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Introduction by the Organisers

The goal of this workshop was to bring together, for the first time, experts on
two different fields: spherical varieties, on one hand, and periods of automorphic
forms, on the other.

If G is a reductive group over a global field k (e.g.: a number field), auto-
morphic forms are (roughly speaking) elements of irreducible representations for
the action of G(Ak) on C∞([G]), where Ak denotes the ring of adeles of k, and
[G] = G(k)\G(Ak). (The reader may think of G(k)\G(Ak) as a homogeneous
manifold such as GLn(Z)\GLn(R), whose functions are equipped with more sym-
metries than the action of G(R), the so-called Hecke operators.)

Automorphic representations have important invariants which are very difficult
to study, such as their L-functions. A common way to study automorphic L-
functions is to take large enough – spherical – subgroups H ⊂ G and to consider
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period integrals of automorphic forms, i.e. integrals of the form:
∫

[H]

φ(h)dh,

perhaps adding a continuously varying character of [H ]. Such integrals are often
equal to L-functions or special values of L-functions, and they also reveal other
interesting properties of the automorphic representation π of φ, such as being a
“functorial lift” in the sense of Langlands.

It turns out that these phenomena are related to the structure of spherical
varieties discovered in works of Luna, Vust, Brion, Knop and others, and to the
dual group ǦX that was associated by Gaitsgory and Nadler to any spherical
variety X , based on this structure.

The goal of our workshop was to inform experts on spherical varieties about the
general theory and relevant problems in automorphic forms, and vice versa. Au-
tomorphic representations appear in harmonic analysis of the homogeneous space
[G], and their local constituents appear in harmonic analysis on the symmetric
space G(kv), where v is any completion of k; Wee Teck Gan gave a general intro-
duction to non-abelian harmonic analysis, with an emphasis on the Plancherel de-
composition of L2(G(kv)). This introduction was continued by Dipendra Prasad,
who talked about automorphic representations, the local Langlands Conjecture,
and automorphic L-functions. On the side of spherical varieties, Guido Pezzini
gave an introduction to their structure and invariants, and Paolo Bravi described
the “Luna systems”, i.e. these combinatorial invariants which are used to classify
wonderful and spherical varieties. The relation between harmonic analysis and
the compactification theory started appearing in the talk of Yiannis Sakellaridis,
who explained the role of “boundary degenerations”, i.e. normal bundles to G-
orbits in suitable compactifications, to the description of the continuous spectrum
in the Plancherel formula for L2(X(kv)). There are several root systems that one
can attach to a spherical variety, always with the same Weyl group and on the
same vector space but with roots of different length, encoding different features
of the variety; Bart Van Steirteghem compared the various root systems and ex-
plained their use. Proving that these invariants give rise to root systems, though, is
quite involved, and Friedrich Knop recounted his analysis of the moment map (the
graded version of his analysis of invariant differential operators), which provides
a conceptual proof for the appearance of root systems. Bernhard Krötz described
problems in real harmonic analysis related to spherical varieties and “real spherical
varieties”, a term he uses for homogeneous spaces for a real Lie group on which
a minimal R-rational parabolic (not necessarily a Borel) acts with an open orbit.
One of the ways to understand the root system of a(n affine) spherical variety is as
a measure of the failure of the coordinate ring – which is naturally filtered by domi-
nant weights – to be graded; on the third day, Michel Brion described the invariant
Hilbert scheme, which roughly describes the possible ring structures on a given
G-module. On the automorphic side, Omer Offen introduced the relative trace
formula of Jacquet, a basic tool for studying period integrals, but possibly also
the natural setting in which conjectures about spherical varieties and their dual
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group should be formulated. On the fourth day, Yiannis Sakellaridis explained the
Satake isomorphism, the work of Gaitsgory and Nadler, and the relevance of finer
invariants, such as colors, in the study of unramified functions on spherical vari-
eties. There is a very simple and telling way in which the Weyl group of a spherical
variety appears, and this is by considering an action, defined by Friedrich Knop,
of the full Weyl group on the set of Borel orbits; Jacopo Gandini described this
action, as well as further results on the structure of Borel orbits. On the last day
Farrell Brumley explained the number-theoretic importance of periods via some
examples from analytic number theory, and Nicolas Templier described results on
the asymptotic behavior of Whittaker functions. Finally, Stephanie Cupit-Foutou
has used the invariant Hilbert scheme to classify spherical varieties, and she gave
an alternative description of Luna data based on the invariant Hilbert scheme.
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Abstracts

Non-abelian Harmonic Analysis, Automorphic Forms and the
Langlands Program

Wee Teck Gan

In this expository talk, I gave a brief introduction to the Langlands program,
using abelian harmonic analysis (i.e. the theory of Fourier series and Fourier
transform) as a motivation.

0.1. Abelian harmonic analysis. More precisely, suppose that G is the additive
group Ga, then classical harmonic analysis concerns the study of the unitary repre-
sentations L2(G(R)) and L2(G(Z)\G(R)) under right translation. To understand
how these representations decompose into irreducible ones, it is clearly useful to

have explicit knowledge of the unitary dual Ĝ(R) of G(R). In this case, one knows
that

Ĝ(R) = {χy : y ∈ R}
where

χy(x) = e2πixy.

Then the theory of Fourier series gives a direct sum decomposition

L2(G(Z)\G(R)) ∼=
⊕

y∈Z

C · χy.

On the other hand, the theory of Fourier transform gives a direct integral decom-
position

L2(G(R)) ∼=
∫

Ĝ(R)

χy ⊗ χ∨
y dy

as a representation of G(R)×G(R), with dy the Lebesgue measure on Ĝ(R) = R.

0.2. Non-abelian harmonic analysis. Now one may replace the additive group
with a more interesting group, such as a connected semisimple (or reductive) linear
algebraic group over a local field F (such as R or Qp). In this case, one does not

have a full knowledge of the unitary dual Ĝ(F ). Nonetheless, one can show that
there is a canonical decomposition:

L2(G(F )) ∼=
∫

Ĝ(F )

π ⊗ π∨ dµG(π)

for some measure dµG (the Plancherel measure of G(F )). When F = R, Harish-
Chandra gave a rather precise description of this Plancherel measure. The high-
lights are:
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• the measure dµG has continuous as well as atomic parts; thus

L2(G(F )) = L2
disc(G(F )) ⊕ L2

cont(G(F ))

is the sum of its discrete spectrum and its continuous spectrum. The rep-
resentations π contributing to the discrete spectrum are called the discrete
series representations. They have L2 matrix coefficients and the embed-
ding π ⊗ π∨ −→ L2(G(F )) is canonically constructed by the formation of
matrix coefficients.

• the support of the measure is not the full unitary dual; indeed, the support
is on the set of tempered representations (those whose matrix coefficients
are L2+ǫ for every ǫ > 0);

• there is a refined decomposition

L2(G(F )) ∼=
⊕

M

L2
M

as M runs over association classes of Levi subgroups of G, so that the dis-
crete spectrum is the term corresponding to M = G. This decomposition
reflects the behaviour of the matrix coefficients of tempered representa-
tions as one approaches infinity in different directions. Moreover, L2

M can
be described in terms of the discrete spectrum ofM(F ) (with fixed central
character), via the theory of Eisenstein integral.

0.3. Local Langlands correspondence. The point is that the study of L2(G(F ))
singles out certain natural classes of irreducible representations of G(F ). When
F = R, the work of Harish-Chandra et al gives a classification of the discrete
series and tempered representations, and the work of Langlands then classifies all
irreducible admissible representations (which are not necessarily unitary) in terms
of the tempered ones. When F is p-adic, the analogous classification is known as
the local Langlands conjecture for G(F ). We assume that G is F -split henceforth,
for simplicity.

More precisely, let WDF =WF ×SL2(C) be the Weil-Deligne group of F , with
WF the Weil group. Then a local Langlands parameter is a conjugacy class of
admissible homomorphisms

φ :WDF −→ G∨

where G∨ is the Langlands dual group of G. Thus, a local Langlands parameter
is essentially a local Galois representation, valued in G∨.

The local Langlands conjecture then postulates that there is a finite-to-one map
(with precisely determined fibers)

L : Irr(G(F )) −→ Φ(G(F )).

This conjecture is now known for G = GL(n) by Harris-Taylor and Henniart, and
for the classical groups by recent work of Arthur and Moeglin.
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0.4. Automorphic forms for real groups. So far, we have focused on the
representation L2(G(F )). What about the representation L2(G(Z)\G(R))? The
study of this is the subject matter of the theory of automorphic forms.

As before, one has a decomposition

L2(G(Z)\G(R)) = L2
disc(G(Z)\G(R)) ⊕ L2

cont(G(Z)\G(R)).

We call L2
disc(G(Z)\G(R)) the automorphic discrete spectrum; it decomposes as

L2
disc(G(Z)\G(R)) ∼=

⊕

π∈Ĝ(R)

m(π) · π

for some multiplicitym(π) <∞. Moreover, the continuous part L2
cont(G(Z)\G(R))

can be described in terms of the automorphic discrete spectrum of proper Levi
subgroup of G(R): this is the theory of Eisenstein series due to Langlands. Thus,
the study of the automorphic discrete spectrum is the fundamental issue.

0.5. Adelic automorphic forms. The fact that the multiplicities m(π) can be
> 1 suggests that there are extra symmetries in the system to be exploited. As it
turns out, there is a natural family of operators acting on L2(G(Z)\G(R)) com-
muting with the action of G(R). These are the Hecke operators. Thus, one should
study L2(G(Z)\G(R)) as a module over G(R) × HG(Z), where the latter is the
Hecke algebra associated to G(Z). What does one know about this Hecke algebra?
It turns out that the best framework to encompass both the action of G(R) and
that of the Hecke algebra is to use the ring of adeles A. When F = Q, for example,

A = R×
′
∏

p

Qp

where the RHS is a restricted direct product.

0.6. Global Langlands program. Thus, one is finally led to consider the repre-
sentation L2(G(F )\G(A)) of G(A) by right translation. The representations which
intervene in the discrete spectrum of this are the so-called square-integrable au-
tomorphic representations. The theory of automorphic forms seeks to understand
these automorphic representations. The global Langlands program connects them
with Galois representations, objects of fundamental importance in number theory.
To a first approximation, the global Langlands conjecture says that

Automorphic representations and Galois representations

are, in very precise ways, two sides of the same coin.



1454 Oberwolfach Report 24/2013

Basics of the structure of spherical varieties

Guido Pezzini

Let G be a reductive connected complex algebraic group, and X a normal irre-
ducible complex algebraic variety equipped with an action of G.

In the paper [4], D. Luna and T. Vust introduced an invariant of such an action,
with the goal of giving a sort of measure to which extent the properties of the G-
action determine the geometry of the variety. This invariant, called the complexity
of X and denoted by c(X), is defined as the minimal codimension of a B-orbit on
X , where B is a Borel subgroup of G. The idea is that the lower the complexity,
the more influence the symmetries of X induced by G have on the geometry of X .

Under this point of view varieties of complexity zero are the simplest cases of G-
varieties, yet they include many varieties that are classically studied in the theory
of reductive groups. More precisely, normal varieties of complexity zero are called
spherical varieties, and have been studied extensively in the last 30 years.

The assumption of normality is of technical nature, but so fundamental for
the theory that only in the last few years the first results on some non-normal
complexity zero varieties have appeared in the literature (see e.g. [2]). For the
purposes of this report, we may underline that a useful consequence of normality
is that X is covered by quasi-affine G-stable open subsets (see [6, Lemma 8]).

Examples of spherical varieties are complete homogeneous spaces X = G/P ,
where P is a parabolic subgroup of G; toric varieties, which is the case where
G = (Gm)n is an algebraic torus; symmetric homogeneous spaces X = G/Gθ

where θ : G→ G is an involution. We report some other examples.

(1) G = SL(2) × SL(2) × SL(2) and X = G/diag(SL(2)) (notice that such a
homogeneous space is not spherical if a semisimple group of rank higher
than 1 is used instead of SL(2)).

(2) X = G/U where U is a maximal unipotent subgroup of G.
(3) X = SL(3)/H with H = TUα1+α2 , where T ⊂ B is a maximal torus,

α1, α2 are simple roots associated to T and B, and Uα1+α2 is the one
dimensional unipotent subgroup of B associated to α1 + α2.

(4) The projective space of 2-by-2 matrices P(M2×2), with G = SL(2)×SL(2)
acting by left and right multiplication.

Sphericity is equivalent to various other properties, and has strong consequences
for the G- and B-action on X . We summarize in the next two theorems some basic
facts, and for other equivalent definition of sphericity we refer to Chapter 5 of [7].

Theorem 1 ([9]). Let X be a normal irreducible G-variety. If X is affine, then
X is spherical if and only if the ring of regular functions C[X ] is a multiplicity-
free G-module, i.e. any two distinct irreducible submodules are non-isomorphic.
In general, X is spherical if and only if the space of global sections Γ(X,L) is a
multiplicity-free G-module, for every linearized line bundle L on X.

Theorem 2 ([8] and [1]). If X is a spherical G-variety, then G and B have a finite
number of orbits on it, and the closure of any G-orbit is a spherical G-variety.
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We remark that in general the inequality c(Z) ≤ c(X) holds for every closed,
irreducible, B-stable subset Z of X , without assuming X spherical. This implies
the finiteness of the number of B- and G-orbits whenever c(X) = 0. On the other
hand, if Y is also such a subset and Z ⊂ Y holds, then the inequality c(Z) ≤ c(Y )
is not true in general. A counterexample is found in the variety P(M2×2) under
the action of G = SL(2) by left multiplication.

Several discrete invariants of a spherical G-variety X can be naturally defined.
Due to the central role of Borel subgroups in the representation theory of G, most
invariants involve the action of B:

(1) the set ofB-eigenvalues of rational functions (onX) that areB-eigenvectors;
it is a subgroup, denoted by Λ(X), of the group of characters of B, and
its rank is by definition the rank of X as a spherical variety;

(2) the vector space Λ∗
Q(X) = HomZ(Λ(X),Q);

(3) the (finite) set D(X) of all B-stable but not G-stable prime divisors of X ,
called colors.

A spherical variety X contains a dense G-orbit, which we denote by X0, and
X is also called an embedding of X0. Then the above invariants actually depend
only on X0; this can be made precise also for colors, e.g. replacing a color by its
generic point.

Notice that a B-eigenvector fχ ∈ C(X) is determined by its B-eigenvalue
χ ∈ Λ(X) up to multiplication by a constant. Moreover, any Q-valued discrete
valuation ν : C(X)∗ → Q (over the constant functions) induces an element ρ(ν) of
Λ∗
Q(X), by requiring that ρ(ν) take the value ν(fχ) on χ ∈ Λ(X).
One may apply this construction to the valuation associated with any prime

divisor on X . The advantage of considering valuations is that they are defined on
C(X0) = C(X) regardless of whether they come from some prime divisor or not.

Under this point of view G-invariant valuations are particularly useful in de-
scribing the difference set X \X0: since it is G-stable, the valuation associated to
any prime divisor contained in X \X0 is G-invariant.

Invariant valuations are also strictly related to the little Weyl group, a crucial
invariant of a spherical variety. The first result in this direction is the following.

Theorem 3 ([5]). Let X be a spherical variety. Then

V (X) = {ρ(ν) | ν is a G-invariant valuation }

is a convex polyhedral cone in Λ∗
Q(X).

In analogy with the classification of toric varieties, embeddings of a fixed spher-
ical G-homogeneous space X0 can be classified by means of families of convex
cones in the vector space Λ∗

Q(X0). Some data has to be added taking into account

the behaviour of colors. We outline this classification, referring to [3] and [4] for
details.

The role of affine toric varieties is played here by simple spherical varieties,
which are by definition spherical varieties with a unique closed G-orbit. Indeed,
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in general if Y ⊆ X is any G-orbit, then

XY,G = {x ∈ X | Gx ⊇ Y }
is open in X , quasi-projective and G-stable, spherical and simple with unique
closed orbit Y . Therefore X is covered by simple spherical varieties.

Now to any simple spherical variety X with open orbit X0 and closed orbit Y
we associate two objects:

(1) the cone CX generated in Λ∗
Q(X0) by the image of the valuations associated

to all B-stable prime divisors containing Y ;
(2) the set DX of colors containing Y .

The couple (CX ,DX) is called the colored cone of X . “Admissible” colored cones
are defined combinatorially in [3, §3].
Theorem 4. Let X0 be a spherical G-homogeneous space. The map X 7→ (CX ,DX)
is a bijection between simple embeddings of X0 (up to G-equivariant isomorphisms
that are the identity on X0) and colored cones in Λ∗

Q(X0).

If X is not simple, then we consider its G-orbits Y1, . . . , Yn. The set

FX = {(CXYi,G
,DXYi,G

) | i ∈ {1, . . . , n}}
is called the colored fan of X , and admissible colored fans are also defined combi-
natorially in [3, §3].
Theorem 5. Let X0 be a spherical G-homogeneous space. The map X 7→ FX is
a bijection between embeddings of X0 (up to G-equivariant isomorphisms that are
the identity on X0) and colored fans in Λ∗

Q(X0).
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Periods of Automorphic forms and distinguished representations

Dipendra Prasad

The Oberwolfach mini-workshop on ‘Spherical varieties and Automorphic rep-
resentations’ brought together people in two rather different subjects: on the one
hand people working on Spherical varieties, mostly from an algebraic geomet-
ric point of view, and mostly over algebraically closed field of characteristic 0,
and then on the other hand, there were people pursuing Automorphic represen-
tations. That the two subjects have got a lot in common is through the recent
work of Sakellaridis and Venkatesh, and it is clear that the detailed knowledge
of Spherical varieties will be a very useful knowledge for people in Automorphic
representations.

The program was therefore mainly instructional in nature, where people were
expected not to talk to specialists in their own subject, but to people belonging
to the other half of the group.

I gave an introductory lecture on Period of Automorphic forms and distin-
guished representations. My lecture was the 2nd lecture on Automorphic forms
on the very first day, following the lecture of Wee Teck Gan. So I began by filling
in a few details from his talk, and then continued with my topic.

I divided my talk into the following sections:

(1) L-group, and some basic examples.
(2) The Local Langlands Correspondence.
(3) The notion of Automorphic Representations.
(4) Local and Global L-functions, and their analytic properties.
(5) Principle of functoriality, in particular the symmetric powers.
(6) Distinguished representations: the relative theory.
(7) Period integrals, and its relation to local distinction.

In my lectures, I concentrated mostly on non-Archimedean local fields k, and
defined a distinguished representation of a group G distinguished by a (spherical
subgroup)H to be an irreducible representation for which there exists a nonzeroH-
invariant linear form. I stated the basic conjecture in the subject due to Sakellaridis
and Venkatesh, and verified in several cases by Sakellaridis, and by Gan-Gomez
that the representations of G distinguished by H should arise as functorial transfer
from another group. I suggested in my lecture that if there exists a unique H(k)
orbit which is open in the (Hausdorff) topology coming from k on the flag variety
(G/P0)(k) where P0 is the minimal parabolic in G defined over k, then there is a
unique H-invariant linear form. The audience clarified that this is too optimistic.
First of all, if H is not reductive, there is no hope, such as for the unipotent radical
of a Borel. But even if H is reductive it fails, for example, G = SO(7) containing
H = GL(3).

My talk which was of 90 minutes fell short of the last topic on Period integrals,
which were defined in several later talks such as that of Sakellaridis, and Omer
Offen.
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Luna’s combinatorics

Paolo Bravi

We briefly present the combinatorial invariants introduced by D. Luna to classify
the spherical homogeneous spaces, see [7] and the references therein.
Spherical closure. Let G be a reductive linear algebraic group over an algebraically
closed field k of characteristic zero. Let T be a maximal torus and B a Borel
subgroup of G containing T . Let S be the corresponding set of simple roots of
(G, T ).

Let H be a spherical subgroup of G. A color of G/H is by definition a prime
B-stable divisor of G/H . The set of colors of G/H is denoted by D(G/H).

The normalizer NG(H) ofH acts on the setD(G/H). The kernel of this action is
called the spherical closure of H , and denoted by H . Clearly, D(G/H) = D(G/H)

and H = H . A subgroup H of G is called spherically closed if H = H .
In general, the quotient H/H is diagonalizable and the spherical subgroups H

of G, with a given spherical closure K, are classified by the lattices Λ(G/H), of
B-eigenvalues of rational B-eigenfunctions on G/H , which contain Λ(G/K).

If H is spherically closed then it has finite index in its normalizer, therefore
G/H has a canonical simple embedding associated with the cone of G-invariant
valuations (which is strictly convex in this case) and no colors containing the closed
G-orbit. By a theorem of F. Knop [5], every spherically closed subgroup H of G
is wonderful, i.e. the canonical embedding G/H is wonderful.
Wonderful varieties. An algebraic G-variety X is called wonderful if: is smooth,
complete, has an open G-orbit whose complementary is union of smooth prime
G-stable divisors X1, . . . , Xr with non-empty transversal intersections and, for all
x ∈ X , G.x = ∩x∈Xi

Xi.
A wonderful G-variety is spherical, it is a simple complete toroidal embedding

of its open G-orbit.
To a wonderful varietyX we attach essentially three invariants: the closed orbit,

the spherical roots and the colors (viewed as functionals on Λ(X)).
There exists a (unique) point z ∈ X stabilized by B−. Clearly, z lies in the

closed G-orbit and its stabilizer is a parabolic subgroup which is opposite to the
stabilizer PX of the open B-orbit. The subset of S of simple roots of the Levi of
PX is denoted by Sp

X .
Spherical roots. Let H be a spherically closed subgroup of G, in particular it con-
tains the center of G. We can assume that G is semisimple and simply connected.
Let X denote the wonderful embedding of G/H .

In [3] M. Brion has proved that the cone of G-invariant valuations is defined by
a set of linear independent inequalities 〈v, σ〉 ≤ 0, for some primitive elements σ
in Λ(X). These elements σ are called spherical roots of X , their set is denoted by
ΣX .

Under our hypotheses, the spherical roots of X are non-negative integer combi-
nations of simple roots, and generate Λ(X) (which we will also denote by ZΣX).
They are equal to the T -weights occurring in TzX/Tz(G.z), the normal space at



Mini-Workshop: Spherical Varieties and Automorphic Representations 1459

z of the closed G-orbit in X . In particular, they are in correspondence with prime
G-stable divisors, σ 7→ Xσ, such that σ is the T -weight occurring in TzX/TzXσ.

On the other hand the G-stable subvarieties of X are wonderful, and they are
in bijective correspondence with subsets of ΣX . In particular, the spherical roots
of X are spherical roots of rank 1 wonderful G-varieties. Since the latter have
been classified, the list of elements that can occur as spherical roots of wonderful
G-varieties is finite and known for any G.
Colors. Recall we have assumed G to be simply connected. Let DX be the set of
prime B-stable not G-stable divisors of X ; these are exactly the closures of the
colors of G/H , so that as sets DX = D(G/H). Every B-stable divisor of G/H ,
i.e. an element D ∈ ND(G/H), has an equation in G, i.e. a (unique up to a scalar)
regular B ×H-eigenfunction (B acting on the left and H on the right) on G. We
have an exact sequence

0 → ZΣX → ZDX → Λ(H) → 0.

Indeed, the Picard group of X is freely generated by the linear equivalence classes
of the elements of DX , and the Cartan pairing is the Z-bilinear pairing cX : ZDX×
ZΣX → Z such that for all σ ∈ ΣX

[Xσ] =
∑

D∈DX

cX(D, σ)[D].

Spherical systems. The triple (Sp
X ,ΣX , cX) is called the spherical system of X . It

is a purely combinatorial datum. Notice that Luna’s definition is slightly different,
but equivalent.

There are constraints on cX . For every simple root α, let Pα denote the minimal
standard parabolic subgroup ofG corresponding to α, and set DX(α) = {D ∈ DX :
Pα.D 6= D}. The latter contains at most two elements. More precisely:

p) α ∈ Sp
X if and only if DX(α) = ∅;

a) α ∈ S ∩ Σ if and only if DX(α) contains two elements, say D+
α , D

−
α , and

cX(D+
α , σ) + cX(D−

α , σ) = 〈α∨, σ〉 for all σ ∈ ΣX ;
2a) if α ∈ S ∩ 1

2ΣX , DX(α) contains one element, say D2α, and cX(D2α, σ) =
1
2 〈α∨, σ〉 for all σ ∈ ΣX ;

b) otherwise DX(α) contains one element, say Dα, and cX(D2α, σ) = 〈α∨, σ〉
for all σ ∈ ΣX .

The sets DX(α) need not be disjoint, but there are strong constraints on their
intersections.

This leads to certain combinatorial axioms which define an abstract spherical
system. The Luna conjecture (which is now proved [7, 6, 4, 2]) states that the
wonderful varieties are classified by the abstract spherical systems.
Morphisms. Let ϕ : X → Y be a G-equivariant surjective morphism with con-
nected fibers between wonderful G-varieties. The subset of colors Dϕ ⊂ DX that
map dominantly is distinguished, that is, there exists D ∈ N>0Dϕ such that
cX(D, σ) ≥ 0 for all σ ∈ ΣX . The spherical system of Y can then be combinatori-
ally obtained from the spherical system of X and the set Dϕ. In particular, the set
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ΣY is the basis of the (free) monoid {σ ∈ NΣX : cX(D, σ) = 0 for all D ∈ Dϕ}.
Moreover, quotient distinguished subsets of DX classify such morphisms from X
to other wonderful G-varieties.

The minimal morphisms of this kind are of three types, which can be easily
described in terms of isotropy groups of the open orbits H ⊂ K (let us denote by
LHH

u and LKK
u the respective Levi decompositions with LH ⊆ LK):

P) Hu ⊃ Ku, then H is a (maximal) parabolic subgroup of K;
R) Hu = Ku, then H/Hu is contained in no proper parabolic subgroup of

K/Ku;
L) Hu ⊂ Ku, then LH and LK are equal up to their connected centers, and

Ku/Hu is a simple LH -module.

These types can also be characterized combinatorially in terms of distinguished
subsets [1]. A convenient way of describing the isotropy group H of the open
orbit of the wonderful G-variety with a given spherical system is to find (since it is
always possible) a full sequence of minimal distinguished subsets which correspond
to minimal inclusions H = H0 ⊂ H1 ⊂ · · · ⊂ Hm = G such that first come all
inclusions of type L, then all those of type R and finally all of type P .
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Boundary degenerations and their role in harmonic analysis.

Yiannis Sakellaridis

Given a spherical variety X for a reductive group G over a local field k, and
assuming that X(k) carries a G(k)-invariant measure (we will denote X(k) sim-
ply by X etc, when there is no confusion), a basic goal of nonabelian harmonic
analysis is to describe the decomposition of L2(X) into a direct integral of irre-
ducible unitary representations of G, the so-called Plancherel decomposition. This
is closely related, but not identical, to other “distinction” problems such as: Which
irreducible admissible representations of G admit an embedding into C∞(X)?

In the group case, i.e. when X = H under the action of G = H ×H by left and
right multiplication, a conjectural description of the Plancherel decomposition is
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known, due to Langlands. There should be a direct integral decomposition:

L2(H) =

∫

φ/∼
Hφµ(φ),

where φ varies over conjugacy classes of “tempered Langlands parameters”. These
are homomorphisms with bounded image from the Weil group Wk of k (in the
archimedean case) or the Weil-Deligne group Wk×SU(2) (in the non-archimedean
case – we will use the symbol W ′

k to unify notation), into the L-group LH , such
that the image of any Frobenius element is semisimple, composition with the map
LH → Gal(k̄/k) factors through the natural map: Wk → Gal(k̄/k), and conjugacy
is taken with respect to the connected component Ȟ ⊂ LH .

Each such class of tempered Langlands parameters is supposed, by the Local
Langlands Conjecture, to correspond to a finite set of unitary irreducible admissi-
ble representations of H , and the Hilbert space Hφ is supposed to be spanned by
their matrix coefficients.

Harish-Chandra [4, 5, 6] developed a Plancherel formula for L2(H), both in the
archimedean and in the non-archimedean case, which reduces the above conjecture
to the arithmetic part of the Local Langlands Conjecture, namely the description
of the discrete spectrum (i.e. representations π such that the image of matrix
coefficients: π ⊗ π̄ → C(H) lies in L2(H/Z, ωπ), where Z denotes the center of H
and ωπ is the central character of π). The continuous spectrum is reconstructed
out of discrete spectra of Levi subgroups, but the description of the Plancherel
measure µ(φ) is quite involved. The theory of wonderful compactifications will
give a cleaner answer to this problem.

A generalization of the above conjecture was proposed in [7] for arbitrary spheri-
cal varieties: First, one associates an L-group1 LGX to any spherical variety, which
comes together with a distinguished homomorphism:

LGX × SL2 → LG.

Then the conjecture predicts a direct integral decomposition:

L2(X) =

∫

φ/∼
Hφµ(φ),

where φ now ranges over tempered Langlands parameters into LGX . The repre-
sentations in Hφ are supposed to belong to the Arthur packet corresponding to
the parameter built out of φ and the above map from SL2 to LG; this is an extra
complication that we will not discuss here.

The goal of this talk was to explain how the “continuous spectrum” can be
constructed out of “discrete spectra” of simpler spherical G-varieties, the so-called
“boundary degenerations” of X . First we explain this at the level of parameters,
though: If one believes the above conjecture, one has parameters with various
“degrees of continuity”; indeed, let us for simplicity talk about parameters into
the connected component ǦX of the L-group of X . The maximal dimension of a

1To be precise, this has been written up only in the case that G is split, where the connected
component of the L-group suffices.
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torus centralizing the image of a parameter can be called the “degree of continuity”,
since one can then continuously perturb the parameter by parameters into such
a torus. The least continuous parameters are those whose image does not belong
to a Levi subgroup of ǦX ; these will be called “discrete”. On the other hand,
representations which embed into L2(X/Z, ω), where Z denotes the connected
torus of G-automorphisms of X and ω is a unitary character of Z, will be also
be called “discrete” (although “discrete modulo center” is a more precise term).
Of course, discrete parameters should correspond to discrete representations; but
this correspondence is an arithmetic problem, and here we treat discrete spectra
as black boxes.

On the other hand, if in the group case the “more continuous” parameters
correspond to discrete (modulo center) representations of Levi subgroups, what
do they correspond to in the general case? In the case of symmetric varieties, of
course, the answer has been known to be certain symmetric varieties of certain Levi
subgroups – for instance, in the Plancherel formula developed in the archimedean
case by Delorme, Van den Ban and Schlichtkrull [3, 1, 2]. Still, the description of
the Plancherel measure remains mysterious from this point of view.

In [7] we introduced a different description for the continuous spectrum, and
proved a Plancherel formula up to discrete spectra (under some assumptions) when
G is split and k is p-adic. The basic concept is that of a boundary degeneration.
While this can be described without compactification theory, its role is more trans-
parent using compactifications of spherical varieties. For simplicity, we will assume
that X has a wonderful compactification, i.e. a smooth, proper embedding X̄ such
that the complement of the open G-orbit is a normal crossings divisor, with a
unique closed G-orbit.

It is then known that G-orbits on X̄ are in bijection with standard Levi sub-
groups in the dual group ǦX , or subsets of the set of (simple) “spherical roots”.
For each such subset Θ, we denote by ∞Θ the corresponding orbit; its normal
bundle is spherical, and its open G-orbit is called a boundary degeneration of X ,
and is denoted by XΘ. It has a G-action and the same dimension as X – hence,
it is somehow a model for X close to ∞Θ; however, it is a simpler space, in the
sense that it has more symmetries: being a normal bundle to an intersection of
divisors, there is a torus AX,Θ acting by G-automorphisms, of dimension equal to
the codimension of ∞Θ.

For example, in the group case X = H it can be seen that the isomorphism
class of XΘ is of the following form: there are two opposite parabolics P and P−

of H , with Levi P ∩P− = L, and XΘ is the L×L-variety L “induced” from these
parabolics:

XΘ = L×(P−×P ) (H ×H).

The most degenerateXΘ, corresponding to the closed orbit (which is a flag vari-
ety), is always horospherical, i.e. stabilizers contain maximal unipotent subgroups
of G.

Now, it is easy to show:
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Proposition 1. The dual group of XΘ is the standard Levi subgroup ǦX,Θ of ǦX

corresponding to Θ.

Thus, in terms of our heuristics, the “discrete” spectrum of XΘ, expected to
correspond to parameters into ǦX,Θ, should be somehow related to the continuous
spectrum of X with the same parameters. This is indeed the case:

Theorem 1. There is a canonical morphism ιΘ : L2(XΘ) → L2(X) such that the
images of the discrete parts ιΘ(L

2(XΘ)disc), for all Θ (including X = XΘ), span
L2(X).

The stated property does not justify the term “canonical”; we point the reader
to [7] for that.

The “Bernstein map” ιΘ is not injective, in general. Moreover, the spaces
ιΘ(L

2(XΘ)disc) and ιΘ′(L2(XΘ′)disc), for Θ 6= Θ′, are not distinct, in general.
Again, in terms of parameters, this is to be expected because parameters which
are not conjugate inside of the Levi ǦX,Θ (or inside of two different such Levi

subgroups) can become conjugate in Ǧ. In terms of “scattering theory”, we can
think of the maps ιΘ as “waves coming in from the direction of ∞Θ”; we should
also take into account that these waves will escape, either from this direction or
from others.

This is accounted for by the following theorem, proved under some additional
conditions:

Theorem 2. For every element w of the little Weyl group WX which takes a
standard Levi ǦX,Θ ⊂ ǦX to another standard Levi ǦX,Ω there is a distinguished
unitary isomorphism Sw : L2(XΘ) → L2(XΩ) such that:

∑

Θ

ι∗Θ,disc : L
2(X) → ⊕ΘL

2(XΘ)disc

is an isomorphism into invariants under all the scattering maps Sw.

This reduces the study of L2(X) to discrete spectra, which is an arithmetic
problem. There are also explicit descriptions of the maps ιΘ and Sw in terms of
“normalized Eisenstein integrals” and their functional equations. However, the
precise nature of the scattering maps is also a fine arithmetic issue, it seems: if
discrete spectra are related to Langlands/Arthur parameters, then the scattering
maps seem to be related to L-functions. This is a topic for further research.
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Various interpretations of the root system(s) of a spherical variety

Bart Van Steirteghem

The little Weyl group and the spherical roots. Let G be a complex con-
nected reductive group and let B be a Borel subgroup of G. Recall that a normal
irreducible complex algebraic variety X equipped with an action of G is called
spherical if B has a dense orbit on it. We refer the reader to [13] or [14] for an
introduction to spherical varieties. Throughout this paper, X will be a spherical
G-variety and G/H will be its unique open G-orbit.

Two basic invariants of X are, using the notations of [14]:

• the subgroup Λ(X) of the character group X(B) of B consisting of the
B-weights in the field C(X) of rational functions on X ; and

• the so-called valuation cone V (X), which is a convex polyhedral cone in
Λ∗
Q(X) := HomZ(Λ(X),Q) ([12, Proposition 2.1] and [3, Corollaire 3.2]).

Note that these invariants only depend on the open G-orbit of X , that is, Λ(X) =
Λ(G/H) and V (X) = V (G/H).

Another important birational invariant of X is its so-called little Weyl group
WX . It is defined by the following theorem, due to Brion [2, Theorem 3.5]. A
completely different proof of (a generalization of) the theorem was given by Knop
in [6, Theorem 7.4]. We combine the formulations of [5, Theorem 5.4] and [10,
Theorem 1.1.4]. Let T ⊂ B be a maximal torus, W = NG(T )/T the associated
Weyl group and N(Λ(X)) the stabilizer inW of Λ(X) ⊂ X(B) = X(T ). We equip
Λ(X)⊗ Q (and therefore its dual Λ∗

Q(X)) with an inner product by restricting a

W -invariant inner product on X(T )⊗ Q to Λ(X) ⊗ Q. As observed in [10], WX

does not depend on the choice of the W -invariant inner product on X(T )⊗Q.

Theorem 1. (a) The valuation cone V (X) is a simplicial cone: there exist lin-
early independent σ1, σ2, . . . , σs ∈ Λ(X) such that

V (X) = {v ∈ Λ∗
Q(X) : 〈v, σi〉 ≤ 0 for all i ∈ {1, 2, . . . , s}}.

(b) The reflections over the codimension-one faces of V (X) generate a finite sub-
group WX of GL(Λ∗

Q(X)). We call WX the little Weyl group of X. In
particular, V (X) is a fundamental domain for the action of WX on Λ∗

Q(X).
(c) The lattice Λ(X) ⊂ Λ(X) ⊗ Q is stable under the action of WX on Λ(X) ⊗

Q. More precisely, WX is a subgroup of the image of the map N(Λ(X)) →
GL(Λ∗

Q(X)) induced by the action of N(Λ(X)) on Λ∗
Q(X).
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The theorem says that WX is a crystallographic reflection group. Let Σ(X)
be the set of primitive elements σ ∈ Λ(X) such that ker(σ) ⊂ Λ∗

Q(X) is a wall

of V (X) and 〈σ, V (X)〉 ≤ 0. The elements of Σ(X) are called the spherical
roots of X . By construction, they are the simple roots of a root system in Λ⊗Q
with Weyl group WX for which V (X) ⊂ Λ∗

Q(X) is the negative Weyl chamber.
This definition is due to Luna [11, §1.2]. The set Σ(X) of spherical roots of X
is one of the three components of the ‘spherical system’ of X , a fundamental
combinatorial invariant of X [11, §1.2 and §7.2]. For a given group G, the set
{σ ∈ X(B) : σ is a spherical root of some spherical G-variety} is finite. If X is
wonderful, then the set Σ(X) has an elementary geometric description; see, e.g.,
[13, Definition 3.4.1].

Four other sets of simple roots for WX . Other choices have been made with
regards to the lengths of the simple roots associated to X . Let L be any Z-
submodule of Λ(X)⊗Q generated by linearly independent vectors which satisfies
the following two properties

(L1) L is WX -stable; and
(L2) L⊥ := {v ∈ Λ∗

Q(X) : 〈v,L〉 = 0} is contained in the linear part of V (X).

Then the set Σ(L) of primitive elements of L such that ker(σ) ⊂ Λ∗
Q(X) is a wall

of V (X) and 〈σ, V (X)〉 ≤ 0 is also set of simple roots of a root system with Weyl
group WX .

Besides the standard choice L = Λ(X) mentioned above, four other natural
choices are given below. We indicate afterwards why each L satisfies (L1) and
(L2) and briefly discuss the role of each Σ(L).
1. L = Λ(G/NG(H)); then Σ(L) is denoted ΣN (X);
2. L = Λ(G/H), where H is the spherical closure (see below) of H ; then Σ(L) is

denoted Σsc(X);
3. L = Λ(X)∩ ΛR = Λ(G/(ZH)), where ΛR is the root lattice of (G, T ) and Z is

the center of G; then Σ(L) is denoted ΣK(X);
4. L = (Λ(X)⊗Q) ∩ ΛR; then Σ(L) is denoted ΣSV (X).

Recall that NG(H) acts on G/H by n · (gH) = gHn−1 = gn−1H . In fact,
the induced map from NG(H) to the group of G-equivariant automorphisms of

G/H is surjective and has kernel H , whence AutG(G/H) ∼= NG(H)/H . It follows
that NG(H) acts on the set D(G/H) of B-stable prime divisors (or colors, see
[14]) of G/H . The kernel of this action, which contains H and Z, is called the
spherical closure H of H . Luna introduced this notion and used it to reduce
the classification of spherical varieties to that of wonderful varieties [11]. Knop
proved that G/H has a wonderful compactification in [7, Corollary 7.6].

We now indicate why the four choices for L above satisfy (L1) and (L2). If K
is a subgroup of G containing H then the surjection G/H → G/K implies that we
have an inclusion Λ(G/K) ⊂ Λ(G/H) and a surjective linear map π : Λ∗

Q(G/H) →
Λ∗
Q(G/K). Moreover π(V (G/H)) = V (G/K), see [5, §4]. One can show (using

[5, Theorem 4.4] for example) that Λ(G/NG(H))⊥ ⊂ Λ∗
Q(X) is the linear part of

V (X), which is also the invariant subspace of Λ∗
Q(X) for the action of WX . It
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is now straightforward to show that if K is a subgroup of NG(H) containing H ,
then Λ(G/K) satisfies (L1) and (L2). This takes care of the first three choices for
L. For the fourth choice, L = (Λ(X)⊗ Q) ∩ ΛR, condition (L1) follows from the
second assertion in part (c) of Theorem 1. Condition (L2) follows from the fact
that Λ(X) ∩ ΛR satisfies it.

We briefly discuss the role of the four alternative sets of simple roots, in the
same order as above.

1. ΣN (X): The subgroup Λ(G/NG(H)) ⊂ Λ(X) is the ‘root lattice’ of X , defined
in [7, §6], and ΣN (X) is a basis of Λ(G/NG(H)) and of the root system ∆X

Knop associates toX . If X is homogeneous or quasi-affine (see [7, Remark 6.6]),

then the natural map AutG(X) → Hom(Λ(X),C×) of [7, Theorem 5.4] induces

an isomorphism AutG(X) → Hom(Λ(X)/Λ(G/NG(H)),C×). If X is quasi-
affine, then there is a very simple construction of ΣN (X), see [7, Theorem 1.3].
This set also plays an important role in the geometry of Alexeev and Brion’s
moduli scheme of affine spherical varieties with a given weight monoid, see [1,
Prop 2.13 and Cor 2.14].

2. Σsc(X): We already mentioned the importance of the notion of spherical closure
in Luna’s classification program of spherical varieties. To be a bit more specific,
his theory of augmentations allows one to combinatorially classify all spherical
subgroups H of G with a given spherical closure [11, §6.4].

3. ΣK(X): This choice of normalization of the simple roots of WX is the one
in [8, §1]. In this paper, Knop defines the set of spherical roots of a spherical
variety over a field of arbitrary characteristic and ΣK(X) is that set when the
characteristic is zero.

4. ΣSV (X): This is the set of ‘normalized simple spherical roots’ of [15, §3.1],
where the authors also conjecture that it is the set of simple roots of the ‘dual
group’ of X defined by Gaitsgory and Nadler in [4].

From Σ(X) to ΣN(X), Σsc(X) and ΣK(X). The precise relationship between
Σ(X) and ΣN(X) was described by Losev in [9, Theorem 2]. Given σ ∈ Σ(X),
either σ ∈ ΣN (X) or 2σ ∈ ΣN (X), and Losev’s theorem says that σ ∈ Σ(X) is
doubled in ΣN (X) if and only if σ /∈ ΛR or σ satisfies one of the conditions (1),
(2) or (3) of [9, Definition 4.1.1]. The sets Σsc(X) and ΣK(X) are obtained in a
similar fashion from Σ(X): for the latter one only doubles those σ ∈ Σ(X) that
do not belong to the root lattice ΛR; for Σ

sc(X) one doubles those σ ∈ Σ(X) that
do not belong to ΛR or that satisfy condition (2) or (3) of [9, Definition 4.1.1].

Examples. The following examples were taken from [16]. For X = SL(2)/T one
has Σ(X) = Σsc(X) = ΣK(X) = ΣSV (X) = {α} and ΣN (X) = {2α}, where α
is the simple root of SL(2). For X = (SL(2) × SL(2))/SL(2), we have Σ(X) =

{α+α′

2 }, whereas ΣN (X) = Σsc(X) = ΣK(X) = ΣSV (X) = {α + α′}. When

X = SL(3)/SO(3) we have that ΣSV (X) is the set of simple roots of SL(3), whereas
Σ(X) = ΣN (X) = Σsc(X) = ΣK(X) consists of the doubles of the simple roots.
Finally, when X = G2/SL(3), then Σ(X) = ΣK(X) = ΣSV (X) = {α1 + 2α2},
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while Σsc(X) = ΣN (X) = {2α1 + 4α2}, where α1 and α2 are the simple roots of
G2.

Acknowledgment. I thank G. Pezzini for his invaluable help in preparing this
talk and report.
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[2] M. Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), 115–143.
[3] M. Brion and F. Pauer, Valuations des espaces homogènes sphériques. , Comment. Math.
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Real spherical varieties

Bernhard Krötz

(joint work with Henrik Schlichtkrull)

Our concern is with homogeneous spaces Z = G/H attached to a real reductive
group. HereH < G is a closed subgroup with finitely many connected components.

In the sequel we let P = MAN < G be a minimal parabolic subgroup of G.
We call Z real spherical provided there exists an open P -orbit on Z.

In joint work with H. Schlichtkrull [1] we gave a proof of the Matsuki conjecture
which asserts that Z is real spherical if and only if the number of P -orbits on Z
is finite.
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Real spherical spaces can be characterized by means of representation theory:
For that let V be a Harish-Chandra module, V/nV the associated finite dimen-
sional Casselman-Jacquet module and V∞ be the smooth completion of V . Then

dimHomH(V∞,C) ≤ dim(V/nV )M∩H

by [1].
Let us say that Z is roughly polar, provided that for all P with PH open there

exists a compact subset Ω = Ω(P ) ⊂ G and a finite subset F = F (P ) ⊂ G such
that

G = ΩAFNG(H)

where NG(H) is the normalizer of H . If G is a split reductive group, then we show
that Z real spherical implies that it is roughly polar [3].

Finally a consequence of the local structure theorem for real spherical homo-
geneous spaces implies that the stabilizer of an open P -orbit PH is a parabolic
subgroup Q ⊃ P such that Q∩H is reductive in G – this intersection can be made
very precise and falls into two basic classes: [L,L] < Q∩H < L for a Levi L < Q,
or Q ∩H is compact mod its center, see [2].

The geometric results assembled above allow analytic constructions such as a
Harish-Chandra Schwartz space on Z and a fairly precise description of the Z-
tempered spectrum. Future goals are to give a geometric characterization of the
discrete spectrum of Z and to establish a Plancherel theorem.
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Moment maps and invariant differential operators

Friedrich Knop

We explained how the little Weyl group of a spherical variety influences the
geometry of the moment map on the cotangent bundle and the algebra of invariant
differential operators. A good reference is Timashev’s textbook [9].

The key to understand the geometry of the moment map is the following con-
struction. Let G be a connected reductive group (everything defined over C) with
Lie algebra g and B ⊆ G a Borel subgroup. Let X be a G-variety and f ∈ C[X ]
a B-semiinvariant regular function of X . Then P := {g ∈ G | gf ∈ Cf} is a
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parabolic subgroup of G. On the open subset X0 := {x ∈ X | f(x) 6= 0} one
defines the morphism

mf : X0 → g∗ : x 7→
[

ξ 7→ ξf(x)

f(x)

]

.

It has the following properties:

Lemma 1. Let x0 ∈ X0 generic, a0 = mf (x0) is image in g∗ and Σ := m−1
f (a0).

Then the centralizer of a0 in G is a Levi subgroup L of P , the “slice Σ is L-
invariant and

P ×L Σ → X0 : [p, x] 7→ px

is an isomorphism.

This one of many variants of the Local Structure Theorem. The first one was
proved by Brion-Luna-Vust in [2]. The version here was first stated in [5]. It is
important that the function f is regular and not just rational. But only quasiaffine
varieties have enough functions. Workarounds are: pass to an affine cone or state
Lemma 1 for semiinvariant sections of equivariant line bundles. A version which
is valid in full generality is stated in [8].

A typical application of Lemma 1 is to choose f as general as possible. Then L
becomes small and acts on Σ only via a torus quotient A = L/L0. We state the
result for spherical varieties:

Corollary 1. Every spherical variety X contains an open subset X0 which is
isomorphic to A × Pu where A is an affine embedding of A (hence toroidal) and
Pu is the unipotent radical of a parabolic P .

An important point is that one has a lot control over the open subset X0. For
example it can be chosen to meet certain specified G-invariant subvarieties of X .

Assume X to be smooth and spherical, and let π : T ∗
X → X be the cotangent

bundle. The moment map is defined as

m : T ∗
X → g∗ : z 7→

[

ξ 7→ 〈z, ξπ(z)〉
]

The function f defines a 1-form df
f hence a section σf : X0 → T ∗

X on X0. This

way, mf factorizes through the moment map: mf = m ◦ σf . Since the union of
the images of the various σf is Zariski dense, we get

Theorem 1 ([5]). For generic z ∈ T ∗
X let a := m(z) and Sz := m−1(a). Then

the centralizer L of a in G is a Levi subgroup which acts on Fz only via a torus
quotient Az := L/L0 which is (non-canonically) isomorphic to A above. Moreover,
Sz is a toroidal embedding of Az.

The variety Sz projects isomorphically to a subvariety Σz ⊆ X and generalizes
the construction in Corollary 1. The main difference is that the construction of
Σz does not depend on a choice of a Borel subgroup of G.

This can be used as follows. Every toroidal embedding is determined by the
limit behavior of the orbits of 1-parameter subgroups. For Σz, Corollary 1 allows
to control this behavior for certain 1-PSGs, namely those lying in the valuation
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cone of X (see e.g. [4] for the valuation cone). On the other hand, the family of
tori Az on T ∗

X defines a local system whose monodromy group WX is finite. Since
it acts on Σz (or, more precisely, the fan attached to it), this allows to determine
the limit behavior of all 1-PSGs which are WX -conjugate to one in the valuation
cone. It turns out that these are, in fact, all. This way, one deduces:

Theorem 2 ([5]). The “little Weyl group” WX of X is generated by reflections
and the valuation cone of X is one of its Weyl chambers.

The observation, that the valuation cone is the fundamental domain of a finite
reflection group is due to Brion [1]. His proof is entirely different and less concep-
tual but has the virtue that, at least “in spirit”, it carries over to fields of arbitrary
characteristic 6= 2. See [7]. Vinberg proposed in [10] a construction of WX which
is essentially the same but has a more geometric flavor.

The description ofWX as a monodromy group allows also to describe the algebra
of G-invariant functions on T ∗

X . For this observe that WX acts on the vector space
a := LieA. Then we have:

Theorem 3 ([3]). There is a canonical isomorphism C[T ∗
X ]G ∼= C[a∗]WX .

Observe, that if X = G/H is homogeneous then T ∗
X = G ×H h⊥ where h⊥ =

(g/h)∗ with h = LieH . Hence

C[h⊥]H ∼= C[T ∗
X ]G ∼= C[a∗]WX

This generalizes the classical Chevalley isomorphism which is recovered by choosing
G = G0 ×G0 and H = ∆(G0).

There is a non-commutative version, as well. For this, let D(X) be the algebra
of differential operators on X . Let, as usual, ρ be the half-sum of positive roots.
Then:

Theorem 4 ([6]). There is a canonical isomorphism D(X)G ∼= C[ρ+ a∗]WX .

This is a generalization of the Harish Chandra isomorphism. To see this, use
again X = G0 = (G0 ×G0)/∆(G0), as above. Then the enveloping algebra U(g0)
coincides with the left invariant differential operators on X . Thus, the set of
G-invariant differential operators equals its center Z(U(g0)).
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Invariant Hilbert schemes

Michel Brion

The Hilbert scheme is a fundamental object of projective algebraic geometry; it
parameterizes the closed subschemes of projective space Pn, having a prescribed
Hilbert polynomial. Many moduli spaces (for example, the space of curves of a
fixed genus) can be constructed from the Hilbert scheme by taking locally closed
subschemes and geometric invariant theory quotients.

The invariant Hilbert scheme, introduced in [1], is an analogue of the Hilbert
scheme in the setting of reductive group actions on affine varieties. This talk
presented the definition of the invariant Hilbert scheme as well as some basic
properties, examples, and applications; we refer to [7] for a recent survey.

For simplicity, we follow an approach via commutative algebra. Let G be a
linear algebraic group over the base field k. A G-algebra is a finitely generated
k-algebra A equipped with an action of G by automorphisms; we further assume
that the G-module A is rational, i.e., a union of finite-dimensional submodules on
which G acts algebraically. If A is reduced, then it is the coordinate ring of an
affine G-varietyX ; in general, A corresponds to an affine G-scheme, X = Spec(A).

We now assume that k has characteristic 0 and G is reductive; then every
rational G-module is semi-simple. Given a G-algebra A, we thus have a canonical
isomorphism of G-modules

A ∼=
⊕

M∈Irr(G)

HomG(M,A)⊗M,

where Irr(G) denotes the set of isomorphism classes of simple G-modules, and

HomG(M,A) is a k-vector space with dimension being the multiplicity of M in

A. For the trivial module M0, we obtain HomG(M0, A) = AG, the subalgebra

of G-invariants in A; moreover, each HomG(M,A) is an AG-module. By the
Hilbert-Nagata theorem, the algebra AG is finitely generated, and each module of
covariants HomG(M,A) is finitely generated as well.

We say that the G-algebra A is multiplicity-finite, if every module of covariants
is finite-dimensional as a k-vector space; equivalently, AG is a finite-dimensional
k-vector space. The Hilbert function of A is then the assignment h : Irr(G) → N,
M 7→ dimk Hom

G(M,A). We say that A is multiplicity-free if h(M) ≤ 1 for all
M ∈ Irr(G).
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For example, the coordinate ring O(G) is multiplicity-free relative to the action
of G×G by left and right multiplication, since O(G) ∼=

⊕

M∈Irr(G)M
∗⊗M . Given

a closed subgroup H ⊂ G, the G-algebra O(G/H) = O(G)H is multiplicity-finite
with Hilbert function M 7→ dimk(M

∗)H . Also, note that the normal multiplicity-
free G-algebras are exactly the coordinate rings of affine spherical G-varieties.

The classification of G-algebras having a prescribed Hilbert function is a gen-
erally hopeless problem: examples show that such algebras may have an arbitrary
large number of generators. But that classification becomes tractable when one
considers G-algebras generated by a prescribed G-module.

More specifically, given a Hilbert function h and a G-module V , the G-algebras
A having Hilbert function h and equipped with a surjective homomorphism of G-
algebras O(V ) → A are parameterized by a quasi-projective scheme, HilbGh (V ).

In other words, the invariant Hilbert scheme HilbGh (V ) parameterizes the closed
G-subschemes X ⊂ V with Hilbert function h.

When G is the multiplicative group Gm, we may identify Irr(G) with Z, and
G-modules with graded vector spaces. Let V := kn+1 on which G acts with
weight −1, and h : Z → N a Hilbert function; then HilbGh (V ) parametrizes the
homogeneous ideals I ⊂ k[x0, . . . , xn] such that dimk(k[x0, . . . , xn]m/Im) = h(m)
for all m. If such ideals exist, then there exists a polynomial P such that h(m) =
P (m) for all m ≫ 0. Conversely, to any polynomial P taking integral values at

all large integers, one can assign a function h as above such that HilbGh (V ) is just
the Hilbert scheme HilbP (P

n). Thus, the invariant Hilbert scheme generalizes the
classical one; it also generalizes the multigraded Hilbert scheme constructed by
Haiman and Sturmfels in [9] (but the construction of the invariant Hilbert scheme
relies on that of the multigraded one).

We now sketch how to derive from the invariant Hilbert scheme, a moduli
space for affine spherical varieties. We assume that k is algebraically closed and
G is connected; we choose a Borel subgroup B of G, and identify Irr(G) with
the monoid Λ+ of dominant weights. Consider an affine spherical G-variety X ,
and its coordinate ring A; then A ∼=

⊕

λ∈Γ V (λ) as a G-module, where V (λ)
denotes the simple G-module with highest weight λ, and Γ is a finitely generated
submonoid of Λ+. Moreover, one can choose highest weight vectors vλ ∈ V (λ),
where λ ∈ Γ, such that vλvµ = vλ+µ for all λ, µ. We may now consider the G-
algebra structures on the G-module V (Γ) :=

⊕

λ∈Γ V (λ) which satisfy the above
compatibility relation for highest weight vectors. Any such G-algebra has Hilbert
function the characteristic function of Γ, and is generated by V (λ1)⊕ · · ·⊕V (λn),
where λ1, · · · , λn generate the monoid Γ. In fact, one can show that these G-
algebra structures are parameterized by an affine scheme of finite type, MΓ, a
locally closed subscheme of the corresponding invariant Hilbert scheme.

We may view MΓ as the scheme of linear maps

m : V (Γ)⊗ V (Γ) −→ V (Γ)

which are associative, commutative, G-equivariant and satisfy m(1, v) = v for all
v, and m(vλ, vµ) = vλ+µ for all λ, µ. Any such map is the sum of isotypical
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components

mν
λ,µ : V (λ) ⊗ V (µ) −→ V (ν).

An example is the “Cartan multiplication”, where mν
λ,µ = 0 whenever ν 6= λ+ µ,

and mλ+µ
λ,µ is the unique G-equivariant map V (λ) ⊗ V (µ) → V (λ + µ) compati-

ble with the choice of highest weight vectors. The corresponding affine spherical
variety X0 is horospherical, i.e., the stabilizer of any point contains a maximal
unipotent subgroup of G.

Also, MΓ is equipped with an action of a maximal torus T of B, defined by

t · (mν
λ,µ) = (tλ+µ−νmν

λ,µ)

with an obvious notation. If mν
λ,µ 6= 0, then the G-module V (λ) ⊗ V (µ) contains

V (ν), and hence λ+µ−ν is a linear combination of simple roots with nonnegative
integer coefficients. It follows that the T -orbit closure of any closed point X ∈MΓ

contains X0 as its unique T -fixed point. In other words, X0 is the horospherical
degeneration of X . Moreover, the T -orbit closure of X is an affine toric variety (for
a quotient of T ), possibly non-normal. The corresponding monoid is generated by
the λ+µ− ν such that the product V (λ)V (µ) ⊂ O(X) contains V (ν). By a result
of Knop (see [11, Thm. 1.3]), it follows that the normalization of this orbit closure
is an affine space on which T acts linearly with weights the spherical roots.

One can show that MΓ has only finitely many T -orbits; it is conjectured that
the closure of any such orbit is an affine space. This conjecture has been confirmed
in several cases of interest: when Γ is the weight monoid of a spherical G-module
for G of type A (see [13]), or when Γ is “saturated” (see [10, 2]). In the latter case,
the invariant Hilbert scheme yields an approach to the classification of “strict”
wonderful varieties; see [3], and [8] for the general case. This geometric approach
complements that of Luna (see [12]), Bravi and Pezzini (see [4, 5, 6]), based on
Lie theory and combinatorics.
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Introduction to the Relative Trace Formula

Omer Offen

The Relative Trace Formula (RTF) is a tool introduced by Jacquet to study period
integrals of automorphic forms. (See e.g. [Jac05].) In this talk we explain the
notion of a period integral and the RTF associated to the study of periods.

Let F be a number field with ring of addles A = AF . Let G be an algebraic
group defined over F and let [G] = G(F )\G(A) denote the automorphic quotient
space.

Assume from now on that G is a connected reductive group and let H be a
closed subgroup of G defined over F . For a continuous automorphic function
ϕ : [G] → C and a character χ : [H ] → C∗, whenever convergent, we define the
period integral

PH,χ(ϕ) =

∫

[H]

ϕ(h)χ(h) dh.

If π is (an automorphic realisation of) an automorphic representation of G(A) then
PH,χ|π ∈ HomH(A)(π, χ).

Definition 1. An automorphic representation π of G(A) is called (H,χ)-distin-
guished if PH,χ|π 6≡ 0.

If χ is the trivial character we simply set PH,χ = PH and call (H,χ)-distinction
also H-distinction.

Distinction often characterizes the image of a functorial transfer. For example,
Jacquet showed that if E/F is a quadratic extension, G = RE/F (GLn) and H =
Un(E/F ) is the associated quasi-split unitary group then an irreducible cuspidal
representation π of G(A) is H-distinguished if and only if π is a quadratic base-
change of an irreducible cuspidal representation of GLn(A) [Jac10].

Furthermore, for (H,χ)-distinguished representations the value of the period is
often related to special values of L-functions. This is expected, in particular, (but
not only, as Jacquet’s example above shows (cf. [Jac01]) when the data (G, (H,χ))
satisfies local multiplicity one. That is, for any place v of F and for every irre-
ducible representation πv of G(Fv) we have dimHomH(Fv)(πv, χv) ≤ 1. Ichino
and Ikeda formulated a refinement of the Gross-Prasad conjectures, describing the
relation between periods and special values of L-functions in this context. Sakel-
laridis and Venkatesh observed the relation with the local harmonic analysis on
the associated G-variety G/H and generalised the conjectures to the context of
G-spherical varieties satisfying local multiplicity one.
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Now that the study of period integrals is motivated, we turn to the RTF. Let X
be a G-variety defined over F and let S(X(A)) be the space of Schwartz functions
on X(A). Form the automorphic kernel:

KΦ(g) =
∑

x∈X(F )

Φ(g−1 · x), Φ ∈ S(X(A)).

That is, consider a linear map Φ 7→ KΦ : S(X(A)) → A([G]) to the space of
automorphic functions.

Example 1. Consider the action of G × G on G by (g1, g2) · x = g−1
1 xg2. Then

the automorphic kernel associated with f ∈ S(G(A)) is Arthur’s kernel function
(e.g. [Art78]):

Kf (g1, g2) =
∑

γ∈G(F )

f(g−1
1 γg2).

For any triple (G,X1, X2) where Xi is a homogeneous G-variety i = 1, 2 we
associate a distribution (the RTF) as follows. Consider X = X1×X2 as a G-space
with the diagonal action g · (x1, x2) = (g · x1, g · x2) and set

RTF(Φ) = RTFG
X1,X2

(Φ) =

∫

[G]

KΦ(g) dg, Φ ∈ S(X(A)).

In general, this integral need not converge and requires a regularisation. For the
sake of introduction we avoid this complication by assuming that G is anisotropic.

Note that for Φ = Φ1 ⊗ Φ2 with Φi ∈ S(Xi(A)) we have

KΦ = KΦ1KΦ2

and therefore

RTFX1,X2(Φ) = 〈KΦ1 ,KΦ2〉[G] .

Assume for simplicity that Xi(F ) = G(F ) · ξi, i = 1, 2 and set Hi = Gξi , then
there are natural projections pri : S(G(A)) → S(Xi(A)) → 0 defined by

pri(f)(g · ξi) =
∫

Hi(A)

f(hig) dg, i = 1, 2.

For fi ∈ S(G(A)), i = 1, 2 let f = f1 ∗ f∨
2 where f∨(g) = f(g−1) and let

Φi = pri(fi). A formal computation shows that

RTFG
X1,X2

(Φ1 ⊗ Φ2) =

∫

[H1×H2]

Kf (h1, h2) dh1 dh2.

The geometric expansion of the relative trace formula is based on decomposing
X(F ) in terms of G(F )-orbits. We note that there is a natural bijection

G(F ) · x↔ H1(F )gH2(F ) : G(F )\X(F ) ≃ H1(F )\G(F )/H2(F )

with isomorphic stabilizers

Gx = H1 ∩ gH2g
−1 ≃ (H1 ×H2)g.
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where x = (g1 · ξ1, g2 · ξ2) and g = g−1
1 g2. The geometric expansion is

RTFX1,X2(Φ) =
∑

γ∈[G(F )\X(F )]

vol([Gγ ])O(Φ; γ)

where the orbital integrals are given by

O(Φ; γ) =

∫

Gγ(A)\G(A)

Φ(g−1 · γ) dg.

If Φi = pri(fi) and f = f1 ∗ f∨
2 as before then

O(Φ1 ⊗ Φ2; (ξ1, gξ2)) =

∫

(Gξ1
×Gξ2

)g(A)\(Gξ1
×Gξ2

)(A)

f(h−1
1 gh2) d(h1, h2).

The spectral decomposition of the relative trace formula is based on the decom-
position of L2([G]) into automorphic representations. It is of the form

RTFX1,X2(Φ) =
∑

π

∫

[G]

Bπ(Φ)

where the sum (in general an integral) is over the automorphic spectrum and

Bπ(Φ1 ⊗ Φ2) =
∑

ϕ∈ob(π)

〈KΦ1 , ϕ〉 〈ϕ,KΦ2 〉 =
∑

ϕ∈ob(π)

PH1(π(f1)ϕ)PH2 (π(f2)ϕ)

where the sum is over an orthonormal basis of π. It follows that π contributes to
the RTF (i.e. Bπ 6≡ 0) if and only if π is both H1 and H2-distinguished.

We further discuss the example [Jac86], where a comparison between RTFs
was used to study distinguished representations and periods in the context of the
Jacquet-Langlands correspondence.

References

[Art78] James G. Arthur, A trace formula for reductive groups. I. Terms associated to classes
in G(Q), Duke Math. J. 45 (1978), no. 4, 911–952. MR 518111 (80d:10043)
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Satake transform and the L-function of a spherical variety.

Yiannis Sakellaridis

In this talk, we discussed some “generalized Satake transforms”, understood as
follows: Let G be a reductive group over the ring of integers o of a non-archimedean
local field k, and let X be a homogeneous spherical G-scheme over o. The group
K = G(o) is called hyperspecial, and it is a maximal compact subgroup of G(k).
For simplicity, we will assume that G is split.

There are some standard invariants of X , such as its character group X ∗(X)
(the group of Borel-eigencharacters on rational functions on X) and its dual, the
cocharacter group ΛX = X∗(X). Under some assumptions on X [8], the K-
orbits on X(k) are parametrized by the set Λ+

X of antidominant elements of ΛX –
antidominant in the sense that they belong to the “cone of invariant valuations”
of X . Here are some examples:

Example 1. X = U\G, where U is a maximal unipotent subgroup of G. Then
Λ+
X = ΛX = ΛA, the group of coweights of A = B/U , where B is the Borel

containing U , and we get the Iwasawa decomposition: G(k) = U(k)ΛBK.

Example 2. X = H , a reductive group under the G = H ×H-action. Then Λ+
X

corresponds to the set Λ+
H of antidominant coweights into a universal Cartan of

H , and we get the Cartan decomposition: H(k) = KHΛ+
HKH .

From now on, we denote X(k) by X , G(k) by G etc.
The spherical/unramified Hecke algebra H(G,K) is the algebra of compactly

supported, K-biinvariant measures on G. It acts on the space of K-invariant
vectors of a G-representation π as:

π(µ)(v) =

∫

G

π(g)(v)µ(g);

this integral is really a finite sum.
The following can be considered as the problem at hand:

Problem 1. Consider the space C∞
c (X)K (or another “nice” space of K-invariant

functions); it has a basis indexed by Λ+
X (the characteristic functions of these

cosets). Describe its structure as a module for the spherical Hecke algebraH(G,K).

The problem includes the description of H(G,K) itself, which is the classical
Satake isomorphism:

Example 3. The space C∞
c (U\G)K has an additional action of the spherical

Hecke algebra H(A,A0) of the “universal Cartan” A = B/U “on the left”, which
commutes with the action of H(G,K). We normalize the action of A so that it is
L2-unitary, and we denote it by · for elements of the group and by ⋆ for measures:

a · f(Ug) = δ
1
2 (a)f(Uag),

where δ is the modular character of the Borel (the quotient of left and right Haar
measure).
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It is immediate that H(A,A0) is canonically the group ring of ΛA (notation as
above). Pick a basic vector, Φ0 = the characteristic function of X(o) =the char-
acteristic function of UK. Then the Iwasawa decomposition immediately implies:

Lemma 2. As an H(A,A0) = C[ΛA]-module, C∞
c (U\G)K ≃ C[ΛA], where the

map is given by the action on the basic vector:

H(A,A0) = C[ΛA] ∋ h 7→ h ⋆ Φ0.

The theorem of the Satake isomorphism is, then:

Theorem 1. Consider the action map: H(G,K) ∋ h 7→ h ⋆ Φ0 ∈ C∞
c (U\G)K ≃

C[ΛA]. It is injective, with image in C[ΛA]
W (invariants of the Weyl group).

It is easy to see that this is actually a ring homomorphism, hence we get an
isomorphism of rings:

H(G,K)
∼−→ C[ΛA]

W .

Langlands interpreted the latter as invariant polynomials on the dual group Ǧ
of G. Indeed, the group ring C[ΛA] is, essentially by definition, the coordinate
ring of the maximal torus Ǎ ⊂ Ǧ, hence by the Chevalley isomorphism:

C[ΛA]
W = C[Ǎ]W = C[Ǧ]Ǧ.

Finally, a point χ ∈ Ǎ defines a character of ΛA, i.e. an unramified character
of A, to be denoted by the same letter. On the other hand, its W -orbit defines a
maximal ideal of H(G,K), and hence a character:

H(G,K) → C.

Tracing back the construction, it is easy to see how to realize this explicitly:
it is the character by which H(G,K) acts on the (one-dimensional space of) K-
invariant functions on U\G which satisfy:

f(bg) = χδ
1
2 (b)f(g)

for b ∈ B. This induced representation is the principal series obtained by (nor-
malized) induction from χ.

This doesn’t quite complete the description of the Hecke algebra H(G,K); one
needs to compare this abstract isomorphism with the Cartan decomposition, which
is accomplished via MacDonald’s formula for zonal spherical functions (see [2]).
Another famous formula for spherical functions on the space of an induced repre-
sentation is the Shintani-Casselman-Shalika formula for Whittaker functions [3].

The Satake isomorphism can be thought of as the p-adic version of the Harish-
Chandra isomorphism, which equates the center of the universal enveloping algebra
of G with invariant polynomials on the dual Lie algebra:

z(g)
∼−→ C[ǧ]Ǧ.

Unfortunately, unlike the real case where differential operators often suffice to
study all representations, the spherical Hecke algebra is a very crude algebra which
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kills most of the representations of the p-adic group. The unramified representa-
tions captured by the Satake isomorphism are very useful for global purposes (an
adelic representation such as an automorphic representation is unramified at all
but finitely many places), but they miss a lot of the local representation theory.

The Satake isomorphism also has a deeper version, where the algebra C[Ǧ]Ǧ

is considered as the complexification of the Grothendieck ring of the category
of finite-dimensional representations of Ǧ – to every (virtual) representation we
simply associate its character. This might seem a bit artificial at first, but this
category can actually be reconstructed in the Geometric Langlands program, where
functions on U\G are replaced by perverse sheaves on schemes and stacks modeling
the points of U\G.

I have neither the expertise nor the space to explain this throughly, however I
can explain in a similar manner the work of Gaitsgory and Nadler [4]: the issue
at hand is to describe unramified (K-invariant) “functions” on a spherical variety
X as a module for the Hecke algebra. Of course, “functions” become “sheaves”
in the geometric setting; moreover, it turns out that one can intrinsically define
a “convolution” of these sheaves, which is not possible at the level of functions.
It turns out that suitable categories of sheaves have the structure of a semisim-
ple Tannakian category, and hence by the Tannakian formalism the category of
representations of a complex reductive group ǦX – this is the “dual group” of X .
Taking into account the action of the Hecke algebra, as well, this dual group turns
out, in the work of Gaitsgory and Nadler, to be a subgroup of Ǧ.

A “function theoretic” analog of Gaitsgory and Nadler would suggest a com-
mutative diagram:

(1) H(G,K)

∼
��

// C∞
c (X)K

∼
��

C[Ǧ]Ǧ // C[ǦX ]ǦX

where the upper horizontal arrow is given by the action map on a distinguished
element, such as the characteristic function of X(o).

Compare with the Harish-Chandra isomorphism of Knop [5], which describes
the ring of invariant differential operators on a complex spherical variety X :

(2) z(g)

∼
��

// D(X)G

∼
��

C[ǧ]Ǧ // C[ǧX ]ǦX

However, (1) is not always true. Instead of formulating a full theorem, which
is not yet available, we describe several of the issues arising, some of which lead
to open problems:

(1) In Knop’s work, the restriction map in the lower horizontal arrow of (2)
is not the natural one coming from the embedding ǧX ⊂ ǧ, but contains
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a “shift”; the same shift will appear in (1). If X is “non-degenerate”,
e.g.: quasi-affine, this shift is trivial if and only if P (X), the parabolic
stabilizing the open Borel orbit, is equal to the Borel. In the general
case, except for the embedding ǦX →֒ Ǧ, there is also a commuting map:
SL2 → Ǧ, which explains this shift in terms of “Arthur parameters”.

(2) The “correct” dual group ǦX is not always a subgroup of Ǧ, but sometimes
the map ǦX → Ǧ has finite kernel, in order to account for multiplicities
of representations in the harmonic analysis on X , and sometimes cannot
even be defined in such a way that multiplicities are taken into account!

Thus, the algebra C[ǦX ]ǦX of Gaitsgory and Nadler only takes care of a
subspace of C∞

c (X)K , in general. For a discussion of the root datum of
ǦX , cf. [9].

(3) As the Geometric Langlands program shows, the characteristic function
of X(o) is not always the correct “basic function”, and the space C∞

c (X)
is not always the correct space of test functions. One has to consider
affine embeddings of X , and if those have singularities, the correct “basic
function” will mirror some kind of intersection cohomology, rather than
being the characteristic function of a set. This opens up exciting, but
uncharted, territory. For instance, it is known from [1] that one gets
“better” Eisenstein series by using such functions when X is the quotient
of G by the unipotent radical of a parabolic (or, rather, its affine closure);
it was suggested in [8] to use these spaces of functions in order to extend
the Rankin-Selberg method of integral representations of L-functions; and
it was conjectured in [6] that, when we consider affine embeddings of a
group, the space of functions obtained in this manner gives rise to certain
unramified L-functions.

(4) Nevertheless, it turns out that in some cases (1) is true, cf. [7]; typically
those cases are homogeneous affine varieties whose k-points have a unique
open B(k)-orbit.
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B-orbits on spherical homogeneous spaces

Jacopo Gandini

Let G be a reductive algebraic group over an algebraically closed field k and fix
a Borel subgroup B ⊂ G. A subgroup H ⊂ G is called spherical if B acts with
finitely many orbits on G/H , or equivalently if H acts with finitely many orbits
on the falg variety G/B. We denote by B(G/H) the set of the B-orbits on G/H ,
the talk surveyed some of the main results concerning this set.

The set B(G/H) comes naturally endowed with the Bruhat order, namely the
partial order 6 induced by the inclusion of orbit closures. For instance, if H = B
and if T is a maximal torus contained in it, then there is a bijection between
B(G/H) and the Weyl group W = N/T (where N denotes the normalizer of T in
G), and the partial order 6 coincides with the classical Bruhat order. When H is a
symmetric subgroup of G (namely the set of points fixed by an algebraic involution
of G), the partially ordered set B(G/H) was studied by R. W. Richardson and
T. A. Springer in [6].

Let H ⊂ G be a spherical subgroup. Fix a maximal torus T ⊂ B, let W be the
Weyl group of T and let R ⊃ S resp. be the attached sets of roots and of simple
roots. The Richardson-Springer monoid is the monoidW ∗ generated by the simple
reflection sα with the relations s2α = sα for all α ∈ S and the braid relations. As a
set, W ∗ is the Weyl group W of G but with a different multiplication. An action
of W ∗ on B(G/H) was defined by Richardson and Springer in [6] as follows: if
w ∈W ∗ and O ∈ B(G/H), then w ∗O is the unique open B-orbit contained in the
B-stable subset BwO. The weak order is the partial order � on B(G/H) induced
by the action of W ∗: if O,O′ ∈ B(G/H), then O � O′ if and only if O′ = w ∗ O
for some w ∈ W ∗. The Bruhat order is compatible with the W ∗-action and with
the dimension function, namely the following properties hold for all α ∈ S and for
all O,O′ ∈ B(G/H):

i) O 6 sα ∗ O,
ii) If O 6 O′, then sα ∗ O 6 sα ∗ O′,
iii) If O 6 O′ and if dim(O) = dim(O′), then O = O′.

Theorem 1 ([6], [7]). Suppose that H is a symmetric subgroup. Then the Bruhat
order is the weakest partial order on B(G/H) which is compatible with the W ∗-
action and with the dimension function.

Let rk(H) the dimension of a maximal torus of H . Given a B-variety Z, denote
by X (Z) = {weights of B-eigenfunctions f ∈ k(Z)} the weight lattice of Z and
define the rank of Z as the rank X (Z). These are invariants of Z under birational
B-morphisms. If O ∈ B(G/H), then we have the inequalities

rk(G) − rk(H) 6 rk(O) 6 rk(G/H) :
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while the latter is the rank of the open B-orbit, the first one coincide with the rank
of any closed orbit. If α ∈ S and O ∈ B(G/H), then we have rk(O) 6 rk(sα ∗O) 6
rk(O)+1. More precisely, if Pα ⊃ B is the minimal parabolic subgroup associated
to α and if x ∈ G/H , then we have the following possibilities:

Type G: Pαx = Bx. Then we also set sα ·Bx = Bx.
Type U : Pαx = Bx0 ⊔ Bx∞, with dim(Bx0) = dim(Bx∞) + 1 and rk(Bx0) =

rk(Bx∞). Then we also set sα · Bx1 = Bx0 and sα ·Bx0 = Bx1.
Type T : Pαx = Bx1⊔Bx0⊔Bx∞, with dim(Bx1) = dim(Bx0)+1 = dim(Bx∞)+1

and rk(Bx1) = rk(Bx0) + 1 = rk(Bx∞) + 1. Then we also set sα · Bx1 =
Bx1, sα ·Bx0 = Bx∞ and sα ·Bx∞ = Bx0.

Type N : Pαx = Bx1 ⊔ Bx0, with dim(Bx1) = dim(Bx0) + 1 and rk(Bx1) =
rk(Bx0) + 1. Then we also set sα · Bx1 = Bx1 and sα ·Bx0 = Bx0.

This cases follow by analysing the action of the subgroups of PGL(2) ≃ Aut(P1)
on P1 ≃ Pα/B acting with finitely many orbits (see [2], [6]). Given α ∈ S and
x ∈ G/H , the map (sα,O) 7−→ sα ·O defines an action of sα on the set of B-orbits
contained in Pαx, hence we get an action of sα on the whole set B(G/H). F. Knop
showed that these actions of the simple reflections glue together to an action of
the Weyl group.

Theorem 2 ([2]). The actions of the simple reflections defined above induce an
action of the Weyl group W on B(G/H).

One can define an action of the Hecke algebra attached to W on a module
which is tightly related to the set B(G/H). This module, which was constructed
by G. Lusztig and D. A. Vogan in the case of a symmetric homogeneous space in
[3], is a main tool in the proof of previous theorem (see also [4], [8]).

If O ∈ B(G/H) denote O6 = {O′ ∈ B(G/H) : O′ 6 O}. A property which
links the actions of W and of W ∗ with the Bruhat order is the one-step property:

if sα ∗ O 6= O, then (sα ∗ O)6 =
⋃

O′6O{O, sα · O, sα ∗ O}.
This reduces the description of the Bruhat order on B(G/H) to the description of
the sets O6 when the orbit O is minimal w.r.t. the weak order. In the case of
a symmetric subgroup these orbits are always closed, this is false however in the
general case.

As it follows by the definition of the action of the simple reflections, we have
that the action of W on B(G/H) preserves the rank of the orbits. In two special
cases, namely in the maximal and in the minimal rank case, the rank determines
uniquely the W -orbit in B(G/H).

Denote (G/H)◦ ⊂ G/H the open B-orbit and denote by P (G/H) the stabilizer
of (G/H)◦ in G, namely P (G/H) = {g ∈ G : g(G/H)◦ = (G/H)◦}. LetWP (G/H)

the Weyl group of the Levi of P (G/H). If the characteristic of k is zero, then Knop
showed that one can recover the little Weyl groupWG/H ofG/H from the stabilizer
of (G/H)◦ w.r.t the action of W .

Theorem 3 ([2]). The set of elements in B(G/H) of maximal rank is an orbit
under W . If moreover char(k) = 0, then the stabilizer of (G/H)◦ respect to the
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action of W is described as follows:

W(G/H)◦ =WG/H ⋉WP (G/H).

DenoteWH the Weyl group of H , namely the quotient NH(TH)/CH(TH) where
TH is a maximal torus in H and where NH(TH) and CH(TH) are resp. its nor-
malizer and its centralizer in H . N. Ressayre showed that WH is recovered from
the stabilizer in W of an orbit of minimal rank.

Theorem 4 ([5]). The set of elements in B(G/H) of minimal rank is an orbit
under W . The stabilizer of any such an element is isomorphic to WH .
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Examples of periods in analytic number theory

Farrell Brumley

We look at two historical applications of period formulae to problems in analytic
number theory, the class number problem and the equidistribution of integer points
on spheres. The former appeals to the Hecke formula, the latter to the Waldspurger
formula.

Gauss class number problem. Let h(d) denote the class number of the imag-
inary quadratic field F of discriminant d. Gauss [1] conjectured that h(d) → ∞
as |d| → ∞. In 1933, Deuring [2] proved that if the classical Riemann hypothesis
is false, then there are only finitely many imaginary quadratic fields with class
number 1. As it is easy to describe, we present here Deuring’s proof. It is based
on a period formula, one of the first one encounters in analytic number theory.
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Let E(s, z) be the real analytic Eisenstein series for the modular group Γ =
SL2(Z). This is defined for Re(s) > 1 by the expression

E(s, z) =
1

2

∑

(m,n)=1

ys

|mz + n|2s =
∑

γ∈Γ∞\Γ
y(γz)s,

where Γ∞ = ( 1 ∗
1 ), and one can meromorphically extend E(z, s) to all of C (with

simple poles at 0 and 1). It a SL2(Z)-invariant eigenfunction for the hyperbolic
Laplacian ∆ = −y2(∂2x + ∂2y) of eigenvalue s(1 − s); indeed, it is an averaging
of the the Γ∞-invariant eigenfunction ys on H.) It is also a Hecke eigenfunction
TpE(z, s) = (ps−1/2 + p−s+1/2)E(s, z) and of moderate growth. It defines a real
analytic automorphic form on the modular curve Y0(1) = SL2(Z)\H. It is not a
cusp form (we will use the constant term later in the argument). One calls E(s, z)
a Maass form.

Let ξQ(i)(s) = ΓC(s)ζQ(i)(s) be the completed Dedekind zeta function for Q(i)
and ξ(s) = ΓR(s)ζ(s) be the completed Riemann zeta function. Here we have
used the notation ΓC(s) = (2π)1−sΓ(s) and ΓR(s) = π−s/2Γ(s/2). By explicit
calculation, one can check that

(1) E(i, s) =
ξQ(i)(s)

ξ(2s)
.

This readily verifiable formula admits a generalization, which we now describe.
Fix a fundamental discriminant d (i.e., the discriminant of a quadratic field F ).

Then SL2(Z) acts on the set of integral binary quadratic forms ax2 + bxy+ cy2 of
discriminant d = b2 − 4ac by unimodular substitutions. Let Λd be a complete set
of SL2(Z)-inequivalent forms. If d < 0 we consider the finite subset of Y0(1) be
the set of associated CM points on the modular curve. These are give by the roots
(with positive imaginary part) of q(z, 1) = az2 + bz + c = 0: z = (−b +

√
d)/2a.

These points form a principal homogeneous space for the ideal class group CF of
F . We have a bijective correspondence between ideal classes and CM points given

by a = [a, b+
√
d

2 ] ↔ za = (−b+
√
d)/2a.

For any character of ψ of CF , Hecke [3] showed that

(2)
∑

a∈CF

E(za, s)ψ(a) =
Λ(s, ψ)

ξ(2s)
,

where Λ(s, ψ) = ΓC(s)L(s, ψ) and L(s, ψ) =
∏

p
(1 − ψ(p)NormF/Q(p)

−s)−1. If F

has class number 1, the singleton CM point zd ∈ Y0(1) is determined uniquely
by the property that the ring of integers of F is given by Z[zd]. Explicitly, zd =

(−δ +
√
d)/2 where δ = 0, 1, δ ≡ d mod 4. Inserting this into (2) we find

(3) E(zd, s) =
ξF (s)

ξ(s)
,

which recovers (1) when F = Q(i).
Now recall that we want to show that if the Riemann hypothesis is false, then

there are only finitely many F of class number 1. So let s ∈ C with Re(s) > 1/2
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be such that ζ(s) = 0. Then the right-hand side of (3) vanishes for any F . In
particular, for any d such that h(d) = 1 we have E(zd, s) = 0. We will see
that for |d| large enough, this vanishing is impossible. The idea is to look at
the constant term of the Eisenstein series: E(z, s) = ys + c(s)y1−s + O(e−2πy),

where c(s) = ξ(2s−1)
ξ(2s) . When Re(s) > 1/2 we have E(z, s) ∼ ys as y → ∞.

Since y(zd) =
√

|d|/2 → ∞ as |d| → ∞ one sees that for |d| large enough and
Re(s) > 1/2 the point evaluation E(zd, s) cannot be zero.

Problems of Linnik type. Let S2 be the unit 2-sphere x2+y2+z2 = 1 in R3. For
any integer d 6= 0 we project the set of integer solutions (a, b, c) of a2+b2+c2 = |d|
to the sphere S2 by rescaling by |d|−1/2. Recall that Gauss showed that an integer
|d| ≥ 1 is representable as a sum of three squares if and only if |d| 6= 4a(8b + 7).
Let Gd be the resulting finite subset of S2. A theorem of Duke [4] states that
for any sufficiently nice subset Ω of S2, lim |Gd ∩ Ω|/|Gd| = m(Ω), for d → −∞
along d 6≡ 0, 1, 4 mod 8, where m is Lebesgue measure on S2 normalized to give
S2 volume 1.

One way of expressing the equidistribution condition by harmonic analysis. We
want to show that a certain sequence of probability measures on the sphere tends
to the uniform measure. We define a measure µd by

∫

S2

ϕµd =
∑

(a,b,c)∈Z3,a2+b2+c2=|d|
ϕ

(

a
√

|d|
,

b
√

|d|
,

c
√

|d|

)

.

By Weyl’s criterion, if we fix an orthonormal basis {ϕn} of L2
0(S

2,m) (zonal spher-
ical harmonics, say), then the equidistribution of Gd towards Lebesgue measure m
is equivalent to the statement that for every n

(4)

∫

S2

ϕnµd = o(1), for |d| → ∞.

The above integral can be expressed as an automorphic period. Recall that
for the definite quadratic form Q(x, y, z) = x2 + y2 + z2 we can identify the
quadratic space (Q3, Q) with the trace-zero subspace of the quaternion algebra
B2,∞, ramified at 2 and ∞, endowed with the reduced norm form zz̄. (At infinity,
B2,∞(R) is Hamilton’s quaternions.) This allows us to identify SOQ with G =

PG(B2,∞) = B×
2,∞/Z(B

×
2,∞). Given a solution of Q(a, b, c) = d, one embeds Kd

into B2,∞ by sending s+
√
dt to s+ (a.i + b.j + c.j)t. This yields an embedding

of Q algebraic groups Hd = ResKd/QGm/Gm →֒ G. If Kf denotes a maximal
compact subgroup of G(Af ) and K∞ = Hd(R) = SO2(R), we may identify the
sphere with G(Q)\G(A)/K, where K = KfK∞.

With this notation set up, we can then describe Gd as Hd(Q)\zdHd(A)/KHd

inside the space G(Q)\G(A)/K. The integral (4) can then be described as the
automorphic period integral

W (ϕ, d) =

∫

Hd(Q)\Hd(A)/KHd

ϕ(zd.t)dt,
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where dt is the probability Haar measure on the quotient. Our job is therefore
to show that for any choice of basis {ϕn}n≥1 of L2

0(G(Q)\G(AQ)/K), we have
W (ϕn, d) = o(1) as |d| → ∞.

One is free to take a basis of Hecke eigenfunctions, and doing so allows one to
exploit the arithmetic symmetries of the underlying manifolds. One needs a for-
mula linking the period integral to an L-function. This is given by Waldspurger’s
theorem [5], which states that for a non-constant L2-normalized form ϕ generating
an automorphic representation π of G(AQ) we have

|W (ϕ, d)|2 =
1

4
ξKd

(2)C0
Λ(1/2, bc(π′))

Λ(s, χd)Λ(1, Ad, π′)
,

where C0 = Λ(1, χd)
−1 is a normalizing constant for the measure on the torus, π′

is the Jacquet-Langlands lift of π to GL2. From Siegel’s (ineffective) lower bound
L(1, χd) ≫ε |d|−ε we find that

|W (ϕ, d)|2 = Oε(|d|−1/2+ε|L(1/2, π′ ⊗ χd)|).
Basic principles in complex analysis show that L(1/2, π′ ⊗ χd) = O(|d|1/2). One
wants to prove the subconvex bound L(1/2, π′⊗χd) = O(|d|1/2−δ) for some δ > 0.
Such a bound was proved in the early 90’s by Duke-Friedlander-Iwaniec [6].
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Tangent spaces of invariant Hilbert schemes and Spherical systems

Stéphanie Cupit-Foutou

In this talk, we describe some features of invariant Hilbert schemes with emphasis
on the underlying combinatorics and its connection to spherical systems.

Spherical systems were discussed in Bravi’s talk whereas the definition and some
properties of invariant Hilbert schemes were recalled in Brion’s talk. We refer to
the corresponding abstracts for these concepts and primary references.

The ground field is the field of complex numbers. Let G denote a connected
reductive algebraic group, B a Borel subgroup of G and T ⊂ B a maximal torus
of G. We denote the relative set of simple roots (resp. dominant weights) by S
(resp. Λ+).
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Let Γ be a submonoid of Λ+ finitely generated by λ1, . . . , λd. Let MG
Γ denote

the so-called moduli scheme of multiplicity-free varieties with weight monoid Γ.
As seen in Brion’s talk, MG

Γ is a subscheme of some peculiar invariant Hilbert
scheme; it is acted on by the adjoint torus Tad of G.

Consider the following G-module

V = V (λ∗1)⊕ . . .⊕ V (λ∗d)

where V (λ∗i ) stands for the dual of the simple G-module with highest weight λi.
Let vλ∗

i
be a highest weight vector of V (λ∗i ) and set

vλ∗ = vλ∗

1
+ . . .+ vλ∗

d
.

The horospherical G-variety

X0 = G.vλ∗ ⊂ V

is a closed point of MG
Γ . Further, X0 is fixed by the torus Tad.

Following [1], we consider the action of Tad on V given by

t.vµ = (λ∗i − µ)(t)vµ (∀t ∈ T )

where vµ ∈ V (λ∗i ) is a T -weight vector with weight µ. This action on V descends
to an action of Tad on V/g.vλ∗ with g denoting the Lie algebra of G.

Theorem 1 ([1]). Let Gvλ∗ be the stabilizer of vλ∗ in G.

The Zariski-tangent space TX0M
G
Γ of MG

Γ at X0 is a Tad-submodule of the
Gvλ∗ -invariants of V/g.vλ∗ , where Gvλ∗ acts on V/g.vλ∗ via its linear action on
V .

Moreover, these two modules are equal whenever the boundary Z \ G.vλ∗ has
codimension 2 in X0.

In the remainder, we focus on peculiar monoids: Γ = Γ(S) is a monoid canon-
ically attached to a given spherically closed spherical system S of G. To avoid
too many technicalities, the precise definition of the monoid Γ(S) is omitted; we
refer to [4] for details. Let us point out that the monoid Γ(S) is a free submonoid

of the set of dominant weights of some extension G̃ of G by an algebraic torus
Gd′

m. In particular, the generators of Γ(S) consist of couples (λi, χi) with λi ∈ Λ+;
i = 1, . . . , d and d ≥ d′. Note also that the λi’s may not be linearly independent
as the next example shows.

In the following, ̟α denotes the fundamental weight of G associated to some
simple root α ∈ S. Let 〈·, ·〉 be the Killing form and α∨ be the coroot corresponding
to α ∈ S.

Example 1. Let G = SL2 and S be the spherical system of SL2/T . Then

G̃ = G×Gm and Γ(S) is generated by (̟α, χ) and (̟α,−χ).
Let us now highlight the main properties of the generators (λi, χi) of Γ.

Lemma 3. (i) 〈λi, α∨〉 ≤ 2 for every i and every α ∈ S.

(ii) If 〈λi, α∨〉 = 2 for some generator and some α ∈ S then λi = 2̟α and
〈λj , α〉 = 0 for all j 6= i.
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(iii) Suppose 〈λi, α〉 〈λj , α′〉 6= 0 holds for some i and distinct α and α′ in S. Then
〈λj , α〉 〈λj , α′〉 = 0 for every j 6= i.

Note that the adjoint torus of G̃ equals that of G.

Theorem 2 ([4]). Let S be a spherically closed spherical system of G and Γ =
Γ(S).
(i) The G̃vλ∗ -invariants of V/g̃.vλ∗ is a multiplicity-free Tad-module. Furthermore,
its Tad-weights are spherical roots of G.

(ii) The Tad-weights of TX0M
G̃
Γ are the spherical roots of the spherical system S.

To conclude, let us illustrate the importance of the properties stated in Lemma 3
through a few examples of weight monoids not sharing these properties.

(1) Let G = SL2 and Γ be generated by a single dominant weight λ. The scheme
MG

Γ is the affine line if λ equals 2̟α or 4̟α; otherwise it is a reduced point.
See [5].

(2) Let Γ ⊂ Λ+ be free and such that ZΓ∩Λ+ = Γ. Let S(Γ) be the set of simple
roots orthogonal to every element of Γ and Σ(Γ) be the Tad-weights of TX0M

G
Γ .

Then (S(Γ),Σ(Γ), ∅) is a spherical system of G; see [3].
Such monoids may not satisfy the properties of Lemma 3 (e.g. Γ as in (1)

generated by 4̟1). In (1), the two aforementioned monoids give rise to the same
spherical system.

(3) Let G = SL2 × SL2 and Γ be generated by 2̟α1 and 2̟α1 + 2̟α2 . Obvi-
ously, Lemma 3-(ii) does not hold here. The moduli scheme MG

Γ is not smooth.
Specifically, MG

Γ is the subvariety of the affine plane defined by xy = 0. See [2].
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Singularities and large values of Whittaker functions

Nicolas Templier

We report on some recent works on large values of Whittaker functions which
is motivated by questions in geometric analysis on the size of eigenfunctions. Con-
sider a locally symmetric space M = Γ\G/K of finite volume. Let f is a cuspidal
automorphic form on M . Thus f is an eigenfunction of the algebra of invariant
differential operators and it is automatically smooth and real analytic [11]. It is
also rapidly decreasing at infinity [5, Chap. 1]. In particular f is bounded.

In what follows we focus on two situations:
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1. The group G = SL2(R) and the Hecke congruence lattices for each integer
N ≥ 1,

Γ = Γ0(N) =

{(

a b
c d

)

, c ≡ 0(N)

}

.

2. The group G = SLn(R) and the lattice Γ = SLn(Z).

We normalize vol(M) = 1 and ‖f‖2 = 1. In each case we shall be interested in
estimating the sup-norm ‖f‖∞.

1. Let us consider the first situation with G = SL2(R). Let ∆ be the hyperbolic
Laplacian. Then ∆f = λf with λ > 0. We have

‖f‖∞ ≪ǫ λ
5
24+ǫN

1
3+ǫ ≪ λ

1
4N

1
2 .

The upper bound on the far right follows from local considerations in harmonic
analysis. For example Hörmander [7] has established a much more general es-
timate for eigenfunctions of elliptic pseudo-differential operators. The modest
improvement in the middle is achieved using a delicate combination of arithmetic
and analytic arguments, notably the amplification method. For the λ-aspect,
see the celebrated paper of Iwaniec–Sarnak [8] and for the N -aspect see Harcos–
Templier [4, 13].

Concerning lower bounds we have

(1) 1 ≪ λ
1
12−ǫN

1
4−ǫ ≪ǫ ‖f‖∞

for some special forms f and N a square. This is a recent result in [14] the details
of which we shall report below.

2. In the second situation of G = SLn(R) we let only the eigenvalue λ of the
Laplace operator vary. If Ω is any bounded subset of M , then the local upper
bound for the supremum of f on Ω reads

(2) ‖f‖∞,Ω := sup
g∈Ω

|f(g)| ≪Ω,ǫ λ
n(n−1)

8 +ǫ.

Example 1. For n = 3, 4, 5, 6 the power of λ in the upper-bound reads respectively

λ
3
4 , λ

3
2 , λ

5
2 , λ

15
4 .

In a forthcoming article by Brumley-Templier [1], we prove that for n = 3 and
the spectral parameter of f away from the walls,

(3) 1 ≪ λ
1
2−ǫ ≪ǫ ‖f‖∞ .

For general n ≥ 3 we establish by a different method that

(4) λ
n(n−1)(n−2)

24 −ǫ ≪ǫ ‖f‖∞ .

Example 2. For n = 3 the power of λ in this lower-bound is λ
1
4 which is weaker

than (3). For n = 4, 5, 6 the lower-bound is respectively λ, λ
5
2 , λ5. Thus for n = 6

and higher the lower-bound in (4) is greater than the upper-bound in (2)! There
is no contradiction only because the local upper bound (2) is restricted to a fixed
bounded subset Ω ⊂M .
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Strikingly the estimate (4) shows that automorphic forms in higher rank must
achieve their largest value in the cuspidal region (e.g. for all n ≥ 6).

Connection with periods. To bound ‖f‖∞ from below we establish a version
of Hecke bound [6, p. 484]. It is convenient to use the modern formalism of period
integrals that was a main theme of this Oberwolfach workshop. See [1, 13] for the
details of the proof. We formulate the Hecke bound as follows:

‖f‖∞ ≫ ‖f‖2
L(1, π,Ad)

∏

p

h(πp),

where we introduce the local invariant h(πp) of the representation πp as

h(πp) := max
g∈G(Qp)

|W (g)| / ‖W‖2 .

Here W is a Whittaker newvector of the representation πp. It is a matrix
coefficient for the horospherical variety (N\G,ψ) in the sense that it comes from
a smooth embedding π∞

p → C∞(N(Qp)\G(Qp), ψ). It now remains to estimate
h(πp) and we shall consider the two situations 1. and 2. separately.

The local estimate (p-adic). Our goal is to estimate h(πp) for a finite prime
p ≥ 2. Here W =W◦ is the newvector which we can normalize by W (e) = 1. We
shall focus on the case that πp = 1⊞ χ is a principal series representation with χ
of level pc with c ≥ 0.

If c = 0 the Casselman-Shalika formula [2] implies that

W

((

y 0
0 1

))

= |y|1o(y)
∑

0≤a≤v(y)

χ(pa).

In particular h(πp) ≍ 1. For general c ≥ 1 the properties of the newvector as in
the work of Casselman [3] imply that

(5) W

((

y 0
0 1

))

= |y| 12 1o(y).

The first step in computing h(πp) is to write the decomposition

(6) GL2(Qp) =
⊔

i

NAkiK0(p
c).

Here K0(p
c) ⊂ GL2(Zp) is the Hecke congruence subgroup of level c, which is the

preimage of the Borel subgroup of upper-triangular matrices under the projection

GL2(Zp) → GL2(Z/pcZ). And for all 0 ≤ i ≤ c, we let ki :=

(

pi 0
pi 0

)

which is

a convenient choice of representatives of the double cosets. We establish in [14] a

formula for W (

(

y 0
0 1

)

ki) generalizing (5).

We shall omit the details of the formula here. The direct consequence is that
if c = 2 then h(πp) ≍ p

1
4 , which is the key ingredient in the proof of the lower

bound (1). More generally we have shown [14] that h(πp) ≍ p
1
2 ⌊ c

2 ⌋ for all c ≥ 0.



Mini-Workshop: Spherical Varieties and Automorphic Representations 1491

We view this decomposition (6) as the disjoint union of Borel orbits over the
horospherical variety N\GL2 if we take the points defined over the finite ring
Z/pcZ. The aforementioned computation of h(πp) could be interpreted in this
framework and this is suggestive on how to proceed in greater generality.

We can mention that a general result of Casselman-Shalika [2] gives an expres-

sion for W (

(

y 0
0 1

)

ki) as a finite sum of multiplicative characters of prescribed

exponents weighted by Schwartz functions. See also the recent work of Lapid–
Mao [10] and Sakellaridis–Venkatesh [12]. In this respect our contribution in [14]
is to compute and estimate the Schwartz function in this very specific case.

The local estimate (archimedean). From now G = PGLn(R). Let K =
POn(R) and A be the split torus of diagonal matrices with positive entries. The
unramified Whittaker function W ∈ C∞(N\G,ψ) attached to π∞ of spectral pa-
rameter νπ is right K-invariant. Its uniqueness is a result of Shalika and its
existence follows from the analytic continuation of the Jacquet integral [9].

By the Iwasawa decomposition, the N,ψ-invariance from the left and right K-
invariance we only need to study the extrema of W (y) for y ∈ A.

We show [1] that these extrema are achieved at the critical values y of a certain
covering map f : Σ → A that we now proceed to describe. The Lie algebra is
decomposed according to the Cartan decomposition g = k⊕p where p is the subal-
gebra of symmetric matrices. We consider the subspace of tridiagonal symmetric

matrices











∗ y1
y1 ∗ y2

y2 ∗
. . .

. . .
. . . yn−1

yn−1 ∗











∈ p0. Then we form the n− 1-dimensional variety

Σ as

(7) Σ :=
{

k ∈ K, s.t. Ad(k)νπ ∈ p0
}

.

Let f be the projection map k 7→ (y1, . . . , yn−1).
The variety Σ is stable under left-multiplication by any element of K ∩M , the

2-group of diagonal matrices with ±1 entries. Thus we may arrange without loss
of generality that y1, . . . , yn−1 > 0. Then the map f : Σ → A with f(k) = y
is given by identifying y = (y1, . . . , yn−1) with the simple roots of the diagonal
matrix y ∈ A.

Now the image of f is the set of y ∈ A such that W (y) is not exponentially
small. The critical values of f is the caustic set, which corresponds to certain
Lagrangian singularities. The function W achieves its extrema on the caustic set.

For n = 3 there are A2 singularities that correspond to fold singularities of f .
And there is also an A3 singularity that corresponds to a Whitney pleat of f .
The nonsingular values of y (resp. the A2 singularity, resp. the A3 singularity)

contribute an exponent λ
1
2 (resp. λ

1
3 , resp. λ

1
4 ) to h(π∞). Note that λ = ||νπ ||2.

By a stationary phase analysis we conclude an approximation the Whittaker
function for n = 3 in the transition region. Indeed W (y) is given by the Airy
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function near the fold singularities

Ai(a) :=

∫ ∞

−∞
e(x3 + ax)dx,

and the Pearcey function near the A3 singularity

P(a, b) :=

∫ ∞

∞
e(x4 + ax2 + bx)dx.

Example 3. In the case n = 3 suppose νπ = diag(λ
1
2 , 0,−λ 1

2 ), that is π∞ ≃ π∨
∞

is self-dual. Then the outer caustic of A2 singularities is given up to scaling by
the equation y21 + y22 = 1 (an arc of a circle!), while the inner caustic is given by

27y41y
4
2 + 4y21 + 4y22 = 1 + 18y21y

2
2 .

The cusp with A3 singularity is the point y1 = y2 = 1√
3
.
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