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Abstract. Over the last 30 years global surface theory has become pivotal in
the understanding of low dimensional global phenomena. At the same time
surface geometry became a platform on which seemingly different areas of
mathematics – such as geometric and topological analysis, integrable systems,
algebraic geometry of curves, and mathematical physics – coalesce to produce
far reaching ideas, conjectures, methods and results. The workshop hosted
talks on the resolutions of famous conjectures in surface geometry, including
the Willmore conjecture, and on exciting new progress in the understanding
of moduli spaces of special surface classes.
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Introduction by the Organisers

The workshop Progress in Surface Theory brought together 26 participants in-
cluding PhD and PostDoc researchers. The 21 talks were evenly spread over the
duration of the workshop and generally lasted 60 minutes, except for shorter 50 or
30 minute presentations by junior researchers. The schedule allowed ample time for
discussions and ongoing and emerging collaborations between participants. The
workshop also hosted a well attended and lively problem session. Incidentally,
the workshop Geometric Knot Theory took place during the same week and the
morning session on Wednesday was held jointly with talks by Andre Neves and
Joel Hass.

A central theme of the meeting was the study of moduli spaces of special sur-
face classes, including Willmore, minimal, and constant mean/Gauss curvature
surfaces, by different methods such as geometric analysis, integrable systems and
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algebraic curve theory. Researchers in these fields benefit significantly from mu-
tual interactions and the workshop provided a stimulating atmosphere for such
exchanges.

A number of lectures addressed the recent resolutions of famous conjectures
in global surface geometry. Andre Neves gave a series of extraordinary talks on
applications of min-max theory, including the solution of the Willmore conjecture
and a solution of a conjecture about the minimal Möbius energy link configuration.
A further highlight was the resolution of a generalized version of the Lawson con-
jecture (first mentioned by Pinkall and Sterling), stating that the only embedded
constant mean curvature tori in the 3-sphere are the rotational ones. The proof,
which uses non-collapsing arguments developed for the mean curvature flow and
ideas from Brendle’s proof of the Lawson conjecture, was beautifully explained in a
lecture by Ben Andrews. Using techniques from algebro-geometric integrable sys-
tems, Martin Schmidt characterized the moduli space of constant mean curvature
cylinders of finite spectral genus in the 3-sphere in terms of their hyper-elliptic
spectral curves. When applied to the special situation of constant mean curvature
tori this description provides a conceptually different proof of the (generalized)
Lawson conjecture. Finally, Wilhelm Klingenberg outlined elements for a proof of
the Caratheodory conjecture (in joint work with Brendan Guilfoyle) by combining
Lagrangian geometry and mean curvature flow.

A significant advance in the understanding of higher genus constant mean cur-
vature surfaces in the 3-sphere was presented by Sebastian Heller, who outlined
a program to understand their moduli via Abelianization of flat connections. A
first glimpse of the progress made was a description of Lawson’s genus 2 minimal
surface (and its constant mean curvature deformations) in terms of an explicit fam-
ily of Fuchsian connections over the Riemann sphere and the (as yet numerical)
solution of its accessory parameter problem.

There were several additional lectures at the interface of geometric analysis and
integrable systems. In one such lecture, Francis Burstall explained how to asso-
ciate a Lagrangian density to a map into the space of lines (known already to
Darboux) and characterized the “harmonic maps” in this setting. Special cases
include the mean curvature sphere congruence of Willmore surfaces and a recently
studied functional on Lagrangian surfaces (arising from a cubic differential) in the
complex projective plane. Christoph Bohle used the Weierstrass representation of
a conformal immersion given by solutions of the Dirac operator (associated to the
induced spin bundle of the immersion) with mean curvature potential to construct
constant mean curvature disks with prescribed (bi-normal) boundary values. On
a related topic Ulrich Pinkall defined a gradient flow of the Willmore functional
on the submanifold of mean curvature potentials giving rise to conformal immer-
sions. Thus, rather than flowing the geometric object (the conformal immersion)
directly the flow acts on an infinitesimal invariant of the surface. By design the
flow preserves the conformal structure of the immersion and its fixed points are
constrained Willmore surfaces. It is known that constrained Willmore tori can
be obtained from spectral curves of finite genus. Lynn Heller characterized all
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constrained Willmore tori of spectral genus g ≤ 2 in terms of constrained elastic
curves on the 2-sphere. She also conjectured that the minimizers for the Willmore
energy in conformal classes near the Clifford torus should be among those con-
strained Willmore Hopf tori. Drawing upon an analogue between the Riemann
mapping theorem and the Plateau problem for minimal surfaces, Laura Desideri
outlined an approach to solve the Plateau problem with analytic boundary via
the universal Schlesinger system. The latter is a generalization of the classical
Schlesinger system arising in the study of isomonodromic deformations of Fuch-
sian connections. Atsufumi Honda studied (extrinsically) flat fronts, that is flat
surfaces with special singularities, in Euclidean space and the 3-sphere and also
described a transformation theory of these surfaces. Finally, Mark Haskins re-
ported on some recent progress in the construction of compact 7-manifolds with
G2-holonomy via twisted connected sums of asymptotical cylindrical Calabi-Yau
3-folds.

The 3-dimensional spaces of constant curvature are the classical target spaces for
surface geometry. Recent years have seen continued interest in the study of surfaces
in other 3-dimensional target spaces, especially those which are homogeneous.
Besides intrinsic motivations for their study, one can apply rescaling arguments
to construct special surfaces (e.g. minimal) in the classical target spaces. Josef
Dorfmeister explained a loop group description for minimal surfaces in the 3-
dimensional Heisenberg group. Joaquin Perez studied constant mean curvature
surfaces in 3-dimensional Lie groups endowed with a left-invariant metric and
related the isoperimetric problem to the Cheeger constant and the critical mean
curvature of the ambient space. Considering periodic minimal surfaces as maps
into tori, Toshihiro Shoda computed the index and nullity of families arising from
the Abel maps of hyper-elliptic Riemann surfaces. Using the Lie quadric as a
target space, Udo Hertrich-Jeromin discretized linear Weingarten surfaces (whose
Gauss and mean curvature satisfy an affine relation) in any of the space forms
(also with signatures) and indicated their integrable structure and transformation
theory.

Three lectures addressed recent progress in the theory of isoparametric hy-
persurfaces in spheres. First, Hui Ma studied the Gauss maps of isoparamet-
ric hypersurfaces as special examples of minimal Lagrangian submanifolds in the
complex quadric. For instance, the Gauss maps of homogeneous isoparametric
hypersurfaces turn out to be Hamiltonian stable. In a related talk, Reiko Miyaoka
interpreted the Karcher-Münzer-Ferus polynomials, which arise in the study of
non-homogeneous isoparametric hypersurfaces, as moment maps for the Spin ac-
tion. Finally, Anna Siffert used the relationship (given by the Gauss map) between
hypersurfaces in spheres and Lagrangian submanifolds in the complex quadric to
outline a structural approach to the classification problem of isoparametric hyper-
surfaces.

The talks gave a balanced view of current results and ongoing research in the
field of differential geometry of surfaces. At the same time the lectures demon-
strated that the tandem of geometric analytical and integrable systems techniques
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can significantly deepen our understanding of the properties of special surface
classes. In this sense, the workshop provided an ideal backdrop for the exchange
of ideas, understanding of techniques, stimulation of collaboration, and develop-
ment of new approaches in the field. For instance, it would not be surprising if
the interior ball curvature estimates were more widely applicable and could lead
to more general rigidity results, including a different proof of the Willmore conjec-
ture; or if the integrable systems techniques combined with gradient flow methods
could be used to give a more detailed picture (and perhaps even a proof) of a yet
to be formulated constrained Willmore conjecture; or if the moduli of holomorphic
and flat bundles over complex curves could provide the correct setting to obtain
a complete picture of constant mean curvature surfaces of higher genus and with
ends.
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Abstracts

Non-collapsing and the Lawson and Pinkall-Sterling conjectures

Ben Andrews

In this talk I aim to present the recent proof by Simon Brendle [4] of the Lawson
conjecture. In particular I describe some of the geometric background to his proof,
including the ‘non-collapsing’ estimate which first appeared in the context of mean
curvature flow, and show how it is used in Brendle’s proof as well as in my proof
with Haizhong Li [3] of the Pinkall-Sterling conjecture.

The Lawson conjecture [7] is as follows:

Every embedded minimal torus in the three-dimensional sphere is congruent to the
Clifford torus S1(1/

√
2)× S1(1/

√
2).

Later Pinkall and Sterling [9] made the following conjecture:

Every embedded constant mean curvature torus in the three-dimensional sphere is
axially symmetric.

Part of the difficulty of these conjectures arises from the need to use both
the global torus topology (which appears naturally in descriptions of the minimal
surface using complex analysis and the Hopf differential, but is hard to detect
using the local geometry of the surface) and the embeddedness of the surface
(which is very difficult to relate to the Hopf differential). Without the torus
topology there are many examples of embedded minimal surfaces (constructed
first by Lawson [6]). With torus topology but without embeddedness the result
also fails: Examples of immersed minimal tori can be constructed as surfaces of
rotation [8] or more generally as solutions of an integrable system [9].

There are several ingredients that go into Brendle’s proof of the Lawson con-
jecture: The torus topology comes into the proof in just one place: The fact that
a minimal torus has no umbilic points, which can be deduced from properties of
the Hopf differential. The embeddedness comes in through a geometric argument
which I call ‘non-collapsing’, which first appeared in my work on mean curvature
flow [1]. This method allows comparison of the curvature of the largest touching
ball at each point to other geometric quantities involving the pointwise curvatures
of the surface. In the case of mean curvature flow the result of [1] states that
for a mean-convex hypersurface moving by mean curvature flow, the curvature
of the largest touching ball at each point remains bounded by a multiple of the
mean curvature, if this is true initially. This is proved by a maximum principle
argument, applied to a function of two points x and y in the hypersurface: The
curvature of the largest ball touching at x is given by

k(x) = sup
y 6=x

〈x− y, ν(x)〉
|x− y|2 .
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The estimate follows by applying the maximum principle to the function

Z(x, y) =
〈x− y, ν(x)〉
|x− y|2H(x)

where H is the mean curvature. The computation is somewhat lengthy but oth-
erwise straightforward. In [2] this computation was interpreted as saying that the

function k is a viscosity subsolution of the linearised mean curvature flow, while
H is a solution of the same equation.

In applying this method to minimal surfaces, Brendle had the wonderful idea
of comparing the curvature of the largest touching ball to the maximum principal
curvature. That is, his computation is equivalent to applying a maximum principle
to the function Z(x, y) above, where H(x) is replaced by the maximum principal
curvature κ(x). Since there are no umbilic points, κ is a smooth positive function,
and the Simons’ identity can be written as an elliptic partial differential equation
satisfied by κ, which plays the same role here as the linearised mean curvature
flow did in the non-collapsing result for mean curvature flow. The computation
is more delicate than in the mean curvature flow case, and one must use all the
available terms, but the end result is that k is a strict viscosity subsolution of the
same elliptic PDE at points where Z is greater than 1. The maximum principle
implies that k ≤ κ everywhere. But on the other hand any touching ball can have
curvature no smaller than κ, so necessarily k = κ identically. This is a beautiful
argument and a spectacular result!

To finish the proof, Brendle observes that every point x has a touching ball
of curvature κ(x), so along the corresponding principal direction this ball agrees
with the surface up to second order. It follows that the derivative of κ along this
direction must vanish (since otherwise the surface crosses the boundary of the
ball in the direction where κ increases). Thus one component of the derivative of
the second fundamental form vanishes. Now repeating the argument with balls
touching on the other side of the surface shows that the other component also
vanishes (a minimal surface only has two independent components of the derivative
of second fundamental form). Therefore the second fundamental form is parallel,
and the conclusion that the surface is Clifford follows easily.

Later Haizhong Li and I adapted the argument to constant mean curvature
tori. We were partly motivated by a computation of Randol and Perdomo which
produced examples of axially symmetric embedded tori of constant mean curvature
H , for any value of H other than 0 and 1/

√
3. We thought the argument might

work only in the case H = 1/
√
3, perhaps. However the story worked out rather

differently: We were able to prove that if H > 0, then k = κ, where κ is the larger
principal curvature (consideration of the Hopf differential again implies there are
no umbilic points in this case). The argument is similar, but instead of comparing
k to κ, we have to compare k−H to κ−H . This gives as before vanishing of one
of the components of the derivative of second fundamental form. However if we
touch with balls on the other side of the surface then the computation no longer
works, since the mean curvature changes sign and becomes negative. However
we were able to deduce from this weaker information that the surfaces are axially
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symmetric. We later found out that this was an explicit conjecture made by Pinkall
and Sterling in their 1989 paper. By also understanding the ODE corresponding to
axially symmetric CMC surfaces, we were able to completely classify the embedded
CMC tori in the three-sphere.

Finally, I report on some more recent work: With Xuzhong Chen (ECNU) I
have been looking at how the argument applies to ‘Weingarten tori’ where other
curvature equations are satisfied. The nonlinearity of the problem introduces some
additional complications, but some of these were previously handled for flows by
nonlinear functions of curvature in my joint work with Langford and McCoy [2].
The technique works for a reasonably wide range of curvature functions: We can
compare k−κ to the difference between the principal curvatures, κ−κ2, and deduce
that the ratio is in fact zero (note that this choice agrees with the ones that worked
for minimal surfaces and for constant mean curvature surfaces). We need to impose
some conditions, which include monotonicity to ensure that the equation is elliptic,
as well as some further convexity conditions. Fortunately Bryant [5] has proved
that for an amazingly wide class of such equations, Weingarten tori do not have
umbilic points. Thus all embedded Weingarten tori satisfying an equation in this
class are axially symmetric. A particular case of interest is where κ1 + aκ2 = b.
Here the method works provided 0 < a ≤ 1 and b ≥ 0, so we can deduce axial
symmetry for embedded tori of this kind. In general we cannot deduce that these
tori are Clifford, since the argument breaks down for balls touching on the other
side of the surface. However if b = 0 we can use the fact that we already know
axial symmetry to make the argument work on the other side of the surface and
deduce that the surface is Clifford. Note that in this case the restriction a < 1 is
superfluous, since we can reverse the normal direction to replace a by 1/a.
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Spectral geometry of immersed discs

Christoph Bohle

(joint work with Ulrich Pinkall)

Spectral geometry in its usual sense refers to the relation between spectral
properties of geometrically defined operators and the intrinsic geometry of the
underlying spaces. In this short note (based on [3]) we deal with another kind of
spectral geometry, the extrinsic spectral geometry of immersed spheres and discs.

Attached to every conformal immersion f : M → R
3 of a compact oriented

surface M , possibly with ∂M 6= ∅, is a Dirac operator Df acting on quaternion
valued functions λ : M → H by

(1) Dfλ = −df ∧ dλ|df |2 ,

where R3 is identified with the imaginary quaternions and |df |2 denotes the volume
form induced by f . This operator quite naturally appears in the description [4, 5]

of conformal deformations: an immersion f̃ : M → R3 induces the same conformal
structure as f and is regularly homotopic to f if and only if

(2) df̃ = λ̄dfλ

with λ : M → H∗
∼= R+Spin(3). Conversely, a function λ yields, via (2), a closed

form df̃ (and hence locally a conformal deformation f̃ of f) if and only if

(3) Dfλ = ρλ

for a real valued function ρ. The function ρ describes, via H̃ |df̃ | = H |df |+ ρ|df |,
the change of mean curvature half density. The operator Df is elliptic and formally
self–adjoint, and differs from an Atiyah–Singer–Dirac– or ∂̄–operator by a potential
proportional to the mean curvature half density H |df |.

Case ∂M = ∅: Because Df is elliptic and formally self–adjoint, if ∂M = ∅ the
spectrum of Df is a sequence of real numbers and there is an L2–orthonormal basis
of eigenspinors. In particular, in the simply connected case M = S2 the spectrum
can be geometrically realized by the (possibly branched) immersions f̃ obtained
via (2) from the eigenspinors of Df , see Figure 1.

Figure 1: The periodic table of
Dirac spheres: a geometric realiza-
tion, via (2), of the spectrum of Df

for f the immersion of the round 2–
sphere. The first row corresponds
to the eigenvalues µ = 0 and −2,
the second row to the eigenvalues
µ = 1 and −3, the third row to
µ = 2 and −4 ... (Pictures by
Keenan Crane)

Recently, interest in the above approach to conformal deformations has been
generated by the computer graphics algorithm of [5]. Its idea is to describe a
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conformal deformation f̃ of f by the potential ρ, i.e., by the change of mean
curvature half density. For generic ρ the operator Df − ρ will have trivial kernel.
However, Df −ρ being self–adjoint and elliptic, spectral theory suggests taking an
eigenspinor λ with (Df − ρ)λ = µλ for µ an eigenvalue of Df − ρ with smallest
possible modulus as the “best approximation” to a section in the kernel of Df −ρ.

One can think of f̃ thus defined as a solution to the following “physical model”:
for a given conformal structure and “energy distribution” prescribed by the change
of mean curvature half density, one tries to find a realization f̃ in space. For a
generic energy distribution ρ this is only possible after a suitable small deforma-
tion by adding a constant ρ  ρ + µ. The spectrum of Df itself corresponds
to the constant energy distributions µ that allow a realization in space. (That
only discrete values of µ are realizable can be “understood” from Figure 1, if one
assumes that the formation of new loops needs a certain increase in energy...)

Case ∂M 6= ∅: The aim of this note is to explain how an analogue of the story
told so far about surfaces without boundary can be obtained for surfaces with
boundary, if one imposes the right boundary conditions.

The boundary conditions we impose for Df are local, i.e., the restriction λ|∂M
of λ to ∂M has to take values in a prescribed orientable subbundle E of the trivial
H–bundle over ∂M . The most important case is when E is two–dimensional and
hence of the form

(4) E = {λ ∈ H | V λ = λṼ }

for a pair of functions V , Ṽ : ∂M → S2 (unique up to a common factor ±1).
The canonical frame of f along ∂M is (T,N,B) with N the Gauss–map, T the

positive unit vector field tangent to f|∂M , and B = T × N the binormal field. It
gives rise to three canonical types of local boundary conditions: if V = T , N or B,
then f̃ given by (2) with boundary condition (4) has prescribed T̃ = Ṽ , Ñ = Ṽ ,

or B̃ = Ṽ , respectively.

Theorem ([3]) If ∂M 6= ∅, a local boundary condition E for Df is

• elliptic iff E is 2–dimensional and Vp 6= ±Np for all p ∈ ∂M ,
• self–adjoint iff E is 2–dimensional and Vp ⊥ Tp for all p ∈ ∂M .

If one imposes a self–adjoint, elliptic boundary condition for Df , then as in
the case ∂M = ∅ the spectrum is a sequence of real numbers and there is an
L2–orthonormal basis of eigenspinors.

The most natural choice of self–adjoint, elliptic boundary condition for Df is

arguably the binormal boundary condition (V, Ṽ ) = (B,B). (Thus, the “physical
model” above carries over to surfaces with non–empty boundary if one prescribes,
in addition to the conformal structure and the change of mean curvature half
density, the binormal vector field of f̃ .)

We define the spectrum for immersions of surfaces with boundary as the spec-
trum of Df with this boundary condition. In the simply connected case, i.e., when
M = D is a disc, the spectrum can again be geometrically realized by the (pos-

sible branched) immersions f̃ obtained via (2) from the eigenspinors of Df . All
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immersions f̃ thus obtained have the same binormal vector fields, and their mean
curvature half densities differ by constant multiples of |df |.

An additional feature only present if ∂M 6= ∅ is the canonical deformation of the
spectrum obtained through the loop of self–adjoint, elliptic boundary conditions

(5) (V, Ṽt) = (B, cos(t)B − sin(t)N), t ∈ R/2πZ = S1.

Going around one full period in this loop does not change the spectrum, but
continuously following the ordered sequence of eigenvalues during the deformation
might result in a shift of the spectrum known as spectral flow [1]. ForM = D a disc,
this shift can be computed by the following theorem (which more generally holds

for arbitrary periodic families (V, Ṽt) of self–adjoint, elliptic boundary conditions):

Theorem ([3]) If M = D is a disc, the spectral flow of Df with a periodic family

of boundary conditions (V, Ṽt) equals the degree of Ṽ seen as a map from T 2 =
S1 × ∂M to S2.

For all immersed discs that are rotational symmetric on a small neighborhood of
their boundary and have vertical binormals, the family (5) of boundary conditions
has a non–trivial spectral flow. In fact, its spectral flow is ±1 for each half –
rotation of the binormal vector field (cf. the proof of Theorem 4 in [3]; although the
boundary condition is only 2π–periodic, the operators with boundary conditions
t = 0 and t = π are equivalent, because B̃t=0 = i and B̃t=π = −i or vice versa.)

To finish the paper, we discuss an example for which the spectrum can be
explicitly computed: if f parametrizes the round half–sphere, the spectrum of Df

with binormal boundary condition coincides with that of the full sphere (in fact,
the proof given in [3] goes through for all immersed discs that are one “half” of a
reflectional symmetric immersion of the sphere with rotational symmetry.)

Numerical experiments suggest that in this example one can, under the de-
formation (5) of binormal boundary conditions, continuously follow the flow of
certain eigenvalues such that the family of immersed discs obtained via (2) from
corresponding eigenspinors is rotational symmetric. This would amount to “wrap-
ping up” the half sphere around its boundary. In the resulting family of immersed
discs, the immersions with vertical binormals are “halfs” of the immersions shown
on the left hand side of the pyramid in Fig. 1 and each half–rotation of the binor-
mals corresponds to moving up or down one of the rows in Fig. 1. Because Dirac
spheres are related to mKdV–solitons, see [2], from this perspective spectral flow
appears as a continuous geometric realization of the process of “adding solitons”.
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Projective geometry and harmonic maps

Francis Burstall

There are a number of variational problems arising in classical differential geometry
that share common features: there is an associated Gauss map whose harmonic
map energy coincides with the given functional and, moreover, solutions to the
problem are characterised by harmonicity of this Gauss map. Examples include
the Willmore functional in conformal geometry [1, 2] and the projective/Lie sphere
area in projective/Lie sphere geometry [1, 3].

In this note, we sketch a uniform approach to these matters based on the obser-
vation that all the surfaces participating in these theories may be viewed as line
congruences.

Line congruences. We begin with an n-dimensional complex projective space
Pn = P(V ) and denote by G2(V ) the Grassmannian of (projective) lines in P(V ).

Definition. A line congruence in P(V ) is a map L : Σ→ G2(V ) of a (real) surface
which admits focal surfaces, thus X,Y : Σ→ P(V ) such that, for each p ∈ Σ, L(p)
is tangent to X and Y at p.

Thus, to be a line congruence is a first order condition on a map L : Σ→ G2(V ).
This condition is automatically satisfied for generic L when n = 3.

If L is a line congruence with focal surfaces X and Y then we have a decompo-
sition TΣC = T+Σ ⊕ T−Σ defined by the requirement that dU−X and dU+Y lie
along L, for U± ∈ T±. We note:

(1) Σ acquires a (possibly indefinite) conformal structure with null directions
T±.

(2) T± are orthogonal with respect to the second fundamental forms of X and
Y (in classical terms, we have conjugate nets on X and Y ).

Let d = ∂+ + ∂− with ∂± : Ω0 → Γ((T±)∗) =: Ω± and let ξ, η : Σ→ V be lifts of
X,Y : X = [ξ], Y = [η]. Our requirements read

∂−ξ = αξ + βη

∂+η = γξ + δη,

with α, β ∈ Ω− and γ, δ ∈ Ω+.

Definition ([5, Part 2, Chapter II]). The Laplace invariant of a line congruence
L is the (complex) 2-form ℓ(L) := β ∧ γ.

We view ℓ as a Lagrangian density and so define a PGL(V )-invariant functional
on line congruences:

W (L) = 1
2

∫

Σ

ℓ(L).
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As we will see, when reality conditions are imposed on L, this functional is already
familiar in a variety of contexts.

Examples.

Conformal geometry. Let V = H2 or, equivalently, V = C4 along with a quater-
nionic structure j. The quaternionic projective line HP

1 ∼= S4 may be identified
with the j-stable elements of G2(V ) so that maps Σ → HP

1 are the same as j-
stable line congruences. For such a line congruence, our functional coincides (up
to a topological term) with the Willmore functional.

Klein correspondence. Let V = C4 and recall that G2(V ) can be identified with

a quadric Q in P(
∧2

V ) via W 7→ ∧2
W . Lines in Q correspond to the pencil of

lines through a fixed point of P(V ) and lying in a fixed plane. Thus we identify the
space Z of lines in Q with the space of contact elements (incident pairs of points

and planes) in P(V ). Now a map L : Σ → Z ⊂ G2(
∧2

V ) is the same as a map
(f, f∗) : Σ → P(V ) × P(V ∗) with f ≤ f∗. One checks that L is a line congruence
if and only if (f, f∗) is the contact lift of f : dφ ∈ Ω1(f∗), for any φ ∈ Γf .

Now impose reality conditions on V : if V is real, then a line congruences in Q
is the contact lift of f : Σ→ RP

3 and W (L) is the projective area of Blaschke and
Thomsen [1] and the conformal structure on Σ is that for which the asymptotic
directions of f are null.

Again, the presence of a Hermitian structure of signature (2, 2) on V induces

(via the Hermitian Hodge ∗-operator), a real structure on
∧2

V so that Q is
defined by a metric of signature (4, 2). This is the context of Lie sphere geometry
[4] and a real line congruence L in Q can be viewed as the contact lift of a surface
F : Σ→ S3 and W (L) is the Lie sphere area of F [1] (for a modern treatment, see
[3]).

Finally, a Hermitian structure of signature (3, 1) induces a quaternionic struc-

ture j on
∧2

V preserving Q. Now j-stable line congruences in Q amount to
contact lifts of the form (f, f⊥) and these, in turn, amount to Legendre maps into
the CR 5-sphere. Such a map projects to a Lagrangian surface F : Σ→ CP

2 and
contracting the second fundamental form of F with the Kähler form of CP2 gives
a symmetric cubic form C. We now have

W (L) = 1
2

∫

Σ

|C3,0|2.

This functional has been recently discussed by Wang [7].

Gauss map. When n = 2k + 1 is odd, we can construct a Gauss map for line
congruences as follows. Set

S+ = 〈(dU+)jξ : 0 ≤ j ≤ k〉
S− = 〈(dU− )jη : 0 ≤ j ≤ k〉
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and assume that S± are pointwise complementary: S+(p) ⊕ S−(p) = V , for all
p ∈ Σ. Then S = (S+, S−) defines a map into the space

S = {(W+,W−) : W± ≤ V , dimW± = k + 1, V =W+ ⊕W−}

which is a complexified (para-)Hermitian symmetric space.
By an old argument of Lichnerowicz [6], the harmonic map energy E(S) of S

splits into holomorphic and antiholomorphic parts E(S) = E+(S)+E−(S) whose
difference is topological. We now have:

• S is conformal with respect to the conformal structure induced by L.
• E+(S) = W (L). Thus if S is harmonic, L is W -critical with respect to
variations through line congruences.
• In fact, if L is W -critical with respect to such variations, S is harmonic.

Thus the well-developed theory of harmonic maps may be applied to the study of
W -critical line congruences.

This Gauss map has familiar geometrical content in our examples:

(1) When L : Σ → HP
1, Sj , the j-stable part of S in which S takes val-

ues, is the space of 2-spheres in S4 and S is thereby identified with the
central sphere congruence of Blaschke–Thomsen [1] or , equivalently, the
conformal Gauss map of Bryant [2].

(2) When L : Σ→ Q is a contact lift in projective, resp. Lie sphere geometry,
S amounts to the congruence of Lie quadrics, resp. cyclides (see [3] for
more details).
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”Universal” Schlesinger system and the Plateau problem

Laura Desideri

Following Garnier’s ideas, we obtained a more constructive resolution to the Plateau
problem for polygonal boundary curves, based on deformations by the Schlesinger
system of minimal disks spanned by polygons. We present it here, with its pos-
sible generalization to rectifiable boundary curves: the aim would be to exhibit
an infinite-dimensional integrable system, which would describe deformations of
minimal disks with rectifiable boundary curves. This is still a work in progress.

1. Motivation

There is a strong analogy between Riemann conformal mapping theorem and
the Plateau problem, and their different approaches — and even more than an
analogy since the former can be seen as a consequence of the latter in the case
of planar boundary curves. Concerning Riemann theorem, there are mainly three
resolutions:

(1) the variational method, by Riemann himself, working for any continuous
boundary, very powerful, but not constructive,

(2) the Schwarz–Christoffel solution, which only works for polygonal boundary
curves, but which is merely explicit (except for the determination of the
lengths of the polygon),

(3) a more recent resolution due to Wiegmann and Zabrodin [4] for analytic
curves, based on an integrable hierarchy (namely the dispersionless 2D
Toda hierarchy).

The corresponding resolutions of the Plateau problem are, for (1) of course the
Douglas–Radò solution. The resolution we obtained in [5] following Garnier’s point
of view is exactly the generalization of (2) – it relies on deformations governed by
the Schlesinger system whose dimension coincides with the number of vertices. It
might thus be natural to wonder whether there exists an analog of (3) for the
Plateau problem, that is to say an infinite-dimensional integrable system that
would generalize the Schlesinger system, and that would describe minimal disks
with rectifiable (or analytic) boundary curves. Such a resolution would inherit the
constructive nature of the proofs for polygons, but would be much more general.
The aim is thus not to carry out a polygonal approximation technique and to
study convergence of minimal immersions as we already did with R. Jakob [6], but
really to extend Garnier’s point of view to a larger class of boundary curves.

What makes also this question relevant is that there exists a natural candidate
for the system we are looking for: the“universal” Schlesinger system given by
D. Korotkin and H. Samtleben in [3], an infinite-dimensional Schlesinger system,
whose geometrical meaning is not clear up to now.

2. Garnier’s approach to the Plateau problem

What follows is an overwiev of the paper [5], which is a new proof of the
polygonal Plateau problem which has been initiated by Garnier [1]. The method
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relies on the fact that, thanks to the spinor Weierstrass representation, we can
associate locally any minimal surface in Euclidean R3 with an ordinary 2 × 2
differential system (A)

Y ′ = A(x)Y.

When the minimal surface is a minimal disk with a polygonal boundary curve, it
appears that many geometrical properties of the surface can be read on its system:
the correspondence become explicit, which means that it is relevant to build and
describe such minimal disks through their associated differential systems.

Let us denote by N the number of vertices of the polygonal curves, and by D =
(D1, . . . , DN) their oriented directions. As for the Schwarz–Christoffel solution,
we explicitly prescribe D, but not the lengths. We thus introduce the spaces:

MN
D = {minimal disks with a polygonal boundary curve of direction D}
AN

D =
{
differential systems (A) associated with an M ∈MN

D

}
,

which are in a 1-to-1 correspondence. The proof is then in three steps.

(1) Characterization of AN
D : we prove that (A) belongs to AN

D if and only if:

(a) (A) is a Fuchsian system on the Riemann sphere C, which means it writes

(A) Y ′ = A(x)Y, A(x) =
N∑

i=1

Ai

x− ti
,

(b) its monodromy is determined by the direction D,
(c) it satisfies a reality condition.

(2) Explicit description of AN
D : the Schlesinger system describes the variations

of the residue matrices Ai = Ai(t) under isomonodromic deformations of Fuchsian
systems (A) of parameter the position t = (t1, . . . , tN ) of its singularities:

(1)

∂Ai

∂tj
=

[Ai, Aj ]

ti − tj
(i 6= j)

∂Ai

∂ti
= −

∑

j 6=i

[Ai, Aj ]

ti − tj
.

This provides us with an explicit parametrization of the minimal disks:

MN
D =

(
MD(t) | t ∈ RN , t1 < · · · < tN

)
.

(3) Study of the lengths of MD(t): to end the proof, we need to show that dur-
ing the deformation, all the possible values for the lengths of the boundary curves
PD(t) = ∂MD(t) are reached. This is the most technical part of the resolution. It
relies on a careful study of the confluence of singularities in the Schlesinger system
(see [2]).

We recover in this construction the Schwarz–Christoffel solution when the sys-
tem (A) is diagonal and its monodromy is reducible.
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3. Universal Schlesinger system

Let us briefly introduce the universal Schlesinger system obtained by Korotkin
and Samtleben in [3]. Their aim is to investigate symmetries of the Schlesinger
system (1): they find a symmetric uniform formulation of it, that they then use
to generalize Okamoto’s equation to the case of an arbitrary number of poles.

Starting with a Fuchsian system (A) non singular at infinity, they introduce
new dependent variables

Bn =

N∑

i=1

tni Ai = Res
(
xnA(x), x =∞

)
, n ≥ 0

and new differential operators

Lm =
N∑

i=1

tm+1
i

∂

∂ti
, m ≥ −1,

which satisfy the commutation relations of the Virasoro algebra. They then prove
that, if the residue matrices Ai(t) solve the Schlesinger system (1), then the Lm

act on the Bn as follows

(2) LmBn =

n−1∑

k=1

[Bk, Bm+n−k] + nBm+n

for all m ≥ −1, n ≥ 0. This infinite set of equations is of course in this setting
not independent. We recover the Schlesinger system (1) from the equations cor-
responding to m,n ≤ N . What is remarkable in system (2), is that its form is
independent for the number and position of the poles ti, which only enter in the
definition of the Lm. That is the reason why Korotkin and Samtleben name it the
“universal” Schlesinger system. Considering the Bn not as dependent variables,
but as independent ones, one gets an infinite-dimensional system, whose geometri-
cal meaning in terms of isomonodromic deformations is not clear, but which should
be the natural candidate to generalize the Schlesinger system to an infinite set of
poles. This system would certainly describe the deformation of the differential
systems (A) associated with minimal disks spanned by an analytic curve.
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Minimal surfaces in Nil3 via loop groups

Josef Dorfmeister

(joint work with Junichi Inoguchi and Shimpei Kobayashi)

Introduction. Loop group methods are well known for surfaces of constant mean
curvature and for surfaces of constant curvature in space forms. In recent years
much research has been devoted to the study of minimal surfaces also in other
three-dimensional manifolds, like the spaces M(κ, τ).

The basic set-up. We consider the simply connected three-dimensional Heisen-
berg group Nil3 = M(0, 1/2) together with the non-degenerate, left-invariant
metric of M(0, 1/2).

For the Lie algebra nil3 of Nil3 we choose the natural orthonormal basis e1, e2
and e3 and have the bracket operations [e1, e2] = e3 and [e2, e3] = [e3, e1] = 0

The starting point for this talk is the following

Proposition 1. Let f : M → Nil3 be a conformal immersion with the conformal

factor eu. Moreover, set Φ = f−1fz =
∑ℓ

k=1 φkek. Then the following statements
hold:

fz = fΦ, fz̄ = fΦ̄,(1)

ℓ∑

k=1

φ2k = 0, and Φz̄ − Φ̄z + [Φ̄, Φ] = 0.(2)

Conversely, let D be a simply-connected domain and Φ =
∑ℓ

k=1 φkek a non-zero

1-form on D which takes values in the complexification nilC3 of nil3 satisfying the
conditions (2). Then for any initial condition in Nil3 given at some base point in
D there exists a unique conformal immersion f into Nil3.

Note, for a conformal immersion f : M → Nil3 one also has the structure
equation

(3) Φz̄ + Φ̄z + {Φ, Φ̄} = euf−1
H,

where {·, ·} denotes the bilinear symmetric map defined by {X,Y } = ∇XY +∇YX
for X,Y ∈ g and H denotes the mean curvature vector field.

From conformal immersions to non-linear Dirac equations. In view of
(2), following an approach pioneered by Konopelchenko and Taimanov, we write
f−1fz = Φ in the form of a Weierstrass representation by using (complex valued)
spinors ψ1 and ψ2:

(4) φ1 = (ψ2)
2 − ψ2

1 , φ2 = i((ψ2)
2 + ψ2

1), φ3 = 2ψ1ψ2,

where ψ2 denotes the complex conjugate of ψ2.
Then the conformal factor eu of the induced metric 〈df, df〉, the pulled back

unit normal vector field f−1N and the mean curvature H can be expressed in
terms of these spinors.
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We define the support function h of f by h = 2(|ψ1|2 − |ψ2|2). For this talk we
assume that h takes positive values everywhere. Then the Dirac potentials

(5) U = V = −H
2
eu/2 +

i

4
h,

stated in [4], are defined and one obtains:

Theorem 1. The equations (2) and (3) are equivalent to the nonlinear Dirac
equation,

(6)

(
ψ1

ψ2

)
:=

(
∂zψ2 + Uψ1

−∂z̄ψ1 + Vψ2

)
=

(
0
0

)
.

From the Dirac equation to the Berdinskii system. For the case of Nil3
Berdinskii has rephrased the non-linear Dirac equation in terms of a ”Lax pair”
kind of equation. In this system of equations also the ”Abresch-Rosenberg” qua-
dratic differential B enters. It was shown in [1] that B is holomorphic, if f is of
constant mean curvature. The converse is almost true

Theorem 2. Let f : M → Nil3 be a conformal immersion and assume that
the Abresch-Rosenberg differential is holomorphic. Then f is of constant mean
curvature, or f is a Hopf cylinder.

Theorem 3 ([3]). Let D be a simply connected domain in C, f : D → Nil3 a
conformal immersion and w the complex valued function defined in (5). Then the

vector ψ̃ = (ψ1, ψ2) satisfies the system of equations

(7) ψ̃z = ψ̃Ũ , ψ̃z̄ = ψ̃Ṽ ,

where
(8)

Ũ =

(
1
2wz +

1
2Hze

−w/2+u/2 −ew/2

Be−w/2 0

)
, Ṽ =

(
0 −B̄e−w/2

ew/2 1
2wz̄ +

1
2Hz̄e

−w/2+u/2

)
.

Conversely, every vector solution ψ̃ to (7), where all terms are expressed by ψ1

and ψ2, is a solution to the nonlinear Dirac equation (6).

After gauging this system by diag(e−w/4, e−w/4) we obtain for constant mean
curvature H a system of equations for which the coefficient matrices have the form

(9)

U(λ)(:= U
λ) =

(

1

4
wz −λ−1ew/2

λ−1Be−w/2
−

1

4
wz

)

, V (λ)(:= V
λ) =

(

−
1

4
wz̄ −λB̄e−w/2

λew/2 1

4
wz̄

)

.

Note, here we have introduced in addition a ”loop parameter” λ ∈ S1. One can
show that ”constant mean curvature” can be characterized by the integrability of
the corresponding system for all λ ∈ S1. However, the corresponding ”associated
family of surfaces” fλ can not have exclusively values in Nil3, as follows from an
idea of Berdinskii [2]; also see [7], Proposition 4.5.
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Minimal surfaces in Nil3. Minimal surfaces can be characterized among all
constant mean curvature surfaces in the following manner.

Theorem 4. Let f be a surface of constant mean curvature in Nil3. Then the
following statements are mutually equivalent:

(1) f is a minimal surface.
(2) ew/2 = −H

2 e
u/2 + i

4h is purely imaginary.
(3) The matrices U(λ) and V (λ) satisfy

(10) V (λ) = −σ3U(1/λ̄)
t
σ3, where σ3 = diag(1,−1),

(4) The Maurer-Cartan form αλ = U(λ)dz + V (λ)dz̄ takes values in the real
Lie subalgebra su(1, 1).

(5) The stereographic projection g of f−1N from the south-pole is a harmonic
map into the hyperbolic space H

2.

Since g is a harmonic map (”normal Gauss map”) into the space form H2, it
can be constructed by a known loop group procedure [5]. The actual immersion
into Nil3 can be obtained by differentiation for λ. For more details see [7] or [6].
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Recent Progress in G2 Geometry

Mark Haskins

(joint work with Alessio Corti, Johannes Nordström, Tommaso Pacini)

In this talk we discuss recent progress in the construction of compact Riemann-
ian 7-manifolds with holonomy group the compact exceptional Lie group G2.
Every such G2-holonomy manifold is a (non-flat) Ricci-flat manifold and these
G2-manifolds provide one of the very few sources of odd-dimensional compact
Ricci-flat manifolds. We concentrate on recent progress which makes it possible
to determine for the first time the diffeomorphism type of the underlying smooth
7-manifolds. This relies on the diffeomorphism (and almost diffeomorphism) clas-
sification of 2-connected 7-manifolds. We show that many G2-manifolds attained
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by the twisted connected sum construction (due originally to Donaldson and Ko-
valev) are 2-connected and in many cases determine their diffeomorphism type.
The main ingredients in the proof are:

(1) the construction of asymptotically cylindrical Calabi-Yau 3-folds from ap-
propriate smooth projective 3-folds (weak Fano or semi-Fano 3-folds),

(2) the deformation theory of semi-Fano 3-folds
(3) the twisted connected sum of G2-manifolds
(4) understanding the topology (integral cohomology, characteristic classes)

of the projective 3-folds.

We explain how our work suggests many further open questions and suggest some
potential approaches to them.
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Constrained Willmore Hopf tori

Lynn Heller

Constrained Willmore tori are conformal immersions f : T 2 → S3 which are criti-
cal points of the Willmore energy W =

∫
(H2 + 1)dA under conformal variations.

Constant mean curvature (CMC) immersions in any 3−dimensional space form
are examples of constrained Willmore tori. Immersions minimizing the Willmore
energy W for a fixed conformal class can be viewed as the optimal realization of
the underlying Riemann surface in 3−space. Existence and regularity of such a
minimizer is shown in [6] under the provision that the infimum of the Willmore
energy in the conformal class is below 8π. It is still open whether the above state-
ment is true for general conformal classes. Recent results in [4] and [1] show that
the only embedded CMC tori in 3−dimensional space forms are rotational sym-
metric. In particular, they have rectangular conformal type. Non embedded CMC
tori have Willmore energy above 8π and can therefore not be the candidates for
the minimizers in their respective conformal class (at least in the conformal classes
near the one of the Clifford torus). In order to find candidates for minimizers for
all conformal classes, it is necessary to find constrained Willmore tori which do
not have constant mean curvature in a space form.

It is shown in [3] that constrainedWillmore tori in S3 form an integrable System.
This means we can associate to every constrained Willmore immersion a compact
Riemann surface Σ - the spectral curve - and we can recover the immersion from
algebraic data on the spectral curve. The genus g of Σ is called the spectral genus
of the immersion and the complexity of the immersion increases with g. On Σ
there exist two natural involutions σ and ρ. If the torus is a CMC torus in a space
form then σ is the hyperelliptic involution of Σ and ρ ◦ σ has fixpoints. For a
generic immersion in the moduli space of constrained Willmore tori, i.e., for which



Progress in Surface Theory 1275

a certain holomorphic line bundle on the spectral curve has degree g+3 (we refer
to these as simple immersions in the following), we can show the reverse.

Theorem 1 ([8]). Let f : T 2 → S3 be a simple constrained Willmore torus and
let Σ the spectral curve of f . If Σ/σ ∼= CP 1 and if the involution ρ ◦ σ has fixed
points, then f is a CMC torus in a space form.

The condition that the involution ρ ◦ σ has fixed points is always valid if Σ has
even genus. Further for g = 1 the case where ρ ◦ σ has no fixed points is also
understood, see [9] and [2].

Corollary 1 ([7] and [8]). Let f be a simple constrained Willmore torus and let
g be its spectral genus. Then the following holds:

• g = 0 if and only if f is homogenous.
• g = 1 if and only if f is CMC in a space form and lies in the associated
family of a cylinder of revolution as a constrained Willmore and isothermic
surface.
• g = 2 if and only if f is either CMC or lies in the constrained Willmore
associated family of a constrained Willmore Hopf cylinder.

ConstrainedWillmore Hopf tori are given by the preimages of closed constrained
elastic curves (critical points of the energy functional

∫
κ2ds with prescribed length

and enclosed area) under the Hopf fibration1. The definition of the constrained
Willmore associated family can be found in [7] or [5]. Constrained Willmore Hopf
tori are never isothermic and hence never CMC in a space form unless they are ho-
mogenous, see [7]. Further, the Euler-Lagrange equation for constrained Willmore
tori reduces to the Euler-Lagrange equation for constrained elastic curves

(1) κ′′ + 1
2κ

3 + (µ+G)κ+ λ = 0,

where κ is the geodesic curvature of the curve in the round S2 of constant curvature
G and µ and λ are real Lagrange multipliers. Willmore Hopf tori correspond to
curves with µ = −G

2 < 0 and λ = 0. Solutions to λ = 0 are elastic curves. These
were also discussed in [11]. We can proof the following:

Theorem 2 ([9]). The minimizer of the Willmore energy in the class of Hopf tori
exist for every conformal type of the torus. In particular, every conformal class of
the torus can be realized as a constrained Willmore (Hopf) torus.

By restricting to the smaller class of Hopf tori, we can show therein the existence
of minimizers of the Willmore energy with prescribed conformal class without any
energy bound as it is needed in [6]. Near the conformal class of the Clifford torus
we conjecture the constrained Willmore Hopf minimizers to be the global mini-
mizers of the Willmore energy in their respective conformal classes.

1Hopf tori and Willmore Hopf tori were first considered in [12].
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Constrained Willmore Hopf tori can be parametrized explicitly using elliptic
functions. By multiplying equation (1) with κ′ and integrate equation (1) holds if
and only if there exist a ν ∈ R with

(κ′)2 = − 1
4κ

4 − (µ+G)κ2 − 2λκ− ν.
Since we are only interested in periodic solutions, we can choose κ′(0) = 0 without
loss of generality. The necessary and sufficient condition for the above equation to
have periodic solution is that the polynomial in κ on the righthand side has real
roots. If all roots are simple the ODE can be solved by

κ =
√
−8Re(℘(x+ x0))− 4℘(ρ) +G,

where ℘ is the Weierstrass ℘ function defined on a torus C/Γ given by the real
lattice invariants

g2 =
1

12
(µ+G)2 +

1

4
ν and g3 =

1

216
(µ+G)3 +

1

24
ν(µ+G) +

1

16
λ2

and x0, ρ ∈ iR∗. For the multiple roots case see [9]. For constrained elastic curves
the torus C/Γ on which the ℘−function is defined can be viewed as the spectral
curve of the curve in S2. Let ω1 denote the half lattice point of Γ on the real axis.
The curve is closed if and only if there exist integers m and n such that

g(ρ) := ζ(ω1)ρ+ ζ(ρ)ω1 =
m

n
πi.

The function g is purely imaginary valued and non constant. Thus we always
obtain infinite many closed curves for given g2, g3 and x0. We transformed the
parameters (µ,G, λ, ν) into other parameters (g2, g3, ρ, x0) such that varying x0 for
fixed g2, g3 and ρ preserves the closeness of the constrained elastic curve. Further,
there is a x0 unique up to sign in iR/Γ such that the corresponding curve is elastic.
The integer m is the tangent turning number of the curve and n is the number
of intrinsic periods which we call lobe number. In fact for every n ≥ 2 there is
a family of embedded closed closed curves with lobe number n starting at the
equator (which corresponds to the Clifford torus) and oscillating around it. The
isospectral deformation shifts these n−lobed curves such that they oscillate around
circles instead of the equator. What we get are 2−parameter families of closed and
embedded but non isothermic constrained Willmore tori near the Clifford torus,
see [9] and [10].
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Higher genus CMC surfaces via integrable systems

Sebastian Heller

The moduli spaces of CMC spheres and CMC tori in the round 3-sphere are quite
well-understood by now. CMC spheres are totally umbilic due to the vanishing
Hopf differential. Based on the ideas of Brendle’s proof of the Lawson conjecture
[3] Andrews and Li showed that all embedded CMC tori in S3 are rotational and
therefore classified [1]. Additionally, all CMC immersions from a torus into 3-
dimensional space forms are given rather explicitly in terms of algebro-geometric
data on their associated spectral curves [13, 10, 2]. This is in stark contrast to the
case of higher genus CMC surfaces in S3. There exist a few compact examples for
every genus, like the Lawson minimal surfaces [11], but these examples have been
constructed by implicit methods from geometric analysis. Moreover, there is no
theory which describes the space of all CMC surfaces of higher genus, nor is there
any starting point for classification of the embedded ones.

The study of CMC tori via integrable systems is based on the associated family

λ ∈ C
∗ 7→ ∇λ = ∇+ λ−1Φ− λΦ∗

of flat SL(2,C)-connections on a fixed hermitian rank 2 bundle [10]. The complex
linear endomorphism valued 1-form Φ is nowhere vanishing and nilpotent and Φ∗

is its adjoint with respect to the unitary metric. For minimal surfaces in S3 the
flatness of this family of connections is just a gauge theoretic reformulation of
the harmonic map equation. For CMC surfaces, the family of flat connections
is induced by the Lawson correspondence. The connections ∇λ are unitary for
λ ∈ S1 ⊂ C∗ and trivial at two Sym points λ1 6= λ2 ∈ S1. The immersion can be
obtained as the gauge between ∇λ1 and ∇λ2 , and its mean curvature is given by
H = iλ1+λ2

λ1−λ2
.

Compact oriented CMC surfaces can be coarsely distinguished by the complex-
ity of their associated family of monodromy representations: The easiest case is
when all connections ∇λ are trivial. This happens only for spheres, see [10]. A
more complicated case is given when all monodromy representations are abelian



1278 Oberwolfach Report 21/2013

but generically not trivial. Then, the connections split generically into the direct
sum of flat line bundles, which can be parametrized on a double covering of the
spectral plane. For tori with their abelian first fundamental group, this is the
starting point of Hitchin’s spectral curve theory for harmonic tori [10]. It was
shown in [12, 6, 5] independently, that the generic connection ∇λ of a compact
CMC surface of genus g ≥ 2 is irreducible. This is clearly the most complicated
case and a naive generalization of the spectral curve approach does not work for
higher genus CMC surfaces.

Of fundamental importance for the construction of new examples are loop
group factorization methods. They have first been applied to surface geometry
by Dorfmeister, Pedit and Wu [4] in their description of simply connected CMC
surfaces via holomorphic (Weierstrass) data. In our situation they yield:

Theorem 1 ([7]). Let λ ∈ C∗ 7→ ∇̃λ be a holomorphic family of flat SL(2,C)-
connections over a compact Riemann surface M of genus g ≥ 2 such that

• the asymptotic at λ = 0 is given by ∇̃λ ∼ λ−1Ψ + ∇̃ + ... where Ψ ∈
Γ(M,KEnd0(V )) is nowhere vanishing and nilpotent;

• for all λ ∈ S1 ⊂ C there is a hermitian metric on V such that ∇̃λ is
unitary with respect to this metric;
• ∇̃λ is trivial for λ1 6= λ2 ∈ S1.

Then there exists a unique CMC surface f : M → S3 such that its associated family
of flat connections ∇λ and the family ∇̃λ are gauge equivalent, i.e., there exists a
λ-dependent holomorphic family of gauge transformations g which extends through
λ = 0 such that ∇λ · g(λ) = ∇̃λ for all λ.

We now restrict to a class of CMC surfaces which we call Lawson symmetric.
These CMC surfaces are symmetric with respect to those symmetries of the Law-
son surface which are orientation preserving on both, the extrinsic space and the
surface (Lawson symmetries). Instead of parametrizing parallel eigenlines (which
do not exist) we consider the holomorphic eigenlines of symmetric Higgs fields, i.e.,
complex linear endomorphism valued 1-forms which are equivariant with respect
to the Lawson symmetries. These eigenlines do only exist on a double covering
- the Hitchin curve - and are elements in an affine Prym variety, see [9]. In our
case, the Prym variety can be identified with the Jacobian of a torus T 2 which
is the quotient of the Hitchin curve by the Lawson symmetries. It is shown in
[7] that there is a two-to-one correspondence Ψ between flat line bundles on T 2

and Lawson symmetric flat SL(2,C)-connections. Moreover, as a consequence of
the Narasimhan-Seshadri theorem, there exists for every holomorphic line bundle
in the Prym variety exactly one compatible flat line bundle connection such that
the corresponding SL(2,C)-connection is unitary. This gives rise to a real ana-
lytic section au of the affine bundle of flat line bundle connections modulo gauge
equivalence over the Jacobian. We then have:

Theorem 2 ([7]). Let λ 7→ ∇λ be the associated family of a Lawson symmetric
CMC surface of genus g ≥ 2. Then there exists a Riemann surface p : Σ → C

which double covers the spectral plane C together with a holomorphic map L : Σ→
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Jac(T 2) and a meromorphic lift D with a first order pole over λ = 0 into the affine
moduli space of flat line bundles on T 2 such that Ψ ◦ D(µ) is gauge equivalent to
∇p(µ) for all µ ∈ Σ. The spectral curve branches over λ = 0 and the spectral data
satisfy the reality condition au(L(µ)) = D(µ) for all µ ∈ p−1(S1).

Conversely, spectral data (Σ,L,D) as above which satisfy the reality condition
au(L(µ)) = D(µ) for all µ ∈ p−1(S1) and the extrinsic closing condition that
Ψ ◦ D(µ) is trivial for all µ ∈ p−1({λ1,2}) give rise to Lawson symmetric CMC
surfaces.

Up to now, the reality condition is not understood explicitly. Nevertheless,
we have been able to apply these spectral methods in computer experiments in
order to investigate the moduli space of Lawson symmetric CMC surfaces, see [8].
As a result we have obtained the numerical existence of real 1-parameter families
of Lawson symmetric CMC surfaces in S3 passing through the Lawson surfaces
ξg,1 analogous to the Whitham deformation of the Clifford torus via homogeneous
CMC tori.
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Discrete linear Weingarten surfaces

Udo Hertrich-Jeromin

(joint work with Francis E Burstall, Wayne Rossman)

Recall that a surface σ : M2 → R

3 is called a linear Weingarten surface if there
is a non-trivial triple of coefficients a, b, c ∈ R so that

aK + 2bH + c = 0, (W)

where K = k1k2 and H = k1+k2

2 denote the Gauss and mean curvatures of the sur-
face, respectively. Examples of linear Weingarten surfaces clearly include: surfaces
of constant mean curvature H , where (a, b, c) = (0, 1,−2H); surfaces of constant
Gauss curvature K, where (a, b, c) = (1, 0,−K); “tubular” surfaces with a con-
stant principal curvature, where the discriminant ∆ := ac − b2 = 0 vanishes so
that the equation (W) factorizes.

The mission of the talk was twofold: firstly, to discuss a notion of “discrete linear
Weingarten surfaces” and, secondly, to generalize to arbitrary ambient space forms
(possibly with other signatures). Using a Lie geometric approach, both goals are
achieved in a straightforward way — in the process it is seen that discrete linear
Weingarten nets/surfaces are intimately related to a discrete version of Demoulin’s
Ω-surfaces, the Lie geometric analogue of isothermic surfaces in Möbius geometry,
cf [2, 3].

A discretization of linear Weingarten surfaces in Euclidean geometry is straight-
forward from [1]: any circular net σ : Z2 ⊃ Γ → R

3 — that is, every face
(σi, σj , σk, σl) has a circumcircle — admits a “Gauss map” ν : Γ→ S2 with paral-
lel edges, that is, the pair (σ, ν) satisfies a discrete version of Rodrigues’ equation

0 = dνij + kijdσij . (R)

Then the “parallel nets” σt := σ + tν of σ are (edge-) parallel circular nets (with
Gauss map ν). Note that circularity is, in general, necessary for the existence of
such a Gauss map, cf [1, Thm 18], and that the Gauss map is not unique. Thus
we call a pair (σ, ν) of a circular net with Gauss map a principal net . The Gauss
and mean curvatures of a principal net can then be defined (as functions on faces)
via Steiner’s formula

At = (1− 2tH + t2K)A, where Aijkl = δσik × δσjl (S)

yields the (directed) area of a face in terms of the cross product of its diagonals.
A discrete linear Weingarten net is a principal net satisfying (W), cf [1, Thm 17].

Principal nets (σ, ν) : Γ → R

3 × S2 naturally lift to “Legendre maps” (or,
“principal contact element nets”, cf [1]) in Lie sphere geometry: fixing a “point-
sphere complex” p ∈ R4,2 with (p, p) = −1 and an isotropic “space form vector”
q ∈ R4,2 with q ⊥ p we set

Q3 := {X ∈ R4,2 | (X,X) = 0, (X, p) = 0, (X, q) = −1},
P 3 := {X ∈ R4,2 | (X,X) = 0, (X, p) = −1, (X, q) = 0};



Progress in Surface Theory 1281

further fixing an “origin” o ∈ Q3 we obtain an isometry

R

3 ∼= {o, q, p}⊥ ∋ x 7→ X := o+ x+ 1
2 (x, x) q ∈ Q3,

and a unit tangent vector y ∈ TxR3 can be identified with the hyperplane in Q3

through X ∈ Q3 by

S2 ∋ y 7→ Y := y + (y, x) q + p ∈ P 3.

The line through 〈X,Y 〉 ⊂ P(L5) in the Lie quadric (the projectivized light cone
of R4,2) then defines a contact element, and Λ = 〈Σ,N〉,

Σ = o+ σ + 1
2 (σ, σ) q and N = ν + (ν, σ) q + p,

is the Legendre lift of a principal net (σ, ν) in R3. The characteristic property of
such Legendre lifts is to possess edge curvature spheres κij :

0 = dNij + kijdΣij ⇔ Nj + kijΣj = Ni + kijΣi =: κij ∈ Λi ∩ Λj . (R′)

Thus a map Λ into the space of contact elements, that is, lines in the Lie quadric,
will be called a Legendre map if adjacent lines intersect.

Apart from projection issues, these Legendre maps are exactly the Legendre
lifts of principal nets — in R3 or, more generally, space forms: dropping the
assumption on q to be isotropic (and on the sign of (p, p) to include Lorentzian
space forms), we shall call a pair (Σ,N) : Γ → Q3 × P 3 a space form projection
of a Legendre map Λ if Λ = 〈Σ,N〉. By (R′), we may again use Steiner’s formula
(S) to define the Gauss and mean curvatures of (Σ,N), when replacing the cross
product by wedge product, A(Σ,Σ)ijkl = δΣik ∧ δΣjl, to encode the (directed)
area. Note that the involved wedge products decompose,

A(Σ,Σ) = A(σ, σ) + (. . . ) ∧ q ∈ Λ2
R

3 ⊕ (R3 ∧ 〈q〉), etc.,

showing that this notion of Gauss and mean curvature for space form projections
of Legendre maps generalizes the earlier one for principal nets in R3. Hence we say
that a space form projection (Σ,N) of a Legendre map Λ is a linear Weingarten
net if there is a non-trivial triple of coefficients a, b, c ∈ R so that

aA(N,N)− 2bA(N,Σ) + cA(Σ,Σ) = 0, (W′)

where A is thought of as a bilinear form obtained from the quadratic area form
by polarization.

Now observe: if (Σ,N) is a non-tubular linear Weingarten net, ∆ = ac− b2 6= 0,
we may factorize the linear Weingarten condition to obtain edge-parallel nets Σ±

taking values in linear sphere complexes k± ∈ R4,2\{0}, where 〈Σ,N〉 = 〈Σ+,Σ−〉,
A(Σ+,Σ−) = aA(N,N)− 2bA(N,Σ) + cA(Σ,Σ) = 0 and Σ± ⊥ k±. (C)

For example: in the constant mean curvature case (a, b, c) = (0, 1,−2H) we may
take (Σ+,Σ−) = (N+H Σ,Σ) and (k+, k−) = (q−H p, p) to obtain the original net
together with its mean curvature sphere congruence; in the constant Gauss cur-
vature case (a, b, c) = (1, 0,−K) factorization yields (possibly complex conjugate)

nets Σ± = N±
√
K Σ and k± = q ∓

√
K p.
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As constant linear combinations of Σ and N the obtained nets Σ± are edge-
parallel and, factorizing the linear Weingarten condition, their opposite diagonals
are parallel, that is, Σ± are Königs dual nets in R4,2, cf [1, Thm 13]. Hence Σ±

project to Königs nets in RP 5 and, taking values in a quadric, to isothermic nets
in the Lie quadric, cf [6]. Analogy with the smooth case, cf [3], then suggests a
discretization of Demoulin’s Ω-surfaces, cf [5]: a discrete Legendre map Λ will be
called an Ω-net if Λ = 〈Σ+,Σ−〉 for two isothermic sphere congruences that admit
Königs dual lifts Σ±. Thus we obtain a characterization of linear Weingarten nets
as space form projections of special Ω-nets:

The Legendre lift Λ = 〈Σ,N〉 of a linear Weingarten net (Σ,N) is an Ω-net;

its enveloped isothermic sphere congruences Σ± take values in linear sphere com-

plexes, Σ± ⊥ k±.
Conversely: if Λ = 〈Σ+,Σ−〉 is an Ω-net with Σ± ⊥ k±, then any space form

projection (Σ,N) with 〈p, q〉 = 〈k+, k−〉 yields a linear Weingarten net.

This characterization of linear Weingarten surfaces/nets provides a novel ap-
proach to understanding the integrable nature of this class of nets/surfaces, in
particular, the rich isothermic transformation theory descends to linear Wein-
garten surfaces/nets to provide new insight into their transformations. Moreover,
a simple geometric approach to the Weierstrass type representations for certain
linear Weingarten surfaces/nets is obtained. For more details the interested reader
is referred to our recent paper [4], the smooth case is discussed in two notes [2, 3].

References

[1] A Bobenko, H Pottmann, J Wallner: A curvature theory for discrete surfaces based on mesh
parallelity ; Math Ann 348, 1–24 (2010)

[2] F Burstall, U Hertrich-Jeromin, W Rossman: Lie geometry of flat fronts in hyperbolic space;
C R 348, 661–663 (2010)

[3] F Burstall, U Hertrich-Jeromin, W Rossman: Lie geometry of linear Weingarten surfaces;
C R 350, 413–416 (2012)

[4] F Burstall, U Hertrich-Jeromin, W Rossman: Discrete linear Weingarten surfaces; submit-
ted

[5] A Demoulin: Sur les surfaces R et les surfaces Ω ; C R 153, 590–593, 705–707 and Sur les
surfaces Ω ; ibid 927–929 (1911)

[6] A Doliwa: Generalized isothermic lattices; J Phys A: Math Theor 40, 12539–12561 (2007)

Transformations and orientability of extrinsically flat surfaces

Atsufumi Honda

By the Hartman-Nirenberg theorem, any complete flat surface in the Euclidean
3-space R3 must be a cylinder over a complete plane curve. This fact implies
that the global theory of flat surfaces in R3 is trivial. However, if we admit
some singularities, there exist many nontrivial flat surfaces. Murata-Umehara
[3] investigated flat surfaces with admissible singularities called “flat fronts” and
proved the following.
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Fact 1 ([3]). A complete flat front in the Euclidean 3-space whose singular point
set is non-empty has no umbilics, is orientable and co-orientable. Moreover, if its
ends are embedded, there exist at least four singular points other than cuspidal
edges.

This estimate is sharp (see Figure 1).

Figure 1. A complete flat front in R3 which has four singular
points other than cuspidal edges.

Here, we recall some terminologies about wave fronts. Let M2 be a smooth
2-manifold. A smooth map f :M2 → R

3 is called a wave front (or a front) if, for
any point p ∈ M2, there exist a neighborhood Up ⊂ M2 of p, and a smooth map
ν : Up → S2 such that 〈df(TqM2), ν(q)〉 = 0 holds for all q ∈ Up and

L := (f, ν) : Up → R

3 × S2

is an immersion, where we denote by 〈 , 〉 the standard inner product of R3.
Regarding R3 × S2 as the unit tangent bundle T1R

3 of R3, L is a Legendrian
immersion with respect to the canonical contact structure of T1R

3. We call L
the Legendrian lift of f . Equipping the Sasakian metric 〈 , 〉T1R3 with T1R

3, the

pullback metric gL := L∗ 〈 , 〉T1R3 defines a Riemannian metric on M2. We call
gL the lift metric. We remark that a parallel surface of some immersed surfaces is
a front. Conversely, we can prove that any front is locally given in this way. Then,
a point p ∈M2 is called

• singular point of f , if rank(df)p < 2,
• umbilic point of f , if p is umbilic for some parallel surface of f .

A front f :M2 → R

3 is called

• flat, if rank(dν)p < 2 for all p ∈M2,
• orientable, if M2 is orientable,
• co-orientable, if ν is globally defined on M2,
• weakly complete, if its lift metric gL is complete,

and complete, if there exist a symmetric covariant 2-tensor T 2 with compact sup-
port onM2 such that ds2+T 2 gives a complete Riemannian metric on M2, where
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ds2 = 〈df, df〉 is the first fundamental form of f . By definition, completeness
implies weakly completeness.

On the other hand, let f :M2 → R

3 be an immersed surface with one principal
curvature a constant c, that is

(λ1 − c)(λ2 − c) = 0

holds on M2, where we denote by λ1, λ2 the principal curvatures of f . If c = 0, it
is a flat immersion. In the case of c 6= 0, Shiohama-Takagi proved the following.

Fact 2 ([5]). A complete surface with one principal curvature a nonzero constant
in the Euclidean 3-space is either a totally umbilical or umbilic free. In the latter
case, such a surface is a tube of some complete regular curve.

Therefore, such a surface is trivial. Thus, we consider a front with one principal
curvature a constant c. A front f :M2 → R

3 is called with one principal curvature
a constant c, if rank(dν + c df) < 2 holds on M2. Then, we have the following.

Theorem 1 ([1]). A weakly complete front with one principal curvature a nonzero
constant in the Euclidean 3-space is either a totally umbilical or umbilic free. In
the latter case, such a front is a tube of some complete regular curve. Moreover,
such a front must be orientable.

While an immersed surface with one principal curvature a nonzero constant is
orientable, a front with one principal curvature a nonzero constant is co-orientable.
We remark that there exist non-orientable examples (see Figure 2).

Figure 2. A front with one principal curvature a nonzero con-
stant which is not orientable but co-orientable.

In the case of the 3-sphere S3, we consider extrinsically flat surfaces, where an
immersed surface f :M2 → S3 is called extrinsically flat (or e-flat, for short) if its
extrinsic curvature Kext = λ1λ2 vanishes identically on M2. The Gauss equation
K = Kext + 1 implies that e-flat surfaces are equivalent to surfaces of constant
Gaussian curvature one. O’Neill-Stiel [4] proved that any complete extrinsically flat
surface must be totally geodesic. On the other hand, there exist many nontrivial
e-flat fronts (see Figure 3).

Applying the method used to prove Theorem 1, we have the following.

Theorem 2 ([2]). A weakly complete extrinsically flat front in the 3-sphere is
either a totally umbilical or umbilic free. Moreover, a co-orientable weakly complete
extrinsically flat front must be orientable.
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Figure 3. Extrinsically flat fronts in S3.

We remark that an e-flat front without umbilics is developable, and is a tube of
a regular curve of radius π/2. There exist compact non-co-orientable e-flat fronts,
and compact e-flat fronts which has no singular points other than cuspidal edge.
These examples imply that global properties of e-flat fronts in S3 are different
from those of flat fronts in R3.

Moreover, we construct two transformations among e-flat fronts in S3 which we
call dual and caustic, and prove some properties about them. In particular, we
classify weakly complete self-dual e-flat fronts. Moreover, the commutativity of
such two transformations are proved.
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Proof of the Global Caratheodory Conjecture and a resulting Local
Umbilic Index Bound

Wilhelm Klingenberg

(joint work with Brendan Guilfoyle)

1. Let S := {S →֒ R3| strictly convex closed C3,α − smooth spheres}, endowed
with the Hölder space C3,α -topology.

Theorem 1. [1] “The Global Carathéodory Conjecture” For every S ∈ S:
#{umbilic points s ∈ S} ≥ 2.

Theorem 2. [2] “Local Umbilic Index Estimate” For every isolated umbilic
s ∈ S ∈ S: Indexs(S) ≤ 3/2.
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Note that Theorem 2 implies Theorem 1 by the Poincaré-Hopf index theorem when
applying to one of the (in general non-orientable) principal curvature foliations of
S. Note that the singularities thereof are umbilics, where the foliation take on
half-integer valued ’umbilic indices’. We believe that above index bound is sharp
and are lead to the following Conjecture: There exist SE ∈ S with an ’exotic’
umbilic sE ∈ SE of maximal index: IndexsE(SE) = 3/2. By Hamburger’s Theorem
[3], who proved an upper umbilic index bound of 1 for real analytic surfaces S,
and thereby indeed the real analytic Carathéodory Conjecture, the surface SE can
not be real-analytic. The above conjecture therefore marks a split between the
smooth and real analytic categories in classical differential geometry.
2. Our proof of Theorem 1 is indirect, proceeds by assuming that there exists
an S∞ ∈ S with only one umbilic point, and arrives at the resulting contradiction
between Theorem 3 and Theorem 4 below. It takes place in the space L(R3) :=
{all oriented lines in R3} ≡ {oriented geodesics in euclidean E3}, which is seen to
be an open 4 - manifold diffeomorphic to TS2. Here, S2 ⊂ R3 stands for the
round sphere. The manifold L is furthermore equipped with a complex structure
J(l) : TlL → TlL given by J(l) = dRl, where R(l) : (L, l) → (L.l) is induced by
rotation of R3 by π/2 about the oriented line l ⊂ R3. It can be seen that L ≈ TS2

and (L, J) ≈ T 10S2. Next we consider vector fields on S2, viewed as surfaces in
L. L := { all C2,α − smooth global sections Σ of TS2 → S2}, endowed with
the Hölder space C2,α -topology. For S ∈ S we consider N(S) ∈ L as defined by
N(S) := { all l ∈ L(R3) which are normal to S}. Then N(S) ∈ L and the salient
feature of this transformation N of surfaces is :
s ∈ S →֒ R3 is an umbilic point ⇐⇒ N (s) ∈ N (S ) →֒ (L, J ) is a complex point .
For Σ ∈ L, we set Σ∗ := Σ−{complex points}, and a relative class A ∈ H2(L; Σ∗),
define a fibre bundle FA → L. Its fibre over Σ ∈ L are those Sobolev maps f of the
disc D ⊂ C in H1,s((D, ∂D); (L,Σ∗)) that realize the class A : [f(D), f(∂D)] = A.
The proof of Theorem 1 follows by contradiction from the following two results
about the subbundle π : FA ⊃ HA → L consisting of holomorphic discs in FA,
namely those f ∈ FA satisfying the Cauchy-Riemann equations df ◦ i = J ◦ df .

Theorem 3. “ Non-Existence near N(S∞) ∈ L ” Assume that there exists an
S∞ ∈ S with only one umbilic point. Then there exists a sequence of Σk ∈ L −
N(S∞) which converges to N(S∞) ∈ L and such that for the class A representing
the disc N(S∞) \ {unique complex point} we have: π−1(N(Σk)) = ∅.

Theorem 4. “ Existence Theorem ” Assume that S ∈ S has an umbilic-free
hemisphere. Then π−1(N(S)) 6= ∅. Furthermore, there exists a neighborhood U ⊂
L of N(S) such that for all Σ ∈ U , we have π−1(Σ) 6= ∅.

3. The proof of Theorem 3 follows by applying the Theorem of Sard-Smale to
the Fredholm map π in a neighborhood of N(S∞) ∈ L. It is achieved by applying
the Theorem of Riemann-Roch to determine the analytic index of π in terms of
the complex points of the boundary condition Σ0 and relies on the following
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Theorem 5. “ π is Fredholm near N(S∞) ” Assume that S∞ ∈ S has only
one umbilic. Then there exists an open set N(S∞) ∈ U ⊂ L such that π : HA ⊃
π−1U → U is a Fredholm map of Banach manifolds.

We now define the subset L0 ⊂ L given by all those Σ0 ∈ L which contain
the point ξ = η = 0 in L. Furthermore we have the set of all tangent vec-
tor fields of Σ0, which we denote by ΓTΣ0, and the subset Γ0TΣ0 ⊂ ΓTΣ0 of
all vector fields that vanish in the fibre over the north pole with coordinates
ξ = η = 0. Note that the euclidean group Aut(R3) of R3 acts on L, and
its linearization dAut(R3) acts on ΓTΣ0. The following follows from observing
that Aut(R3) acts transitively on L and dAut(R3) acts transitively on TΣ0

L, and
L0 ∼= L/Aut(R3, and Γ0TΣ0

∼= ΓTΣ0/dAut(R
3). Let Σ∞ ∈ L be a surface with

only one complex point, namely (0, 0) ∈ L. Then there exist open neighborhoods
0 ∈ B ⊂ Γ0TΣ∞, and Σ∞ ∈ U1 ⊂ L0 such that exp : B → U1 is a homeomor-
phism. Here, exp denotes the exponential map in (L,G). The proof of this Lemma
uses the following string of isomorphisms: Γ0TΣ∞

∼= Γ0JTΣ∞
∼= Γ0NΣ∞

∼=
ΓNΣ∞/dAut(R

3)) ∼= { variations of Σ∞ in L/dAut(R3)}. This implies Theorem
3. Remark 0: The first isomorphism uses the fact that J is an isomorphism in
each fibre. Remark 1: N stands for the normal bundle. The second isomorphism
follows since JTΣ∞ is transversal to TΣ∞ except at np, where JT0Σ∞ = T0Σ∞,
therefore JT0Σ∞/T0Σ∞ = 0. Remark 2: The second isomorphism is not true if
L is replaced by S, i.e. if we work in Lagrangian category. Remark 3: The third
isomorphism follows from dAut(R3) being transitive on TΣ0. Remark 4: The sec-
ond and third isomorphisms do not hold if Σ∞ has more then one complex point.
4. The proof of Theorem 4 relies on a geometrization of the open manifold
(L, J) as introduced by the authors in 2005 , which we will now describe. (i)
Define an indefinite distance function d on L by d(ll, l2) = D · (π1(l1)× π1(l2)).
Here, D ∈ R3 is the vector spanning the minimal distance from l1 ⊂ R3 to
l2 ⊂ R3 and π1 : L → S2 ⊂ R3 is the Gauss map. (ii) For l1 fixed, the lin-
earization at l1 of d(l1, ·) defines a quadratic form Gl1 : Tl1L ⊗ Tl1L → R, which
can be seen to have signature (2, 2) and gives rise to a neutral metric on L.
(iii) Let now TS2 → T ∗S2 be the diffeomorphism given by fibrewise pairing
with the round metric on S2. Define the symplectic form Ω by pulling back the
canonical structure : (L ≈ TS2,Ω) → (T ∗S2, ωCAN). (iv) It can be seen that
(L,G(·, J)) ≈ (TS2,Ω) and that (L, J,G) is a neutral Kähler surface and that
Isometry Group0(E

3) ≈ Isometry Group0(L,G). (v) Let Σ →֒ (L,Ω, G) be
any C2,α - smooth section of TS2 ≈ L. Then Σ is Lagrangian ⇐⇒ {l⊥ ⊂
R3|l ∈ Σ} is an integrable plane field ⇐⇒ ∃S ∈ S : Σ = N(S) =⇒ Σ →֒
(L,G) is Lorentzian. {l⊥ ⊂ R3|l ∈ Σ} is a contact structure of R3 ⇐⇒ Σ →֒
(L,G) is spacelike. (vi) In the proof of Theorem 4 we use local holomorphic coor-
dinates on on the complement of the fibre over the south-pole of S2: N ≈ T 10S2 ∋
η∂/∂ξ → (ξ, η) ∈ C2. Here, ξ : S2−southpole→ C is the stereographic projection.
These allow us to define a local biholomorphic map ΦC0

: (L, J)→ (L, J) given by
ΦC0

(ξ, η) := (ξ, η− iC0ξ) for fixed C0 ∈ R. This map has the effect of “twisting”
a family of lines N(S) ⊂ L which we will use as follows.
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i) Let S+ ⊂ R
3 be an open striclty convex and umbilic - free surface whose

Gauss image is the upper hemishpere in S2,
ii) N(S+) →֒ L be its surface of normals,

iii) Σ̃ := ΦC0
N(S+) →֒ L be its twisting

iv) Σ̃+ ⊂ Σ̃ ⊂ (L,G) be its spacelike subset.

Then for every C0, Σ̃ is totally real in (L, J) and for C0 →∞ , the Gauss image

of Σ̃+ covers the upper hemisphere of S2. (vii) In coordinates, J,Ω, G have the

form J ∂
∂ξ = i ∂

∂ξ , J
∂
∂η = i ∂

∂η , Ω = 4(1 + ξξ̄)−2Re
(
dη ∧ dξ̄ − 2ξ̄η

1+ξξ̄
dξ ∧ dξ̄

)
,

G = 4(1 + ξξ̄)−2Im
(
dη̄dξ + 2ξ̄η

1+ξξ̄
dξdξ̄

)
.

5. Theorem 4 is proved using Mean Curvature Flow with mixed Dirichlet-Neumann
boundary conditions of a spacelike surface with boundary in geometrized line space
(L,G) as introduced in the previous section. Specifically, we study the following
Initial Boundary Value Problem.
Consider for s ∈ [0, s0) a family of spacelike real surfaces in (L,G), fs ∈ C2,α(D)
such that (df/ds)⊥ = Hf , with the following initial and boundary conditions:
(i) f0(D) = Σ0

(ii) fs(∂D) ⊂ Σ̃

(iii) the hyperbolic angle B between the spacelike planes Tfs(D) and T Σ̃ is con-
stant along fs(∂D)
(iv) fs(∂D) is asymptotically holomorphic: |∂̄fs| = C/(1 + s).

Here, Hs is the mean curvature vector of fs(D) in (L,G), and Σ̃ and Σ0 are
spacelike surfaces in (L,G).
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http://arxiv.org/abs/0808.0851 , and “Perspectives in Geometry”, April 2013, University
of Texas, Austin, http://www.ma.utexas.edu/rtgs/geomtop/rtg/perspectives.html

[2] B. Guilfoyle, W. Klingenberg, From Global to Local: an index bound for um-
bilic points on smooth convex surfaces, (2012) http://arxiv.org/abs/1207.5994, and
http://www.youtube.com/watch?v=ybop3dETUjc
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Hypersurfaces in spheres and Lagrangian submanifolds in complex
hyperquadrics

Hui Ma

(joint work with Yoshihiro Ohnita)

In this talk, we focus on the interesting relation between hypersurfaces in
spheres and Lagrangian submanifolds in complex hyperquadrics. Let Qn(C) be
a complex hyperquadric of CPn+1 defined by the homogeneous quadric equation
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z20 + z21 + · · · + z2n+1 = 0. Let G̃r2(R
n+2) (resp. Gr2(R

n+2)) be the real Grass-
mann manifold of oriented 2-dimensional vector subspaces (resp. 2-dimensional
vector subspaces) of Rn+2. Denote by [W ] a 2-dimensional vector subspace W of
Rn+2 equipped with an orientation. Then we have the identification

Qn(C) ∋ [a+
√
−1b] ←→ [W ] = a ∧ b ∈ G̃r2(Rn+2),

where {a,b} is an orthonormal basis of W compatible with the orientation of
[W ]. Qn(C) is diffeomorphic to SO(n+ 2)/(SO(2)× SO(n)), which are compact
irreducible Hermitian symmetric space of rank 2 if n ≥ 3 and S2 × S2 if n = 2.
Qn(C) can also be regarded as the space of oriented geodesics of Sn+1(1).

Let Nn be an oriented hypersurface immersed in the unit standard sphere
Sn+1(1) ⊂ Rn+2. Denote by x its position vector of a point p of N and n the
unit normal vector field of N in Sn+1(1). It is a fundamental fact in symplectic
geometry that the Gauss map defined by

G : Nn ∋ p 7−→ x(p) ∧ n(p) ∼= [x(p) +
√
−1n(p)] ∈ G̃r2(Rn+2) ∼= Qn(C)

is always a Lagrangian immersion into the complex hyperquadric Qn(C). Let
κi(i = 1, · · · , n) denote the principal curvatures of Nn ⊂ Sn+1(1) and H denote
the mean curvature vector field of the Gauss map G. Palmer showed the following
mean curvature form formula ([14]):

(1) αH = −d
(

n∑

i=1

arc cotκi

)
= d

(
Im

(
log

n∏

i=1

(1 +
√
−1κi)

))
.

Hence, ifNn is an oriented austere hypersurface in Sn+1(1), introduced by Harvey-
Lawson ([4]), then its Gauss map G : Nn → Qn(C) is a minimal Lagrangian
immersion. In particular, the Gauss map of a minimal surface in S3(1) is a minimal
Lagrangian immersion in Q2(C) ∼= S2 × S2 ([2]).

A hypersurface immersed in the standard sphere is called isoparametric if it
has constant principal curvatures, which can be regarded as the generalization of
geodesic spheres in the standard spheres. The theory of isoparametric hypersur-
faces in spheres was started by Élie Cartan and well developed since then. As
the most fundamental result, Münzner ([9], [10]) showed that the number g of dis-
tinct principal curvatures of an isoparametric hypersurface Nn in Sn+1(1) must be
g = 1, 2, 3, 4, 6 and their multiplicities satisfy m1 = m3 = · · · ≤ m2 = m4 = · · · .
It follows from (1) that the Gauss map G : Nn → Qn(C) is a minimal Lagrangian
immersion ([14]). Concerning about the Gauss image G(Nn), we get

Theorem 1 ([7, 11]). (1) The Gauss image G(Nn) is a compact smooth mini-
mal Lagrangian submanifold embedded in Qn(C), which is preserved by the

deck transformation group Z2 of universal cover G̃r2(R
n+2)→ Gr2(R

n+2).
(2) The Gauss map G : Nn → G(Nn) ⊂ Qn(C) as a map onto its image is a

covering map with the deck transformation group Zg.
(3) G(Nn) is orientable if and only if the integer 2n/g is even.
(4) G(Nn) is a monotone and cyclic embedded Lagrangian submanifold in

Qn(C) with minimal Maslov number 2n/g.
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Every homogeneous isoparametric hypersurface in a sphere can be obtained as
a principal orbit of a linear isotropy representation of a compact rank 2 Riemann-
ian symmetric pair (U,K), by Hsiang-Lawson ([5]) and Takagi-Takahashi ([15]).
Only in the case of g = 4 are there known to exist non-homogeneous isoparamet-
ric hypersurfaces, which were discovered first by Ozeki-Takeuchi ([12], [13]) and
extensively generalized by Ferus-Karcher-Münzner ([3]). We know that an isopara-
metric hypersurface in Sn+1(1) is homogeneous if and only if its Gauss image is
a homogeneous Lagrangian submanifold in Qn(C) ([7]). Based on the link with
the theory of homogeneous isoparametric hypersurfaces in spheres, we classified
all compact homogeneous Lagrangian submanifolds in Qn(C).

Theorem 2 ([7]). For any compact homogeneous Lagragian submanifold L in
Qn(C), there exists a unique compact homogeneous isoparametric hypersurface
Nn in Sn+1(1) corresponding to a compact rank 2 Riemannian symmetric pair
(U,K) such that L = G(Nn) or L belongs to a Lagrangian deformation of G(N)
consisting of compact homgeneous Lagrangian submanifolds. Actually, there exists
such a non-trivial Lagrangian deformation of G(Nn) only when (U,K) is one of

(1) (S1 × SO(3), SO(2)),
(2) (SO(3)× SO(3), SO(2)× SO(2)),
(3) (SO(3)× SO(n+ 1), SO(2)× SO(n)) (n ≥ 3),
(4) (SO(m+ 2), SO(2)× SO(m)) (n = 2m− 2,m ≥ 3).

Hamiltonian volume variational problem is a proper constraint volume varia-
tional problem for Lagrangian submanifolds in Kähler manifolds, which was in-
troduced by Y.G. Oh in 1990s. It is interesting to construct and classify compact
Hamiltonian stable minimal or Hamiltonian minimal Lagrangian submanifolds in
specific Kähler manifolds. Applying the spherical function theory of compact ho-
mogeneous spaces and fibrations on homogeneous isoparametric hypersurfaces, we
completely determined the strict Hamiltonian stability of the Gauss images G(Nn)
of all homogeneous isoparametric hypersurfaces Nn in Sn+1(1).

Theorem 3 ([7, 8]). The Gauss image G(N)of homogeneous isoparametric hyper-
surface Nn is Hamiltonian stable if and only if m2 −m1 ≥ 3 or Nn is a principal
orbit of the isotropy representation of the Riemannian symmetric pair of type EIII
(in this case (m1,m2) = (6, 9)).

Further questions:

(1) Study further relations between hypersurfaces in M and Lagrangian sub-
manifolds in Geod+(M). Note that Geod+(CPn) = SU(n + 1)/(T 2 ·
SU(n−1)), Geod+(HPn) = Sp(n+1)/T 1·Sp(1)·Sp(n−1), Geod+(OP 2) =
F4/T

1 · Spin(7) ([1]).
(2) Study the Hamiltonian stability of the Gauss images of compact non-

homogenous isoparametric hypersurfaces (OT-FKM type, embedded in
spheres with g = 4).

(3) Study other properties of the Gauss images in complex hyperquadrics, e.g.,
curvature property, intersection theory, Lagrangian Floer theory.
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(4) Study the relation between our Gauss image construction and Karigiannis-
Min-Oo’s results ([6]).
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Moment map expression of isoprametric hypersurfaces

Reiko Miyaoka

We express all the known Cartan-Münzner polynomials F (x) of degree four in
terms of the moment map of certain group actions.

A hypersurface M in Sn with g distinct constant principal curvatures is called
isoprametric, which is expressed as a level set of F (x) of degree g restricted to Sn.
The multiplicities of the principal curvatures are given by a pair (m1,m2).

The classification has been done except for the case g = 4, (m1,m2) = (7, 8)
(see [12], and a corrected version [13], thanks to U. Abresch and A. Siffert).
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g 1 2 3 4∗ 6

M Sn−1

(hom.)
Sk−1 × Sn−k

(hom.)
Cartan h’s
CF (hom.)

hom. or
OT-FKM

SO(4) or G2-
orbits (hom.)

It turns out that non-homogeneous cases occur only when g = 4, where Ozeki-
Takeuchi first [17], and then Ferus-Karcher-Münzner [6] constructed infinitely
many non-homogeneous and homogeneous examples, called of OT-FKM type.

Classification of g = 4 except for (7, 8) ([2], [9], [3], [4])

non-homogeneous (m1,m2) = (3, 4k), (7, 8k), etc.
G/K : non-Hermitian

OT-FKM type homogeneous: (4, 4k − 1)
isotropy orbits of *Hermitian

rank 2 symmetric space (1, k), (2, 2k − 1), (9, 6)
non OT-FKM G/K *Hermitian (4, 5)

non-Hermitian (2, 2)

Recently, Fujii [7], and F-Tamaru [8] give an expression of Cartan-Münzner
polynomials of degree four corresponding to the isotropy orbits of rank two Her-
mitian symmetric spaces (* in the table) by using the square norm of the moment
map of the isotropy action. However, their method is not valid for the remaining
cases. In [14], we give a new expression in all the known cases of g = 4.

The OT-FKM type hypersurfaces are given by a Clifford system P0, . . . , Pm ∈
O(2l) on R2l, by which we mean those satisfying PiPj + PjPi = 2δij id. The
pairs (m, l) exist in infinite series. The inner product 〈P,Q〉 = 1

2lTr(P
tQ) makes

P0, . . . , Pm an orthonormal basis of the linear space V spanned by themselves.

Fact 3 ([6]). For a given Clifford system P0, . . . , Pm,

(1) F (x) = 〈x, x〉2 − 2

m∑

i=0

〈Pix, x〉2

is a Cartan-Münzner polynomial of degree four. If l −m− 1 > 0, F |S2l−1 defines
isoparametric hypersurfaces in S2l−1 with g = 4 and m1 = m, m2 = l −m− 1.

In this case, PiPj , 0 ≤ i < j ≤ m, generate a Lie subalgebra o(m+ 1) of o(2l),
which induces a spin action on R2l.

Fact 4 ([6]). Spin(m+ 1) acts on R2l, and preserves F (x).

When K ⊂ O(n) acts on Rn, we extend it naturally to an action on TRn. For
ζ ∈ o(n), the fundamental vector field is given by Xζ = ζx.

Fact 5 ([14]). The K-action is a Hamiltonian action with the moment map µ :
TRn → k∗ given by

µ(x, Y )(ζ) = −〈ζx, Y 〉, ζ ∈ o(n).
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This is a generalization of the angular momentum of the classical mechanics.
Thus our Spin(m+1) action on TR2l has the moment map µ : TR2l → o∗(m+1)
given by

µ(x, Y ) = −
∑

0≤i<j≤m

〈PiPjx, Y 〉PiPj ∈ o(m+ 1) ∼= o∗(m+ 1),

where PiPj generate an orthonormal frame of o(m + 1). It follows immediately
that ‖µ(x, Y )‖2 =

∑
0≤i<j≤m〈PiPjx, Y 〉2. Comparing this with the second term

of F (x);
∑〈Pix, x〉2, we find an appropriate vector field Yx which satisfies:

Theorem 1 ([14]). Define a vector field Y : R2l → TR2l (not necessarily contin-
uous) by

Yx =





P0x, if 〈P0x, x〉 = 0
〈P1x, x〉P0x− 〈P0x, x〉P1x√
〈P1x, x〉2 + 〈P0x, x〉2

, if 〈P0x, x〉 6= 0.

Then the Cartan-Münzner polynomial is expressed as

(2) F (x) = ‖x‖2 − 2‖µ(x, Yx)‖2,
where µ is the moment map of the Spin(m+1) action naturally extended to TR2l.

Remark 1. In fact, Yx can be replaced by any Px orthogonal to x, P ∈ Σ, where
Σ is the unit sphere of V , called the Clifford sphere. From this view point, we give
a more natural statement. If we identify the oriented 2-plane Grassmannian on
R

2l with the complex hyperquadratic Q2l−2(C), Spin(m+ 1) action is naturally
extended to Q2l−2(C). This is a Hamiltonian action with the moment map µQ

given by µQ([x ∧ Px]) = µ(x, Px) for P ∈ Σ such that 〈Px, x〉 = 0. Thus we
obtain:

Theorem 2 ([15]). Let E → S2l−1 be a singular sphere bundle with fiber Ex =
{Px | P ∈ Σ, 〈Px, x〉 = 0}. Define ϕ : E → Q2l−2(C) by ϕ(x ∧ Px) = [x ∧ Px].
Then F (x) is expressed as

(3) F (x) = ‖x‖2 − 2‖µQ([x ∧ Px])‖2,
where µQ is the moment map of the spin action naturally extended to Q2l−2(C).

Moreover, we obtain:

Theorem 3 ([15]). Under the above situation, µ−1
Q (0) is a coisotropic submanifold

of Q2l−2(C), and µ−1
Q (0)/Spin(m+ 1) is a symplectic reduction.

The complex hyperquadratic Qn−2(C) is important as the target space of the
Gauss map of a hypersurface M in Sn−1 (see Hui Ma’s report in this volume).

The non-OT-FKM type isoparametric hypersurfaces are isotropy orbits of SO(5)×
SO(5)/SO(5), (m1,m2) = (2, 2), and of SO(10)/U(5),(m1,m2) = (4, 5). In these
cases ([14]), as well as in the cases g = 1, 2, 3, 6 ([15]), we give an expression of
F (x) in terms of the moment map of the isotropy action.
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Min-max Theory and the Willmore conjecture

André Neves

(joint work with Fernando Marques)

The bending energy (or Willmore energy) of a closed surface Σ immersed in
Euclidean three-space is the total integral of the square of the mean curvature:

W(Σ) =

∫

Σ

H2dΣ.

It was already known to Blaschke and Thomsen in the 1920s that this energy is
conformally invariant, i.e.,W(F (Σ)) =W(Σ) for any F ∈ Conf(R3). The bending
energy appears naturally in some physical contexts as the bending energy of elastic
membranes.
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In the 1960s, Willmore proved the following result:

Theorem. (Willmore) Let Σ be a smooth closed surface in R3. Then W(Σ) ≥ 4π,
and equality holds if and only if Σ is a round sphere. The geometric content of

the result is that every compact surface bends more then a sphere and if it bends
as much as the sphere, then the compact surface must be a sphere.

It is then natural to ask what is the optimal shape among all surfaces of some
fixed topological type. Motivated by the analysis of circular tori of revolution,
Willmore made a conjecture for the case of genus one:

Willmore Conjecture (1965). The integral of the square of the mean curvature
of a torus immersed in R3 is at least 2π2.

The equality is achieved by the torus of revolution whose generating circle has
radius 1 and center at distance

√
2 from the axis of revolution:

(u, v) 7→
(
(
√
2 + cos u) cos v, (

√
2 + cos u) sin v, sin u) ∈ R

3.

In the talk I explained how to prove this conjecture using the min-max theory
of minimal surfaces.

The key idea consists in associating to every compact surface Σ e a continuous
5-parameter family of surfaces (integral 2-currents with boundary zero, to be more
precise) in S3 such that the area of each surface in the family is bounded above by
W(Σ). This family is parametrized by a map Φ defined on I5, and is constructed
so that

• Φ(x, 0) = Φ(x, 1) = 0 (trivial surface) for any x ∈ I4,
• Φ(x, t) is an oriented round sphere in S3 for any x ∈ ∂I4, t ∈ [0, 1],
• {Φ(x, t)}t∈[0,1] is a homotopically nontrivial sweepout of S3 for any x ∈ I4,
• sup{area(Φ(x, t)) : (x, t) ∈ I5} ≤ W(Σ).

This map Φ has the crucial property that, if the genus of Σ is positive, its
restriction to ∂I4 × {1/2} is a homotopically nontrivial map into the space of
oriented great spheres, which is homeomorphic to S3. Therefore the min-max
theory developed in [1] shows that

2π2 ≤ sup{area(Φ(x, t)) : (x, t) ∈ I5} ≤ W(Σ).
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Min-Max Theory and the Energy of Links

André Neves

(joint work with Ian Agol, Fernando Marques)

Let γi : S
1 → R3, i = 1, 2, be a 2-component link. The Möbius cross energy of the

link (γ1, γ2) is defined to be

E(γ1, γ2) =

∫

S1×S1

|γ′1(t)||γ′2(t)|
|γ′1(t)− γ′2(t)|2

ds dt

The Möbius energy has the remarkable property of being invariant under confor-
mal transformations of R3 [1]. In the case of knots other energies were considered
by O’Hara [5].

It is not difficult to check that E(γ1, γ2) ≥ 4πlk(γ1, γ2)|, where lk(γ1, γ2) denotes
the linking number of (γ1, γ2). This is an immediate consequence of the Gauss
formula:

lk(γ1, γ2) =
1

4π

∫

S1×S1

det(γ′1(s), γ
′
2(t), γ1(s)− γ2(t))

|γ1(s)− γ2(t)|3
ds dt.

By considering pairs of circles which are very far from each other, we see that
the cross energy can be made arbitrarily small. If the linking number of (γ1, γ2)
is nonzero, the estimate says that E(γ1, γ2) ≥ 4π. It is natural to search for the
optimal configuration in that case.

It was conjectured by Freedman, He and Wang [1], in 1994, that the Möbius
energy should be minimized, among the class of all nontrivial links in R3, by
the stereographic projection of the standard Hopf link. The standard Hopf link
(γ̂1, γ̂2) is described by

γ̂1(s) = (cos(s), sin(s), 0, 0) ∈ S3 and γ̂2(t) = (0, 0, cos(t), sin(t)) ∈ S3,

and it is simple to check that E(γ̂1, γ̂2) = 2π2. Here we note that the definition of
the energy and the conformal invariance property extend to any 2-component link
in Rn [3]. A previous result of He proved that the minimizer must be isotopic to
a Hopf link [2].

In the talk I explained how to prove this conjecture using the min-max theory of
minimal surfaces. We now briefly sketch the proof. For any link (γ1, γ2) in R3,
we associate a continuous 5-parameter family of surfaces (integral 2-currents with
boundary zero, to be more precise) in S3 such that the area of each surface in the
family is bounded above by E(γ1, γ2). This family is parametrized by a map Φ
defined on I5, and is constructed so that

• Φ(x, 0) = Φ(x, 1) = 0 (trivial surface) for any x ∈ I4,
• Φ(x, t) is an oriented round sphere in S3 for any x ∈ ∂I4, t ∈ [0, 1],
• {Φ(x, t)}t∈[0,1] is a homotopically nontrivial sweepout of S3 for any x ∈ I4,
• sup{area(Φ(x, t)) : (x, t) ∈ I5} ≤ E(γ1, γ2).
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This map Φ has the crucial property that its restriction to ∂I4 × {1/2} is a
homotopically nontrivial map into the space of oriented great spheres, which is
homeomorphic to S3. Therefore the min-max theory developed in [4] shows that
2π2 ≤sup{area(Φ(x, t)) : (x, t) ∈ I5} ≤ E(γ1, γ2).
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Isoperimetric domains with large volume in simply connected
homogeneous three-manifolds

Joaqúın Pérez

(joint work with William H. Meeks III, Pablo Mira, Antonio Ros)

Minimal and constant mean curvature (CMC) surfaces have been deeply studied
in different three-dimensional ambient spaces. The classical framework for this
study is when the ambient space is a space form, whose six-dimensional isometry
group allows to use a wide range of techniques when analyzing CMC surfaces as
the Alexandrov reflection method, the holomorphicity of the Hopf differential or
the Lawson correspondence. Since the discovery in 2004 by Abresch and Rosen-
berg of a holomorphic quadratic differential for CMC surfaces in homogeneous
spaces with four dimensional isometry group, many results have been produced in
this more general framework where the ambient space is a Riemannian submersion
with constant bundle curvature τ ∈ R over a surface of constant curvature κ ∈ R
(these are the so-called E(κ, τ) spaces). Space forms and E(κ, τ) spaces are special
cases of simply connected homogeneous three-manifolds, but the generic case of
such a Riemannian ambient space is when the isometry group is merely three-
dimensional. All simply connected homogeneous three manifolds are Lie groups
endowed with left invariant metrics (with the exception of S2(κ) × R = E(κ, 0)
for κ > 0, which has isometry group of dimension four). In this talk we will
explore certain aspects of the theory of CMC surfaces in non-compact simply con-
nected homogeneous three-manifolds, connecting the isoperimetric problem with
two numbers that appear naturally: the Cheeger constant and the critical mean
curvature of the ambient space.

In the sequel, X will denote a non-compact, simply connected homogeneous
three-manifold. The isoperimetric profile of X is the function I : (0,∞)→ (0,∞)
given by

I(t) = inf{Area(∂D) : D ⊂ X is a smooth compact domain with Volume(D) = t}.
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SinceX is homogeneous and has dimension less than 8, for every value of t ∈ (0,∞)
there exists at least one smooth compact domain Ω ⊂ X of volume t and area I(t)
(called an isoperimetric domain), and the boundary of every such a domain has
non-negative constant mean curvature with respect to the inward pointing unit
normal vector.

Definition. LetA be the collection of all compact, immersed surfaces inX . Given
a surface Σ ∈ A, let |HΣ| : Σ→ [0,∞) be the absolute mean curvature function of
Σ. The critical mean curvature of X is the non-negative number

H(X) = inf{max
Σ
|HΣ| : Σ ∈ A}.

Definition. The Cheeger constant of a Riemannian manifold Y with infinite vol-
ume is the non-negative number

Ch(Y ) = inf

{
Area(∂D)
Vol(D) : D ⊂ Y is a smooth compact domain

}
.

By definition of the Cheeger constant, Ch(X) = inf{ I(t)t | t ∈ (0,∞)} for every
non-compact, simply connected homogeneous three-manifold X , where I is the
isoperimetric profile of X . The main result explained in this talk is the following
one, whose proof can be found in [1].

Theorem 1. Let X be a non-compact, simply connected homogeneous three-
manifold.

(1) Suppose that X is not isometric to the Riemannian product S2(κ)×R of
a two-sphere of constant curvature κ > 0 with the real line. If Ω ⊂ X is
an isoperimetric domain in X with volume t, then ∂Ω is connected and

Ch(X) < min

{
2H,

I(t)

t

}
,

where H > 0 is the constant mean curvature of the boundary of Ω with
respect to the inward pointing unit normal.

(2) Ch(X) = 2H(X) = limt→∞
I(t)
t = limt→∞ I ′−(t) = limt→∞ I ′+(t), where

I ′−(t), I
′
+(t) denote the left and right derivatives of the isoperimetric profile

I of X.
(3) Given any sequence of isoperimetric domains Ωn ⊂ X with volumes tend-

ing to infinity, as n → ∞, the sequence of constant mean curvatures of
their boundaries converges to H(X) and the sequence of radii of these
domains diverges to infinity1.

(4) If X 6= S2(κ)×R, then there exist two 1-parameter subgroups Γ, Γ̃ and a
(Z×Z)-subgroup ∆ of the isometry group Iso(X) of X, both acting freely on
X, and a topologically product foliation F of X by properly embedded stable
surfaces of constant mean curvature H(X), with the following properties.

1The radius of a compact Riemannian manifold with boundary is the maximum distance from
points in the manifold to its boundary.
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(a) F = {φ(Σ) | φ ∈ Γ̃}, where Σ is any particular leaf of F . In particu-
lar, all leaves of F are congruent.

(b) Each of the leaves of F is invariant under Γ and ∆.

(c) Each orbit of the left action of Γ̃ on X intersects every leaf of F
transversely at a single point.

(d) If Ch(X) > 0, then given a sequence {Ωn}n of isoperimetric domains
in X with volumes tending to infinity, there exist open sets Sn ⊂ ∂Ωn

with Area(Sn)
Area(∂Ωn) → 1 as n → ∞, such that for any sequence of points

qn ∈ Sn, there exists a subsequence of the surfaces {q−1
n ∂Ωn}n that

converges smoothly (in the uniform topology on compact sets of X)
to the leaf Σa of some congruent foliation aF to F passing through
the identity element e of X. Furthermore, for this subsequence, the
domains q−1

n Ωn converge to the closure of the mean convex component
of X − Σa.

It is worth explaining some details about item 4 of the last theorem. Classifi-
cation results (see e.g. Milnor [3] or Meeks and Pérez [2]) insure that under the
conditions of item 4, X is isometric to one of the following two Lie groups endowed
with left invariant metrics:

A: The semidirect product R2
⋊A R for some 2 × 2 real matrix A. This

means R3 = R2 ×R with the group operation (p1, z1) ∗ (p2, z2) = (p1 +
ez1Ap2, z1 + z2), where p1,p2 ∈ R2 and z1, z2 ∈ R, equipped with its
canonical metric (i.e., the left invariant extension of the standard Eu-
clidean inner product after identifying R3 with the tangent space to R2⋊A

R at the identity element (0, 0, 0)).

B: The universal cover S̃L(2,R) of the special linear group endowed with a
left invariant metric (there is a three-parameter family of such metrics).

In case A above, one can define the objects in item 4 of the last theorem as

follows. Σ = R2 ⋊A {0}, Γ̃ = z-axis, Γ is any straight line contained in Σ and ∆
is the (Z × Z)-lattice generated by the translations by two linearly independent
points a1 ∈ Γ and a2 ∈ Σ− Γ.

In case B, if the left invariant metric on S̃L(2,R) has isometry group of dimen-

sion four, then one can take Σ as a vertical horocylinder (i.e., the lifting to S̃L(2,R)

of a horocycle α in H2 by the natural Riemannian submersion Π: S̃L(2,R)→ H2),

Γ is the unique 1-parameter parabolic subgroup of S̃L(2,R) contained in Σ, Γ̃ is

the 1-parameter subgroup of S̃L(2,R) obtained after lifting the hyperbolic trans-
lations along a geodesic in H2 one of whose ends is the point at ∂∞H2 of α, and
∆ is the (Z×Z)-lattice generated by the left translations by a non-trivial element

a1 ∈ Γ and by the generator a2 of the center of S̃L(2,R).

Finally, if in case B the left invariant metric on S̃L(2,R) has three-dimensional

isometry group, then one can take Γ, Γ̃ and ∆ as in the last paragraph, and Σ can
be defined as a certain entire doubly periodic graph over a vertical horocylinder
(this notion of graph refers to the property that Σ intersects exactly once to every
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integral curve of the Killing vector field associated to the hyperbolic 1-parameter

subgroup Γ̃). In this case, the quotient surfaces φ(Σ)/∆ with φ ∈ Γ̃ form a

foliation by CMC tori of the locally homogeneous three-manifoldW = S̃L(2,R)/∆
(diffeomorphic to the product of a torus with the real line, with one end of finite
volume and another end of infinite volume) which give the complete solution to the
isoperimetric problem inW , in the sense that given V > 0, the unique isoperimetric
domain in W enclosing volume V is the end representative Ω(V ) of the end of W

with finite volume whose boundary is one of the CMC tori φ(Σ)/∆, φ = φ(V ) ∈ Γ̃.
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Conformal Willmore flow

Ulrich Pinkall

(joint work with Keenan Crane, Peter Schroeder)

It is known [1] that every compact Riemann surface M admits a conformal im-
mersion f :M → R3. It then seems natural to ask for an optimal such realization
in the sense of minimal Willmore functional

W (f) =

∫

M

H2.

A minimizer f is known to exist [5] provided the conformal type is such that the
infimum of the Willmore functional is below 8π.

The usual setup for treating such questions would be to use the space of all
immersions f as the space over which the functional W is to be minimized. Here
we propose a “change of variable”: We look for an optimal conformal immersion
f by following the gradient flow of

∫

M

µ2

on the spaceM consisting of all half densities µ on M that can be realized as the
mean curvature half-density µ = H |df | of some conformal immersion f :M → R3.
Here we denote by |df | the half density |df | = √σ where σ is the volume 2-form
of the metric on M induced by f .

We claim that away from certain (rather well understood) singularities M is
a submanifold of codimension 6g + 1 (g being the genus of M) in the euclidean
vector space formed by all half-densities on M . The gradient flow of the Willmore
functional (which here is just the squared distance to the origin) basically is just
an ordinary differential equation onM: No partial derivatives on M are involved.
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Based on earlier work on spin-transformations of surfaces [2, 3] we implemented
[4] an extremely efficient numerical algorithm for this conformal Willmore flow.
Figure 1 shows an example.

Figure 1. An initial torus and the limiting surface under the
flow (center and right show different perspectives).

It is very instructive to consider also the analogous situation for closed plane
curves. Here we look at the spaceM consisting of all L-periodic functions κ that
are the curvature function of a closed plane γ of length L. Figure 2 shows an
example of following the gradient flow of

∫
κ2.

Figure 2. An initial curve and two stages of the flow.
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On the Moduli of cmc Annuli of finite type in S3

Martin U. Schmidt

(joint work with Laurent Hauswirth and Martin Kilian)

Pinkall and Sterling [5] constructed constant mean curvature (cmc) tori in R3

and independently Hitchin [4] harmonic maps from tori into S3 in terms of a real
algebraic curve Σ and a holomorphic line bundle L on Σ via integrable system the-
ory. This algebraic geometric correspondence between pairs (Σ, L) and geometric
objects turned out to be a powerful tool for the construction of new examples.
We want to enhance these methods in order to classify the corresponding geo-
metric objects. One example are embedded cmc tori and annuli in homogenous
three-dimensional geometries. Here we focus on Alexandrov embedded annuli in
S3. In [3] we considered embedded minimal annuli in S2 × R. For this purpose
we have to understand the set of algebraic data (Σ, L) which correspond to these
geometric objects. For fixed spectral curves Σ we call the set of line bundles L of
algebraic data (Σ, L) isospectral set. Since this compact degree of freedom is well
understood we focus on the remaining degrees of freedom. Consequently the main
issue is the parametrisation of the moduli space. This is the space of all spectral
curves Σ, such that (Σ, L) are algebraic data for some line bundle L.

Our main task is the investigation of the moduli space M of cmc annuli of
finite type in the 3-sphere. We consider parabolic cmc annuli which have constant
Hopf differential and bounded curvature. Such cmc annuli are said to be of finite
type. The spectral curves of such finite type cmc annuli are real hyperelliptic
curves. They are described by a polynomial a, whose roots are the branch points
of the corresponding two-sheeted covering over CP

1. The global geometry of an
annulus is encoded in a meromorphic differential dh with specified properties. For
given Σ with polynomial a the differential dh is described by another polynomial b.
Furthermore two marked points λ1 and λ2 parametrise the mean curvature and the
Hopf differential. We call the quadruples (a, b, λ1, λ2) spectral data, and identify
M with a subspace of such quadruples. We define vector fields on the space of
quadruples (a, b, λ1, λ2), which preserve the subspaceM. The corresponding flows
simultaneously deform Σ, dh and the marked points λ1 and λ2. Along this flow the
curvature can blow up. It turns out that the curvature stays uniformly bounded
on the annulus as long as the roots of a stay away from the poles of dh. A typical
limit of a curvature blow up is a chain of spheres touching each other at points
which are limits of shrunken necks.

Another accident of the flow are coalescing roots of a. The limits are higher
order roots of a and called singularities of Σ, since the corresponding algebraic
variety is not any more a complex manifold. The dimension of the isospectral set
of Σ is the genus and equal to half the number of roots of a. It turns out that in
case of roots of a coalescing on S1 (in the real part) one dimension of the isospectral
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set shrinks to a point. In this case the limit of the isospectral sets coincides with
the isospectral set of the desingularised curve Σ and there is no geometric accident.
In case of roots of a coalescing at points away from S1 the limit of the isospectral
sets is a union of the compact isospectral set of the desingularised curve and an
extra higher-dimensional non-compact part. The lower-dimensional compact part
is the closure of the higher-dimensional non-compact part and the union is still
compact. The movement from the isospectral set of the desingularised curve to the
extra non-compact part drastically changes the corresponding geometric annulus.
In this case there is a geometric accident.

As an application of the deformation of spectral data we establish global prop-
erties of the moduli space. In the main Theorem 1 we construct for all spectral
curves of cmc annuli a path in the moduli space, which starts at the given spec-
tral curves and ends at spectral curves of spectral genus zero. Along this path
the curvature stays bounded and no geometric accident happens. The spectral
curves of genus zero and their annuli can effectively be classified by explicit calcu-
lation. In fact we determine all spectral data of spectral genus zero corresponding
to mean convex Alexandrov embedded annuli. Moreover, we extend the corre-
sponding family to a two-dimensional family of spectral data of spectral genus at
most one. The corresponding cmc annuli are rotational mean convex Alexandrov
embedded annuli. We call this family of spectral data rotational family. We show
that the rotational family is connected with spectral curves outside of this family
only by a movement from the lower-dimensional compact part of a non-singular
spectral curve into the higher-dimensional extra non-compact part of a singular
spectral curve as explained above. Here the desingularised curve of the latter
spectral curve is the former spectral curve. As a consequence of Theorem 1 we
characterise in Theorem 2 the rotational family as a subset of the moduli space of
spectral curves of cmc annuli of finite type by three properties.

In the second part we apply our results on the moduli space and classify mean
convex Alexandrov embedded annuli of finite type in S3 in Theorem 3. These
annuli are exactly the rotational annuli, since the corresponding moduli space is
shown to have the three properties of Theorem 2. We show that mean convex
Alexandrov embedded surfaces with constant mean curvature have collars with
depths uniformly bounded from below. For this purpose we use a ’maximum
principle at infinity’ which was communicated to us by Harold Rosenberg. As
a consequence we establish in Theorem 4 the third property. This means that
continuous deformations preserve the spectral data of mean convex Alexandrov
embedded annuli, as long as the degree of a is preserved.

Recently Brendle proved with elementary methods Lawson’s conjecture, which
states that the Clifford torus is the only embedded minimal torus in S3 [2]. An-
drews and Li [1] extended these arguments and confirmed the conjecture by Pinkall
and Sterling, which states that all embedded cmc tori in S

3 are surfaces of revo-
lution. Both results follow from Theorem 3.
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Morse indices of minimal surfaces in flat tori

Toshihiro Shoda

(joint work with Norio Ejiri)

Our object is a properly n-periodic minimal immersion of an oriented surface
into an n-dimensional Euclidean space R

n. It can be considered as a minimal im-
mersion of a compact oriented surface into an n-dimensional flat torus Rn/Λ, and
the conformal structure induced by the immersion makes the surface a Riemann
surface. It is usually called a conformal minimal immersion. Now we study the
latter for the case n = 3, 4 in terms of the Morse index and nullity. Recall that the
Morse index of a compact oriented minimal surface in a flat torus is defined as the
sum of the dimensions of the eigenspaces corresponding to negative eigenvalues
of the second variational operator of area. The nullity is the dimension of the
0-eigenspace.

First, we consider the case n = 3. In 1991, S. Montiel and A. Ros [6] estab-
lished an impressive theory. By their results, we can show that both Morse index
and nullity of Schwarz’ CLP surface are 3. After that, in 1992, M. Ross obtained
that each Morse index of Schwarz’ P surface, D surface, and Schoen’s Gyroid is
1. Moreover, Ross’ argument implies that each nullity of the three surfaces is 3.
On the other hand, N. Ejiri [3, 4] considered a moduli theory of compact oriented
minimal surfaces in flat tori in terms of differential geometry and studied it from
the point of view of the Morse index and nullity. This theory includes an algorithm
to compute the Morse index under some assumptions. In the previous work, we
carried out Ejiri’s algorithm and computed the Morse index of examples as follows.

Main result 1
For a ∈ (0, 1), let M be a hyperelliptic Riemann surface of genus 3 defined by

w2 = z(z3 − a3)
(
z3 − 1

a3

)
and f a conformal minimal immersion given by

f(p) = Re

∫ p

p0

i(1− z2, i(1 + z2), 2z)t
dz

w
.

Then there exist 0 < a1 < a2 < 1 satisfying the following properties:
(i) index = 2 and nullity = 3 for a ∈ (0, a1),
(ii) index = 1 and nullity = 3 for a ∈ (a1, a2),
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(iii) index = 3 and nullity = 3 for a ∈ (a2, 1),
where a1 ∼ 0.497010, a2 ∼ 0.714792.

Note that we obtain the similar results for a > 1. This family of minimal sur-
faces is called H family.

Main result 2
For a ∈ (0, 1], let M be a hyperelliptic Riemann surface of genus 3 defined by

w2 = z(z3 − a3)
(
z3 + 1

a3

)
and f a conformal minimal immersion given by

f(p) = Re

∫ p

p0

i(1− z2, i(1 + z2), 2z)t
dz

w
.

Then there exist 0 < a1 < 1 satisfying the following properties:
(i) index = 2 and nullity = 3 for a ∈ (0, a1),
(ii) index = 1 and nullity = 3 for a ∈ (a1, 1],
where a1 ∼ 0.494722.

Note that we obtain the similar results for a ≥ 1. This family of minimal sur-
faces is called rPD family.

Main result 3
For a ∈ (2, ∞), let M be a hyperelliptic Riemann surface of genus 3 defined by

w2 = z8 + az4 + 1 and f a conformal minimal immersion given by

f(p) = Re

∫ p

p0

(1 − z2, i(1 + z2), 2z)t
dz

w
.

Then there exist 2 < a1 < 14 < a2 <∞ satisfying the following properties:
(i) index = 2 and nullity = 3 for a ∈ (2, a1),
(ii) index = 1 and nullity = 3 for a ∈ (a1, a2),
(iii) index = 2 and nullity = 3 for a ∈ (a2, ∞),
where a1 ∼ 7.40284, a2 ∼ 28.7783.

This family of minimal surfaces is called tP family. Moreover, tD family is
defined as a family of conjugate surfaces of minimal surfaces in tP family, and we
find the same result for tD family.

Main result 4
For a ∈ (−2, 2), let M be a hyperelliptic Riemann surface of genus 3 defined

by w2 = z8 + az4 + 1 and f a conformal minimal immersion given by

f(p) = Re

∫ p

p0

(1 − z2, i(1 + z2), 2z)t
dz

w
.

Then, for an arbitrary a ∈ (−2, 2), index = 3 and nullity = 3.
This family of minimal surfaces is called tCLP family.

Next we consider the case n = 4. We showed the existence of non-holomorphic
hyperelliptic minimal surfaces of even genus in 4-dimensional flat tori, and more-
over, we computed their Morse indices. Now we mention our motivation on it.
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The existence of hyperelliptic minimal surfaces of odd genus in flat tori was given
by C. Arezzo and G. P. Pirola [1]. Their technique is using deformations of a hy-
perelliptic minimal surface in a 3-dimensional flat torus to a hyperelliptic minimal
surface in an n-dimensional flat torus (n > 3). Recall that there is a topological
obstruction for a hyperelliptic minimal surface in a 3-dimensional flat torus. In
fact, a hyperelliptic curve of even genus cannot be minimally immersed into any 3-
dimensional flat torus [5, 7]. Thus Arezzo-Pirola treat only odd genus case. From
this point of view, we consider the following problem: are there any hyperelliptic
minimal surfaces of even genus in n-dimensional flat tori for n > 3? We focus on
the simplest case, that is, the case n = 4. From E. Colombo and Pirola’s argument
[2], we can see the existence of holomorphic immersions of hyperelliptic curves of
even genus into 4-dimensional flat tori. As a result, we improve our problem as fol-
lows: are there any non-holomorphic hyperelliptic minimal surfaces of even genus
in n-dimensional flat tori for n > 3? We obtained a partial answer for this problem.

Main result 5
For 0 < a < 1, let M be a hyperelliptic curve of genus 4 defined by

w2 = z
(
z4 + a4

)(
z4 +

1

a4

)
.

Suppose that f is given by

f :M −→ R4

p 7−→ Re

∫ p

p0

(
1− z3, i (1 + z3), z2 + z, i (z2 − z)

)T dz

w

By suitable deformations ofM or f , there exist countably infinite non-holomorphic
minimal surfaces in 4-dimensional flat tori.

Moreover, there exist 0 < a1 < a2 < a3 < a4 < 1 satisfying the following
properties:
(i) index = 5 and nullity = 4 for a ∈ (0, a1) ∪ (a4, 1),
(ii) index = 3 and nullity = 4 for a ∈ (a1, a2) ∪ (a3, a4),
(iii) index = 2 and nullity = 4 for a ∈ (a2, a3).
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A structural approach towards the classification of isoparametric
hypersurfaces in spheres

Anna Siffert

The problem of classifying isoparametric hypersurfaces in spheres is still not com-
pletely solved. Recent contributions to the case with six different principal cur-
vatures seem to contain fundamental gaps. In my paper I develop a structural
approach towards the classification of isoparametric hypersurfaces in spheres.

The basic idea for the structural approach is the following: instead of working
with the family of parallel surfaces Ft : Mn → Sphn+1, with normal field νt ∈
Γ(νMn), one considers the associated Lagrangian submanifold

ι :Mn → Qn ⊂ CPn+1

of the complex quadric Qn. The t-independent map ι is the composition of the

map F̂t = Ft + i νt, which is a horizontal immersion into the Stiefel manifold
St2(R

n+2) ⊂ Cn+2, and the standard projection π : St2(R
n+2) → Qn. The key

fact is that all the relevant geometric invariants of Ft(M
n), i.e. the metric gt,

the Weingarten map At, and its covariant derivative t∇At, translate into natural
geometric invariants (g, α,B ⊗ B−1) of the Lagrangian submanifold ι(Mn) ⊂ Qn

which are now independent of t. The symmetric tensor is defined via

α(X,Y, Z) = gt((
t∇XAt)Y, Z),

where At denotes the shape operator of Ft with respect to νt. The tensor α is
one of the fundamental invariants used in the previous classification approaches
though usually encoded in some much less invariant Maurer-Cartan forms Λt. The
really interesting fact is that α coincides - up to a factor of two - with the second
fundamental form of the Lagrangian submanifold. This yields a new, geometric
interpretation for this important tensor. In order to define B ⊗B−1 we introduce
the operator

Bt = (At + i11)(At − i11)−1.

Here, the crucial observation is that the expression Bt ⊗B−1
t is independent of t.

The invariant B ⊗ B−1 := Bt ⊗ B−1
t encodes the Bochner tensor of Qn and thus

also has a natural geometric interpretation.

The classical Weyl identities depend on several indices. In terms of the invari-
ants described above, these multiple identities unify into one tensor identity. This,
in particular, makes it feasible to consider higher derivatives of the Weyl identity,
which is not possible in the classical approaches. Moreover, the classical identities
expressing the reflections through each of the focal manifolds, sometimes also re-
ferred to as global identities, translate into the fact that the pullback of α under
certain symmetries coincides with the negative of α. So far, all these consider-
ations are completely general; they work for any number g of distinct principal
curvatures.



1308 Oberwolfach Report 21/2013

For the special case where the number g of distinct principal curvatures equals
six, the goal consists in the proof of the homogeneity of the isoparametric hy-
persurfaces. I deduce several easy tensor identities which are equivalent to this
homogeneity. In particular, I show that the integrability ofDj⊕Dj+3 is a necessary
and sufficient condition. Furthermore, I prove that this homogeneity is equivalent
to the statement that certain sectional curvatures of the Lagrangian submani-
fold vanish. This is a new, geometric interpretation of the goal that provides an
interesting link to some global metric properties of the quadric Qn ⊂ CPn+1.

Furthermore, I develop a more efficient calculus for studying the linear isospec-
tral families associated to the second fundamental form of the focal submanifolds.
With this calculus I manage to classify the linear isospectral families in the case
g = 6 and all multiplicities equal to one, completely. Thereby I reprove the classifi-
cation theorem by Dorfmeister and Neher in a somewhat different way. It turns out
thereof that the linear isospectral family encodes just some of the classical Weyl
identities and some higher derivatives of them. Thus we expect that it will be
crucial to evaluate the higher derivatives of the Weyl identities in a more efficient
way.

Naturally, all the classical approaches to the classification problem can be trans-
lated into this more structural picture. Thereby the proofs become easier and allow
more geometric insights.
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