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Abstract. The overall theme of the conference was geometric group theory,
interpreted quite broadly. In general, geometric group theory seeks to un-
derstand algebraic properties of groups by studying their actions on spaces
with various topological and geometric properties; in particular these spaces
must have enough structure-preserving symmetry to admit interesting group
actions. Although traditionally geometric group theorists have focused on
finitely generated (and even finitely presented) countable discrete groups, the
techniques that have been developed are now applied to more general groups,
such as Lie groups and Kac-Moody groups, and although metric properties of
the spaces have played a key role in geometric group theory, other structure
such as complex or projective structures and measure-theoretic structures are
being used more and more frequently.
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Introduction by the Organisers

In addition to discussing the most recent developments within geometric group
theory, the meeting also highlighted several dramatic contributions of geometric
group theory to other fields. A particular emphasis within the field was studying
several classes of groups which exhibit properties of classical examples such as
arithmetic groups but are not themselves arithmetic.

The idea that a group can be thought of as a geometric object with non-positive
or negative curvature is one of the most fundamental ideas in geometric group
theory. Curvature conditions have helped us to understand both the general, ran-
domly defined group and specific families of groups arising from topological of
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differential-geometric considerations. The focus has recently shifted to variants
on these curvature conditions, both those which were defined long ago but not
intensively studied and newly introduced notions. For example, Gromov intro-
duced “relative hyperbolicity” at the same time as he defined hyperbolicity, but
this was not studied deeply until at least a decade later. Relative hyperbolicity
captures behavior similar to that of non-uniform lattices in real hyperbolic spaces
in a more general, non-smooth framework. Other variants of hyperbolicity focus
on properties of a particular group action rather on the group itself, and generalize
classical small cancellation theory. This has led to the construction of quotient
groups with prescribed properties, starting from a suitable action of a group on a
space, and has had applications to groups arising from unexpected quarters, such
as proving that the Cremona group is not simple.

Several talks during the week dealt with new techniques and questions. For
example, in some talks the use of an auxiliary space with a group action is less
central, such as in investigating the possible growth rates of finitely generated
groups, or in attempts to establish a general theory of totally disconnected locally
compact groups. In others, the structures on spaces preserved by the group action
are more of an analytic nature than a geometric one, for example there are some
exciting connections with measure theory and with operator algebras, some of
which lead to deep topological questions.

Specific families of groups that were considered in the talks included mapping
class groups MCG(Σ) of surfaces, groups of outer automorphisms Out(Fn) of non-
abelian free groups and isometry groups of buildings. These are of particular
interest because of their connections with many other areas of mathematics, and
because each in its way generalizes the classical examples of linear groups acting
on symmetric spaces. The construction of suitable substitutes for the symmet-
ric spaces and the investigation of even the most basic properties are often very
difficult.

Certainly one of the most exciting developments in the field was the recent
use of geometric group theory to solve the last open conjecture on W. Thurston’s
famous list of problems on the structure of 3-manifolds. Two speakers gave talks
explaining both the geometric group theory and its application to 3-manifolds
during the official schedule, and informal sessions were held in the evenings for
those who wanted to hear more details. Progress is currently being made on
simplifying some of the proofs, and there are many further potential applications
of the technology to geometric group theory.

We had 52 participants from a wide range of countries, and 26 official lectures.
The staff in Oberwolfach was—as always—extremely supportive and helpful.
We are very grateful for the additional funding for 5 young PhD students and

recent postdocs through Oberwolfach-Leibniz-Fellowships. In addition, there was
one young student funded through the DMV Student’s Conference. We think that
this provided a great opportunity for these students.

We feel that the meeting was exciting and highly successful. The quality of
all lectures was outstanding, and outside of lectures there was a constant buzz
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of intense mathematical conversations. We are confident that this conference will
lead to both new and exciting mathematical results and to new collaborations.





Geometric Structures in Group Theory 1633

Workshop: Geometric Structures in Group Theory

Table of Contents

Laurent Bartholdi (joint with Anna Erschler)
Growth of groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1635

Brian H. Bowditch
Coarse median spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1637

Danny Calegari (joint with Alden Walker)
Random groups contain surface subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . 1639

Pierre-Emmanuel Caprace (joint with Colin D. Reid, George A. Willis)
Locally normal subgroups of simple locally compact groups . . . . . . . . . . . . 1640

Ruth Charney (joint with Harold Sultan)
Contracting Boundaries of CAT(0) Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 1641

François Dahmani
Suspensions and conjugacy of hyperbolic automorphisms . . . . . . . . . . . . . . 1642

Mark Feighn (joint with Mladen Bestvina)
Subsurface projection in the Out(Fn)-setting . . . . . . . . . . . . . . . . . . . . . . . . 1644

Koji Fujiwara (joint with Mladen Bestvina, Ken Bromberg)
Group actions on quasi-trees and strongly contracting orbits . . . . . . . . . . . 1645

Damien Gaboriau (joint with Miklos Abert)
Higher dimensional cost and deficiency-gradient for Mapping Class
Groups, SL(d,Z) and limit groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1646

Daniel Groves (joint with Ian Agol, Jason Manning)
The Malnormal Special Quotient Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 1647

Thomas Haettel
Thurston compactification of the Torelli space . . . . . . . . . . . . . . . . . . . . . . . 1648

Ursula Hamenstädt
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Abstracts

Growth of groups

Laurent Bartholdi

(joint work with Anna Erschler)

Let G be a finitely generated group. Given a generating set S, the growth
function vG,S of G is defined by

vG,S(n) = #{g ∈ G | g = s1 . . . sm, si ∈ S±1, m ≤ n}.

This function depends on the choice of S, but only mildly: if for functions v, w
one defines v - w when there is a constant C with v(n) ≤ w(Cn) for all n, and
v ∼ w means v - w - v, then the equivalence class of vG,S is independent of S, is
written vG, and is called the growth type of G.

Question 1. Which functions are equivalent to the growth type of a group?

Clearly vG,S(n) - (2#S)n, so vG - exp(n) for all G; and, if G contains a non-
abelian free subsemigroup, then vG ∼ exp(n). Milnor [10] and Wolf [14] proved
that virtually soluble groups have free subsemigroups if and only if they are not
virtually nilpotent; in which case they have polynomial growth. The same con-
clusion holds for linear groups, by the Tits alternative. Bass [3] and Guivarc’h [8]
determined the degree of polynomial growth in that case.

Milnor asked in [9] whether there are groups with growth type strictly between
polynomial and exponential, and conjectured that vG - nd for some d if and only
if G is virtually nilpotent. This was proven by Gromov in [6]. On the other hand,
Grigorchuk [5] gave in 1983 examples of groups with growth type strictly between
polynomial and exponential.

Question 2. Define the infimal growth function by

vinfG (n) = min
S : 〈S〉=G

vG,S(n).

How far can vG and vinfG be?

Note that vinfG is by construction independent of any generating set. It does not
appear to have been considered before, but a related invariant,

λG = inf
S : 〈S〉=G

lim
n→∞

n

√
vG,S(n)

called the infimal growth rate, has been considered by Gromov [7], who asked
whether λG > 1 whenever G has exponential growth type.

Eskin, Mozes, Oh [4] shew that for linear groups in characteristic 0 one has
λG > 1 whenever G has exponential growth; and Osin [11] obtained the same
conclusion for virtually soluble groups. In both cases, the stronger conclusion
vG ∼ vinfG holds. On the other hand, Wilson [13] gave in 2003 examples of groups
G of exponential growth type with λG = 1.
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New results

Theorem 3. Let η ∼= 2.46 be the real root of η3 − η2 − 2η− 4 = 0. Let f : R → N

be any function satisfying

f(2n) ≤ f(n)2 ≤ f(ηn) for all n≫ 0.

Then there exists a group G with vG ∼ f .

The only known restriction on growth types, due to Shalom and Tao [12], is

that if vG - n(log logn)1/100 then vG ∼ nd for an integer d. Therefore, there

remains “unchartered territory” between n(log logn)1/100 and exp(nlog 2/ log η). If
there existed a group with growth strictly between polynomial and exp(n1/2),
then it could not be residually nilpotent.

Theorem 4. Let H be a countable group. Then there exists a finitely generated
group G containing H as a subgroup, with

vG ∼ exp(n) and vinfG = exp(nlog 2/ log η).

Sketch of proofs

We start with a construction, due to Grigorchuk, of uncountably many groups of
intermediate growth. Let V4 denote the elementary 2-group with 4 elements, and
let 〈a〉 denote the cyclic group with 2 elements. Consider then groups Gω = 〈V4, a〉
depending on a parameter ω = ω0ω1 . . . with each ωi an epimorphism V4 ։ 〈a〉,
and defined by their action on N = {0, 1, . . .} by permutations. The action of the
generator a is independent of ω, and is given by

a(2n) = 2n+ 1, a(2n+ 1) = 2n.

Elements x ∈ V4 act by

x(0) = 0, x(2k(2n+ 1)) = 2k(2ωk(n) + 1).

For ω as above, let σω denote the shifted sequence ω1ω2 . . . . There are then
homomorphisms

Φω : Gω → (Gσω ×Gσω)⋊ 〈a〉

given by restriction of the action to 2N and 2N+1 and remembering whether these
last two are permuted or not.

We construct simultaneously a metric ‖ · ‖ω on each group Gω , at bounded
distortion from the word metric, and numbers ηω ∈ [2, 3], such that if Φω(g) =
(g0, g1)a

ε then

(1) ‖g0‖σω + ‖g0‖σω ≤ 2
ηω

‖g‖ω

holds, up to an additive constant.
If furthermore we replace Gω by the restricted wreath product F ≀Gω = F (N)⋊

Gω, for a finite group F , then we may make the inequality in (1) sharp. It then
follows that vGω ,‖·‖ω

(ηωn) ≈ vGσω ,‖·‖σω
(n)2.

Now constructing the sequence ω appropriately, controlling the partial products
ηωησω · · · ησkω in terms of the function f , yields Theorem 3. In particular, ω =
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(π0π1π2)
∞, for π0, π1, π2 the three epimorphisms V4 → 〈a〉, yields the minimal

possible growth exp(nlog 2/ log η).

To prove Theorem 4, first embed H in a finitely generated group Ĥ of expo-
nential growth and generated by two elements x, y of finite order (say orders p, q

respectively). Set F = Cp ×Cq. Consider then the group G = Ĥ ≀Gω . For h ∈ Ĥ ,

denote by hi the function N → Ĥ that takes value h at i and takes value 1 else-
where. Consider the generating set SN = V4 ∪∪{a, x0, yN} of G. Then, as long as
n is less than N , the ball of radius n in G is isomorphic to the ball of radius n in

F ≀Gω, because x
g
0 and yg

′

N commute as long as g, g′ are short enough. Therefore,
vinfG = vinfF ≀Gω

.
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Coarse median spaces

Brian H. Bowditch

We introduce the notion of a “coarse median space”. This is space with a ternary
operation satisfying the axioms of a median algebra up to bounded distance. This
can be applied to a broad class of groups, via their Cayley graphs. Many results
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about such groups can be viewed in these terms. The idea was inspired by work
of Behrstock and Minsky, and other people, on the mapping class group.

Recall that a “median algebra” is a set,M , together with a a ternary operation,
µ :M3 −→M , such that, for all a, b, c, d, e ∈M ,

(M1): µ(a, b, c) = µ(b, c, a) = µ(b, a, c),

(M2): µ(a, a, b) = a,

(M3): µ(a, b, µ(c, d, e)) = µ(µ(a, b, c), µ(a, b, d), e).

Any finite median algebra can be identified as the vertex set of finite CAT(0)
cube complex. Moreover, any finite subset of a median algebra lies inside a finite
subalgebra. In view of this, we make the following definition [3].

Let (Λ, ρ) be a geodesic metric space and µ : Λ3 −→ Λ be a ternary operation.
We say that µ is a “coarse median” if it satisfies the following:

(C1): There are constants, k, h(0), such that for all a, b, c, a′, b′, c′ ∈ Λ we have

ρ(µ(a, b, c), µ(a′, b′, c′)) ≤ k(ρ(a, a′) + ρ(b, b′) + ρ(c, c′)) + h(0).

(C2): There is a function, h : N −→ [0,∞), with the following property. Suppose
that A ⊆ Λ with 1 ≤ |A| ≤ p < ∞, then there is a finite median algebra, (Π, µΠ)
and maps π : A −→ Π and λ : Π −→ Λ such that for all x, y, z ∈ Π we have:

ρ(λµΠ(x, y, z), µ(λx, λy, λz)) ≤ h(p)

and

ρ(a, λπa) ≤ h(p)

for all a ∈ A.

The existence of a coarse median on a geodesic space is a quasi-isometry invari-
ant, so we can apply this to finitely generated groups via their Cayley graphs. We
can thus define a “coarse median group” as a finitely generated group whose Cay-
ley graph is coarse median. For example, a hyperbolic group is a coarse median
group of rank 1. Also, it follows using work of Behrstock and Minsky [2] that a
mapping class group is coarse median of finite rank.

From this one can recover various facts [3, 4]. For example the asymptotic
cone embeds into a finite product of R-trees [1]. As a result, we recover the rank
theorem of Behrstock and Minsky and Hamenstädt, as well as rapid decay, etc.
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Random groups contain surface subgroups

Danny Calegari

(joint work with Alden Walker)

The executive summary of our results is as follows:

(1) Most groups contain surface subgroups;
(2) These surfaces are usually (1 + ǫ)-quasiisometrically embedded; and
(3) These surfaces can usually be found and certified easily.

More precisely, by most groups we mean random groups in Gromov’s density
model.

If we fix a free group Fk of rank k ≥ 2 and fix a free generating set, there are
roughly (2k − 1)n reduced words of length n. If we fix a density 0 ≤ D ≤ 1,
then a random group at density D and length 1 is generated by Fk, and has
(2k − 1)Dn relators of length n, chosen independently and at random with the
uniform distribution. One is interested in statistical properties of such groups for
fixed D that hold with probability going to 1 as n→ ∞.

Gromov showed that for D > 1/2 such groups are almost surely trivial or
isomorphic to Z/2Z, but for D < 1/2, such groups are infinite, nonelementary,
hyperbolic, and 2-dimensional (in fact, the obvious 2-complex coming from the
presentation is almost surely aspherical).

Our main theorem is that at any density 0 ≤ D < 1/2, such random groups
almost surely contain (many) closed surface subgroups (here D = 0 is suggestive
notation for a random group in the few relators model, where one fixes some
N > 0 and defines a group generated by Fk and with N relators of length n,
chosen independently and at random with the uniform distribution, and then lets
n→ ∞).

It is worth making several additional remarks.

(1) One can choose different probability distributions on the set of words of
length n, with similar results. For example, suppose we generate reduced
words by a (finite state, stationary) Markov process of entropy λ (so that
some words are much more likely than others) but such that every reduced
word σ has a positive probability of appearing as a subword (note that we
do not assume the Markov process is symmetric). Define a random group
at density D by adding λDn relators of length n, chosen independently
and at random with this distribution. Then for any 0 ≤ D < 1/2, such
random groups almost surely contain (many) closed surface subgroups.

(2) It is overwhelmingly likely that a random N -relator group for N ≤ k
has trivial H2. But for N > k in the few relators model, or for any
0 < D < 1/2, we can insist that our surfaces are homologically essential.
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(3) The surfaces we construct have genus O(n). However, we conjecture that
the simplest essential surfaces have genus O(n/ log(n)). Note that we can
produce homologically essential maps from surfaces of genus O(n/ log(n))
to our random groups, and this order of estimate is a lower bound for the
homologically essential surfaces.

(4) ForD < 1/6, random groups are known to be virtually special, by Ollivier-
Wise [3] and Agol [1]. Thus such groups virtually retract onto closed
surface subgroups.

(5) There is tremendous flexibility in the construction, which depends on
the (so-called) Thin Fatgraph Theorem, a combinatorial theorem which
says that sufficiently random homologically trivial 1-chains in a free group
bound trivalent fatgraphs with every edge very long. Such fatgraphs can
be used to build many interesting injective 2-complexes.
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Locally normal subgroups of simple locally compact groups

Pierre-Emmanuel Caprace

(joint work with Colin D. Reid, George A. Willis)

The purpose of this talk was to describe some aspects of an ongoing joint research
project with Colin Reid and George Willis, whose goal is to explore the structure
of simple locally compact groups. It is inspired by earlier work due to J. Wilson [5]
on just-infinite groups, and work by Barnea–Ershov–Weigel [1] on abstract com-
mensurators of profinite groups. A more comprehensive research announcement is
available in [2], so we will keep the present note brief. The details of the material
elaborated in this project will be exposed in a series of papers, the first of which
can be consulted in [3].

Since the identity component of a Hausdorff topological group is a closed nor-
mal subgroup, a topologically simple locally compact group is either connected
or totally disconnected. A consequence of the solution to Hilbert’s fifth problem
is that all connected simple locally compact groups are Lie groups, and hence
exhaustively understood. We focus on the complementary case of totally discon-
nected groups. The specific class, denoted by S , which we focus on is that of
compactly generated, non-discrete, topologically simple, totally disconnected lo-
cally compact (t.d.l.c.) groups. This class still includes all simple algebraic groups
over non-Archimedean local fields, complete irreducible Kac–Moody groups over
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finite fields, certain groups of automorphisms of trees or higher dimensional non-
positively curved cube complexes, and a few more exotic avatars of the latter
groups, including Neretin’s group of tree spheromorphisms.

The central concept of our study is that of a locally normal subgroup, which
is defined as a compact subgroup whose normalised is open. Given a t.d.l.c. group
G, we denote by LN (G) the set of commensurability classes of locally normal
subgroups, endowed with the partial ordering induced by the relation of inclusion.
Then LN (G) is a modular lattice, which we call the structure lattice of G, a
term borrowed to J. Wilson [5]. The conjugation action of G on its locally normal
subgroups induces a canonical action of G on LN (G) by automorphisms. We show
that if G belongs to the class S , then this action highlights an interesting dynam-
ics, which is particularly rich when G contains two non-trivial commuting locally
normal subgroups. One of our main results is that, under the latter condition, a
group G ∈ S cannot be amenable. This fact lies in sharp contrast with the recent
groundbreaking results by Juschenko–Monod [4] showing the existence of infinite
finitely generated simple amenable groups.
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Contracting Boundaries of CAT(0) Spaces

Ruth Charney

(joint work with Harold Sultan)

Let X be a geodesic metric space which is either δ-hyperbolic or CAT(0). The
visual boundary, ∂X , is the set of equivalence classes of geodesic rays in X , where
two rays are equivalent if they have bounded Hausdorff distance. The (visual)
topology on ∂X has as basis sets N(α, ǫ, r) consisting of rays β which stay ǫ-close
to the ray α for time t ∈ [0, r].

If X is hyperbolic, this boundary has many nice properties. For example,

(1) Compactness: If X is a proper metric space, then ∂X is compact.
(2) Visibility: given any two points on ∂X , there is a geodesic in X joining

them.
(3) QI-invariance: a quasi-isometry f : X → Y between two hyperbolic spaces

induces a homeomorphism ∂f : ∂X → ∂Y .
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It follows from (3) that the boundary of a hyperbolic group G is well-defined.
In the case of a CAT(0) space, the boundary is not as well-behaved. Visibility

fails on the boundary of any flat and, as shown by Croke and Kleiner [1], boundaries
of CAT(0) spaces are not quasi-isometry invariant. In particular, there is no good
notion of the boundary of a CAT(0) group.

To address this problem, we introduce a new notion of boundary, called the
contracting boundary of X , defined as follows. Fix a base point x0 ∈ X . A ray
α based at x0 is said to be D-contracting if for every ball B not intersecting α,
the projection of B on α has diameter at most D. Let ∂Dc X denote the subspace
of ∂X consisting of points represented by a D-contracting ray at x0. Define the
contracting boundary to be the union over D ∈ N of these subspaces, with the
direct limit topology,

∂cX =
⋃

∂Dc X

One can show that this space is independent of choice of base point. We prove
that it is a visibility space and it is quasi-isometry invariant.

The proof of quasi-isometry invariance depends on giving alternate character-
izations of the contracting property. Let M : R+ × R+ → R+. We say that
a ray α is M -Morse, if for any (λ, ǫ)-quasi-geodesic β with endpoints on α, the
quasi-geodesic β stays in the M(λ, ǫ)–neighborhood of α. It is well-known that D-
contracting geodesics are M -Morse where the function M depends only on D. We
prove that the converse is also true: M -Morse geodesics are D-contracting where
D depends only on M . The Morse property behaves well under quasi-isometry
and allows us to control the contracting constants. Namely, if f : X → Y is a
quasi-isometry, we prove that for any D, there exists D′ such that f induces a
continuous map ∂Dc X → ∂D

′

c Y .
Finally, we introduce a new notion of divergence, called the lower divergence

of a ray and prove that α is contracting if and only if its lower divergence is
super-linear. We use this to characterize which rays in a CAT(0) cube complex
are contracting and apply this characterization to show that certain right-angled
Coxeter groups have non-homeomorphic contracting boundaries and hence are not
quasi-isometric.
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Suspensions and conjugacy of hyperbolic automorphisms

François Dahmani

Let F be a finitely presented group. A way to consider the conjugacy problem
in Aut(F ), or Out(F ), is to relate it to an isomorphism problem on semi-direct
products of F with Z.

Given two semi-direct products, F ⋊α 〈t〉 and F ⋊β 〈t′〉, their structural auto-
morphisms α and β are conjugated in Aut(F ) if and only if there is an isomorphism
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F ⋊α 〈t〉 → F ⋊β 〈t
′〉 sending F on F , and t on t′. They are conjugated in Out(F )

if and only if there is an isomorphism sending F on F , and t in t′F . The conju-
gacy problem in Out(F ) can be expressed as the problem of determining whether
suspensions are fiber-and-orientation-preserving isomorphic.

Consider for instance F = Fn a free group of finite rank n. In that case, a
solution to the conjugacy problem in Out(Fn) was announced by Lustig [Lu1, Lu2].
However, it might still be desirable to find short (in the sense that the exposition
is conceptual and short; we ostensibly ignore complexity) complete solutions for
specific classes of elements. Consider the class of atoroidal automorphisms: those
that do not preserve any conjugacy class beside {1}. Since Brinkmann proved in
[Br1] that an automorphism produces an hyperbolic suspension if and only if it is
atoroidal, there is a conceptually simple (slightly brutal) way to algorithmically
check whether two given automorphisms are indeed atoroidal (look for a preserved
conjugacy class, and simultaneously look for a certificate of hyperbolicity of the
semi-direct product), and if they are, our main result will allow to decide whether
they are conjugate in OutFn.

For hyperbolic groups, the isomorphism problem is solved [Sel, DGr, DGu2]. In
several examples, the solution available can settle the conjugacy problem. Take
two pseudo-Anosov diffeomorphisms of a hyperbolic surface. The mapping tori are
closed hyperbolic 3-manifold, hence hyperbolic and rigid. Sela’s solution to the
isomorphism problem of their fundamental groups provides all conjugacy classes
of isomorphisms (there are finitely many), and from that point, it is possible to
check whether one of them preserves the fiber. For automorphisms of a free group,
the analogous situation is when the two automorphisms are atoroidal, fully irre-
ducible (with irreducible powers). However, there are atoroidal automorphisms for
which the suspension, though hyperbolic, is not rigid. In [Br2] Brinkmann gave
several examples with different behaviors. In particular, the solution to the iso-
morphism problem of hyperbolic groups will not reveal all isomorphisms between
suspensions, and since the fibers are exponentially distorted in the suspensions,
the usual rational tools do not work for solving the isomorphism problem with
such a preservation constraint.

One can thus merely detect the existence of one isomorphism (say ι), but for
investigating the existence of an isomorphism with the aformentionned properties,
one is led to consider an orbit problem of the automorphism group of F ⋊ 〈t〉:
decide whether an automorphism sends ι(F ) on F and ι(t) on t′ (or in t′F ).

Orbits problems are not necessarily easier, especially if the group acting is
large and complicated. For instance, Bogopolski, Martino and Ventura propose a
subgroup of GL(4,Z) whose orbit problem on Z4 is undecidable.

In this talk we prove that, if F is finitely generated and F ⋊〈t〉 hyperbolic, then
Out(F⋊〈t〉) contains a finite index abelian subgroup, whose action onH1(F⋊〈t〉) is
generated by transvections. This allows us to prove that the specific orbit problem
above is solvable in that case, by reducing it to a system of linear Diophantine
equations, read in H1(F ⋊ 〈t〉).
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These are thus the key steps to produce what we see as a picturesque way of
solving the conjugacy problem for automorphisms of finitely presented groups with
hyperbolic suspension.

The proof thatOut(F⋊〈t〉) is virtually abelian is done by considering the canon-
ical JSJ decomposition of the hyperbolic group F⋊〈t〉. It suffices to show that this
graph-of-groups decomposition does not contain any surface vertex group. Let us
sketch the proof that takes roots in the way Brinkmann produces his examples in
[Br2]. Consider the tree of the JSJ decomposition T , and X the graph of group
quotient of T by G = F ⋊ 〈t〉. Since F is normal in G, T is a minimal tree for F ,
and Y = F\T is a graph that is its own core, and since its genus is bounded by the
rank of F , it is finite. It is a finite graph of groups decompisition of F . It follows
by finiteness of Y that every vertex group (resp. edge group) in X is the suspension
of a vertex group (resp. edge group) in Y: lift the vertex in T , where its 〈t〉-orbit
passes twice on a pre-image of a vertex in Y, thus yielding the suspension. Since
edge groups in X are cyclic, they are suspensions of the trivial group, and edge
groups in Y must be trivial. Therefore Y is a free decomposition of F , and its
vertex groups are of finite type. Going back to X again, vertex groups of X are
suspensions of infinite groups of finite type, but finite type normal subgroups of
free groups (or surface groups) are of finite index (or trivial).
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Subsurface projection in the Out(Fn)-setting

Mark Feighn

(joint work with Mladen Bestvina)

The curve complex C(S) of a compact surface S has as its vertices isotopy
classes of essential simple closed curves in S. Its simplices are determined by
pairwise disjoint curves. Masur and Minsky [1, 2] prove C(S) is hyperbolic and, for
“general position” subsurfaces S1 and S2 of S, define a projection πS2

(S1) ∈ C(S2).
Bestvina-Bromberg-Fujiwara [3] finitely color the subsurfaces of S so that πS2

(S1)
is defined whenever S1 and S2 have the same color. They use properties of these
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projections to organize the curve complexes of subsurfaces of a common color into
a hyperbolic space and prove:

Theorem 1 (Bestvina-Bromberg-Fujiwara [3]). The mapping class group of S
acts isometrically on a finite product of hyperbolic spaces such that orbits are quasi-
isometrically embedded.

The goal is to mimic this as much as possible for the outer automorphism group
Out(Fn) of a rank n free group Fn. The free splitting complex S(Fn) has for
its k-simplices equivariant isomorphism classes of (k + 1)-edge free splittings, i.e.
minimal, simplicial Fn-trees with trivial edge stabilizers and k+1 orbits of edges.
S(Fn) admits a natural Out(Fn)-action and plays the role ot the curve complex.
Given distinct proper free factors A,B of Fn, πB(A) is defined as follows. Suppose
T ∈ S(Fn) has trivial vertex stabilizers and (A|T )/A → T/Fn is an embedding
where A|T is the induced splitting of A. The projection πB(A) ∈ S(B) is obtained
by collapsing all but one orbit of edges of B|T . We show that the proper free
factors of Fn can be finitely colored so that πB(A) is coarsely well-defined (choices
result in splittings within uniform distance) whenever A and B have the same
color and prove:

Theorem 2 (Bestvina-Feighn [4]). Out(Fn) acts isometrically on a finite product
of hyperbolic spaces such that the translation lengths of automorphisms of expo-
nential growth are positive.

The main tool is a study of certain geodesics called folding lines in Culler-
Vogtmann’s Outer space of Fn and the resulting induced paths in Outer spaces
of free factors of Fn. We also use the result of Handel-Mosher [5] that S(Fn) is
hyperbolic and their characterization of which elements of Out(Fn) have positive
translation length when acting on S(Fn).

References

[1] Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves. I. Hyperbolicity,
Invent. Math, 138 (1999), 103–149.

[2] Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves. II. Hierarchical
structure, Geom. Funct. Anal., 10 (2000), 902–974.

[3] M. Bestvina, K. Bromberg and Koji Fujiwara, Constructing group actions on quasi-trees
and applications to mapping class groups, arXiv:1006.1939.

[4] M. Bestvina and M. Feighn, Subfactor projections, arXiv:1211.1730.
[5] M. Handel and L. Mosher, The free splitting complex of a free group I: Hyperbolicity,

arXiv:1111.1994

Group actions on quasi-trees and strongly contracting orbits

Koji Fujiwara

(joint work with Mladen Bestvina, Ken Bromberg)

A quasi-tree is a graph which is quasi-isometric to a simplicial tree. In [1] we stud-
ied group actions on quasi-trees and found interesting applications. For example
we showed that mapping class groups have finite asymptotic dimension.
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In [1] we obtained a set of conditions (or Axioms) from which we can produce
quasi-trees and group actions on them. It gives many natural examples for hy-
perbolic groups, mapping class groups and the outer automorphism groups of free
groups.

In this talk I formulate a geometric property which can be used to construct
quasi-trees. This property is called strongly contracting property, which is defined
for a hyperbolic isometry of a geodesic space, [2]. For example, a hyperbolic
isometry of a Gromov hyperbolic space and a rank-1 isometry of a CAT(0) space
are strongly contracting.
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Higher dimensional cost and deficiency-gradient for Mapping Class
Groups, SL(d,Z) and limit groups

Damien Gaboriau

(joint work with Miklos Abert)

If Γ is a finitely presented group, its deficiency is defined as

def(Γ) := max{#generators−#relators}

where the maximum is taken over all finite presentations of Γ.
If Γ is moreover residually finite, consider a chain (Γn)n: a decreasing sequence

of finite index normal subgroups with trivial intersection

Γ = Γ0 > Γ1 > · · · > Γn > · · · Γ ⊲ Γn [Γ : Γn] <∞ ∩n Γn = {id}

and define the deficiency-gradient along the chain as

def − grad (Γ; (Γn)n) := lim
n→∞

def(Γn)

[Γ : Γn]

This is the analogue of the rank-gradient introduced by Lackenby with the rank
(= minimum number of generators) replaced by the deficiency.

The goal of my talk is to explain how we compute the deficiency gradient along
any chain for

Γ = MCG(Σg,p), g > 2 def − grad (Γ; (Γn)n) = 0

Γ = SL(d,Z), d > 3 def − grad (Γ; (Γn)n) = 0

Γ a limit groups def − grad (Γ; (Γn)n) = β1(Γ)

where β1 is the first ℓ2-Betti number.
Indeed, we identify the deficiency gradient as a higher dimensional 2-cost de-

fined as the optimum deficiency of “measured leaf-simply-connected laminations”
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spanning the “action of Γ on the projectiv limit of the equiprobability preserving
multiplication actions ΓyΓ/Γn”.

We have some technics allowing us to compute the 2-cost in another way by
using more geometric methods, by looking for instance at the action of Γ on its
Cayley complex defined using Magnus-Nielsen presentation for SL(d,Z) and the
Gervais presentation for the Mapping Class Group MCG(Σg,p). As for the limit
groups, they have measured dimension at most 2 and using of previous theorem
of myself, we get an optimal measured leaf-simply-connected lamination for which
the 2-cost coincides with the alternated sum of the ℓ2-Betti numbers, which is
easily seen to be a bound.

Obs. Bridson and Kochloukova have an alternative proof that
def − grad ( limit group ) = β1(Γ).

The Malnormal Special Quotient Theorem

Daniel Groves

(joint work with Ian Agol, Jason Manning)

The Malnormal Special Quotient Theorem is a key tool in Wise’s work on groups
with a quasi-convex hierarchy [2], and in Agol’s recent proof of the Virtual Haken
Conjecture [1]. Its statement is as follows:

Theorem 1. Let G be a hyperbolic group which acts properly and cocompactly
on a CAT(0) cube complex with quotient admitting a finite special (orbi-)cover.
Let {P1, . . . , Pm} be an almost malnormal family of quasi-convex subgroups of G.

There are finite-index Ṗi E Pi so that for any finite-index P ′
i ≤ Ṗi the quotient:

Ḡ = G/〈{P ′
i}〉

is hyperbolic and acts on a cube complex with quotient admitting a finite special
(orbi-)cover.

This allows one to pass to quotients while staying in the category of virtually
special hyperbolic groups.

In this talk, I discussed the role of the MSQT in this theory, and did not have
time to discuss a new proof due to Agol-G.-Manning.
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Thurston compactification of the Torelli space

Thomas Haettel

The content of this report comes from the article [7].

1. The Torelli group and the Torelli space

Let S be a closed orientable surface of genus g > 1. The Torelli group I(S) of
S is the kernel of the action of the mapping class group of S on the homology of
S, equipped with the symplectic intersection form, i.e.

I(S) = ker
(
MCG(S) ։ Sp2g(Z)

)
.

The Torelli group is much less understood than the mapping class group itself, for
instance it is not known if I(S) is finitely presented if g > 3, see [2] for instance.

The Torelli space Tor(S) of S is the quotient of the Teichmüller space of S
by the Torelli group, it comes with a natural action of Sp2g(Z). It is also the
space of equivalence classes of hyperbolic surfaces marked by S, where f : S → X
is equivalent to f ′ : S → X ′ if there exists an isometry i : X → X ′ such that
(i◦f)∗ = f ′

∗ in homology. In other words, Tor(S) is the moduli space of hyperbolic
surfaces whose homology is marked by the homology of S.

Fix a marked hyperbolic surface f : S → X , and let us define a Euclidean norm
on H1(X,R). The Hodge theorem identifies the vector space of harmonic 1-forms
with the first cohomology group H1(X,R), so the L2 product of harmonic forms
defines an inner product on H1(X,R), and hence an inner product on H1(X,R)
(see [3] for a comparison between this Euclidean norm and the stable norm).

We will adapt the construction of the Thurston compactification of the Te-
ichmüller space (see [1] for instance) to the Torelli space. Consider the Sp2g(Z)-
equivariant mapping

ψ : Tor(S) → P(R+
H1(S,Z))

[f : S → X ] 7→ [c ∈ H1(S,Z) 7→ ‖f∗(c)‖].

Let us define the closure of the image of this map to be the Thurston compactifi-
cation Tor(S) of the Torelli space.

2. Relationship with the Siegel upper half-space

Fix b the standard symplectic form on R2g, and the standard Euclidean norm
‖ · ‖. If Λ ⊂ R2g is a lattice, it is said to be symplectic if

Λ∗ := {x ∈ R2g : ∀y ∈ Λ, b(x, y) ∈ Z} = Λ.

Consider the space of isometry classes of marked symplectic lattices of R2g :

E = {f : Z2g → R2g : f(Z2g) is a symplectic lattice of R2g}/equivariant isometry.

It is the symmetric space E = Sp2g(R)/U(g) of Sp2g(R), also known as the Siegel
upper half-plane, and comes with a natural action of Sp2g(Z).
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As a space of marked objects, it also admits a Thurston compactification E ,
defined by the Sp2g(Z)-equivariant embedding

φ : E → P(R+
Z
2g

)

[f ] 7→ [u ∈ Z2g 7→ ‖f(u)‖].

Theorem 1. The Thurston compactification E is Sp2g(Z)-equivariantly isomor-
phic to the Satake compactification of E associated to the tautological representation
of Sp2g(R) on R2g.

This isomorphism extends at least to all classical symmetric spaces of non-
compact type, and to the symmetric space of non-compact type of the exceptional
Lie group E6(−26).

We will compare the Thurston compactification Tor(S) to the Satake compact-
ification E of the Siegel upper half-plane E : consider the mapping

p : Tor(S) → E

[f : S → X ] 7→ [f∗ : H1(S,Z) → H1(X,R)],

it is well-defined since the lattice f∗(H1(S,Z)) is symplectic with respect to the
intersection form on H1(X,R).

Theorem 2. The map p is the classical period map (see [2], [4], [5], [6]).

Remark that φ = ψ ◦p : Tor(S) → P(R+
Z
2g

), so Tor(S) is Sp2g(Z)-equivariantly

isomorphic to the Satake compactification of Tor(S) defined by p : Tor(S) → E .

3. Partial stratification of the boundary

We now describe a subset of the boundary of the compactification, namely the
closure of the image of the map

ψ̃ : Tor(S) → R+
H1(S,Z)

[f : S → X ] 7→ (c ∈ H1(S,Z) 7→ ‖f∗(c)‖).

Let Ksep denote the complex of separating simple closed curves of S, and let
σ = {γ1, . . . , γk} be a (k − 1)-simplex. Topologically, S\σ is the disjoint union of
k + 1 surfaces with punctures, (Si\Pi)06i6k. Consider the application

ψ̃σ : Torσ(S) =

k∏

i=0

Tor(Si\Pi) → R+
H1(S,Z)

([fj : Sj → Xj ])j∈J0,kK 7→



c 7→

√√√√
k∑

j=0

‖(fj)∗(cj)‖2



 ,

where

c =
k∑

j=0

cj ∈ H1(S,Z) =
k⊕

j=0

H1(Sj ,Z)

.
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Theorem 3. We have the following stratification

ψ̃(Tor(S)) = ψ̃(Tor(S)) ⊔
⊔

σ∈Ksep

ψ̃σ(Torσ(S)).

This describe the subset of ∂Tor(S) consisting of limits of hyperbolic surfaces
whose nonseparating systole is bounded below. We would like to understand the
full boundary of this compactification, and the relationship with the Thurston
compactification of the Teichmüller space.
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Handlebody groups and Out(Fn) are siblings

Ursula Hamenstädt

A handlbody of genus g ≥ 2 is a compact three-manifold H whose boundary ∂H
is a closed oriented surface of genus g and which is homotopy equivalent to a rose
with g petals. The handlebody group Map(H) is the group of all isotopy classes of
orientation preserving diffeomorphisms of H .

Each diffeomorphism of H restricts to a diffeomorphism of ∂H . By a result of
Laudenbach, two diffeomorphisms of H are isotopic if and only if their restrictions
to ∂H are isotopic. Thus Map(H) embeds into the mapping class group Mod(∂H)
of ∂H of all isotopy classes of diffeomorphisms of ∂H .

On the other hand, a diffeomorphism of H induces an outer automorphism of
the fundamental group of H which is a free group of rank g. In other words,
there is a homomorphism Map(H) → Out(Fg) which is surjective, with infinitely
generated kernel.

The mapping class group Mod(∂H) and the group Out(Fg) are known to have
some common properties, but there are also differences. Both groups are finitely
presented residually finite. They both contain a torsion free subgroup of finite
index, and every solvable subgroup is virtually abelian.

The group Out(F2) simply is the groupGL(2,Z), in particular its Dehn function
is linear. For g ≥ 3 the Dehn function of Out(Fg) is of exponential growth type
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[5, 1]. However, by a result of Mosher, the mapping class group Mod(S) of any
closed surface S is automatic. In particular, its Dehn function is quadratic.

The handlebody group Map(H) is an exponentially distorted subgroup of the
mapping class group Mod(∂H) [3] and hence knowing the Dehn function of the
mapping class group does not yield information on the Dehn function of the han-
dlebody group. The goal of the lecture is to explain

Theorem 1. For g = 2 the Dehn function of the handlebody group is quadratic.
If g ≥ 3 then the Dehn function of the handlebody group is exponential.

The exponential upper bound for the Dehn function was established in [4]. For
the lower bound in the case g ≥ 3 one uses the strategy developed in [1] and shows
that the so-called Gersten cycles which were constructed by Gersten to show that
the Dehn function of SL(3,Z) is exponential can be lifted to the handlebody group
with geometric control.

The case g = 2 uses tools which are similar to tools developed recently for
the investigation of Out(Fn). This includes the use of the disc graph which is a
hyperbolic graph whose vertices are essential discs in H and where two such discs
are connected by an edge of length one if they can be realized disjointly.

The disc graph of a handlebody is hyperbolic. To use disc graphs to under-
stand the handlebody group it is however necessary to also use discs graphs of a
handlebody with two spots on the boundary obtained by cutting a handlebody
open along a non-separating disc. The crucial difference between the case g = 2
and g ≥ 3 is that the disc graph of a solid torus with two spots on the boundary
is a tree, while the disc graph of a handlebody of genus g ≥ 2 with two spots on
the boundary is not hyperbolic and has infinite asymptotic dimension [2]
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Hyperbolic elements for the action of Out(Fn) on the free splitting
complex

Michael Handel

(joint work with Lee Mosher)

A free splitting of the free group Fn of rank n is a minimal simplicial action of Fn

on a simplicial tree with trivial edge stabilizers. Two free splittings are equivalent
if there is an equivariant homeomorphism between the trees. We assume that all
vertices have valence at least three and say that T is a k-edge splitting if there are
k orbits of edges.

The free splitting complex FS of Fn is a simplicial complex whose k-simplices
correspond bijectively to equivalence classes of (k+1)-edge splittings. The simplex
corresponding to the free splitting T is a face of the simplex corresponding to the
free splitting T ′ if T can be obtained from T ′ by collapsing orbits of edges. FS is
a hyperbolic complex by [1].

The outer automorphism group of Fn, denoted Out(Fn), acts on on FS and it
is natural to ask which elements of Out(Fn) have positive translation length and
so are hyperbolic.

A set X of Fn-orbits of lines in Fn fills if it is not carried by any proper free
factor system or equivalently if the realization of X in every marked graph G
covers every edge of G. Associated to each φ ∈ Out(Fn) is a finite set L(φ) of
attracting laminations, each of which is a closed set of Fn-orbits of lines.

Theorem 1. The following hold for all φ ∈ Out(Fn).

(1) The action of φ on FS is hyperbolic if and only if some element of L(φ)
fills.

(2) If the action of φ on FS is not hyperbolic then the action of φ on FS has
bounded orbits.

(3) The action of some iterate of φ on FS fixes a vertex if and only if L(φ)
does not fill.
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The hyperbolicity of the sphere complex via surgery paths

Camille Horbez

(joint work with Arnaud Hilion)

Historically, the study of the group Out(FN ) of outer automorphisms of a finitely-
generated free group has found inspiration in analogies with mapping class groups
of surfaces. During the past few years, research has focused on finding a hyperbolic
Out(FN )-analogue of Harvey’s curve complex. Bestvina and Feighn’s proof of the
hyperbolicity of the complex of free factors of FN [1], and Handel and Mosher’s
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proof of the hyperbolicity of the complex of free splittings of FN [2], thus appeared
as deep and sought-after results. My talk aimed at giving an alternative proof of
Handel and Mosher’s theorem, based on more geometric arguments in a dual model
of the free splitting complex, Hatcher’s sphere complex [3].

Let MN = #NS
1 × S2 be the connected sum of N copies of S1 × S2, whose

fundamental group is free of rank N . A system of spheres in MN is a collection
of disjoint embedded 2-spheres in MN , none of which bounds a ball, and no two
of which are isotopic. The sphere complex SN (or rather its first barycentric sub-
division) is the graph whose vertices are isotopy classes of sphere systems in MN ,
two vertices S and S′ being joined by an edge whenever S ( S′ or S′ ( S. It is
equipped with a natural action of the mapping class group of MN , defined as the
quotient MCG(MN ) := Homeo+(MN )/Homeo0(MN ) of the group of orientation-
preserving homeomorphisms of MN by the subgroup consisting of those homeo-
morphisms that are isotopic to the identity. Every homeomorphism ofMN induces
an automorphism at the level of fundamental groups, thus yielding a morphism
from MCG(MN ) to Out(FN ). It follows from work by Laudenbach [5] that this
morphism is surjective, and its kernel is finite, generated by Dehn twists along N
disjoint spheres, and thus acts trivially on the sphere complex. Hence SN comes
equipped with an action of Out(FN ).

Our proof of the hyperbolicity of the sphere complex relies on the following
criterion due to Masur and Minsky. Basically, the idea is to check that a collection
of paths in the complex satisfies certain axioms that describe the behaviour of
geodesics in hyperbolic spaces. In the following statement, a path is thought of as
a finite sequence γ(0), . . . , γ(K) of vertices of X such that d(γ(i), γ(i+1)) ≤ 2 for
all i ∈ {0, . . . ,K − 1}. A set Γ of paths is said to be transitive if for all vertices
v, w ∈ X , there exists γ ∈ Γ such that γ(0) = v and γ(K) = w.

Theorem 1. (Masur-Minsky [6, Theorem 2.3]) Let X be a connected simplicial
complex equipped with the simplicial metric. Assume that there exist constants
A ≥ 0, B > 0, C ≥ 0, a transitive set of paths Γ in X and for each path γ ∈ Γ of
length K, a map πγ : X → {0, . . . ,K}, such that

• (Coarse retraction) For all k ∈ {0, . . . ,K}, the diameter of the set γ([k,
π(γ(k))]) is less than C.

• (Coarse Lipschitz) For all vertices v, w ∈ X satisfying d(v, w) ≤ 1, the
diameter of the set γ([π(v), π(w)]) is less than C.

• (Strong contraction) For all vertices v, w ∈ X which satisfy d(v, γ([0,K])) ≥
A and d(v, w) ≤ B · d(v, γ([0,K])), the diameter of the set γ([π(v), π(w)])
is less than C.

Then X is Gromov hyperbolic, and there exist constants K,L > 0 only depend-
ing on A,B,C such that all the paths γ ∈ Γ are (K,L)-unparameterized quasi-
geodesics.
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The paths we work with are defined using a surgery procedure on sphere sys-
tems, defined as follows – see Figure 1. Let S,Σ ∈ Sn, which we assume have been
isotoped so as to minimize their number of intersection circles. The intersection
circles between S and Σ define a pattern of circles on Σ, each of which bounds
two disks on Σ. Choose an innermost disk D in this collection, i.e. the disk D
contains no other disk in this pattern, and let C be its boundary circle. The sphere
s ∈ S containing C is thus the union of two disks D1 and D2 which intersect along
C. Performing surgery on S along D consists of replacing the sphere s by two
disjoint spheres s1 and s2 that do not intersect s, the sphere s1 being the union
of a parallel copy of D1 and a parallel copy of D, and s2 being the union of a
parallel copy of D2 and a parallel copy of D. We then identify parallel spheres in
S−{s}∪{s1, s2} to get a new sphere system S′. Given two sphere systems S and
Σ, a surgery path from S to Σ is a finite sequence S = S0, . . . , SK = Σ such that for
all i ∈ {0, . . . ,K− 2}, the sphere system Si+1 is obtained from Si by performing a
single surgery step on Si with respect to Σ, and K is the smallest integer such that
SK−1 does not intersect Σ = SK . Note in particular that for all i ∈ {0, . . . ,K−1},
the sphere systems Si and Si+1 do not intersect, so d(Si, Si+1) ≤ 2 (as they are
both contained in their union Si ∪ Si+1).

Σ

s D1

C

D2

Σ

s1 s2D1 D D2D

Figure 1. A surgery step.

Having in mind that surgery paths should behave like geodesics of a hyperbolic
space, we define the projection map to a surgery path in the following way. Let
S and Σ be two sphere systems, and let γ be a surgery path from S to Σ. Let
S′ be a sphere system. The projection π(S′) of S′ to γ is the smallest integer
k such that there exists a surgery path S′ = S′

0, . . . , S
′
K′ = Σ from S′ to Σ (to

the parameterization of which we allow to add ”waiting times”), a surgery path
S = S0, . . . , SK = Σ from S to Σ obtained from γ by adding ”waiting times” to
its parameterization, and an integer t such that St = γ(k) and S′

i shares a sphere
with Si for all i ≥ t.

In my talk, I sketched the proof of the strong contracting property of the pro-
jection to a surgery path. Given a surgery path γ joining two sphere systems S
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and Σ, and two sphere systems S0 and S2k lying in a large ball which is disjoint

from γ, we want to prove that S0 and S2k have close projections to γ. Starting

from a surgery path γ0 from S0 to Σ, we construct a surgery path from S2k to
Σ which fellow travels γ0 before it leaves the ball. The construction is roughly as
follows :

• Join S0 to S2k by a geodesic segment(Si)i∈{0,...,2k} in SN (represented as a
zig-zag path on the picture). Construct surgery paths joining each sphere
system Si to Σ in a compatible way.

• Prove that whenever a surgery path makes definite progress in SN , any
two subsystems of Si must ”quickly” have a common descendant. This
enables us to ”contract” the diagram, as shown on Figure 2.

S0 S2k+1• •

Σ•

Sl
S •

Figure 2. Schematic representation of the layout.
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Homological dimension of soluble groups

Peter H. Kropholler

(joint work with Martin Bridson, Karl Lorensen)

Let k be a non-zero commutative ring. The homological dimension hdk(G) of
a group G over k is defined by the assertion

hdk(G) ≥ m ⇐⇒ there exists a kG-module M such that Hm(G,M) 6= 0.

Cohomological dimension works the same way:

cdk(G) ≥ m ⇐⇒ there exists a kG-module M such that Hm(G,M) 6= 0.

These invariants are well understood for abelian groups. The infinite cyclic group
has dimension one, both in homology and in cohomology, and independently of
the choice of k.

If K is a normal subgroup of G then a Serre spectral sequence shows that

hdk(G) ≤ hdk(K) + hdk(G/K).

The same method works and the same conclusion holds for cohomology:

cdk(G) ≤ cdk(K) + cdk(G/K).

Each soluble group is built up from abelian groups by means of extensions. There-
fore we can obtain upper bounds for the dimensions of a soluble group G in terms
of its Hirsch length h(G). For homology the statement goes like this:

if G is a soluble group with hdk(G) <∞ then hdk(G) ≤ h(G) <∞.

The corresponding statement for cohomology is more complicated to state and
moreover it is only conjectural:

If G is a soluble group with cdk(G) < ∞ then G has cardinality
at most ℵn for some n < ω and cdk(G) ≤ h(G) + n+ 1 <∞.

For cohomology there are further complications as it is known that there is a
distinction between the case when G satisfies Bieri–Eckmann duality and all other
cases. A survey of known results is included in [3].

There is a natural conjecture for homological dimension that hdk(G) = h(G)
whenever hdk is finite. This conjecture is explored in [1]. Additional progress
is made in [2]. An early result of Urs Stammbach establishes the the natural
homological dimension conjecture in the case k = Q. It is then straightforward to
deduce equality in the case k = Z. Stammbach’s method applies to soluble groups
that are π-minimax provided k is a field whose characteristic does not belong to
π. A π-minimax group is a group G with a series

1 = G0 ⊳ G1 ⊳ G2 ⊳ · · · ⊳ Gn = G

in which the factors Gi/Gi−1 are cyclic, quasicyclic Prüfer p-groups (p ∈ π),
or finite. Another case can be covered using an early result of Feld’man which
says that the Serre spectral sequence inequalities become equalities if the normal
subgroup K is an inverse duality group in the sense of Bieri and Eckmann.
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In [1] the homological dimension conjecture is solved for abelian-by-polycyclic
groups. Using splitting theorems developed in [2] we have the following most
general case in which the conjecture is now known:

Let π be a set of primes. Let k be a finite field whose characteristic
does not belong to π. Let G be an abelian-by-(π-minimax) group
with finite homological dimension over k. Then hdk(G) = h(G).

This is proved by first reducing to the finitely generated case and then to the
case when A is torsion-free abelian. Assuming that G is the split extension of A

by Q := G/A we can then embed G in an ascending HNN extension G̃ := G∗G,t

in which the subgroup B generated by the stable letter together with A is a
normal inverse duality group. Now Feld’man’s equations may be brought into

play and we deduce that hdk(G̃) = h(G̃). The ascending HNN extension has
Hirsch length exactly one greater than that of G and a standard Mayer–Vietoris
sequence shows that it has homological dimension at most one more than that of
G. This information together with the more elementary inequalites already known
now yields the desired conclusion.

There is one assumption here namely that the extension A→ G→ Q is split. In
general this is not the case. What is needed is some information about the second
cohomology group H2(Q,A). This information is provided by the case n = 2 of
the following result which may be found as Theorem A of [2]:

Let π be a set of primes. Let Q be a π-minimax group and let
A be a ZQ-module whose underlying additive group is minimax.
Assume that there is no non-trivial torsion-free Q-module section
of A with π-minimax underlying additive group. Then for all n,
Hn(Q,A) is finite.

From here, conclusions can be drawn using classical near splitting results and
theory of Derek J. S. Robinson.
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Tame automorphisms of affine 3-folds acting on 2-dimensional
complexes

Stéphane Lamy

I discuss various transformation groups arising in algebraic geometry, such as
the group Aut(C2) of polynomial automorphisms of the plane, the Cremona group
Bir(P2) of birational selfmaps of the projective plane, or the groups of tame auto-
morphisms of C3 or of an affine quadric 3-fold.
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An ubiquitous property in dimension 2 seems to be the existence of spaces with
non positive curvature on which these groups act, leading to results such as the
Tits’ alternative or the non-simplicity.

We try to extend these results in higher dimension, in particular in an ongoing
project with C. Bisi and J.-P. Furter we construct a CAT(0) hyperbolic square
complex on which the tame group of an affine quadric acts, and we propose a
similar candidate for the case of C3.

Vertex and extension finiteness for relatively hyperbolic groups

Gilbert Levitt

(joint work with Vincent Guirardel)

I discussed two finiteness properties of finitely generated groups:
Vertex finiteness: given G and a family A of subgroups, only finitely many

vertex groups occur in splittings of G over groups in A, up to isomorphism.
Extension finiteness: given any integer d, there are (up to isomorphism) only

finitely many groups Ĝ containing G as a subgroup of index ≤ d.
Extension finiteness holds if G is abelian, or free, or a surface group. It fails for

Z/2Z ∗ (Z/2Z ≀ Z), with Z/2Z ≀ Z the lamplighter group.

Theorem 1 (Guirardel-L.). Extension finiteness holds if G is toral relatively hy-
perbolic (and probably if G is hyperbolic relative to virtually polycyclic groups).

As shown by Z/2Z∗ (Z/2Z ≀Z), it may fail if G is hyperbolic relative to solvable
subgroups.

Via standard extension theory, Theorem 1 follows from:

Theorem 2 (Guirardel-L.). If G is as in Theorem 1, then Out(G) has the fol-
lowing property (P ): it only contains finitely many conjugacy classes of finite
subgroups.

I proved this in 2004 for cyclic finite subgroups whenG is torsion-free hyperbolic.
The extension to arbitrary finite subgroups uses a lemma by Ian Leary. A key
difficulty in the proof of Theorem 2 is the fact that, if A is contained in B with
finite index and A has (P ), it does not always follow that B has (P ).

Vertex finiteness holds for splittings over finite groups of bounded order, but
not in general for splittings over finite groups, even for G finitely presented. It
holds for cyclic splittings of one-ended hyperbolic groups (Sela, Delzant), but not
in general, even for acylindrical cyclic splittings.

Theorem 3 (Guirardel-L.). Vertex finiteness holds for:

• virtually cyclic splittings if G is hyperbolic relative to virtually polycyclic
groups.

• abelian splittings of toral relatively hyperbolic groups.
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It does not always hold for cyclic splittings of groups hyperbolic relative to
solvable groups, or for abelian splittings of groups hyperbolic relative to nilpotent
groups.

The proof when G is one-ended uses a JSJ decomposition ΓJ and the following

fact: given any splitting Γ, there exists a splitting Γ̂ which collapses onto both ΓJ

and Γ.
We use vertex finiteness to generalize Shor’s theorem about finiteness of iso-

morphism types of fixed subgroups of automorphisms, to prove a uniform chain
condition for fixed subgroups, and to study the action of Out(G) on spaces of
R-trees (such as the boundary of outer space).

From the classifications of Cuntz-Li-C∗-algebras to the cohomology of
crystallographic groups

Wolfgang Lück

We want to discuss the following on the first glance unlinked problems:

Problem A. Classify all Cuntz-Li-C∗-algebras.

Problem B. Compute the group cohomology of crystallographic groups.

Problem C. Classify up to homeomorphism all closed manifolds occurring as
total spaces of torus bundles over lens spaces.

Problem D. For which crystallographic groups is the unstable Gromov-Lawson-
Rosenberg Conjecture true?

Given a number field K with ring of integers R, Cuntz and Li [2] associate to it
a C∗-algebra U(R) which has some interesting connections to the number theory
of K. The main result of Li-Lück [5] is an explicit calculation of the topological
K-theory of U(R). These algebras turn out to be Kirchberg algebras and hence
are classified by their K-theory. This has the surprising consequence

Theorem 1. U(R) is up to isomorphism of C∗-algebras independent of R.

The computation of the topological K-theory is reduced in Langer-Lück [4] to
the computation of the group homology of the group R ⋊ µ, where µ is the finite
cyclic group of roots of unity in K and µ acts on R, which is as abelian group
isomorphic to Zn, by multiplication in R. This boils down to

Conjecture 2 (Adem-Ge-Pan-Petrosyan). The Lyndon-Hochschild-Serre spectral
sequence associated to the semi-direct product Γ := Zn ⋊ρ Z/m collapses in the
strongest sense, i.e., all differentials in the Er-term for r ≥ 2 are trivial and all
extension problems at the E∞-level are trivial. In particular we get for all k ≥ 0

Hk(Γ;Z) ∼=
⊕

i+j=k

Hi(Z/m;Hj(Zn)).

This conjecture is known to be true if m is squarefree (see Adem-Ge-Pan-
Petrosyan [1, Corollary 4.2]). Langer-Lück [3] prove the following positive result
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Theorem 3. Conjecture 2 is true, provided that the Z/m-action on Zn is free
outside the origin.

Notice that µ does acts freely on R so that the theorem above applies to R×µ.
Hence Conjecture 2 is true in the case needed for the paper [5] by Li and Lück.
However, it is false in general by the following result taken from [3].

Theorem 4 (Conjecture 2 is not true in general). Consider the special case n = 6
and m = 4, where ρ is given by the matrix




0 1 0 0 0 0
−1 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 −1 0 1
0 0 0 0 −1 0




Then the second differential in the Lyndon-Hochschild-Serre spectral sequence as-
sociated to the semi-direct product Γ := Zn ⋊ρ Z/m is non-trivial. In particular
Conjecture 2 is not true.

Moreover, the following result is proved in [3].

Theorem 5. (1) If m is divisible by four, we can find n and ρ such that
the second differential in the Lyndon-Hochschild-Serre spectral sequence
associated to the semi-direct product Γ := Zn ⋊ρ Z/m is non-trivial;

(2) If m is not divisible by four, then for all n and ρ the second differential
in the Lyndon-Hochschild-Serre spectral sequence associated to the semi-
direct product Γ := Zn ⋊ρ Z/m is trivial.

Finally we explain some partial results for Problems C and D which is work in
progress with Jim Davis.
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Abstract simplicity of locally compact Kac–Moody groups

Timothée Marquis

In this talk, we report on the following theorem:

Theorem 1 ([Mar12]). Let G be a complete Kac–Moody group over a finite field.
Assume that G is of irreducible indefinite type. Then G is abstractly simple.

Complete Kac–Moody groups over finite fields (which we also call locally com-
pact Kac–Moody groups) are totally disconnected locally compact groups, ob-
tained by completing a minimal Kac–Moody group G(Fq) (where G is a Tits
functor and Fq a finitel field) with respect to some natural filtration. Several
(hopefully equivalent) constructions of these groups have appeared in the litera-
ture, from very different points of view. The construction we use is of algebraic
nature and is due to O. Mathieu ([Mat88]) and G. Rousseau ([Rou12]).

The question whether an irreducible complete Kac–Moody groups G(k) over an
arbitrary field k is abstractly simple is very natural and was explicitly addressed
by J. Tits [Tit89]. Abstract simplicity results for G(k) over fields k of characteris-
tic 0 were first obtained in an unpublished note by R. Moody ([Moo82]). Moody’s
proof has been recently generalised by G. Rousseau ([Rou12, Thm.6.19]) who ex-
tended Moody’s result to fields k of positive characteristic p that are not algebraic
over Fp. The abstract simplicity of G(k) when k is a finite field was shown in
[CER08] in some important special cases, including groups of 2-spherical type
over fields of order at least 4, as well as some other hyperbolic types under addi-
tional restrictions on the order of the ground field. Very recently, I. Capdeboscq
and B. Rémy ([CR13]) managed to extend this result (with a similar approach) to
all complete Kac–Moody groups G(k) over finite fields k of order at least 4 and
of characteristic p in case p is greater than the maximum (in absolute value) of
the off-diagonal entries of the generalised Cartan matrix of G(k). Their methods
are of algebraic nature and rely on pro-p groups theory. In [Mar12], we establish
the abstract simplicity of G(k) over arbitrary finite fields, without any further
restriction. Our proof relies on a dynamical approach (using contraction groups),
and is very different from the one used in [CER08] and [CR13].
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Lattices in products of trees and a theorem of H.C. Wang

Shahar Mozes

(joint work with Marc Burger)

In 1967 H.C. Wang [Wa67] showed that for a connected semisimple group G with-
out compact factors, a lattice Γ < G is contained in only finitely many discrete
subgroups. Shortly after, Kazhdan and Margulis [KM68] proved the stronger re-
sult that under the same hypothesis on G there is a constant cG > 0 such that
Vol(Γ\G) ≥ cG for every lattice Γ < G.

In the meantime the scope of the study of lattices in locally compact groups
has been greatly extended, including families of locally compact groups, like au-
tomorphism groups of trees [BL01], products of trees [BMZ09], and topological
Kac-Moody groups [Re09].

In this context it was observed by Bass and Kulkarni that for the automorphism
group of a d-regular tree Td the analog of Kazhdan-Margulis as well as Wang’s
theorem, fail. They constructed for every d ≥ 3 an infinite ascending chain Γ0 �

Γ1 � · · · of discrete subgroups such that Γℓ\Td is a geometric loop; when d is
composite they exhibited examples where Γℓ\Td is a geometric edge [BK90]. On
the other hand, when d ≥ 3 is a prime number, a deep conjecture of Goldschmidt-
Sims in finite group theory implies that there are, up to conjugacy, only finitely
many discrete subgroups Γ < Aut Td such that Γ\Td is an edge; this conjecture
has been established for d = 3 [Go80]. For a product Tp × Tq of trees of prime
degrees, Y. Glasner [Gl03] proved the remarkable result that up to conjugacy there
are only finitely many Γ < Aut Tp×Aut Tq with non-discrete projections and such
that Γ\(Tp × Tq) is a geometric square.

We propose to study this finiteness problem in the framework of the theory
of lattices in products of trees developed in [BM00a], [BM00b]. Our aim is to
establish Wang’s theorem for co-compact lattices in a product Aut (T1)×Aut (T2)
of automorphism groups of regular trees by imposing non-properness and certain
local transitivity properties for their actions on the individual factors T1 and T2.
Our main result is:

Theorem 1. Let Γ < Aut T1×AutT2 be a co-compact lattice and Gi = pri(Γ) the
closures of its projections. Assume that each Gi is vertex transitive, non-discrete
and locally quasi-primitive of almost simple type. Then Γ is contained in only
finitely many discrete subgroups Λ with Λ < G1 ×G2.

Recall that Gi is called locally quasi-primitive if for every vertex x of Ti the
finite permutation group Gi(x) induced by the action of Gi(x), the stabilizer of x,
on E(x), the set of edges based at x, is quasi-primitive. Such a permutation group
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has one or two minimal normal subgroups and is called of almost simple type if
there is a unique minimal normal subgroup which is simple non-abelian [Pr97].
The theorem applies for instance when G1 and G2 are locally 2-transitive and the
2-transitive permutation groups have non-abelian socle.
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Acylindrically hyperbolic groups

Denis Osin

A group is acylindrically hyperbolic if it admits a non-elementary acylindrical
action on a hyperbolic space. The class of acylindrically hyperbolic groups includes
many examples of interest: hyperbolic and relatively hyperbolic groups, Out(Fn)
for n > 1, all but finitely many mapping class groups of closed surfaces, “most”
fundamental groups of 3-manifolds, groups acting properly on proper CAT (0)
spaces and containing rank 1 elements, 1-relator groups with at least 3 generators,
etc. On the other hand, many non-trivial results known for hyperbolic groups can
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be generalized to acylindrically hyperbolic groups. The purpose of my talk is to
survey some of the recent progress in this direction.

References

[1] D. Osin, Acylindrically hyperbolic groups, arXiv:1304.1246.

Telescopic actions

Anton Petrunin

(joint work with Dmitry Panov)

An isometric co-compact properly discontinuous group action H on X is called
telescopic if for any finitely presented group G, there exists a subgroup H ′ of finite
index in H such that G is isomorphic to the fundamental group of X/H ′.

We construct examples of telescopic actions on some CAT[-1] spaces, in partic-
ular on 3 and 4-dimensional hyperbolic spaces. As applications we give new proofs
of the following statements.

Aitchison’s theorem. Every finitely presented group G can appear as the fun-
damental group of M/J , where M is a closed 3-manifold and J is an involution
which has only isolated fixed points.

Taubes’ theorem. Every finitely presented group G can appear as the funda-
mental group of a compact complex 3-manifold.

Separability of embedded surfaces in 3–manifolds

Piotr Przytycki

(joint work with Daniel T. Wise)

Here is a brief description of our recent joint work with Daniel T. Wise on
separability of embedded surfaces in 3–manifolds.

A subgroup H ⊂ G is separable if H equals the intersection of finite index
subgroups of G containing H . Scott proved that if G = π1M for a manifold M

with universal cover M̃ , then H is separable if and only if each compact subset of

H\M̃ embeds in an intermediate finite cover of M [5, Lem 1.4]. Thus, if H = π1S

for a compact surface S ⊂ H\M̃ , then separability of H implies that S embeds
in a finite cover of M . Rubinstein–Wang found a properly immersed π1–injective
surface S #M in a graph manifold such that S does not lift to an embedding in a
finite cover of M , and they deduced that π1S ⊂ π1M is not separable [4, Ex 2.6].

Our main result is:

Theorem 1. Let M be a compact connected 3–manifold and let S ⊂ M be a
properly embedded connected π1–injective surface. Then π1S is separable in π1M .
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The problem of separability of an embedded surface subgroup was raised for
instance by Silver–Williams — see [6] and the references therein to their earlier
works. The Silver–Williams conjecture was resolved recently by Friedl–Vidussi in
[2], who proved that π1S can be separated from some element in [π1M,π1M ]− π1S
whenever π1S is not a fiber.

We proved Theorem 1 when M is a graph manifold in [3, Thm 1.1]. Theorem 1
was also proven when M is hyperbolic [7]. In fact, every finitely generated sub-
group of π1M is separable for hyperbolic M , by [7] in the case ∂M 6= ∅ and by
Agol’s theorem [1] for M closed.
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All finite groups are involved in the Mapping Class Group

Alan W. Reid

(joint work with Gregor Masbaum)

Let Σg be a closed orientable surface of genus g ≥ 1, and Γg its Mapping Class
Group.

A group H is involved in a group G if there is a finite index subgroup K < G so
that K subjects onto H . The question as to whether every finite group is involved
in a fixed Γg was raised by U. Hamenstädt in her talk at the 2009 Georgia Topology
Conference. This is easily seen to hold for the case g = 1 (since Γ1 = SL(2,Z) is
virtually free) and for g = 2 (since Γ2 is large, see [5]). The main result of our
joint work [8] is the following:

Theorem 1. For all g ≥ 1, every finite group is involved in Γg.

From the remarks above, it suffices to deal with the case of g ≥ 3. Although Γg

is well-known to be residually finite [4], and therefore has a rich supply of finite
quotients, apart from those finite quotients obtained from

Γg → Sp(2g,Z) → Sp(2g,Z/NZ)
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very little seems known about what finite groups can arise as quotients of Γg (or
subgroups of finite index). In particular, we emphasize that one cannot expect to
prove Theorem 1 simply using the subgroup structure of the groups Sp(2g,Z/NZ).
The reason for this is that since Sp(2g,Z) has the Congruence Subgroup Property
([1]), it is well-known that not all finite groups are involved in Sp(2g,Z) (see [7]
Chapter 4.0 for example).

The main new idea in the proof of Theorem 1 is to exploit the unitary repre-
sentations arising in Topological Quantum Field Theory (TQFT) first constructed
by Reshetikhin and Turaev [10]. We actually use the so-called SO(3)-TQFT fol-
lowing the skein-theoretical approach of [2] and the Integral TQFT refinement [3].
Theorem 1 easily follows from the next result (see [8]) which gives many new finite
simple groups of Lie type as quotients of Γg. Let Fq denote a finite field of order
q, and SL(N, q) (resp. PSL(N, q)) will denote the finite group SL(N,Fq) (resp.
PSL(N,Fq)).

Theorem 2. For each g ≥ 3, there exists infinitely many N such that for each
such N , there exists infinitely many primes q such that Γg surjects PSL(N, q).

In addition we show that Theorem 2 holds for the Torelli group (with g ≥ 2).
We briefly indicate the strategy of the proof of Theorem 2. The unitary rep-

resentations that we consider are indexed by primes p congruent to 3 modulo 4.
For each such p we exhibit a group ∆g which is the image of a certain central

extension Γ̃g of Γg and satisfies

∆g ⊂ SL(Np,Z[ζp]) ,

where ζp is a primitive p-th root of unity, and Z[ζp] is the ring of integers in Q(ζp).
Moreover, the dimension Np → ∞ as we vary p.

The key part of the proof is the following. We use Strong Approximation in
the form proved by Weisfeiler [11] (see also [9]) and a density result for these
TQFT representations proved by Larsen and Wang [6] to exhibit infinitely many
rational primes q, and prime ideals q̃ ⊂ Z[ζp] satisfying Z[ζp]/q̃ ≃ Fq, for which
the reduction homomorphism πq̃ from SL(Np,Z[ζp]) to SL(Np, q) (induced by the
isomorphism Z[ζp]/q̃ ≃ Fq) restricts to a surjection ∆g ։ SL(Np, q).

From this, it is then easy to get surjections Γg ։ PSL(Np, q), which will com-
plete the proof. For more details on how all of this is achieved, see [8].
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CAT(0) braid groups

Petra Schwer

(joint work with Thomas Haettel, Dawid Kielak)

We address the question whether braid groups are CAT(0). In 2001 Thomas Brady
[2] introduced a simplicial K(Bn, 1) space for the braid groups whose universal
cover is locally isomorphic to the order complex of the lattice NCPn of non-
crossing partitions on n points equidistributed on a circle.

Using this complex Tom Brady and Jon McCammond [3] showed in 2009 that
the fact that the n-strand braid group is CAT(0) does follow from the diagonal link
of X being CAT(1) for what they call the orthoscheme metric on NCPn. They
conjecture this to be true for all n and show it for n ≤ 5 using the algorithmic
methods of Elder-McCammond [4].

We improve their result to the following theorem and give a new proof for n ≤ 5
avoiding any computational methods:

Theorem 1. The n-strand braid group is CAT(0) for all n ≤ 6.

We use spherical buildings, a criterion for a space to be CAT(1) due to Brian
Bowditch [1] and knowledge about turning points to show the desired curvature
properties. Details can be found here [5].

Consider a subspace Y of a CAT(1) space B and equip Y with the induced
length metric. Then a turning point is a point where a local geodesic in Y fails to
be a local geodesic in B.

Why do partitions play a role?

Let Un be the set of nth roots of unity in the plane and let Pn denote the set of
partitions of the set Un into disjoint subsets. An element of a partition is called a
block. One can show that Pn forms a bounded graded lattice of rank n− 1, where
the order is given by: p ≤ p′ if and only if every block of p is contained in a block
of p′ and where joins and meets are defined via unions and intersections of blocks.

A partition is non-crossing if for every two distinct blocks of the partition,
the convex hulls of these blocks in the plane do not intersect. The non-crossing
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partitions form a subposet NCPn of Pn which is itself a bounded graded lattice
of rank n− 1.

Given an element of the braid group Bn one can associate to it an element of
Pn as follows: First consider the map φ : Bn → Sn which maps a braid to the
induced permutation on strings. Now a permutation σ gives us a partition where
we take the blocks to be the orbits of σ.

One can further introduce a partial order on Sn such that the elements smaller
than a fixed n-cycle are poset-equivalent to NCPn. Using this fact Brady [2] gave a
presentation of the braid group in terms of non-crossing partitions and introduced
a K(Bn, 1) which is a quotient of the order complex of NCPn.

Building up on Brady’s work Brady-McCammond [3] defined an orthoscheme
metric on the order complex of NCPn as follows: A standard n-orthoscheme is
a simplex in the barycentric subdivision of an n-cube of side length two. Now
each simplex corresponding to a maximal chain in NCPn is given the metric of a
standard n-orthoscheme. Since NCPn is a lattice all maximal simplices share an
edge called the diagonal. They show:

Theorem 2 ([3]). If NCPn is CAT(0) then Bn is CAT(0). And if ∀k ≤ n the
link of the diagonal in NCPk is CAT(1) then NCPn is CAT(0).

Hence we are left to prove that the diagonal link is CAT(1). Each vertex in this
link may be identified with and elements of NCPn different from the minimal and
maximal element.

Figure 1. The diagonal link of NCP4 inside the incidence graph
of the Fano plane.

How does the building come into play?

The diagonal link of the orthoscheme complex of the lattice NCPn linearly
embeds into a (in fact any thick) spherical building of type An−2.

Fix n ≥ 2. If V is a (n− 1)-dimensional vector space over a division algebra let
S(V ) denote the rank (n − 1) lattice consisting of all the vector subspaces of V ,
with the order given by inclusion. We call S(V ) the linear lattice of V . It is not
hard to see that the diagonal link of S(V ) is a spherical building of type An−2.
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Now the partition and non-crossing partition lattices, Pn and NCPn, are iso-
morphic to subposets of S(V ). To see this fix a field F , and let V = {(yi) ∈ Fn |∑n

i=1 yi = 0}. For a partition x ∈ Pn let then f(x) be the sub-vector space of V
defined by

f(x) =
{
(yi) ∈ V | ∀ blocks Q ∈ x :

∑

i∈Q

yi = 0
}
.

One can show that f is an injective rank-preserving poset map from Pn to S(V )
which clearly restricts to NCPn.

Figure 1 shows the diagonal link of NCP4 (solid lines) inside the incidence
graph of the Fano plane, i.e. the smallest possible spherical building in which
NCP4 embeds. The dotted lines are not in the image of NCP4.

Why are turning points so important?

Our approach is based on investigating the relationship between the geometry
of the diagonal link of NCPn and the ambient building. We show inductively that
the diagonal link is locally CAT(1) (in the sense of Bowditch [1]), and hence in
order to verify the CAT(1) property we only need to show that it does not contain
any locally geodesic loop of length smaller than 2π. In other word: if such a loop
exists that it is shrinkable, that is may be homotoped to the trivial loop while not
increasing its length along the way.

We show that a short loop has to pass through at least three turning points.
Hence understanding positions and behaviour of turning points does allow us to
gain control over these loops. The following three facts directly imply the theorem
in case of n = 5. For the 6-string braid group more work remains to be done.

Facts.
• If n = 5 then turning points are universal vertices, i.e. they correspond to

a partition with only one non-singleton block which consists of consecutive
numbers only.

• Each short loop through a universal vertex is shrinkable.
• Each short loop in NCPn contains at least three (and a finite number of)

turning points.
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Varieties and geometric structures in semigroups.

Zlil Sela

In 1946 Quine proved that arithmetic can be interpreted in the theory of a free
semigroup. Durnev and others proved that fragments of that theory (including
the AE theory) are undecidable.

In a different direction, Makanin showed in 1977 that it is possible to decide if
a system of equations over a free semigroup has a solution. This work preceeded
his own work on the similar question for free groups. In 1987 Razborov managed
to use Makanin’s work on groups, and encoded the set of solutions to a system
of equations over a free group in some combinatorial structures. No analogue of
Razborov’s work is known for varieties over a free semigroup.

We suggest a geometric approach to study varieties over a free semigroup. We
manage to find analogues of (geometric) structures that were known to exist over
groups to encode the points in a variety over a free semigroup.

Reporter: Olga Varghese
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Institut Mathématiques de Rennes
Batiment:B023, 835
263, Ave. du General Leclerc
35042 Rennes Cedex
FRANCE

Prof. Dr. James Howie

Department of Mathematics
Heriot-Watt University
Riccarton
Edinburgh EH14 4AS
UNITED KINGDOM



Geometric Structures in Group Theory 1673

Prof. Dr. Tadeusz Januszkiewicz

Institute of Mathematics of the Polish
Academy of Sciences
ul. Sniadeckich 8 - P.O.Box 21
00-956 Warszawa
POLAND

Dr. Dawid Kielak

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Prof. Dr. Ralf Köhl
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