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Abstract. Branching random walk (BRW) and branching Brownian motion
(BBM) are mathematical models for population growth and spatial displace-
ment. When resources are plentiful, population sizes grow exponentially in
time. In such a situation, exceptional (or extreme) individuals will be found
far from the bulk of the population. The study of such individuals, and their
ancestral lineages, was the subject of the workshop. On one hand, this is
a classical topic, with well-known connections to the KPP-equation and to
search algorithms. On the other hand, substantial recent developments have
recently been obtained via new approaches to the subject (stopping lines
and spines, the view from the tip, multivariate analytic combinatorics), or
from researchers working in seemingly distinct areas (from stochastic partial
differential equations to theoretical physics).
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Introduction by the Organisers

A branching random walk (BRW) is a system of particles in some physical space
such as Rd, where, on the one hand, particles reproduce independently of one
another according to some fixed distribution, and on the other, the displacement
of particles with respect to their parent’s position are also independent from one
another, and are distributed according to some fixed law. Branching Brownian
motion is also a process which involves branching and spatial displacement, but
with particle trajectories given by Brownian motions.

Branching random walks and branching Brownian motion are fundamental ob-
jects of interest in probability, and have been studied in some depth at least since
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the 1950s. Yet many basic aspects of their behaviour remain poorly understood
to this date – this is particularly true for questions regarding the extremal be-
haviour of such processes, which were the main focus of this workshop. While
these are natural and intrinsic questions from a mathematical standpoint, it has
appeared in recent years that they are also of fundamental importance in other
scientific fields, from the analysis of search algorithms in computer science to the
understanding of energy landscapes in random energy and spin glass models from
theoretical physics, and including the description of the effect of natural selection
on the genealogy of populations in theoretical biology.

There has been recently a surge of new ideas and breakthroughs which are
moving the subject closer to the resolution of some of its longstanding problems.
Strikingly, some of these key advances have been made simultaneously and in-
dependently by different groups of researchers, usually through entirely different
methods. We outline a few themes which featured prominently.

– Minimal position. Bramson, Ding and Zeitouni; Addario-Berry and Reed;
and Aı̈dékon have all proved related results on the position of the minimum and
on its convergence in distribution; these results build on existing work by Biggins,
Devroye, and McDiarmid, among others. These recent results are established
using very different techniques. For instance, Aı̈dékon relies on spine methods
and derivative martingales. Bramson, Ding and Zeitouni relied on robust versions
of second moment arguments in a way which allowed them to treat the case of
the discrete two-dimensional Gaussian Free Field. Addario-Berry and Reed use a
rather combinatorial argument based on the second moment method. Some recent
developments in this direction include the works of Arguin, Bovier and Kistler; and
Aidékon, Berestycki, Brunet and Shi who show the existence of a limit for the point
process of particles near the minimum for a branching Brownian motion. Moreover,
this process is ergodic if correctly recentered by the derivative martingale (in order
to take into account the early fluctuations of the process).

– Aldous’ conjecture. This conjecture concerns the following situation: assume
that all particles that reach a certain subset of Rd (say the negative half-line on R)
are immediately killed and removed from the system. Then there is a critical value
βc for the branching rate such that if β ≤ βc, the system dies out with probability 1,
while it survives with positive probability if β > βc. At β = βc, Aldous conjectured
that (in one dimension) the total number of individuals Z satisfies E(Z) <∞ but
E(Z logZ) = ∞. Addario-Berry and Broutin made an even stronger conjecture
that P(Z > x) ∼ c/(x log2 x). Variants of this conjecture have been independently
established by several researchers: by Maillard for branching Brownian motion,
who introduced new ideas and substantially developed the singularity analysis
approach; by Aidékon, Hu and Zindy, based on a trajectorial decomposition; and
by Aidékon via spine methods.

– Genealogies. When a population evolves by branching and with a selection
mechanism that maintains a fixed population size, only letting the fittest (extreme)
particles survive, physicists Brunet and Derrida have made striking, non-rigorous
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predictions for the genealogy of the resulting population. Most notably, they pre-
dicted a characteristic “genealogical timescale” of (logN)3 generations if N is the
population size, and a genealogy described by the Bolthausen-Sznitman coales-
cent. Aspects of this conjecture have recently been established by Bérard and
Gouéré and by Berestycki, Berestycki and Schweinsberg, all matching perfectly
the predictions. Relation to noisy travelling waves and in particular the stochas-
tic KPP equation (which underpinned the non-rigorous approach of Brunet and
Derrida) remain mysterious, even though separate but related predictions which
they made for the propagation of the wavefront in this equation were recently
proved by Mueller, Mytnik and Quastel. The Bolthausen-Sznitman coalescent is
also the conjectured limiting object for the energy landscape in random energy
models and related spin glass models. This is not a coincidence, but most aspects
of this connection remain to be understood.
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Abstracts

The Branching Brownian Motion and lags in the Fisher-KPP equation

Éric Brunet

(joint work with B. Derrida, E. Aı̈dékon, J. Berestycki, Z. Shi)

The Branching Brownian Motion (BBM) is intimately related to the Fisher-KPP
equation through the Mc-Kean representation: for any reasonable function φ, the
quantity

Hφ(x, t) =
〈

∏

i

φ
[

x−Xi(t)
]

〉

(where the product is over the particles present at time t and where Xi(t) is the
position of the i-th particle) is solution to the Fisher-KPP equation:

∂tHφ = ∂2xHφ −Hφ +H2
φ

with Hφ(x, 0) = φ(x).
If φ(x) = 1x>0, then Hφ(x, t) is the probability that the rightmost particle at

time t is on the left of x; if φ(x) = 1x>0 + λ1x<0, then Hφ(x, t) is the generating
function of the number of particles on the right of x, etc.

By carefully choosing φ(x), one has access to any property of the distribution
of the rightmost particles in the BBM at any time t. These properties can be
measured numerically by integrating the Fisher-KPP equation, which is of course
much simpler than simulating the BBM.

The Fisher-KPP equation has the property that for all the initial conditions φ(x)
that we are interested in, the solution Hφ(x, t) converges to the same travelling
wave ω(z) in the sense that there exists a mt such that

Hφ(mt + z, t) −−−→
t→∞

ω(z).

Here, mt is the position of the front at time t and, for a certain choice of the
branching rate and diffusion coefficient, it is asymptotically given by

mt = 2t− 3

2
ln t+ a0(φ) −

3
√
π√
t

+
a1(φ)

t
+
a3/2(φ)

t3/2
+ · · ·

It is worth emphasizing that the velocity 2, the 3/2 and the 3
√
π do not depend

on the initial condition φ, while all the other coefficients in the expansion do. This
means that two fronts started with different initial conditions φ will eventually
converge to the same shape ω(z) travelling at velocity 2, with one lagging behind
the other by an amount which is the difference of the two a0(φ) corresponding
to the two initial conditions φ. Because of the link between the Fisher-KPP
fronts and the BBM, one can show from this convergence that the distribution of
the rightmost particles in the BBM centered around the position 2t − (3/2) ln t
converges as t→ ∞ to a stationary distribution characterized by the set of all the
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lags {a0(φ)}φ. Furthermore, any property of this stationary distribution can be
numerically measured.

The previous result can be refined by extending a famous result by Lalley and
Sellke [4] stating that when t → ∞ the position of the rightmost particle in the
BBM can be written as

X1(t) = 2t− 3

2
ln t+ lnZ +Cste + η1

where Z is the limit of the derivative Martingale

Z = lim
t→∞

∑

i

(2t−Xi(t))e
Xi(t)−2t

and where η1 is a Gumble distributed random variable. One can show by using
the same method as Lalley and Sellke that the distribution of all the rightmost
particles in the BBM centered around the random position 2t− 3

2 ln t+lnZ+Cste
also converges to a stationary distribution which is independent of Z.

This distribution can be described as a decorated exponential Poisson point
process : it is obtained by first selecting leaders according to a Poisson point process
with density e−x then, independently for each leader, particles are added according
to an auxiliary distribution (the decoration) shifted by the position of the leader
and such that all the particles in the decoration fall on the left of the leader. Thus,
the rightmost particle of the BBM is the rightmost leader, i.e. the rightmost point
in the exponential Poisson point process, and one recovers the Gumble distribution
of Lalley and Sellke. The second rightmost particle in the BBM is either the
rightmost point in the decoration of the rightmost leader, or the second rightmost
leader, etc.

The rightmost particles in the BBM are therefore a collection of independent
families (the leader and its decoration). As shown by Arguin, Bovier and Kistler
[5], two particles belong to the same family if their lineage branched recently,
a time of order one ago. They belong to two different families if their lineage
branched near the origin of times. These are the only cases; two particles amongst
the rightmost cannot have branched at an intermediary time which is neither very
recent or very ancient.

Some beautiful descriptions of the auxiliary distribution forming the decoration
of each leader exists, but it remains difficult to extract properties of this decoration.
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Convergence in law of the minimum of a branching random walk

Elie Aı̈dékon

We consider a branching random walk on the real line in discrete time. The
process starts with one particle located at 0. At time 1, the particle dies and gives
birth to a point process L. Then, at each time n ∈ N, the particles of generation n
die and give birth to independent copies of the point process L, translated to their
position. Under some fairly general conditions, we can renormalize the branching
random walk so that

E





∑

|x|=1

e−V (x)



 = 1, E





∑

|x|=1

V (x)e−V (x)



 = 0.

We denote by Mn the minimal position of the particles at time n. In this setting,
it is known that Mn − 3

2 lnn is a tight sequence, see [1]. Writing y+ := max(y, 0),
we introduce the random variables

X :=
∑

|x|=1

e−V (x), X̃ :=
∑

|x|=1

V (x)+e
−V (x).

We assume

• the distribution of L is non-lattice,
• we have

E





∑

|x|=1

V (x)2e−V (x)



 <∞,

E
[

X(ln+X)2
]

<∞, E
[

X̃ ln+ X̃
]

<∞.

We prove

Theorem The random variable Mn − 3
2 lnn converges in law as n→ ∞.

In the branching Brownian case, this was known since the work of Bramson [6].
Moreover, we can characterize the limit law. We introduce the derivative martin-
gale

Dn :=
∑

|x|=n

V (x)e−V (x).

In [5], Biggins and Kyprianou prove this martingale converges almost surely to
some D∞. We prove that there exists a constant C > 0 such that, for any real x,

lim
n→∞

P(Mn − 3

2
lnn ≥ x) = E

[

e−CexD∞

]

.
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Again, this was known in the branching Brownian motion setting, and proved by
Lalley and Sellke [8].

Following this work, Madaule [9] proved that the point process of leftmost
particles seen from the minimum converges in law. In the branching Brownian
motion setting, the convergence of the extremal process was proved by Arguin,
Bovier and Kistler [4] and Aı̈dékon, Berestycki, Brunet, Shi [3]. These works
confirmed the prediction of physicists Brunet and Derrida [7], who conjectured that
the limit point process was a decorated Poisson point process. Further conjectures
on this extremal process are still open though: one can cite the asymptotic density
in the tail of the extremal process, or the tail distribution of the gap between the
leftmost and second leftmost particles.
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The almost sure limits of the minimal position in a branching random
walk

Yueyun Hu

Consider a discrete-time branching random walk {V (u), u ∈ T} on the real line
R. The law of the branching random walk is determined by the point process
Θ ≡ ∑

|u|=1 δ{V (u)}. The underlying Galton-Watson tree is denoted by T and is

assumed to be supercritical (namely E[Θ(R)] ∈ (1,∞)). Assuming that

(1) E

[
∫

e−xΘ(dx)

]

= 1, E

[
∫

xe−xΘ(dx)

]

= 0.

When the hypothesis (1) is fulfilled, the branching random walk is called in the
boundary case in the literature (see e.g. Biggins and Kyprianou [5], Aı̈dékon and
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Shi [3]). Under some integrability conditions, a general branching random walk
can be reduced to the boundary case after a linear transformation, see Jaffuel [12]
for detailed discussions.

Denote by Mn := min|u|=n V (u) the minimal position of the branching random
walk at generation n (with convention inf ∅ ≡ ∞). Hammersley [8], Kingman
[13] and Biggins [4] established the law of large numbers for Mn (for any general
branching random walk), whereas the second order limits have recently attracted
many attentions, see [1, 11, 6, 2] and the references therein. In particular, Aı̈dékon
[2] proved the convergence in law of Mn − 3

2 logn under (1) and some mild condi-
tions.

Concerning the almost sure limits of Mn, there is a phenomena of fluctuation at
the logarithmic scale ([11]): Under (1) and some extra integrability assumption,
the following almost sure limits hold:

lim sup
n→∞

Mn

logn
=

3

2
, P

∗-a.s.,

lim inf
n→∞

Mn

logn
=

1

2
, P

∗-a.s.,

where P
∗(·) := P (·|S) , and S denotes the event that the whole system survives.

We discuss here how Mn can approach its upper limit 3
2 logn and its lower limit

1
2 logn:

Aı̈dékon and Shi [3] proved that under (1) and some L(logL)2-type condition,

lim inf
n→∞

(

Mn − 1

2
logn

)

= −∞, P
∗-a.s.

Using their methods, we characterize the lower limits of Mn by an integral test:
Theorem 1 [9]: Assuming (1) and some L(logL)2-type integrability condition.
For any function f ↑ ∞, P∗-almost surely,

P
∗
(

Mn − 1

2
logn < −f(n), i.o.

)

=







0

1
⇐⇒

∫ ∞ dt

t exp(f(t))







<∞

= ∞
,

where i.o. means infinitely often as the relevant index n→ ∞.
On the upper limits of Mn, we present a law of iterated logarithm:

Theorem 2 [10]: Assuming (1) and some L(logL)2-type integrability condition,
we have

lim sup
n→∞

1

log log logn
(Mn − 3

2
log n) = 1, P

∗-a.s.

We also discuss the related moderate deviation problem on Mn, by distinguish-
ing the Schröder case or the Böttcher case as for the limit of a Galton-Watson
process (cf. [7]).
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Theorem 3 [10]: Assuming (1) and the boundedness of the positive jumps in Θ,
we have

log P∗
(

Mn >
3

2
logn+ λ

)

=







−(γ + o(1))λ, in the Schröder case,

−e(β+o(1))λ, in the Böttcher case,

where γ and β are two positive parameters which are determined by the law of Θ.
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The Aldous conjecture on a killed branching random walk

Olivier Zindy

(joint work with Elie Aı̈dékon, Yueyun Hu)

We consider a one-dimensional discrete-time branching random walk V on the
real line R. At the beginning, there is a single particle located at the origin 0.
Its children, who form the first generation, are positioned according to a certain
point process L on R. Each of the particles in the first generation independently
gives birth to new particles that are positioned (with respect to their birth places)
according to a point process with the same law as L ; they form the second gen-
eration. And so on. For any n ≥ 1, each particle at generation n produces new
particles independently of each other and of everything up to the n-th generation.

Clearly, the particles of the branching random walk V form a Galton–Watson
tree, which we denote by T . Call ∅ the root. For every vertex u ∈ T , we denote
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by |u| its generation (then |∅| = 0) and by (V (u), |u| = n) the positions of the
particles in the n-th generation. Then L =

∑

|u|=1 δ{V (u)}. The tree T will encode

the genealogy of our branching random walk.
It will be more convenient to consider a branching random walk V starting

from an arbitrary x ∈ R [namely, V (∅) = x], whose law is denoted by Px and
the corresponding expectation by Ex. For simplification, we write P ≡ P0 and
E ≡ E0. Let ν :=

∑

|u|=1 1 be the number of particles in the first generation and

denote by ν(u) the number of children of u ∈ T .
Assume that E[ν] > 1, namely the Galton–Watson tree T is supercritical, then

the system survives with positive probability P
(

T = ∞
)

> 0. Let us define the
logarithmic generating function for the branching walk:

ψ(t) := logE
[

∑

|u|=1

etV (u)
]

∈ (−∞,+∞], t ∈ R.

We shall assume that ψ is finite on an open interval containing 0 and that suppL ∩
(0,∞) 6= ∅ [the later condition is to ensure that V can visit (0,∞) with positive
probability, otherwise the problem that we shall consider becomes trivial]. Assume
that there exists ̺∗ > 0 such that

(1) ψ(̺∗) = ̺∗ψ′(̺∗).

We also assume that ψ is finite on an open set containing [0, ̺∗]. The condition
(1) is rather mild, roughly saying, if we denote by m∗ = esssup suppL , then (1)
is satisfied if either m∗ = ∞ or m∗ <∞ and E

∑

|u|=1 1(V (u)=m∗) < 1.

Recall that (Kingman [8], Hammersley [6], Biggins [5]) conditioned on the sur-
vival of the system,

(2) lim
n→∞

1

n
max
|u|=n

V (u) = ψ′(̺∗), a.s.,

where ̺∗ is defined in (1). According to ψ′(̺∗) = 0 or ψ′(̺∗) < 0, we call the
critical case or the subcritical case. Conditioned on {T = ∞}, the rightmost
particle in the branching random walk without killing has a negative speed in the
subcritical case, while in the critical case it converges almost surely to −∞ in the
logarithmical scale (see Addario-Berry and Reed [2] and Hu and Shi [7] for the
precise statement of the rate of almost sure convergence).

We now place a killing barrier at zero, hence in every generation n ≥ 0, survive
only the particles that always stayed nonnegative up to time n. Denote by Z the
set of all living particles of the killed branching walk:

Z :=
{

u ∈ T : V (v) ≥ 0, ∀ v ∈ [∅, u]
}

,

where [∅, u] denotes the shortest path relating u from the root∅. We are interested
in the total progeny

Z := #Z ,

on which David Aldous made the following conjecture:
Conjecture (D.Aldous [4]):
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(i) (critical case): If ψ′(̺∗) = 0, then E[Z] <∞ and E[Z logZ] = ∞.
(ii) (subcritical case): If ψ′(̺∗) < 0, then there exists some constant b > 1

such that P(Z > n) = n−b+o(1) as n→ ∞.

Let us call iid case if L is of form: L =
∑ν

i=1 δ{Xi} with (Xi)i≥1 a sequence of
i.i.d. real-valued variables, independent of ν. There are several previous works on
the critical and iid case: when (Xi) are Bernoulli random variables, Pemantle [9]
obtained the precise asymptotic of P(Z = n) as n→ ∞, where the key ingredient
of his proof is the recursive structure of the system inherited from the Bernoulli
variables (Xi). For general random variables (Xi), Addario-Berry and Broutin
[1] recently confirmed Aldous’ conjecture (i) under some integrability hypothesis;
This was improved later by Aı̈dékon [3] who proved that for a regular tree T
(namely when ν equals some integer), for any fixed x ≥ 0,

n(logn)2Px(Z > n) ≈ R(x)ex,

where R(x) is a renewal function.
We aim at the exact tail behavior of Z both in critical and subcritical cases and

for a general point process L .
Before the statement of our result, we remark that in the subcritical case

(ψ′(̺∗) < 0), there are two real numbers ̺− and ̺+ such that 0 < ̺− < ̺∗ < ̺+
and

ψ(̺−) = ψ(̺+) = 0,

[the existence of ̺+ follows from the assumption that suppL ∩ (0,∞) 6= ∅].
Assume that

(3) E[να] <∞, for some

{

α > 2, in the critical case;
α > 2 ̺+

̺−

, in the subcritical case.

In the critical case, we suppose that

(4) E
[

ν1+δ∗
]

<∞, sup
θ∈[−δ∗,̺∗+δ∗]

ψ(θ) <∞, for some δ∗ > 0.

In the subcritical case, we suppose that

(5) E





∑

|u|=1

(1 + e̺−V (u))





̺+
̺
−

+δ∗

<∞, sup
θ∈[−δ∗,̺++δ∗]

ψ(θ) <∞,

for some δ∗ > 0. In both cases, we always assume that there is no lattice that
supports

∑

|u|=1 δV (u) almost surely.

Our main result reads as follows.

Theorem 1 (Tail of the total progeny). Assume (1), (3).
(i) (Critical case) If ψ′(̺∗) = 0 and (4) holds, then there exists a constant

ccrit > 0 such that for any x ≥ 0,

Px

(

Z > n
)

∼ ccritR(x) e
̺∗x 1

n(logn)2
, n→ ∞,

where R(x) is a renewal function.
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(ii) (Subcritical case) If ψ′(̺∗) < 0 and (5) holds, then there exists a constant
csub > 0 such that for any x ≥ 0,

Px

(

Z > n
)

∼ csubR(x)e
̺+xn

− ̺+
̺
− , n→ ∞,

where R(x) is a renewal function.

The values of ccrit and csub are given in Lemma 1. To explain the strategy of
the proof of Theorem 1, we first introduce some notation: for any vertex u ∈ T
and a ∈ R, we define

τ+a (u) := inf{0 ≤ k ≤ |u| : V (uk) > a},(6)

τ−a (u) := inf{0 ≤ k ≤ |u| : V (uk) < a},(7)

with convention inf ∅ := ∞ and for n ≥ 1 and for any |u| = n, we write {u0 =
∅, u1, ..., un} = [∅, u] the shortest path relating u from the root ∅ (uk is the
ancestor of k-th generation of u).

By using these notations, the living set Z of the killed branching random walk
can be represented as follows:

Z = {u ∈ T : τ−0 (u) > |u|}.
For a ≤ x, we define L[a] as the set of individuals which lives below a for its

first time:

(8) L[a] := {u ∈ T : |u| = τ−a (u)}, a ≤ x,

Since the whole system goes to −∞, L[a] is well defined. In particular, L[0] is the
set of leaves of the killed branching walk. As an application of a general fact for
a wide class of graphs, we can compare the set of leaves L[0] with Z . Then it is
enough to investigate the tail asymptotics of #L[0].

To state the result for #L[0], we shall need an auxiliary random walk S, under
a probability Q, which depend on the parameter ̺ = ̺∗ in the critical case, and
̺ = ̺+ in the subcritical case. We mention that under Q, S is recurrent in the
critical case and transient in the subcritical case. Let us also consider the renewal
function R(x) associated to S and τ−0 the first time when S becomes negative.

Theorem 2 (Tail of the set of leaves). Assume (1).
(i) Critical case : if ψ′(1) = 0 and (4) holds, then for any x ≥ 0, we have when

n→ ∞
Px(#L[0] > n) ∼ c′critR(x)e

̺∗x 1

n(logn)2
,

where c′crit := (Q[e
−S

τ
−

0 ]− 1).
(ii) Subcritical case : If ψ′(1) < 0 and (5) holds, then we have for any x ≥ 0

when n→ ∞,

Px(#L[0] > n) ∼ c′subR(x)e
̺+xn

− ̺+
̺
− ,

for some constant c′sub > 0.
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If
∑

|u|=1(1 + e̺−V (u)) has some larger moments, then we can give, as in the

critical case (i), a probabilistic interpretation of the constant c′sub for the subcritical
case.

The next lemma establishes the relation between #L[0] and the total progeny
Z = #Z . Recall that E(ν) > 1.

Lemma 1. Assume (3). Then Theorem 2 implies Theorem 1 with
(i) in the critical case: ccrit = (E(ν)− 1)−1c′crit,
(ii) in the subcritical case: csub = (E(ν) − 1)−̺+/̺−c′sub.

The proof of Theorem 2 relies on an analysis of the maximum of the killed
branching random walk and its progeny. We need to establish some Yaglom-type
results. The main tool will be a spinal decomposition for the killed branching
random walk.
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Consistent maximal displacement of branching Brownian motion

Matthew I. Roberts

A standard branching Brownian motion begins with one particle at the origin.
This particle moves as a Brownian motion, until an independent exponentially
distributed time of parameter 1, at which point it is instantaneously replaced by
two new particles. These particles independently repeat the stochastic behaviour
of their parent relative to their start position, each moving like a Brownian mo-
tion and splitting into two at an independent exponentially distributed time of
parameter 1.

Let N(t) be the set of all particles alive at time t, and for a particle v ∈ N(t)
let Xv(s) represent its position at time s ≤ t (or if v was not yet alive at time s,
then the position of the unique ancestor of v that was alive at time s). If we define

M(t) = max
v∈N(t)

Xv(t)
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then it is well known that

M(t)

t
→

√
2 as t→ ∞.

The problem of interest to us is that of consistent maximal displacements: how
close can particles stay to the critical line (

√
2t, t ≥ 0)? There are at least two

ways of making this question precise, each of which has been considered before for
the related model of branching random walks. The first is to ask for which curves
f : [0,∞) → R it is possible for particles to stay above f(t) for all times t ≥ 0.
That is, when is

ν(f) := P(∀t ≥ 0, ∃v ∈ N(t) : Xv(u) > f(u) ∀u ≤ t)

non-zero? This was first considered by Jaffuel [3] (for branching random walks),
who proved that there is a critical value Ac = 34/3π2/32−7/6 such that if we set
fa(t) =

√
2t− at1/3 − 1 then ν(fa) > 0 if a > Ac, and ν(fa) = 0 if a < Ac.

The second approach is to look at recentered paths, specifically the value of

λ(v, t) = sup
s∈[0,t]

{
√
2s−Xv(s)},

and ask for the asymptotic behaviour of the minimum

Λ(t) = min
v∈N(t)

λ(v, t)

as t → ∞. This quantity (or rather, again, its analogue for branching random
walks) was studied by Fang and Zeitouni [1] and by Faraud, Hu and Shi [2], who
showed that there is a critical value ac = 31/3π2/32−1/2 such that almost surely

lim
t→∞

Λ(t)

t1/3
= ac.

To summarise, the two approaches to the question give similar results: in each
case there appears to be a critical line on the t1/3 scale above which particles
cannot remain. We shall see, however, that if one peers more closely then the two
situations are really quite different. Our first result is that not only is ν(fAc) > 0

(which was previously unknown), but in fact particles may stay above
√
2t −

Act
1/3 + tγ − 1 for any γ < 1/3. Secondly, we are able to give asymptotics on the

log scale for Λ(t): we have

lim inf
t→∞

Λ(t)− act
1/3

log t
= − 1√

2

almost surely, and

lim sup
t→∞

Λ(t)− act
1/3

log t
= 0

almost surely.
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Radius of the support of super-Brownian motion

Andreas Kyprianou

(joint work with Marion Hesse)

Suppose that X = {Xt, t ≥ 0} is a Super-Brownian motion in R
d, d ≥ 3, with

general branching mechanism ψ of the form

ψ(λ) = −αλ+ βλ2 +

∫

(0,∞)

(e−λx − 1 + λx)Π(dx), λ ≥ 0,

where α = −ψ′(0+) ∈ (−∞,∞), β ≥ 0 and Π is a measure concentrated on (0,∞)
which satisfies

∫

(0,∞)(x ∧ x2)Π(dx) < ∞. Assume ψ(∞) = ∞ (the growth of the

total mass of X is not monotone). Denote the largest root of ψ by λ∗ := inf{λ ≥
0 : ψ(λ) > 0}.

Using PDE theory, Sheu [1] introduces an unusual integral condition which
offers a dichotomy regarding the existence of compact support of the range of X
on the event that it does not survive. Specifically, he shows that there is compact
support on the event that the process does not survive (irrespective of the value
of ψ′(0+)) if and only if

(1)

∫ ∞ 1
√

∫ λ

λ∗
ψ(θ)dθ

dλ <∞.

In this talk, we give a probabilistic interpretation of where this condition comes
from. We do this by looking at the total mass of the super-Brownian motion X
upon its first exit from an increasing sequence of spheres. Let Dt := {x ∈ Rd :
||x|| < t} be the sphere of radius t > 0 around the origin. According to Dynkin’s
theory of exit measures we can describe the mass of X as it first exits the growing
sequence of spheres {Dt, t > 0} as a sequence of random measures on Rd known
as branching Markov exit measures. Fix r > 0 and denote by {XDt , t > r} this
sequence of branching Markov exit measures. Then XDt is a measure supported
on ∂Dt which consists of the configuration of mass of X as it first exits the sphere
Dt.

Consider the total mass process Zt := ||XDt ||, t > r. We show that Z is a time-
varying continuous-state branching process. By looking at its semi-group equations
we can show that it can be assigned a time-dependent branching mechanism,
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Ψ(t, λ) and, moreover, with the help of an important martingale, we can show
that, as t → ∞, this sequence of branching mechanisms converges to one of a
regular continuous-state branching process, say Ψ(∞, λ). It now appears that
Sheu’s condition (1) corresponds precisely to Grey’s condition,

∫ ∞ 1

Ψ(∞, λ)
dλ <∞,

which describes the dichotomy of extinction (all mass has disappeared after a
sufficiently large time) vs extinguishing (mass never disappears but limits to zero).

Intuitively speaking, on the event that X does not survive, there is compact
support if and only if all mass can be contained in a sufficiently large sphere. This
is equivalent to the mass on XDt becoming zero for all sufficiently large t. As
the process XDt behaves ‘asymptotically’ as a continuous-state branching process,
Grey’s condition for extinction for this ‘limiting process’ is precisely what is needed
for the compact support dichotomy. From this reasoning Sheu’s condition emerges.
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Branching Brownian motion with absorption

Jason Schweinsberg

(joint work with Julien Berestycki, Nathanael Berestycki)

Brunet, Derrida, Mueller, and Munier [5, 6] proposed the following model of a
population undergoing selection. The population has fixed size N . Each individual
has k ≥ 2 offspring. The fitness of each offspring is the parent’s fitness plus an
independent random variable with distribution ν, and out of the kN offspring, the
N offspring with the highest fitness survive to form the next generation.

Brunet et al. conjectured that if two individuals are chosen at random in some
generation, then the number of generations back to their most recent common
ancestor is of order (logN)3. Second, they conjectured that if one takes a sample
of n individuals from the population and follows their ancestral lines backwards
in time, then the merging of these lineages is governed by a process called the
Bolthausen-Sznitman coalescent [4]. This means that, unlike for population models
without selection, more than two ancestral lines can merge at once. More precisely,
when there are b lineages, the rate at which k particular lineages simultaneously
merge into one is

∫ 1

0

xk−2(1 − x)b−k dx.

These conjectures remain open. However, in [1], we establish these results for
a process known as branching Brownian motion, which has the same key features
as the model of Brunet et al. but is simpler to analyze. We assume that at time
zero, there is some configuration of particles to the right of the origin. Each
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particle moves according to Brownian motion with a drift of −µ, and each particle
splits into two at rate one. Particles are killed upon reaching the origin. In
our application, particles represent individuals in a population, their positions
correspond to their fitnesses, and branching events represent births.

Kesten [7] showed that if µ ≥
√
2, then this process dies out almost surely, while

if µ <
√
2, then the process survives forever with positive probability. To model a

population of approximately constant size of order N , we take the drift parameter
to be

(1) µN =

√

2− 2π2

(logN + 3 log logN)2
.

Theorem: Let MN(t) be the number of particles at time t. Denote the positions
of the particles at time t by X1,N (t) ≥ · · · ≥ XMN (t),N (t). Let LN = (logN +

3 log logN)/
√
2. Let

YN (t) =

MN (t)
∑

i=1

eµNXi,N (t), ZN(t) =

MN (t)
∑

i=1

eµXi,N (t) sin

(

πXi,N (t)

LN

)

1{Xi,N (t)≤LN}.

Suppose ZN(0)/[N(logN)2] ⇒ ν as N → ∞ for some nonzero probability measure
ν, and YN (0)/[N(logN)3] ⇒ 0. Fix t > 0 and sample n particles uniformly at
random at time t(logN)3. Let ΠN (s) be the partition of {1, . . . , n} such that
i and j are in the same block of ΠN (s) if and only if the ith and jth sampled
particles come from the same ancestor at time (t − s/2π)(logN)3. Then the
finite-dimensional distributions of (ΠN (s), 0 ≤ s ≤ 2πt) converge to those of the
Bolthausen-Sznitman coalescent run for time 2πt.

While the initial conditions appear complicated, ZN(t) is a natural measure of
the “size” of the process at time t, and the initial conditions hold if O(N) particles
are placed in a relatively stable configuration. The (logN)3 time scale and the
appearance of the Bolthausen-Sznitman coalescent match predictions in [5, 6].

The reason that multiple mergers arise is that on rare occasions, one particle
drifts unusually far to the right. When this happens, many of its offspring survive,
as they are able to avoid being killed at zero. Eventually, a significant fraction of
the population can be descended from the particle that drifted far to the right.
Consequently, when ancestral lines are followed backwards in time, many lineages
get traced back to that particle. Because this happens on a time scale that is much
faster than (logN)3, in the limit these ancestral lines merge simultaneously.

A particle must reach approximately LN to have a large enough effect on the
population to produce a multiple merger event. The number of particles to the
left of LN stays close to its expectation. Consequently, if B ⊂ (0, LN) and initially
there is a single particle at x, then the number of particles in the set B at time t
is approximately

∫

B pt(x, y) dy, where for t≫ L2
N , we have

(2) pt(x, y) ≈
2

LN
eµx sin

(

πx

LN

)

e−µy sin

(

πy

LN

)

.
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Note that (2) is proportional to eµx sin(πx/LN ), which is why ZN (t) is the natural
measure of the “size” of the process at time t. Also, one can see from (2) that the
particles quickly settle into a configuration in which the “density” of particles near
y is proportional to e−µy sin(πy/LN). Using this information, one can calculate
that particles reach LN at a rate that is roughly proportional to ZN(t), and that
the time that it takes for a particle to reach LN is O((logN)3).

To understand what happens after a particle reaches LN , consider branching
Brownian motion with the critical drift of −

√
2 started with a single particle at

LN . For y > 0, let M(y) denote the number of particles that would have reached
the level LN − y, had particles been killed upon reaching that level. Neveu [8]
showed that there exists a random variable W such that

(3) lim
y→∞

ye−
√
2yM(y) =W a.s.

We show in [1] that P (W > x) ∼ C/x as x → ∞, where C = 1/
√
2. Because the

contribution of the descendants of the particle that reaches LN is approximately
proportional toM(y) for large y, the rate of jumps greater than x in the population
size is proportional to 1/x, which is the behavior needed for the genealogy of the
population to be described by the Bolthausen-Sznitman coalescent.

The tools discussed above can also be used to obtain some new results about
critical branching Brownian motion, in which the process starts with a single
particle at x > 0 and the drift parameter is µ =

√
2. Let ζ be the time at which

the process goes extinct. We show in [2] that there exist positive constants C1 and
C2 such that for any fixed x > 0, we have

C1xe
√
2xe−(3π2t)1/3 ≤ P (ζ > t) ≤ C2xe

√
2xe−(3π2t)1/3

for sufficiently large t. This improves upon a result on Kesten [7].
One can also consider the asymptotic behavior of the process as the position x

of the initial particle tends to infinity. Let τ = 2
√
2/(3π2). We show in [2] that

for all ε > 0, there exists β > 0 such that for sufficiently large x,

P (|ζ − τx3| > βx2) < ε.

Suppose s = ux3, where 0 < u < τ , and t = τx3 is the approximate extinction
time. Let N(s) be the number of particles at time s. We show in [3] that there
exist positive constants C3 and C4 such that for sufficiently large x,

P (C3x
−3e

√
2(1−s/t)1/3x ≤ N(s) ≤ C4x

−3e
√
2(1−s/t)1/3x) > 1− ε.

Also, let R(s) be the position of the right-most particle at time s, and define
L(s) = (1− s/t)1/3x. We show in [3] that there exists a constant D > 0 such that
for sufficiently large x,

P

(

L(s)− 3√
2
log x−D < R(s) < L(s)− 3√

2
log x+D

)

> 1− ε.
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Finally, we have some information about the configuration of particles at time s.
Roughly speaking, the “density” of particles near y ∈ (0, L(s)) is proportional to

e−
√
2y sin

(

πy

L(s)

)

.
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Fluctuations of the front for a one-dimensional microscopic model for
the spread of an infection

Jean Bérard

(joint work with Alejandro Ramı́rez)

In this talk, I shall discuss a microscopic stochastic model for the spread of an
infection introduced by H. Kesten and V. Sidoravicius. The model consists of
two kinds of individuals, safe and infected, with each site of the one-dimensional
integer lattice bearing a certain number of individuals. Individuals move according
to simple symmetric random walks, with two possibly distinct jump rates for safe
and infected individuals. In the case where both jump rates are positive and
equal, and one starts with a homogeneous Poisson initial condition, Kesten and
Sidoravicius [2, 3] have proved a law of large number for the infection front (in fact,
a shape theorem valid for all dimensions d ≥ 1). In a joint work with A. Ramı́rez
[1], we have obtained a central limit theorem for the position of the front, under
the same assumptions. Our approach is based on the definition of an appropriate
renewal structure for the model. It also provides results when the jump rate of
infected particles is larger than the jump rate of safe particles, up to a slight
modification of the model making the infection remanent.
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Ergodic Theorems at the edge of branching Brownian motion

Louis-Pierre Arguin

(joint work with Anton Bovier, Nicola Kistler)

We prove a conjecture of Lalley and Sellke [4] asserting that the empirical (time-
averaged) distribution function of the maximum of branching Brownian motion
converges almost surely to a double exponential, or Gumbel, distribution with
a random shift. The result is also extended to prove that the empirical joint
distribution of the positions of the particles at the edge converges to a Poisson
cluster process. The method of proof is based on the decorrelation of the maximal
displacements for appropriate time scales. A crucial input is the localization of
the paths of particles close to the maximum that was previously established by
the authors [3]. In [2], this is used to obtain a new result on genealogies of the
extremal particles at different times.
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1. A note on stable point processes arising in branching Brownian
motion. 2. The limiting process of N-particle branching random walk

with polynomial tails

Pascal Maillard

(joint work with Jean Bérard (second part))

In the first part of my talk (based on [4]) I presented a characterization of expo-
nentially stable point processes which arise in the study of the extremal processes
of branching Brownian motion. A point process Z on R is called exponentially
1-stable or exp-1-stable if for every α, β ∈ R with eα + eβ = 1, Z is equal in law to
TαZ+TβZ

′, where Z ′ is an independent copy of Z, Tx is the translation by x and
+ is the addition of measures. Such processes arise in the study of the extremal
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particles of branching Brownian motion and branching random walk and in this
setting, several authors have proven the existence of a point process D on R such
that Z is equal in law to

∑∞
i=1 TξiDi, where (ξi)i≥1 are the atoms of a Poisson

process of intensity e−x dx on R and (Di)i≥1 are independent copies of D and
independent of (ξi)i≥1. This is also called the LePage decomposition of a stable
point process. In my talk, I showed how this decomposition holds in general for
exponentially stable point processes and follows from a simple disintegration of the
Lévy measure of the point process Z. The proof also extends to the general case
of random measures on R. Note that the LePage decomposition holds in much
more general settings including point processes, as shown in [1], who rely on the
theory of harmonic analysis on semigroups.

In the second part of my talk, unrelated to the first, I presented work in progress
(joint with Jean Bérard) on N -particle branching random walk with jumps of
polynomial tails. To be precise, let X be a random variable taking values in [0,∞)
with P (X > x) = 1/h(x), h(x) regularly varying of index α > 1. Consider the
following particle system: Initially, there are N particles located at the origin of
the real line (N is a large integer). At each time step, every particle duplicates,
both copies jump according to the law of X (all independently), and then the
N particles at the highest position are retained; the others are removed from the
system. We show that the speed vN of this system satisfies the asymptotic relation
vN ∼ Cαh

−1(2N log2N)/ log2N as N → ∞, where h−1 is the generalized inverse
of h and Cα is a constant depending on α only. The constant Cα turns out to be
the speed of the process R(t) defined as follows and dubbed the stairs process (see
Figure 1 for a graphical representation).

• R(t) = 0 for all t ≤ 0.
• For t ∈ (n, n+ 1], R(t) is the record process of the x-values of the atoms
of the Poisson point process on (n, n+1]×R+ with intensity µα(dt, dx) =
α(x−R(t− 1))α−11x>R(t−1) dt dx

Note that branching random walks with heavy tails have been considered earlier
in the literature, see [2] for the case of regularly varying tails and [3] for the case
of stretched exponential tails).
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Figure 1. Graphical representation of the stairs process.

Convergence of the law of the maximum of two dimensional Gaussian
free field

Ofer Zeitouni

(joint work with Maury Bramson, Jian Ding)

The discrete Gaussian free field (GFF) {ηv,N : v ∈ VN}, on a box VN ⊂ Z2 of side
length N with Dirichlet boundary data, is the mean zero Gaussian process that
takes the value 0 on ∂VN and satisfies the following Markov field condition for all
v ∈ VN \ ∂VN : ηv,N is distributed as a Gaussian random variable with variance
1, and mean equal to the average over its immediate neighbors given the GFF on
VN \ {v}. One aspect of the GFF that has received intense attention recently is
the behavior of its maximum η∗N = maxv∈VN ηv,N . Set

(1) mN = 2
√

2/π
(

logN − 3
8 log logN

)

.

The following is the main result presented in the talk:
Theorem: The law of the random variable η∗N −mN converges in distribution to
a law µ∞ as N → ∞.

A description of µ∞ is a by-product of the proof. The technique of proof
(which is contained in [2]) involves comparison with branching random walks (or
their modifications), and is of interest even in the study of limit laws for maxima
of branching random walks; in the latter case, convergence was established in a
general setup in [1].

The talk also described some results on inhomogeneous branching Brownian
motion obtained in collaboration with Ming Fang, and with Pascal Maillard.
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Quasi-stationary distributions and Yaglom limits of self-similar
Markov processes

Bénédicte Haas

(joint work with Victor Rivero)

Consider X a continuous time R+-valued strong Markov process. We denote
by Px its distribution started at x > 0. This process is assumed to be self-similar,
which means that there exists some α > 0 such that for all x > 0,

the distribution of {xXtx−α , t ≥ 0} under P1 is Px.

We assume furthermore that T0 := inf{t > 0 : Xt = 0} <∞ P1-a.s..
Our goal is to investigate the existence and characterization of quasi-stationary

distributions and a Yaglom limit for this self-similar Markov process. By Ya-
glom limit, we mean the existence of a deterministic function g and a non-trivial
probability measure ν such that the process rescaled by g and conditioned on non-
extinction converges in distribution towards ν. If the study of quasi-stationary
distributions is easy and follows mainly from a previous result by Bertoin and Yor
[2], that of Yaglom limits is more challenging.

Using the well-known Lamperti representation of self-similar Markov processes
in terms of Lévy processes [1], we prove that a Yaglom limit exits if and only if the
extinction time at 0 of the process is in the domain of attraction of an extreme law.
We then treat separately three cases, according whether the extinction time is in
the domain of attraction of a Gumbel law, aWeibull law or a Fréchet law. In each of
these cases, necessary and sufficient conditions on the parameters of the underlying
Lévy process are given for the extinction time T0 to be in the required domain of
attraction. The limit of the process conditioned to be positive is then characterized
by a multiplicative equation which is connected to a factorization of the exponential
distribution in the Gumbel case, a factorization of a Beta distribution in the
Weibull case and a factorization of a Pareto distribution in the Fréchet case. We
emphasize that the existence of a Yaglom limit, the asymptotic behavior of the
function g and the structure of the measure ν (when they exist) are strongly
different for monotone processes X and non-monotone processes X . Applications
to stable CSPB, stable Lévy trees and self-similar diffusions are then discussed.
See also [3] for a related work and applications to the asymptotic behavior of
solutions to the fragmentation equation.

Our proofs rely partly on results on the tail distribution of the extinction time
T0, which is known to be distributed as the exponential integral of a Lévy process.
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In that aim, new results on such tail distributions are given, which may be of
independent interest. Details can be found in the paper [4].
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Kardar-Parisi-Zhang equation and universality class

Jeremy Quastel

The KPZ equation in d = 1 is,

(1) ∂th = − 1
2 (∂xh)

2 + 1
2∂

2
xh+ ξ

where ξ denotes space-time white noise. It is an equation for a randomly evolving
height function h ∈ R which depends on position x ∈ R and time t ∈ R+. The
derivative u = ∂xh should satisfy the stochastic Burgers equation ∂tu = − 1

2∂xu
2+

1
2∂

2
xu+∂xξ which had been studied earlier: Forster, Nelson and Stephen predicted a

dynamic scaling exponent z = 3/2 which roughly means we expect to see something
interesting on the large scale uǫ(t, x) = ǫ−1/2u(ǫ−3/2t, ǫ−1x) as ǫց 0.

Kardar, Parisi and Zhang reinterpreted (1) as a canonical model for random
interface growth. The idea is to identify three key mechanisms of growth (in real
situations there are of course many others): 1. Slope dependent, or lateral growth;
2. Relaxation; 3. Random forcing. The ∂2xh term represents the simplest possible
form of relaxation/smoothing/diffusion. The simplest model for random forcing
is that it is independent at different positions and different times, so we take it to
be Gaussian space-time white noise. The key term is the lateral growth. It should
depend on the slope only, and in a symmetric way, hence F (∂xh) where F is the
flux function. Expanding F (s) = F (0) + F ′(0)s+ 1

2F
′′(0)s2 + · · · one checks that

the first and second term can be removed by simple changes of coordinates. Hence
we choose (1) as the simplest and therefore canonical model. It is remarkable
that through such a naive derivation, one arrives at what appears to be the only
non-trivial model of this type (see [7], [6], [2]).

Two sided BrownianmotionB(x), x ∈ R normalized to haveE[(B(y)−B(x))2] =
|y − x| is invariant for (1). More precisely [4], the measure corresponding to
B(x) + N , where N is given by Lebesgue measure (i.e. the product measure of
Lebesgue measure for N and two-sided Brownian motion measure for B(·)), is
invariant for (1). For the stochastic Burgers equation, since the global height
shift is killed by the derivative, the statement is simply that a spatial white noise
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is invariant [3]. For other initial data h(0, x), for KPZ, no matter how smooth,
h(t, x) is locally Brownian in x, with the same local diffusivity, for any time t > 0.
However, this means that the KPZ equation (1) is very ill-posed, as the non-linear
term is clearly infinite. It needs some sort of infinite renormalization,

(2) ∂th = −[ 12 (∂xh)
2 −∞] + 1

2∂
2
xh+ ξ.

The problem is that the nonlinear term is really being computed on a larger scale
and is not supposed to be seeing the small scale fluctuations. Bertini and Giacomin
[3], proposed that the solution of KPZ should simply be

(3) h(t, x) = − log z(t, x)

where z(t, x) is the solution of the stochastic heat equation with multiplicative
noise

(4) ∂tz = 1
2∂

2
xz − zξ.

It is to be interpreted in the Itô sense, in which case it is well posed. Recently it
has been shown by M. Hairer [5] that (2) is well-posed with (3) as solutions.

If we look on the large scale hǫ(t, x) := ǫ1/2h(ǫ−3/2t, ǫ−1x) we get

(5) ∂thǫ = − 1
2 (∂xhǫ)

2 + 1
2ǫ

1/2∂2xhǫ + ǫ1/4ξ.

To see fluctuation on this scale is the roughest definition of the KPZ universality
class, which is expected to include a wide variety of stochastically forced systems in
d = 1 with non-linearities. On a finer scale one expects to see the random matrix
distributions and Airy processes one obtains in the limit of (5) for special solvable
models. An intriguing question which links KPZ to the topic of the meeting is

Conjecture 1. Consider branching random walks on Z
2 with a “cutoff”, i.e.

some rule which restricts the number of particles per site (for example, one could
instantaneously kill any particle which jumped to, or was born at, at site with more
than K particles). Then the boundary of the occupied set is in the KPZ universality
class.

Asymmetric simple exclusion process. In ASEP, particles on Z attempt
to perform independent continuous time simple random walks jumping to the left
at rate q and to the right at rate p = 1 − q. However, the jumps only take place
if the target site is unoccupied. The height function hASEP (x) is a random walk
path that takes a jump up whenever there is a particle at that site, and a jump
down whenever there is no particle at that site. The height function should be
thought of as a special discretization of the KPZ equation, where the strength of
the non-linearity is q − p. The weakly asymmetric limit of ASEP is:

Theorem 1. [3, 1] Suppose that the initial data ǫ1/2hASEP(t = 0, ǫ−1x) are chosen
to nicely approximate the initial conditions for the KPZ equation. Then there is a
Cǫ(t) such that ǫ1/2hASEP

q−p=ǫ1/2
(ǫ−2t, ǫ−1x)− Cǫ(t) → the Hopf-Cole solution.

C. Tracy and H. Widom discovered exact formulas for ASEP.
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Theorem 2. [9] Let q > p with q + p = 1, γ = q − p, τ = p/q, α = (1− ρ)/ρ. Let
ASEP start with Z− empty and Bernoulli product measure, density ρ on Z+. For
m = ⌊ 1

2 (s+ x)⌋, t ≥ 0 and x ∈ Z

(6) P (hASEP (t, x) ≥ s) =

∫

Sτ+

dµ

µ

∞
∏

k=0

(1− µτk) det(I + µJµ)L2(Γη)

where Sτ+ is a circle centered at zero of radius strictly between τ and 1, and where

Jµ(η, η
′) =

∫

Γζ
exp{Λ(ζ)−Λ(η′)} f(µ,ζ/η′)

η′(ζ−η)
g(η′)
g(ζ) dζ where f(µ, z) =

∑∞
k=−∞

τk

1−τkµ
zk,

Λ(ζ) = −x log(1 − ζ) + tζ
1−ζ +m log ζ, g(ζ) =

∏∞
n=0(1 + τnαζ).

By studying the weakly asymmetric limit using steepest descent, one obtains
exact formulas for KPZ.

Theorem 3. [1], [8] Let z(t, x) be the solution of the stochastic heat equation (4)
with initial data z(0, x) = δ0(x) and h(t, x) = − log z(t, x).

(7) P (h(t, x) + x2

2t + log
√
2πt+ t

24 ≥ −s) =
∫

C

dµ

µ
e−µ det(I −Kσt,µ)L2(κ−1

t s,∞).

where κt = 2−1/3t1/3, C is a contour positively oriented and going from +∞ +
ǫi around R+ to +∞ − iǫ, and Kσ is an operator given by its integral kernel
Kσ(x, y) =

∫∞
−∞ σ(τ)Ai(x+ τ)Ai(y + τ)dτ and σt,µ(τ) =

µ
µ−e−κtτ

.

Since then, formulas for the one-point distribution have been obtained for other
basic scaling invariant initial data (e.g. half-Brownian, and Brownian), in parallel
by mathematicians through exact formulas for various microscopic modes, and
by physicists using the (non-rigorous) replica methods. The most challenging
case seems to be the flat and half-flat case. Proposed formulas were obtained by
Calabrese and le Doussal. The following formula is a rigorously provable version
of their divergent series for E

[

e−Z(t,x)s
]

in the half-flat case Z(t = 0, x) = 1x≥0,

where s = e−
t
24

−t1/3r. It is joint work in progress with Janosch Ortmann and
Daniel Remenik. Taking 0 < δ1 < δ2 << 1 the formula is

∞
∑

k=0

1

(2πi)2kk!

∫

(δ1+iR)k
d~u

∫

(δ2+iR)k
d~v

∏

a<b

Γ(ua − ub + va + vb)Γ(ub − ua + va + vb)

Γ(−ua − ub + va + vb)Γ(ua + ub + va + vb)

×
∏

a

2π

sin(−2πua)

Γ(2va)

Γ(2(ua + va))
e

tu3
a

24
+uavax

2
+

tuav2a
8

−2rt1/3ua det

[

1

ua + ub + va − vb

]

.
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Last passage percolation and traveling fronts

Alejandro F. Raḿırez

(joint work with Francis Comets, Jeremy Quastel)

We consider the following stochastic process introduced by Brunet and Derrida
[3]. It consists of a fixed number N ≥ 1 of particles on the real line, initially at the
positions X1(0), . . . , XN (0). With {ξj,i(s) : 1 ≤ i, j ≤ N, s ≥ 1} an i.i.d. family of
real random variables, the positions evolve as

(1) Xi(t+ 1) = max
1≤j≤N

{

Xj(t) + ξj,i(t+ 1)
}

.

The vector X(t) describes the location after the t-th step of a population under
reproduction, mutation and selection keeping the size constant. Given the current
positions of the population, the next positions are a N -sample of the maximum of
the full set of previous ones evolved by an independent step. It can be also viewed
as long-range directed polymer in random medium with N sites in the transverse
direction,

(2) Xi(t) = max
{

Xj0(0) +

t
∑

s=1

ξjs−1,js(s); 1 ≤ js ≤ N ∀s = 0, . . . t− 1, jt = i
}

,

as can be checked by induction (1 ≤ i ≤ N). The model is long-range since the
maximum in (1) ranges over all j’s.

Traveling fronts appear in mean-field models for random growth. This was
discovered by Derrida and Spohn [5] for directed polymers in random medium on
the tree, and then extended to other problems [7, 8].

The present model was introduced by Brunet and Derrida in [3] to compute the
corrections for large but finite system size to some continuous limit equations in
front propagation. Corrections are due to finite size, quantization and stochastic
effects. They predicted, for a large class of such models where the front is pulled
by the farmost particles [3, 4], that the motion and the particle structure have
universal features, depending on just a few parameters related to the upper tails.
Some of these predictions have been rigorously proved in specific contexts, such
as the corrections to the speed of the Branching Random Walk (BRW) under the
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effect of a selection [1], of the solution to KPP equation with a small stochastic
noise [9], or the genealogy of branching Brownian motions with selection [2]. For
the so-calledN -BBM (branching Brownian motion with killing of leftmost particles
to keep the population size constant and equal to N) the renormalized fluctuations
for the position of the killing barrier converge to a Levy process as N diverges [6].

We now give a flavor of our results. The Gumbel law G(0, 1) has distribution
function P(ξ ≤ x) = exp(−e−x), x ∈ R. In [3] it is shown that an appropriate
measure of the front location of a state X ∈ RN in this case is

(3) Φ(X) = ln
∑

1≤j≤N

eXj ,

and that Φ(X(t)) is a random walk, a feature which simplifies the analysis. For an
arbitrary distribution of ξ, the speed of the front with N particles can be defined
as the almost sure limit

vN = lim
t→∞

t−1Φ(X(t)).

Our first result is the scaling limit as the number N of particles diverges.

Theorem 1. Assume ξj,i(t) ∼ G(0, 1). Then, for all sequences mN → ∞ as
N → ∞,

Φ(X([mNτ ]))− βNmNτ

mN/ lnN

law−→ S(τ)

in the Skorohod topology with S(·) a totally asymmetric Cauchy process with Lévy
exponent

ψC := iCu− π

2
|u|

{

1 + i
2

π
sign(u) ln |u|

}

and where

βN = ln bN +Nb−1
N lnmN ,

with ln bN = lnN + ln lnN − γ
lnN +O( 1

ln2 N
).

Fluctuations of the front location are Cauchy distributed in the large N limit.
Keeping N fixed, the authors in [3] find that they are asymptotically Gaussian as
t→ ∞. We prove here that, as N is sent to infinity, they are stable with index 1,
a fact which has been overlooked in [3]. The Cauchy limit also holds true in the
boundary case when time is not speeded-up (mN = 1) and N → ∞.

We next consider the case when ξ is a perturbation of the Gumbel law. Define
ε(x) ∈ [−∞, 1] by

(4) ε(x) = 1 + ex lnP(ξ ≤ x).

Note that ε ≡ 0 is the case of ξ ∼ G(0, 1). The empirical distribution function
(more precisely, its complement to 1) of the N -particle system (1) is the random
function

(5) UN (t, x) = N−1
N
∑

i=1

1Xi(t)>x.
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This is a non-increasing step function with jumps of size 1/N and limits
UN (t,−∞) = 1, UN (t,+∞) = 0. It has the shape of a front wave, propagat-
ing at mean speed vN , and it combines two interesting aspects: randomness and
discrete values. We will call it the front profile, and we study in the next result
its relevant part, around the front location.

Theorem 2. Assume that

(6) lim
x→+∞

ε(x) = 0, and ε(x) ∈ [−δ−1, 1− δ],

for all x and some δ > 0. Then, for all initial configurations X(0) ∈ RN , all
k ≥ 1, all KN ⊂ {1, . . . , N} with cardinality k, and all t ≥ 2 we have

(7)
(

Xj(t)− Φ(X(t− 1)); j ∈ KN

)

law−→ G(0, 1)⊗k, N → ∞,

with Φ from (3), and moreover,

(8) UN

(

t,Φ(X(t−1)) + x
)

−→ u(x) = 1− e−e−x

uniformly in probability as N → ∞.

Finally, we study the finite-size corrections to the front speed in a case when
the distribution of ξ is quite different from the Gumbel law.

Theorem 3. Let b < a and p ∈ (0, 1), and assume that the ξj,i(t)’s are integrable
and satisfy

(9) P(ξ > a) = P(ξ ∈ (b, a)) = 0, P(ξ = a) = p, P(ξ ∈ (b− ε, b]) > 0

for all ε > 0. Then, as N → ∞,

vN = a− (a− b)(1− p)N
2

2N + o
(

(1− p)N
2

2N
)

.

We note that in such a case, in the leading order terms of the expansion as
N → ∞, the value of the speed depends only on a few features of the distribution
of ξ: the largest value a, its probability mass p and the gap a − b with second
largest one. All these involve the top of the support of the distribution, the other
details being irrelevant. Such a behavior is expected for pulled fronts.
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Behaviour near the extinction time in self-similar fragmentations with
negative index

Christina Goldschmidt

(joint work with Bénédicte Haas)

This work is based on the paper [5]. We study a Markovian model for the random
fragmentation of an object. The state at any time takes values in

S =

{

s = (s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0,

∞
∑

i=1

si <∞
}

,

where s ∈ S represents the masses or sizes of the blocks present in the system.
The transition mechanism depends only on these sizes and is characterised by
two parameters: α ∈ R (the index of self-similarity) and a probability measure
ν on S1 \ {1}, where S1 = {s ∈ S :

∑∞
i=1 si = 1} and 1 = (1, 0, 0, . . .) (ν is

called the dislocation measure). Different blocks evolve independently. A block of
size x fragments at rate xα into sub-blocks of random sizes (xS1, xS2, . . .) where
(S1, S2, . . .) ∼ ν. We write F (t) = (F1(t), F2(t), . . .) ∈ S for the state at time t
and, by default, take F (0) = 1. This is a special case of a model introduced by
Bertoin in [3] (in particular, he allowed the possibility of an infinite dislocation
measure ν, which means roughly that splitting events can take place on a dense
set of times). We note that F started from state x1 has the same law as xF (xα·)
with F started from 1.

The Markov process (F (t), t ≥ 0) is clearly transient and has an absorbing state
at 0 = (0, 0, . . .). Its behaviour, however, is heavily dependent on the sign of α;
here we focus on the case α < 0, where small blocks split faster than larger ones.
Indeed, jumps of the fragmentation accumulate in such a way that the random
time

ζ = inf{t ≥ 0 : F (t) = 0}
is almost surely finite. We call ζ the extinction time.

We observe that F can be thought of as a discounted branching random walk,
a term coined by Athreya [2] in the case where the dislocation measure is ν =
δ(1/2,1/2,0,...). Imagine that we start with a single particle, of unit mass, whose
displacement from the origin is exponentially distributed with parameter 1. Par-
ticles give birth to offspring particles of relative masses (S1, S2, . . .) distributed
according to ν. In general, a particle of size x gets a displacement away from
its parent distributed as x−α times an independent standard exponential random
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variable. The random variable ζ then corresponds to the limiting position of the
rightmost particle in this model.

In our work, we investigate how the fragmentation process F behaves as it
approaches its extinction time.

Theorem 1. Suppose that ν is non-geometric (i.e.

ν(si ∈ rN ∪ {0} for all i ≥ 1) = 0

for every r ∈ (0, 1)) and such that
∫

S1
s−1
1 ν(ds) < ∞. Then there exists a non-

trivial càdlàg S-valued self-similar process (C(t), t ≥ 0) such that, as ǫ→ 0,

(

ǫ1/αF ((ζ − ǫt)−), t ≥ 0
)

→ (C(t), t ≥ 0)

in distribution for the Skorohod topology, with the pointwise distance on S.

We proved an analogous version of this result in our earlier paper [4] for the
stable fragmentations, a particular class of self-similar fragmentations which have
infinite dislocation measures. The stable fragmentations can be represented in
terms of stable Lévy trees and the methods used in our earlier paper rely heavily
on excursion theory for these trees. The methods used in the present work are
quite different. A key tool is the last fragment process, (F∗(t), t ≥ 0), which
represents the size of the block at time t which is the ancestor of the unique
block which disappears at time ζ. (That this statement makes sense is something
which requires proof!) Of course, F∗ is not measurable with respect to the natural
filtration of the fragmentation process. However, it turns out that we can use it
to give us a spine decomposition of the fragmentation.

First, let 0 = T0 < T1 < T2 < . . . be the successive split times of F∗, so
that Tn → ζ almost surely as n → ∞. Then, if we think about the process
from the perspective of the “natural timescale” for the last fragment (i.e. scaling
the last fragment back to have size 1), at time Tn, our updated notion of the
extinction time is given by Zn := (F∗(Tn))α(ζ − Tn). It turns out that (Zn)n≥0

is a time-homogeneous R+-valued Markov chain in its own filtration which, by
standard Foster-Lyapunov criteria, can be shown to possess a unique stationary
distribution to which it converges. Moreover, the Markov chain (Zn)n≥0 drives a
bigger Markov chain (Zn,Θn,∆n)n≥0 which additionally tracks the relative sizes
of the fragments produced by the split at time Tn (Θn corresponds to the last
fragment and ∆n to the others). The whole state of the fragmentation at time
ζ − ǫ can be described as a complicated functional of these quantities. As ǫ → 0,
the picture becomes stationary, and this gives rise to the limit in distribution
stated in the theorem. Our proof makes crucial use of Markov renewal theory, as
presented, for example, in Alsmeyer [1].

An interesting consequence of Theorem 1 is that it gives us access to a stationary
measure for the fragmentation process F (since F is transient, this is necessarily
an infinite measure).
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Theorem 2. Suppose that ν is non-geometric and that
∫

S1
s−1−ην(ds) < ∞ for

some η > 0. Then the σ-finite measure λ on (S,B(S)) defined by

λ(A) =

∫ ∞

0

P(C(t) ∈ A)dt

for A ∈ B(S) is invariant for the transition kernel of the fragmentation process.
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The size of the giant component in preferential attachment networks

Maren Eckhoff

(joint work with Peter Mörters)

We study the preferential attachment model introduced in [1]. Fix a concave
function f : N0 → (0,∞), called attachment rule, with f(0) ≤ 1 and f(k + 1) −
f(k) < 1 for all k ∈ N0. A growing sequence (Gn : n ∈ N) of random graphs is
defined by the following dynamics:

• Start with one vertex labelled 1 and no edges;
• Given the graph Gn, we construct Gn+1 from Gn by adding a new vertex
labelled n + 1 and, for each m ≤ n independently, inserting the directed
edge (n+ 1,m) with probability

f(indegree of m at time n)

n
.

The network (Gn)n has a giant component if there exists a constant θ(f) > 0 such
that

(1)
#vertices in the largest component of Gn

n

P−→ θ(f) as n→ ∞.

Dereich and Mörters [2] coupled the neighbourhood of a vertex in the graph to
a certain multitype branching random walk (BRW) with absorbing barrier at the
origin. Offspring correspond to older vertices the further left of the origin they
are located. The coupling was heuristically explained in the talk. Every particle
in the BRW gives birth to a Poisson number of offspring to its left and an infinite
number of offspring to its right, where all but a finite number of right-offspring
are immediately killed by the absorbing barrier. The type of a particle represents
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its relative position to its parent.
Dereich and Mörters [2] proved that the convergence in (1) holds and that the
limit θ(f) is equal to the survival probability of the BRW with absorption. If the
asymptotic slope of the attachment rule γ := limk→∞ f(k)/k is greater or equal
than 1/2, then θ(f) > 0. If γ < 1/2, then there exists δ ∈ [0, f(0)) such that the
network sequence generated with attachment rule g(k) = f(k) − δ does not have
a giant component.
In the case γ < 1/2, we study the behaviour of θ(f) when f is close to criticality.

Let

Aαg(τ0) := Eτ0

[

∑

|x|=1

e−αV (x)g(τ(x))
]

,

the Laplace transform of the offspring distribution of a particle of type τ0. Here,
V (x) denotes the displacement of particle x to its parent’s position and τ(x) de-
notes its type. Let ρ(α) be the spectral radius of Aα on the space of continuous,
bounded functions and α∗ the minimizer of ρ.

Theorem 1. Let (ft)t be attachment rules with γt < 1/2 and θ(ft) > 0 for all t.
If (ft)t is pointwise descreasing with ft ↓ f and θ(f) = 0, then

lim sup
t→∞

√

log ρt(α∗
t ) log θ(ft) ≤ −

√

π2ρ′′(α∗)

2
α∗.

Here, all quantities derived from ft are marked by an index t.
The most important parameter choice is f affine, that is f(k) = γk + β for

γ ∈ [0, 1), β ∈ (0, 1]. Theorem 1 implies that in this case, the size of the giant
component decays exponentially fast at criticality. For instance, denoting by βc =
βc(γ) the largest intercept β with θ(γ ·+β) = 0, we obtain:

Corollary 2. Let 0 ≤ γ < 1/2. Then

lim sup
β↓βc

√

β − βc log θ(γ ·+β) ≤ −π
2

1√
1− γ

.

The proof generalizes the techniques used by Gantert, Hu and Shi [3] to investigate
a fixed BRW without types killed at a wall close to the asymptotic speed of the
BRW. The core of our analysis is then the study of the Markov chain associated
to the BRW via Lyons’ change of measure.
Similar questions have been studied with different methods by Riordan [4] for
certain random graph models. In the case f(k) = β, we recover the upper bound
found by Riordan for the so-called “uniformly grown random graph” or “Dubins’
model”.
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The dual tree of a recursive triangulation of the disk

Nicolas Broutin

(joint work with Henning Sulzbach)

We consider the model of random recursive lamination of the disk introduced by
Curien and Le Gall [4]. The disk we consider is D = {z : 2π|z| ≤ 1}, so that
the perimeter is one and can be identified with [0, 1]. We use Jx, yK to denote the
chord with endpoints corresponding to x < y, x, y ∈ [0, 1].

For us, a lamination is a collection of straight chords of the disk which are
non-intersecting, except possibly at their end points. The model is iterative: At
n = 1, two points are sampled independently with uniform distribution on the
circle. They are connected by a chord which splits the disk into two fragments.
Later on, at each step, two independent points are sampled uniformly at random
on the circle and are connected by a chord if the latter does not intersect any of
the previously inserted chords; in other words the two points are connected by a
chord if they both fall in the same fragment.

At time n the lamination Ln consists of the union of the chords inserted up to
time n. As an increasing closed subset of the disk, Ln converges, and it is proved
in [4] that

L∞ =
⋃

n≥1

Ln

is a triangulation of the disk in the sense that any face of the complement is an
open triangle whose vertices lie on the circumference of the circle (see [1]).

Curien and Le Gall [4] also describe L∞ as the lamination encoded by a random
continuous process. Their analysis relies on the observation [1] that the lamination
Ln may be described by the height function Hn such that for s ∈ [0, 1], Hn(s) is
the number of chords of Ln which intersect the straight line joining the points 0
and s on the circle. Using arguments based on the theory of fragmentations [2],
they prove that there exists a random continuous process M such that, for every
s ∈ [0, 1],

n−β/2Hn(s) → M (s)

in probability as n→ ∞, where β = (
√
17−3)/2. The random process M inherits

the recursive structure of the lamination and satisfies the following distributional
fixed-point equation: let M (0),M (1) denote independent copies of M , let also
(U, V ) be independent of (M (0),M (1)) with density 21{0≤u≤v≤1} on [0, 1]2. Then



1242 Oberwolfach Report 20/2013

0

s

Hn(s)

Figure 1. A lamination, its right-continuous height process and
the corresponding rooted dual tree. Distances in the tree corre-
spond to the number of chords separating fragments in the lami-
nation.
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is distributed as M . Then, the limit triangulation L∞ is encoded by a random
process M : [0, 1] → R+ in the sense that L∞ is the set of all the chords Jx, yK for
which one has

M (x) = M (y) = inf
x≤s≤y

M (s).

The lamination Ln is naturally associated to its dual tree Tn: a node is asso-
ciated to each connected component of D \ Ln, and two nodes are connected by
an edge if the two corresponding connected components share a chord as part of
their boundary. Then, Hn(s) is the distance in Tn between the root (the node as-
sociated to the fragment that has 0 on its boundary) and the node corresponding
to the point s ∈ [0, 1]. In other words, the function Hn encodes the metric of the
tree Tn.

In the same way that a lamination of the disk is associated to a function, a
tree-like metric space can be associated to continuous function f : [0, 1] → R+

such that f(0) = f(1) = 0. One first defines the pseudo-metric

df (x, y) = f(x) + f(y)− 2 inf{f(s) : x ∧ y ≤ s ≤ x ∨ y}
and the equivalence relation ∼f by x ∼f y if df (x, y) = 0. Then Tf = ([0, 1]/∼f

, df ) is a metric space which happens to be a compact real tree in the sense of
[5, 6] (a geodesic metric space without loops).

Curien and Le Gall conjecture that, seen as a metric space, n−β/2Tn (the tree
Tn equipped with the graph distance rescaled by n−β/2) converges to the tree
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encoded by M in the Gromov–Hausdorff sense. We prove that this is indeed the
case by showing:

Theorem [3]. We have

‖n−β/2Hn − M ‖∞ → 0

almost surely and in every Lp, for p ≥ 1.

Classical results about convergence of real trees [6] then imply convergence of
the n−β/2Tn to TM . The proof relies on a new construction of the limit process
M which is functional from the start and allows coupling with the finite-n trees.

We also find the fractal dimension of the metric space TM . For a compact
metric space (X, d), let N(X, r) denote the minimum number of balls of radius r
required to cover X . Then, we prove:

Proposition. We have, almost surely

N(TM , r)

log(1/r)
−−→
r↓0

1

β
.

As a consequence, the box-counting dimension dimM (TM ) = 1/β.
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The shape of multidimensional Brunet–Derrida particle systems

Lee Zhuo Zhao

(joint work with Nathanael Berestycki)

We introduce particle systems in one or more dimensions in which particles perform
branching Brownian motion and the population size is kept constant equal to
N > 1, through the following selection mechanism: at all times only the N fittest
particles survive, while all the other particles are removed. Fitness is measured
with respect to some given fitness function s : Rd → R.

This process can be seen as a multidimensional generalisation of the model of
branching Brownian motion with selection in R introduced by Brunet, Derrida,
Mueller and Munier [6, 7]. This is the model which arises as a particular case of
the above description with d = 1 and s(x) = x.
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The motivation for this process comes from the study of the effect of natural
selection on the genealogy of a population. Using nonrigorous methods, Brunet
et al. made several striking predictions, which we summarise below. Ordering the
particles from right to left (so X1(t) ≥ . . . ≥ XN(t)):

(i) For fixed N , limt→∞(X1(t)/t) = limt→∞(XN (t)/t) = vN , almost surely,
where vN is a deterministic constant such that as N → ∞, vN = v∞ −
c/(logN)2+ o((logN)−2), where v∞ is the speed of the rightmost particle in
a free branching Brownian motion (or free branching random walk if time is
discrete), and c is an explicit constant.

(ii) The genealogical time scale for this population is (logN)3. More precisely,
the genealogy of an arbitrary sample of the population, rescaled by (logN)3,
converges to the Bolthausen–Sznitman coalescent.

The arguments of Brunet et al. [6, 7] relied on a nonrigorous analogy with noisy
Fisher–Kolmogorov–Petrovskii–Piskounov (FKPP) equation

(1)
∂u

∂t
=

1

2

∂2u

∂x2
+ u(1− u),

and relied strongly on ideas developed earlier by Brunet and Derrida [3, 4, 5] on the
effect of noise on such an equation. For this reason this process is sometimes known
as the Brunet–Derrida particle system. From a rigorous point of view, proofs of
(i) can be found in the paper of Bérard and Gouéré [1], while a rigorous proof of
(ii) for a closely related model can be found in [2]. However (ii) remains open for
the original Brunet–Derrida process, though exciting progress in this direction has
been achieved recently by Maillard [8].

We study geometric properties of the multidimensional system and show that
for s(x) = ‖x‖2 (the Euclidean norm) the cloud of particles almost surely travels at
speed converging to the same vN as above and in some possibly random direction.

In the case where s is linear, we also obtain the same speed vN for the cloud of
particles in a deterministic direction depending only on s. Moreover, under some
assumptions on the initial configuration, the shape of the cloud scales like logN
in the direction parallel to the motion but at least (logN)3/2 in the orthogonal
direction. This result is equivalent to the following result of independent interest:
in one-dimensional systems, the genealogical time is lower bounded by (logN)3,
thereby contributing a step towards resolving (ii) in the case d = 1.
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Conditioned regimes of the branching Brownian motion killed on a
boundary

Damien Simon

The branching Brownian motion on the half-line with a negative drift and killing
at 0 exhibits a phase transition between almost-sure extinction (if the drift is too
small) and non-zero survival probability with explosion. An initial motivation of
the study of this model was a comparison to branching Brownian motion with
fixed size selection (the so-called N -BBM). To this purpose, it is interesting to
study our model at time t conditioned to produce a finite number of individuals
at a very large time T . Such events are rare but have non-zero probability and
lead to interesting conditioned dynamics, which can be described through spine
technique and careful studies of the F-KPP equation.

When the drift is too small, i.e. there is a non-zero survival probability, the
conditioned process is defined by sending first T → ∞ and then taking t large.
There is a limit law, initially called quasi-stationary in [1, 2], that exhibits universal
properties as the drift is close to the critical drift. In particular, the divergence
of the size of the population is the same as the relation between size and velocity
in the N -BBM and Bolthausen-Sznitman coalescent is expected to appear for
the genealogies. Moreover, it is conjectured (and it is still open) in [3] that the
renormalized size of the population should be an exponential law.

A major part of the talk consisted of explaining how the properties and conjec-
tures can be guessed directly from the behaviour of solutions of the KPP equation.
Rigorous proofs of partial results have been obtained since then in particular in
[4], by defining suitable martingales inspired by our physical approach.

The second keypoint of the talk was an overview of what happens when the drift
is too large. In this case, there is no such quasi-stationary conditioned regime but
some other non-trivial scalings occur. Since [1, 3], it should be possible to obtain
rigorous results based on similar arguments as the ones in [4] but it has not been
done yet.
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ulations”, (2008), available in french at http://tel.archives-ouvertes.fr/tel-00286612/.



1246 Oberwolfach Report 20/2013

[4] J. Berestycki, N. Berestycki and J. Schweinsberg, The genealogy of branching Brownian
motion with absorption, Ann. Probab. 41(2), (2013), 527–618.

Branching Brownian motion in a strip: Survival near criticality

Marion Hesse

(joint work with Simon C. Harris and Andreas E. Kyprianou)

We consider a branching Brownian motion X in which each particle performs a
standard Brownian motion and is killed on hitting 0 or K. All living particles
undergo branching at constant rate β to be replaced by two offspring particles.
Once born, offspring particles move off independently from their birth position,
repeating the stochastic behaviour of their parent.

We are interested in the following

• What is the critical size of the strip below which survival is no longer
possible?

• How does the survival probability behave near criticality?
• What does the process look like near criticality when conditioned on sur-
vival?

Denote by PK
x the law of the process started from an initial particle at x ∈

(0,K). We can identify the critical width K0 below which survival is no longer
possible as follows.

Theorem: The survival probability pK(x) := PK
x (BBM in (0,K) survives) is

positive if and only if β − π2/2K2 > 0 i.e. if and only if K > K0 := π√
2β

.

The proof uses a spine argument, decomposing X into a Brownian motion
conditioned to stay in (0,K) dressed with independent copies of (X,PK) which
immigrate along its path.
Let us turn to the second question concerning the asymptotics of the survival
probability. We have the following result.

Theorem: Uniformly for all x ∈ (0,K0),

pK(x) ∼ CK sin(πx/K0), as K ↓ K0,

where CK is independent of x and can explicitly be determined as

CK = (K −K0)
3π3

8βK3
0

, as K ↓ K0,

and in particular CK ↓ 0 as K ↓ K0.

The first part of this result can be shown using spine arguments. However, to
identify the exact form of CK given above, we need yet another decomposition of
the PK-BBM. Loosely speaking, we identify the particles with infinite genealogical
lines of descent, that is, particles which produce a family of descendants which
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survives forever. To illustrate this, in a realisation of X , let us colour blue all
particles with an infinite line of descent and colour red all remaining particles.
Thus, on the event of survival, the resulting picture consists of a blue tree ‘dressed’
with red trees whereas, on the event of extinction, we see a red tree only.
Note that a particle at position x has probability pK(x) of being blue. We can
then characterise the corresponding blue and red branching diffusions as follows.
In the blue branching diffusion, each particle

• branches at rate βpK(x),

• moves according to a diffusion with drift
p′

K

pK
.

In the red branching diffusion, each particle

• branches at rate β(1 − pK(x)) ,

• moves according to a diffusion with drift − p′

K

1−pK
.

Red branching diffusions immigrate along the trajectories of the blue particles at
rate 2β(1− pK(x)).

We can then construct a coloured tree starting from x by flipping a coin with
probability 1 − pK(x) of ‘heads’ and if it lands ‘heads’ we grow a red tree with
initial particle at x, while if it lands ‘tails’ we grow a blue tree at x and dress its
branches with red trees.

Theorem: Let K > K0 and x ∈ (0,K). The PK-BBM X is equal in law to
(the colour-blind view) of the coloured tree.

The explicit form of the constant CK can then be derived from a careful study
of the expected growth rate of the blue branching diffusion.
The decomposition above also allows us to answer our last question as it tells us
that the BBM in (0,K) conditioned on survival has the same law as a blue tree
‘dressed’ with red trees. Then, as K ↓ K0, we see that the blue branching rate
βpK drops down to 0, at the same time the red branching rate β(1−pK) increases
to β and the rate of immigration 2β(1− pK) rises to 2β at criticality. Taking into
account the change in the particle motion, the results reads as follows.

Theorem: For any finite time-horizon, the law of the BBM in (0,K) under
limK↓K0

PK
x (·|survival) is equal to the law of a particle system consisting of

• a spine performing Brownian motion conditioned to stay in (0,K0),
• immigration of PK0-BBM at rate 2β.

This work was motivated by recent work on survival of near critical branching
Brownian motion with absorption at the origin by Aı̈dékon and Harris [1] as well
as Berestycki et al. [2] .
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Near critical survival probabilities for branching Brownian motion
with killing

Simon Harris

(joint work with Elie Aı̈dékon, Andreas Kyprianou, Marion Hesse)

We will consider a branching Brownian motion where particles have a drift −ρ,
binary branch at rate β and are killed if they hit the origin. This process is
supercritical if and only if β > ρ2/2 and we will discuss the behaviour of the
survival probability in the regime as criticality is approached. This is joint work
with Elie Aı̈dékon (Paris VI).

We will present some of the key ideas and techniques used in our proofs; namely,
product martingales, additive martingale, the many-to-few lemma and stopping
lines. Our approach gives alternative proofs to those found in [1, 2] in which the
genealogy of the particles is also investigated.

We also briefly mention the closely related subsequent joint work with Marion
Hesse and Andreas Kyprianou [3] for drifting BBM where there is killing at both
0 and K.
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