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Introduction by the Organisers

The workshop was organized by Béla Bollobás (Cambridge and Memphis),
Michael Krivelevich (Tel Aviv) and Emo Welzl (Zürich). There were 52 partici-
pants from 14 countries. The scientific programme consisted of 8 main lectures,
19 shorter talks, and a problem session on Tuesday evening.

The lectures were about some of the most important recent developments in
combinatorial mathematics, probabilistic combinatorics, and the related parts of
theoretical computer science, and attested to the exciting and important activities
in these fields. In fact, there is an embarrassment of riches: it would have been
good to invite twice as many people as the Institute can accommodate.

The workshop started with a beautiful talk by Noga Alon on an extremal prob-
lem suggested by questions arising in Social Choice. This talk set the tone for the
lectures that followed. Let us mention three of the particularly exciting talks.

Yufei Zhao reported on his joint work with Eyal Lubetzky on large deviations
of random graphs. Given 0 < p < r < 1, what can we say about a random
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graph Gn,p conditioned on the rare event that there are at least
(

n
3

)

r3 triangles?
Lubetzky and Zhao have greatly improved on the recent results of Chatterjee and
Varadhan that for given r, if p is small enough, symmetry breaking takes place.
Among other results, they determined the exact replica symmetric phase.

Robert Morris gave an excellent lecture on the major results he obtained re-
cently with Gonzalo Fiz Pontiveros and Simon Griffiths on the triangle process
and its consequences concerning the Ramsey number R(3, k). The paper contain-
ing these results is well over 100 pages long and is full of intricate arguments, but
Morris gave a masterful lecture giving us glimpses of the main ideas.

The third lecture we shall mention was given by Jeff Kahn on Turán’s theorem
for random graphs. Given r ≥ 3, for what values of p = p(n) is it true that whp
the maximal size of a Kr-free subgraph of Gn,p is equal to the maximal size of an
(r − 1)-partite subgraph? (Turán’s theorem tells us that p = 1 is such a value.)
This question has been studied for over two decades, with better and better bounds
on the threshold. In his lecture, Jeff Kahn sketched a proof of his recent result
with Robert DeMarco that pins down this threshold precisely.

All in all, the workshop was a great success, perhaps an even greater success
than any of its predecessors. This is a testament to the vigorous activities in
combinatorics and the related areas of probability theory and theoretical computer
science.
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On the communication complexity of sparse set disjointness and
exists-equal problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107

Marc Noy (joint with Peter Heinig, Tobias Müller, and Anusch Taraz)
Zero-one laws for minor-closed classes of graphs . . . . . . . . . . . . . . . . . . . . . 1108
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Sperner’s Theorem and a problem of Erdős-Katona-Kleitman . . . . . . . . . 1130

Yufei Zhao (joint with Eyal Lubetzky)
Large deviations in random graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133

Robert Morris (joint with Gonzalo Fiz Pontiveros and Simon Griffiths)
The triangle-free process and R(3, k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136

Nati Linial (joint with Lior Aronshtam, Tomasz Luczak, Roy Meshulam,
Yuval Peled)
The combinatorics and probability of simplicial complexes . . . . . . . . . . . . . 1139

Jeff Kahn (joint with Robert DeMarco)
Turan’s Theorem for random graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1140

Jacob Fox (joint with János Pach)
Extremal results for string graphs and graph drawings . . . . . . . . . . . . . . . . 1141

Christian Sohler (joint with Ilan Newman)
Property testing for hyperfinite properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144

Mathias Schacht (joint with Heiner Oberkampf)
On the structure of dense graphs with small clique number . . . . . . . . . . . . 1144



Combinatorics and Probability 1091

Abstracts

Minimal Majority Sequences

Noga Alon

(joint work with Robert Bredereck, Jiehua Chen, Stefan Kratsch, Rolf
Niedermeier, Gerhard J. Woeginger)

We study an extremal combinatorial problem motivated by questions arising in
the theory of Social Choice. A brief description of a possible motivation follows.
In [1] there is a more detailed description of variants of this motivation.

Consider elections in which n parliament members are chosen. A prospective
candidate for prime minister is trying to obtain the support of a majority of the
members. To do so he has to select an agenda consisting of a subset of a given
set M of m issues. The opinions of the parliament members on the issues are
represented by an n by m matrix A = (aij) with {−1, 1}-entries, where aij = 1 iff
member i supports issue j and aij = −1 otherwise. For Q ⊂ [m] = {1, 2, . . . ,m},
member i likes Q iff he supports more than half the issues indexed by the elements
of Q, that is, iff

∑

j∈Q aij > 0. Call Q a winning agenda if more than n/2 members
like it.

In [1] it is proved that the computational problem of deciding whether a given
input n by m matrix A with {−1, 1}-entries admits a winning agenda is NP-
complete, but fixed-parameter tractable with respect to the parameter n (or the
parameter m).

Let g(n,m) denote the minimum number g so that for any n by m matrix that
admits a winning agenda, there exists such an agenda Q satisfying |Q| ≤ g. Define,
also G(n) = Sup g(n,m), where the supremum is taken over all values of m.

It is not difficult to check that G(1) = G(2) = G(3) = 1, G(4) = G(5) = 3 and
G(6) = G(7) = 5, but it is not even clear whether or not G(n) is finite for all n.
The following result determines the asymptotic behavior of the function G(n).

Theorem. G(n) = n(1+o(1))n/4.

The proof combines combinatorial and geometric ideas with tools from linear al-
gebra and discrepancy theory, and is related to results by Huckeman, Jurkat and
Shapley on indecomposable hypergraphs (c.f. [3]), of Graham and Sloane on anti-
Hadamard matrices ([4]), of Hastad on threshold gates requiring large weights
([5]), and of Alon and Vu on a certain coin weighing problem ([2]). The details
appear in [1].

One can extend the discussion above to the weighted case, where there is an n
by m matrix A = (aij) with {−1, 1}-entries, and there are also weights w1, . . . , wn

and z1, . . . , zm. Here Q ⊂ [m] is a winning agenda iff the sum of weights wi over all
i so that

∑

j∈Q aijzj > 0 exceeds 0.5
∑

iwi. The weighted case corresponds to the
motivating example in which there are n parties instead of parliament members,
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each party is weighted by the number of members in it, and the issues are weighted
according to their significance.

It can be shown that if the weights zj are all equal, then the behavior is similar
to the unweighted case. On the other hand when the weights are general positive
integers the situation is very simple for n ≤ 3 in the sense that if there is a winning
agenda there is one consisting of a single issue. In sharp contrast, if n = 4 (or
n > 4) then the problem of deciding if there is a winning agenda is NP-complete,
and for every integer p > 3 there is an n by p matrix with {−1, 1}-entries and
weights wi, zj so that there is a winning agenda and yet the minimum size of such
an agenda is p.
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The largest triangular submatrix of a random matrix

Svante Janson

(joint work with Zur Izhakian and John Rhodes)

Consider a random random n×n matrix Xn = (xij), where the entries are i.i.d.
and, for example, {0, 1}-valued with a fixed probability P(xij = 0) = p0 > 0.

Problem 1. What is the size, Tn, of the largest (lower) triangular submatrix of
Xn?

A submatrix of order m is defined by selecting subsets of m rows and m columns.
We may also allow reordering of the rows and columns, and consider the largest
permuted triangular submatrix. This problem originally came from a question in
supertropical algebra; in that setting the matrix elements can take three values,
and we are really interested in triangular submatrices with 1’s on the diagonal, see
[3] and the references there for details. Asymptotically, to the first order treated
here, the different versions have the same answer, and we consider, for simplicity,
only the version stated above.

Theorem 2. Let Q = 1/p0 > 1. Then, as n → ∞,

Tn/ logQ n
p−→ 2 +

√
2,

where
p−→ denotes convergence in probability.
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Remark. The corresponding problem of the largest square submatrix with only 0’s
(or, equivalently, after interchange of 0 and 1, with only 1’s) has been studied by
several authors, see [6] and the references therein. It is shown in [6] that if Sn

is the size of the largest such matrix, then Sn/ logQ n
p−→ 2. This problem can

be seen as finding the largest balanced complete subgraph of a random bipartite
graph. The analogous problem of finding the largest complete set in a random
graph G(n, p) (or, equivalently, the largest independent set in G(n, 1 − p)) was
solved by [2] and [5], see also [1] and [4]; again the size, Cn say, is asymptotically
2 logQ n, where Q = 1/p.

Note that Tn ≥ Sn ≥ ⌊Tn/2⌋, which shows that Tn and Sn are equal within a
factor of 2 + o(1), and in particular of the same order of magnitude. However, it
does not seem possible to get the right constant in front of logQ n for one of these
problems from the other.

A simple calculation shows that the expected number of triangular submatrices
of size c logQ n tends to infinity if c < 4; hence the first moment method is not
useful here. The reason is that triangular submatrices of size c logQ n with 2 +
logQ 2 < c < 4 are unlikely, but if they occur, they tend to occur in large groups.

The proof is therefore based on studying a truncated version of triangular sub-
matrices, and then extend these to triangular matrices. See [3] for details.

Open problems

For the largest square zero submatrix and the largest cliques in G(n, p), much
more precise estimates are known, see [6] and [1, 4]; for example, it follows that if

s(n) = 2 logQ n− 2 logQ logQ n + 2 logQ(e/2),

then for any ǫ > 0, ⌊s(n) − ǫ⌋ ≤ Sn ≤ ⌊s(n) + ǫ⌋ and ⌊s(n) + 1 − ǫ⌋ ≤ Cn ≤
⌊s(n) + 1 + ǫ⌋ w.h.p. (and, in fact, almost surely); in particular the sizes are
concentrated on one or at most two values. It would be interesting to find similar
sharper versions of the result above, which leads to the following open problems.

Problem 3. Find second order terms for Tn.

Problem 4. Is Tn concentrated on at most two values?

Problem 5. Prove a version of Theorem 2 (or a stronger result) with convergence
almost surely instead of just in probability.

Problem 6. Find corresponding results when p0 and p1 depend on n.

Problem 7. Find corresponding results for rectangular matrices.

Acknowledgement. This work started during a chance meeting of researchers
from two different groups at a supper table during a previous visit to Mathema-
tisches Forschungsinstitut Oberwolfach, Germany, and the work was essentially
completed there.
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Recent developments in phase transitions and critical phenomena

Mihyun Kang

The phase transition is a phenomenon observed in mathematics and natural
sciences in many different contexts. It deals with a sudden change in the properties
of a large structure caused by altering a critical parameter. The phase transition
in random discrete structures (e.g. random graphs, random satisfiability problems,
Ising/Potts model, percolation) has captured the attention of many scientists in
recent years.

The phase transition in random graphs was first discussed in 1959 by Erdős
and Rényi in a series of papers. As Bollobás wrote in one of his books, the most
drastic example of a phase transition discovered by Erdős and Rényi concerns
the order of the largest component of a random graph. Since the seminal work of
Erdős and Rényi [7], the phase transitions in random graphs have been extensively
studied [1, 2, 3, 8, 9, 12, 13]. One of the reason why the phase transition has been
among the main subjects of the random graph theory is due to its close relation
to statistical physics and percolation theory [5] as well as computational problems
in computer science such as random k-SAT [4].

Over the past few years, the so-called Achlioptas processes have gained increas-
ing attention. The basic idea of Achlioptas processes is to use the power of two
choices in order to create random graph processes with different behavior. An
Achlioptas process starts with an empty graph on n vertices, and in each step
two potential edges are chosen uniformly at random, and one of them is chosen
according to a given rule and added to the graph. The key topics of recent results
on Achlioptas processes include the acceleration or delaying of the phase transi-
tion; the avoidance of small subgraphs; and the acceleration of the appearance of
Hamiltonian cycles.

In this talk we discuss new approaches to the study of the size and structure
of components near the critical point of the phase transition in simple Achliop-
tas processes (e.g. bounded-size rules) [10]: key techniques are the classical or-
dinary differential equations method, a quasi-linear partial differential equation
that tracks key statistics of the process, and singularity analysis. We also discuss
a new proof of the phase transition in random hypergraphs [6], which builds on
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the recent proof strategy of Krivelevich and Sudakov [11] who used the depth-first
search algorithm in graphs to give a simple proof of the phase transition in the
Erdős-Rényi graph.
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Self-avoiding walks: many questions and a few answers

Hugo Duminil-Copin

The self-avoiding walk (SAW) was introduced independently by Flory and Ott as
a model of polymers. It was then studied by mathematicians as a combinatorial
model of pristine simplicity in its description, yet of extreme difficulty in its solu-
tion; by computer scientists interested in computational complexity; by biologists
using it to model properties of DNA and other biological polymers of interest.
This talk describes the geometric and combinatorial properties of SAWs.
Definition of the model: The model is defined by assigning equal probability to all
paths on a lattice L (e.g. the hypercubic lattice Zd or the hexagonal lattice H) of
length n starting from the origin and without self-intersections. More formally, a
walk of length n ∈ N is a map γ : {0, . . . , n} → L such that γi and γi+1 are nearest
neighbors for each i ∈ {0, . . . , n− 1}. An injective walk is called self-avoiding. Let
Pn denote the uniform law on SAWs of length n starting at the origin (we set En

for the corresponding expectation). For future reference, we set cn for the number
of SAWs of length n.

We refer to [1, 5] for overviews on the mathematical and physical aspects of
this subject.
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Combinatorial aspects of the model: One of the first questions on SAW is to com-
pute the entropy of the system, or equivalently the number of SAWs of length
n. While computations for small values of n can be made by hand, they quickly
become impossible to perform, due to the fact that cn grows exponentially fast.

Sub-multiplicativity of (cn) implies that (c
1/n
n ) converges to a constant µc called

the connective constant of the lattice. This connective constant can be estimated
for different lattices. For Z2, the rigorous bounds µc(Z

2) ∈ [2.625 622, 2.679 193]
are known, while for the hexagonal lattice, the following result was proved recently.

Theorem 1 (Duminil-Copin, Smirnov [4]). The connective constant of the hexag-

onal lattice equals
√

2 +
√

2.

The connective constant describes the behavior with the roughest degree of pre-
cision. A much more precise behavior is predicted: on Zd, there should be a con-
stant γ such that cn ∼ Anγ−1µn

c , where f(n) ∼ g(n) means limn→∞ f(n)/g(n) =
1. The predicted values of the critical exponent γ are:

dimension 1 2 3 ≥ 4

γ 1 43
32 1.16 . . . 1

These results are known for d = 1 and for d ≥ 5 (for a slight modification of the
model). For d ≥ 5, the SAW can be related to the simple random walk, and the
scaling limit is Brownian motion. In fact, for d = 4, the prediction involves a
logarithmic correction and cn is expected to be equivalent to A(log n)1/4µn

c .
The important point is that the exponent γ has a probabilistic interpretation:

γ measures how likely two SAWs are to avoid each other:

(Pn ⊗ Pn)(ω1 ∩ ω2 = ∅) = c2n/c
2
n ≈ n1−γ .

This interpretation suggests that γ depends on the geometric behavior of long
SAWs, and that it should therefore be universal, meaning that it depends on lat-
tices only through their dimension. This fact motivates the study of the geometric
properties of the model, since they are related to the combinatorial ones.
Geometric properties. Originally, Flory was interested in the geometric properties
of a random path γ with law Pn. In particular, he focused on the typical distance
between the endpoint γn and the origin by studying heuristically the following
quantity En[Dist(γn, 0)2], called the mean-square displacement (Dist refers to the
distance with respect to some norm, for instance the Euclidean one). Numerical
computations and non-rigorous theory predict the precise behaviour of the mean-
squared displacement of the walk’s endpoint: En[Dist(γn, 0)2] = n2ν+o(1) where

dimension 1 2 3 ≥ 4

ν 1 3
4 0.59 . . . 1/2

In dimensions five and above, the conjecture was proved for a version of SAW
with weak repulsion in Brydges and Spencer using the celebrated lace-expansion
technique. Hara and Slade proved the conjecture for standard SAW.

Until recently, virtually no rigorous non-trivial bounds on the mean-square dis-
placement were known in low dimensions despite the many attempts to understand
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properties of the model. In the last few months, two relevant theorems were proved
simultaneously. The first one shows that the SAW is not ballistic, meaning that
the end-point is not at distance cn from the origin, where c > 0 is a positive con-
stant. Precisely, the result of [3] yields that En[Dist(γn, 0)2] = o(n2) as n tends
to infinity. The proof relies on renewal theory and combinatorial tricks based on
unfoldings of parts of the walk. This theorem is the first non-trivial upper bound
on the mean-square displacement. In the other direction, Madras proved that
there exists c > 0 such that En[Dist(γn, 0)2] ≥ cn4/(3d) for any n ≥ 1. Let us
mention that this result is not straightforward. The fact that a SAW of length n
visits n different vertices forces the diameter of the walk to be larger than εn1/d.
Nevertheless, the average distance between the end-point to the origin has a priori
no reason to be of the order of the diameter of the walk. In the same spirit, the
fact that the probability that a walk ends near the origin was proved to converge
to zero in [2]. Let us finish by an open problem.

Open Problem. Prove that in two and three dimensions, there exists ε > 0 such
that

n2/d+ε ≤ En[Dist(γn, 0)2] ≤ n2−ε

for all n large enough.
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Random graph coloring

Amin Coja-Oghlan

(joint work with Dan Vilenchik)

Let G(n,m) be the random graph with n vertices and m edges. We make progress
on determining the chromatic number χ(G(n,m)), a problem posed by Erdős and
Rényi [7].

This question has received considerable attention. Shamir and Spencer [16]
proved concentration results. These were enhanced first by  Luczak [12] and then
by Alon and Krivelevich [3], who proved that χ(G(n,m)) is concentrated on two
consecutive integers if m ≪ n3/2. In a celebrated paper, Bollobás [5] determined
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the exact asymptotics of χ(G(n,m)) in the dense case. This improved prior work
by Matula [13].  Luczak extended the result to sparse random graphs [11].

Achlioptas and Friedgut [1] proved that for any fixed k ≥ 3 there exists a sharp
threshold sequence dk−col = dk−col(n). Furthermore, Achlioptas and Naor [2]
proved via the second moment method that

dk−col ≥ dk,AN = 2(k − 1) ln(k − 1) = 2k ln k − 2 lnk − 2 + ok(1),

where the ok(1) term tends to zero for large k. A “first moment” calculation gives

dk−col ≤ dk,first = 2k ln k − ln k.

Recently, the “cavity method”, a non-rigorous method from statistical physics, has
been applied to the problem of finding χ(G(n,m)). This led to the conjecture [10,
14, 15, 17]

dk−col = 2k ln k − ln k − 1 + ok(1).

Our main result is as follows.

Theorem 1. The k-colorability threshold satisfies dk−col ≥ dk,cond − ok(1), with
dk,cond = 2k ln k − ln k − 2 ln 2.

The density of a measurable set A ⊂ R+ is limz→∞
1
z

∫ z

0
1A.

Corollary 2. There exists a set A ⊂ R+ of density 1 and a function F : A → Z≥0

such that for all average degrees d ∈ A we have χ(G(n,m)) = F (d) w.h.p.

Corollary 2 improves a result from [2], where the chromatic number was determined
exactly on a set A′ of density 1

2 .
The proof of Theorem 1 is based on a new approach to the second moment

method for the random graph coloring problem. The improvement results from
harnessing intuition from statistical mechanics on the geometry of the solution
space [9, 17]. Indeed, the second moment argument from [2] boils down to an op-
timization problem over the Birkhoff polytope, i.e., the set of doubly-stochastic k×k
matrices. Solving this problem turns out to be a formidable analytic task. How-
ever, the statistical mechanics predictions lead to additional constraints. These
show that it actually suffices to optimize over a fairly small subset of the Birkhoff
polytope. This problem can be solved via local variations arguments.

In addition, we show that the density dk,cond corresponds in an exact sense to
a phase transition. More precisely, following conventions from physics, by a phase
transition we mean a d0 where the function

(1) ϕ(d) = lim
n→∞

E[ n
√

#k-colorings of G(n,m)]

is non-analytic. Because the limit (1) is not currently known to exist for all d, we
phrase the result as follows.

Corollary 3. There is ǫk = ok(1) such that the following is true.

(1) The limit ϕ(d) exists and is analytic for all d < dk,cond − ǫk. Indeed,

ϕ(d) = k(1 − 1/k)d/2.
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(2) Either ϕ(d) does not exist for some d ∈ (dk,cond − ǫk, dk,cond + ǫk) or ϕ(d)
is non-analytic at some point in this interval.

Bayati, Gamarnik and Tetali [4] proved the existence of a related limit, the “free
energy”. This inspires the following conjecture.

Conjecture 4. For any k ≥ 3 and any d > 0 the limit (1) exists.
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Erdős-Hajnal-type theorems in hypergraphs

David Conlon

(joint work with Jacob Fox, Benny Sudakov)

We call a graph H-free if it contains no induced copy of a given graph H . The
famous conjecture of Erdős and Hajnal [2] states that if a graph on n vertices is
H-free then it must contain either a clique or an independent set of size nδ(H),
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where δ(H) > 0 depends only on the graph H . It is easy to see that this conjecture
is true when H is a complete graph. It is also known to be true for all graphs with
at most 4 vertices. However, the conjecture remains open even for the cycle C5.

For general H , Erdős and Hajnal proved that if a graph on n vertices is H-free

then it must contain a clique or an independent set of size ec(H)
√
log n. This is a

significant improvement over the bound of c logn which, by Ramsey’s theorem,
holds in all graphs, but it is still quite far from the conjecture. However, as
observed in [3], their method does allow one to find complete or empty bipartite
subgraphs each side of which are of polynomial size. Recently, Fox and Sudakov
[5] went one step further by proving that there is either a complete bipartite graph
or an independent set of polynomial size.

For 3-uniform hypergraphs, Erdős and Rado [4] proved that, in any 2-colouring

of the edges of the complete graph K
(3)
n on n vertices, there is a monochromatic

clique of size c log logn. Phrased differently, this says that any 3-uniform hyper-
graph on n vertices contains either a clique or an independent set of size c log logn.
Given the situation for graphs, it is tempting to conjecture that if a 3-uniform hy-
pergraph on n vertices is H-free, for some given H, then there should be a clique
or an independent set of size much larger than log logn. We feel, but have been
unable to prove, that for general H this may be too much to expect.

Given this state of affairs, we follow a different route, suggested by Rödl and
Schacht [7], attempting to extend the bipartite counterpart of the Erdős-Hajnal
theorem to tripartite 3-uniform hypergraphs. In any given 3-uniform hypergraph
on n vertices, one may always find a complete or empty tripartite subgraph with

parts of order at least c(logn)
1
2 . This follows from a standard extremal result due

to Erdős [1]. We improve this result for H-free graphs.

Theorem 1. Let H be a 3-uniform hypergraph. Then there exists a constant
δ(H) > 0 such that, for n sufficiently large, any H-free 3-uniform hypergraph on n
vertices contains a complete or empty tripartite subgraph each part of which has

order at least (logn)
1
2+δ(H).

This improves upon a result of Rödl and Schacht [7]. They used the regularity
method for hypergraphs to show that the size of the largest complete or empty

tripartite subgraph grows faster than the function (logn)
1
2 by a factor tending to

infinity. However, because their result depends upon the regularity lemma, it does
not provide good bounds on this factor.

Our result, on the other hand, is not far from best possible, since, for many
H, one cannot do better than c logn. To see this, consider the random graph on
the vertex set {1, 2, . . . , n} where each edge is chosen with probability 1

2 . For c
sufficiently large, with high probability, this graph contains no complete or empty
bipartite graph with parts of order c logn. Fix such a graph and call it Gn. Let
Gn be the 3-uniform hypergraph on the same vertex set whose edge set consists of
all those triples (i1, i2, i3) with i1 < i2 < i3 such that (i1, i2) is an edge in Gn.

It is easy to see that Gn contains no complete or empty tripartite subgraph
with sets of size c logn. Suppose otherwise and let U, V and W be subsets of size
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c logn which define such a tripartite graph. Without loss of generality, assume
that the largest vertex w, in the ordering inherited from the integers, lies in W .
Then, by construction, there must be a complete or empty bipartite subgraph in
Gn between U and V , a contradiction. Now, for any subset X of the vertices of
Gn, let x1 and x2 be the two smallest vertices in X . Then, again by construction,
for every x ∈ X\{x1, x2}, either all edges of the form (x1, x2, x) are in Gn or none
of them are. Choose a small hypergraph H containing no vertex pair (x1, x2) with
this property. For example, one may take H to be a tight cycle on five vertices,
that is, with vertices {1, 2, 3, 4, 5} and edge set {123, 234, 345, 451, 512}. Then Gn

is H-free. Since it also contains no tripartite subgraph of size c logn, this completes
our claim.

The proof of Theorem 1 relies upon a new embedding lemma which says that if
the edges of G are fairly well-distributed, in the sense that in any graph containing
many triangles a positive proportion of these triangles form edges both of G and
of its complement G, then one may embed an induced copy of any particular small
hypergraph H. If the hypergraph is not well-distributed in the sense described
above, then it turns out that it must contain a complete or empty tripartite sub-
graph which is much larger than one would normally expect.

Despite this description being a reasonable one for any uniformity, the proof
does not extend to the k-uniform case for any k ≥ 4. Instead, we get more from
considering the analogue of the usual Erdős-Hajnal problem in hypergraphs. That
is, given an H-free k-uniform hypergraph, how large of a clique or independent set
must it contain?

Let rk(ℓ) be the diagonal Ramsey function, that is, the minimum n such that

in any 2-colouring of the edges of K
(k)
n there is a monochromatic copy of K

(k)
ℓ .

The tower function tk(x) is defined by t1(x) = x and ti+1(x) = 2ti(x). A result of

Erdős and Rado [4] states that rk(ℓ) ≤ 2(rk−1(ℓ−1)

k−1 ) + k− 2. For k ≥ 4, this implies
that

rk(ℓ) ≤ tk−2((r3(ckℓ))
3).

On the other hand, a result of Erdős and Hajnal (see [6]), referred to as the
stepping-up lemma, allows one, for k ≥ 4, to take a colouring of the (k − 1)-
uniform hypergraph on n vertices containing no monochromatic cliques of size ℓ
and to show that there is a colouring of the k-uniform hypergraph on 2n vertices
containing no monochromatic clique of size 2ℓ + k − 5. In particular, this can be
used to show that, for ℓ sufficiently large,

rk(ℓ) ≥ tk−2(r3(c′kℓ)).

Therefore, once the asymptotic behaviour of r3(ℓ) is understood, so is that of rk(ℓ).
To be more precise, let r−1

k be the inverse function of rk. Restating the results
quoted above and using the fact that r3(ℓ) is at least exponential in ℓ tells us that,
for k ≥ 3 and n sufficiently large depending on k, r−1

k (n) has upper and lower
bounds of the form

a′kr
−1
3 (log(k−3) n) ≤ r−1

k (n) ≤ akr
−1
3 (log(k−3) n),
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where log(0)(x) = x and, for i ≥ 1, log(i)(x) = log(log(i−1)(x)) is the iterated
logarithm.

For an Erdős-Hajnal-type theorem to hold, we would therefore need that when-
ever a hypergraph on n vertices is H-free there is a clique or independent set of
size much larger than r−1

3 (log(k−3) n). We will disprove this by showing that there
are already simple examples of hypergraphs H which are not contained in step-up
colourings. This implies the following theorem.

Theorem 2. For k ≥ 4, there exists a constant ck, a k-uniform hypergraph H
and a sequence Gn of H-free k-uniform hypergraphs with n vertices such that the
size of the largest clique or independent set in Gn is at most ckr

−1
k (n).
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Phase transitions and intractability

Mark Jerrum

(joint work with Leslie Ann Goldberg and Colin McQuillan)

“Phase transition” is a term that formally applies to infinite systems. But
the effects of a phase transition can be felt in computations on finite problem
instances. It is widely appreciated that phase transitions are a barrier to the
effective application of certain algorithmic techniques, such as Markov chain Monte
Carlo. But in fact one can sometimes exploit the existence of a phase transition to
rule out an efficient approximation algorithm of any kind. Occasionally, the point
at which a phase transition occurs can be rigorously linked to the exact boundary
between tractability and intractability for a computational problem. We explore
this phenomenon in the context of the hard-core (independent set) model on a
graph, though most of the results generalise to other two-spin systems, such as the
Ising model. In the hard core model, the configurations are independent sets in a
graph, and each configuration σ is assigned weight λ|σ|, where λ > 0 is parameter
sometimes called “fugacity”. The main quantity of interest is the partition function
∑

σ λ
|σ|.
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In retrospect, the title should perhaps have been more specific, to indicate
that we are focusing here specifically on counting problems, rather than decision
problems (such as random satisfiability problems), which have a rather different
flavour. Moreover, it is approximate solutions that we seek, since exact solutions
are rarely available. A recurring theme in this area is that optimisation problems
can be reduced to approximate counting problems. If the optimisation problem
is intractable, then so is the counting problem. A simple example, reducing the
problem of finding a maximum independent set to that of approximately counting
the independent sets of all sizes was presented. (This is in the unweighted case
λ = 1.) Although the reduction appears to require rapidly growing degree, Luby
and Vigoda [5] observed that since the optimisation problem is hard to solve within
some fixed constant factor, in fact bounded degree graphs suffice. So, the problem
of approximating the number of independent sets in a bounded degree graph is
NP-hard.

The degree bound that arises from Luby and Vigoda’s observation is large.
Dyer, Frieze and Jerrum [1] exploited the phase transition for the independent
sets model in random regular bipartite graph to provide a bistable gadget, which
they then used to encode the Boolean variables in a certain NP-hard optimisa-
tion problem. In this way, they were able to reduce the degree bound substan-
tially, to 25. Recently Sly [7], Sly and Sun [8] and Galanis, Ge, Štefankovič,
Vigoda, and Yang [2] have carried out a much more delicate analysis of the gad-
get, thereby obtaining a sharp result. They show there there is a critical fugacity
λc(d) = (d − 1)d−1/(d − 2)d such that the independent sets in a random bipar-
tite graph of degree d are unbalanced when λ > λc and balanced when λ < λc.
(This critical value λc is characterised as the “uniqueness threshold” of an infinite
d-regular tree.) Thus, the NP-hardness proof works right down to (but not in-
cluding) λc. In the other direction, Weitz [9], Sinclair, Srivastava and Thurley [6]
and Li, Lu, and Yin [4] provide an polynomial time algorithm that works for all
λ < λc. So we are in the remarkable position of knowing the exact threshold
for computational tractability for the hard core or independent set model and,
even more remarkably, this transition for general d-regular graphs is identical to
the “uniqueness threshold” for infinite d-regular trees. Most of the results quoted
above apply to more or less general two-spin systems.

Then on to the specific result of the talk, which is joint work with Leslie Gold-
berg and Colin McQuillan [3]. We considered the complexity of of the hard core
model on a planar graph and showed that the partition function is hard to ap-
proximate for sufficiently large λ. A particular obstacle in this case is that there
is an efficient approximation algorithm for approximating the logarithm of the
partition function in a planar graph. This fact suggests that is is unlikely that
we can construct a reduction from an optimisation problem that is APX-complete
(i.e., one that is difficult even to approximate within constant factor error). So
the analysis of the bistable gadgets, which are cylindrical L × L fragments of Z2,
becomes rather delicate. Basically one needs to show that, conditioned on whether
the phase is odd or even, correlations decay quickly with distance.



1104 Oberwolfach Report 18/2013

References

[1] Martin Dyer, Alan Frieze, and Mark Jerrum. On counting independent sets in sparse graphs.
SIAM J. Comput., 31(5):1527–1541 (electronic), 2002.
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Nimble Algorithms for Cloud Computing

Ravindran Kannan

(joint work with Santosh Vempala)

Cloud computing is a new paradigm where data is stored across multiple servers
and the goal is to compute a function of all the data. We consider a simple model
where each server uses polynomial time and space, but communication among
servers, being more expensive, is ideally bounded by a polylogarithmic function of
the input size. We will dub algorithms that satisfy these types of resource bounds
as nimble.

The main contribution of the paper is to develop nimble algorithms for sev-
eral areas which involve massive data and for that reason have been extensively
studied in the context of Streaming Algorithms. The areas are approximation of
Frequency Moments, Counting bipartite homomorphisms (number of copies of a
fixed bipartite graph H in a graph G), Rank-k approximation to a matrix, and
Clustering. For frequency moments, we will use a new importance sampling tech-
nique based on high powers of the frequencies. We reduce the problem of counting
homomorphisms to estimating implicitly defined frequency moments. For rank-k
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approximations, besides recent results of several authors developed in the Stream-
ing context, we use a new variant of the random projection method. For clustering,
we use our rank-k approximation and the small coreset of Chen [1] of size at most
polynomial in the dimension.

In contrast to our algorithms in the cloud computing model, in the streaming
model, known lower bound results for frequency moments and rank-k approxima-
tions rule out the existence of algorithms that use polylogarithmic space.
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The evolution of subcritical Achlioptas processes

Lutz Warnke

(joint work with Oliver Riordan)

In the Erdős–Rényi random graph process, starting from an empty graph, in each
step a new random edge is added to the evolving graph. One of its most interesting
features, both mathematically and in terms of applications, is the ‘percolation
phase transition’: as the ratio of the number of edges to vertices increases past
a certain critical point, the global structure changes radically, from only small
components to a single macroscopic (‘giant’) component plus small ones.

We consider Achlioptas processes, which were introduced by Dimitris Achlioptas
around 2000 in an attempt to create random graph processes with potentially
different behaviour than the Erdős–Rényi one. Starting from an empty graph
these proceed as follows: in each step two potential edges e1 and e2 are chosen
uniformly at random, and using some rule one of them is selected and added to the
evolving graph. During the last decade, so-called bounded-size rules have received
considerable attention, see, e.g., [2, 3, 9]. These make their decisions based only
on the sizes of the components containing the endvertices of e1 and e2, with the
restriction that all sizes larger than some constant B are treated in the same
way. It turns out that, while bounded size rules can, e.g., delay or accelerate the
percolation phase transition, these still share many qualitative similarities with
the ‘classical’ random graph process.

In contrast, few rigorous results are known for the more involved ‘unbounded’-
size rules, whose choices depend only on the sizes of the four components con-
taining the endvertices of the two offered edges. To illustrate our very limited
understanding of these, we mention that in one line of research, stimulated by a
conjecture of Achlioptas, D’Souza and Spencer published in Science [1] (supported
by extensive simulations), it was believed that certain size rules (in particular the
so-called product rule) could give rise to a phase transition that is particularly
radical: more or less as soon as the macroscopic component appears, it is already
extremely large; this phenomenon is known as ‘explosive percolation’. However,
recently it was shown by Riordan and Warnke [4, 5] that this is not the case, by
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proving that the phase transition is in fact continuous for all Achlioptas processes.
To summarize, the surprises that (unbounded) size rules have shown so far indicate
that our intuition for these processes still needs to be developed.

We establish the first rigorous convergence result for Achlioptas processes using
unbounded size rules such as the product rule. Intuitively speaking, we prove that
certain key statistics are tightly concentrated at least until the susceptibility (the
expected size of the component containing a randomly chosen vertex) diverges. To
give a more precise statement we need to introduce some notation. Every rule R
defines, for each n, a random sequence (Gi)i≥0 = (GR

i )i≥0 of graphs with vertex
set [n], where Gi denotes the graph after i steps. Let Nk(i) denote the number of
vertices of Gi in components of size k, and define N≥k(i) similarly. Now we define

the susceptibility of Gi as S(i) =
∑

kNk(i)/n. As usual, S(tn)
p→ ∞ as n → ∞

means that for any C > 0 we have Pr(S(tn) ≤ C) → 0 as n → ∞. With these
definitions in hand, we are ready to state (a simplified version) of the main result
of [8], which shows that the number of vertices in components of size k ≥ 1 (and
the susceptibility) is tightly concentrated until the susceptibility ‘blows up’, which
happens at a critical time tb.

Theorem 1. Let R be a size rule. There exist tb = tRb ∈ (0, 1] and functions
(ρk)k≥1 with ρk = ρRk : [0, tb) → [0, 1] such that the following holds. For every
t ≥ tb we have

(1) S(tn)
p→ ∞

as n → ∞. For every t < tb we have
∑

k≥1 ρk(t) = 1. Also, for every t < tb there

exist a,A,C > 0 (depending only on R, t) such that for every t′ ∈ [0, t] we have
ρk(t′) ≤ Ae−ak for all k ≥ 1. In addition, for n ≥ n0(R, t) the following holds
with probability at least 1 − n−99: for every 0 ≤ i ≤ tn we have

|Nk(i) − ρk(i/n)n| ≤ (logn)Cn1/2 for all k ≥ 1,(2)

|S(i) −∑

k≥1kρk(i/n)| ≤ (log n)Cn−1/2,(3)

and N≥k(i) ≤ Ae−akn for all k ≥ 1.

To interpret this result, we think of the functions ρk(t) as describing the ‘scaling
limit’ of the component size distribution at ‘time’ t < tb, where time is the number
of steps divided by n. A key aspect of Theorem 1 is that this limit does not depend
on n; in fact, most of our technical work is devoted to establishing this property (to
only show concentration around its expectation simpler arguments would suffice).
Furthermore, the bound on ρk demonstrates that the idealized component size
distribution has an exponential tail for t < tb, as one would expect in a strictly
subcritical random graph.

The proof of Theorem 1 is based on a variant of the neighbourhood exploration
process and relies on branching process (approximation) arguments. This is quite
different from other approaches in this area, which are based on differential equa-
tions, see, e.g., [7]. Finally, we believe that convergence up to tb is best possible
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(see [6]), and also conjecture that tb coincides with the percolation threshold; we
refer to [8] for the technical details.
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Matematik 60 (2012), 305–329.

[4] O. Riordan and L. Warnke. Explosive percolation is continuous. Science 333 (2011), 322–
324.

[5] O. Riordan and L. Warnke. Achlioptas process phase transitions are continuous. Annals of
Applied Probability 22 (2012), 1450–1464.

[6] O. Riordan and L. Warnke. Achlioptas processes are not always self-averaging. Physical
Review E 86 (2012), 011129.

[7] O. Riordan and L. Warnke. Convergence of Achlioptas processes via differential equations
with unique solutions. Preprint (2011). arXiv:1111.6179.

[8] O. Riordan and L. Warnke. The evolution of subcritical Achlioptas processes. Preprint
(2012). arXiv:1204.5068.

[9] J. Spencer and N.C. Wormald. Birth control for giants. Combinatorica 27 (2007), 587–628.

On the communication complexity of sparse set disjointness and
exists-equal problems

Gábor Tardos

(joint work with Mert Sağlam)

The communication complexity of a single equality problem is well known: to
achieve ǫ error in the randomized model with a joint random source it is enough
to send log(1/ǫ) bits in a single round independent of the size of the universe.
Here we consider the “exists-equal” problem that is the OR of n instances of the
equality problem. We find matching lower and upper bounds for its complexity
for any number of rounds. The surprising thing is that to achieve small constant
error in a limited number of rounds one needs strictly more communication than n
times the communication needed for a single equality problem. In fact, for a single
round protocol we prove a lower bound of Ω(n logn), meaning that the best that
one can do for a constant-error protocol for exists-equal is to combine low-error
protocols for the individual equality problems. To our knowledge, this is the first
instance where such a super-linear increase in complexity is demonstrated for a
single bit combination of many instances of any communication problem.

Observe that exists-equal can be considered a special case of the sparse set
disjointness with the players receiving n element subsets of a larger universe and
their goal being deciding whether their sets are disjoint or not. Our upper bound
protocol works in this more general case. We give a protocol that communicates a

total of O(n log(r) n) bits over r rounds and errs only with probability well below
1/k. Here we can set the number of rounds r ≤ log∗ n arbitrarily and for r = log∗ n
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we obtain an O(n) total communication log∗ n-round protocol, improving on the
O(k)-bits log k-round protocol of H̊astad and Wigderson [1]. In this case the error

bound of our protocol is exponentially small, O(2−
√
k), greatly improving on the

constant error of the H̊astad-Wigderson protocol.
Our main contribution in this paper is a matching lower bound: we show that

any r-round randomized protocol for the exists-equal problem with a small con-

stant error probability should have a message of size Ω(n log(r) n). Our lower
bound holds even for super-constant r ≤ log∗ n, showing that any O(n) bits exists-
equal protocol should have log∗ n−O(1) rounds.

Note that the protocol we give errs only with probability that is less than
polynomially small and provides guarantees on the total communication for the
harder set disjointness problem, whereas our lower bound holds even for a small
constant error probability protocols and for the easier exists-equal problem with
guarantees on the max-communication. Hence our upper and lower bounds match
in a strong sense.

Details can be found in [2].
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Zero-one laws for minor-closed classes of graphs

Marc Noy

(joint work with Peter Heinig, Tobias Müller, and Anusch Taraz)

Let G be a class of labelled graphs closed under isomorphism, and let Gn be the
graphs in G with n vertices. We say that G has a zero-one law with respect to
some logic language L if, for every sentence φ in L, the probability that a graph
in Gn satisfies φ tends either to 0 or 1, as n goes to infinity. The classical example
of a zero-one law is for the class of all graphs in the language of first order (FO)
logic, a result due to Glebski et al. and independently to Fagin. The problem
has been investigated more generally in the G(n, p) model, where edges are drawn
independently with probability p. A zero-one law holds for all constant p and in
many other cases. In particular, the celebrated theorem of Shelah and Spencer
says that a zero-one law holds if p = n−α and α > 0 is an irrational number [7].

In this paper we are interested in different models of random graphs. Consider
the class T of labelled trees with the uniform distribution on trees with n vertices.
McColm [4] showed that a zero-one law holds in T in the monadic second order
(MSO) logic, which is FO logic enriched with quantification over sets of vertices.
His proof is based on two facts: 1) for each r > 0 there exists a rooted tree Tr

such that, if two trees A and B both have Tr as a rooted subtree, then Duplicator
has a winning strategy in the Ehrenfeucht-Fraissé game with r rounds played on
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A and B; and 2) with high probability, a random tree contains Tr as a rooted
subtree. In order to cover MSO logic, the Ehrenfeucht-Fraissé game has to be
enriched with set moves in addition to vertex moves; Duplicator wins if there is a
partial isomorphism between the selected vertices which respects membership in
the selected sets.

We show that this approach works much more generally for minor-closed classes
that are addable, that is, all the forbidden minors are 2-connected. This in-
cludes the class of planar graphs and many others, such as outerplanar, series-
parallel, graphs with bounded tree-width, and graphs with given 3-connected com-
ponents [3]. In all these cases we are able to prove a zero-one law in MSO logic
for connected graphs under the uniform distribution, using the following result of
McDiarmid [6]: if G is a proper addable minor-closed class and H is a fixed graph
in G, then a random graph from G contains a pendant copy of H , that is, a copy
joined to the rest of the graph by a single edge. We remark that if the class is not
addable then a zero-one law may not exist (we show this is the case, for instance,
for the class of caterpillars).

For arbitrary graphs in an addable minor-closed classes of graphs there cannot
be a zero-one law, even in FO logic. The reason is that there are sentences ex-
pressible in FO, such as the existence of an isolated vertex, that have a limiting
probability strictly between 0 and 1. This is true more generally for the existence
of a connected component isomorphic to a given graph in the class. In this situ-
ation we prove a convergence law, by showing that each sentence in MSO has a
limiting probability, possibly different from 0 and 1. The proof is based on the
fact that with high probability the largest component has size n−O(1), that the
number of components isomorphic to a fixed graph in the class follows asymptot-
ically a Poisson distribution, and that the numbers of components isomorphic to
distinct graphs are asymptotically independent.

Let S be a fixed surface and consider the class GS of graphs that can be em-
bedded in S. The class GS is minor-closed but not addable. In this case we prove
a zero-one law in FO for connected graphs in G. The proof is based on adapting
an argument from Bender et al. [1] for maps on a surface and on recent results on
random graphs of fixed genus [2, 5]. For arbitrary graphs we prove a convergence
law in FO. Moreover, we show that the limiting probability of a FO sentence does
not depend on the surface and is the same as for planar graphs. In particular, the
almost sure theory for connected graphs is independent of the surface. We con-
jecture that both results, for connected and arbitrary graphs in GS , extend to the
MSO logic. If this is true then the limiting probabilities cannot be independent of
the surface, since containing a fixed minor is expressible in MSO logic.

Here is a summary of our main results:

• If G is a proper addable minor-closed class of graphs, then a zero-one law
holds in MSO for connected graphs in G.

• If G is a proper addable minor-closed class of graphs, then a convergence
law holds in MSO for arbitrary graphs in G.
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• If GS is the class of graphs that can be embedded in a fixed surface S, a
zero-one law holds in FO for connected graphs in GS .

• If GS is the class of graphs that can be embedded in a fixed surface S, a
convergence law holds in FO for arbitrary graphs in GS . Moreover, the
limiting probability that a given FO sentence is satisfied is independent of
the surface S.
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Independent sets in hypergraphs

József Balogh

(joint work with Robert Morris and Wojciech Samotij)

1. Introduction

Many important theorems and conjectures in combinatorics, such as the the-
orem of Szemerédi on arithmetic progressions and the Erdős-Stone Theorem in
extremal graph theory, can be phrased as statements about families of indepen-
dent sets in certain uniform hypergraphs. In recent years, an important trend in
the area has been to extend such classical results to the so-called ‘sparse random
setting’. This line of research has recently culminated in the breakthroughs of
Conlon and Gowers [2] and of Schacht [8], who developed general tools for solv-
ing problems of this type. Although these two papers solved very similar sets of
longstanding open problems, the methods used are very different from one another
and have different strengths and weaknesses.

We provide a third, completely different approach to proving extremal and
structural results in sparse random sets that also yields their natural ‘counting’
counterparts. We give a structural characterization of the independent sets in a
large class of uniform hypergraphs by showing that every independent set is almost
contained in one of a small number of relatively sparse sets. We then derive many
interesting results as fairly straightforward consequences of this abstract theorem.
In particular, we prove the well-known conjecture of Kohayakawa,  Luczak, and
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Rödl [4], a probabilistic embedding lemma for sparse graphs, for all 2-balanced
graphs. We also give alternative proofs of many of the results of Conlon and
Gowers [2] and Schacht [8], such as sparse random versions of Szemerédi’s theorem,
the Erdős-Stone Theorem and the Erdős-Simonovits Stability Theorem, and obtain
their natural ‘counting’ versions, which in some cases are considerably stronger.
We also obtain new results, such as a sparse version of the Erdős-Frankl-Rödl
Theorem [3] on the number of H-free graphs and, as a consequence of the K LR
conjecture, we extend a result of Rödl and Ruciński [6] on Ramsey properties in
sparse random graphs to the general, non-symmetric setting. Similar results have
been discovered independently by Saxton and Thomason [7]. A full version of this
extended abstract with a complete reference list is [1].

2. The main result

Our main result gives a structural characterization of the collection of all inde-
pendent sets in a large class of uniform hypergraphs.

Definition 1. Let H be a uniform hypergraph with vertex set V , let F be an
increasing family of subsets of V and let ε ∈ (0, 1]. We say that H is (F , ε)-dense
if e(H[A]) ≥ εe(H) for every A ∈ F .

Let Fε =
{

A ⊆ V (H) : e(H[A]) ≥ εe(H)
}

. Given a hypergraph H, for each T ⊆
V (H), we define degH(T ) = |{e ∈ H : T ⊆ e}|, and let ∆ℓ(H) = max

{

degH(T ) :

T ⊆ V (H) and |T | = ℓ
}

.

Theorem 1. For every k ∈ N and all positive c, c′ and ε, there exists a positive
constant C such that the following holds. Let H be a k-uniform hypergraph and let
F ⊆ P(V (H)) be an increasing family of sets such that |A| ≥ εv(H) for all A ∈ F .
Suppose that H is (F , ε)-dense and p ∈ (0, 1) is such that pk−1e(H) ≥ c′v(H) and
for every ℓ ∈ [k − 1],

∆ℓ(H) ≤ c · min

{

pℓ−k, pℓ−1 e(H)

v(H)

}

.

Then there exists a family S ⊆
( V (H)
≤Cp·v(H)

)

and functions f : S → F and g :

I(H) → S such that for every I ∈ I(H), g(I) ⊆ I and I \ g(I) ⊆ f(g(I)).

3. Some of the applications

Szemerédi type of results. The celebrated theorem of Szemerédi [9] says that
for every k ∈ N, the largest subset of {1, . . . , n} that contains no k-term arithmetic
progression (AP) has o(n) elements. It immediately follows that there are only
2o(n) subsets of {1, . . . , n} with no k-term AP. Our first result can be viewed as a
sparse analogue of this statement.

Theorem 2. For every positive β and every k ∈ N, there exist constants C and n0

such that the following holds: For every n ∈ N with n ≥ n0, if m ≥ Cn1−1/(k−1),
then there are at most

(

βn
m

)

m-subsets of {1, . . . , n} that contain no k-term AP.
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The sparse random analogue of Szemerédi’s theorem, proved by Schacht [8] and
independently by Conlon and Gowers [2], follows as an easy corollary, using the
first moment method, of Theorem 2. We say that a set A ⊆ N is (δ, k)-Szemerédi
if every subset B ⊆ A with at least δ|A| elements contains a k-term AP. Let
[n] = {1, . . . , n} and denote [n]p the p-random subset of [n].

Corollary 3. For every δ ∈ (0, 1) and every k ∈ N, there exists a constant C such
that for all sufficiently large n, if pn ≥ Cn−1/(k−1), then

lim
n→∞

Pr
(

[n]pn
is (δ, k)-Szemerédi

)

= 1.

We remark that Theorem 2 and Corollary 3 are both sharp up to the value of
the constant C. When we prove Theorem 2, we apply Theorem 1 to the following
hypergraph: Let H be the k-uniform hypergraph of k-term APs in [n], i.e., the
hypergraph on the vertex set [n] whose edges are all k-term APs in [n], let F
denote the family of subsets of [n] with at least δn elements, and let ε = ε(δ, k).

The typical structure of H-free graphs. Let H be an arbitrary non-bipartite
graph. We say that a graph G is H-free if G does not contain H as a subgraph.
For an integer n, denote by fn(H) the number of labeled H-free graphs on the
vertex set [n]. Since every subgraph of an H-free graph is also H-free, it follows
that fn(H) ≥ 2ex(n,H). Erdős, Frankl, and Rödl [3] proved that this crude lower
bound is in a sense tight, namely that

(1) fn(H) = 2ex(n,H)+o(n2).

Our next result can be viewed as a ‘sparse version’ of (1). Such a statement
was already considered by  Luczak, who derived it from the K LR conjecture. For
integers n and m with 0 ≤ m ≤

(

n
2

)

, let fn,m(H) be the number of labeled H-free
graphs on the vertex set [n] that have exactly m edges. The following theorem
refines (1) to n-vertex graphs with m edges.

Theorem 4. Let G be a 2-balanced graph and let δ be a positive constant. There
exists a constant C such that for every n ∈ N, if m ≥ Cn2−1/m2(G), then

(

ex(n,G)

m

)

≤ fn,m(G) ≤
(

ex(n,G) + δn2

m

)

.

When we prove Theorem 4, we apply Theorem 1 to the following hypergraph:
The hypergraph of copies of G in Kt

n is the e(G)-uniform hypergraph on the vertex
set E(Kn) whose edges are the edge sets of all copies of G in Kn.

Note that the K LR conjecture is also proved by Theorem 1; we skip details
here.

Research supported in part by: (JB) NSF CAREER Grant DMS-0745185,
UIUC Campus Research Board Grant 11067, and OTKA Grant K76099; (RM)
CNPq bolsa de Produtividade em Pesquisa; (WS) ERC Advanced Grant DMMCA
and a Trinity College JRF
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Small Complete Minors Above the Extremal Edge Density

Asaf Shapira

(joint work with Benny Sudakov)

A graph G has a Kt-minor if G contains t vertex disjoint connected subgraphs
S1, . . . , St and

(

t
2

)

paths (Pi,j)1≤i<j≤t such that Pi,j connects Si to Sj, each path
Pi,j is disjoint from each set Sk with k 6= i, j, and the paths Pi,j are internally
vertex disjoint, that is, Pi,j can only intersect with Pi,j′ or Pi′,j at its endpoint
vertices. This Kt-minor is called topological if all |Si| = 1. The notion of minor is
undoubtedly one of the most well studied topics in graph theory. A central result
in this area states that a linear number of edges is enough to force the appearance
of a Kt-minor. Formally, for every integer t ≥ 3 define

(1) c(t) = min{c : d(G) ≥ c implies that G has a Kt-minor} ,

where d(G) = |E(G)|/|V (G)|. Kostochka [7] and Thomason [12] proved that
c(t) = Θ(t

√
log t).

Fiorini, Joret, Theis and Wood [3] raised the following problem; how many
edges guarantee that a graph contains not only a Kt-minor, but one which has few
vertices. Observe that graphs with logarithmic girth (which can be constructed
by deleting short cycles from a random graph G(n, p) with p = c/n, or explicitly
see, e.g., [9]) show that for any constant C, there is a graph G with d(G) ≥ C
and no K3-minor of order o(log n). We also need d(G) ≥ c(t) = (α + o(1))t

√
log t

to guarantee some Kt-minor. So the question boils down to finding the smallest
constant c > c(t) so that any graph G with d(G) ≥ c contains a Kt-minor of
order O(log n). Fiorini et al. [3] proved that if d(G) ≥ 2t−2 + ǫ then G has a
Kt-minor of order C(ǫ) logn. Note that the average degree here is exponentially
larger than the one needed to guarantee a Kt-minor. This motivated Fiorini et
al. [3] to conjecture that in fact any graph G with d(G) ≥ c(t) + ǫ contains a Kt-
minor of order C(ǫ) logn. That is, while c(t)n edges are sufficient (and necessary)
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to guarantee some Kt-minor, adding only o(n) additional edges should force the
appearance of the (asymptotically) smallest Kt-minor one can force even with Cn
edges, for any constant C. Our main result in this paper comes very close to
confirming this conjecture.

Theorem 1. For every ǫ > 0 and integer t ≥ 3 there exist n0 = n0(ǫ, t) such that
every n-vertex graph G with n ≥ n0 and d(G) ≥ c(t) + ǫ contains a Kt-minor of

order O( c(t)t
2

ǫ logn log logn).

Let us finally mention an old conjecture of Erdős, stating that a graph with
n1+ǫ edges contains a non-planar subgraph of size C(ǫ). This conjecture was
confirmed (in a very strong sense) by Kostochka and Pyber [6] who proved that

any graph with 4t
2

n1+ǫ edges contains a topological Kt-minor of size O(t2 log t/ǫ).
So the conjecture of [3] that we study here is in some sense a strengthening of the
conjecture of Erdős for ǫ = 1/ logn.

We believe that an important aspect of this paper is the proof technique we
employ here which relies on the notion of expansion in graphs and might be ap-
plicable in other settings. A good perspective on our approach comes from dense
graphs, i.e. graphs with cn2 edges. Probably the most powerful tool one has
at his disposal when studying dense graphs is Szemerédi’s regularity lemma [11],
which asserts that any dense graph can be approximated by a graph consisting of
a bounded number of quasi-random graphs. Since quasi-random graphs are much
easier to work with, this lemma allows one to reduce a problem on arbitrary graphs
to the same problem on quasi-random graphs.

When it comes to sparse graphs, there is no analogue of the regularity lemma.
In recent years, a parallel paradigm has emerged, the underlying idea of which
can be thought of as stating that any sparse graph is close to being the disjoint
union of expander graphs. While the regularity lemma supplies one notion of
approximation/quasi-randomness for all applications involving dense graphs, it
seems like for sparse graphs different applications call for different notions of ap-
proximation and expansion. We refer the reader to [2, 4, 13] for some examples
where this paradigm was applied.

Just like graph minors, expansion is one of the most well studied topics in
graph theory. There are several known results connecting expansion and existence
of Kt-minors in graphs, see, e.g., [1, 10, 5, 8]. In all these papers the goal was to
maximize the value of t. Our task here is quite different, we want to minimize the
number of vertices in the minor, keeping t fixed.

For the proof of Theorem 1, we will need a very strong notion of expansion.
The price will be that we will ask for a very weak notion of approximation, which
will turn out to be sufficient for proving Theorem 1. In what follows, for a set of
vertices S we use N(S) to denote the neighborhood of S, that is the set of vertices
not in S that are connected to at least one vertex in S.

Definition 1 (δ-Expander). An m-vertex graph H is said to be a δ-expander if

for every integer 0 ≤ d ≤ log logm − 1 and S ⊆ V (H) of order |S| ≤ m/22
d

we

have |N(S)| ≥ δ2d

logm(log logm)2 |S|.
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Observe that if G is an m-vertex δ-expander then sets of vertices of size cm
have vertex expansion about 1/ logm while sets of vertices of size mc have a
nearly constant vertex expansion. The following lemma shows that we can indeed
find a δ-expander in any graph with sufficiently many edges.

Lemma 2 (Key Lemma). If G satisfies d(G) = c, then for every 0 < δ ≤ 1
256 we

can find in G a subgraph H , so that d(H) ≥ (1 − δ)c and H is a δ-expander.

The proof of Theorem 1 proceeds by first invoking Lemma 2 on the input
graph G thus obtaining a graph H satisfying the expansion properties of Definition
1. We then show how one can find a small Kt-minor inside H , a task which is
much easier given the fact that H has strong expansion properties. As we noted
above, one can come up with different notions of expansion when studying sparse
graphs. And indeed, in order to prove Theorem 1 we will actually have to prove
another variant of Lemma 2, which uses a slightly different notion of expansion
than the one defined above. It might very well be possible to prove other variants
of Lemma 2, suitable for tackling other problems. Lemma 2 can be thought of as
a strengthening of Mader’s Theorem. Indeed, Mader’s Theorem states that any
graph G with d(G) ≥ 2k has a k-connected subgraph H satisfying d(H) ≥ k. So
Lemma 2 gives a similar conclusion only it replaces the notion of k-connectivity
with the stronger notion of vertex expansion.
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Problem Session

Vera T. Sós

The following open problems were presented in a special problem session chaired
by Vera T. Sós.

Nathan Linial

First question. A little background: Erdős has defined the girth of a 3-uniform
hypergraph to be the smallest integer v ≥ 4 such that there is a set of v vertices
that contains at least v − 2 hyperedges. He conjectured that there exist Steiner
Triple Systems of arbitrarily large girth, but this question is still wide open despite
considerable research effort in this direction. On the other hand, Brown, Erdős
and Sós long ago observed that for every g there is some c = cg > 0 and arbitrarily
large n-vertex 3-uniform hypergraphs with cn2 hyperedges and girth ≥ g. In their
argument cg tends to zero as g grows.

Question. Is there an absolute constant c > 0 and n-vertex 3-uniform hyper-
graphs with cn2 hyperedges and arbitrarily large girth?

Remark. It may be relevant to recall a well-known theorem of Ruzsa and Sze-
merédi that an n-vertex 3-uniform hypergraph in which no 6 vertices span at least
3 hyperedges, must have only o(n2) hyperedges.

Second question. The problems in my second set are not due to me and at least
one is rather old.

Recall that if A is a real matrix, then its rank is the smallest integer r such
that A can be expressed as the sum of r rank-1 matrices. If all entries of A are
nonnegative, then it can be expressed as the sum of nonnegative rank-1 matrices.
The smallest number of terms in such a sum is called the nonnegative rank of A
denoted prank(A).

Question 1 (presumably due to Cohen and Rothblum, early 90’s). In principle,
the definition of prank(A) may depend on the underlying field. If the entries of A
are rational, is it necessarily the case that the rational prank and the real prank
coincide?

Question 2. Do there exist nonnegative n × n matrices of bounded rank whose
prank is Ω(n)? In particular, are there matrices of rank 3 and prank n? It is
known that rank 3 and prank= Ω(

√
n) is possible.

These concepts are of substantial current interest in computational complexity
and they also have interesting geometric aspects.
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Noga Alon

Independence numbers of (sparse) powers of Kneser Graphs

Let Kt
n be the graph whose set of vertices is

V (Kt
n) = {(A1, A2, . . . , At) : Ai ⊂ {1, 2, . . . , n}, |Ai| = n/3 for all i},

where the vertices (A1, A2, . . . , At) and (B1, B2, . . . , Bt) are adjacent iff there is
an index i, 1 ≤ i ≤ t, so that Aj = Bj for all j 6= i and Ai ∩Bi = ∅.

Let α(Kt
n) denote the maximum size of an independent set of Kt

n.

Conjecture. For any ǫ > 0 there are n and t so that

α(Kt
n)

|V (Kt
n)| ≤ ǫ.

Remark. The t-th (sparse) power of an undirected graph G = (V,E), denoted by
Gt, is the graph whose vertex set is V t in which distinct vertices (x1 . . . xt) and
(x′

1 . . . x
′
t) are connected iff there exists a single index i such that xi and x′

i are
connected in G and xj = x′

j for all j 6= i. The study of the asymptotic behavior

of the independence number of Gt, for a fixed graph G, has been considered in
several papers; see [1, 2] and their references. The authors of [2] proved that for

every fixed graph G, the limit limt7→∞
α(Gt)
|V |t exists, and is at least 1/χ(G) and

at most the reciprocal of the fractional chromatic number of G. Moreover, for
every Cayley graph of an Abelian group, this limit is precisely the reciprocal of
the fractional chromatic number of G. The conjecture above asserts that when G
is the Kneser graph K1

n, this limit is smaller than ǫ provided n is sufficiently large
(the fractional chromatic number of K1

n is 3, its chromatic number is n/3+2). The
motivation for the conjecture is the investigation of a certain hat guessing game
considered by various researchers including Feige, Levine, Peres, Tardos, Winkler,
Zwick and myself.
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Jacob Fox

Problem 1. Is there a c > 0 such that every triangle-free graph on n > 2 vertices
has disjoint vertex subsets of order cnc and cn with no edges between them?

Problem 2. Call a vertex subset A of a graph ǫ-regular if for all B ⊂ A with
|B| ≥ ǫ|A|, the edge density of B differs from the edge density of A by at most
ǫ. David Conlon and I proved that for each ǫ > 0 there is δ = δ(ǫ) > 0 such that
every graph on n vertices has an ǫ-regular subset with at least δn vertices. We
showed that δ−1 is at least exponential and at most double-exponential in a power
of ǫ−1. Close the gap.
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Ehud Friedgut

A subset X of Sn is called a t-coset if it is a coset of a stabilizer of t points. For
example, the set of all permutations that send 1 to itself and 3 to 7 is a 2-coset.
Is it true that any partition of Sn into t-cosets is a refinement of a partition into
(t− 1)-cosets?

Rüdiger Reischuk

Worst inputs for the smoothed complexity of caching

The smoothed complexity of the competitive ratio for the caching problem
considers neighbourhoods of an input sequence X generated by small perturbations
of X and estimates the ratio between the faults of a given online algorithm and
an optimal offline algorithm. For the worst case complexity, input sequences can
easily be constructed that yield the maximum competitive ratio k for cache size k.
It is an open problem to characterize the sequences that give the worst performance
with respect to the smoothed complexity which has shown to be of the order log k.
The same problem is open for the maximal length of an increasing subsequence
(nonconsecutive) of a sequence of n numbers and the height of a binary search
tree generated by such a sequence - in both cases the value is of order

√
n.

Jaroslav Nešetřil

Pentagon Problem

Does there exist ℓ with the following property: For any cubic graph G with
girth ≥ ℓ, there exists a homomorphism G → C5.

Remark 1. This is not true with C7 instead of C5 (Hatami).

Remark 2. There exists “target graphs” with odd girth 5.

David Conlon

Suppose that a graph on n vertices contains cnt copies of Kt, the complete graph
on t vertices. A theorem due to Nikiforov [2] then says that there is a blow-up
of Kt with each of the t sets in the blow-up having size c′ logn, where c′ depends
only on c and t. This result easily implies a precise version of the Erdős-Stone
theorem on the appearance of complete t-partite subgraphs in graphs of density
greater than 1 − 1

t−1 .

A natural question to ask, discussed at length by Rödl and Schacht [3], is
whether this result can be extended to hypergraphs. The simplest open case is to
decide whether every 3-uniform hypergraph on n vertices which contains cn4 copies

of K
(3)
4 also contains a blow-up of K

(3)
4 with each of the 4 sets of size c′

√
logn,

where c′ depends only on c. I would like to reiterate this question because I
believe it to be of fundamental importance. Indeed, this result and the hoped-
for generalisations would easily imply an optimal extension of the Erdős-Stone
theorem to hypergraphs as well as sharp results about almost monochromatic
subsets of edge-coloured hypergraphs [1].



Combinatorics and Probability 1119

References

[1] D. Conlon, J. Fox and B. Sudakov, Large almost monochromatic subsets in hypergraphs,
Israel J. Math. 181 (2011), 423–432.

[2] V. Nikiforov, Graphs with many r-cliques have large complete r-partite subgraphs, Bull.
London Math. Soc. 40 (2008), 23–25.
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János Pach

Homometric sets in graphs

Given a connected graph G and two vertices x, y ∈ V (G), let dG(x, y) denote
the distance between x and y in G. Two disjoint subsets A,B ⊂ V (G) are called
homometric if the multiset of distances between the elements of A is the same as
the multiset of distances between the elements of B, that is, if

{dG(x, y) : x, y ∈ A} = {dG(x, y) : x, y ∈ B},
counted with multiplicities.

Let h(n) denote the largest integer h such that every connected graph of n
vertices has two disjoint subsets of vertices that are homometric. Is it true that
h(n) = o(n)?
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Gabor Tardos

(with Mert Sağlam)

If S0 ⊆ S are finite sets, 1 ≤ r ≤ n are integers, and H ⊆ Sn with |H | = |S0|n,
then

∑

x∈Sn

log(|Br(x) ∩H | + 1) ≥
∑

x∈Sn

log(|Br(x) ∩ Sn
0 | + 1),

where Br(x) is the Hamming ball of radius r:

Br(x) = {y ∈ Sn | |{i | xi 6= yi}| ≤ r}.

Ravi Kannan

Point process in unit square in Rd

Let v1, . . . , vk be arbitrary points. At each time t > k, choose one of v1, . . . , vt−1

uniformly at random, say vj , and then pick a point, according to N (vj , r
2
t ), where

rt = 1/tν . This point is labeled vt.

Conjecture 1 (vague). Phase transition at ν = 1/d.
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Jozsef Solymosi

The following conjecture is related to some questions about expanders.
Let f(x) be a polynomial over the integers having degree at least two. Show

that for every such f there is a bound Bf such that the range, f(Z), contains no
arithmetic progression of length Bf .

This conjecture would follow from various well-known conjectures, most no-
tably from the so-called Bombieri-Lang conjecture which states that the number
of rational points on an algebraic curve is uniformly bounded by the genus of the
curve (if the genus is at least two). If that was true then there would be a bound
on the size of the longest AP in the terms of the degree of the polynomial.

Removal lemmas for Kneser graphs and various product graphs

Ehud Friedgut

(joint work with Oded Regev)

The well known triangle removal lemma of Rusza and Szemeredi [4] states that
any graph on n vertices that has less than δn3 triangles, can be made triangle-
free by removing less than ǫn2 edges. Fox [3] greatly improved the bound of the
dependence of ǫ on δ, from δ > 1/Tower(poly(ǫ)) to δ > 1/Tower(log(1/ǫ)).

We prove analogous results for ”one level lower”, i.e. for certain graphs, where
if you have a set of vertices that span few edges they can be turned into an
independent set by removing few vertices. One such graph is the Kneser graph,
however we will state our main result in the setting of a different graph, G = K⊗n

3 .
The definition of the graph is as follows. V (G) = {0, 1, 2}n. E(G) = {{u,w} :
ui 6= wi ∀i}. Note that |V | = 3n, |E| = 6n/2.

Theorem 1. For every ǫ > 0 there exists δ > 0 such that if a set of vertices
W ⊂ V (K⊗n

3 ) spans less than δ6n edges, then there exists an independent set W
such that |V \W | ≤ ǫ3n.

Furthermore δ−1 < Tower(log(1/ǫ)).

Despite the tower-like bound on the dependency of delta on epsilon the only
examples we have are such that the dependence is polynomial.

Our results extend to a wide variety of product graphs (e.g. when the base
graph is regular, or regularizable.) This can also be used to transfer the result to
the Kneser graph setting.

For k < n/2 define the Kneser graph K(n, k) to be the graph whose vertices are
the k-subsets of [n], with an edge between two vertices if the corresponding sets
are disjoint. When k = o(n) the independent sets are described precisely (and the
sparse sets implicitly) in [1]. However when k = Θ(n) the following is new.

Theorem 2. For every ǫ > 0 and α < 2 there exists δ > 0 such that if a set of

vertices W ⊂ V (K(n, αn)) spans less than δ
(

n
αn

)(

(1−α)n
αn

)

edges, then there exists

an independent set W such that |V \W | ≤ ǫ
(

n
αn

)

.
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The motivation for proving these theorems comes from the fact that they enable
us to improve the rsults of [2] and [1], and completely characterize independent
sets in both settings as sets which may be approximated by “juntas”, sets which
are determined by a fixed number of coordinates.
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Chromatic number, clique subdivisions, and the conjectures of Hajós
and Erdős-Fajtlowicz

Choongbum Lee

(joint work with Jacob Fox, Benny Sudakov)

A subdivision of a graph H is any graph formed by replacing edges of H by
internally vertex disjoint paths. This is an important notion in graph theory,
e.g., the celebrated theorem of Kuratowski uses it to characterize planar graphs.
For a graph G, we let σ(G) denote the largest integer p such that G contains a
subdivision of a complete graph of order p. Clique subdivisions in graphs have been
extensively studied and there are many results which give sufficient conditions for
a graph G to have large σ(G). For example, Bollobás and Thomason [5], and
Komlós and Szemerédi [10] independently proved that every graph of average
degree at least d has σ(G) ≥ cd1/2 for some absolute constant c. Motivated by a
conjecture of Erdős, in [2] the authors further showed that when d = Ω(n) in the
above subdivision one can choose all paths to have length two. Similar result for
subdivisions of general graphs with O(n) edges (a clique of order O(

√
n) clearly

satisfies this) was obtained in [9].
For a given graph G, let χ(G) denote its chromatic number. A famous conjecture

made by Hajós in 1961 states that σ(G) ≥ χ(G). Dirac [7] proved that this
conjecture is true for all χ(G) ≤ 4, but in 1979, Catlin [6] disproved the conjecture
for all χ(G) ≥ 7. Subsequently, several researchers further studied this problem.
On the negative side, by considering random graphs, Erdős and Fajtlowicz [8] in
1981 showed that the conjecture actually fails for almost all graphs. On the positive
side, recently Kühn and Osthus [11] proved that all graphs of girth at least 186
satisfy Hajós’ conjecture. Thomassen [12] studied the relation of Hajós’ conjecture
to several other problems of graph theory such as Ramsey theory, maximum cut
problem, etc., and discovered many interesting connections.
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In this talk, we revisit Hajós’ conjecture and study to what extent the chromatic
number of a graph can exceed the order of its largest clique subdivision. Let H(n)
denote the maximum of χ(G)/σ(G) over all n-vertex graphs G. The example of
graphs given by Erdős and Fajtlowicz which disprove Hajós’ conjecture in fact
has σ(G) = Θ(n1/2) and χ(G) = Θ(n/ logn). Thus it implies that H(n) =
Ω(n1/2/ logn). In [8], Erdős and Fajtlowicz conjectured that this bound is tight
up to a constant factor so that H(n) = O(n1/2/ logn). Our first theorem verifies
this conjecture.

Theorem. There exists an absolute constant C such that H(n) ≤ Cn1/2/ logn
for n ≥ 2.

The proof shows that we may take C = 10120, although we do not try to optimize
this constant. For the random graph G = G(n, p) with 0 < p < 1 fixed, Bollobás
and Catlin [4] determined σ(G) asymptotically almost surely and later Bollobás
[3] determined χ(G) asymptotically almost surely. These results imply, by picking
the optimal choice p = 1 − e−2, the lower bound H(n) ≥ ( 1

e
√
2
− o(1))n1/2/ logn.

For a graph G, let α(G) denote its independence number. The main theorem
actually follows from the study of the relation between σ(G) and α(G), which
might be of independent interest. Let f(n, α) be the minimum of σ(G) over all
graphs G on n vertices with α(G) ≤ α.

Theorem. There exist absolute positive constants c1 and c2 such that the follow-
ing holds.

(1) If α < 2 logn, then f(n, α) ≥ c1n
α

2α−1 , and

(2) if α = a logn for some a ≥ 2, then f(n, α) ≥ c2
√

n
a log a .

Note that for α = 2 logn, both bounds from the first and second part gives
f(n, α) ≥ Ω(

√
n). Moreover, both parts of this theorem establish the correct

order of magnitude of f(n, α) for some range of α. For α = 2, it can be shown
that in the triangle-free graph constructed by Alon [1], every set of size at least
37n2/3 contains at least n edges. This implies that the complement of this graph
has independence number 2 and the largest clique subdivision of size t < 37n2/3.
Indeed, if there is a clique subdivision of order t ≥ 37n2/3, then between each of
the at least n pairs of nonadjacent vertices among the t vertices of the subdivided
clique, there is at least one additional vertex along the path between them in the
subdivision. However, this would require at least t + n vertices in the n-vertex
graph, a contradiction. On the other hand, for α = Θ(logn), by considering
G(n, p) with constant 0 < p < 1, one can see that the second part of our theorem
is tight up to the constant factor. Even for α = o(logn), by considering the
complement of G(n, p) for suitable p ≪ 1, one can easily verify that there exists

an absolute constant c′ such that f(n, α) ≤ O(n
1
2+

c′

α ).
Our theorem can also be viewed as a Ramsey-type theorem which establishes an

upper bound on the Ramsey number of a clique subdivision versus an independent
set.
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Efficient algorithms for three-dimensional axial and planar random
assignment problems

Gregory B. Sorkin

(joint work with Alan Frieze)

An instance of the (two-dimensional) assignment problem is given by an n×n cost
array Mi,j , and the problem is to select exactly one element from each row and
from each column so as to minimize the sum of all selected elements or, formulated
as an integer linear program (ILP),

minimize
∑

i,j

Mi,jXi,j

subject to (∀i)
∑

j

Xi,j = 1, (∀j)
∑

i

Xi,j = 1, Xi,j ∈ {0, 1}.

The problem may also be thought of as finding the cheapest perfect matching in
the complete bipartite graph with weights given by M , or the cost of assigning
jobs i to machines j where each machine can accommodate only one job. The
linear relaxation with Xi,j ∈ [0, 1] of the ILP above has integer extreme points, so
the problem may be solved in polynomial time.

The random assignment problem, in its most popular form, is the case when
the entries of the cost matrix M are i.i.d. Exp(1) random variables (independent,
identically distributed exponential random variables with parameter 1). Since the
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problem can be solved in polynomial time, the focus for the random case is on the
cost’s expectation as a function of n,

f(n) = E
[

min
Xi,j

∑

i,j

Mi,jXi,j

]

with Xi,j subject to the constraints above. This problem received a great deal of
study over several decades. It was considered from an operations research perspec-
tive by Donath in the 1960s, an asymptotic conjecture f(n) → π2/6 = ζ(2) was
formulated by statistical physicists Mézard and Parisi in the 1980s based on the
mathematically sophisticated but non-rigorous “replica method”, an exact conjec-
ture f(n) =

∑n
i=1 1/i2 was hazarded by Parisi in the late 1990s, a generalization to

partial matchings and non-square matrices was made by Coppersmith and Sorkin,
the Mézard–Parisi conjecture was proved by Aldous in a pair of papers in 1992 and
2001, and the Coppersmith–Sorkin conjecture was proved simultaneously in 2004
by two papers using two very different methods, by Nair, Prabhakar and Sharma,
and by Linusson and Wästlund. A further generalisation of these conjectures was
made by Buck, Chan and Robbins in 2002, and proved by Wästlund in 2005. The
study of other aspects of the random assignment problem and related problems is
ongoing, for example by Wästlund. See [3] for all citations.

In higher dimensions there are two natural generalizations of the assignment
problem. We illustrate in dimension D = 3; the generalizations to higher dimen-
sions are clear. Taking as input an n×n×n matrix (or “tensor” or “array”) M , the
Axial assignment problem is minimizing

∑

i,j,k Mi,j,kXi,j,k where Xi,j,k ∈ {0, 1}
and there is one selected value per “plane” of the array, of which there are three
types, 1-, 2-, and 3-planes, according to which coordinate is fixed:

(∀i)
∑

j,k

Xi,j,k = 1, (∀j)
∑

i,k

Xi,j,k = 1, (∀k)
∑

i,j

Xi,j,k = 1.(1)

This is NP-complete; in three dimensions it was one of the original problems listed
by Karp [6].

The Planar three-dimensional assignment problem is similar but with one se-
lected value per “line” of the array, with three types of lines:

(∀i, j)
∑

k

Xi,j,k = 1, (∀j, k)
∑

i

Xi,j,k = 1, (∀i, k)
∑

j

Xi,j,k = 1.(2)

Again this is NP-complete, as established by Frieze [2].
The multi-dimensional random assignment problem we consider here is the case

when the entries of the cost matrix are i.i.d. Exp(1) random variables. In this
random setting, there are two natural questions. Are there polynomial-time al-
gorithms that find optimal or near-optimal solutions w.h.p.? And what is the
expected cost of a minimum assignment? We do not even know how the cost
scales with n, although statistical physicists Martin, Mézard and Rivoire [8] con-
jecture that the Axial problem has an asymptotic expected cost of c/n; see also
[7]. We now sketch our results and open problems.
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1. Axial assignment

A lower bound of n2−D comes from considering just the first of the three sets
of constraints in (1). An upper bound of n2−D logn comes from a recent non-
constructive result on hypergraph factors by Johansson, Kahn and Vu [5], in a
multipartite extension verified by us and (for other purposes) by Gerke and Mc-
Dowell [4]. Our main result for axial assignment is an algorithm BDAPTA(d) based
on a “bounded depth alternating path tree” of depth d, a generalization of a short
alternating path as used to augment a matching. For 3-dimensional assignment it
has the following properties.

Theorem 1. Suppose that 1 ≤ d ≤ ǫ log2 logn where where 0 < ǫ < 1/2 is a
constant. For a random 3-dimensional axial assignment instance, w.h.p. Algorithm
BDAPTA(d) runs in time O(n3) and outputs a solution of cost O(24dn−1+ηd logn)
w.h.p., where ηd = 1

2d+1−1
.

An appropriate choice of d yields w.h.p. a solution of expected cost O(n−1−o(1)),
thus an no(1) approximation to best possible. Not only is this the first nearly tight
upper bound obtained algorithmically, it is the only good bound we are aware of
except for the one following from [5].

The algorithm generalizes to dimensions D ≥ 4, but produces a solution whose
expected cost is of order Ω(n−1), just as in the 3-dimensional case, and far from
the upper bound of O(n2−D logn).

2. Planar assignment

For Planar 3-dimensional assignment, a lower bound of Ω(n) comes from con-
sidering just the first of the three sets of constraints in (2). Our second main result
is an algorithm with the following properties.

Theorem 2. There is a polynomial-time algorithm that, given a random 3-
dimensional planar assignment instance, w.h.p. finds a solution of cost O(n log n).

Here, the idea is that a 3-dimensional Planar assignment consists of n 2-
dimensional assignments, with constraints between them. Our algorithm solves
for the 2-dimensional assignments sequentially, respecting the constraints on each
from the earlier ones. These 2-dimensional assignment instances have a somewhat
complex structure (they are really instances of matching rather than assignment),
but a general result of Dyer, Frieze, and McDiarmid [1] is insensitive to the details
and yields the upper bound of O(n log n).

As for the Axial case, our approach to the Planar problem falters for dimensions
D ≥ 4. The natural generalization is to a greedy algorithm that sequentially solves
n (D − 1)-dimensional instances, but even for D = 4 such an algorithm can fail,
reaching an instance that has no solution, regardless of cost.
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3. Open problems

We are left with open questions including these: For D ≥ 3, what are the
true growth rates of the expected costs of optimal D-dimensional axial and pla-
nar assignments? For D ≥ 3, are there asymptotically optimal, polynomial-time
algorithms for solving these problems? And for D > 3, are there polynomial-time
algorithms yielding solutions within logarithmic or no(1) factors (as we have given
for D = 3)?
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Tight Lower Bounds for Greedy Routing in Higher-Dimensional
Small-World Grids

Martin Dietzfelbinger

(joint work with Philipp Woelfel)

We consider Kleinberg’s celebrated small world graph model [2, 3], in which a D-
dimensional grid {0, . . . , n−1}D is augmented with a constant number of additional
unidirectional edges leaving each node. These long range edges are determined
at random according to a probability distribution (the augmenting distribution),
which is the same for each node. Kleinberg suggested using the inverse D-th power
distribution, in which node v is the long range contact of node u with a probability
proportional to ‖u − v‖−D

2 . He showed that such an augmenting distribution
allows to route a message efficiently in the resulting random graph: The greedy
algorithm, where in each intermediate node the message travels over a link that
brings the message closest to the target w.r.t. the Manhattan distance, finds a
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path of expected length O
(

(log n)2
)

between any two nodes. In this paper we
prove that greedy routing does not perform asymptotically better for any uniform
and isotropic augmenting distribution, i. e., the probability that node u has a
particular long range contact v is independent of the labels of u and v and only a
function of ‖u− v‖2.

The corresponding problem for dimension 1 was solved in [1]. The method does
not seem to generalize to higher dimensions.

In order to obtain the result, we introduce a novel proof technique: We define
a so-called budget game, in which a token travels over a game board, from one end
to the other, while the player manages a “probability budget”. In each round, the
player “bets” part of her remaining probability budget on step sizes. A step size is
chosen at random according to a probability distribution of the player’s bet. The
token then makes progress as determined by the chosen step size, while some of
the player’s bet is removed from her probability budget. We prove a tight lower
bound for such a budget game, and then obtain a lower bound for greedy routing
in the D-dimensional grid by a reduction.
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Random Ramsey

Angelika Steger

(joint work with Rajko Nenadov)

For graphs G and F and a constant r ∈ N, we denote with

G → (F )er

the property that every edge-coloring of G with r colors (we call this r-coloring)
contains a copy of F with all edges having the same color. Ramsey’s theorem
then implies that for all graphs F and r we have Kn → (F )er , for n large enough.
At first sight it is not immediately clear whether this follows from the density of
Kn or its rich structure. As it turns out, studying Ramsey properties of random
graphs shows that the later is the case, as random graphs give examples of sparse
graphs with the desired Ramsey property.

The study of Random Ramsey Theory was initiated by  Luczak, Ruciński, and
Voigt [2] who studied the Ramsey property of random graphs in the vertex-coloring
case and also established the threshold for the property G(n, p) → (K3)e2. There-
upon, in a series of papers Rödl and Ruciński [3, 4, 5] determined the threshold of
G(n, p) → (F )er , in full generality. Formally, their result reads as follows.
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For every graph G we denote by V (G) and E(G) its vertex and edge sets
and by vG and eG their sizes. For every graph G on at least 3 vertices we set
d2(G) = (eG − 1)/(vG − 2). By m2(G) we denote for every graph G the so-called
2-density, defined as

m2(G) = max
J⊆G,vJ≥3

d2(J).

If m2(G) = d2(G) then we say that a graph G is 2-balanced, and if in addition
m2(G) > d2(J) for every subset J ⊂ G with vJ ≥ 3, we say that G is strictly
2-balanced.

Theorem (Rödl, Ruciński [3, 4, 5]). Let r ≥ 2 and F be a fixed graph that is not
a forest of stars or, in the case r = 2, paths of length 3. Then there exist positive
constants c = c(F, r), and C = C(F, r) such that

lim
n→∞

Pr[G(n, p) → (F )er] =

{

0 if p ≤ cn−1/m2(F )

1 if p ≥ Cn−1/m2(F ).

For the exceptional case of a star with k rays it is easily seen that the threshold
is determined by the appearance of a star with r(k − 1) + 1 rays. For path P3

of length three the 0-statement only holds for p ≪ n−1/m2(P3) = n−1 since, for
example, a C5 with a pending edge at every vertex has density one and cannot be
edge-colored with 2 colors without a monochromatic P3.

Note that p = n−1/m2(F ) is the density where we expect that every edge is
contained in roughly a constant number of copies of F . This observation can be
used to provide an intuitive understanding of the bounds of in the theorem. If c is
very small, then the number of copies of F is a.a.s. (asymptotically almost surely,
i.e., with probability 1 − o(1) if n tends to infinity) small enough that they are so
scattered that a coloring without a monochromatic copy of F can be found. If,
on the other hand, C is big then these copies a.a.s. overlap so heavily that every
coloring has to induce at least one monochromatic copy of F .

In our talk, we gave a new short proof of the above theorem by Rödl and
Ruciński. The proof of the 1-statement is based on the recent beautiful hypergraph
container theorems by Saxton, Thomason [6] and Balogh, Morris, Samotij [1]. Our
proof of the 0-statement is elementary.
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Steganography as a Game

Rüdiger Reischuk

(joint work with M. Liskiewicz, U. Wölfeld)

The goal of steganography is to hide additional information in arbitrary doc-
uments such that even the existence of such information cannot be detected [5].
For this purpose, Alice, the sender or stegoencoder, modifies given covertexts and
sends these as stegotexts to Bob, the receiver. The embedding should be reliable,
meaning that Bob can reconstruct the additional information M with high proba-
bility, and secure which in this setting means undetectable: A third person called
Warden has only a small chance to distinguish stegotexts from covertexts. This
can be modeled as a game between Alice and the adversary Warden.

Security in the area of cryptography is well understood: An adversary with
bounded resources cannot decipher a secret message. If a cryptosystem is not
secure then there exists such an adversary with a significant advantage over ran-
dom guessing. A precise definition for security becomes much more challenging
for steganography. The distributions of covertexts, also called channels play an
important role. Security of a stegosystem is intrinsically related to knowledge
about the channel. Therefore, it is important to set up the game between the
stegoencoder and the adversary appropriately, and in particular to determine the
level of influence that both players have in choosing the covertext channel.

We show that a stegosystem that is not secure according to the definition used
so far might still not be detectable by an adversary. So far, a stegosystem is defined
as insecure if the strongest possible adversary can detect the use of steganography.
It suffices that this is true for a single channel chosen among all possible channels.
A stegosystems secure in this strong sense has been proposed in [2] and was coined
rejection sampling. However, a “useful” stegosystem should in addition be efficient
(i.e., the time, space and oracle query complexities should be polynomial in the
length of the hidden message) and achieve a good transmission rate for the hidden
messages (i.e., the ratio between message bits per covertext and covertext entropy
should not be too small).

However, rejection sampling embeds only 1 bit of hidden information in a docu-
ment regardless of its size. Dedić et al. [1] have analysed generalizations of this idea
where b > 1 bits are embedded in a covertext in order to achieve a better trans-
mission rate. For this and a general class of such stegosystems they have shown
that the query complexity has to grow exponentially in b. Thus, such stegosystem
either have a very bad rate, or are very inefficient. In fact, it has been shown
that in the common black-box setting this exponential sampling complexity holds
for all stegosystems that fulfill this strong security condition. In this model the
stegoencoder has no knowledge whatsoever about the covertext channel (except
its min-entropy) and can only access it via a sampling oracle while the adversary
is supposed to know everything about the channel. In particular, this leads to
the strong conclusion that all schemes used in practice are insecure if security is
defined based on this extreme setting.
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In [3] we have discussed this problem and provided a new model to resolve the
highly unbalanced knowledge about the covertext channel by the adversary and
the encoder. In the proposed grey-box model of steganography the encoder starts
with some partial knowledge – at least about the type of covertext channel.

To get a finer differentiation, we now introduce another person, Chang, who se-
lects the channel, and consider a 3-person game between Alice, Chang and Warden.
Different coalitions describe different situations of knowledge about the channel
and give rise to different security measures for steganography. It is argued that
the most fair and realistic situation is obtained when Chang plays randomly.

We show that one of these measures obtained by this game theoretic setting
called undetectable on average provides much more appropriate results for real
systems. For this purpose, two families of channels are constructed based on
random sets and pseudorandom permutations. They are instances of what is
called flat h-channels in [1]. In practice, one family is easy to detect while for the
other it should be impossible if suitable pseudorandom permutations are used. It
is shown that among all measures considered so far, only undetectable on average
is able to classify these families correctly [4].

Summarizing, it is shown that the detectability of a stegosystem can be based
on the difficulty to learn the covertext distribution. There is a tight analytical
relationship between these two tasks. We leave as an open problem whether the
pseudorandom functions used in our constructions can be replaced by crypto-
graphic functions.
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Sperner’s Theorem and a problem of Erdős-Katona-Kleitman

Benny Sudakov

(joint work with Shagnik Das, Wenying Gan)

Extremal set theory is one of the most rapidly developing areas in combina-
torics, having applications to other branches of mathematics and computer science
including discrete geometry, functional analysis, number theory and complexity.
The typical extremal problem has the following form: how large can a structure be
without containing some forbidden configuration? A classical example, considered
by many to be the starting point of extremal set theory, is a theorem of Sperner
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[8]. An antichain is a family of subsets of [n] that does not contain sets F1 ⊂ F2.
Sperner’s Theorem states that the largest antichain has

(

n
⌊n/2⌋

)

sets, a bound that

is easily seen to be tight by considering the family of sets of size ⌊n
2 ⌋. This cel-

ebrated result enjoys numerous applications and has many extensions, many of
which are discussed in Engel’s book [1]. One particular extension, due to Erdős
[2], shows that the size of the largest set family without a k-chain, that is, k-
sets F1 ⊂ F2 ⊂ . . . ⊂ Fk, is the sum of the k − 1 largest binomial coefficients,

Mk−1 =
∑⌈n+k−2

2 ⌉
i=⌈n−k+2

2 ⌉
(

n
i

)

. When k = 2, we recover Sperner’s Theorem.

We study an Erdős-Rademacher-type extension of Erdős’ theorem, a name we
now explain. Arguably the most well-known result in extremal combinatorics is a
theorem of Mantel [7] from 1907, which states that an n-vertex triangle-free graph

can have at most ⌊n2

4 ⌋ edges. In an unpublished result, Rademacher strengthened

this theorem by showing that any graph with ⌊n2

4 ⌋+ 1 edges must contain at least
⌊n
2 ⌋ triangles. Erdős [3] then extended this to graphs with a linear number of extra

edges, and in [4] studied the problem for larger cliques. More generally, for any
extremal problem, the corresponding Erdős-Rademacher problem asks how many
copies of the forbidden configuration must appear in a structure larger than the
extremal bound.

In the context of Sperner’s Theorem, this problem was first considered by Erdős
and Katona, who conjectured that a family with

(

n
⌊n/2⌋

)

+ t sets must contain

at least t
⌈

n+1
2

⌉

2-chains. Kleitman [6] confirmed the conjecture, and, in a far-
reaching generalization, showed the minimum number of 2-chains in a family of
any fixed size is obtained by choosing sets of size as close to n

2 as possible. He then
conjectured (see [5, 6]) that the same families minimize the number of k-chains, a
problem that has remained open for nearly fifty years.

Conjecture 1. The number of k-chains in a family is minimized by choosing sets
of sizes as close to n

2 as possible.

We obtain Erdős-Rademacher-type extensions of the theorems of Sperner and
Erdős. We first rediscovered a result of Kleitman on the minimum number of
2-chains in a family of any number of sets. However, through slightly more careful
calculations, and by introducing an additional argument, we are able to charac-
terize all extremal families, as given below.

Theorem 2. Let F be a family of subsets of [n], with |F| = s ≥
(

n
⌊n/2⌋

)

. Let

r ∈ 1
2N be the unique half-integer such that

∑

n
2 +r−1

i=n
2 −r+1

(

n
i

)

< s ≤ ∑

n
2 +r

i=n
2 −r

(

n
i

)

.

Then F minimizes the number of 2-chains if and only if the following conditions
are satisfied:

(1) For every F ∈ F , n
2 − r ≤ |F | ≤ n

2 + r.
(2) For any A ⊂ [n] with n

2 − r + 1 ≤ |A| ≤ n
2 + r − 1, we have A ∈ F .

(3) If s ≤ ∑

n
2 +r−1

i=n
2 −r

(

n
i

)

, then {F ∈ F : |F | = n
2 ± r} forms an antichain.

(4) If s ≥ ∑

n
2 +r−1

i=n
2 −r

(

n
i

)

, then {F /∈ F : |F | = n
2 ± r} forms an antichain.
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Our main results verify Conjecture 1 for families of certain sizes. To begin with,
recall that Erdős showed the largest family without k-chains consists of the k − 1
middle levels of the hypercube, whose size we denote by Mk−1. If we were to
add one set to this family, the best we could do would be to add it to the kth

level, in which case we would create
(⌊(n+k)/2⌋

k−1

)

(k− 1)! k-chains. Indeed, we show
that every additional set must contribute at least this many new k-chains, and
the above construction shows this is tight when our extremal family is contained
within the k middle levels.

Theorem 3. If F is a set family over [n] of size s = Mk−1 + t, then F contains

at least t
(⌊(n+k)/2⌋

k−1

)

(k − 1)! k-chains.

We are then able to extend our argument to work for larger set families, obtain-
ing a result that is tight when the extremal family is contained within the k + 1
middle levels.

Theorem 4. Provided n ≥ 15 and k ≤ n− 6, if F is a set family over [n] of size
s = Mk + t, then the number of k-chains in F is at least
(

n

⌈(n− k)/2⌉

)(⌊(n + k)/2⌋
k − 1

)

(k − 1)!+

+ t

((⌈(n + k)/2⌉
k − 1

)

+

(⌈(n + k)/2⌉
k

)(

k

2

))

(k − 1)!.

In both cases, we actually obtain stronger results, providing stability versions
of the above theorems, showing that if a family has close to the minimum number
of k-chains, it must be close in structure to the extremal example. These stability
results are of interest even in the case k = 2, as one does not obtain any stability
from the Kleitman proof for 2-chains. We then use the stability results to show
that when the above bounds are tight, the extremal families are exactly as in
Theorem 2.
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Large deviations in random graphs

Yufei Zhao

(joint work with Eyal Lubetzky)

The goal of this talk is to answer the following question of Chatterjee and Varad-
han [3].

Question 1. Fix 0 < p < r < 1. Let Gn be an instance of the Erdős-Rényi random
graph G(n, p) conditioned on the rare event of having at least

(

n
3

)

r3 triangles. For
large n, is Gn close in cut distance to a typical G(n, r)?

By cut distance here we mean the quantity

δ�(Gn, r) = max
A,B⊆V (Gn)

1

n2
|e(A,B) − r|A||B||.

The problem of large deviations in random graphs has a long history. A repre-
sentative example that drew much interest is the upper tail problem of estimating
the probability that G(n, p) has at least (1+η)

(

n
3

)

p3 triangles, where η is fixed and
p is allowed to vary with n. Janson, Oleszkiewicz, and Ruciński [5] and Kim and
Vu [6] developed powerful techniques for proving concentration bounds for this
problem. In recent breakthroughs independently by Chatterjee [1] and DeMarco
and Kahn [4] they showed that the upper tail probability for triangle counts is

e−Θη(n
2p2 log(1/p)) when p ≥ log n/n, thereby determining the correct order in the

exponent.
We consider the case of constant p, with the goal of determining the constant

in the exponent of the upper tail probability. More precisely we are interested in
the quantity

Rate := − lim
n→∞

1
(

n
2

) logP(G(n, p) has at least
(

n
3

)

r3 triangles).

Observe that if the number of edges in G(n, p) deviates to
(

n
2

)

r, with the edges
uniformly distributed, then one has the desired triangle count deviation. This
gives an upper bound on the rate

Rate ≤ hp(r) := r log
r

p
+ (1 − r) log

1 − r

1 − p

= − lim
N→∞

1

N
logP(Binom(N, p) ≥ Nr).

However, there could be other “reasons” for generating too many triangles. One
has the following dichotomy, with names borrowed from statistical physics, for the
question: what is the most likely reason for having too many triangles?

Replica symmetric phase: Too many edges, uniformly distributed.
In this case Rate = hp(r) and the answer to Question 1 is yes.

Symmetry breaking phase: Some other configuration (e.g., a large clique)
In this case Rate < hp(r) and the answer to Question 1 is no.
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1.0Figure 1. Phase diagram for the upper tail of triangle counts.
Shaded region is the replica symmetric phase; the region to its left
is the symmetry breaking phase. Previous results [2, 3] established
replica symmetry to the right of the dashed curve.

The answer turns out to depend on (p, r). Chatterjee and Dey [2] showed,
using Stein’s method, that the region to the right of the dashed curve in Figure 1
belongs to the replica symmetric phase. Chatterjee and Varadhan [3] developed
a new framework using graph limits and rediscovered the same replica symmetric
region as [2], and furthermore they showed that for each r, one must enter the
symmetry breaking phase for sufficiently small p.

Applying the framework of Chatterjee and Varadhan, which reduced the de-
termination of the large deviation rate to an extremal problem for graphons, we
identified the complete replica symmetric phase, plotted as the shaded region in
Figure 1.

Theorem 2. [7] The replica symmetric phase for upper tail large deviations in
triangle counts is given by {(p, r) : (1 + (r−1 − 1)1/(1−2r))−1 ≤ p < r}.

Furthermore, we identified the replica symmetric phase when the triangle is
replaced by any d-regular graph. It turns out that the phase diagram depends
only on d. The boundary curves are shown in Figure 2. We also considered
the upper tail problem of having largest eigenvalue of G(n, p) being at least nr
(it’s typically concentrated near np). The resulting phase diagram coincides with
triangle count large deviations.

In the talk I explained the Chatterjee-Varadhan framework, our solution to the
problem, as well as many open problems that remain.
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Figure 2. The phase boundary for counts of d-regular fixed sub-
graphs in G(n, p).
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The triangle-free process and R(3, k)

Robert Morris

(joint work with Gonzalo Fiz Pontiveros and Simon Griffiths)

One of the central problems in Ramsey Theory is that of bounding the so-called
Ramsey numbers :

R(k, ℓ) = min
{

n ∈ N : every red-blue colouring of E(Kn) contains

either a red copy of Kk or a blue copy of Kℓ

}

.

The order of magnitude of R(k, ℓ) is only known in one (non-trivial) case, due to
the following theorem of Ajtai, Komlós and Szemerédi [1] and Kim [8].

Theorem 1 (Ajtai, Komlós and Szemerédi (1981), Kim (1995)).

R(3, k) = Θ

(

k2

log k

)

.

The method of [1] was refined by Shearer [10], who improved the constant in
the upper bound. However, a factor of roughly 100 remained between his result
and Kim’s lower bound.

The triangle-free process. For each n ∈ N, consider the following random graph
process (Gm)m∈N on vertex set [n] = {1, . . . , n}. Let G0 be the empty graph and,
for each m ∈ N, let Gm be obtained from Gm−1 by adding a single edge, chosen
uniformly from those non-edges of Gm−1 which do not create a triangle. The
process ends when we reach a (random) maximal triangle-free graph Gn,△.

This process, now known as the triangle-free process, was first suggested by
Bollobás and Erdős at the “Quo Vadis, Graph Theory?” conference in 1990 as a
possible method of obtaining random graphs with good Ramsey-type properties,
and was first studied rigorously by Erdős, Suen and Winkler [6], who showed that,
with high probability1, Gn,△ has at least cn3/2 edges for some constant c > 0.
Determining the order of magnitude of e(Gn,△) remained an open problem for
nearly 20 years until the breakthrough paper of Bohman [2], who followed the
triangle-free process for a constant proportion of its lifespan, and hence proved
that

e
(

Gn,△
)

= Θ
(

n3/2
√

logn
)

.

He also showed that Gm has various pseudo-random properties, and as a conse-
quence was able to give a second proof of Kim’s lower bound on R(3, k), with
a similar constant. We remark that a corresponding result in the more general
setting of the H-free process (defined analogously) was obtained by Bohman and
Keevash [3], improving on earlier results of Bollobás and Riordan [5] and Osthus
and Taraz [9].

The main result of this talk, proved in [7], is the following sharp version of
Bohman’s Theorem.

1We write ‘with high probability’ to mean with probability tending to 1 as n → ∞.
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Theorem 2.

e
(

Gn,△
)

=

(

1

2
√

2
+ o(1)

)

n3/2
√

logn,

with high probability as n → ∞.

We moreover control various parameters associated with the graph process,
showing that they take the values one would expect in a random graph of the
same density. Using these, it is possible (with substantially more work) to obtain
the following improvement of Kim’s lower bound on R(3, k).

Theorem 3.
(

1

4
− o(1)

)

k2

log k
6 R(3, k) 6

(

1 ± o(1)
) k2

log k

as k → ∞.

We remark that very similar results have recently been obtained independently
by Bohman and Keevash [4] using related methods. We also repeat, for emphasis,
that the upper bound in Theorem 3 was proved by Shearer [10] over 25 years ago.

An outline of the proof. A technique which has proved extremely useful in the
study of random graph processes is the so-called ‘differential equations method’
whose application in Combinatorics was pioneered by Wormald, see [11]. The
basic idea is to ‘track’ a large (but finite) collection of graph parameters, such
that the (expected) rate of change of each depends only on some subset of the
others. We show that, for each of these parameters, the probability that it is the
first parameter to go astray (that is, to have normalized error larger than 1) is
extremely small.

The most basic parameter we need to track is the number of open edges in Gm,
where

O(Gm) =
{

e ∈ E(Kn) \ E(Gm) : e 6⊆ NGm
(v) for every v ∈ V (Gm)

}

.

We shall write Q(m) = |O(Gm)|. Observe that the open edges of Gm are exactly
those which can be added to the graph at step m+1. In order to control Q(m), we
need to track the parameters Xe(m) (the number of open-open pairs on edge e)
and Ye(m) (the number of edge-open edge pairs on e) for each e ∈ O(Gm); these
variables control the number of edges which are closed at each step of the process,
and (together with Q(m)) they also control their respective derivatives.

In order to prove Theorem 2, we need to control these parameters up to an
error term which decreases super-exponentially quickly in t = m · n−3/2. In order
to obtain such a tiny error, we exploit the self-correcting nature of the triangle-free
process; doing so requires three separate steps, each of which relies crucially on
the other two.

First, we show that Q(m) evolves (randomly) with X(m) and Y (m) (the aver-
ages over all open edges of Gm of the variables Xe(m) and Ye(m), respectively)
according to a ‘whirlpool-like’ structure. Using a suitably chosen Lyapunov func-
tion, we are able to show that this three-dimensional system is self-correcting, even
though Q(m) itself is not.
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Second, for each k ∈ N and e ∈ O(Gm), we track a variable V
(k)
e (m), which is

(roughly speaking) the kth derivative of Ye(m). To define this variable, consider
for each m ∈ N the graph (the ‘Y -graph’ of Gm) with vertex set O(Gm), and an

edge between each pair {f, f ′} such that f ′ ∈ Yf (m); then V
(k)
e (m) is the average

of Yf (m) over the edges f ∈ O(Gm) at walk-distance k from e in the Y -graph.
Crucially, our error bounds on these variables decrease exponentially quickly in
k, and using this fact we are able to prove self-correction. A vital ingredient in
this calculation amounts to showing that a random walk on the Y -graph mixes in
constant time, and the proof of this property of the Y -graph uses the fact that we
can track certain ‘ladder-like’ graph structures in Gm.

Finally, in order to control the number of ‘ladder-like’ structures, we in fact
track the number of copies of every graph structure F which occurs in Gm (at a
given ‘root’), up to the point at which it is likely to disappear, and after this time
we bound the number of copies up to a polylog-factor. Such a general result is not
only interesting in its own right; it is necessary for our proof to work, because (for
our martingale bounds) we need to track the maximum possible number of copies
of each structure which are created or destroyed in a single step of the triangle-free
process, which depends on (the number of copies of) several other structures, some
of which may be tracking, and others not.
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The combinatorics and probability of simplicial complexes

Nati Linial

(joint work with Lior Aronshtam, Tomasz Luczak, Roy Meshulam, Yuval Peled)

This is part of an ongoing research effort to investigate higher-dimensional counter-
parts of some basic combinatorial constructs. By now there are studies concerning
high-dimensional permutations (e.g. [5]), tournaments [4] and more. One of the
most obvious domains in which this program suggests itself quite naturally is the
combinatorial study of simplicial complexes. This is a particularly natural line
of study, since graphs are, from the geometric perspective, just one-dimensional
simplicial complexes. In particular it is of interest to consider random simplicial
complexes in light of what is already known concerning random graphs. One of
our main hopes is that the probabilistic method which is so central to modern
combinatorics can be just as beneficial in the geometric/topological realm.

In [3] we introduced a model of random d-dimensional simplicial complexes
which coincides with G(n, p) for d = 1. In that paper and in subsequent work
of Meshulam and Wallach we established a natural analog to the fact that the
threshold for graph connectivity is p = logn

n .
More recently we have focused our attention on seeking an analog to the phase

transition of G(n, p) that occurs at p = 1
n . This famous set of results can be viewed

as answering the following question: What is the critical p at which graphs from
G(n, p) a.s. cease to be forests. As it turns out, there are at least two natural high-
dimensional analogs of being a forest. Namely, collapsibility and the vanishing of
the d-th homology. In [1, 2] we investigate the thresholds for these two events.

Finally I reported on ongoing work with Yuval Peled on the nature of Q-
hypertrees as defined by Kalai (1983).
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Turan’s Theorem for random graphs

Jeff Kahn

(joint work with Robert DeMarco)

Write tr(G) (resp. br(G)) for the maximum size (i.e. number of edges) of a Kr-
free (resp. (r − 1)-partite) subgraph of a graph G. Of course tr(G) ≥ br(G),
and Turán’s Theorem [5] says that equality holds when G = Kn. The question
addressed here is, roughly, when is equality likely to hold for the random graph
Gn,p; that is, for what p = p(n) is it true that

(1) tr(Gn,p) = br(Gn,p) w.h.p.?

(As usual an event holds with high probability (w.h.p.) if its probability tends to 1
as n → ∞.) Note that (1) holds for small enough p, for the silly reason that Gn,p

is itself likely to be (r − 1)-partite; but we are thinking of more interesting values
of p.

The problem seems to have first been considered by Babai, Simonovits and
Spencer [1], who showed that for r = 3 (in which case Turán’s Theorem is actually
Mantel’s [4]), (1) holds when p > 1/2 (more precisely, when p > 1/2 − ε for some
fixed ε > 0), and asked whether this could be extended to p > n−c for some fixed
positive c. This was accomplished (with c = 1/250) by Brightwell, Panagiotou
and Steger [2], who actually proved the corresponding result for every (fixed) r:

Theorem 1 ([2]). For each r there is a c > 0 such that if p = p(n) > n−c then
w.h.p. every maximum Kr-free subgraph of Gn,p is (r − 1)-partite.

It was also suggested in [2] that when r = 3, p > n−1/2+ε might suffice for (1);

the precise answer in this case ((1) holds for p at least Cn−1/2 log1/2 n) was proved
in [3]. Here we settle the problem for every r:

Theorem 2. For each fixed r there is a C such that if

p > Cn
− 2

r+1 log
2

(r+1)(r−2) n,

then w.h.p. every maximum Kr-free subgraph of Gn,p is (r − 1)-partite.

This is best possible (apart from the value of C), basically because for smaller
p there are usually edges not lying in Kr’s, and while these are automatically in
all maximum Kr-free subgraphs, there’s no reason to expect that they will all be
contained in every (or any) maximum (r − 1)-partite subgraph.
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Extremal results for string graphs and graph drawings

Jacob Fox

(joint work with János Pach)

A graph G = (V,E) is called a string graph if it is the intersection graph of
curves in the plane, i.e., if there is a collection of curves (“strings”) γv in the
plane, one curve for each vertex v ∈ V , such that two curves γu and γv intersect
if and only if u and v are adjacent in G.

A separator in a graph G = (V,E) is a subset S of the vertex set V such that
no connected component of G \ S has more than 2

3 |V | vertices. Equivalently, S is

a separator of G if there is a partition V = S ∪ V1 ∪ V2 with |V1|, |V2| ≤ 2
3 |V | such

that no vertex in V1 is adjacent to any vertex in V2.
In [6], we proved that every string graph G with m edges has a separator of

size O(m3/4
√

logm), and conjectured that this bound can be improved to O(
√
m).

This result, if true, would be be best possible. In [5], we proved our conjecture in
the special case where the vertices of G can be represented by curves in the plane
with the property that every pair of them intersect in at most a bounded number
of points. The starting point of our investigations was a recent paper of Matoušek
[11], in which he ingeniously adapted some powerful techniques developed by Feige,
Hajiaghayi, and Lee [4], using the framework of multicommodity flows to design
efficient approximation algorithms for finding small separators in general graphs.
(See [2], for a similar application.) Matoušek [11] proved our above conjecture up
to a logarithmic factor.

Lemma 1. [11] Every string graph with m edges has a separator of size at most
d
√
m logm, where d is an absolute constant.

The aim of this note is to combine Lemma 1 with some previous results of the
authors to substantially improve the best known estimates for various important
parameters of string graphs.

Our first result provides an upper bound on the chromatic number of string
graphs with no complete subgraph of size t, which is polylogarithmic in the number
of vertices.

Theorem 2. There is an absolute constant C such that every Kt-free string graph
on n vertices has chromatic number at most (logn)C log t.

Previously, it was not even known if the chromatic number of every triangle-free
string graph on n vertices is at most no(1). In the other direction, solving an old
problem of Erdős, for every n, Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter,
and Walczak [14] constructed a triangle-free intersection graph of n segments in
the plane with chromatic number at least log log n. In particular, it follows that
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the chromatic number of triangle-free string graphs cannot be bounded from above
by a constant.

A topological graph is a graph drawn in the plane so that its vertices are rep-
resented by points and its edges are represented by (possibly crossing) curves
connecting the corresponding point pairs. We also assume that no edge passes
through any point representing a vertex other than its endpoints. For any integer
t ≥ 2, we say that a topological graph is t-quasi-planar if it has no t pairwise cross-
ing edges. According to an old conjecture made independently by several people
(see, e.g., Problem 6 in [12]), for any integer t ≥ 2, there is a constant ct such
that every t-quasi-planar topological graph on n vertices has at most ctn edges.
Theorem 2 immediately implies the following result, originally established in [7]
by a more complicated argument.

Corollary 3. [7] Every t-quasi-planar topological graph on n > 2 vertices has at
most n(log n)c log t edges, for an appropriate constant c.

A family of graphs is called hereditary if it is closed under induced subgraphs.
The Erdős-Hajnal conjecture [3] states that for every hereditary family F of graphs
which is not the family of all graphs, there is a constant c = cF such that every
graph in F on n vertices contains a clique or independent set of size nc. A weaker

estimate, with ec
√
log n instead of nc, was established by Erdős and Hajnal. It

is not known whether the Erdős-Hajnal conjecture holds for string graphs. Our
next theorem, which follows from Theorem 2, represents the first progress on this
problem.

Theorem 4. For every ε > 0, there is a constant c = cε > 0 such that the
following holds. Every string graph on n > 2 vertices contains a complete subgraph
of order nc/ log logn or an independent set of order n1−ε. That is, every collection
of n > 2 curves in the plane contains a subcollection of at least nc/ log logn pairwise
intersecting curves or a subcollection of at least n1−ε pairwise disjoint curves.

The classical Kővári-Sós-Turán theorem [9] states that any Kt,t-free graph with

n vertices has at most n2−1/t + tn/2 edges. Pach and Sharir [13] conjectured that,
for string graphs, this upper bound can be replaced by a bound linear in n. That
is, every Kt,t-free string graph on n vertices has at most ctn edges. They verified
this conjecture up to a polylogarithmic factor in n. In [6], it was proved that the
conjecture is true with ct ≤ tc log log t. The authors further conjectured that the
statement also holds with ct = ct log t, which would be best possible. We get close
to this conjecture, proving the upper bound ct ≤ t(log t)O(1).

Theorem 5. There is a constant c such that for any positive integers t and n,
every Kt,t-free string graph with n vertices has at most t(log t)cn edges.

The celebrated crossing lemma of Ajtai, Chvátal, Newborn, Szemerédi [1] and,
independently, Leighton [10] states that in every drawing of a graph with n vertices

and m ≥ 4n edges, there are at least Ω(m
3

n2 ) pairs of crossing edges. This is easily

seen to be equivalent to the existence of one edge that crosses Ω(m
2

n2 ) other edges.
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Indeed, by the crossing lemma, the average number of edges a single edge crosses

is Ω(m
2

n2 ). In the other direction, by repeatedly pulling out one edge at a time that

crosses Ω(m
2

n2 ) of the remaining edges, a total of Ω(m) edges are pulled out that

each cross Ω(m
2

n2 ) other edges. This gives Ω(m · m2

n2 ) pairs of crossing edges, and
hence implies the crossing lemma.

Can the crossing lemma be strengthened to show that every graph drawn with

n vertices and m ≥ 4n edges contains two sets E1, E2 of edges, each of size Ω(m
2

n2 ),
such that every edge in E1 crosses every edge in E2? In [8], the authors and
Cs. Tóth proved that, although the answer is no, the statement is true up to a
polylogarithmic factor. It is also an easy consequence of Theorem 5.

Corollary 6. [8] In every topological graph G with n vertices and m ≥ 4n edges,

there are two disjoint edge sets E1, E2 with |E1|, |E2| ≥ m2

n2(log m
n
)c , such that every

edge in E1 crosses every edge in E2. Here c > 0 is a suitable absolute constant.

At least one logarithmic factor is needed in Corollary 6. In [8], we constructed
topological graphs with n vertices and m ≥ 4n edges for which the largest pair of

crossing sets has cardinality O( m2

n2 log m
n

).
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Property testing for hyperfinite properties

Christian Sohler

(joint work with Ilan Newman)

In this talk, I will summarise some of the recent developments in the area of
property testing in bounded degree graphs. The area of graph property testing
deals with the question of whether a given graph has a predetermined property or
is ε-far away from every graph that has this property. If the maximum degree of
a graph is bounded by d, being ε-far from a property means that one has to insert
and/or delete more than εdn edges to obtain a graph that has the tested property.
The goal is to fulfill this task by random sampling.

It turns out that hyperfinite graphs, i.e. graphs that can be decomposed into
components of constant size by the removal of at most εdn edges, play an important
role in the recent development in this area. It was shown that every bounded degree
hyperfinite graph is already determined up to εdn edges by its local structure,
i.e. the distribution of the rooted subgraphs induced by the vertices with a constant
distance from the root.

So, informally, every bounded degree hyperfinite graph has a constant size de-
scription that determines its structure up to the insertion and/or deletion of εdn
edges.

Given this result, every hyperfinite property is testable.

On the structure of dense graphs with small clique number

Mathias Schacht

(joint work with Heiner Oberkampf)

Chromatic thresholds. We are interested in structural properties of large and
dense graphs G = (V,E) that do not contain a copy of a fixed small graph F .
Here density will be given a condition on the minimum degree of G and structural
properties are captured by studying homomorphic images of G.

For example, if F = Kr is a clique and δ(G) is sufficiently high, then Turán’s
theorem [12] asserts that G is (r − 1)-partite, in particular, the chromatic num-
ber χ(G) is bounded by a constant independent of the number of vertices of G.
More generally, Andrásfai [2] raised the following problem: Given a graph F and
an integer t, determine the smallest function fF,t(n) such that the minimum degree
condition δ(G) ≥ fF,t(n) for any n-vertex, F -free graph G yields χ(G) ≤ t.

We are interested in the case for which minimum degree condition implies some
bound on χ(G) independent from the size of the graph G itself. This leads to the
so-called chromatic threshold. For a graph F we define

δF,χ = inf{α ∈ [0, 1] : there is tα ∈ N such that every F -free graph G

with δ(G) > α|V (G)| satisfies χ(G) ≤ tα} .
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If F ′ ⊆ F , then obviously δF ′,χ ≤ δF,χ. Moreover, it follows from the Erdős–Stone

theorem [5] that δF,χ ≤ χ(F )−2
χ(F )−1 for every graph F with at least one edge.

For F = K3 it was shown in [4] that δK3,χ ≥ 1/3 and in the other direction
Thomassen [10] obtained a matching upper bound, i.e.,

(1) δK3,χ =
1

3
.

In fact, Erdős and Simonovits [4] asked whether all triangle-free graphs G with
δ(G) ≥ (1/3 + o(1))|V (G)| are 3-colorable. This was answered negatively by
Häggkvist [7], but recently Brandt and Thomassé [3] showed that the chromatic
number of such graphs is bounded by 4.

Nikiforov [9] extended these results from triangles to r-cliques and showed that

δKr,χ =
2r − 5

2r − 3

and, moreover, he showed that χ(G) ≤ r + 1 for every Kr-free graph G with
δ(G) > 2r−5

2r−3 |V (G)|. In the case when F is an odd cycle of length at least five it

was shown by Thomassen [11] that the chromatic threshold is zero and recently,
Allen et al. [1] determined the threshold for every graph F .

Homomorphism thresholds. What can be said if we move away from bounding
the chromatic number for dense, F -free graphs G and require instead that there

is a homomorphic image H of G, i.e., G
hom−−−→ H , which itself is F -free and of

bounded size. More precisely, in [10] Thomassen posed the following question:
Given a fixed constant c, does there exist a finite family of triangle-free graphs
such that every triangle-free graph on n vertices with minimum degree greater than
cn is homomorphic to some graph of this family? We formalize this question by
defining

δF,hom = inf{α ∈ [0, 1] : there is tα ∈ N such that for all F -free graphs G

with δ(G) > α|V (G)| there exists an F -free graph H

satisfying G
hom−−−→ H and |V (H)| ≤ tα} .

Thomassen asked to determine δK3,hom. The existence of a (F -free) graph H of

order t and of a homomorphism G
hom−−−→ H , clearly implies χ(G) ≤ t. Consequently,

for all graphs F we have
δF,hom ≥ δF,χ .

 Luczak [8] answered Thomassen’s question and proved that δhK3,hom
= 1/3. Hence,

for K3 the homomorphism threshold and the chromatic threshold equal. Goddard
and Lyle [6] extended  Luczak’s result showing, that Kr-free graphs with minimum
degree bigger than 2r−5

2r−3 are homomorphic to the join Kr−3 ∨ H , where H is a

triangle-free graph with δ(H) > |V (H)|/3. Thus we have the following theorem.

Theorem 1 (Goddard & Lyle). For every integer r ≥ 3 we have

δKr,hom = δKr,χ =
2r − 5

2r − 3
.
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We discuss a new proof of Theorem 1 based on a simple probabilistic argument.
Roughly speaking, the proof proceeds as follows. Given an Kr-free graph G =
(V,E) with δ(G) ≥ (2r−5

2r−3 + ε)|V |. Consider a random set X of size polynomial in

1/ε and r. In particular, the size of X is bounded by a function depending on ε
and r only. With high probability all but at most ε|V |/10 vertices in G have at
least (2r−5

2r−3 + ε/2)|X | neighbours in X . Let V = U ·∪Z, where Z is the set of the

exceptional vertices (i.e., |Z| ≤ ε|V |/10). Next we consider a partition U1 ·∪ . . . ·∪Us

of U according the neighbourhood in X , i.e., two vertices u and u′ belong to the
same class Ui if and only if NG(u)∩X = NG(u′)∩X . In particular, the number of
classes s ≤ 2|X| is bounded. It is easy to check that the classes Ui are independent
in G. Moreover, one can show that G[U ] is isomorphic to a blow-up of an Kr-
free graph on s vertices and, hence, G[U ] has a Kr-free homomorphic image on s
vertices. Finally, we deal with the vertices in Z. Since, |Z| ≤ ε|V |/10 every vertex
z ∈ Z has at least (2r−5

2r−3 + ε/2)|U | neighbours in U . Now we partition the vertices
in Z according to their neighbourhood pattern among U1, . . . , Us. More precisely,
we put z and z′ into the same class Zj if and only if

{i ∈ [s] : N(z) ∩ Ui 6= ∅} = {i ∈ [s] : N(z′) ∩ Ui 6= ∅} .

Therefore, we partition Z into at most 2s ≤ 22
|X| classes. Then we show similarly

as before that every set Zj induces an independent set in G and the induced
bipartite graphs G[Ui, Zj] and G[Zj , Zk] are either complete or empty. In other

words, G is a blow-up of a graph H with at most 2|X| + 22
|X| vertices. Since G is

Kr-free the graph H must be also Kr-free and the theorem follows.

References
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