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Abstract. Geometric knot theory studies relations between geometric prop-
erties of a space curve and the knot type it represents. As examples, knotted
curves have quadrisecant lines, and have more distortion and more total cur-
vature than (some) unknotted curves. Geometric energies for space curves
– like the Möbius energy, ropelength and various regularizations – can be
minimized within a given knot type to give an optimal shape for the knot.

Increasing interest in this area over the past decade is partly due to various
applications, for instance to random knots and polymers, to topological fluid
dynamics and to the molecular biology of DNA. This workshop focused on the
mathematics behind these applications, drawing on techniques from algebraic
topology, differential geometry, integral geometry, geometric measure theory,
calculus of variations, nonlinear optimization and harmonic analysis.

Mathematics Subject Classification (2010): 57M, 53A, 49Q.

Introduction by the Organisers

The workshop Geometric Knot Theory had 23 participants from seven countries;
half of the participants were from North America. Besides the fifteen main lectures,
the program included an evening session on open problems. One morning session
was held jointly with the parallel workshop “Progress in Surface Theory” and
included talks by Joel Hass and Andre Neves.

Classically, knot theory uses topological methods to classify knot and link types,
for instance by considering their complements in the three-sphere. But in recent
decades there has been increasing interest in connecting these topological knot
types with geometric properties of the various space curves representing them, and
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in finding optimal geometric shapes for a given knot type by minimizing various
energy functionals.

To find an optimal shape for a given knot, one usually minimizes some geometric
energy. We emphasize that the concept of “energy” is very general here. For
instance, we can build polygonal “stick knots” of fixed or varying edge length and
let the energy be the number of sticks; we could also restrict these sticks to lie
in a given grid or to form an arc presentation in an open book. Average crossing
number and total curvature are classical examples of energy functions, for which
the infimal value is not achieved but instead recovers diagrammatic information
(minimum crossing number and bridge number, respectively).

It has long been hoped that following the gradient flow of a more suitable
energy functional for curves would lead to an effective method for simplifying the
shape of knots. For example, one might load a curve with electric charge and
let its shape evolve by electrostatic repulsion. A scale-invariant version of the
Coulomb potential, properly renormalized, was introduced by O’Hara and shown
by Freedman, He and Wang to be Möbius-invariant. This gives a very useful
energy for knots and links, where many open problems remain.

Another natural question asks how much rope is needed to tie a given knot or
link. Mathematically the rope is idealized to have fixed circular cross-section: it
is a normal tube around some core curve. We minimize the ropelength, the scale-
invariant quotient of length over thickness. Here thickness (or reach in Federer’s
terminology) is the maximal radius of a normal tube and has many equivalent
formulations useful in different contexts. For instance it is bounded both by the
local radius of curvature and by the closest approach of two different strands of
the knot. On the other hand, it is also the maximal Menger curvature of all triples
of points on the knot, that is, the infimal radius of circles intersecting the knot
three times.

Replacing the maximum of Menger curvature (an L∞ norm) by various Lp

norms, one obtains a whole family of knot energies, interpolating between thickness
on the one hand and repulsive Coulomb-type potentials on the other. When these
energies are finite (or minimized) for a given curve, the smoothness of the curve
and its geometric complexity are both controlled. Recently, the spaces of finite
energy curves for these and related energies have been characterized in terms of
fractional Sobolev spaces. A similar characterization for the Möbius energy made
it possible to analyze its gradient flow, and there is hope that these techniques
can be extended to study geometric flows for integral Menger curvature as well.
In the limit, this could also lead to an analytic understanding of the gradient
flow for ropelength. Moreover, intricate bootstrapping arguments for fractional
orders of differentiability were recently developed to prove smoothness of critical
points for several of these energies. In addition, integral Menger curvature and
its interpolating relatives have successfully been generalized to submanifolds of
arbitrary dimension and co-dimension in Euclidean space, which opens up the
search for corresponding results in the context of higher dimensional (knotted)
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submanifolds, such as finiteness of isotopy types with bounds on integral Menger
curvature and regularity theorems for finite or minimal energy submanifolds.

Another set of interesting questions arises from considering the average values
of geometric functionals over spaces of curves instead of the minimum values. For
instance, we might ask for the average total curvature of a class of curves, or the
average knot type. To get sensible answers here, we must restrict our attention
to finite-dimensional spaces of curves such as the space of polygons with a given
length and a given number of edges. We must also choose a natural probability
measure to integrate our functionals against; this measure also provides the setting
for a theory of random knots. Such random knotted polygons are thought to
provide good models for knotted polymer molecules. The relationship between
the averages over random polygons in a given knot type to the minimum values
for this knot type (and to the topology) is an area of active research. Progress
here could lead to important advances in the statistical physics of polymers and
other entangled systems.

The fifteen talks and the open problem session are documented in the remainder
of this report. The workshop schedule also left free time for informal mathematical
interactions, and many fruitful discussions developed.

On the lighter side, Colin Adams directed an evening of mathematical theater
based on some of his humorous columns for the Mathematical Intelligencer. More
than half the workshop participants acted in one or more of the skits, and the
appreciative audience included almost everyone from both workshops. In addition
to the traditional Wednesday hike to St. Roman, many participants walked to the
Museum for Minerals and Mathematics after the last talk on Friday afternoon.
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Abstracts

Turning knots into flowers

Colin Adams

(joint work with Thomas Crawford, Benjamin DeMeo, Michael Landry, Alex
Tong Lin, MurphyKate Montee, Seojung Park, Saraswathi Venkatesh, Farrah

Yhee)

Traditionally, knots have been studied by considering their projections, where we
allow exactly two strands to cross at a singular point. The minimal number of
such crossings is denoted c(K). In [6], the authors considered projections of graphs,
where they allowed three strands to cross, each strand passing straight through
the crossing. In that paper, they showed that most bipartite graphs do not possess
a projection with only triple crossings of this type.

But this brings up the question, what is true with regard to triple crossings
for knots? In [1], we first prove that every knot possesses a projection with only
triple crossings. Therefore the minimal number of triple crossings for a knot K,
denoted c3(K) is well-defined. One can consider its relation to traditional crossing
number, now denoted c2(K), and see that c2K/3 ≤ c3(K). Although we find links
that realize this lower bound, it is still an open question as to whether any knots
realize this lower bound.

Similar in spirit to the result of Kauffman [4], Murasugi [5] and Thistlethwaite
[7] that span(〈K〉) ≤ 4c2(K), where 〈K〉 is the bracket polynomial introduced
by Kauffman, we prove that span(〈K〉) ≤ 8c3(K). We utilize this to determine
triple crossing number for a variety of knots. Specifically, an alternating knot
such that its reduced alternating projection decomposes into bigon sequences, each
containing an even number of crossings will have c3(K) = c2(K)/2. An alternating
knot such that its reduced alternating projection decomposes into a set of three
crossings, all on a triangle and the rest in bigon sequences, each containing an
even number of crossings, will have c3(K) = (c2(K) + 1)/2.

We also consider quadruple crossings in [3], where four strands of the knot
pass straight through each crossing. We show that every knot has a quadruple
crossing projection and hence a well-defined quadruple crossing number c4(K).
We prove span(〈K〉) ≤ 16c4(K), and use this fact to determine the quadruple
crossing number for a variety of knots and links.

A multi-crossing or n-crossing is a crossing in a projection with n strands of
the knot passing straight through the crossing. We prove that every knot has an
n-crossing projection and hence a minimal n-crossing number, denoted cn(K). We
know that c2(K) > c3(K) ≥ c5(K) ≥ c7(K) ≥ . . . and c2(K) > c4(K) ≥ c6(K) ≥
c8(K) ≥ . . . It remains an open question as to how the n-crossing numbers for n
even and n odd are related.

A particularly intriguing question is whether every knot has a value n for which
cn(K) = 1. That is to say, does every knot possess a projection with just a single
mult-crossing? In [2], we show that this is indeed the case. Moreover, there is
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such a projection such that the loops hanging off the single multi-crossing are not
nested. The projection resembles a flower. Such a projection is called a petal
projection.

Hence we can define the übercrossing number (least n for the multi-crossing
in a projection with a single multi-crossing) and the petal number (least n for
the multi-crossing in a petal projection). Note that a petal projection is an arc
projection, and hence α(K) ≤ p(K).

We determine the petal number of all knots of nine or fewer crossings. We also
use arc index to show that the petal number of the (r, r + 1)-torus knots is 2r+ 1.

A variety of open problems come out of this work. Instead of each knot having
a single crossing number, now each knot has a spectrum of crossing number values.
What is the behavior of this spectrum? Do certain families of knots come out of
this viewpoint on knots? A petal projection is a braid representation of a very
specific type. What can we say about the braids that result? And how do these
new invariants relate to the traditional knot invariants?
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Gradient flow for the Möbius energy

Simon Blatt

In his 1991 paper [4], Jun O’Hara introduced the Möbius energy

E(Γ) :=

∫

Γ

∫

Γ

(

1

|y − x|2 − 1

dΓ(x, y)2

)

dH1(y)dH1(x)

for embedded curves Γ ⊂ R3, where dΓ(x, y) denotes the length of the shorter
arc connecting the two points x and y and H1 is the one-dimensional Hausdorff
measure. We want to discuss some recent results regarding the negative gradient
flow of this energy. We are looking at a smooth family of embedded closed curves
Γt, t ∈ [0,∞) which satisfies the evolution equation

(1) ∂⊥
t Γt = −HΓt ∀t ∈ [0, T )
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where HΓt is the L2-gradient of the Möbius energy. Already Freedman, He, and
Wang [2] showed that this gradient can be expressed by

HΓ := 2 lim
ε→0

∫

Γ−Bε(x)

(

2
P⊥
τΓ(x)

(y − x)

|y − x|2 − κΓ(x)

)

dH1(x)

|y − x|2 .

In the formula above τΓ stands for the unit tangent along Γ and P⊥
τΓ(x)

= id −
〈·, τΓ(x)〉τΓ(x) denotes the orthogonal projection of R3 onto the normal space of
Γ in x.

Due to the Möbius invariance of this energy and based on numerical experi-
ments, one expects that in general this flow develops singularities after finite or
infinite time. In this talk we analyze these singularities by constructing a blowup
profile.

The fundamental result is the following: There is an ε > 0 such that either the
solution of the gradient flow smoothly exists for all time or there exists a sequence
of times tj , radii rj → 0 and points xj ∈ Γtj such that

∫

Γtj
∩Brj

(xj)

∫

Γtj
∩Brj

(xj)

|τΓtj
(x) − τΓtj

(y)|2

|x− y|2 dH1(y)dH1(x) ≥ ε,

i.e. a small quantum of energy concentrates as we approach the singularity. Fur-
thermore, by picking the times tj and points xj a bit more carefully one can show
that the rescaled curves

Γ̃j :=
1

rj

(

Γtj − xj

)

satisfy

‖∂k
s Γ‖L∞ ≤ Ck.

Hence, using Arzela-Ascoli’s lemma we can choose a subsequence of Γ̃j converging

locally smoothly to a limit curve Γ̃∞, the blowup profile. Due to our construction,
this profile will be properly embedded, has finite Möbius energy, cannot be a
straight line, and satisfies the equation

(2) HΓ̃∞ ≡ 0.

In the last part of the talk, we discussed compact and non-compact planar solu-
tions of (2) using the following interpretation of this equation which is motivated
by the work of He [3]. In contrast to He’s approach, we do not explicitly use the
Möbius invariance of the energy:

Given two points x, y ∈ Γ there is either a unique circle or a straight line – which
we like to think of as a degenerate circle – going through x and y and tangent to
Γ at x. Note that this is the same circle, used to define the integral tangent-point
energies. We denote by κΓ(x, y) the curvature vector of this circle in x and set
κΓ(x, y) = 0 if the tangent on Γ in x is pointing in the direction of y – which is
the curvature of the straight line. Since

κΓ(x, y) = 2
P⊥
τ(x)(y − x)

|y − x|2 ,
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Figure 1. This picture shows the two circles playing a role in
the geometric interpretation of the Euler-Lagrange equation of
the Möbius energy: The blue circle is the osculating circle at x
while the red circle is the circle going through x and y and tangent
to Γ at x.

HΓ ≡ 0 is equivalent to

lim
ε→0

∫

Γ−Bε(x)

κΓ(x, y) − κΓ(x)

|y − x|2 H1(y) = 0

for all x ∈ Γ.
Using this geometric version of the equation, we can prove the following

Theorem 1. Let Γ ⊂ R2 be a properly embedded open or closed smooth curve of
bounded curvature which satisfies

H̃Γ := 2 lim
ε→0

∫

Γ∩(B 1
ε
(x)−(Bε(x))

(

2
P⊥
τΓ(x)

(y − x)

|y − x|2 − κΓ(x)

)

dH1(x)

|y − x|2 = 0.

Let furthermore x ∈ Γ be a point in which the curvature of Γ does not vanish, and
such that the open ball Bx whose boundary is the osculating circle on Γ satisfies
either Bx ∩ Γ = ∅ or Γ ⊂ Bx. Then Γ = ∂Bx, i.e. Γ agrees with its osculating
circle in x.

Since all planar curves except the straight lines have such a point x, we get

Theorem 2. The only properly embedded open or closed smooth curves Γ ⊂ R2

which satisfy H̃Γ are circles and straight lines.

In [1] it was proven that near local minimizers the flow exists for all time and
converges to a local minimizer on the same energy level as time goes to infinity.
Combining this with the argument above, we get that the flow for closed planar
curves exists for all time. A similar analysis of the asymptotic behavior for planar
curves finally leads to

Theorem 3. If Γ0 is a planar curve, the solution of (1) exists smoothly for all
time and converges to a circle as t → ∞.
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Universal constructions on spaces of knots with relations to finite-type
invariants

Ryan Budney

The topic of this presentation is spaces of knots, meaning spaces of embeddings
such as Emb(Sj, Sn) = {f : Sj → Sn smooth embedding } with the ‘Whitney
topology’. There is the corresponding space Kn,j , which is the space of smooth
embeddings Rj → Rn which agree with the standard embedding x 7−→ (x, 0)
outside of Dj ⊂ Rj. We call Kn,j the space of ‘long knots’. A basic theorem is
that there is a homotopy-equivalence

Emb(Sj , Sn) ≃ SOn+1 ×SOn−j
Kn,j

provided n > j. The idea is to consider Euclidean space as a tangent space to
Sn, so one-point-compactification gives a map Kn,j → Emb(Sj , Sn), the action of
SOn+1 on Sn and SOn−k on Rn fixing Rj × {0} gives the remaining map.

The Vassiliev approach to studying Kn,1 is to consider Kn,1 ⊂ En,1 which is the
space of smooth maps R → Rn with x 7−→ (x, 0) for x /∈ [−1, 1]. En,1 is an affine
vector space so it is contractible. En,1 \ Kn,1 is a naturally stratified space, and
essentially the Spanier-Whitehead dual of Kn,1. In Vassiliev’s work he replaces
En,1 with a collection of contractible finite-dimensional subspaces of En,1 that
exhaust En,1, making the Spanier-Whitehead duality explicit. The stratification
gives a spectral sequence for computing the homology and cohomology of En,1 \
Kn,1, known as the Vassiliev spectral sequence [5].

A parallel approach to studying embeddings is due to Goodwillie and Weiss [3].
This uses the formalism of Functor Calculus, which studies the Taylor approxima-
tions to the cofunctor O ∋ U 7−→ f|U where O is a category of open subsets of R
with morphisms given by inclusion. This functor is taking values in a category of
embeddings of open subsets of R into Rn. Provided the open subset is not all of R,
these spaces have the homotopy-type of configuration spaces (labelled with tan-
gent vectors). Such spaces (where the domain is not all R) form a diagram (maps
given by restriction) whose homotopy-limit is called the Taylor approximation to
the functor. If we restrict the intervals to have k or less connected components,
again morphisms by restriction we get the k-th stage of the Taylor tower. The map
is denoted Kn,1 → TkKn,1. Goodwillie, Weiss and Klein show that this map is
(k−1)(n−3)-connected. There is a naturally-associated spectral sequence to such
homotopy-limits, and this essentially agrees with the Vassiliev spectral sequence,
up to a re-grading.
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The Hatcher approach to spaces of knots uses the fibre bundles Diff(Dn) →
Kn,1 where Diff(Dn) is the group of diffeomorphisms of the n-disc Dn which
restrict to the identity on the boundary ∂Dn = Sn−1. The point of this technique
is it converts the study of spaces of knots to the study of the diffeomorphism
groups of manifolds, which in dimension 3 there are many available tools from
geometrization. At this point one has to restrict to n ≤ 3 as the homotopy-
type of Diff(Dn) is not well-understood when n ≥ 4. If we let K3,1(f) de-
note the path-component of f in K3,1 we then have a sequence of fibre bun-
dles Diff(D3) → K3,1(f) whose fibres have the homotopy-type of Diff(Cf),
where Cf is the complement of an open tubular neighbourhood of f in D3, and
the diffeomorphisms restrict to the identity on the boundary. Hatcher’s theorem
that Diff(D3) is contractible has the consequence that K3,1(f) ≃ BDiff(Cf)
or essentially equivalently, ΩK3,1(f) ≃ Diff(Cf ), and theorems of Hatcher and
Waldhausen imply that Diff(Cf ) has the homotopy-type of the discrete group
π0Diff(Cf), so K3,1(f) is an Eilenberg-Maclane space of type K(π, 1). This al-
lowed Hatcher to show that

K3,1(f) ≃







∗ f is the unknot
S1 f is a torus knot
S1 × S1 f is a hyperbolic knot

Moreover, if Cf has a non-trivial JSJ-decomposition, Diff(Cf ) fits is an extension
of groups, leading to an fiber-bundle description of K3,1(f) in terms of simpler
knots and links, from the point of view of the JSJ-decomposition.

My work in this area started by completing the fiber-bundle description begun
by Hatcher. The first result is that there is an action of the operad of 2-cubes on
K3,1 extending the connect-sum operation K3,1 ×K3,1 → K3,1. The main theorem
of [1] states that K3,1 is freely generated by the 2-cubes operad C2 by the subspace
P ⊂ K3,1 of knots which are prime. This has the consequence that

K3,1 ≃
⊔

n≥0

C2(n) ×Σn
Pn.

To put this into context: C2(n) has the homotopy-type of the configuration space of
n distinct, labelled points in the plane. So if we take the component of the connect-
sum of n trefoils in K3,1 the above theorem states that it has the homotopy-type
of C2(n)×Σn

(S1)n, this is the configuration space of n distinct points in the plane,
each of which has an associated unit tangent vector. If on the other hand the
summands were all distinct torus knots, this theorem states the component has
the homotopy-type of C2(n) × (S1)n.

There is a construction called the bar construction whose role is to turn the
multiplicative structure of a wide array of objects (such as groups, monoids and
categories) into that of a loop space. In the above, the concatenation operation
turns K3,1 into a monoid, also describable in terms of the 2-cubes action. So
there is a ‘group completion’ construction, which is a map K3,1 → ΩBK3,1 which
has the property that any monoid map out of K3,1 to a loop space must factor
through this map. A theorem of Peter May’s tells us what the homotopy-type of



Geometric Knot Theory 1325

the group-completion of a free C2-object is, which combined with the above tells
us that

ΩBK3,1 ≃ Ω2Σ2(P ⊔ {∗}).

Thus ΩBK3,1 contains as a retract the double loop space on a countable wedge
of spheres (countably-infinite many in each dimension ≥ 2). This is very interest-
ing since the homotopy-limits in the Goodwillie Calculus naturally fiber over the
homotopy-fiber of the Faddell-Neuwirth diagram of fibrations, so it is very similar
to iterated loop spaces on wedges of spheres. So one might ask, is there a reason
for this? I think there is. Precisely,

Theorem: There is an action of the little intervals operad C1 on the Tay-
lor tower TkK3,1 such that the Taylor approximation map K3,1 → TkK3,1 is C1-
equivariant. Thus the Goodwillie-Weiss Taylor approximation map factors to a
map ΩBK3,1 → TkK3,1.

The satisfying aspect of this theorem is it starts to give a hint as to what objects
like the Taylor tower and the Vassiliev spectral sequence may be converging to,
in the 3-dimensional case. There are further operads that act on the space of
knots K3,1 such as the splicing operad [2], and so one might ask, does the Taylor
approximation factor through these further bar constructions?
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On the ropelength problem of knots

Yuanan Diao

1. Definition of the ropelength of a knot and a knot type.

Let K be a smooth knot. For any point x on the knot, the (geometric) disk
of radius d centered at x on the tangent plane of K at x is denoted by D(x, d).
The thickness of K is defined as TD(K) = sup{d : D(x, d) ∪D(y, d) = ∅, ∀x, y ∈
K} The ropelength of a knot K as a fixed space curve (denoted R(K)) is the
ratio between its arc length L(K) and its thickness: R(K) = L(K)/TD(K). The
ropelength of a knot type K is defined as R(K) = inf R(K) where the infimum is
taken over all K with knot type K.

Intuitively, this means that the ropelength of a particular knot is the minimum
amount of a unit thickness rope needed to tie that knot.

A main problem concerning the ropelength of a knot type is: For a given knot
type K, what is its ropelength (or a good estimate of it)? When the ropelength
problem was first studied, the following problem served as a good motivational
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“open question”: Can one tie a non-trivial knot with a one foot long rope of
diameter one inch? In other word, is the smallest ropelength of all non-trivial
knots less than or equal to 24 (keep in mind that the thickness defined here is the
radius)?

2. Knots on the simple cubic lattice

A counterpart of the ropelength problem in a discrete setting is the problem
concerning the minimum length of knots realized on the simple cubic lattice. Ad-
vantages of studying knots on the cubic lattice include:

• The minimum length of any given knot exists;
• A lattice knot can be made into a smooth thick knot. In general, if K is a
lattice knot with knot type K and the length of K is L(K), then the ropelength
of K R(K) < 2L(K). In other word, if you can realize a particular knot on the
cubic lattice, then one also obtains an upper bound for the ropelength of the
corresponding knot type;
• The converse of the above statement is also true: If L(K) = m, then K can be
realized on the cubic lattice with a length at most 12m (Diao, Ernst and Rensburg
1999 [12]).

Thus the ropelength of a knot type and its minimum length on the cubic lattice
are equivalent up to a scaler multiplication. Various bounds on the ropelength of
knots can be obtained by studying the length required to realize these knots on
the cubic lattice.

3. Global minimum ropelength of non-trivial knots

Let Rg be the global minimum ropelength for all non-trivial knots. The first
“big open question” regarding ropelength asks whether Rg ≤ 24? The following
is a brief history showing the progress on this problem.

• Litherland et al (1999): Rg ≥ 5π ≈ 15.708 [16];

• Cantarella, Kusner and Sullivan (2002): Rg ≥ 2(2 +
√

2)π ≈ 21.452 [4];
• Diao (2003): Rg > 24 [6];
• Denne, Diao and Sullivan (2006): Rg > 31.32 [7].

The main ideas in the proof of Rg > 31.32: Using the fact that every C1,1

non-trivial knot has an alternating essential quadrisecant (Denne 2004), combined
with a careful analysis of the minimum length of each arc of the knot separated
by the intersection points on the alternating essential quadrisecant.

In the case of lattice knots, it is known that the minimum length of any non-
trivial knots realized on the cubic lattice is 24 [5]. The proof is based on a com-
binatorial approach. This has recently been extended to establish the minimum
length for the knots 41 and 51: the minimum length for 41 is 30 (Ishihara 2009)
and the minimum length for 51 is 34 (Ishihara, Shimokawa and Yamaguchi 2009).

4. General lower bounds on ropelength in terms of crossing number
Given a knot (type) K, the question here asks for a lower bound of its ropelength

in terms of its minimum crossing number Cr(K). The following is a brief summary
of some progress concerning this problem:
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• R(K) ≥ 4
√

πCr(K) = 1
2

√

64πCr(K) (Buck and Simon 1999 [1]);

• R(K) ≥ 1
2

(

17.334 +
√

17.3342 + 64πCr(K)
)

(Diao 2003 [6]);

• R(K) ≥ 1.105(Cr(K))
3
4 (Buck and Simon 1999 [1]);

• The 3/4 power in the ropelength lower bound formula R(K) ≥ 1.105(Cr(K))
3
4

is sharp. That is, there exists a family of infinitely many knots such that R(K) ≤
a(Cr(K))

3
4 for some constant a > 0. (Diao and Ernst 1998, Cantarella, Kusner

and Sullivan 1998 [8, 3]);
• There exists a family of infinitely many prime knots such that R(K) ≥ b ·Cr(K)
for any K in this knot family, where b > 0 is some constant (Diao, Ernst and
Thistlethwaite 2003 [13]).

The proves of the first three results above were all based on the analysis of the
average crossing number of the knot K expressed as the following double integral

1

4π

∫

K

∫

K

|(γ̇(t), γ̇(s), γ(t) − γ(s))|
|γ(t) − γ(s)|3 dtds,

where γ(t) is an arc length parameterized equation for K (Freedman and He 1991
[15]). The other two results are obtained by direct construction and the last result
means that the 3/4-power lower bound is not a general upper bound for all knots.

5. Upper bounds on ropelength in terms of crossing number

Given a knot (type) K, the question here asks for an upper bound of its rope-
length in terms of its minimum crossing number Cr(K). The following is a brief
summary of some progresses concerning this problem:

• R(K) ≤ d · (Cr(K))2 for some constant d > 0. In fact, R(K) ≤ 1.64(Cr(K))2 +
7.69Cr(K) + 6.74 (Cantarella et al [2]);

• R(K) ≤ O((Cr(K))
3
2 ) (Diao, Ernst and Yu [14]);

• If K can be realized by a closed braid with n crossings, then R(K) ≤ O(n6/5)
(Diao and Ernst [10]);
• For many knots, R(K) ≤ O(Cr(K)). For example, the family of all Conway
algebraic knots, which includes all 2-bridge knots and Montesinos knots as well as
many other knots (Diao and Ernst [9]);
• R(K) ≤ O(Cr(K) ln5(Cr(K))) for any knot K. That is, the general upper bound
of R(K) is almost linear in terms of Cr(K). However, It remains open whether
O(Cr(K)) is the general ropelength upper bound for any knot K (Diao, Ernst, Por
and Ziegler [11]).

The approaches/methods used in the proofs of the above results include the
page presentation of a knot, divide and conquer technique used in graph theory
and VLSI layout used in computer science, as well as direct constructions and
some other results from graph theory.

6. Some open questions

• Prove or disprove the existence of infinitely many knots {Kn} whose ropelength
grows faster than O(Cr(Kn)).
• Prove or disprove that any alternating knot K has a ropelength at least of the
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order O(Cr(K)).
• A less ambitious version of the last question: find any alternative knot family
{Kn} with a small bridge number but with a ropelength at the order of O(Cr(Kn)).
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The effect of confinement on knotting and geometry of random
polygons

Claus Ernst

(joint work with Y. Diao, E. Rawdon, U. Ziegler)

In this talk we discuss equilateral random polygons in spherical confinement.
The motivation to study such an equilateral random polygon model is the well
known fact that generic material (long DNA chains) is often packed with a very
high density in most organisms. For example, in the prototypic case of the P4
bacteriophage virus, the 3µm-long double-stranded DNA is packed within a vi-
ral capsid with a caliper size of about 50nm, corresponding to a 70-fold linear
compaction [10]. Analysis of DNA extracted from bacteriophage P4 shows topo-
logically interesting aspects: packed DNA is chirally organized and extraced DNA
molecules are circles that are non-trivially knotted with very high probability [2].
Our works models the condensed DNA by equilateral polygons in confinement
and investigates the influence of the restrictiveness of the confinement on topo-
logical and geometric aspects of the polygons. In this study no special packing
mechanisms is used, but polygons are generated based on their probabilities.

Many theoretical aspects of equilateral random polygons without confinement
are well understood. For example, the mean squared distance between two vertices
on an equilateral random polygon of length n that is k vertices apart is k(n −
k)/(n−1) and the mean squared radius of gyration of such a random polygon is (n+
1)/12 [11]. Additionally, certain measurements with a topological flavor such as the
mean ACN (average crossing number) of an equilateral random polygon are also
well researched [8, 1]. Unlike equilateral random polygons without confinement,
the confined equilateral random polygons have not been thoroughly studied and
there are many unanswered questions. The first issue is how to define the models
to reflect the various packing properties the DNA or polymer chains may have.
Once a confined random polygon model is defined, the next issue is determining the
probability distributions of the random polygons based on the model, and the third
issue is the actual generation of the random polygons in accordance with these
(theoretical) probability distributions. In a series of papers, the presenter and his
collaborators have developed algorithms for several models to generate equilateral
random polygons that are confined inside a sphere of fixed radius [4, 5, 6].

This talk concentrates on sample data generated with the model presented in
[5]. The model can be described as follows: Consider equilateral random polygons
that are “rooted” at the origin and assume that there is an algorithm that samples
such objects with uniform probability. Now consider a confinement sphere SR of
radius R ≥ 1 and with center at the origin. Only those sampled equilateral random
polygons are kept which are contained in the confinement sphere SR. Using this
algorithm a large sample of random polygons was generated of lengths ranging
from 10 steps to 90 steps in increments of steps of 10. The confinement radii range
from R = 1 to R = 4.5. The total sample space consists of 162 sets each containing
10, 000 polygons for a total of 1, 620, 000 random polygons.
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For each polygon various geometric quantities such as curvature, torsion, the
average crossing number (ACN), and the writhe are computed as well as the HOM-
FLYPT polynomial. (For information on knot polynomials see any standard book
in knot theory [3].) The latter was used to determine the knot type of each poly-
gon. This generates some (hopefully few) knot identification errors due to the
fact that there exist different knot types with identical HOMFLYPT polynomials.
If there are two knots K1 and K2 with identical HOMFLYPT polynomial and
Cr(K1) < Cr(K1) then we identify the knot as K1.

These computations generates a wealth of data whose evaluation is still in
progress. Figures 1 and 2 give examples of the effects of the confinement radii
R on some topological and geometric properties of the random polygons. In Fig-
ures 1 and 2 the x-axis is the radius of confinement and there are 9 curves, one for
each length of the polygons from length 10 (bottom) to length 90 polygons (top).

For an unconfined polygon the mean total curvature is approximately nπ/2 +
3π/8 [9]. To isolate the excess curvature per edge due to knotting and confinement
we compute an adjusted curvature cadj from the total curvature ctot of a polygon by
using the following formula: cadj = (ctot − 3π/8)/n− π/2. The two curvatures ctot
and cadj are shown in Figure 1. By looking at the curvature of unknotted polygons
we concluded that most of the excess curvature cadj is due to confinement and not
due to knotting.
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Figure 1. One the left, the total curvature ctot of the polygons,
on the right the excess curvature per edge cadj.

Figure 2 shows the probability of knotting on the left and the ACN of knotted
polygons on the right. This demonstrates clearly that confinement increases the
knotting probability and the ACN even for relatively short random polygons. For
example it is known [1] that the ACN of unconfined random polygons of length is
asymptotically 3/16n log(n). However this formula given only an ACN of about
76 for a random polygons of length 90. Figure 2 shows that already for polygons
of length 30 the ACN exceeds 76 as the confinement radius approaches one.

Of special interest is the effect of confinement on the knot spectrum. At what
confinement radius R and at what length n of the polygons are certain knots more
likely? This analysis is ongoing and should be completed in the months to come.
As far as future work is concerned, we already know that confinement alone cannot
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reproduce the knot spectrum observed in the bacteriophage P4 capsid. In order
to achieve this we need to add additional considerations to our model of confined
random polygons. Obvious candidates are a stiffness parameter that makes large
curvature angles less likely or giving a volume to the segments of our random
polygons.
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Figure 2. One the left, the probability of knotting. On the right
the ACN of knotted polygons. The y-axis shows the probability
of knotting and the ACN, respectively.
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Distinguishing physical and mathematical knots and links

Joel Hass

(joint work with Alexander Coward )

The theory of knots and links studies one-dimensional submanifolds of R3. These
are often described as loops of string, or rope, with their ends glued together. Real
ropes however are not one-dimensional, but have a positive thickness and a finite
length. Indeed, most physical applications of knot theory are related more closely
to the theory of knots of fixed thickness and length than to classical knot theory.
For example, biologists are interested in curves of fixed thickness and length as a
model for DNA and protein molecules. In these applications the thickness of the
curve modeling the molecule plays an essential role in determining the possible
configurations.

Two fundamental problems concerning physical knots and links are to show the
existence of a Gordian Unknot and a Gordian Split Link. A Gordian Unknot is
a loop of fixed thickness and length whose core is unknotted, but which cannot
be deformed to a round circle by an isotopy fixing its length and thickness. A
Gordian Split Link is a pair of loops of fixed thickness whose core curves can be
split, or isotoped so that its two components are separated by a plane, but cannot
be split by an isotopy fixing each component’s length and thickness.

In recent joint work with Alexander Coward, we established the existence of a
Gordian Split Link. We thus showed for the first time that the theory of physically
realistic curves of fixed thickness and length is distinct from the classical theory
of knots and links.

Theorem 1. A Gordian Split Link exists.

Figure 1. A Gordian Split Link.

The proof of Theorem 1 is by a construction of a link, illustrated in Figure 1,
that can be split topologically but not physically. While this property is intu-
itively quite clear, its proof is not so simple, and involves new arguments involving
isoperimetric inequalities for families of curves.
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The existence of a Gordian Unknot remains open.
Theorem 1 is a consequence of the following result, which gives an explicit lower

bound on the length required for L1, the unknotted component of L, under the
assumption that L can be split by a physical isotopy.

Theorem 2. If there is a physical isotopy of L = L1 ⊔ L2 that splits its two
components, then the length of L1 must be at least 4π + 6 ≈ 18.566.

Since the link L can be constructed with the length of the unknotted component
L1 equal to 4π + 4, this result implies Theorem 1. Details are available in [3].
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Tabulation of prime knots by arc index

Gyo Taek Jin

(joint work with Hyuntae Kim)

Every knot can be presented on the union of finitely many half planes which have
a common boundary line, so that each half plane contains a single arc of the knot.
Such a presentation is called an arc presentation of the knot. The arc index of a
knot is the minimal number of half planes needed in its arc presentations [2].

A grid diagram of a knot is a knot diagram constructed by finitely many vertical
line segments and the same number of horizontal line segments such that at each
crossing a vertical segment crosses over a horizontal segment. A grid diagram with
n vertical segments is easily converted to an arc presentation on n half planes, and
vice versa. Grid diagrams are useful in several ways. A slight modification of a
grid diagram gives a front projection of its Legendrian imbedding. Grid diagrams
are used to compute Heegaard Floer homology and Khovanov homology.

Various authors have determind the arc index of prime knots up to 11 arcs [1,
3, 4, 5, 6, 7]. In this work, we’ve tabulated prime knots of arc index twelve up to
16 crossings. This is achieved by generating grid diagrams of twelve arcs which
contain all prime knots of arc index twelve. Among the prime knots with arc index
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twelve, the torus knot of type (5,7) has the largest crossing number 28 and it is
the only one with this crossing number.

Crossings 3–9 10 11 12 13 14 15 16

Prime knots with arc index 12 0 123 0 627 1412 3180 6216 7955
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Arc index of pretzel knots of type (−p, q, r)

Gyo Taek Jin

(joint work with Hwa Jeong Lee)

The arc index is equal to the crossing number plus two for alternating knots and
alternating nonsplit links [1, 5]. For nonalternating prime knots and links, it is
not bigger than the crossing number [3, 4].

We’ve determined the arc index of some nonalternating pretzel knots. A pretzel
link of type (−p, q, r) is a knot if and only if at most one of p, q, r is an even number.
We consider the cases that p, q, r ≥ 2, r ≥ q and at most one of p, q, r is even.

❅
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�
�

Theorem 1. Let α(K) and c(K) denote the arc index and the crossing number
of K, respectively.
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(1) If K = P (−2, q, r) is a knot with 3 ≤ q ≤ r, then

α(K) ≤ c(K) − 1.
(2) If K = P (−p, 2, r) is a knot with p ≥ 3, r ≥ 3, then

α(K) = c(K).
(3) If K = P (−p, 3, r) is a knot with p ≥ 3, r ≥ 3, then

α(K) = c(K) − 1.
(4) If K = P (−p, 4, r) is a knot with p ≥ 5, r ≥ 5, then

α(K) = c(K) − 2.
(5) If K = P (−3, 4, r) is a knot with r ≥ 7, then

c(K) − 4 ≤ α(K) ≤ c(K) − 2.
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Menger-type curvature in higher dimensions

S lawomir Kolasiński

For three points x, y and z lying on a rectifiable curve γ in Rn one defines the
Menger curvature by the formula

c(z, y, z) =
1

R(x, y, z)
=

4H2(conv(x, y, z))

|x− y||y − z||z − x| ,

where R(x, y, z) denotes the radius of the circumcircle of x, y and z, H2 is the
2-dimensional Hausdorff measure and conv(x, y, z) denotes the convex hull of the
set {x, y, z}. In 1999, Gonzalez and Maddocks [4] suggested the use of curvature
energies given as integrals of c(x, y, z) in some power p to solve topologically
constrained variational problem of finding the ideal shape (i.e. with the smallest
“curvature”) of a given knot realized as a curve embedded in R

3. This program
has been adopted by many mathematicians - see e.g. [2, 3, 7, 8, 9].

Generalizing Menger curvature to higher dimensional objects is not as straight-
forward as it seems. If one defined the curvature to be the inverse of the radius
of the smallest sphere passing through 4 points lying on a surface, then there ex-
ist C∞-smooth surfaces on which this curvature would be unbounded. In fact,
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the graph of the function (x, y) 7→ xy is an example of such surface (cf. [10, Ap-
pendix B]). Better definitions, which give rise to curvatures which are bounded
whenever the points lie on a C2-smooth surface, were given by Strzelecki and von
der Mosel in [10] and [11].

In my talk I shall focus on the following discrete curvatures

K(x0, . . . , xm+1) =
Hm+1(conv(x0, . . . , xm+1))

max{|xi − xj | : i, j ∈ {0, 1, . . . ,m + 1}}m+2

and Ktp(x, y) =
1

Rtp(x, y)
=

2 dist(x− y, TxΣ)

|x− y|2
defined for x, y, x0, . . . , xm+1 ∈ Σ, where Σ is an m-dimensional, countably recti-
fiable subset of Rn. It is worth noting that whenever Σ is C2-smooth submanifold
of Rn, the curvatures K and Ktp are bounded. The curvature energies I consider
are

E l
p(Σ) =

∫

Σ

· · ·
∫

Σ

sup
xl,...,xm+1∈Σ

K(x0, . . . , xm+1)p dHm
x0

· · · dHm
xl−1

and E l
tp,p given by the same formula but with K replaced by Ktp. Note that, these

energies are invariant under scaling if p = ml. Next, we define the class of “good”
subsets of Rn which contains e.g. all C1-immersed manifolds and all finite sums
of such immersions as well as their bilipschitz images. If p > ml, Σ is a “good”
set and E l

p(Σ) ≤ E or E l
tp,p(Σ) ≤ E, then Σ is in fact an embedded, C1,α-smooth

submanifold of Rn, where α = 1 − ml
p (cf. [5, 11]). Moreover, there exist a scale

R = R(E,m, l, p) and a constant CH = CH(E,m, l, p) such that for each x ∈ Σ,
Σ∩B(x,R) is a graph of some function f , such that ‖Df(y)−Df(z)‖ ≤ CH |y−z|.
The exponent α is optimal as a result of [1, 6].

Rigid control over the graph representation of Σ, resulting from finiteness of
the curvature energy, allows, in consequence, to prove a compactness theorem
for the class of normalized “good” sets with uniformly bounded energy. Then
the existence of minimizers of the energy follows due to lower semi-continuity of
both E l

p and E l
tp,p with respect to C1-convergence.
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Average geometric and topological properties of open and closed
equilateral polygonal chains

Kenneth C. Millett

(joint work with Jorge A. Calvo, Akos Dobay, Laura Plunkett, Eric Rawdon,
Andrzej Stasiak)

Equilateral polygonal chains, both open and closed, is 3-space provide fundamen-
tal models for the spatial structure of biological and physical macromolecules in
addition to being of interest in their own right. The proof of the Frisch-Wasserman-
Delbruch conjecture that the probability that a open or closed chain in 3-space
goes to one as the length goes to infinity coupled with the advent of an apprecia-
tion of the role of knotting in DNA and proteins and, more generally, in polymeric
materials has intensified the desire to understand their geometrical and topological
structure and consequences.

The desire to determine the probability of knotting of closed polygonal n-gons
lead to the development of methods to randomly sample them and the need to
prove that the proposed algorithms did so. For example, in 1994 [2], we proved that
the polygonal fold method provides one way to create a Markov Chain Monte
Carlo, MC2 sampling algorithm. Underlying this theorem is the description of
closed equilateral n-gon as an ordered list of n unit “edge” vectors, i.e. points in
the unit 2-sphere, subject to the requirement that they sum to the zero vector and
that they determine an embedded polygon. The elementary step of the polygonal
fold method is to randomly select two of its vertices and to randomly rotate one to
they segments they determine through a random angle to create a new polygonal
conformation, checking that it is embedded. Another widely used method is the
crankshaft method in which one randomly selects two edge vectors, employs
them to determine an isosceles triangle with is randomly rotated about its base
to define two new vectors which then replace the original pair. The result is a
new polygonal configuration which we proved, [5] also creates a MC2 sampling
method. The HOMFLY [3] polynomial knot invariant is then computed for each
of the generated conformations and employed as a surrogate for the knot type
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identity to estimate the proportion of configurations of each type as a function of
the number n of edges for closed chains.

For open chains, the challenge is quite different as it is very easy to generation
random samples, just take a sequence of random unit vectors and confirm that the
resulting chain is embedded there being no closure constraint. The identification
of the knot type, however, is a matter that lead to a variety of approaches and
associated problems. In an effort to address these issues, we proposed a new
method in 2005 [1, 4]. One determines the center of mass of the chain, placing
unit mass at each vertex, and closes the initial and terminal vertices to a single
point on a sphere of extremely large radius (compared to the diameter of the
conformation). The resulting closed chain is, with probability one, embedded and
thereby determines a knot type associated to the closure point. This process is
locally constant and defined almost everywhere thereby allowing to determine its
knotting spectrum, that is the distribution of proportions of the sphere associated
to each of the finitely many knot types. If one type occurs more than half the
time, one designates that as being the knot type of the open chain. In practice
one estimates the spectrum by considering the closures to an appropriately large
number of uniformly distributed points on the sphere.

The ability to determine the knotting of an open chain enables one to identify
the locus, scaled and shape of knotting in knotted open and closed polygonal
chains [6] including proteins [7]. In addition, one is now able to locate slipknots,
i.e. knotted subchains contained in unknotted subchains, which are now known to
exist in protein structures and occur with probability going to one as the number
of edges in a walk or equilateral polygon goes to infinity [9]. We have applied these
methods to study the existence, scale, and dynamic persistence of knots in open
chains in the simple cubic lattice under “inchworm” moves which we have proved
provide an ergodic sampling of embedded configurations. Intrinsic to embedded
chains in the lattice is an excluded volume that has important consequences for the
character of these structures. Interested in evaluating the consequences of excluded
volume in 3-space chains, Laura Plunkett [8] has developed the ergodic double
reflection sampling method that conserves the desired excluded volume of
configurations during the sampling.

By employing these methods we are able to determine the dependence the
presence of knots and slipknots in open and closed polygonal chains on the number
of edges and, with Plunkett’s MC2 sampling method, on the excluded volume.
Among other properties one is able to study are the squared radius of gyration,
diameter, end-to-end distance or, for example, the persistence of knots in lattice
walks under inchworm dynamics.
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Min-max theory and the energy of links

Andre Neves

(joint work with Ian Agol and Fernando Marques)

Let γi : S1 → R3, i = 1, 2, be a 2-component link. The Möbius cross energy of
the link (γ1, γ2) is defined to be

E(γ1, γ2) =

∫

S1×S1

|γ′
1(s)||γ′

2(t)|
|γ1(s) − γ2(t)|2 ds dt.

The Möbius energy has the remarkable property of being invariant under conformal
transformations of R3 [1]. In the case of knots other energies were considered by
O’Hara [5].

It is not difficult to check that E(γ1, γ2) ≥ 4π|lk(γ1, γ2)|, where lk(γ1, γ2) de-
notes the linking number of (γ1, γ2). This is an immediate consequence of the
Gauss formula:

lk(γ1, γ2) =
1

4π

∫

S1×S1

det(γ′
1(s), γ′

2(t), γ1(s) − γ2(t))

|γ1(s) − γ2(t)|3 ds dt.

By considering pairs of circles which are very far from each other, we see that
the cross energy can be made arbitrarily small. If the linking number of (γ1, γ2)
is nonzero, the estimate says that E(γ1, γ2) ≥ 4π. It is natural to search for the
optimal configuration in that case.

It was conjectured by Freedman, He and Wang [1], in 1994, that the Möbius
energy should be minimized, among the class of all nontrivial links in R3, by the
stereographic projection of the standard Hopf link. The standard Hopf link (γ̂1, γ̂2)
is described by

γ̂1(s) = (cos s, sin s, 0, 0) ∈ S3 and γ̂2(t) = (0, 0, cos t, sin t) ∈ S3,

and it is simple to check that E(γ̂1, γ̂2) = 2π2. Here we note that the definition
of the energy and the conformal invariance property extend to any 2-component
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link in R
n [3]. A previous result of He proved that the minimizer must be isotopic

to a Hopf link [2].
In the talk I explained how to prove this conjecture using the min-max theory

of minimal surfaces.
We now briefly sketch the proof. For any link (γ1, γ2) in R3, we associate

a continuous 5-parameter family of surfaces (integral 2-currents with boundary
zero, to be more precise) in S3 such that the area of each surface in the family is
bounded above by E(γ1, γ2). This family is parametrized by a map Φ defined on
I5, and is constructed so that

• Φ(x, 0) = Φ(x, 1) = 0 (trivial surface) for any x ∈ I4,
• Φ(x, t) is an oriented round sphere in S3 for any x ∈ ∂I4, t ∈ [0, 1],
• {Φ(x, t)}t∈[0,1] is a homotopically nontrivial sweepout of S3 for any x ∈ I4,

• sup{area(Φ(x, t)) : (x, t) ∈ I5} ≤ E(γ1, γ2).

This map Φ has the crucial property that its restriction to ∂I4 × {1/2} is a
homotopically nontrivial map into the space of oriented great spheres, which is
homeomorphic to S3. Therefore the min-max theory developed in [4] shows that

2π2 ≤ sup{area(Φ(x, t)) : (x, t) ∈ I5} ≤ E(γ1, γ2)

Acknowledgments. The author was partially supported by NSF grant DMS-06-
04164.
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Three topics in knot energies

Jun O’Hara

1. Hölder–Lipschitz mixed control

Recently, Marta Szumańska, Pawe l Strzelecki, and Heiko von der Mosel [7]
showed that the boundedness of the integral Menger curvature imposes geometric
constraints called diamond property on knots, where the integral Menger curvature
of a knot K is given by Mp′(K) =

∫∫∫

K3 dxdydz/R(x, y, z)p
′

, where R(x, y, z) is
the radius of the circle through x, y, and z. We have quite similar situation when
some type of the (j, p) energy is bounded, where the (j, p) energy [9] is given by

Ej,p(f) =
∫∫

S1×S1

(

|f(s) − f(t)|−j − |s− t|−j
S1

)p

dsdt, where j and p must satisfy
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jp ≥ 2 and some other conditions so that the functional is well-defined, and f is an
embedding from S1 = R/Z into R3 which is parameterized by the arc-length. In
both cases, we use “sub-critical” parameters for the functionals, p′ > 3 or jp > 2,
so that the functionals have more restrictive effects on knots than scale-invariant
ones. What is essential is the boundedness of both Hölder and Lipschitz norms.
To be precise, if the integral Menger curvature or (j, p) energy is bounded above,
then we have

(1) |f(s) − f(t)| > CL|s− t|S1 , |f ′(s) − f ′(t)| < CH |s− t|αS1

for some 0 < α < 1, CH > 0, and 1 ≥ CL > 0, where |s− t|S1 denotes the (shorter)
arc-length between s and t in S1. This bound gives the control of the variation
of the tangent vector on short subarcs and of the closest approach between pairs
of distant subarcs, in other words, a knot cannot make a sudden turn in a short
subarc, whereas a pair of distant strands cannot be very close to each other.

Let SHL(α,CH , CL) be the set of knots that satisfy the condition (1). If the
Hausdorff disntance between two knots in SHL(α,CH , CL) is small then they are
close with respect to C1-topology and belong to the same knot type. We can also
prove that there are finitely many solid tori {Ni} so that if f ∈ SHL(α,CH , CL),
then, after a motion of R3, f(S1) can be contained in some Ni in a good manner
[10]. If there is a sequence of knots in SHL(α,CH , CL) which belong to a single
knot type [K] then the limit of any convergent subsequence also belong to the
same knot type1. These facts imply the existence of the energy minimizers in each
knot type since there is no fear of having pull-tight phenomena, and the finiteness
of knot types under any threshold of the energy.

2. Energy minimizing torus

This topic is concerned with the characterization of the Clifford torus, just like
the one by the Willmore functional recently proved by Fernando C. Marques and
André Neves [6].

Let S be an embedded surface in R3 without boundary. Let k1(x) and k2(x)
be principal curvatures at a point x on S, ∆(x) given by ∆(x) = (k1(x)− k2(x))2,
and K the Gauss curvature; K = k1k2. Then the surface energy in the sense of
David Auckly and Lorenzo Sadun [2] is given as follows:

(2)

V (x;S) = lim
ε→0

(

∫

S\Bε(x)

d2y

|x− y|4 − π

ε2
+

π∆(x)

16
log
(

∆(x)ε2
)

+
πK(x)

4

)

,

E(S) =

∫

S

V (x;S)d2x,

where d2x and d2y mean the volume elements of S. The factor ∆(x) in the log
term of V (x;S) is put to make the resulting energy scale invariant. Auckly and
Sadun proved that this energy E(S) is invariant under Möbius transformations
[2]. We remark that if S is not embedded then E(S) = +∞.

1This statement has been improved by John Sullivan’s comment at the talk
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Theorem [5]. Let TR be a torus of revolution whose generating circle has radius 1
and center at distance R (R > 1) from the axis of revolution. Then E(TR) attains

the minimum only at R =
√

2. Namely, among Dupin cyclides, only the images of
a stereographic projection of the Clifford torus give the minimum energy.

Problem. (Energy version of the Willmore conjecture) Is it true that if S is an
immersed torus in R3 then E(S) ≥ E(T√

2) and the equality holds if and only if S
is the Clifford torus up to Möbius transformations?

3. Symplectic measure of a 2-component link

This topic is concerned with the characterization of the “best Hopf link”, just
like the one by the Möbius cross energy given by Ian Agol, Marques, and Neves
([1]).

Let L = K1 ∪K2 be a link in S3. Then the product torus K1×K2 is contained
in S3 ×S3 \∆, where ∆ is the diagonal. We can use two structures of S3×S3 \∆
to assign geometric quantities to K1 ×K2.

First is the symplectic structure under the identification S3 × S3 \ ∆ ∼= T ∗S3.
Let ω be the pull-back of the canonical symplectic form of T ∗S3. Since it is
exact,

∫

K1×K2
ω vanishes, but

∫

K1×K2
|ω| doesn’t in general. Let it be denoted by

A(K1,K2), and call it the symplectic measure of the link L. Since ω is invariant
under diagonal action of Möbius transformations on S3×S3\∆, so is the symplectic
measure.

The second is the semi-Riemannian structure (i.e. the indefinite metric with
sign − − − + ++) of the Grassmannian under the identification S3 × S3 \ ∆ ∼=
SO(4, 1)/SO(1, 1) × SO(3).

Theorem [11]. (1) The symplectic measure A(K1,K2) is equal to the measure
of the product torus K1 × K2 with respect to the natural indefinite metric of
SO(4, 1)/SO(1, 1) × SO(3) mentioned above.

(2) Let θL(x, y) be the angle at y between L and the circle which is tangent to
L at x that passes through y. Then the symplectic measure can be expressed as

A(K1,K2) = 2

∫

K1

∫

K2

| cos θL(x, y)|
|x− y|2 dxdy.

(3) The symplectic measure of a 2-component link takes its minimum value 0 if
and only if L is the “best” Hopf link up to Möbius transformations, i.e. L is the
image of a stereographic projection of

{(z, w) ∈ C
2; |z| = 1, w = 0} ∪ {(z, w) ∈ C

2; z = 0, |w| = 1} ⊂ S3.

We remark that the finiteness of A(K1,K2) does not prevent each knot Ki from
having self-intersections.

For a 2-component link type [L], define A([L]) = infL′=K1∪K2∈[L]A(K1,K2).
Then, if L is a separable link or a satellite link of a Hopf link, then Area ([L]) = 0.
On the other hand, if L = K1 ∪K2 is a hyperbolic link each component of which
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is a non-trivial knot, then there is no solid torus H so that K1 is contained in H
and K2 in R3 \H .

Problem. What is A([L])? Is it positive when L is a hyperbolic link?
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Knotted arcs in open chains, closed chains, and proteins

Eric J. Rawdon

(joint work with Kenneth C. Millett, Joanna I. Su lkowska, Andrzej Stasiak)

In traditional knot theory, knots are closed non self-intersecting loops. The
closure condition traps the knotting in the curve so that the curve cannot change
its “type of knotting” without passing a portion of the curve through itself. In
contrast, what the general public calls knots, like knotted shoelaces and garden
hoses, are not mathematically knotted since they have two free ends. Clearly,
shoelaces and garden hoses contain entanglement; the question is how to classify
that entanglement.

Beyond the simple curiosity of understanding knotting in open curves, there
are potential applications in the sciences. There are many entangled chain-like
open objects in nature (e.g. DNA, proteins, and polymers) and the knotting can
determine physical properties of the objects. These considerations have motivated
researchers to study knotting in open curves. While a variety of techniques have
been proposed to classify the knotting in a frozen open configuration, we concen-
trate on a version inspired by writhe and the average crossing number. Namely, for
each direction in the unit sphere S2, we add edges from the endpoints of the config-
uration in the given direction and connect them at infinity [1, 2] to define a closed
curve. This procedure then determines a probability distribution of knot types,
the spectrum of which we consider the “knot type” of the open configuration.
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We are motivated currently by two questions. First, given a closed knot con-
figuration, what is the minimal length arc that creates the knotting in the closed
curve? In analyzing random closed knot configurations, the presence of slipknots
forces one to consider whether the knotting in a proposed minimal length knotted
subarc persists as length is added to one or both ends. But slipknots can be added
after the minimal knotted arc is created as well, so a rigorous definition becomes
delicate. Second, we are interested in knotted proteins. Proteins need to fold
quickly and reproducibly to be functional, so folding into a knot would seem to
be a big disadvantage. The earliest papers found only shallowly embedded knots,
and suggested that the knotting may not be present in the non-crystallized form
of the protein [3, 4]. Later, deeply embedded knots were found, revealing that
knotting can be a feature in protein structures (see, for example, [5, 6]). Recently,
we showed that the entanglement profile in knotted proteins that have the same
function in different organisms were remarkably similar despite large differences
in amino acid sequence and evolutionary separation spanning hundreds of millions
of years [7]. This suggests that knotting has a real function in proteins.

The analysis of knotting in open polygons is still early in its development.
However, the application of the techniques have great potential in understanding
how entanglement affects physical properties of chain-like macromolecules.
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Regularity theory for knot energies

Philipp Reiter

(joint work with Simon Blatt)

We focus on analytical properties of knot energies, i.e. self-avoiding functionals
being bounded below, see O’Hara [14, Def. 1.1]. They are the central object of
geometric knot theory which aims at investigating geometric properties of a given
knotted curve in order to gain information on its knot type.

As one is first of all interested in distinguishing between different knot types,
the fundamental idea is to model some repulsive “force” which prevents the curve
from leaving the ambient knot class by forming a self-intersection. Moreover, one
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hopes to retrieve a notion of “optimal shape”, having strands particularly wide
apart, by minimizing the respective energy. Such a functional can in fact be seen
as a measure of “entangledness”. Following the negative gradient flow of this
functional should simultaneously “untangle” the curve and preserve its knot type.

Knot energies can help model repulsive forces of fibres, whenever self-interaction
of strands should be avoided. Vice versa, attraction phenomena may also be
characterized by maximizing a suitable energy, see [1] for a model in theoretic
biology for the interaction between pairs of stiff filaments via cross-linkers.

The first example of a knot energy was defined by O’Hara [13]. It is the element
E2,1 of the family

(1) Eα,p(γ) :=
∫∫

R/Z×[− 1
2
, 1
2
]

(

1

|γ(u + w) − γ(u)|α − 1

Dγ(u + w, u)α

)p

|γ′(u + w)| |γ′(u)| dw du.

Here α, p > 0, αp ≥ 2, (α − 2)p < 1, and γ ∈ C0,1(R/Z,Rn). The quantity
Dγ(u + w, u) measures the intrinsic distance between γ(u + w) and γ(u) on the
curve γ.

While this energy family, and in particular the so-called “Möbius energy” E2,1,
received much attention, there was a lack of a characterization of finite-energy
curves. A preliminary result on O’Hara’s energies addressed necessary conditions
for finite energy. We could prove [5] that finite energy implies differentiability in
the sub-critical case αp > 2 which fails in the critical (scale-invariant) case αp = 2.
Later on, Blatt was able to fully settle this problem by characterizing finite-energy
curves in terms of Sobolev-Slobodeckĭı spaces [4].

With the aid of sophisticated geometric arguments highly relying on Möbius
invariance, Freedman, He, and Wang [10] proved a regularity result for E2,1 stat-
ing that any local minimizer is C1,1, i.e. it possesses a Lipschitz continuous tan-
gent. Later on, using completely different techniques involving pseudo-differential
operators, He [11] showed how to improve this result to C∞ by setting up a boot-
strapping process.

The latter result was the origin for studying the regularity of stationary points
in the case of the one-parameter sub-family Eα,1, α ∈ [2, 3). Any stationary
point of Eα,1 in the class of injective, arc-length parametrized curves, belonging
to the fractional Sobolev space Wα,2(R/Z,Rn) with cube integrable curvature, is
C∞-smooth [15, 16]. Furthermore, a rigorous proof of Fréchet differentiability is
added.

However, it was not clear whether Wα,2 ∩ W 2,3 was the optimal space for
starting the boot-strapping. In fact, this is not the case: the identification of the
energy spaces by Blatt [4] led to a significant improvement of the regularity result,
providing more elegant proofs and omitting any claim of initial regularity [7].

We do not expect this situation to carry over to the parameter range p > 1 as
these energies seem to be “degenerate”.
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In a next step, we have been able to establish similar results for other knot
energy families such as the generalized tangent-point energies
(2)

TP(p,q)(γ) =

∫

R/Z

∫ 1/2

−1/2

∣

∣

∣
P⊤
γ′(u) (γ(u + w) − γ(u))

∣

∣

∣

q

|γ(u + w) − γ(u)|p |γ′(u + w)| |γ′(u)| dw du.

Here P⊤
γ′(u)a :=

〈

a, γ′(u)
|γ′(u)|

〉

γ′(u)
|γ′(u)| and P⊤

γ′(u)a := a−P⊤
γ′(u)a for a ∈ Rn denote the

projection onto the tangential and normal part along γ respectively. Originally,
the tangent-point energies have been considered in the case p = 2q only where the
integrand amounts to the (−q)-th power of the radius of the circle passing through
γ(u+w) and being tangent to γ(u). Unfortunately, similarly to O’Hara’s energies
for p > 1, these energies are degenerate.

However, in the non-degenerate sub-critical range p ∈ (4, 5), q = 2 one can state

the following regularity result: any stationary point of TP(p,2) with respect to fixed
length, injective and parametrized by arc-length is C∞-smooth [6]. Restricting to
C1-curves, our method of proof, which bases on Blatt’s characterization of energy
spaces [2], works completely without using the techniques developed by Strzelecki
and von der Mosel [18].

Interestingly, many arguments employed for O’Hara’s energies can also be ap-
plied to the generalized tangent-point energies. Therefore, albeit modeling differ-
ent geometrical concepts, these two energy families are not too different from an
analytical viewpoint.

Similar results can be proven for a generalized version of integral Menger cur-
vature [8]
(3)

intM(p,q) :=

∫∫∫

R/Z×[−1
2
, 1
2
]2

|γ′(u)| |γ′(u + v)| |γ′(u + w)|
R(p,q)(γ(u), γ(u + v), γ(u + w))

dw dv du, p, q > 0,

where R(p,q) denotes some variant of the circumcircle function. In the classical
case p = q, Strzelecki, Szumańska and von der Mosel [17] already derived necessary
conditions for finite energy which have been improved by Blatt [3], and Hermes [12]
computed the first variation.

Although our method fundamentally relies on the sub-critical range on which
we can make use of the continuity of γ′, the statement should also hold for the
non-degenerate critical case. Together with Schikorra [9], we could establish a
corresponding result for the Möbius-energy E2,1 that—using sophisticated meth-
ods from harmonic analysis—improves the above-mentioned results by Freedman,
He, Wang [10] and He [11]. In light of the technical difficulties arising here we

expect these situation for the respective elements TP(4,2) and intM(7/3,2) to be
quite involved.
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Appl. Math., 53(4):399–431, 2000.

[12] T. Hermes. Analysis of the first variation and a numerical gradient flow for integral Menger
curvature. PhD thesis, RWTH Aachen, 2012.

[13] J. O’Hara. Energy of a knot. Topology, 30(2):241–247, 1991.
[14] J. O’Hara. Energy of knots and conformal geometry, volume 33 of Series on Knots and

Everything. World Scientific Publishing Co. Inc., River Edge, NJ, 2003.
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The symplectic geometry of polygon space

Clayton Shonkwiler

(joint work with Jason Cantarella)

The statistical physics of long-chain polymers such as DNA is based on mod-
elling a polymer by a space polygon. Physicists then study the statistics of geomet-
ric and topological properties of the polygons with respect to various probability
measures on the space of polygons. This is reasonably straightforward for linear
polymers, but when the ends of the polymer join together to form a ring polymer,
the closure condition imposes subtle global correlations between the individual
edges and the analysis becomes considerably more difficult.

Numerical experiments have been the mainstay of this field for several decades
(e.g. [9, 7, 12]), but even these experiments are hampered by the state of devel-
opment of sampling algorithms for equilateral polygons. There exist a number
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of Markov chain methods (see [1] for a survey) which appear to work fairly well
in practice and which have mostly been proved to be ergodic, but their rates of
convergence are unknown.

Our basic belief is that geometric structures on the moduli space of polygons
can facilitate the search for good sampling algorithms. In earlier work [4] we used
methods originally developed by the algebraic geometers Hausmann and Knut-
son [11] to give a fast new direct sampling algorithm for closed polygons with
total length 2 (but varying edgelengths). In addition, this theoretical framework
gave us the tools to prove several new exact results on the expectation of physically
relevant geometric invariants of these polygons, such as their radius of gyration
and total curvature [5].

The present work [6] is focused on fixed edgelength polygons (including equi-
lateral polygons). To set notation, let Pol(n;~r) be the moduli space of n-gons in
R3 with edgelengths given by the vector ~r = (r1, . . . , rn). The key point is that
this space has a natural symplectic structure:

Theorem 1 (Kapovich–Millson [13]). Pol(n;~r) is the symplectic reduction of
∏n

i=1 S
2(ri) by the Hamiltonian diagonal SO(3) action. In particular, Pol(n;~r)

is a (2n − 6)-dimensional symplectic manifold, and the measure induced by the
symplectic volume form agrees with the standard measure.

In fact, Kapovich and Millson proved that any triangulation of the standard
n-gon yields a Hamiltonian action of T n−3 on Pol(n;~r) where the angle θi acts by
folding the polygon around the ith diagonal of the triangulation (called a bending
flow in symplectic geometry and a polygonal fold or crankshaft move [1] in random
polygons). The induced moment map µ : Pol(n;~r) → Rn−3 records the lengths di
of the diagonals in the triangulation. If the “fan triangulation” shown in Figure 1
is used, then the inequalities determining the moment polytope are

(1) 0 ≤ d1 ≤ r1 + r2
ri+2 ≤ di + di+1

|di − di+1| ≤ ri+2
0 ≤ dn−3 ≤ rn + rn−1

Figure 1. The fan triangulation of a polygon

The image of the moment map is a convex polytope called the moment poly-
tope [3, 10]. Since the torus is half-dimensional (and hence the manifold is toric),
the Duistermaat–Heckman theorem [8] implies that the pushforward of the sym-
plectic measure on Pol(n;~r) to the moment polytope is a constant multiple of
Lebesgue measure.

We can now give a strategy for sampling fixed edgelength polygons. In general,
when M2n is a toric manifold with moment polytope P such that the moment map
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can be inverted, we can construct a map α : P × T n → M which parametrizes
a full-measure subset of M by “action-angle” coordinates. Moreover, this map is
measure-preserving. Therefore, a general procedure for sampling a toric symplectic
manifold uniformly with respect to its symplectic measure is to sample P and T n

independently and uniformly. In particular, since the symplectic measure and the
standard measure agree on Pol(n;~r), we have

Theorem 2 (with Cantarella [6]). Polygons in Pol(n;~r) are sampled according to
the standard measure if and only if the diagonal lengths d1, . . . , dn−3 are uniformly
sampled from the moment polytope defined by the inequalities (1) and the dihedral
angles θ1, . . . , θn−3 are sampled independently and uniformly in [0, 2π).

Note that these uniformity conditions give concrete criteria for evaluating the
quality of any polygon sampling algorithm.

Since a polygon P ∈ Pol(n;~1) is in rooted spherical confinement of radius r
if each diagonal length di ≤ r, the moment polytope for rooted sphere-confined
polygons is determined by the inequalities (1) plus the additional inequalities di ≤
r for all i. Thus, Theorem 2 easily extends to the case of confined polygons.

For small n the moment polytope can be sampled directly by decomposing it
into standard simplices. For large n direct sampling seems challenging, but the
moment polytope can certainly be sampled using the hit-and-run algorithm [2],
which is a Markov chain algorithm known to produce approximately uniformly dis-
tributed sample points on arbitrary convex polytopes in R

m in time O∗(m3) [14].
In particular, we can sample fixed edgelength n-gons in any chosen confinement by
generating points in the (n − 3)-dimensional moment polytope using hit-and-run
and then pairing each point with n− 3 independent uniform dihedral angles. Fig-
ure 2 shows two equilateral 100-gons (not to scale) sampled using this algorithm.

Unconfined 100-gon 1.1-confined 100-gon

Figure 2. Two equilateral 100-gons with all edgelengths equal
to 1. The 100-gon on the left is completely unconfined, while the
100-gon on the right is confined by a sphere of radius 1.1.

To close, here are two open questions whose answers would give significant
insight into the space of fixed edgelength polygons:

(1) Can the volume of the space of confined polygons be bounded below? If
so, this should give lower bounds on the probability of complicated knots,
since such knots will almost certainly be highly confined.

(2) Is there a combinatorial description of the fan triangulation polytope (e.g.
a simplicial decomposition)? Such a description would give a direct sam-
pling algorithm for fixed edgelength polygons.
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Menger curvature as a knot energy

Pawe l Strzelecki

(joint work with Heiko von der Mosel and Marta Szumańska)

We consider closed rectifiable curves parametrized by arc length, γ : [0, L] → R3

with γ(0) = γ(L) and |γ′| = 1 a.e. A priori, we allow γ to have self-intersections,
multiply covered arcs etc. The integral Menger curvature of γ is defined as

Mp(γ) =

∫∫∫

γ×γ×γ

dx dy dz

Rp(x, y, z)
,

where R(x, y, z) is the circumradius of three points x, y, z ∈ R
3; all integrations

are w.r.t. the arc length on γ. This is one of the energies proposed by Gonzalez
and Maddocks in the last section of [3]. (It is worth noting that M2(·) has found
remarkable applications in harmonic and complex analysis, see e.g. David [2].)

Mp is scale invariant for p = 3; therefore, by an easy scaling argument, all
polygons have infinite Mp energy for p ≥ 3. This is a first hint that the finiteness of
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the integral Menger curvature Mp(γ) for p ≥ 3 might enforce smoothing and self-
avoidance effects. This is indeed the case, as the following two theorems confirm.

Theorem 1. Assume that Mp(γ) < ∞ for some p ≥ 3. Then γ(S1) is homeo-
morphic either to S1 or to [0, 1].

(The condition Mp(γ) < ∞ does not imply the injectivity of γ. To see this, it
is enough consider e.g. a doubly covered circle.)

Theorem 2. If Mp(γ) ≤ E < ∞ for some p > 3 and γ is injective, then γ ∈ C1,α

for α = 1 − (3/p), and

|γ′(t) − γ′(s)| ≤ C(p)

(
∫∫∫

[s,t]3

dx dy dz

Rp(x, y, z)

)1/p

|s− t|1−(3/p)

for all s, t ∈ [0, L] with |s− t| ≤ δ(p)Mp(γ)−1/(p−3). Both constants C(p) and δ(p)
depend only on p, and not on γ itself.

Informally, if the integral Menger curvature Mp(γ) ≤ E for some p > 3, then
there is a length scale d0 = d0(p,E) determined only by p and the energy bound
E (and not by γ itself!) such that all the arcs of γ shorter than d0 are nearly
straight. Besides, their bending, i.e. the rotation of the unit tangent to γ, is
controlled by the local integral averages of 1/Rp. Please note that Theorem 2
resembles closely the classic Sobolev–Morey imbedding: we integrate over a three-
dimensional ‘domain’, 1/R replaces the curvature, i.e., plays the role of the second
derivative, and we require the exponent p to exceed the ‘dimension’. The Hölder
exponent α is computed precisely according to the Sobolev–Morrey recipy.

There are three diferent parts the proof of Theorem 2. The first one is to obtain
a controle of the P. Jones’ beta numbers of the curve. For x ∈ γ and d > 0, set

βγ(x, d) :=
1

d
inf

{

sup
y∈γ∩B(x,d)

dist(y,G) : G is a straight line through x

}

.

In plain words, βγ(x, d) measures how thin the thinnest cylinder is that contains
the portion of γ in a given ball B(x, d) centered at x ∈ γ. An elementary argument
based on energy estimates and continuity of 1/R shows that βγ(x, d) ≤ C(p,E)dκ

where κ = (p− 3)/(p+ 6). The second part is to iterate this estimate as d goes to
zero geometrically fast; this allows to conclude that γ ∈ C1,κ. Finally, the third
part of the proof is to improve the Hölder exponent from κ to α = 1 − (3/p) by
means of an iterative argument which is modelled on PDE techniques.

In the second step of the above proof we achieve in fact more than just showing
γ ∈ C1,κ. Let us explain that in more detail. For x 6= y ∈ R3 and ϕ ∈ (0, π

2 ) we
denote by Cϕ(x; y) the double with vertex at x, the cone axis passing through y,
and opening angle ϕ,

Cϕ(x; y) := {z ∈ R
3 \ {x} : ∃ t 6= 0 such that ∠(t(z − x), y − x) <

ϕ

2
} ∪ {x}.

Definition (the diamond property). A curve γ has the diamond property at
scale d0 and with angle ϕ ∈ (0, π/2), in short the (d0, ϕ)–diamond property, if and
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only if for each couple of points x, y ∈ γ with |x− y| = d ≤ d0 two conditions are
satisfied: we have

(1) γ ∩B(x, 2d) ∩B(y, 2d) ⊂ Cϕ(x; y) ∩Cϕ(y;x)

and moreover each plane a + (x − y)⊥, where a ∈ B(x, 2d) ∩ B(y, 2d), contains
exactly one point of γ ∩B(x, 2d) ∩B(y, 2d).

Figure 1. Small double cones with vertices on γ have pairwise
disjoint interiors.

To obtain γ ∈ C1,κ, we prove in fact that if γ satisfies Mp(γ) ≤ E for p > 3,

then it has the (d, ϕ)–diamond property for all distances d ≤ δ(p)E−1/(p−3) and
all angles ϕ ≥ C(p)E1/(p+6)dκ. Moreover, if the points x1, x2 . . . , xN , xN+1 = x1

are evenly spaced along γ, at distances |xi − xi+1| ≡ d proportional to E−1/(p−3),
then each ball B(xi, d) contains only the arcs of γ coming from the two double
cones with common vertex at xi and the opening angle (say) 1/4, see Figure 1.
The arcs contained in all the other double cones but these two must not enter
B(xi, d). All such double cones along the curve must have disjoint interiors. This
observation can be used to prove the following result.

Theorem 3. Assume that a curve γ of unit length satisfies Mp(γ) ≤ E < ∞ for
some p > 12. Then, the average crossing number of γ satisfies

acn (γ) ≤ C1(p) + C2(p)
(

Mp(γ)1/p
)

4
3
· p

p−3

.

The two constants Ci blow up as p → 3 but remain stable for p → ∞. As p → ∞,
Mp(γ)1/p tends to 1/△[γ], the inverse of thickness of γ, which for curves of length
one equals the ropelength. Thus, passing to the limit, we recover a weaker form
of the estimate of acn (γ) in terms of ropelength, due to Buck and Simon [1],

acn (γ) ≤ 11

4π
·
(

1

△[γ]

)4/3

.
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(Our constants are worse than 11/4π. Examples due to Cantarella, Kusner and
Sullivan – using thick (n, n − 1) torus knots – show that the above estimate is
qualitatively sharp.)

Other applications of Theorem 2 and the shape control given by the diamond
property include the following.

Theorem 4. For each p > 3 the inegral Menger curvature Mp, considered as
a knot energy on the class of all rectifiable simple loops of fixed length, is strong
(there are only finitely many different knot types under each energy level), minimiz-
able (the energy minimum in each knot class is achieved) and tight (the pull-tight
phenomenon cannot happen unless the energy blows up to infinity).

Numerous questions concerning the integral Menger curvature are open, e.g.:

(1) Is the round circle a unique minimizer of Mp under fixed length con-
straints? (The numerical evidence suggests a positive answer).

(2) Does the condition M3(γ) < ∞ imply that γ′ exists everywhere?
(3) How regular are the local minimizers and stationary points of Mp?

One of the difficulties is that a local change of the curve leads to global changes
of the integrand 1/R.
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Minutes of the Open Problem Session

We briefly document the questions posed at the problem session on the evening
of April 29.

(1) Pulling a hair tight. Tight open knots are usually modelled mathe-
matically with the two ends pulled straight in opposite directions. But
physically, when a knot is tied tight in a hair or thread or cable, the ends
seem to form a characteristic angle once they are released. Presumably
the knot is held tight by friction, but each end straightens out to minimize
elastic bending energy. What is an appropriate mathematical model for
this variant of the ropelength problem? How does the angle between the
ends depend on the knot type? [R. Kusner]
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(2) Ropelength-minimal knots. Can we explicitly describe any ropelength-
minimal (or even ropelength-critical) knot? (The explicit examples known
so far are links in which each component is planar.) Is the minimizing
trefoil piecewise C2 or even piecewise C∞? [J. Sullivan]

(3) Ropelength vs. crossing number. In terms of the crossing number n
of a knot or link type, it is known that the minimum ropelength grows
at least like n3/4 and at most like n(logn)5. The lower bound is sharp
but the upper bound is probably not. Are there families for which the
ropelength grows more than linearly in n? Is there a better lower bound
(perhaps linear in n) if we restrict to alternating knots? [Y. Diao]

(4) Menger vs. acn, higher-dimensional. The Menger integral curvature
Mp(γ) of a space curve γ can be used to give upper bounds on geometric
quantities like the average crossing number of γ and on invariants like
stick number of its knot type. One can define similar energies Mp(Σ)
for k-submanifolds in Rn. What are the analogous geometric quantities
and topological invariants that might be bounded in terms of Mp(Σ)?
[H. von der Mosel]

(5) Loop number. Given a knot diagram D, recall that an orientation-
preserving smoothing of a crossing divides it into two loops. Define the
loop number of D to be the minimum number of crossings that can be
smoothed such that each of the resulting loops is a Jordan curve. That
is, the remaining crossings are between distinct loops. Suppose D is a
diagram of the unknot with writhe w. Is its loop number at least |w|?

Now define the loop number loop(K) of a knot type K to be the min-
imum loop number over all diagrams for K. Clearly loop(K) is bounded
above by crossing number. One can show that it is also bounded above
by stick number minus 2 and thus also by a linear function of ropelength.
Are there other relations between loop number and known knot invariants?
[Y. Diao]

(6) Average strangeness. The writhing number of a space curve can be
computed by averaging the signed crossing number of its projections over
the sphere of possible projection directions. Can we get other interesting
measurements of the geometry of space curves by averaging other diagram
invariants over projection directions? For instance, Arnol’d gave three
invariants of plane curves: strangeness, J+ and J− which characterize
an immersed plane curve up to ambient isotopy in the plane. So what
does the “average strangeness” of a space curve tell you about the curve?
[J. Cantarella]

(7) Critical unknots via complexity theory. If we consider energy func-
tionals on the space of loops in S3, it seems to be the case that the space
of unknots always contains numerous critical points. We can’t prove this
(yet), in part because techniques for establishing the existence of such
minima seem to be hard to come by. We know by Hatcher’s theorem that
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the space of unknots in S3 is contractible, so unknotted critical points for
knot energies are not dictated by the topology.

On the other hand, there are several suggestive results which lead one
to believe that there may be a useful connection with complexity theory.
Nabutovsky (1995) proved the existence of infinitely many critical “thick”
S5’s in R6 using the algorithmic unrecognizability of the n-sphere in Rn+1

for n ≥ 5. Freedman recently (2009) used the complexity theory assump-
tion that P#P 6= NP (a much weaker assumption than P 6= NP ; the
details don’t matter much here) to derive a statement about the geomet-
ric complexity of links in “thin position” in S3.

Can similar ideas be applied to show the existence of nontrivial local
minima for interesting knot energies? Suppose one could prove a good
lower bound on the computational complexity of unknot recognition. If
there is only one energy-critical unknot for a given energy function F ,
then gradient descent with respect to F provides an algorithm for recog-
nizing the unknot whose computational complexity is determined by the
complexity of computing F and its gradient and the initial energy of an
input configuration. If such an algorithm would recognize the unknot “too
quickly”, this would shows that F must have more than one unknotted
critical point. [J. Cantarella]

(8) Polygons. Is the space of embedded equilateral n-segment arms con-
nected? Is the space of unknotted embedded equilateral closed n-gons
connected? (This is known to be the case for n ≤ 6.) How many knot types
have stick number n? (We know the answer only for n ≤ 8.) [K. Millett]

(9) Random walks. Consider an equilateral random walk (an open curve)
with n edges of unit length inside the sphere of radius r ≥ 1/2. Clearly
the (total) curvature tends to π(n − 1) as r → 1/2. What happens to
the torsion is not so clear. The conjecture is: The (unsigned total) torsion
tends to (n−2)π3 as r → 1/2? Does the same apply for a (closed) equilateral
random polygon, that is the average torsion angle tends to π

3 as r → 1/2?
[C. Ernst]

(10) Arc index for mutants. Knot mutation preserves crossing number.
Does it also preserve arc index? (This is true for alternating knots, since
their arc index equals crossing number plus two.) [G. T. Jin]

(11) Frisch–Wasserman–Delbrück exponent. The conjecture of Frisch,
Wasserman and Delbrück (proved by Sumners–Whittington and Pippenger
for lattice polygons and by Diao for equilateral polygons) states that the
probability that an n-gon is unknotted goes to 0 as n → ∞. In fact,
Diao proved that the probability that an equilateral n-gon is unknotted
is ≤ e−nε

for some ε > 0. What is the constant ε in this statement?
[C. Shonkwiler]

(12) Slipunknot. It is known that the probability for an equilateral n-gon (or
walk) to contain a slip knot goes to 1 as n → ∞. (The same is true for
polygons and walks in the lattice.) Since unknots are exponentially rare,
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these results also hold when restricted to knotted polygons and walks. Do
they also hold for unknots? [K. Millett]

Reporter: Clayton Shonkwiler
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