
A (or relaxed area), defined for any v ∈ L1(Ω;R2) as

(1) A(v,Ω) := inf
{
lim inf
ǫ→0

A(vǫ,Ω) : (vǫ) ⊂ C1(Ω;R2), vǫ → v in L1(Ω;R2)
}
.
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The conjecture of [4], proven in [1], states that A(u, ·) is not a measure, more
precisely is not subadditive, for the function u (called triple junction map) taking
as values the three vertices of an equilateral triangle, each vector taken in a sector
of the source plane of 120o angles. In particular, A(u,Ω) cannot be written as an
integral over Ω (differently to what happens in the scalar case for any real-valued
function with bounded variation in Ω). In [2] the authors refine the upper bound
for A(u,Ω), showing a connection with Plateau-type problems; if the construction
of [2] were optimal (namely, if the upper bound would coincide with A(u,Ω),
which is not known at present), this would shed some light on the nonlocality
phenomenon.

The question arises as to whether the nonlocality is due to the special form of
the triple junction map u, or whether it can be obtained for other qualitatively
different maps v. Even if we still are not able to answer this question, we start
analyzing the case when v ∈ BV (Ω;R2) is a map which is smooth out of a simple
C2 curve Jv with two endpoints, with Jv ⊂ Ω. Assume, for simplicity, that the
space curve Γ, obtained by joining the graphs of the two traces of v on Jv, is closed
and simple, and that it has a one-to-one convex parallel projection on the two-
plane generated by the t-direction parametrizing Jv and one of the two coordinate
directions in the target space R2. In order to keep boundedness of the gradient of
at least one approximating sequence (vǫ) as in (1), we suppose in addition that Γ
has two corners, in correspondence of the first and last value of the parameter t
(namely, at the two crack tips). The main result, proven in [3], is that over the
set Jv, the contribute H2(Σmin) appears as an upper bound for the singular part
of A(v,Ω), where Σmin is an area-minimizing nonparametric surface bounding Γ.
Other situations can be analyzed, in particular removing the assumption that Γ
has a one-to-one convex parallel projection. Then, again an upper bound involving
H2(Σmin) can be obtained, under suitable assumptions on Γ. These assumptions
are needed, in particular, to exclude boundary branch points for Σmin, which is
now an area-minimizing surface of disk-type bounding Γ.

References

[1] E. Acerbi, G. Dal Maso, New lower semicontinuity results for polyconvex integrals, Calc.
Var. Partial Differential Equations 2 (1994), 329–371.

[2] G. Bellettini, M. Paolini, On the area of the graph of a singular map from the plane to the
plane taking three values, Adv. Calc. Var. 3 (2010), 371-386

[3] G. Bellettini, M. Paolini, L. Tealdi On the area of the graph of a BV map from the plane
to the plane with a line discontinuity, in preparation.

[4] E. De Giorgi, On the relaxation of functionals defined on cartesian manifolds, in Develop-
ments in Partial Differential Equations and Applications in Mathematical Physics (Ferrara
1992), Plenum Press, New York 1992.



880 Oberwolfach Report 15/2013

Binary image recovery using phase field methods

Charles Brett

(joint work with Andreas Dedner, Charlie Elliott)

A common problem in the field of image processing is the following. We have a
function ū defined on a bounded and piecewise smooth subset Ω ⊂ RN for N ≤ 3.
Suppose ū has been transformed by a linear operator S, and then corrupted by
additive noise ζ, such that we have observed data

yd := Sū+ ζ.

The problem is to recover ū given yd. Two immediate issues are that (a) ζ is
unknown, so we will not be able to find ū even with a good model for the space
in which it lies (b) inverting S may be ill-posed, so it will be difficult to find an
approximation to ū even if ζ = 0.

We assume that ū is binary, S is a known continuous linear operator, and
ζ is Gaussian noise. We follow the approach used in [1] and [2] and base our
formulation on the Mumford-Shah model [3], but minimised over BV (Ω, {a0, a1}),
and generalised to include the blurring operator S. So we have the following
nonconvex model consisting of an L2 fidelity term plus a perimeter regularisation
term:

min
u∈BV (Ω,{a0,a1})

1

2
||Su− yd||2L2(Ω) + σPer({u = a1}).

This problem is difficult to solve numerically so we take a phase field approx-
imation. This involves replacing the perimeter term by the Ginzburg-Landau
functional and instead minimising over H1(Ω). So we consider the approximate
problem

min
u∈H1(Ω)

1

2
||Su− yd||2L2(Ω) +

σ

c(Ψ)

(∫

Ω

ε

2
|∇u|2 + 1

ε
Ψ(u)

)
.

We focus on two different forms of the potential Ψ; the smooth double well
potential and the double obstacle potential. Rather than developing separate
theory for each, it is advantageous to introduce an abstract framework that both
fit into.

We show existence of solutions to the abstract minimisation problem, derive
necessary optimality conditions, and introduce an iterative method for finding
functions satisfying the necessary optimality conditions. We then prove a result
showing that the energy of the iterates decreases, and that subsequences of iterates
converge to a function satisfying the necessary optimality conditions. We also
introduce an abstract discrete framework which satisfies the above result, and
for which subsequences of functions satisfying the discrete necessary optimality
conditions converge to functions satisfying the continuous necessary optimality
conditions.

A finite element discretisation of the binary image recovery problem fits into
this framework, which we implement in the Distributed and Unified Numerics
Environment (DUNE) using DUNE-FEM [4]. We test our method on a variety of
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test problems in both 1 and 2 dimensions (see for example Figure 1). We then
compare the performance of the method with the smooth double well and double
obstacle potentials for the 1D barcode problem.

(a) (b)

Figure 1. The red line is the zero level set of the blurred barcode,
and the yellow lines are those of the true barcode. We see that
the true barcode is accurately recovered in (b), even though some
features are missing in the blurred barcode (a).
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On a class of nonlocal mean curvature flows

Antonin Chambolle

(joint work with Massimiliano Morini, Marcello Ponsiglione)

The idea in this talk was to describe a general approach for building geometric
evolution to a class of “perimeters”, described in [2, 3]. This class is defined as
follows: we say that E 7→ P (E), E ⊂ Rd, is a perimeter if it satisfies

• P (E) ≥ 0 for all E, P (∅) = P (Rd) = 0;
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• E 7→ P (E) is l.s.c. with respect to the L1 convergence of characteristic
functions of sets;

• for any sets E,F , P (E ∪ F ) + P (E ∩ F ) ≤ P (E) + P (F ).

This last property is known in discrete combinatorial optimization as “submod-
ularity” and is a form of “convexity”. Indeed, one can show that under these
assumptions, the functional defined for u ∈ L1

loc(R
d) by

J(u) :=

∫ +∞

−∞

P ({u > s}) ds

is not only one-homogeneous (which is trivial), but also convex. It follows easily
that for any g ∈ L1

loc(R
d) with

∫
Rd g

− dx < +∞, the problem

min
E

P (E) +

∫

E

g dx

has a minimizer, and, also, that if g′ > g a.e., the minimizer E′ with potential g′

is a subset (up to a negligible set) of the minimizer E with potential g.
We wish to define the motion of sets by the “geometric gradient descent” of P .

In case P is the classical perimeter, it is well known that the first variation of P ,
defined for sets E sufficiently regular by

lim
t→0

P (Et)− P (E)

t
=

∫

∂E

κ(x,E)φ(x) · ν(x) dHd−1

where φ ∈ C∞
c (Rd;Rd) and Et = {x + tφ(x) : x ∈ E}, is the mean curvature

κ(x,E) of the boundary ∂E at x. One then can define the gradient descent,
formally, as the mean curvature flow where the normal speed of a boundary ∂E at
x is given by κ(x,E). A way to extend this definition to arbitrary (not necessarily
smooth) sets, or beyond singularities, is through the so-called level set approach
and the degenerate parabolic equation

∂u

∂t
= |Du|κ(x, {u > u(x)}) = |Du|div Du|Du|

which moves each level set of u by the mean curvature flow. It is well known
that this equation has bounded, uniformly continuous (starting from a bounded,
uniformly continuous initial data u0) solutions in the viscosity sense, that is, such
that

(i) for any φ ∈ C2(Rd × [0,+∞)) and (x, t) a global maximum of u− φ,

∂φ

∂t
(x, t) ≤ |Dφ(x, t)|κ(x, {φ(·, t) ≥ φ(x, t)})

(ii) for any φ ∈ C2(Rd × [0,+∞)) and (x, t) a global minimum of u− φ,

∂φ

∂t
(x, t) ≥ |Dφ(x, t)|κ(x, {φ(·, t) ≥ φ(x, t)}) .

A function which satisfies (i) is a subsolution, while (ii) defines a supersolution.
In the case of the classical curvature, these solutions are also unique.
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What we can show is that such solutions exist for quite general perimeters
P (E), with some regularity conditions. To simplify we assume always that P is
translational invariant, that is, P (x + E) = P (E) for any set E and any x ∈ Rd.
We assume then that P is finite on sets with bounded C2 boundary, and that such
sets have a “curvature” κ(x,E) satisfying the following conditions

a. if En → E in C2 and xn ∈ ∂En, xn → x then κ(xn, En) → κ(x,E);
b. if E is a C2 set, x ∈ ∂E, then for any ε > 0 there exists δ such that for

any W ⊂ B(x, δ),

P (E ∪W ) ≥ P (E) + (κ(x,E) − ε)|W \ E|
and symmetrically

P (E) ≤ P (E \W ) + (κ(x,E) + ε)|W ∩ E| ;
c. there exists K < +∞ such that for any ρ > 0, minx∈∂Bρ

κ(x,Bρ) ≥ −K.

In this case, we show the following:

Theorem. Assume that u0 is a compactly supported, bounded, uniformly contin-
uous function defined on Rd. Then, there exists at least one viscosity solution,
that is, a bounded, uniformly continuous function u(x, t) with u(x, 0) = u0(x) and
which satisfies (i) and (ii).

The solution can be obtained by the variational approach introduced in [1, 4].
It consists in fixing a time step h > 0 and defining an evolution starting from
a set E0 (which to simplify is assumed to be bounded, otherwise we might need
to consider its complement) by letting, for each n ≥ 0, En+1 be a solution (for
instance the maximal solution) of

min
E

P (E) +
1

h

∫

E

dEn
(x) dx

where dEn
(x) = dist(x,E)− dist(x,Rd \ E) is the signed distance function to the

set En.
We then let Eh(t) = E⌊t/h⌋ for any t ≥ 0. Since this scheme has a comparison

principle (E0 ⊂ E′
0 ⇒ Eh(t) ⊂ E′

h(t) for any t ≥ 0), we can apply it to all the
level sets of a bounded, compactly supported and uniformly continuous function
u0(x) and define in this way for each t a function uh(x, t), which is easily shown to
be also bounded, compactly supported and uniformly continuous. (Some uniform
“regularity” in time can also be shown.) Up to a subsequence, it converges locally
uniformly to a function u(x, t) which is shown to be a viscosity solution to our
problem.

In [2], the particular case of

P (E) =
1

2δ
|{dist(x, ∂E) ≤ δ}|

had been studied in detail. Up to a small regularization (in fact, we consider rather
the set function

P (E) =

∫

Rd

X (dE(x)) dx
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where X is a slightly smoothed variant of t 7→ 1/(2δ)χ[−δ,δ]), we show that this
P enters the framework described here. Hence, the associated “mean curvature
flow” is well-defined and can be approximated by the variational scheme. The
corresponding curvature is quite singular and non-local.

We can also numerically compute the corresponding evolutions. As predicted,
it behaves roughly like the standard curvature flow at large scales, but smoothes
in a much slower way oscillating boundaries, see Figure 1.
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Figure 1. Comparison of the flows of two different perimeters
(left: the non-local motion, right: the standard curvature flow).
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Optimal estimates on interface propagation in thin-film flow

Julian Fischer

Lower bounds on the propagation of the free boundary are well-established in
the theory of second-order degenerate parabolic equations like the porous medium
equation

ut = ∆um .

For example, it is known that for large times the support of a nonnegative solution
to the porous medium equation on Rd almost coincides with the support of the
corresponding self-similar solution. Such results are typically derived using the
comparison principle or Harnack inequalities.

However, for higher-order degenerate parabolic equations like the thin-film
equation

ut = −∇ · (un∇∆u)

no estimates from below on front propagation have been available at all: Given
some point on the initial free boundary, it has not even been known whether the
free boundary ever moves near this point.

In the recent papers [3, 4], we devise a technique for the derivation of lower
bounds on front propagation for higher-order parabolic equations, allowing for
the first time for the derivation of lower bounds on contact line propagation for
the thin-film equation. The key ingredient of our approach are new monotonicity
formulas for the thin-film equation of the form

d

dt

∫
u1+α|x− x0|γ dx ≥ c

∫
u1+α+n|x− x0|γ−4 dx

(for certain α ∈ (−1, 0) and γ < 0); these formulas are valid as as long as the
support of u does not touch the singularity of the weight at x0. Combining these
formulas with a differential inequality argument due to Chipot and Sideris [2], we
obtain estimates from below on support propagation. More precisely, we derive
upper bounds on waiting times, sufficient criteria for immediate forward motion
of the free boundary, as well as lower bounds on asymptotic support propagation
rates.

In the case of one spatial dimension and n ∈ (2, 3), our upper bounds on waiting

times read as follows: given initial data u0 with suppu0 ⊂ [0,∞) and u0(x) ≥ Sx
4
n

+

in some neighbourhood of 0, the left free boundary will start moving forward at
time c(n)S−n the latest. If the initial data even satisfy limx↓0 x

− 4
n u0(x) = ∞,

the left interface starts moving forward instantaneously. These upper bounds on
waiting times coincide up to a constant factor with the known lower bounds on
waiting times [7] and are therefore optimal. The sufficient condition for immediate
forward motion of the interface is also sharp.

In the borderline case n = 2, we obtain upper bounds on waiting times and suf-
ficient conditions for immediate forward motion of the interface which are optimal
up to a logarithmic correction term.
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In the multidimensional case (at least for d ≤ 3), similar assertions can be
derived for n ∈ [2, 3) if the initial free boundary locally is regular enough. The
proof proceeds by using a singular weight which is adapted to the shape of the
initial support and a cutoff argument, resulting in an almost monotonicity formula.

The expected waiting-time behaviour for n < 2 is more complex; see [1] for
conjectures obtained by formal asymptotic analysis. Our approach yields some
limited rigorous results for n ∈ (1, 2) [3, 5].

Regarding lower bounds on asymptotic support propagation rates, we prove the
following assertion: Given n ∈ (1.5, 3) and xs ∈ suppu0, a solution to the thin-film
equation on Rd satisfies for all t ≥ 0

BR(t)(xs) ⊂ suppu(., t) ,

where

R(t) := c(d, n)||u0||
n

4+n·d

L1 t
1

4+n·d − diam(supp u0) .

This in particular implies that for large t, the support of a solution to the thin-film
equation contains a ball whose diameter is of the same order as the diameter of
the corresponding self-similar solution.

Finally, we would like to point out that our method is not limited to the thin-film
equation, but is flexible enough to be applied to other higher-order nonnegativity-
preserving parabolic equations: For example, in the case of the Derrida-Lebowitz-
Speer-Spohn equation

ut = −∇ ·
(
u∇∆

√
u√
u

)

an adaption of our ansatz can be used to prove infinite speed of propagation [6].
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Numerical schemes for dislocation dynamics

Nicolas Forcadel

Dislocations are linear defects which move in crystal. Their studies is very im-
portant since it is the main explanation at the microscopic scale of the plastic
deformation of material. From a mathematical point of view, a dislocation is rep-
resented by the boundary of an open set Ω(t) which moves with a normal non-local
velocity Vn defined by

Vn = c0 ⋆ 1Ω(t)

where c0 is a given kernel.
The goal of this talk is to present two numerical schemes to solve this problem.

The first one is based on the Fast Marching Method introduced by Sethian while
the second is of level set type.

Fast marching method for dislocation dynamics

The Fast Marching Method, which has been introduced by Sethian [7], is a very
efficient numerical method to solve front propagation problem where the front
moves in its normal direction with a velocity Vn = Vn(x) > 0. The main idea of
this method is to use the fact that the normal velocity and hence it is possible to
defined the time T (x) at which the front will reach the point x. It is also easy to
see that this arrival time solve the following eikonal equation

||∇T (x)|| = 1

Vn(x)
.

The goal is then to solve numerically this eikonal equation and this is done in a
very efficient way by solving the scheme in a special order (see [7]). In the first
part of the talk, we present a generalization of this scheme to the case where the
velocity Vn depends on space and time and can change sign in space and time.
The stationary approach is no longer useful. Nevertheless, we will see how it is
possible to use almost the same algorithm and to have a convergence result (see
[1, 5].

We will also show some applications to this algorithm, in particular for the
dislocation dynamics (see [2]) and in image segmentation (see [6]).

Level set method for dislocation dynamics

We consider a monotone model for the dislocations dynamics :

ut(x, t) =

(
c[u](x, t)− 1

2

∫

R2

J

)
|Du|, with c[u](x, t) =

(
J ⋆ 1{u(·,t)≥u(x,t)}

)
(x)

where J is a positive kernel and the dislocation line is represented by the zero level
set of the function u. The scheme we propose is then the following

vn+1
I − vnI

∆t
=

(
cn+1
I [v]− 1

2

∫

R2

J

)
”|Dv|n+1

I ”
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with

cn+1
I [v] =

∑

K∈Z2

J̄I−K1{vn+1
K

≥vn+1
I

}(∆x)2

and where ”|Dv|n+1
I ” is a monotone approximation of the gradient (for example,

the one one proposed by Rouy and Tourin or by Osher and Sethian). The main
properties of this scheme is that it is implicit and not monotone (but ”almost”
monotone). In particular, due to the discontinuity of the velocity, the discrete
solution of the scheme are not unique. Nevertheless, for every solution, we have
the following error estimate:

Theorem 1 (see [4]). Under certain regularity assumptions, we have the follow-
ing error estimate between the continuous solution u of the dislocations dynamics
equation (with J) and its numerical approximation v:

sup
R2×(0,T )

|u− v| ≤ K
√
T (∆x+∆t)

1/2

provided ∆x+∆t ≤ 1

K2
.

Using the convergence result for the dislocation dynamics to mean curvature
motion, we can then get a numerical scheme for mean curvature motion. More
precisely, we have the following convergence result.

Theorem 2 (see [3, 4]). We define uε(x, t) = εu
(
x
ε ,

t
ε2| ln ε|

)
. Under regularity

assumptions, when ε→ 0, uε converges uniformly on compact sets to u0, which is
the unique solution of the limit problem :





u0t − g
(

(Du0)⊥

|Du0|

)
trace

(
D2u0 ·

(
Id− Du0

|Du0| ⊗ Du0
|Du0|

))
= 0

u0(·, 0) = u0

Moreover, the difference between uε and u0 is given, for T ≤ 1, by

sup
R2×(0,T )

|uε − u0| ≤ K

(
T

| ln ε|

) 1
6

.

This implies the following error estimate for the numerical scheme for the mean
curvature motion.

Theorem 3 (see [4]). Let T ≤ 1. Under certain regularity assumptions, we
have the following error estimate between the continuous solution u0 of the mean
curvature motion and its numerical approximation vε:

sup
R2×(0,T )

|u0− vε| ≤ C

(
T

| ln ε|

) 1
6

where ε ≥ ∆x+
√
∆t
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Multi-material structural topology optimization using phase field
methods

Harald Garcke

(joint work with Luise Blank, Hassan Farshbaf-Shaker, Vanessa Styles)

In structural topology optimization one aims to minimize functionals such as
the mean compliance

∫

ΩM

f · u dx+

∫

Γg∩∂ΩM

g · u ds

or the error compared to a target displacement uΩ, i.e.∫

ΩM

c|u− uΩ|2dx

where ΩM is a domain to be specified, f , g are volume and surface forces and c is
a weighting function. We will always search ΩM as a subset of a design domain
Ω ⊂ Rd. The displacement u is the solution of the system of linearized elasticity

−∇ · (CME(u)) = f in ΩM

subject to the boundary conditions

u = 0 on ΓD[
C

ME(u)
]
n = g on Γg[

C
ME(u)

]
n = 0 on Γ0

where CM is the elasticity tensor, n is the outer unit normal to ∂ΩM , ΓD ⊂ ∂Ω
is the Dirichlet boundary, on Γg ⊂ ∂ΩM outer fources act and Γ0 ⊂ ∂ΩM is the
part of the domain boundary on which a homogeneous Neumann condition has to
hold. We refer to [2, 4, 5] for further details.
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As it stands the problem is not well posed and in some situations a perimeter
regularization is used to ensure existence of solutions, see [1] and [2]. In this work
we regularize with the help of the Ginzburg-Landau energy

Eε(ϕ) =

∫

Ω

( ε2 |∇ϕ|2 + 1
εΨ(ϕ))dx

which typically arises in phase field approaches. Here ε > 0 is a small interfacial
parameter which is related to the thickness of a diffuse interfacial layer between
void and material and Ψ : RN → R

+
0 ∪ {∞} is a multi-well potential, see [5]. We

want to consider multi-material topology optimization and hence ϕ takes values
in RN . The potential Ψ is assumed to have minima of height 0 at the standard
unit vectors ei ∈ R

N , i = 1, . . . , N . We always take ϕN as the fraction of void and
ϕ1, . . . , ϕN−1 as the fraction of N − 1 materials. As the ϕ1, . . . , ϕN are fractions

we always consider the constraint ϕ ∈ G = {v ∈ RN |∑N
i=1 vi = 1, vi ≥ 0}.

In the phase field context the mean compliance is given as

F (u,ϕ) =

∫

Ω

(1− ϕN )f · u+

∫

Γg

g · u

and the functional realising the error to a given target displacement is

J0(u,ϕ) =

∫

Ω

c(1− ϕN )|u− uΩ|2dx .

The overall minimization problem is now as follows.
Given (f , g,uΩ, c) ∈ L2(Ω,Rd)×L2(Γg ,R

d)×L2(Ω,Rd)×L∞(Ω) and measur-
able sets Si ⊆ Ω, i ∈ {0, 1}, with S0 ∩ S1 = ∅ we consider

(Pε)





min Jε(u,ϕ) := αF (u,ϕ) + βJ0(u,ϕ) + γEε(ϕ),

over (u,ϕ) ∈ H1
D(Ω,Rd)×H1(Ω,RN ),

s.t. (SE) is fulfilled and ϕ ∈ G
m ∩U c,

where α, β ≥ 0, γ, ε > 0, m ∈ (0, 1)N ∩ ΣN , Gm = {v ∈ H1(Ω,RN ) | v ∈
G a.e. and

∫
−Ωv = m} and

U c := {ϕ ∈ H1(Ω,RN ) | ϕN = 0 a.e. on S0 and ϕN = 1 a.e. on S1}.
It can be shown that this problem has a solution. An optimum fulfills first order
optimality conditions which are stated in the following theorem.

Theorem. Let ϕ ∈ G
m∩U c denote a minimizer of the problem (Pε) and S(ϕ) =

u ∈ H1
D(Ω,Rd), p ∈ H1

D(Ω,Rd) are the corresponding state and adjoint variables,
respectively. Then the functions (u,ϕ,p) ∈ H1

D(Ω,Rd)× (Gm ∩U c)×H1
D(Ω,Rd)

fulfill the following optimality system in a weak sense. The displacement u fulfills
the state equations

(SE)





−∇ · [C(ϕ)E(u)] =
(
1− ϕN

)
f in Ω,

u = 0 on ΓD,
[C(ϕ)E(u)]n = g on Γg,
[C(ϕ)E(u)]n = 0 on Γ0,
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Figure 1

p fulfills the adjoint equations

(AE)





−∇ · [C(ϕ)E(p)] = α
(
1− ϕN

)
f + 2βc(1− ϕN )(u − uΩ) in Ω,

p = 0 on ΓD,
[C(ϕ)E(p)]n = αg on Γg,
[C(ϕ)E(p)]n = 0 on Γ0

and ϕ fulfills the gradient inequality

(GI)





γε
∫
Ω
∇ϕ : ∇(ϕ̃−ϕ) + γ

ε

∫
Ω
Ψ′

0(ϕ) · (ϕ̃−ϕ)− β
∫
Ω
c(ϕ̃N − ϕN )|u − uΩ|2

−
∫
Ω(ϕ̃

N − ϕN )f · (αu+ p)− 〈E(p), E(u)〉C′(ϕ)(ϕ̃−ϕ) ≥ 0,

∀ϕ̃ ∈ G
m ∩U c.

With the help of formally matched asymptotic expansions it can be shown that in
the limit as ε→ 0 classical shape derivatives can be obtained, see [5]. In the case
where one has only one material and void one obtains for example the classical
first order condition

(1) −(γσκ + C
ME(u) : E(p)) + βC|u − uΩ|2 + f · (αu + p) = 0

on the homogeneous Neumann boundary. Here σ is a constant related to Ψ , κ is
the mean curvature of the material-void boundary and p is an adjoint defined as
the solution of

(AE)MV





−∇ ·
[
CME(p)

]
= αf + 2βc(u− uΩ) in ΩM ,[

CME(p)
]
ν = 0 on ΓMV ,
p = 0 on ΓM

D ,[
CME(p)

]
n = αg on ΓM

g
,[

CME(p)
]
n = 0 on ΓM

0 ,

where ν is a unit normal at the void-material boundary. The expression on the
left hand side in (1) is the Hadamard form of the shape differential which has to
vanish in an optimum.

In multi-material topology optimization it is not desired that a large corner
appears at an interface between void and two materials. Using the asymptotic
expansions we found a way of choosing Ψ such that inappropriate angles can
be avoided, see Figure 1 and consult [5] for details. We solve the first order
optimality system formulated in the theorem above with the help of a gradient
descent method which is discretized with the help of a finite element approximation
and the resulting discrete variational inequalities are solved with the help of a
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primal dual active set method, see [3]. In Figure 1 we show two solutions of a
multi-material topology optimization problem. We refer to [5] for further details
and for other references related to phase field structural topology optimization.
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Motion of an interface by crystalline energy: Full faceting phenomena
in planar crystalline curvature flow with driving force

Mi-Ho Giga

(joint work with Yoshikazu Giga)

A planar anisotropic curvature flow equation with constant driving force term is
considered when the interfacial energy is crystalline. The driving force term is
given so that a closed convex set grows if it is sufficiently large. If initial shape is
convex, it is shown that a flat part called a facet (with admissible orientation) is
instantaneously formed. Moreover, if the initial shape is convex and slightly bigger
than the critical size, the shape becomes fully faceted in a finite time provided that
the Frank diagram of interfacial energy density is a regular polygon centered at the
origin. The proofs of these statements are based on approximation by crystalline
algorithm whose foundation was established a decade ago. Our results indicate
that the anisotropy of interfacial energy plays a key role when crystal is small in
the theory of crystal growth. In particular, our theorems explain a reason why
snow crystal forms a hexagonal prism when it is very small. This is a joint work
with Yoshikazu Giga of the University of Tokyo. The detail is in [7].
Description of the problem. We consider an anisotropic curvature flow
equations for an evolving (hyper)surface {Γt}t≥0 (physically a crystal surface) in
Rn (n ≥ 2) of the form

(1) V =M(~n)(κγ + σ) on Γt,

where V denotes the normal velocity of Γt in the direction of unit normal ~n of Γt.
The function M is called a mobility. It is a positive function defined on a unit
sphere. In many models it is considered as a given function. The quantity κγ is
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a weighted mean curvature or anisotropic mean curvature. It is the first variation
of the interfacial energy I of the hypersurface Γ:

I(Γ) =

∫

Γ

γ0(~n)dH
n−1,

where γ0 is a given positive function depending on the normal (orientation) called
the interfacial energy density and dHn−1 denotes the area element. We may write

κγ = −δI/δΓ
in a symbolic way. Its explicit form is formally as

κγ = − divΓ [(∇pγ)(~n)] on Γ,

where γ(p) = |p|γ0 (p/|p|) is the 1-homogeneous extension of γ0 to Rn and divΓ is
the surface divergence and ∇pγ is the gradient of γ. If γ0 is identically equal to 1
so that γ0 is isotropic, the interfacial energy I is nothing but the surface area of Γ.
In this case γ(p) = |p| and κγ = − divΓ ~n which is (n− 1)-times mean curvature.

To see the structure of (1) it is convenient to recall notion of the Frank diagram

Frank γ = { p | γ(p) ≤ 1} .
If Frank γ is convex, then (1) is at least degenerate parabolic under suitable regu-
larity of γ, say C2. If Frank γ is convex but loses C1 regularity, then (1) becomes
a very singular diffusion equation and is nontrivial to handle. A typical example
is the case when Frank γ is a convex polytope. In this case γ0 is called a crys-
talline energy density and (1) is called a crystalline flow. Formally, the polar set
of Frank γ called a Wulff shape of γ of the form

Wγ =
⋂

|~m|=1

{ x | x · ~m ≤ γ(~m)}

plays a role of a sphere in the sense that

(2) κγ = −(n− 1) on ∂Wγ

where ~n is taken outward. If Frank γ has a corner, then Wγ has a flat portion (a
facet) with normal corresponding to the corner direction. To understand (2) in a
reasonable way, one should interpret that the curvature κγ on the facet of ∂Wγ is
not zero but some positive quantity despite the fact that the surface is flat. This
suggests that κγ is not an infinitesimal quantity. It should be defined in a nonlocal
way. This nonlocal character causes several difficulties. For an evolving curve (i.e.
n = 2) various well-posedness results are established for the initial value problem
for (1) when σ is a spatially constant [5], [6].
Results. In this work we consider (1) in a very simple setting. We consider a
planar motion (i.e. n = 2) and postulate that γ0 is crystalline and σ is a given
positive constant. We start with a convex crystal surrounded by Γ0 and show that
facets are instantaneously formed. Such a kind of result is already proved for a
different setting in [5] and recently studied for a case when Frank γ has a curved
part by P. Mucha [9] and P. Mucha and P. Rybka [10], [11] but for graphs. We
call this phenomenon the instant formation of a facet. We next study whether
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or not a crystal becomes fully faceted after some short time. We only discuss a
simple situation when Frank γ is a regular polygon centered at the origin. We show
that if M has some ”monotonicity property”, a growing convex crystal starting
from nearly the “critical size” (i.e. the curve satisfying κγ + σ = 0) becomes
fully faceted in a finite time. Moreover, if M has the same symmetry as γ0,
the fully faceted shape is a similar (homothetic) to Wγ provided that the initial
shape has the same symmetry. We prove these statements by approximating by a
crystalline flow which is a system of ordinary differential equations [1], [12]. The
approximation is justified by [6]. Note that even solvability is nontrivial for (1) for
general (convex) initial data Γ0 and it is established in [6]. The merit of crystalline
approximation is that one can prove these statements as we intuitively observed. A
fully faceted crystal grows further and its large time asymptotic is once influenced
by the mobility. In fact, it is known that Γt/t→ σWM (Hausdorff distance sense)
as t → ∞ [8]. So a fully faceted crystal may be rounded again. Our results
support a recent numerical simulation by J.Barret, H. Garcke and R. Nürnberg
[2], [3], [4] for the quasi-static approximation of one-phase Stefan problem with
Gibbs-Thomson effect and kinetic supercooling with singular interfacial energy. In
their simulation a fully faceted shape is observed.
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Nonsmooth Schur–Newton methods for multicomponent
Cahn–Hilliard equations

Carsten Gräser

(joint work with Ralf Kornhuber, Uli Sack)

We consider vector-valued Cahn–Hilliard systems with logarithmic and obstacle
free energy describing the decomposition of multicomponent alloys [3, 4, 11]. Such
equations are governed by an H−1-type gradient flow for the Ginzburg–Landau
free energy

E(u) =
∫

Ω

ε

2

N∑

i=1

|∇ui|2 +
1

ε
Ψθ(u) dx

subject to the local constraint u(x) ∈ G = {y ∈ RN | y ≥ 0, 1 · y = 1} where
1 denotes the 1-vector 1 = (1, . . . , 1) ∈ RN . The local free energy Ψθ : RN →
R ∪ {∞} is given by

Ψθ(u) = Φθ(u) +
1
2Ku · u

with a negative semi-definite interaction matrix K ∈ RN×N and the temperature
dependent convex part

Φθ(u) = θ

N∑

i=1

ui ln(ui) for θ > 0, Φθ(u) =

N∑

i=1

χ[0,∞)(ui) for θ = 0.

After semi-implicit discretization in time [1, 2] and finite element discretization
in space we arrive at the discrete problems: Find u ∈ SN

1 , w0 ∈ SN
0 such that

ε2(∇u,∇(v − u)) + φTθ (v)− φTθ (u)− (w0, v − u) ≥ −(Kuold, v − u) ∀v ∈ SN
1 ,

−(u, v)− τ(L∇w0,∇v) = −(uold, v) ∀v ∈ SN
0 .

Here, T is a conforming triangulation of Ω, S is the space of first order finite
elements on T , SN

m is the constrained subset

SN
m = {v ∈ SN |1 · v = m},

L is a symmetric positive semi-definite mobility matrix with L1 = 0, τ > 0 is a
time step size, uold is the solution from the last time step, and φTθ (v) is a lumped
approximation of

∫
Ω
Φθ(v).

This variational inequality formulation has the advantage, that it can be used
for the logarithmic case θ > 0 as well as for the obstacle case θ = 0. However, it
effectively imposes the full simplex constraints u(x) ∈ G explicitly by the indicator
functional in Φθ and the linear constraint in SN

1 .
To simplify the algebraic solution of this problem we introduce a Lagrange

multiplier w1 ∈ S1 for the local linear constraint u(x) · 1 = 1. Setting w =
w0 + w11 ∈ SN it turns out [9] that the above problem is equivalent to: Find
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u ∈ SN , w ∈ SN such that

ε2(∇u,∇(v − u)) + φTθ (v)− φTθ (u)− (w, v − u) ≥ −(Kuold, v − u) ∀v ∈ SN ,

−(u, v)− τ(L∇w,∇v) = −(uold, v) ∀v ∈ SN .

Existence of solutions and uniqueness of u and ∇w0 can be shown under the
condition

∫
Ω
uold > 0 while uniqueness of w requires that the mesh resolves the

interface reasonably [9].
This formulation has the advantage that no explicit simplex constraints but

only obstacles have to be considered for the algebraic solver, allowing to use the
nonsmooth Schur–Newton method. While originally introduced for saddle point
problems [8] with obstacles the method has recently been generalized to other
nonsmooth free energies like the logarithmic potential [5, 6].

The method applies nonsmooth Newton techniques to the nonlinear Schur-
complement of the saddle point problem. The fact that the Schur–Newton method
is a descent methods for a dual energy functional can be used to prove global
convergence even in the case of inexact solution of subproblem. Each iteration step
requires the solution of a nonsmooth unconstrained primal minimization problem
and a reduced linear saddle point problem. While we use the truncated nonsmooth
Newton multigrid method [7, 10, 5] for the former standard techniques can be used
for the latter.
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Figure 1. Averaged convergence rate of the Schur–Newton
method over the number of vertices (left), the temperature θ (mid-
dle), and the number of components N (right).

Figure 1 (taken from [9]) shows the averaged convergence rate if the initial
value is the solution from a coarser grid. The left, middle, and right plot depict
the rates for varying mesh size, temperature θ, and number of components N .
In our numerical examples none of these quantities seems to influence the rate,
indicating that the method is mesh independent and robust with respect to θ and
N .
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Asymptotically self-similar solutions to curvature flow equations with
prescribed contact angle

Nao Hamamuki

We study the asymptotic behavior of solutions to fully nonlinear second order
parabolic equations of the form

ut = F (∇xu,∇2
xu).

A typical equation we consider is a generalized curvature flow equation given by
ut√
1 + u2x

= 1− e−k

in the spatially one-dimensional case. Here k = uxx/
√
1 + u2x

3
denotes a curva-

ture. This equation was introduced by a materials scientist Mullins in 1957 as a
model of evaporation-condensation ([2]). We prove that, in the multi-dimensional
half space {x1 > 0}, viscosity solutions of the initial-value problem with a pre-
scribed contact angle condition

ux1 = β > 0 on {x1 = 0}
converge to a self-similar solution v of the associated problem under a suitable
rescaling. This result especially implies the asymptotic convergence

1√
t
u(
√
tx, t) → V (x) as t→ ∞,
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where V is the profile function of v. For example, if u is a solution of the generalized
curvature flow equation in Mullins’ problem, then the associated problem for the
self-similar solution v is

vt =
vxx

1 + v2x
.

This is the usual curvature flow equation for graph.
We also study the depth of the groove, which is represented by the value of the

profile function at the boundary. It turns out that, as the contact angle β tends
to zero, the depth of the groove is well approximated by the linearized problem,
which is, in Mullins’ problem, the heat equation with a diffusion coefficient one.

This talk is based on the paper [1].
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Instantaneous Control of two-phase flow with different densities

Christian Kahle

(joint work with Michael Hinze)

In this talk we present a model predictive control (mpc) framework (see e.g. [5])
for two-phase flows with variable densities governed by a diffuse interface model
proposed in [1]. Special emphasis is taken on quick control responses which are
achieved through the inexact solution of the optimal control problems appearing in
the mpc strategy. The resulting control concept is known as instantaneous control
and is applied to feedback control of the Navier-Stokes system in e.g. [3, 8, 10].
We provide numerical investigations which indicate that instantaneous wall parallel
boundary control of the flow part is well suited to achieve a prescribed concentra-
tion distribution in the variable density Cahn-Hilliard Navier-Stokes system.

1. The diffuse interface model

We use the diffuse interface model of [1] with a double-obstacle free energy
according to [2]. Denoting the velocity field by y, the pressure field by p, the
phase-field variable by c and the chemical potential by w this model is given by

ρ∂ty+((ρy+j) · ∇) y−div (2ηDy) +∇p = −σǫdiv(∇c⊗∇c)+ρg(1)

div y = 0(2)

∂tc− div (m∇w) + y · ∇c = 0(3)

σǫ(∇c,∇(c − v))− σǫ−1(c, c− v) ≥ (w, c− v) ∀v ∈ H1(Ω), |v| ≤ 1,(4)
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where 2Dy = ∇y + (∇y)t, and j = −ρ′(c)m(c)∇w. The density of the fluid is
denoted by ρ(c), its viscosity is denoted by η(c), and its mobility is given by m(c).
The constant ǫ is related to the width of the diffuse interface while σ denotes a
scaled surface tension due to [1, sec.4.3.4] and in case of the double-obstacle free
energy relates to the physical surface tension σphys as σ = 2π−1σphys.

Numerical Treatment. We use a time discretization motivated by the research
of [12], which sequentially couples (3) – (4) and (1) – (2). The variational inequality
is relaxed with a Moreau–Yosida approach according to [7, 6], which substitutes
(4) by the nonsmooth equations

λ(c) = max(0, c− 1) + min(0, c+ 1),

−σǫ∆c+ σǫ−1(sλ(c) − cold) = w,

where the subscript old labels the previous time instance and here is taken accord-
ing to [4].

The resulting nonlinear system is solved by a semi-smooth Newton method.
The spatial discretization uses piecewise linear and continuous finite elements for
both c and w, and the Taylor-Hood finite element for the variable pair (y, p). The
spatial resolution of the finite element meshes is controlled by the reliable and
effective residual based a posteriori error control concept developed in [6].

With this numerical approach we for the first rising bubble benchmark from [11]
obtain the results in Table 1. In this table cmin denotes the minimal circularity
of the bubble which is achieved at time tc=cmin, Vc,max denotes the maximal rising
velocity achieved at time t|Vc=Vc,max , and yc(t = 3) denotes the y-component of
the center of mass at final time t = 3.

ǫ cmin t|c=cmin Vc,max t|Vc=Vc,max yc(t = 3)
0.0200 0.9035 1.9486 0.2370 1.0000 1.0759
0.0100 0.9019 1.9076 0.2402 0.9375 1.0782
0.0050 0.9015 1.9012 0.2412 0.9286 1.0788
0.0025 0.9013 1.9063 0.2419 0.9103 1.0791

Table 1. Numerical results for first rising bubble benchmark in [11].

2. Mpc of the Cahn-Hilliard Navier-Stokes system

The aim of mpc consists in steering or keeping the state of a dynamical system
to or at a given desired trajectory, see e.g. [5]. To fix the concept, let us rewrite our
Cahn-Hilliard Navier-Stokes system as an abstract dynamical system with initial
condition x0, state x(t), observation y(t) and control u(t);

(5)

ẋ(t) +Ax(t) = b(x, t) + Bu(t),
y(t) = Cx(t),
x(0) = x0.
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Figure 1. Control light bubble against gravitational force.

The aim of mpc consists in constructing a nonlinear feedback control law K
with Bu(t) = K(y(t)), which steers the observable part of the dynamical system
to the desired trajectory ȳ(t) in the observation space, i.e.

y(t)
!→ ȳ(t), (t→ ∞).

To prepare for model predictive control, system (5) is discretized in time using
the semi-implicit Euler method on a time grid 0 = t0 ≤ t1 ≤ . . . with tk+1−tk = τk
for k = 0, 1, 2, . . . . Here xk denotes the state at time tk and bk denotes the
nonlinearity b(xk, tk). For given initial state x0 we obtain the time discrete model

(6) (I + τkA)x
k+1 = xk + τkb

k + uk+1, k = 0, 1, . . .

and consider for given time horizon L > 0 and α > 0 the optimal control problem

(Pk)
min J(xj+1, . . . ,xj+L, uj+1, . . . , uj+L)

s.t. (6) for j = k, . . . , k + L− 1,

where
J(xj+1, . . . ,xj+L, uj+1, . . . , uj+L) :=

L∑

i=1

(
1

2
‖xk+i − x̄k+i‖2 + α

2
‖uk+i‖2

)
.

Let us note that problem (Pk) for L = 1 admits a unique solution. However, for
L > 1 solutions in general need not be unique since (6) then represents a nonlinear
constraint. In that case we assume that (Pk) admits a solution. Details can be
found in [9].

In Figure 1 we from left to right show time snapshots of the rising bubble
benchmark controlled with an instantaneous control strategy using one steepest
descent step for the approximate solution of the mpc control problem in the case
L = 1, together with the evolution of ‖c − cd‖L2(Ω). As control action we take
wall parallel Dirichlet boundary control. The control goal consists in steering the
bubble back to the bottom of the column.
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A model of bacteria’s activities under environmental constraints

Nobuyuki Kenmochi

This work was motivated by ”the brewing process of Japanese sake (rice wine)”.
The process proceeds with several bacreria’s activities and one of important ques-
tions is how to control them in appropriate artificial ways; for instance heat
source control and stirring materials. The objective of this research is to estab-
lish some mathematical tools for modeling a class of nonlinear phenomena with
quasi-variational structure, arising in such a brewing process of Japanese sake.

Let Ω be a bounded domain in R3, Γ = ∂Ω, Q = Ω× (0, T ), Σ = Γ× (0, T ). In
our problem the unknowns arew = (w1, w2), densities of two species of bacteria, θ,
temperature and v = (v1, v2, v3), velocity of a fluid flow. They are respectively gov-
erned by reaction-diffusion inclusion, heat-convection equation and Navier-Stokes
inclusion in Q with appropriate initial-boundary boundary conditions.

(Bacteria’s activities in environment constraint E(θ) in a fluid)

(BA)





wt − τ∆w + (v · ∇)w + ∂IE(θ)(w) ∋ g(θ,w) in Q,

∂w

∂n
= 0 on Σ, w(·, 0) = w0 in Ω,
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where g(θ,w) : R3 → R2 is Lipschitz continuous;

E(θ) ⊂ R2 is an environmental constraint which is a compact convex set in R2

such that int.E(θ) 6= ∅ in R2, θ → E(θ) is continuous in the Hausdorff distance in
R2 and

∪θ∈RE(θ) ⊂ E0, E0 is bounded in R2, ∩θ∈Rint.E(θ) 6= ∅;
IE(θ) is the indicator function of E(θ) and ∂IE(θ)(·) is its subdifferential in R2;
w0 ∈ E(θ0) is an initial datum.

(Heat equation with convection v)

(H)

{
θt − κ∆θ + v · ∇θ = h(x, θ,w) in Q,

θ = θΓ on Σ, θ(·, 0) = θ0 in Ω,

where h(x, θ,w) : Ω × R3 → R is Lipschitz continuous; θΓ is smooth on Σ; θ0is
smooth in Ω,; κ is a positive constant.

(Navier-Stokes equation with velocity constraint V(θ))

(NS)





vt − ν∆v + (v · ∇)v + ∂IV(θ)(v) ∋ ∇P + f(x, θ,w) in Q,

divv = 0 in Q,

v = 0 on Σ, v(·, 0) = v0 in Ω,

where V(θ) := {z = (z1, z2, z3) ∈ H1
0,σ(Ω) | |∇z| ≤ ρ(θ) a.e. in Ω} and |∇z| :=

(
∑3

i=1 |∇zi|2)1/2; ρ(θ) : R → R is a smooth function such that 0 < C0 ≤ ρ(θ) ≤
C1, ∀θ ∈ R for positive constants C0 and C1; v0 ∈ H1

0,σ(Ω) ∩V(θ0);

f(x, θ,w) : Ω×R3 → R3 is Lipschitz continuous.

Expressions (NS) and (BA) are quite formal. They are rigorously reformulated
as variational inequalities (VNS) and (VBA) as formulated below. We denote by
(*) the following regularlity property of θ:

(∗) θ ∈W 1,2(0, T ;H1(Ω)) ∩ L∞(0, T ;H2(Ω)) ⊂ C(Q).

(VNS) ∀θ with (*), ∀w ∈ E0 a.e. in Q, w ∈ L2(0, T ;H1),
∃1v ∈ C([0, T ];L2

σ(Ω)), v(0) = v0, v ∈ V(θ) a.e. in Q such that
∫ T

0

(η′,v − η)dt+ ν

∫ T

0

(∇v,∇(v − η))dt+

∫ T

0

((v · ∇)v,v − η)dt

+
1

2
|v(T )− η(T )|2 ≤

∫ T

0

(f(·, θ,w),v − η)dt+
1

2
|v0 − η(0)|2

∀η ∈ V(θ) a.e. in Q, η′ ∈ L2(0, T ;L2
σ(Ω)).

(VBA) ∀v, |∇v| ≤ C1 a.e. in Q, ∀θ with (*),
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∃1w ∈ C([0, T ];L2(Ω)2), w(0) = w0, w ∈ E(θ) a.e. in Q such that
∫ T

0

(ξ′,w − ξ)dt+ τ

∫ T

0

(∇w,∇(w − ξ))dt+

∫ T

0

((v · ∇)w,w − ξ)dt

+
1

2
|w(T )− ξ(T )|2 ≤

∫ T

0

(g(θ,w),w − ξ)dt+
1

2
|v0 − ξ(0)|2

∀ξ ∈ E(θ) a.e. in Q, ξ ∈W 1,2(0, T ;L2(Ω)2) ∩ L2(0, T ;H1(Ω)2).

Now, our system {(H), (NS), (BA)} are understood as a quasi-variational in-
equality {(H), (V NS), (V BA)} and we have the following existence result.

Theorem Assume that θ0 ∈ H2(Ω),w0 ∈ H1(Ω)2,v0 ∈ H1
0,σ(Ω) and

θ0 = θΓ on Γ, w0 ∈ E(θ0),v0 ∈ V(θ0) a.e. in Ω.

Then, ∃{θ,v,w} solving (H),(VNS),(VBA) in the space

θ ∈ W 1,2(0, T ;H1(Ω)) ∩ L∞(0, T ;H2(Ω)) ⊂ C(Q),

v ∈ C([0, T ];L2
σ(Ω)),v ∈ V(θ) a.e. in Q,

w ∈ C([0, T ];L2(Ω)2) ∩ L2(0, T ;H1(Ω)2),w ∈ E(θ) a.e. in Q.

Proof. (cf. [3,5]) Put

Φ := {θ ∈ C(Q) | |θ|W 1,2(0,T ;H1(Ω)) + |θ|L∞(0,T ;H2(Ω)) ≤ Const.}
which is compact in C(Q). Consider the mapping S : Φ → Φ as follows: For
each θ ∈ Φ, solve the system of (VNS)-(VBA) and denote by {v, w} the solution.

Next, to this pair {v, w}, solve (H) and denote by θ̃ the solution of (H). Now we

define a mapping S by Sθ = θ̃. Then we can show that S maps Φ into itself and
is continuous in Φ in the topology of C(Q), whence S possesses at least one fixed
point θ in Φ. This fixed point θ gives a solution {θ,v,w} of our problem, where
{v,w} is the solution of (V NS)− (V BA).
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Interface development in biological tissue growth

John R. King

Interfaces can arise in mathematical models of tissue growth for a variety of reasons
and our goal here is to illustrate some of the considerations that arise in analysing
some of the simplest of these. The most obvious is that the (growing) tissue
itself will be of finite extent, but others (which may be interpreted in terms of
sharp-interface-limit processes) include internal boundaries of viable and necrotic
regions, interfaces generated by cell sorting into distinct cell types and boundaries
between domains comprising close-packed and more disperse cells.

The last of these can conveniently be exemplified by the simplest level of mod-
elling of such processes, namely via a single PDE

(1)
∂n

∂t
= ∇ · (D(n)∇n) + kn,

wherein n(x, t) ∈ [0, 1] is the volume fraction of cells (normalised such that n = 1
represents the close-packed state), the nonlinearity D(n) reflects cell-cell inerac-
tions (we revisit such issues below), with D(n) → +∞ as n → 1− to reflect
repulsion as close packing is approached; the propensity of cells to aggregate can
result in D(n) < 0 applying for some n, in which case regularisation is required
(we restrict ourselves here to the case D(n) > 0 for all n). Finally, the positive
constant k is the birth rate of cells (which are assumed nutrient rich): this ex-
plicitly biological feature of the model leads to a tendency for n to seek to exceed
the physical limit n = 1 and a question of much broader mathematical interest in
the context of tissue-growth models is whether the model forbids this a priori or
whether an interface must be introduced, with n ≡ 1 holding on one side of it.
Equation (1) provides perhaps the simplest such example. We set

D(n) ∼ 1/(1− n)γ as n→ 1−

for positive constant γ and introduce w = 1−n (this would typically represent the
volume fraction of water). For 0 ≤ w ≪ 1, in the one-dimensional case we then
have dominant balance

(2)
∂w

∂t
∼ ∂

∂x
(w−γ ∂w

∂x
)− k.

For γ > 1, the model then suffices as it stands: as t→ +∞ we have

w ∼ e−2kt/(γ−1)Φ(η), η = x/ekt,

(3) Φ(η) = (
k(γ − 1)

2
(M2 − η2))−

1
γ−1 for |η| < M,

where the form of η is dictated by overall conservation of mass and the exponent in
w then follows on balancing terms on the right-hand side of (2), the time derivative
being negligible, and where the constant M reflects the initial mass of tissue. It is
clear that (3) is singular at η = ±M , so these do act as moving boundaries in the



Interfaces and Free Boundaries: Analysis, Control and Simulation 905

sharp-interface limit associated with the large-time behaviour, and inner regions
with scalings

x = s(t) + ζ/ekt, w = O(1) s(t) ∼ ±Mekt as t→ +∞

alleviate the singularities. More interesting in some respects, however, is the less
singular case γ < 1: here nmax reaches 1 in finite time and a moving boundary
must of necessity be introduced, with one possibility being to replace the source
term in (1) by 0 if w = 0 (i.e. kn becomes knH(w) for a Heaviside function H) to
reflect that cell birth is not possible when the constituents required to produce new
cells are absent. The resulting moving-boundary problem (assuming symmetry in
x for simplicity) has n = 1, w = 0 for |x| < s(t), while (1) holds in x > s(t) with

at x = s(t) n = 1, D(n)
∂n

∂x
= 0, as x→ +∞ n→ 0.

This formulation is closely related to the Stefan problem for the freezing of a
supercooled liquid, so there are issues of stability and well-posedness, but all being
well the large-time behaviour is likely to be or travelling-wave form, the wavespeed
selection mechanism being akin to that of Fisher’s equation. Analysis of the local
behaviour at the interface reveals the two scenarios above indeed to be mutually
exclusive, and γ = 1 is an interesting (and significant) borderline case.

More realistic continuum-level models need to be of multiphase form to account
for distinct cell types and so forth. It is instructive to consider a three-phase case,
with n(x, t), m(x, t) and w(x, t) being respectively the volume fractions of cells,
dead cell matter and water. Typical conservation of mass equations would involved
cell birth and death rates kb and kd in the form

∂n

∂t
+∇ · (vnn) = kbn− kdn,

∂m

∂t
+∇ · (vmm) = θkdn,

∂w

∂t
+∇ · (wvw) = −kbn+ (1 − θ)kdn,

where distinct velocity fields are introduced in the three (incompressible) phases,
with the no-voids condition then taking the two equivalent forms

(4) n+m+ w = 1, ∇ · (vnn+ vmm+ vww) = 0.

The momentum equations, as derived by for example a Rayleighian-based varia-
tional argument involving a free-energy density f(n,m,w), take the form

0 = −n∇
(
p+

∂f

∂n

)
− κnm(vn − vm)− κnw(vn − vw),

0 = −m∇
(
p+

∂f

∂m

)
− κnm(vm − vn)− κmw(vm − vw),

0 = −w∇
(
p+

∂f

∂w

)
− κnw(vw − vn)− κmw(vw − vm).

(5)
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An overall momentum balance (i.e. summing equations (5)) leads to Legendre-
transform expression for the hydrostatic pressure p:

(6) p = f − n
∂f

∂n
−m

∂f

∂m
− w

∂f

∂w
.

That a scalar relationship (6) results from a vector system leaves the model un-
derspecified – this is associated with Noether’s second theorem, given that the
continuum-mechanical equations (i.e. (5) and the second of (4)) are invariant
under vi → vi + V for i = n,m,w provided only that ∇ · V = 0. A closed sys-
tem can be recovered either by introducing viscous terms, say, into the intraphase
constitutive relations or, as we do here, by the (usually simply mathematical) ex-
pedient of imposing nvn +mvm + www = 0, rather than just (4). The balance
between the drag and other terms in (5) can (in the light of (6)) induce backward-
diffusive effects for suitable f , again typically reflecting cell aggregation: these
can be regularised by, for example, introducing viscous effects as above (leading
to regularisations of pseudoparabolic type) or by requiring f to depend also on
spatial derivatives (cf. the Cahn-Hilliard equation).

We conclude here by further simplifying the formulation via some biologically

motivated limits, namely κnm → ∞, κnw, κmw → 0 with w = O(κ
1/2
w ), |vw| =

O(κ
−1/2
w ), where κw = κnw + κmw. Taking, for the sake of illustration, f to be

purely entropic in form then under suitable scalings we obtain at leading order

n+m = 1, vn = vm = w∇w/κw, vw = −∇w/κw,
and, for suitable κw(n,m,w), the novel free boundary problem

∂n

∂t
+∇ · (nw

κw
∇w) = (kb − kd)n, ∇ · ( w

κw
∇w) = (kb − (1− θ)kd)n in Ω(t),

∂n

∂ν
= 0, Vν =

w

κw

∂w

∂ν
on ∂Ω(t),

where Vν is the outward normal velocity, and ∂/∂ν the outward normal derivative,
of the free boundary. Note that

∂n

∂t
+ vn · ∇n = kbn(1− n)− kdn(1− (1− θ)n),

so here n is prevented from reaching 1 without any need to impose such a con-
straint. While the system can be reduced to a free-boundary problem for a pair of
reaction-degenerate-diffusion equations without exploiting these limits, the above
is instructive as representative of the simplest formulations of the current class.

Numerous effects are omitted in the above discussion: more realistic intraphase
constitutive relations should be considered, nutrient transport and consumption
should be included, other phases are needed in typical regenerative-medicine con-
texts in order to capture cellular differentiation and many other such phenomena
warrant consideration. It is hoped that the above remarks nevertheless serve to
illustrate the novel free-boundary formulations that are applicable in such systems-
biology applications.
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Material optimization: control in the coefficients of nonlinear elliptic
problems

Günter Leugering

(joint work with Peter I. Kogut)

In recent years functionalization of materials has become a major field of reseach
in materials sciences and applied mathematics, where in particular inverse prob-
lems and optimization problems have been investigated in order to find optimal
material distributions, inclusions, layers, holes and more generally microstructures
embedded into bulk material such that a given merit function which, in turn, de-
scribes macroscopic material properties is optimized. There are several different
approaches to cope with this problem: one is to use phase field models that model
bulk material and, say, inclusions or holes (even cracks) via phase variables and
evolve the phases whereas a second one uses transmission conditions and shape or
topological sensitivities in order to optimally move the interfaces of the inclusions
or the holes. The phase field models, as discussed thoroughly during the confer-
ence, contain a relaxation parameter ǫ governing the ’sharpness’ of the ’interfaces’
between the phases. In principle, letting ǫ tend to zero, sharp interfaces occur.
This provides the chance, which however still has to be explored mathematically,
to perform optimization with respect to material and geometrical properties of
the phases on a given positive ǫ level and then converge towards sharp interfaces.
The other approach insists on sharp interfaces to begin with and relies on shape
and/or topological sensitivities which may be difficult to obtain due to potential
non-smoothness. In a third approach one is less specific about a particular ma-
terial distributions or distributions of inclusions, rather one looks at the stiffness
tensors (matrices) as a whole object of optimization. In that approach the mate-
rial may change ’pixel by pixel’ in an L∞ manner while keeping symmetry as the
only underlined structural property. This approach, which has come to be known
as Free material Optimization (FMO), is the most radical one, as it provides in a
sense ’utopia material’. One needs to add certain manufacturability constraints in
order to make the procedure practical and comparable to the other more classical
procedures. The limited space prohibits a fair account of references for the three
approaches mentioned. We instead just refer to [7] and the references therein.
Clearly, FMO relates to optimization in the coefficients of typically elliptic prob-
lems and, in fact, this is also true for the other approaches, at least in principle. It
turns out in a variety of applications that the corresponding matrices may exhibit
degeneration (e.g. damage, fissures, cracks, cloaking). Thus, a general theory
for control in the coefficients should reflect this necessity. Moreover, almost all
of the results available for material optimization appear to rely on linear consti-
tutive equations for elasticity, piezoelectricity or in Maxwell systems. However,
the models should reflect nonlinear behavior as well. Therefore, we concentrated
in this lecture on the problem of control in the coefficients for the heterogeneous
p-Laplacian. Problems of control in the coefficients have been the subject of a
number of publications. We refer to [1] and [2] and the references therein. Clearly,



908 Oberwolfach Report 15/2013

in an ’all-at-once’ approach, a minimizing sequence involves the matrices (say Ak)
and the states (say yk), typically in a product of Ak and (a function of ) the gra-
dient of yk. This situation is closely related to the framework of homogenization
and it is no surprise that H-convergence of matrices plays a dominant role also in
the context of coefficient-control. However, unfortunately, a lower strictly positive
bound (a.e.) has to be employed in order to prove the necessary H-compactness
results needed in the proofs. This is the point of departure for the recent work
of the authors. See [3, 4, 5]. When dealing with degenerate matrices, even in
the linear elliptic case, one has to treat the problem in the setting of weighted
Sobolev spaces, the weights being in terms of the matrices. Consequently, once
dealing again with minimizing sequences, one then has to work in sequences of
such weighted spaces. This makes the analysis interesting on the one side but
also quite tedious. In addition to the inherent difficulties, degeneration may give
rise to the so-called Laverentiev gap-phenomenon. Below, we formulate the prob-
lem and present our recent result on optimality conditions[6] which in the linear
case coincide with those in the literature, e.g.[1]. We define Mα,β

p (Ω) as a set of

U(x) = [ai j(x)]1≤i,j≤N in L∞(Ω;RN×N ) with:

|aij(x)| ≤ β a.e. in Ω ∀ i, j ∈ {1, . . . , N},
(
U(x)([ζp−2]ζ − [ηp−2]η), ζ − η

)
RN ≥ 0 a.e. in Ω ∀ ζ, η ∈ R

N ,

(
U(x)[ζp−2]ζ, ζ

)
RN =

N∑

i,j=1

ai j(x)|ζj |p−2 ζj ζi ≥ α |ζ|pp a.e in Ω,

[ηp−2] = diag{|η1|p−2, |η2|p−2, . . . , |ηN |p−2} ∀η ∈ R
N .

Let ξ 1, ξ2 be given functions of L∞(Ω) such that 0 ≤ ξ1(x) ≤ ξ2(x) a.e. in Ω. Let
Qi be nonempty compact convex in W−1, q(Ω). Let

Ub :=
{
U = [ai j ] ∈Mα,β

p (Ω)
∣∣ ξ1(x) ≤ ai j(x) ≤ ξ2(x) a.e. in Ω, ∀ i, j = 1, . . . , N

}
,

Usol :=
{
U = [u1, .., uN ] ∈Mα,β

p (Ω)
∣∣ div ui ∈ Qi, ∀ i = 1, .., N

}
, Uad := Ub ∩ Usol.

Minimize

{
IΩ(U , y) =

∫

Ω

|y(x)− yd(x)|p dx
}

subject to the constraints

U ∈ Uad ⊂ L∞(Ω;RN×N ), y ∈W 1,p
0 (Ω),

−div
(
U [(∇y)p−2]∇y

)
+ |y|p−2y = f in Ω,

y = 0 on ∂Ω,

For the sake of simplicity, we restrict our consideration here to diagonal matrices.
We define M(Ω) ⊂W 1,p

0 (Ω): y ∈ M(Ω) if and only if

∃ ζ ∈ L1(Ω) such that ζ > 0 a. e. in Ω, ζ−1 ∈ L1(Ω),
(
ξ,U [(∇y)p−2]ξ

)
RN ≥ ζ(x) ‖ξ‖2

RN a.e. in Ω, ∀ ξ ∈ R
N , and |y|2−p ∈ L1(Ω).
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(H1) For f ∈ W−1,q(Ω) with q = p
p−1 and p ≥ 2, y (U) ∈ M(Ω) ∀U ∈ Uad :=

Ub ∩ Usol. (H2) Let ζad : Ω → R1
+ satisfy

ζad ∈ L1(Ω), ζ−1
ad ∈ L1(Ω), ζ−1

ad 6∈ L∞(Ω),

There exist elements f∗ and ζ∗ in L1(Ω) such that f∗ > ζ∗ ≥ ζad and, for each(
Û , ŷ

)
∈ Uad × M(Ω), η ∈ R1, and ξ ∈ RN , the following conditions hold true

almost everywhere in Ω:

(η2 + ‖ξ‖2
RN )ζ∗ ≤ |ŷ|p−2η2 +

(
ξ, Û [(∇ŷ)p−2]ξ

)
RN

≤ (η2 + ‖ξ‖2
RN )f∗.

Theorem:[6] Assume (H1), (H2), p ≥ 2, f ∈ W−1,q(Ω), Uad 6= ∅.
Let (U0, y0) ∈ L∞(Ω;RN×N)×W 1,p

0 (Ω) be an optimal pair. There exists an ele-
ment ψ ∈ Hp

U0,y0
(Ω) such that

∫

Ω

(
(U − U0)[(∇y0)p−2]∇y0,∇ψ

)
RN dx ≥ 0, ∀U ∈ Uad,

∫

Ω

(
U0[(∇y0)p−2]∇y0,∇ϕ

)
RN dx +

∫

Ω

|y0|p−2y0ϕdx =

= 〈f, ϕ〉W 1,p
0 (Ω), ∀ϕ ∈W 1,p

0 (Ω),

(p− 1)

∫

Ω

(
[(∇y0)p−2]U0∇ψ,∇ϕ

)
RN dx+ (p− 1)

∫

Ω

|y0|p−2 ψ ϕdx =

= p

∫

Ω

|y0 − yd|p−1ϕdx, ∀ϕ ∈ C∞
0 (Ω).
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Boundary Control of the Obstacle Problem

Christian Meyer

(joint work with Daniel Wachsmuth)

We consider an optimal control problem governed by the obstacle problem. The
control enters the system via the Neumann boundary data. To be more precise
the optimization problem reads

(1)





min g(y) + j(u)

s.t. a(y, v − y) ≥
∫

Γ

u(v − y) dx ∀ v ∈ K

y ∈ K,

where Ω ⊂ Rd, d = 2, 3, is a given bounded Lipschitz domain with boundary
Γ. Moreover, a : H1(Ω) × H1(Ω) → R is a coercive and bounded bilinear form
corresponding to a second-order differential operator with C(0,1)-coefficients. The
feasible set K is given by K = {v ∈ H1(Ω) : v ≤ ψ a.e. in Ω} with a given
function ψ ∈ W 1,∞(Ω). The two parts g : H1(Ω) → R and j : L2(Γ) → R

in the objective are assumed to be twice continuously Fréchet-differentiable. In
order to guarantee existence of an optimal solution, we moreover assume that
g is bounded from below and j is radially unbounded. It is well known that
the solution mapping associated with a variational inequality (VI) is in general
not Gâteaux differentiable, see for instance [5]. Therefore the standard implicit
programming approach for the derivation of first-order necessary optimality, which
is usually applied in optimal control of PDEs, does not work for problems of type
(1). Thus several alternative stationarity concepts are known such as for instance
weak, C(larke)-, B(ouligand)-, and strong stationarity. For an overview we refer
to [2]. The most rigorous concept is strong stationarity which is also essential
for second-order sufficient conditions and a priori finite element error estimates,
see [3] and [4]. C-stationarity conditions for (1) can be proven by a meanwhile
fairly standard penalization technique following e.g. the lines of [7], where the same
result is proven in case of distributed controls. The question arise if also strong
stationarity can be proven to be necessary for local optimality. These conditions
differ from C-stationarity conditions in the sign conditions for the multipliers. For
the case of distributed controls strong stationarity was proven in a classical work
of Mignot and Puel [6]. Their technique can be adapted to the boundary control
problem if the feasible set is replaced by K = {v ∈ H1(Ω) : v ≤ ψ a.e. on Γ}, i.e.
in case of the simplified Signorini problem. However, for a problem of type (1),
a one-dimensional counterexample shows that strong stationarity is not necessary
for local optimality. The counterexample is constructed as follows: By means of a
slack variable ξ ∈ H1(Ω)∗ the VI in (1) can equivalently be expressed as

a(y, v) =

∫

Γ

u v dx − 〈ξ, v〉 ∀ v ∈ H1(Ω)

y ≤ ψ, ξ ≥ 0, 〈ξ, y − ψ〉 = 0.
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If one omits the slackness condition 〈ξ, y − ψ〉 = 0, then an auxiliary optimal
control problem arises, whose feasible set is convex. The counterexample is now
constructed such that the objective is also convex (so that the auxiliary problem
is a convex program) and the strong stationarity conditions imply the Karush-
Kuhn-Tucker (KKT) conditions for this auxiliary problem. As it is convex, the
KKT-conditions are sufficient, which leads to a contradiction, since the considered
local optimum can be shown to be not optimal for the auxiliary problem. As
stated above, only second-order sufficient conditions involving strong stationarity
conditions are known up to now. To be more precise, these conditions include
sign conditions on the multipliers which are even more restrictive than the ones
contained in strong stationarity. Using a technique introduced in [1], analogous
sufficient conditions can be established for (1). There is thus a large gap between
necessary and sufficient conditions in case of boundary control of the obstacle
problem, which gives rise to future research.
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Forced mean curvature motions: 1. Homogenization, 2. Spirals

R. Monneau

We present here two independent recent results about forced mean curvature mo-
tions: a result about homogenization/non homogenization (see the joint work with
L.A. Caffarelli [1]) and results on the dynamics of spirals (see the joint works with
N. Forcadel and C. Imbert [2, 3]). We refer the reader to the cited works for a
review of the literature on those two topics.

Homogenization questions
We consider the geometric evolution of hypersurfaces in RN , whose the normal
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velocity is given by

V = κ+ c(x)

where κ is the mean curvature of the hypersurface and c is a ZN -periodic function
which is Lipschitz. Then for ε > 0, we rescale the problem with the new normal
velocity:

V ε = εκ+ c(
x

ε
)

We will show, as ε goes to zero, in some sense that V ε converges to an effective
geometric law

V 0 = c̄(n)

where n is the normal to the homogenized hypersurface.

We work with the level set formulation of the problem, the hypersurface being
then a level set of a function u. Then u(t, x) solves the following PDE
(1)






u
ε

t = ε trace

{

D
2
u
ε ·

(

I −
Duε

|Duε|
⊗

Duε

|Duε|

)}

+ c(x)|Du
ε| on (0,+∞)× R

N ,

uε(0, x) = u0(x) for all x ∈ R
N

For this equation we have

Theorem 1. (Homogenization of mean curvature motion in dimension
2, [1])
Under the previous assumptions for N = 2, c > 0 and the initial data u0 glob-
ally Lipschitz continuous, the unique viscosity solution uε of (1) converges locally
uniformly to the unique viscosity solution u0 of





uεt = c̄

(
Du0

|Du0|

)
|Du0| on (0,+∞)× RN ,

u0(0, x) = u0(x) for all x ∈ RN

for some continous function c̄.

Here, for a unit vector n, the function c̄(n) is determined by the existence of a
periodic bounded function v (called corrector) of the following cell equation

(2) c̄(n) = F (D2v, n+Dv, x) on R
N

By contrast we also show a counter-example in dimensions N ≥ 3:

Theorem 2. (Counter-example to homogenization in dimension N ≥ 3,
[1])
For N ≥ 3, there exists a unit vector n and a C∞ and ZN -periodic function c > 0
such that, for all real values of c̄(n), there is no bounded solutions v of (2).

We can even prove that the thickness of an initial flat level set increases linearly
in time for long time, which prevents the possibility of strong homogenization re-
sult in such a case.
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Spiral dynamics
Motivated by the modeling of crystal growth and the description of Frank-Read
sources of dislocations in cystals, we are interested in the geometric motion in the
plane R2 of a spiral attached to the origin, whose the normal velocity is given by

V = 1 + κ

where κ is the curvature of the spiral. The (time dependent) spiral is parametrized
in polar coordinates (r, θ) as

θ = −u(t, r)
and it can be checked that u solves the following PDE
(3)






rut =
√

1 + (rur)2 + ur

(

2 + (rur)
2

1 + (rur)2

)

+
rurr

1 + (rur)2
on (0,+∞)× (0,+∞),

u(0, r) = u0(r) for all r ∈ (0,+∞)

As we see, this equation is degenerated at r = 0, and for this reason we do not
impose any condition at r = 0. We also introduce the curvature of the spiral

κu = ur

(
2 + (rur)

2

(1 + (rur)2)
3
2

)
+

rurr

(1 + (rur)2)
3
2

Then we have the following result:

Theorem 3. (Existence and uniqueness, [2])

Assume that u0 ∈ W 2,∞
loc (0,+∞) is globally Lipschitz continuous and satisfies

(u0)r ∈W 1,∞(0,+∞) or κu0 ∈ L∞(0,+∞)

and that there exists a radius r0 > 0 such that

|1 + κu0 | ≤ Cr for 0 ≤ r ≤ r0

Then there exists a unique viscosity solution of (3) which is globally Lipschitz in
space and time.

We can also identify a self-similar solution λt+ϕ(r). Under certain assumptions
on the initial data, we can show, as the time goes to infinity, that solutions u(t, r)
of (3) behave like the self-similar profile (up to addition of constants that may
depend on the chosen subsequences in time, see [3] for more details).
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On general existence results for one-dimensional singular diffusion
equations with spatially inhomogeneous driving force

Atsushi Nakayasu

(joint work with Mi-Ho Giga, Yoshikazu Giga)

We study an anisotropic mean curvature flow with singular interfacial energy and
spatially inhomogeneous driving force for a curve in a plane given by the graph of
a periodic function u = u(t, x). This problem is formulated as a one-dimensional
quasilinear diffusion equation of the form

ut = a(ux)[(W
′(ux))x + σ(t, x)] in (0, infty)× T

with a nonnegative continuous function a, a convex function W and the driving
force term σ. We are concerned with the case when W = W (p) may not be
differentiable at some slopes p so that singularity appears in the equation.

Since the diffusion effect is very strong, the equation becomes nonlocal. Indeed,
it turns out that the quantity of Λσ

W (u) := (W ′(ux))x + σ is characterized by
a corresponding obstacle problem. Moreover, Λσ

W (u) is well-defined for so-called
faceted functions u since the obstacle problem admits a unique minimizer. A notion
of a solution to the singular diffusion equation is defined by a viscosity sense testing
the smooth faceted functions instead of smooth functions to an unknown function.

We point out that when the driving force σ is spatially homogeneous, the theory
for the singular diffusion equation is easy to develop since the obstacle problem
becomes trivial and the quantity of Λσ

W (u) is constant on each facet. In fact, a
unique existence of a viscosity solution for initial value problems was established
by Giga and Giga [1]. However, when σ depends on the space variable, their
method does not work well since Λσ

W (u) may not be constant. In particular, there
is no general existence results for initial value problems although a comparison
theorem has been shown by Giga, Giga and Rybka in their recent work [2].

In this talk we show a global in time existence of a solution in the viscosity
sense to the singular diffusion equation with a continuous periodic initial datum.
The main tool to prove the existence theorem is Perron’s method and so we also
show a Perron type existence result stating that if there exists a subsolution and a
supersolution then the supremum function of subsolutions between the given sub-
and supersolution is a solution. When one tries to prove the Perron type existence,
it is necessary to modify a smooth faceted test function keeping its property. The
main idea to solve this problem is to find a small effective region which determines
the quantity of the nonlocal curvature. We construct a modification as in the
previous work [1] using the effective region instead of the faceted region. Then
the argument works for our setting with the spatially inhomogeneous driving force
term σ.

Our results can be applied to one-dimensional total variation flow as well as
the singular anisotropic mean curvature flow for graphs. We also note that fully
nonlinear singular diffusion equations of the form

ut + F (t, ux,Λ
σ
W (u)) = 0 in (0, infty)× T
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can be handled by our theory.
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Stability of bunched spirals and inactive pair in evolution of spirals
with an eikonal-curvature flow

Takeshi Ohtsuka

(joint work with Yen-Hsi Richard Tsai and Yoshikazu Giga)

We consider several evolving spirals in the plane with an eikonal-curvature flow
equation of the form

(1) V = C − κ,

where V and κ is the normal velocity and the curvature of the spirals, and C is a
constant. The authors [4, 5] introduced a level set formulation for the spirals with
a single auxiliary function and a sheet structure function. Let Ω be a bounded
domain. Assume that spirals, which is denoted by Γt for t ∈ [0,∞), are associated
with several fixed centers a1, . . . , aN ∈ Ω. However we remove closure of discs
Bρj

(aj) = {x ∈ R2; |x − aj | < ρj} from Ω for technical reason, and thus we

consider Γt ⊂W . In the level set formulation by [4] or [5] we set

(2) Γt = {x ∈W ; u(t, x)− θ(x) ≡ 0 mod 2πZ}
with an auxiliary function u and a sheet structure function θ(x) =

∑N
j=1mj arg(x−

aj). Note that θ is a multiple valued function to describe spirals completely. The
coefficient mj ∈ Z \ {0} denotes a signed number of spirals associated with aj ; if
mj > 0 (resp. mj < 0) then |mj | spirals are associated with aj with anti-clockwise
(resp. clockwise) rotational orientation provided that V > 0.

Although θ is a multiple valued function, we can regard (2) as the usual level
set of a smooth function u− θ locally, we obtain

n = − ∇(u− θ)

|∇(u− θ)| , V =
ut

|∇(u− θ)| , κ = −div
∇(u− θ)

|∇(u− θ)|
by analogy of the usual level set method (see [1] for details). Then, we now
consider (1) with a right angle condition between Γt and ∂W and obtain the level
set equation of the form

ut − |∇(u − θ)|
{
div

∇(u− θ)

|∇(u− θ)| + C

}
= 0 in (0, T )×W,(3)

〈~ν,∇(u− θ)〉 = 0 on (0, T )× ∂W,(4)

where ~ν is an outer unit normal vector field of ∂W , and 〈·, ·〉 denotes a usual
inner product of R2. The comparison principle, existence and uniqueness of a
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solution for a continuous initial datum in viscosity sense are obtained in [4], and
the uniqueness of level sets is obtained by [2], respectively.

The goal of this talk is to prove the following two results with our level set
formulation.

(I) Assume that N = 1, a1 = 0, W = BR(0) \ Bρ(0), m > 1 and thus
θ(x) = m arg x. If a bunch of m spirals Γt is in a thin domain at t = 0,
then there exists a family of thin domains including Γt for t > 0.

(II) Assume that N = 2, m1 = −m2 = 1 (θ(x) = arg(x − a1) − arg(x − a2)),

W = Ω \ (Bρ(a1) ∪Bρ(a2)), i.e., ρ1 = ρ2 = ρ, and |a1 − a2| < 2/C. Prove
that no growth occurs in this case.

A negative result for the problem (I) is obtained by [3] with a reaction diffusion
equation denoting evolution of spirals with (1) and the right angle condition. Note
that our equation (3)–(4) is derived from the equation in [3] by formal asymptotic
expansion. However, we obtain the stability result for (3)–(4).

To state our main results exactly we now introduce a covering space X of W of
the form

X = {(x, ξ) ∈W × R
N ; ξ = (ξ1, . . . , ξN ), (cos ξj , sin ξj) =

x− aj
|x− aj |

}.

Then, ũ(t, x, ξ) := u(t, x) − ∑N
j=1mjξj on [0, T ] × X plays the role of u − θ.

Moreover, X is divided into three subsets Γ̃t, Ĩt, and Õt with ũ of the form

Γ̃t = {(x, ξ) ∈ X; ũ(t, x, ξ) = 0},
Ĩt = {(x, ξ) ∈ X; ũ(t, x, ξ) > 0}, Õt = {(x, ξ) ∈ X; ũ(t, x, ξ) < 0},(5)

which are regarded as Γt, “interior” and “exterior” of Γt, respectively.
We are now in the position to state our main result for the problem (I).

Theorem 1. Let N = 1, a1 = 0, W = BR(0) \ Bρ(0), and m > 1. Let u be a

viscosity solution to (3)–(4) in (0, T )×W . Assume that there exists ζ0 ∈ C([ρ,R])
and α > 0 satisfying

{(x, ξ) ∈ X; ũ(0, x, ξ) = 2πj} ⊂ {(x, ξ) ∈ X; |ξ − (ζ0(|x|) + 2πkj)| ≤ α}
with a constant kj ∈ Z for j = 0, 1, . . . ,m− 1. Then, there exists ζ ∈ C([0,∞)×
[ρ,R]) such that w(t, x) = ζ(t, |x|) is a viscosity solution to (3)–(4) with N = 1,
a1 = 0 and m = 1, and

{(x, ξ) ∈ X; ũ(t, x, ξ) = 2πj} ⊂ {(x, ξ) ∈ X; |ξ − (ζ(t, |x|) + 2πkj)| ≤ α}
for j = 0, 1, . . . ,m− 1 and t > 0.

For the problem (II), we may assume that a1 = (−α, 0), a2 = (α, 0) with
α ∈ (0, 1/C) without loss of generality. We now consider

q1(σ) = p1(σ)+
1

C
(sinσ,− cosσ), q2(σ) = p2(σ)+

1

C
(− sin(π−σ),− cos(π−σ))
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with p1(σ) = a1 + ρ(cosσ, sinσ) and p2(σ) = a2 + ρ(cos(π− σ), sin(π− σ)). Then,
there exists σ1, σ2 satisfying 0 < σ1 < σ2 < π and

b1 = (0,−β) = q1(σ1) = q2(σ1), b2 = (0, β) = q1(σ2) = q2(σ2)

for some β > 0. Then, the curve

Ri =

{
bi +

1

C

(
cos
(π
2
+ σ

)
, sin

(π
2
+ σ

))
; σ ∈ [−σi, σi]

}

satisfies Ri ⊥ ∂W for i = 1, 2. Since Ri is a part of the circle whose radius is 1/C,
then Ri should be a stationary solution to (1) with the right angle condition. How-
ever, if we consider (3)–(4) with θ ≡ 0, i.e., the evolution of closed curve with (1),
then there are no continuous stationary solutions describing {x ∈ R2; |x| = 1/C}.
Since our equation may have no continuous stationary solution describing Ri by
analogy of the above, we construct discontinuous viscosity solutions describing Ri.

Theorem 2. Let N = 2 and m1 = −m2 = 1 and thus θ = arg(x−a1)−arg(x−
a2), a1 = (−α, 0), a2 = (α, 0) with α ∈ (0, 1/C). Assume that Ri ⊂ W . Then
v = θRi

, which is a branch of θ whose discontinuities are only on Ri, is a viscosity
solution to (3)–(4).

Consequently we obtain the no evolution result from the above.

Corollary 3. Under the same hypothesis in Theorem 2, let u ∈ C([0,∞)×W )
be a viscosity solution to (3)–(4). Then, there exists k ∈ Z such that

{(x, ξ) ∈ X; ũ(t, x, ξ) > 0} ⊂ {(x, ξ) ∈ X; v(x) + 2πk − (ξ1 − ξ2) > 0}.

The crucial properties on (3)–(4) to prove the main results is the comparison of
interior and exterior sets obtained in [2].

The crucial difference between ours and [3] for the first problem (1) is that
our equation is degenerate parabolic, in particular, there is no diffusion in the
direction of n. This implies that each spiral still evolves by (1) without interactions
with each other. Then, we obtain Theorem 1 with a construction of a solution
w(t, x) = ζ(t, |x|) and the comparison of interior or exterior between Γt, Ct = {x ∈
W ; ζ(t, |x|) − argx ≡ 0 mod 2πZ} and a rotation of Ct. For the second problem
(II) the curve Ri is described with a discontinuous stationary solution to (3)–(4),
then Ri plays role of bound for all solutions.
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Constrained Shape Optimization for Polymer Distributors

René Pinnau

(joint work with Chrisitian Leithäuser)

Synthetic fibers and nonwovens have become increasingly important in recent
years and find applications in a broad variety of products: The range goes from
hygienic products, like diapers, over various filter materials towards high-tech ap-
plications like battery separators. The production process for nonwoven materials
is as follows: In a first step molten polymer with high viscosity is pressed from an
extruder through a distributor geometry onto the spinneret plate. This is a plate
containing small capillaries which are used for spinning the polymer into fibers.
Turbulent air flow is applied for drawing and swirling the fibers. Finally, many
fibers are deposited on a moving belt to form a nonwoven material. There are
many variations of this process, for example, the deposition step can be left out
to produce yarn or short-fibers.

This talk is motivated by the following problem: The polymer is routed through
tubes into the geometry which distributes it onto the spinneret plate. However, this
is often a time-critical step because the polymer can degenerate or cool down if its
occupation time is too long, which results in a poor fiber quality. It can lead to fiber
breakage or even blockage of capillaries or parts of the distributor. Especially, in
regions close to the walls, polymer can stagnate or solidify. Research and practical
applications at Fraunhofer ITWM have shown that this can be greatly improved
by designing geometries which avoid regions with low wall shear stress: The wall
shear stress measures the velocity gradient at the wall. At the wall itself the flow
velocity is zero and so the wall shear stress indicates how fast the velocity rises
with increasing distance to the wall. A low wall shear stress means that there is
a large boundary layer with low velocity, where polymer degeneration can take
place. Increasing the wall shear stress results in a reduction of this layer and an
improvement of the fiber quality. This leads us to the following mathematical
problem, which was thoroughly investigated in [4]:

Find a geometry for a polymer flow distributor with an improved
wall shear stress distribution.

The solution of this problem leads to several interesting questions concerning
shape dependent operators, which are discussed in the following:

• Are specific wall shear stress distributions reachable by a change of the
geometry?

• Is it possible to attain a desired wall shear stress distribution in a uniform
way?
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The question of reachability was studied in [3], where it was possible to char-
acterize the image space of the potential flow shape operator. Note, that this
problem is inherently nonlinear due to the dependence on the shape of the do-
main. The reachability is in particular depending on the number of stagnation
points along the observed part of the wall.

Focussing instead on the concept of approximate controllability, where the im-
age of linearized shape operator needs to be dense, it was possible to prove the
approximate controllability for the potential flow shape operator, the Stokes flow
shape operator and the heat equation shape operator (for details see [4]).

The second question leads to an optimal shape design problem with respect to
the L∞–norm. This can be formulated as an optimal control problem with state
constraints. The crucial part, however, is to deal with the shape-dependence. The
shape-dependent problem can be finally transformed by conformal maps into a
standard state constrained optimal control problem. This leads after discretization
to a large NLP, which can be solved by modern NLP solvers [1, 2].

Further, the threedimensional industrial problem was solved by a steepest de-
scent algorithm based on gradient information derived from shape calculus [4].
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Unfitted finite element methods for surface partial differential
equations

Thomas Ranner

(joint work with Klaus P. Deckelnick, Charles M. Elliott)

Surface partial differential equations have grown in popularity within the last
twenty years with applications in fluid mechanics, biology and material sciences
becoming increasingly common. These equations are posed on curved domains,
which often have complex evolving morphology, and combine surface and bulk
effects, hence computational techniques are required.

To simplify the presentation, we will consider a surface elliptic problem:

(1) −∆Γu+ u = f on Γ.

It is well known [1] that (1) equation has a unique solution satisfying the regularity
estimate:

‖u‖H2(Γ) ≤ c‖f‖L2(Γ).
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Alternative approaches given in the literature include using the surface finite el-
ement method [4], which has been successfully extended to evolving surfaces [5]
and coupled bulk-surface problems [6], an implicit surface method [2] and the clos-
est point method [8]. The methodology presented here has similarities with the
methods of [3, 7].
Unfitted finite element methods: Let Γ = {x ∈ Rn+1 : d(x) = 0} be an
n-dimensional hypersurface in Rn+1 and d a signed distance function defined in a
polyhedral narrow band U about the surface.

We write Th for a regular triangulation of U consisting of closed simplices, with
h the maximum element diameter of elements in Th. Let Xh be the space of
piecewise linear bulk finite element functions on U and Ih : C(Ū) → Xh denote
the usual Lagrangian interpolation operator. We have for T ∈ Th, f ∈ W 2,p

(1 ≤ p ≤ ∞):

(2) ‖f − Ihf‖Lp(T ) + h‖∇(f − Ihf)‖Lp(T ) ≤ ch2‖f‖W 2,p(T ).

We define our computational domains Γh and Dh as follows:

Γh := {x ∈ R
n+1 : Ihd(x) = 0}, Dh := {x ∈ R

n+1 : |Ihd(x)| < h}.

Figure 1. Examples of intersections of Γh ∩ T (left two images)
and Dh ∩ T (right two images).

Method one – sharp interface method: We define T̃ I
h := {T ∈ Th : measn(T∩

Γh) > 0}. The intersection of Γh with one element of T̃ I
h is either a triangle or

quadrilateral. It is possible that T ∩ Γh is the face of two adjoining elements. In

this case, we discount one of the two elements from T̃ I
h and call the remaining

elements T I
h . We define U I

h :=
⋃{T : T ∈ T I

h } and the finite element space Vh
as the space of piecewise linear functions on U I

h . The finite element space has the
following interpolation result:

(3) ‖ze − Ihz
e‖L2(Γh) + h‖∇(ze − Ihz

e)‖L2(Γh) ≤ ch2‖z‖H2(Γ).

Here ze is an extension of z : Γ → R to U constant in the normal direction.
The finite element problem is: find uh ∈ Vh such that

(4)

∫

Γh

∇uh · ∇φh + uhφh dσh =

∫

Γh

feφh dσh for all φh ∈ Vh.
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It can be shown that (4) is well posed and using a variant of the Stang lemma and
the interpolation results (2, 3), we have the following error bound between u the
solution of (1) and uh the solution of the sharp interface method (4).

(5) ‖ue − uh‖L2(Γh) + h‖∇(ue − uh)‖L2(Γh) ≤ ch2‖u‖H2(Γ).

Method two – narrow band method: We define T B
h := {T ∈ Th : measn+1(T∩

Dh) > 0} and UB
h := {T : T ∈ T B

h }. We define the finite element space Vh
as the space of piecewise linear functions on UB

h . This space has the following
approximation property

(6)
1√
h
‖ze − Ihz

e‖L2(Dh) +
√
h‖∇(ze − Ihz

e)‖L2(Dh) ≤ ch2‖z‖H2(Γ).

The second finite element scheme is: find uh ∈ Vh such that

(7)
1

2h

∫

Dh

∇uh · ∇φh + uhφh dx =
1

2h

∫

Dh

feφh dx.

This equation is clearly well posed and applying similar techniques as above we
have the following bound between between u the solution of (1) and uh the solution
of the narrow band method (7):

(8)

(
1

2h

∫

Dh

|∇(ue − uh)|2 + |ue − uh|2 dx
) 1

2

≤ ch‖f‖L2(Γ).

This result is optimal for the H1 norm, but not the L2 norm.
Numerical results: As a computational example, we consider Γ to be a torus
with inner radius r = 0.6 and outer radius R = 1. We take the right hand side
so that the exact solution is u(ϕ, θ) = cos(3ϕ) sin(3θ + ϕ). The results for the
sharp interface method are on the left and narrow band method on the right
hand side. Both methods demonstrate quadratic convergence in the L2(Γh) norm.
Similar results are available for ‖∇(ue − uh)‖L2(Γh) which also gives control over
the normal component of the error away from the surface.

h ‖ue − uh‖L2(Γh) eoc

2−1
√
3 6.03053 —

2−2
√
3 1.67739 1.846067

2−3
√
3 7.10825 · 10−1 1.238652

2−4
√
3 1.90004 · 10−1 1.903465

2−5
√
3 4.73865 · 10−2 2.003482

2−6
√
3 1.19721 · 10−2 1.984800

2−7
√
3 3.01376 · 10−3 1.990040

h ‖ue − uh‖L2(Γh) eoc

2−1
√
3 2.49823 —

2−2
√
3 1.62953 0.616450

2−3
√
3 7.13768 · 10−1 1.190929

2−4
√
3 2.35902 · 10−1 1.597268

2−5
√
3 7.26544 · 10−2 1.699066

2−6
√
3 1.99335 · 10−2 1.865855

2−7
√
3 5.14142 · 10−3 1.954956
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Figure 2. Plots of the solutions of both methods. Left is shown
the induced mesh on Γh, central is shown the solution on Γh for
the sharp interface method and right is shown the computational
domain and the solution on Γh for the narrow band method.
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An Eulerian space-time finite element method for PDEs on evolving
surfaces

Arnold Reusken

(joint work with Maxim Olshanskii)

1. Introduction

Partial differential equations (PDEs) posed on evolving surfaces arise in many
applications. One example is the diffusion equation that models the concentration
distribution of surface active agents attached to an interface between two phases
of immiscible fluids, cf. [1].

Recently, several approaches for solving PDEs on evolving surfaces numerically
have been introduced. The finite element method of Dziuk and Elliott [2] is based
on the Lagrangian description of a surface evolution. If one considers the Eulerian
description of a surface evolution, e.g., based on the level set method, then the
surface is usually defined implicitly. In this case, regular surface triangulations
and material trajectories of points on the surface are not easily available. Hence,
Eulerian numerical techniques for the discretization of PDEs on surfaces have been
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studied in the literature. Numerical approaches were introduced that are based
on extensions of PDEs off a two-dimensional surface to a three-dimensional neigh-
bourhood of the surface. Then one can apply a standard finite element or finite
difference disretization to treat the extended equation in R3. The extension, how-
ever, leads to degenerate parabolic PDEs and requires the solution of equations in
a higher dimensional domain. For a detailed discussion of this extension approach
we refer to, e.g., [3].

A different Eulerian technique for the numerical solution of an elliptic PDE
posed on a hypersurface in R

3 was introduced in [4, 5]. The main idea of this
method is to use finite element spaces that are induced by the volume triangula-
tions of a bulk domain in order to discretize a partial differential equation on the
embedded surface. This method does not use an extension of the surface partial
differential equation. It is instead based on a restriction (trace) of the outer finite
element spaces to the discrete surface. This leads to discrete problems for which
the number of degrees of freedom corresponds to the two-dimensional nature of
the surface problem, similar to the Lagrangian approach. At the same time, the
method is essentially Eulerian as a surface is not tracked by a surface mesh and
may be defined implicitly as the zero level of a level set function. For the dis-
cretization of the PDE on the surface this zero level then has to be reconstructed.
The approach was further developed in [6, 7], where adaptive and streamline dif-
fusion variants of this surface finite element were introduced and analysed. These
papers [4, 5, 6, 7], however, treated elliptic and parabolic equations on stationary
surfaces.

In this note we outline a method that generalizes the approach from [4] to
diffusion equations on evolving surfaces. An evolving surface defines a three-
dimensional space-time manifold in the space-time continuum R4. The surface
finite element method that we introduce is based on the traces on this space-time
manifold of outer space-time finite element functions, which are piecewise polyno-
mials with respect to a volume mesh, consisting of cylinders (tetrahedra times time
interval). For this finite element technique it is natural to start with a variational
formulation of the diffusion problem on the space-time manifold. To our knowl-
edge such a formulation has not been studied in the literature, yet. Therefore,
we first introduce such a space-time variational formulation. We then explain the
space-time discretization method.

2. Variational formulation

Consider a surface Γ(t) passively advected by a smooth velocity field w =
w(x, t), i.e. the normal velocity of Γ(t) is given by w · n, with n the unit normal
on Γ(t). We assume that for all t ∈ [0, T ], Γ(t) is a smooth hypersurface that is
closed (∂Γ = ∅), connected, oriented, and contained in a fixed domain Ω ⊂ R3.
The conservation of a scalar quantity u with a diffusive flux on Γ(t) leads to the
surface PDE:

(1) u̇+ (divΓw)u − ε∆Γu = 0 on Γ(t), t ∈ (0, T ],
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with initial condition u(x, 0) = u0(x) for x ∈ Γ(0). Here u̇ = ∂u
∂t +w · ∇u denotes

the advective material derivative, divΓ is the surface divergence and ∆Γ is the
Laplace-Beltrami operator, ε > 0 is the constant diffusion coefficient.

Consider the space-time manifold

Γ∗ =
⋃

t∈(0,T )

Γ(t)× {t}, Γ∗ ⊂ R
4,

and let H1(Γ∗) be the usual Sobolev space on Γ∗. We introduce the space

H = { v ∈ L2(Γ∗) | ‖∇Γv‖L2(Γ∗) <∞},(2)

(u, v)H = (u, v)L2(Γ∗) + (∇Γu,∇Γv)L2(Γ∗),(3)

and consider the material derivative as a linear functional on H . Recall the Leibniz
formula

(4)

∫

Γ(t)

v̇ + v divΓw ds =
d

dt

∫

Γ(t)

v ds, v ∈ C1(Γ∗),

which implies the integration by parts identity:

∫ T

0

∫

Γ(T )

u̇v + v̇u+ uv divΓw ds dt

=

∫

Γ(T )

u(s, T )v(s, T ) ds−
∫

Γ(0)

u(s, 0)v(s, 0) ds for all u, v ∈ C1(Γ∗).

(5)

for all u, v ∈ C1(Γ∗). Based on (5) we define the material derivative for u ∈ H as
the functional u̇:

(6) 〈u̇, φ〉 = −
∫ T

0

∫

Γ(t)

uφ̇+ uφdivΓw ds dt for all φ ∈ C1
0 (Γ∗).

Using

‖u̇‖H′ = sup
φ∈C1

0(Γ∗)

〈u̇, φ〉
‖φ‖H

we define the space

W = { v ∈ H | v̇ ∈ H ′ }, with ‖v‖2W := ‖v‖2H + ‖v̇‖2H′ .

Using smoothness assumptions on the space-time manifold, useful density and
trace properties of the spaces H and W can be derived. In the analysis of well-
posedness we transform the original problem (1) such that we have a zero initial
condition. Furthermore, instead of the surface diffusion problem we consider the
following slightly more general surface PDE:

(7)
u̇+ αu− ε∆Γu = f on Γ(t), t ∈ (0, T ],

u = 0 on Γ(0),
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with α ∈ L∞(Γ∗) and a generic right-hand side f ∈ L2(Γ∗). We define the inner
product and symmetric bilinear form

(u, v)0 =

∫ T

0

∫

Γ(t)

uv ds dt, a(u, v) = ε(∇Γu,∇Γv)0 + (αu, v)0, u, v ∈ H.

The following problem can be shown to be well-posed : Given f ∈ H ′, find u ∈
◦

W := { v ∈ W | v(·, 0) = 0 on Γ0 }. such that

(8) 〈u̇, v〉+ a(u, v) = 〈f, v〉 for all v ∈ H.

3. Space-time finite element discretization

We outline our Eulerian discretization method for the surfactant transport prob-
lem (1). The space-time domain is denoted by Q = Ω × (0, T ] ⊂ Rd+1. A parti-
tioning of the time interval is given by 0 = t0 < t1 < . . . < tN = T , with a uniform
time step ∆t = T/N . Corresponding to each time interval In := (tn−1, tn] we
assume a given shape regular simplicial triangulation Tn of the spatial domain Ω.
In general this triangulation is not fitted to the interface Γ(t). Let Vn be the finite
element space of continuous piecewise linear functions on Tn. The spatial mesh
size parameter corresponding to Vn is denoted by hn. A corresponding space-time
finite element space on the time slab Qn := Ω× In is given by

(9) Wn := {w : Qn → R | w(x, t) = φ0(x) + tφ1(x), φ0, φ1 ∈ Vn }.
The symbol Γn

∗ denotes the space-time interface in Qn, i.e., Γn
∗ := ∪t∈InΓ(t),

and Γ∗ := ∪1≤n≤NΓn
∗ . The volume space-time spaces Wn, 1 ≤ n ≤ N , induce

corresponding trace spaces:

WΓ
n := { v : Γn

∗ → R | v = w|Γn
∗
, w ∈Wn }, 1 ≤ n ≤ N,(10)

WΓ∗ := { v : Γ∗ → R | v|Γn
∗
∈WΓ

n , 1 ≤ n ≤ N }.(11)

We need the standard DG jump terms across the end points of the time intervals:

vn(x) := v(x, tn), [v]n(x) := vn+(x)− vn(x), 0 ≤ n ≤ N − 1, with v0(x) := 0.

On the cross sections Γ(tn) × {tn}, 0 ≤ n ≤ N , of Γ∗ the L2 scalar product is
denoted by (ψ, φ)tn :=

∫
Γ(tn)

ψφds. We now introduce a bilinear form B(·, ·) on

WΓ∗ ×WΓ∗ . The bilinear form an(·, ·), 1 ≤ n ≤ N , is given by

an(u, v) =

∫ tn

tn−1

∫

Γ(t)

u̇v + uv divΓw +∇Γu · ∇Γv ds dt.

The bilinear form dn(·, ·), 1 ≤ n ≤ N , is given by

dn(u, v) = ([u]n−1, vn−1
+ )tn−1 .

Corresponding global bilinear forms are obtained by summing over the time slabs:

a(u, v) =

N∑

n=1

an(u, v), d(u, v) =

N∑

n=1

dn(u, v).
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We also need a right hand-side functional given by

f(v) = (u0, v
0
+)t0 .

These bilinear forms and the functional f are well-defined on the space-time trace
space WΓ∗ . The space-time discretization is defined as follows. Determine U ∈
WΓ∗ such that

B(U, V ) = f(V ) for all V ∈ WΓ∗ ,

B(U, V ) := a(U, V ) + d(U, V ).
(12)

Note that this formulation allows to solve the space-time problem time slab by
time slab.
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Existence and long-time dynamics of a nonlocal
Cahn-Hilliard-Navier-Stokes system with nonconstant mobility

Elisabetta Rocca

(joint work with Sergio Frigeri and Maurizio Grasselli)

In cooperation with Sergio Frigeri (University of Milan) and Maurizio Grasselli
(Politecnico of Milan) we have recently considered in [11] the so-called nonlo-
cal model H : a Cahn-Hilliard-Navier-Stokes system characterized by a nonlocal
Cahn-Hilliard equation for the order parameter ϕ with a non-constant (possibly
degenerate) mobility m and a singular (e.g., logarithmic) potential F ′

ϕt + u · ∇ϕ = div(m(ϕ)∇µ), µ = aϕ− J ∗ ϕ+ F ′(ϕ)(1)

ut − ν∆u + (u · ∇)u +∇π = µ∇ϕ+ h, div(u) = 0(2)

∂µ

∂n
= 0, u = 0 on ∂Ω× (0, T )(3)

u(0) = u0, ϕ(0) = ϕ0 in Ω,(4)
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where J ∗ ϕ(x) :=
∫
Ω J(x− y)ϕ(y) dy. Model H is a diffuse interface model for in-

compressible isothermal two-phase flows which consists of the Navier-Stokes equa-
tions for the (averaged) velocity u nonlinearly coupled with a convective Cahn-
Hilliard equation for the (relative) concentration difference ϕ (cf., for instance,
[1, 18, 19, 20]).

A more realistic version of the Cahn-Hilliard equation is characterized by a
(spatially) nonlocal free energy. The physical relevance of nonlocal interactions
was already pointed out in the pioneering paper [23]. Though isothermal and
nonisothermal models containing nonlocal terms have only recently been studied
from the analytical viewpoint (cf., e.g., [3, 6, 12, 16, 17] and their references).
The difference between local and nonlocal models consists in the choice of the
interaction potential. The nonlocal contribution to the free energy has typically
the form

∫
Ω
J(x, y) |ϕ(x) − ϕ(y)|2 dy with a given symmetric kernel J defined on

Ω × Ω; its local Ginzburg-Landau counterpart has the form (σ/2)|∇ϕ(x)|2 with
a positive parameter σ. The latter can be obtained as a formal limit as m → ∞
from the nonlocal one with the choice J(x, y) = md+2J(|m(x − y)|2), where J is
a nonnegative function with support in [0, 1]. As a consequence, the local Cahn-
Hilliard equation can be viewed as an approximation of the nonlocal one.

Nonlocal interactions have been taken into account in a series of recent papers
(see [5, 8, 9, 10]) where a modification of the model H with matched densities has
been considered and analyzed .

Nonlocal system (1)-(2) is more challenging with respect to the local model H,
even in dimension two. One of the reasons is that ϕ has a poorer regularity and
this influences the treatment of the Navier-Stokes system through the so-called
Korteweg force µ∇ϕ (see, for instance, [5, Remark 8]). Due to this difficulty, only
the constant mobility case has been considered so far (though viscosity depend-
ing on ϕ has been handled). On the other hand, in the rigorous derivation of
the nonlocal Cahn-Hilliard equation done in [16] the mobility depends on ϕ and
degenerates at the pure phases (for the local Cahn-Hilliard equation see [7] and
references therein).

In this contribution we want to generalize some of the existing results on the
so-called nonlocal Cahn-Hilliard-Navier-Stokes system to the case of nonconstant
mobility. As we shall see, such an extension requires extra efforts which are not
merely technical.

In the seminal paper [7] the authors established the existence of a weak so-
lution to the local Cahn-Hilliard equation with degenerate mobility and singular
potentials endowed with no-flux boundary conditions. This result was then ex-
tended to the standard Cahn-Hilliard-Navier-Stokes system in [4]. The nonlocal
Cahn-Hilliard equation with degenerate mobility and logarithmic potential was
rigorously justified and analyzed in [16]. In particular, in the case of periodic
boundary conditions, an existence and uniqueness result was proven in [17]. Then
a more general case was considered in [12] . More recently, the convergence to
single equilibria was studied in [21, 22].
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Here we generalize the strategy devised in [7] to the nonlocal case by first
taking a non-degenerate mobility m and a regular potential F with polynomial
growth. We prove the existence of a global weak solution which satisfies an energy
inequality (equality if d = 2). This result extends [8] and allows us to construct a
rigorous approximation of the case where m is degenerate and F is singular (e.g.
logarithmic). Therefore we can pass to the limit and obtain a similar result for
the latter case. In addition, since the energy identity holds in two dimensions,
we can construct a semiflow which possesses a global attractor by using Ball’s
method (see [2]). By means of the same approach we also show that the convective
nonlocal Cahn-Hilliard equation with degenerate mobility and singular potential
has a unique solution and it posseses a global attractor (even if d = 3). Note that
this result entails, in particular, that the nonlocal Cahn-Hilliard equation which
has been obtained as hydrodynamic limit in [16] possesses a global attractor. We
point out that uniqueness of solutions is still an open issue in the local case.

Let us notice here that the main difficulty encountered while dealing with the
degenerate mobility case is that the gradient of the chemical potential µ in (1) can
no longer be controlled in any Lp space. Hence, in order to get an existence result a
suitable notion of weak solution need to be introduced. More precisely, in this new
formulation the gradient of µ does not appear anymore. It worth observing that,
in the present case, our main theorem does not require the (conserved) mean value
of the order parameter ϕ to be strictly in between −1 and 1, but |

∫
Ω
ϕ0| ≤ |Ω|

suffices. Thus the model allows pure phase solutions for all t ≥ 0. This was not
possible in the case of constant or strongly degenerate mobility.
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[18] M.E. Gurtin, D. Polignone, J. Viñals, Two-phase binary fluids and immiscible fluids de-
scribed by an order parameter, Math. Models Meth. Appl. Sci. 6 (1996), 8-15.

[19] P.C. Hohenberg, B.I. Halperin, Theory of dynamical critical phenomena, Rev. Mod. Phys.
49 (1977), 435-479.
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Minimization of bending energies under constraints

Matthias Röger

(joint work with Stefan Müller and with Patrick Dondl, Luca Mugnai)

In this talk we investigate certain constrained minimization problems for the Will-
more energy, in particular under a confinement condition defined by an outer
container. In the first part of this talk we report on joint work with Stefan Müller
(HCM Bonn), where we analyze the constrained minimization for embeddings of
the sphere into the unit ball. In the second part, which is joint work with Patrick
Dondl (Durham) and Luca Mugnai (MPI Leipzig), we consider confined simply
connected surfaces and propose a phase-field approximation.

Part 1: Confined sphere-type surfaces. Let a > 0 be given and denote by B
the unit ball in R3. We denote by Ma the class of smoothly embedded surfaces
Σ ⊂ B of sphere type with ar(Σ) = a and consider the constrained minimization
problem for the Willmore energy,

w(a) := inf
Σ∈Ma

W(Σ), W(Σ) :=
1

4

∫

Σ

| ~H |2 dH2.(1)

We are interested in the dependence of w(a) on the surface area a. The infimum
w(a) may not be attained, as limit points of minimal sequences need not to be
embedded. Even if one is able to obtain an Euler–Lagrange equation in a suitable
class of surfaces, the constraints will induce a complex set of Lagrange multipliers.
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We instead use general geometric identities to derive lower bounds and explicit
constructions of minimizing sequences for upper bounds. Our first result is a
general lower bound.

Theorem 1. For any Σ ∈ Ma as above we have

W(Σ) ≥ a.(2)

In particular, w(a) ≥ a holds for all a > 0.

This estimate is derived from the first variation formula∫

Σ

divTxΣη(x) dH2(x) = −
∫

Σ

~H(x) · x dH2(x) for η ∈ C1(R3,R3)

applied to the vector field η(x) := x and using the confinement condition.
By an extension of the previous argument we also show that equality in (2) is

only possible if a = 4πk, k ∈ N. Then the lower bound is sharp.

Theorem 2. Let a = 4kπ for k ∈ N. Then w(a) = a.

The main idea for k = 2 is to take two concentric spheres, one with radius one
and the other with radius close to one. For both spheres we remove a cap close
to the north-pole, deform the upper halves, and connect them by a catenoid-like
structure.

The previous results show that optimal structures always approach for a ≈ 4kπ
the unit sphere. The behavior when a just exceeds the area of a sphere is therefore
particularly illustrative. We find a sharp increase in Willmore energy at 4π, with
a square-root type relation between Willmore deficit and the area deficit.

Proposition 3. For all δ > 0 there exists a constant C > 0 such that

w(a)− 4πk ≤ C ·
√
a− 4π(3)

for all 4πk ≤ a < 4πk + δ, k ∈ N.

This bound is achieved by modifying the unit sphere and growing a ‘bump’,
directed inwards and supported close to (0, 0, 1). By two parameters 0 < s, t≪ 1
we control the support of the bump and its extension, respectively. Optimizing in
the relation between this parameters and letting s, t→ 0 we obtain (3).

The main contribution of this work is a corresponding improved lower bound.

Theorem 4. There exists c > 0 such that for all Σ ∈ Ma, a ≥ 4π

w(a)− 4π ≥ c
√
a− 4π.(4)

The main ingredients of the proof are first a Minkowsky–Steiner type formula,

ar(Σ) − 4π = −
∫

Σ

(
1− (x · ν(x))2 + 1

2
|x− (x · ν(x))ν(x)|2

)
K(x) dH2(x)(5)

for any Σ ∈ Ma. This formula shows in particular that K ≥ 0 on Σ implies
ar(Σ) ≤ 4π and that there is no C2-approximation of the unit sphere in

⋃
a>4π Ma.
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The second key ingredient are rigidity estimates for nearly umbilical surfaces de-
rived by De Lellis and Müller [2, 3]. In fact, by the Gauss–Bonnet Theorem we
obtain for any Σ ∈ Ma

W(Σ)−W(S2) =
1

4

∫

Σ

H2 dH2 − 4π =
1

2

∫

Σ

(κ1 − κ2)
2 dH2,(6)

where κ1, κ2 are the principal curvatures of Σ. By (6) the Willmore deficit controls
in an L2 sense how far away Σ is from being umbilical. In this situation Müller
and De Lellis [2, 3] prove that Σ can be conformally parametrized over the sphere
such that this parametrization is W 2,2 close to the identity. For details we refer
to a forthcoming paper [5].

Part 2: Confined simply connected surfaces. Here we propose a phase-field
approximation of the following sharp interface variational problem. Let n = 2, 3
and Ω ⊂ Rn be a given open bounded set. Denote by Sa the set of all E ⊂⊂ Ω
open, s.th. ∂E is smooth and connected, with ar(∂E) = a. Minimize the Willmore
energy of ∂E in the class Sa. We propose the following diffuse analogue,

Eε(u) :=Wε(u) + ε−
3
2 (Aε(u)− a)2 + ε−

1
4 Cε(u),

Aε(u) :=

∫

Ω

(ε
2
|∇u|2 + 1

ε
W (u)

)
dx,

Wε(u) :=

∫

Ω

1

ε

(
ε∆u− 1

ε
W ′(u)

)2

dx,

Cε penalizes non-connectedness,

where we minimize Eε(u) subject to clamped boundary conditions. This replaces
the area constraint by a soft constraint and the usual Modica–Mortola diffuse
surface area energy. For the Willmore energy we use the well-known De Giorgi
approximation. The new contribution is the functional Cε that detects multiple
components and that is given by the following ‘inner’ variational problem,

Cε(u) :=
(
cε,u(1)− inf

φ
cε,u(φ)

)2
for φ ∈ BV (Ω; {±1}),

cε,u(φ) :=
∣∣∣
∫

Ω

ε−1G(u)φdx
∣∣∣+
∫

Ω

ε−
3
2Gλ(u) d|∇φ|.

Here G is cut-off function that is one on [−1 + 2δ, 1 + 2δ] and zero outside (−1 +
δ, 1− δ), and Gλ is a suitably rescaled version of G. We justify the approximation
property of Eε by an upper- and lower-bound statement.

Theorem 5. (1) For E ∈ Sa and u = 2XE − 1 there exists (uε)ε>0 such that

uε → u in L1(Ω) and lim
ε→0

Eε(uε) = W(∂E).

(2) Consider a sequence (uε)ε>0. Associate diffuse surface area measures µε,

dµε :=
(

ε
2 |∇uε|2 + 1

εW (uε)
)
dx and assume

Eε(uε) < Λ, uε → u, µε → µ.
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Then u = 2XE−1, µ(Rn) = a, µ ≤ |∇u|, µ is an integral varifold with ~H ∈ L2(µ),

1

4

∫

Ω

| ~H |2 dµ ≤ lim inf
ε→0

Eε(uε)

and µ represents a connected structure in the following sense: There are no two
open sets Ω1,Ω2 ⊂ Rn with disjoint closure such that

µ(Ωi) > 0 (i = 1, 2) and µ
(
R

n \ (Ω1 ∪ Ω2)
)
= 0.

The proof of the upper bound employs the standard construction by a rescaled
optimal profile and signed distance function, see for example [1]. In addition we
have to show here that the connectedness term Cε yields no contribution in the
limit. The proof of the lower bound relies on an application and extension of results
from [6]. The difficult part is to show that Cε in fact induces the connectedness of
the limit structure. For details we refer to a forthcoming paper [4].
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Voronoi Implicit Interfaces: Method and Applications

Robert I. Saye, James A. Sethian

A variety of problems, both theoretical and highly practical, involve the inter-
action of multiply-connected regions moving together. These include liquid foams
(e.g. polyurethane and colloidal mixtures) and solid foams, such as wood and
bone. In such problems, multiple domains share common walls which meet at
multiple junctions. Boundaries move under forces which depend on both local and
global geometric properties, such as surface tension and volume constraints, as well
long-range physical forces, including incompressible flow, membrane permeability,
and elastic forces.

A familiar example comes from soap bubbles, in which gaseous pockets are
separated by thin film lamellae, whose position and shape are controlled by surface
tension and force balances. Over time, the fluid in the thin membrane drains,
until at some point the membrane ruptures, causing macroscale disequilibrium.
Large-scale rearrangement then occurs, in which the gases move and the remaining
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membranes stretch and respond, until a new equilibrium is reached. Drainage then
continues until rupture occurs again.

Another example comes from grain metal coarsening, in which surface energy,
often associated with temperature changes, drives a system to larger structures.
This is a common process in the formation of metallic substances, and understand-
ing the time-dependent motion is important in determining the ultimate shape.
One simple mathematical idealization of the phenomenon is characterized by a set
of regions locally driven by curvature.

Producing good mathematical models and numerical algorithms that capture
the motion of these interfaces is challenging, especially at junctions where multi-
ple interfaces meet, and when topological connections change. Methods have been
proposed, including front tracking, volume of fluid, variational, and level set meth-
ods. It has remained a challenge to robustly and accurately handle the wide range
of possible motions of an evolving, highly complex, multiply-connected interface
separating a large number of phases under time-resolved physics.

Recently, we introduced a set of computational techniques, known as “Voronoi
Implicit Interface Methods” [4, 5], to track such multiphase-multiphysics problems.
Rather than track the interfaces separating the regions, or the individual regions
themselves, the method characterizes the entire system by a single scalar function
defined in all of space, and updates this function by solving a time-dependent
initial value problem.

In more detail, consider a collection of non-overlapping phases, with the “in-
terface” defined as the set of points where these phases touch together. In two
dimensions, this interface may consist of single curves touched by only two phases,
as well as triple points, where three regions meet; higher order junctions are also
possible. In three dimensions, more elaborate interfaces are possible.

We may characterize this entire system through an implicit representation as
follows. For each point x in the plane, define φ(x) as the distance to the closest
interface. Additionally, define χ(x) as an integer-valued function which indicates
the phase. Then, the interface itself is given as the zero level set {φ(x) = 0} of this
unsigned distance function. Thus, for example, if φ(x) = 5 and χ(x) = 4, then
we know that the point x is located in phase 4, and the closest interface point is
located a distance 5 away.

We can advance this interface through a two-step procedure. Imagine the in-
terface moves with a speed F in its normal direction. Then

• Advance φ through k time steps using the standard level set methodology
introduced by Osher and Sethian in [3]. That is, use upwind operators to
produce φn+1 from φn by solving a discrete finite difference approximation
to

φt + F |∇φ| = 0

• Use the ǫ level sets of this time-advanced solution to reconstruct a new
unsigned distance function. This is done by first computing the Voronoi
interface from the ǫ level sets: this corresponds to the set of all points
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equidistant from at least two of the ǫ level sets from different phases. This
Voronoi interface is then used to rebuild the unsigned distance function.

This is the most straightforward implementation of the method. More efficient
and sophisticated techniques include the use of narrow banding [1] to limit com-
putational labor to a small region near the interface, a fast Eikonal solver [2] to
find the new unsigned distance from the ǫ level sets without explicitly constructing
the front, and careful data structures which allow any non-negative value for ǫ,
including ǫ = 0+. For details, see [4, 5].

As application, Figure 1, taken from [5], illustrates the results for a two-
dimensional simulation of a variable density fluid flow, computed on a 2562 grid
with slip boundary conditions, using ǫ = 0+. As discussed in [5], the heavier phase,
initially having nine separate components of circular shape, is colored orange. The
other phases, of which there are initially approximately 35, are colored shades of
blue and green. Figure 1 shows snapshots of the simulation at different times of
note, showing plots of phase evolution, streamlines and stream function, and pres-
sure fields. We note several features of our results. Most of the components of the
heavy phase (shown in orange) sink to the bottom. In particular, the component
initially attached to the top, first falls down, leaving behind it a trailing tail. It
then detaches from the top boundary, forming a jet that quickly retracts (as seen
at t = 1.32). On the other hand, the two smallest components of the heavy phase
do not sink, and remain embedded in the foam at time t = 1.81. Here, the local
forces of surface tension, particularly at the triple points, dominate the force of
gravity and prevent them from falling. This is similar to an air bubble at the
surface of water: depending on its diameter, the bubble can range from being
almost fully submersed and spherical in shape to entirely on the surface with a
hemispherical shape.
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Figure 1. Results of a fluid flow simulation with gravity, in
which the orange colored phase is more viscous and more dense
than the other phases.
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Phase-field modelling of two-phase flow with soluble surfactant

Björn Stinner

(joint work with Harald Garcke and Kei Fong Lam)

Surface active agents (surfactants) reduce the surface tension of fluid interfaces
and, via surface tension gradients, can lead to tangential forces resulting in Maran-
goni effects. Biological systems take advantage of their impact, but they are also
of relevance in technical applications such as the stabilisation of emulsions. While
often much experience and knowledge is available on how surfactants influence the
rheology of multi-phase fluids, the goal is to understand how exactly the presence
of a surfactant influences coalescence and segregation of droplets. In order to
facilitate such investigations our goal has been to describe two-phase flow with
surfactants, possibly soluble in the fluids, by a diffuse interface model based on
the phase field methodology such that

• a sharp interface model is obtained as the interfacial thickness converges
to zero where the relation is established using matched asymptotic expan-
sions,

• thermodynamic consistency is guaranteed, thus leading to natural energy
estimates as a prerequisite for a rigorous analysis,

• data from the related sharp interface model, i.e., parameters but also rela-
tions such as the dependence of surface tension on the surfactant density
(equation of state), can easily be transferred.

We first consider a sharp interface model that we aim to approximate. The ex-
change of surfactant between the bulk phases and the fluid interfaces is governed
by processes of adsorption and desorption. Following [2] we need to distinguish
two cases. In many systems it may be considered as taking place instantaneously
resulting in an equilibrium condition for surface surfactant density on the interface
and the bulk surfactant density in the sublayer close to the interface. This condi-
tion is expressed by an isotherm. However, there are systems where the adsorption
takes place on a time scale comparable to that of the bulk transport, in which case
we talk about dynamic adsorption, and the upshot will be a condition involving
the mass fluxes from the adjacent bulk.

We take an energetic approach and postulate

∫

Ω(1)(t)

[ρ
(1)

2 |v|2 +G1(c
(1))] +

∫

Ω(2)(t)

[ρ
(2)

2 |v|2 +G2(c
(2))] +

∫

Γ(t)

γ(cΓ).

where ρ(i) are the mass densities, v is the velocity, the Gi(c
(i)) are bulk free energy

densities depending on the bulk surfactant densities c(i), i = 1, 2, and γ(cΓ) is a
surface free energy density depending on the surface surfactant density cΓ. Starting
with usual balance equations for mass, momentum, and energy, requiring non-
negative energy dissipation, and making some constitutive assumptions we arrive
at the following sharp interface model:
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In the bulk domains Ω(i)(t), i = 1, 2:

∇ · v = 0

∂t(ρ
(i)v) +∇ · (ρ(i)v ⊗ v) = ∇ ·

(
−pI + 2η(i)D(v)

)

∂•t c
(i) = ∇ · (M (i)

c ∇G′
i(c

(i))).

Here η(i) is the viscosity of fluid i,D(v) = 1
2 (∇v+(∇v)⊥) is the rate of deformation

tensor, p is the pressure, I is the identity tensor, ∂•t (·) = ∂t(·) + v · ∇(·) is the

material derivative, M
(i)
c is the mobility of surfactants in fluid i.

On the interface Γ(t):

[v]21 = 0, v · ν = uΓ
[
pI − 2η(i)D(v)

]2
1
ν = σ(cΓ)κν +∇Γσ(c

Γ),

∂•t c
Γ + cΓ∇Γ · v = ∇Γ · (MΓ∇Γγ

′(cΓ)) + [M (i)
c ∇G′

i(c
(i))]21 · ν

α(i)(−1)iM (i)
c ∇G′

i(c
(i)) · ν = −(γ′(cΓ)−G′

i(c
(i))).

Here uΓ is the normal velocity, ν is the unit normal on Γ pointing into Ω(2),
σ(cΓ) = γ(cΓ) − cΓγ′(cΓ) is the surfactant density dependent surface tension,
κ is the mean curvature of Γ, ∇Γ is the surface gradient operator, MΓ(c

Γ) is the
mobility of the interfacial surfactants, and α(i) ≥ 0 is a kinetic factor that relates to
the speed of adsorption. Instantaneous adsorption corresponds to the case α(i) = 0
and dynamic adsorption to α(i) > 0. Exemplary, for G(c) = Bc(log(Kc)− 1) and

γ(cΓ) = σ0 + B
(
cΓ log cΓ

cΓM−cΓ
+ cΓM log(1− cΓ

cΓM
)
)

we obtain from G′(c) = γ(cΓ)

the Langmuir isotherm Kc = cΓ

cΓ
M

−cΓ
, and the surface tension is σ(cΓ) = σ0 +

BcΓM log
(
1− cΓ

cΓ
M

)
.

Previous phase field models approximating the above system are based on an
energy but then lack flexibility with respect to implementing different isotherms
and equations of state [5, 4, 6] or lack thermodynamic consistency [3]. Our ap-
proach is based on [1]. An order parameter ϕ is introduced to distinguish the two
phases. Writing the surfactant equations in a distributional form and smoothing
these distributions in terms of ϕ yields

∂t(ξic
(i)) +∇ · (ξic(i)v − ξiM(c(i))∇G′

i(c
(i))) = δji, i = 1, 2,

∂t(δc
Γ) +∇ · (δcΓv − δMΓ(c

Γ)∇γ′(cΓ)) = −δ(j1 + j2),

with ji = 1
α(i) (γ

′(cΓ) − G′
i(c

(i))) and δ(ϕ,∇ϕ) = ε
2 |∇ϕ|2 + 1

εW (ϕ) and ξ2(ϕ) =

1 − ξ1(ϕ) = 1
2 (1 + 1

2ϕ(3 − ϕ2)). Coupling with the fluid flow such that the free
energy with the density

e = ρ
|v|2
2

+Kδ(ϕ,∇ϕ)γ(cΓ) + ξ1(ϕ)G1(c
(1)) + ξ2(ϕ)G2(c

(2)).
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is dissipated and making suitable constitutive assumptions yields the following
Navier-Stokes-Cahn-Hilliard system:

∇ · v = 0,

∂t(ρv) +∇ · (ρv ⊗ v) = ∇ ·
(
− pI + 2η(ϕ)D(v) + v ⊗ ρ(2)−ρ(1)

2 m(ϕ)∇µ
)

+∇ ·
(
Kσ(cΓ)(δ(ϕ,∇ϕ)I − ε∇ϕ⊗∇ϕ)

)
,

∂tϕ+∇ · (ϕv) = ∇ · (m(ϕ)∇µ),

µ+∇ · (Kεσ(cΓ)∇ϕ) =
K

ε
σ(cΓ)W ′(ϕ) +

∑

i=1,2

ξ′i(ϕ)(Gi(c
(i))−G′

i(c
(i))c(i)).

The above model covers the case of dynamic adsorption α(i) > 0. We observed
in numerical experiments that when reducing this kinetic adsorption parameter
the system gets closer to local equilibrium at the interface. Using the chemical
potential q as unknown field rather than the surfactant densities is possible if the
free energy densities Gi and γ are convex. Then also the case of instantaneous
adsorption can be dealt with.

We stress again that both models are thermodynamically consistent. Moreover,
an asymptotic analysis can be carried out relating the phase field models to the
above sharp interface model in the limit as ε→ 0.
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Backward difference time discretisation of parabolic partial differential
equations on evolving surfaces

Chandrasekhar Venkataraman

(joint work with Christian Lubich, Dhia Mansour)

We consider the linear parabolic differential equation on a moving surface

u̇+ u∇Γ(t) · v −∆Γ(t)u = f on Γ(t), t ∈ (0, T ].

Discretisation in space by the evolving surface finite element method (ESFEM) [1]
leads to a system of ordinary differential equations for the coefficient vector U(t)
of the semidiscrete (space) solution, of the form

d

d t
(M(t)U(t)) +A(t)U(t) = F,

hereM,A are the evolving mass and stiffness matrices respectively. For the numer-
ical integration of the system of ODEs, we consider the k-step backward difference
formula (BDF) method with step size τ > 0 given by

1

τ

k∑

j=0

δjM(tn−j)Un−j +A(tn)Un = F(tn), n ≥ k,

with given starting values u0, . . . ,uk−1. The coefficients of the method are deter-
mined by

δ(ζ) =

k∑

j=0

δjζ
k =

k∑

ℓ=1

1

ℓ
(1− ζ)ℓ.

For the stability analysis of the fully discrete scheme we make use of the fol-
lowing results

Lemma. (Dahlquist [3]). Let δ(ζ) and µ(ζ) be polynomials of degree at most k
(at least one of them of exact degree k) that have no common divisor. Let 〈·, ·〉 be
an inner product on RN with associated norm | · |. If

Re
δ(ζ)

µ(ζ)
> 0 for |ζ| < 1,

then there exists a symmetric positive definite matrix G = (gij) ∈ Rk×k and real
γ0, . . . , γk such that for all v0, . . . ,vk ∈ R

N

〈 k∑

i=0

δivk−i,

k∑

j=0

µjvk−j

〉
=

k∑

i,j=1

gij〈vi,vj〉 −
k∑

i,j=1

gij〈vi−1,vj−1〉+
∣∣∣

k∑

i=0

γivi

∣∣∣
2

.

In combination with the preceding result for µ(ζ) = 1−ηζ, the following property
of BDF methods up to order 5 plays a key role in our stability analysis.
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Lemma. (Nevanlinna & Odeh [4]). If k ≤ 5, then there exists 0 ≤ η < 1 such

that for δ(ζ) =
∑k

ℓ=1
1
ℓ (1− ζ)ℓ,

Re
δ(ζ)

1− ηζ
> 0 for |ζ| < 1.

The smallest possible value of η is found to be η = 0, 0, 0.0836, 0.2878, 0.8160 for
k = 1, . . . , 5, respectively.

In order to formulate our stability result we introduce the following time-
dependent norm

‖w‖2t := wTM(t)w, w ∈ R
N ,

and seminorm

|w|2t := wTA(t)w, w ∈ R
N .

We consider the error between the fully discrete and semidiscrete (space) solutions
en = Un − U(tn). The error satisfies the fully discrete scheme up to a defect
dn, which is merely the error of backward differentiation (and is thus O(τk) in
suitable norms). Applying the above results and using the fact that the mass and
stiffness matrices associated with the ESFEM are positive definite and semidefinite
respectively and some basic estimates shown in [5], we obtain the following stability
result for the error

Lemma. (Stability [2]). For the k-step BDF method with k ≤ 5, there exists a
τ0 > 0, such that for τ ≤ τ0 and tn ≤ T , the errors en between the fully discrete
and semidiscrete solutions are bounded by

‖en‖tn2 + τ
n∑

j=k

|ej |tj2 ≤ C τ
n∑

j=k

‖dj‖∗,tj2 + C max
0≤i≤k−1

‖ei‖ti2

where ‖w‖∗,t2 = wT (A(t)+M(t))−1w and τ0 and C are independent of the spatial
grid size h.

The proof is based on energy arguments where following Nevanlinna & Odeh
[4] we test with en − ηen−1.

The stability result above is then used to obtain an error bound for the full
discretisation where we compare the fully discrete solution with a projection of
the solution to the continuous equation into the surface finite element space. We
focus on the case that the projection is the linear Lagrange interpolant (although
one could consider a suitable Ritz projection). Applying the results of Dziuk &
Elliott [1] we show the following error bound for the full discretisation

theorem. (Error bound [2]) Consider the space discretisation of the parabolic
equation by the ESFEM and time discretisation by the BDF method of order k ≤ 5.
Assuming sufficient regularity on the geometry, the solution u of the parabolic
equation and the discretised surfaces Γh(t) (see [2] for details), there exist h0 > 0
and τ0 > 0 such that for h ≤ h0 and τ ≤ τ0 the following holds for the errors

enh = unh − (Ihu)(tn)
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between the fully discrete numerical solution unh and the piecewise linear Lagrange
interpolant (Ihu)(tn) of the exact solution on the discrete surface Γh(tn) for tn =
nτ ≤ T : whenever the errors eih of the starting values are bounded by cτk + ch in
the L2(Γh(ti)) norm for i = 0, . . . , k − 1, then the errors are bounded by

max
k≤j≤n

‖ejh‖L2(Γh(tj)) +
(
τ

n∑

j=k

‖∇Γh(tj)e
j
h‖2L2(Γh(tj))

)1/2
≤ Cτk + Ch,

where C is independent of h and τ .
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Optimal fine-scale structure in elastic shape optimization

Benedikt Wirth

(joint work with Robert Kohn)

We consider the optimization of the topology and geometry of an elastic structure
O ⊂ R2 subjected to fixed loads F : Γ → R2, where Γ is a fixed prescribed part
of the boundary ∂O. The objective functional measures the elastic compliance,
the material volume, as well as the perimeter of the design. For certain parameter
regimes, optimal geometries will exhibit very fine-scale structure, which we analyze
in simple geometries by proving an energy scaling law.

In detail, we aim to minimize a weighted sum

Jα,β,ε,µ,F,ℓ[O] = αComp(O) + βVol(O) + εPer(O)

of structure compliance Comp(O), material volume Vol(O) = L2(O), and struc-
ture perimeter Per(O) = H1(∂O). The compliance is defined in the usual way as
the surface load potential

Comp(O) = 1
2

∫

Γ

F · u da

for the equilibrium displacement u : O → R2, which is the minimizer of the free
energy

E[u] =

∫

O

µ|ǫ(u)|2 dx−
∫

Γ

F · u da with ǫ(u) =
1

2
(∇u+∇uT )
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Figure 1. Left: Load geometry considered in Theorem1 with a
uniform normal tension F at the top and bottom. The optimal
designO is sought inside Ω. Right: Sketch of optimal construction
(here with three branching levels) and a single unit cell.

(for simplicity, we here consider an isotropic material with shear modulus µ and
zero Poisson’s ratio). The superscript ℓ of J comprises the geometric parameters
of the problem. Using the scale invariance

Jα,β,ε,µ,F,ℓ[O] = βJ1,1,
ε
β
, 14 ,F

√
α

4µβ
,ℓ[O]

it is obviously sufficient to consider the case α = β = 1, µ = 1
4 which we assume

from now on. For the load geometry given in Figure 1 one can prove the following
result.

Theorem 1 (Optimal energy scaling for uniaxial normal load). In the regime
max(|F |, ε) < 1, ε < min(ℓ3|F |, |F |4), there exist c, C > 0 with

cε
2
3 ℓ|F | 13 ≤ min

O⊂Ω
Jε,F,ℓ[O]− J∗,F,ℓ

0 ≤ Cε
2
3 ℓ|F | 13

for J∗,F,ℓ
0 = 2ℓ|F |.

The upper bound in this theorem is proved by constructing a particular design
O and estimating its energy. By the lower bound, up to a constant factor there
is no design with smaller energy so that the construction from the proof provides
an intuition of how optimal geometries look like. The design features a fine-scale
branching structure which results from the balance between structure compliance,
volume, and perimeter: Penalization of the volume prevents the use of much ma-
terial, while the distributed surface load requires stiff support all along Γ to reduce
the compliance. The perimeter penalization then induces a structure coarsening
further away from Γ.

The proof of Theorem1 is sketched below. It proceeds in three basic steps which
in a similar form are also employed in many related problems of analysing physical
patterns via energy scaling laws (e. g. [1, 2]). In our particular case it makes use
of the classical dual reformulation of the compliance via a stress field σ,

Comp(O) = min
σ∈ΣO

ad

∫

O

|σ|2 dx ,

where (writing n for the unit normal to ∂O) the set of admissible stresses is given
by

ΣO
ad = {σ : O → R

2×2
sym : divσ = 0 in O, σn = F on Γ, σn = 0 on ∂O \ Γ} .
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Step 1: The relaxed problem. Here one identifies J∗,F,ℓ
0 with the infimum of the

objective functional for ε = 0. Via the identification O = {x ∈ Ω : σ(x) 6= 0},
this infimum can be expressed as

J∗,F,ℓ
0 = inf

σ∈ΣΩ
ad

∫

Ω

|σ|2 + 1σ 6=0 dx ,

where 1σ 6=0 is the characteristic function of {x ∈ Ω : σ(x) 6= 0}. The relaxation
of this problem is well-known [3] and leads to

J∗,F,ℓ
0 = min

σ∈ΣΩ
ad

∫

Ω

g(σ) dx with g(σ) =

{
2(|σ1|+ |σ2| − |σ1σ2|) if |σ1|+ |σ2| ≤ 1,

1 + σ2
1 + σ2

2 else,

where σ1, σ2 denote the eigenvalues of σ. The minimum value J∗,F,ℓ
0 = 2ℓ|F | is

achieved by σ =
(
0 0
0 |F |

)
.

Step 2: Lower bound. Abbreviating Ĵ = minO Jε,F,ℓ[O] and ∆J = Ĵ − J∗,F,ℓ
0 ,

it is clear that for a generic cross-section ŷ ∼ 1
2 we have at most ∼ ∆J

ε interfaces

and at most a material volume fraction of ∼ Ĵ
ℓ . Let the material gaps on y = ŷ

be denoted by Γ̃ = ([xl1, x
r
1] ∪ . . . ∪ [xlN , x

r
N ])× {ŷ}. Upon introducing a Lagrange

multiplier u : Ω → R2 for the constraint divσ = 0 and integrating by parts, we
obtain

Ĵ ≥ min
σ∈ΣΩ

ad

σn=0 on Γ̃

∫

Ω

g(σ) dx = min
σ:Ω→R

2×2
sym

max
u:Ω→R2

∫

Ω\Γ̃

g(σ)− ǫ(u) : σ dx+

∫

Γ

u · F da .

Swapping min and max and denoting the Legendre–Fenchel dual to g by g∗, we
arrive at

Ĵ ≥ max
u:Ω→R2

−
∫

Ω\Γ̃

g∗(ǫ(u)) dx+

∫

Γ

u · F da ≥ max
u:Ω→R

2

|ǫ(u)|2≤4 on Ω\Γ̃

∫

Γ

u · F da .

Here, g∗ is most easily computed by noting g̃ ≥ g ≥ g̃∗∗ for g̃(σ) = 1σ 6=0+ |σ|2 and
its convex envelope g̃∗∗(σ) = max(2|σ|, 1+ |σ|2) so that from g̃∗ ≤ g∗ ≤ (g̃∗∗)∗ and
g̃∗ = (g̃∗∗)∗ we obtain g∗ = (g̃∗∗)∗. Using the ansatz u =

(
0

2γy

)
+2f(x)

(
0

sign(y−ŷ)

)

and optimizing for f(x) (among all piecewise linear functions) and γ ∈ R one
arrives at

∆J ≥ 2|F |ℓ
(√

1 + H1(Γ̃)4

2N2ℓ2 − 1

)
.

Using the bound on the volume fraction (which implies H1(Γ̃) ∼ ℓ) and on the

number 2N of interfaces, this can be shown to imply ∆J & |F |ℓH
1(Γ̃)4

N2ℓ2 ∼ |F | ℓ3ε2∆J2 ,
which immediately yields the desired lower bound.

Step 3: Upper bound. It suffices to provide a construction with the correct
energy scaling. A sketch of the construction is shown in Figure 1. It consists of
several branching levels which successively refine from the coarsest level at the
center (level 1) towards Γ. Each level is composed of an array of unit cells, each
of which contains a truss-like structure at its center. We take the unit cell width
on level 1 to be w1 ∼ 3

√
ε/|F | and the width on level i to be wi = w1/2

i−1;
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furthermore, the unit cell height on level i shall be hi =
√
|F |w3

i /ε. The thickness
of the trusses in each unit cell is now chosen such that the (uniaxial) stress inside
has magnitude 1. Finally, the branching is stopped as soon as hi ≤ wi, and a
thin material layer of thickness ∼ wi is inserted as a boundary layer. A careful
estimate of the energy for this construction reveals that it is compatible with the
desired upper bound.

Note that the same argument works with slight adaptations for slightly varied
load geometries such as tilted loads. The proof of the lower bound can also be
extended to some non-uniaxial load geometries such as a shear load all around a
rectangular domain.
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Inverse problems of determining subboundaries: uniqueness and
stability

Masahiro Yamamoto

We discuss an inverse problem of determining shapes of subboundaries where
the solution of partial differential equation satisfies some homogeneous bound-
ary condition. Our main purpose is to prove conditional stability for the inverse
problem.

Let Ω0 ⊂ Rn, n = 2, 3 be a bounded domain with smooth boundary ∂Ω0, and
let

(Au)(x) := −
n∑

i,j=1

∂i(aij(x)∂ju) + c(x)u, x ∈ Ω0,

where aij = aji ∈ C1(Ω0), c ∈ L∞(Ω), 1 ≤ i, j ≤ n. We assume that 0 ≤ c in Ω0.

Let D ⊂ Ω0 be a domain such that ∂D is of C2-class, 0 ∈ D, D ⊂ Ω0. We set

Ω = Ω0 \D.
Let Γ ⊂ ∂Ω0 be an arbitrarily chosen subboundary and let u = u(D) satify

Au = 0 in Ω,

u|∂D = 0.

Inverse Problem: Determine the shape of ∂D by u, ∂Au on Γ.

Here we set ∂Au =
∑n

i,j=1 aij(∂ju)νi where ν = (ν1, ...., νn) denotes the unit
outward normal vector to ∂Ω0.
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We propose an arugument mainly based on Carleman esitmate in order to prove
conditional stability. Our main result asserts a single logarithmic stability estimate
under some a priori assumptions on curvatures, etc. of unknown subboundaries.

We formulate the stability problem. Let D1, D2 ⊂ Ω0 be domains such that
0 ∈ Dj , Dj ⊂ Ω0 and ∂Dj is of C2-class. Let Ωj = Ω0 \Dj, j = 1, 2. Moreover let
∂Dj be parametrized by ψ ∈ Sn−1 := {x ∈ Rn; |x| = 1}. Let uj = u(Dj) satisfy

Auj = 0 in Ωj , (1)

uj |∂Dj
= 0 (2)

uj|Γ = gj , ∂Auj|Γ = hj . (3)

We assume:
Condition A

|∂Dj| ≤M, ‖uj‖C1(Ωj)
+ ‖uj‖Hm0 (Ωj) ≤M, j = 1, 2

dist (∂Dj , ∂Ω0) ≥ δ0 > 0

with fixed δ0 > 0 and
Condition B

inf
Γ

|gj| ≥ δ0, j = 1, 2. (4)

Here δ0 > 0 and M > 0 are arbitrarily fixed and m0 = max
{
4,
[
n
2

]
+ 2
}
.

We are ready to state the main result.
Theorem
Under Conditions A and B, there exists a constant θ ∈ (0, 1) such that

d (∂D1, ∂D2) = O





 1

log 1
‖u1−u2‖H3(Γ)+‖∂A(u1−u2)‖H2(Γ)




θ



for small ‖u1 − u2‖H3(Γ) + ‖∂A(u1 − u2)‖H2(Γ). Here d (∂D1, ∂D2) is the Haus-
dorff distance.

Our argument is applied to other types of equations such as Lamé system, the
Navier-Stokes equations to yield the single logarithmic conditional stability.

The proof is based on interior and boundary estimates for a Cauchy problem
where Dirichlet and Neumann data are given on some lateral subboundary.

Reporter: Michael Hinze
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