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Abstract. The progress in the theory of hyperbolic conservation laws has
always been and still is driven strongly by new fields of applications. The
workshop addressed aspects of modelling, analysis and numerics for funda-
mental problems at the interface between hyperbolic evolution and the emerg-
ing mathematical theories of complex multiphasic materials. This includes
problems in fluid and solid mechanics but also very recent applications in
areas like swarm and traffic modelling.
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Introduction by the Organisers

This workshop welcomed 47 participants (thereof 9 women) from 11 different coun-
tries. The speakers included young PhD students as well as researchers well-
established at the international level. The schedule of the workshop allowed the
former to deliver 10 minutes presentations including open questions they face,
while the latter introduced the audience to the most recent results. In the tradi-
tion of Oberwolfach workshops, discussions played a central role throughout the
week. Often, they were explicitely initiated by the speakers, or motivated by the
personal interests in the audience.

The hyperbolic modeling of phase dynamics turned out to be the underpinning
cornerstone around which a large variety of subjects departed.

First of all, the classical topic of well-posedness, as well as the analytical tech-
niques to achieve this property, was central in the presentations by De Lellis,
Modena, and Nordli. In particular, a communication was devoted to the very
interesting counter-example to uniqueness in the two-dimensional, isentropic fluid
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system. The techniques based on relative entropies were discussed by Lattanzio
and Seguin. On the other hand, Andreianov, Boutin, and Gwiazda presented
recent results on multi-dimensional hyperbolic systems with various kinds of dis-
continuous flux.

Euler equations for fluid flows still keep their classical role of being a paradigm
for the shock wave theory initiated by Peter Lax in the 60’s and were central in
several talks. Kinetic relations were addressed by Dreyer, who presented phys-
ically consistent relations to be imposed on subsonic phase transitions, and by
Bedjaoui in joint work with LeFloch who derived kinetic relations based on travel-
ing waves. Likewise, Corli, Fan, Freistühler, Giesselmann, Kraus, Kotschote, and
Müller investigated liquid–vapor phase transitions from the modeling standpoint
as well as the analytical and numerical points of view. Schleper presented new
results on the compressible vs. incompressible limit for non-smooth solutions to
the one-dimensional isentropic Euler equations. The case of elastodynamics was
tackled by Tzavaras in his presentation devoted to the formation of cavitation, and
by Luckhaus who approached it using the Hamiltonian formalism. Frid and Pop
described recent results based on hyperbolic techniques and porous media flows.

The closely related topic of the dynamics of granular materials and its con-
nection with the modeling of avalanches and erosion-deposition phenomena, was
central in the communications by Guerra and Swierczewska-Gwiazda.

A less traditional field of applications is provided by the modeling of vehicular
traffic and crowd dynamics. The issues related to the analytical study and as well
as ad hoc numerical methods were considered by Amorim, Goatin, Marcellini,
Rosini and Rossi.

Descriptions of the interplay among different models, both at different scales
and devoted to different phenomena, motivate the communications by Garavello
and Godlewski. In this context, Gasser drove the attention of the audience to
models not yet much considered in the hyperbolic literature, while Borsche opened
the discussion on the effectiveness and reliability of one-dimensional models in the
description of three-dimensional phenomena.

Finally, several communications focused on the numerics. Mishra proposed a
non deterministic approach to the lack of strong convergence of the numerical
solutions to the two-dimensional Euler system. Amadori described well-balanced
schemes for conservation laws with source terms, while Chalons and Turpault pre-
sented asymptotically-preserving schemes,. Pares discussed the approximation of
non-conservative systems, and Helluy gave an overview of the use of graphic cards
as an effective tool for large-scale computations. A general entropy dissipative
approach was presented by Hiltebrand.
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Abstracts

The problem of dynamic cavitation in nonlinear elasticity

Athanasios Tzavaras

(joint work with Jan Giesselmann)

In this work we re-assess an example of non-uniqueness of entropy weak solutions
for multi-dimensional systems of hyperbolic conservation laws constructed in [4, 5]
and associated with the onset of cavitation in homogeneous and isotropic elastic
media. The equations of nonlinear elasticity is the system

ytt − div
∂W

∂F
(∇y) = 0 ,(1)

where y : Rd×R+ → R stands for the motion, F = ∇y is the deformation gradient,
and W (F) stands for the stored elastic energy. The homogeneous deformation
ȳ(x, t) = λx is a particular solution of (1) with λ > 0 a given stretching.

For homogeneous and isotropic elastic materials W takes the simplified form
W (F) = Φ(λ1, ..., λd), where Φ is a symmetric function of the eigenvalues λ1, ..., λd

of
√

FFT . Then (1) admits radially symmetric solutions, y(x, t) = w(|x|, t) x
|x| ,

R = |x|, generated by solving for the amplitude w : R+×R+ −→ R+ the equations
of isotropic radial elastodynamics,

wtt =
1

Rd−1
∂R

(

Rd−1 ∂Φ

∂λ1
(wR,

w

R
, . . . ,

w

R
)

)

− 1

R
(d− 1)

∂Φ

∂λ2
(wR,

w

R
, . . . ,

w

R
).(2)

w(R, 0) = λR .(3)

The special solution w̄(R, t) = λR corresponds to a state of homogeneous defor-
mation. The question arises if additional solutions of the initial value problem for
(1) may be constructed by solving the problem (2)-(3).

This idea was pursued by Ball [1] first in the context of the static problem by
using methods from the calculus of variations, who showed that there exists a
critical stretching λcr so that: (i) for λ < λcr the only equilibrium solution is the
homogeneously deformed state; (ii) for λ > λcr there exist non-trivial equilibria
(corresponding to a cavity) with energy less than the energy of the homogeneous
deformation [1]. In [4, 5], K.A. Pericak-Spector and S. Spector use the ansatz

(4) w(R, t) = t r
(R

t

)

,

to construct a self-similar weak solution for the dynamic problem (2)-(3) that
corresponds to a spherical cavity emerging at time t = 0 from a homogeneously
deformed state. The solution in [4] is constructed in dimension d ≥ 3 for polycon-
vex stored energies of the special form

(H1) W (F) =
1

2

d
∑

i=1

λ2i + h

(

d
∏

i=1

λi

)
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where h : R+ −→ R+ satisfies the hypotheses

(H2) h′′ > 0 , h′′′ < 0 lim
v→0

h(v) = lim
v→∞

h(v) = ∞ .

The hypothesis h′′ > 0 refers to polyconvexity, while h′′′ < 0 indicates elasticity
of softening type; more general stored energies were treated in [5]. It is proved
in [4, 5] that the self-similar solution has smaller mechanical energy than the
associated homogeneously deformed state from where it emerges, and thus provides
an example of nonuniqueness of entropy weak solutions (at least for polyconvex
energies). As already noted in [4], the paradox arises that by opening a cavity the
energy of the material decreases, what induces an autocatalytic mechanism for
failure. Cavitating solutions also exist in dimension d = 2 under different growth
hypotheses on the stored energy function and it is shown that in dimensions d =
2, 3 the existence of a cavity entails that there exists a non-degenerate precursor
shock [3].

There is a class of problems in solid mechanics, such as fracture, cavitation
or shear bands, where discontinuous motions emerge from smooth motions via a
mechanism of material instability. Any attempt to study solutions that lie at the
limits of continuum modeling needs to reckon with the problem of giving a proper
definition for such solutions. Once the material breaks or a shear band forms
the motion can no longer be described at the level of continuum modeling and
microscopic modeling or higher-order regularizing mechanisms have to be taken
into account. Still, as such structures develop there is expected an intermediate
time scale where both types of modeling apply.

The premise of this work is to introduce a meaning for solutions at this inter-
mediate scale and to explore its ramifications. The idea is the following, presented
here at the level of (1). Given a possibly discontinuous motion y(x, t) we intro-
duce the averaged motions yn = φn ⋆ y, where φ is a mollifier, and define y to
be a singular limiting induced from continuum solution (in short a slic-solution)
if for every choice of the mollifier the smooth approximating family in the limit of
small-scale averaging gives

(5) yn
tt − divS(∇yn) =: fn → 0 in D′.

In this notion the precise form of regularizing mechanisms is not taken into account,
instead it is enforced that they act in a stable way amounting to averaging of the
tested solution. Moreover, the energy equation for (5),

(6) ∂t

(

1

2
|yn

t |2 +W (∇yn)

)

− div
(

yn
t · S(∇yn)

)

= yn
t · fn ,

suggests that, even though fn → 0 in D′, the power of the ”microscopic forces”
yn
t · fn may well have a non-trivial contribution in the limit, which needs to be

calculated. The definition of slic-solutions exploits the fact that the momentum
equation (1) is a second-order evolution. Slic-solutions are generated via averagings
of a candidate discontinuous solution, and are natural in a context of discontinuous
solutions for second order evolution equations. The latter property provides a
mechanical intuition for the definition and suggests its name.
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In the talk, we examine the ramifications of this definition in two examples.
First, for the equations of one-dimensional elasticity

(7) ytt − (τ(yx))x = 0

we test a specific example of a motion,

(8) y(x, t) =

{

λx1lx<−σt +
(

t(signx)Y (0) + αx
)

1l−σt<x<σt + λx1lσt<x t > 0

λx t < 0
,

towards being a slic-solution. The example (8) is a counterpart (for d = 1) of
the cavitating solutions (for d ≥ 2) and corresponds to a crack forming out of a
homogeneously deformed state at the location x = 0 at time t = 0, in conjunction
with two outgoing Lax-shocks propagating at x = ±σt. It is more singular than
the dynamic cavitating solution in [4] as yx has a delta-mass at the origin. We
present a definition of the notion of slic-solution and provide conditions under
which (8) is a slic-solution for (7). Then the energy balance for the approximate
solution of the crack is computed and it turns out that there is an energetic cost
for creating the crack that is projected in the limiting energy balance equation.

Then we consider the dynamically cavitating solution (4) with r(s) the weak
cavitating self-similar solution constructed in [4]. We introduce a counterpart of
the notion of slic-solution adapted to this example and test the natural definition
for the energy. The analysis is more cumbersome and is based on detailed esti-
mations of the layers of the approximate solution, but the results parallel those of
the one-dimensional example. Namely, conditions are given under which the cavi-
tating solutions provide a slic-solution and the energy balance of the approximate
solutions can be precisely computed [2] and shows that there is an energetic cost
(corresponding to the surface energy) for creating the cavity..

Regarding the issue of uniqueness the results of [4] and [2] indicate : if the so-
lution is construed as an entropy weak solution, then there is non-uniqueness. By
contrast, if the solution is construed in the slic-sense, then there is a contribution
to the total energy in the process of forming the cavity which results to the energy
after the cavity formation being larger than before the cavitation. This indicates
that the notion of entropy weak solutions is inadequate when dealing with dis-
continuous solutions and in particular it cannot account for the work needed to
create the cavity. A more discriminating concept of solution has to be employed
on strong singularities, and the slic-solution concept is such a possibility.
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Discrete Models for Nonlinear Elasticity

Stephan Luckhaus

(joint work with Roman Kotecky)

One way to derive the stored energy function of nonlinear elasticity from dis-
crete particle models is to start from the equilibrium measure of a discrete lattice
based Hamiltonian and show then that its infinite volume limit large deviations
functional is a stored energy functional.That means the equilibrium measure with
macroscopic boundary values is concentrating exponentially on minimizers of the
stored energy functional with said boundary conditions. The discrete Hamiltoni-
ans we start from are lattice based finite range , i.e. the configurations are viewed
as deformations of a ground state lattice interaction depends on the particle posi-
tion in the ground state lattice and is finite range there.Furthermore the potential
is invariant under rigid motions in phase space and under lattice translations. We
have to assume growth conditions but try to keep them as general as possible. If
the bound on the growth from above and below is with the same power p of the
(discrete) gradient then the existence of the large deviations functional depending
only on the gradient of deformation, the elastic free energy, can be proved.If the
bound from below is p and the bound from above is a power less than the cor-
responding Sobolev exponent ,then we can prove the result provided the elastic
energy has no Lawrentiev gap.The case with Lawrentiev gap is open.The interest
of this case is that cavitation may occur under these conditions.

Ill-posedness for the isentropic system of gas dynamics

Camillo De Lellis

(joint work with Elisabetta Chiodaroli, Ondřej Kreml)

Consider the isentropic compressible Euler equations of gas dynamics in n space
dimensions. This system consists of n + 1 scalar equations, which state the con-
servation of mass and linear momentum. The unknowns are the density ρ and the
velocity v and the system takes the the form:

(1)

{

∂tρ+ divx(ρv) = 0
∂t(ρv) + divx (ρv ⊗ v) +∇x[p(ρ)] = 0

The pressure p is a function of ρ determined from the constitutive thermodynamic
relations of the gas under consideration and it is assumed to satisfy p′ > 0 (this
hypothesis guarantees also the hyperbolicity of the system on the regions where
ρ is positive). A common choice is the polytropic pressure law p(ρ) = κργ with
constants κ > 0 and γ > 1. The classical kinetic theory of gases predicts exponents
γ = 1 + 2

d , where d is the degree of freedom of the molecule of the gas.
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A lot of attention has been devoted in the literature to the Cauchy problem
which consists of solving (1) on a domain of the form R

2 × [0, T [ (where T might
also be infinite), subject to an initial condition of type

(2)

{

ρ(·, 0) = ρ0

v(·, 0) = v0 .

It is well known that, even starting from extremely regular initial data, the solu-
tions of the Cauchy problem for the system (1) develops singularities in finite time.
It is also well-known that after the appearance of the first singularity weak solu-
tions (i.e. solutions in the usual distributional sense) are not unique: the standard
example is provided by “non-physical” shocks, which can however be ruled out im-
posing that the weak solutions satisfy some further admissibility condition. Much
effort has been put in understanding how this approach can give well-posedness
results after the appearance of the first singularity, leading to a quite mature and
successful theory in one space dimension (we refer the reader to the monographs
[1],[4] and [9]).

Here we consider the case of two space dimensions and restrict our attention
to bounded weak solutions of (1) which satisfy the following additional inequality
in the sense of distributions (called usually entropy inequality, although for the
specific system (1) this is rather a weak form of the energy balance):

(3) ∂t

(

ρε(ρ) + ρ
|v|2
2

)

+ divx

[(

ρε(ρ) + ρ
|v|2
2

+ p(ρ)

)

v

]

≤ 0

where the internal energy ε : R+ → R is given through the law p(r) = r2ε′(r).
Indeed, admissible solutions are required to satisfy a slightly stronger condition,
i.e. a form of (3) which involves also the initial data (see for instance [4] for the
precise definition).

Starting from the work [6] it was observed that (3) is in this case not enough
to restore uniqueness of admissible bounded solutions. The methods used in [6],
inspired by techniques developed in the theory of differential inclusions, show a
rather surprising abundance of admissible solutions to the Cauchy problem with
certain particular initial data. However those specific data were rather irregular,
leaving open the question whether this fact alone was responsible for such behavior.
The investigations of [6] have been pushed further in [2] and in [3]: in the latter
paper we have shown that the same nonuniqueness result holds even for Lipschitz
initial data, therefore leading to the following theorem.

Theorem 1. Let p(ρ) = ρ2. Then there are Lipschitz initial data ρ0 and v0, with
ρ0 ≥ c0 > 0 for which there are infinitely many admissible bounded weak solutions
(ρ, v) of the Cauchy problem (1)-(2), with inf ρ > 0. All these solutions coincide
with the classical one as long as it exists and differ immediately after the formation
of the first singularity.

The proof of Theorem 1 relies heavily on the works of the author and László
Székelyhidi, who in the paper [5] introduced methods from the theory of differ-
ential inclusions to explain the existence of compactly supported nontrivial weak
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solutions of the incompressible Euler equations (discovered in the pioneering work
of Scheffer [8]; see also [9]). The proof draws also heavily from the work [10] where
Székelyhidi coupled the methods introduced in [5]-[6] with a clever construction to
produce rather surprising irregular solutions of the incompressible Euler equations
with vortex-sheet initial data.
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Some applications of relative entropy to hyperbolic PDE’s

Nicolas Seguin

(joint work with Clément Cancès, Bruno Després, Hélène Mathis,
Frédéric Lagoutière)

The notion of entropy plays a central role in the physical characterization of weak
solutions of hyperbolic partial differential equations. It may provide uniqueness
but also stability of the solutions with respect to the data of the problem. A key
point in general is the ability of comparing two solutions using the entropy, which
must fit with the topology associated with the well-posedness theory. To do so, one
may use of what is called in the current vocabulary the relative entropy. Moreover,
the entropy weak solutions can be directly defined as weak solutions which are
entropy stable with respect to a convenient class of elementary solutions. Let us
go into a more detailed presentation and consider a system of conservation laws
(we restrict ourselves to the one-dimensional setting for sake of simplicity)

(1) ∂tu+ ∂xf(u) = 0

which has to be understood in the weak sense. In order to select physically admis-
sible solutions, we assume the existence of a Lax entropy pair (η, F ) (i.e. η′′ > 0
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and η′ · f ′ = F ′) and impose the inequality

(2) ∂tη(u) + ∂xF (u) ≤ 0

which is an equality if u is a smooth solution. The so-called entropy relative and
the associated flux are

(3)
H(u, v) = η(u)− η(v) − η′(v) · (u− v),

Q(u, v) = F (u)− F (v)− η′(v) · (f(u)− f(v)).

It is worth noting that H is a positive function which vanishes only if u = v and
has a quadratic behavior. It is natural to define the entropy weak solution of (1)
as a function u which satisfies for any constant vector ū the inequality

(4) ∂tH(u, ū) + ∂xQ(u, ū) ≤ 0

in the sense of distributions. Let us now provide two applications of the relative
entropy.

1. Friedrichs systems with constraint

Let us focus on the case of Friedrichs systems, that is to say f(u) = Au where
A is a symmetric matrix [7]. The natural entropy is η(u) = |u|2, which gives
H(u, v) = |u− v|2 and Q(u, v) = (u− v) · (A(u − v)). Since in this case H and Q
are symmetric, one can reproduce the Kruzhkov’s proof to obtain uniqueness and
stability [10]: for all R > 0 and t > 0,

(5)

∫

|x|<R

H(u, v)(t, x) dx ≤
∫

|x|<R+Lt

H(u, v)(0, x) dx,

where u and v are two (entropy) weak solutions and L is the spectral radius of
the matrix A. Now, motivated by some applications in elastoplasticity, let us add
to (1) (still with f(u) = Au) the constraint

(6) u(t, x) ∈ K

for all t and x, where K is a closed convex subset of the set of admissible states.
We assume that (6) is not an involution. We propose in [4] to use (4) with (6)
and for any constant vector ū in K to define constrained weak solutions of (1)–(6).
Once again, we can follow the Kruzhkov’s proof to exactly obtain (5), leading to
the uniqueness and the stability of constrained weak solutions. The computations
are rather straightforward thanks to the adaptation of definition (4). Moreover,
our result extends the classical ones obtained for instance in [11].

2. The nonlinear case and finite volume methods

We consider now the case of a nonlinear flux f . Here, H and Q are no longer
symmetric functions so that the Kruzhkov’s doubling variable cannot be used.
However, let us recall the result obtained by Dafermos [3] and DiPerna [5], which
is the uniqueness of smooth solutions to the Cauchy problem for (1) in the class



1690 Oberwolfach Report 29/2013

of entropy weak solutions. Indeed, consider a smooth solution v and an entropy
weak solution u and after some computations, obtain

(7) ∂tH(u, v) + ∂xQ(u, v) ≤ −∂xv · Z(u, v)
where Z(u, v) = η′′(v)(f(u)− f(v)− f ′(v)(u− v)). Therefore, using the quadratic
behavior of Q and Z and that there exists L > 0 such that |Q(u, v)| ≤ L|H(u, v)|,
the Gronwall lemma enables to have the stability estimate

(8)

∫

|x|<R

H(u, v)(t, x) dx ≤ C

∫

|x|<R+Lt

H(u, v)(0, x) dx

where C involves a term of the form eMt, M being the Lipschitz constant of v.
In order to approximate system (1), a very classical method is based on the

finite volume numerical schemes. Let ∆x and ∆t be respectively the space step
and the time step. The mesh is defined by xi+1/2 = (i+1/2)∆x and the successive
times of computations are tn = n∆t. We define the finite volume approximation
uni in the cell (xi−1/2, xi+1/2) at time tn by

(9) un+1
i = uni − ∆t

∆x
(g(uni , u

n
i+1)− g(uni−1, u

n
i ))

where g is a consistent numerical flux (see [1] for more details). Let us assume
that under the CFL condition

(10) λ∆t ≤ ∆x

(λ being positive and depending on g), there exists a numerical entropy flux G
consistent with F such that

(11) η(un+1
i ) ≤ η(uni )−

∆t

∆x
(G(uni , u

n
i+1)−G(uni−1, u

n
i ))

(see for instance [8, 12, 1] for more details). In [2], we propose to follow the
formalism proposed in [6] to estimate the error of the numerical approximation

u∆(t, x) =
∑

i,n

uni 1(tn,tn+1)×(xi−1/2,xi+1/2)(t, x)

defined by (9). To do so, we first prove that, under some L∞ and BV bounds (see
[9] for more details on these assumptions), u∆ satisfies in the weak sense

(12) ∂tu∆ + f(u∆) = µ∆ and ∂tη(u)∆ + F (u∆) ≤ µ̄∆,

where µ∆ and µ̄∆ are local Radon measures such that

µ∆(B(0, R)× (0, T )) ≤ C∆x and µ̄∆(B(0, R)× (0, T )) ≤ C̄∆x.

Using (12), we can compare uh with any smooth solution v. Indeed, we have

(13) ∂tH(u∆, v) + ∂xQ(u∆, v) ≤ −∂xv · Z(u, v) + µ̄∆ − η′(v) · µ∆

which leads, after some careful computations, to the following error estimate

(14)

∫ T

0

∫

B(0,R)

H(u∆, v) dx dt ≤ C∆x.
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Note that this estimate also holds in the multidimensional setting with unstruc-
tured grids in [2].
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Conservative scheme for two-fluid compressible flows without pressure
oscillations

Helluy, Philippe

(joint work with Jonathan Jung)

Compressible two-fluid flows are difficult to numerically simulate. Indeed, clas-
sic conservative finite volume schemes do not preserve the velocity and pressure
equilibrium at the two-fluid interface. This leads to oscillations, lack of precision
and even, in some liquid-gas simulations, to the crash of the computation. Several
cures have been proposed to obtain better schemes (see [1] and included refer-
ences). The resulting schemes are generally not conservative. Based on ideas of
[2], we propose a new Lagrange-Projection scheme. The projection step is based
on a random sampling strategy at the interface. The scheme has the following
properties: it preserves constant velocity and pressure at the two-fluid interface,
it preserves a perfectly sharp interface and it is fully conservative (in a statistical
sense). The scheme can be extended to higher space dimensions through Strang
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dimensional splitting. Finally, it is very simple to implement and thus well adapted
to massively parallel GPU computations.

We are interested in the numerical resolution of the following system of partial
differential equations, modeling a liquid-gas compressible flow

(1) ∂tW + ∂xF (W ) = 0,

where

W = (ρ, ρu, ρv, ρE, ρϕ)T , F (W ) = (ρu, ρu2 + p, ρuv, (ρE + p)u, ρuϕ)T .

The unknowns are the density ρ, the two components of the velocity u, v, the
internal energy e and the mass fraction of gas ϕ. The unknowns depend on the
space variables x and on the time variable t. The total energy E is the sum of the
internal energy and the kinetic energyE = e+(u2+v2)/2.The pressure p of the two-
fluid medium is a function of the other thermodynamical parameters p = p(ρ, e, ϕ).
We consider a stiffened gas pressure law p(ρ, e, ϕ) = (γ(ϕ)−1)ρe−γ(ϕ)π(ϕ),where
γ and π are given functions of the mass fraction ϕ, and γ(ϕ) > 1.

At the initial time, the mass fraction ϕ(x, y, 0) = 1 if the point (x, y) is in
the gas region and ϕ(x, y, 0) = 0 if the point (x, y) is in the liquid region. The
mass fraction is transported with the flow, which implies that for any time t > 0,
ϕ(x, y, t) can take only the two values 0 or 1. However, classic numerical schemes
generally produce an artificial diffusion of the mass fraction, and in the numerical
approximation we may observe 1 > ϕ > 0. In classic conservative schemes, the
artificial mixing zone implies a loss of the velocity and pressure equilibrium at the
interface.

We construct a better numerical scheme for solving (1). We consider a sequence
of time tn, n ∈ N such that the time step τn = tn+1 − tn > 0. We consider also
a space step h. We define the cell centers by xi = ih. The cell Ci is the interval
]xi−1/2, xi+1/2[. We look for an approximationWn

i ≃W (xi, tn). Each time step of
the scheme is made of two stages: an Arbitrary Lagrangian Eulerian (ALE) step
and a Projection step.
ALE stage. In the first stage, we allow the cell boundaries xi+1/2 to move at a
velocity ξni+1/2. At the end of the first stage, the cell boundary is

xn+1,−
i+1/2 = xi+1/2 + τnξ

n
i+1/2.

Integrating the conservation law (1) on the moving cells, we obtain the following
finite volume approximation

hn+1,−
i Wn+1,−

i − hWn
i + τn(F

n
i+1/2 − Fn

i−1/2) = 0.

The new size of cell i is given by

hn+1,−
i = xn+1,−

i+1/2 − xn+1,−
i-1/2 = h+ τn(ξ

n
i+1/2 − ξni−1/2).

The numerical flux is of the form

Fn
i+1/2 = F (Wn

i+1/2)− ξni+1/2W
n
i+1/2.



Hyperbolic Techniques for Phase Dynamics 1693

Figure 1. Shock-droplet simulation. Density plot.

The intermediate stateWn
i+1/2 is obtained by the resolution of a Riemann problem.

More precisely, we consider the entropy solution of

∂tV + ∂xF (V ) = 0,

V (x, 0) =

{

VL if x < 0,
VR if x > 0,

which is denoted by R(VL, VR, x/t) = V (x, t). The intermediate state is then
Wn

i+1/2 = R(Wn
i ,W

n
i+1, ξ

n
i+1/2). In practice, R can also be an approximate Rie-

mann solver.
Finally, the interface velocity is defined by

(2) ξni+1/2 =

{

uni+1/2 if (ϕn
i − 1/2)(ϕn

i+1 − 1/2) < 0,

0 else.

The numerical flux is thus a classic Godunov flux in the pure fluid. It is a La-
grangian numerical flux at the two-fluid interface.
Projection step. The second stage of the time step is needed for returning to the
initial mesh. We have to compute on the cells Ci of the initial mesh the averages
of Wn+1,−

i , defined on the moved cells Cn+1,−
i =]xn+1,−

i−1/2 , x
n+1,−
i+1/2 [. Instead of a

standard integral averaging method, we rather consider a random sampling aver-
aging process. We consider a pseudo random sequence ωn ∈ [0, 1[ and we perform
the following sampling

(3) Wn+1
i =











Wn+1,−
i−1 , if ωn <

ξni−1/2τn

h ,

Wn+1,−
i , if

ξni−1/2τn

h ≤ ωn ≤ 1 +
ξni+1/2τn

h ,

Wn+1,−
i+1 , if ωn > 1 +

ξni+1/2τn

h .

A good choice for the pseudo-random sequence ωn is the (k1, k2) van der Corput
sequence. In practice, we consider the (5, 3) van der Corput sequence.

We can extend the scheme to higher dimensions with dimensional splitting
(more details in [3]). It is remarkable that the same random number can be used
for one time step in the x and y directions. We present in Figure 1 the results
of a two-dimensional shock-droplet GPU simulation. We observe that we are able
to capture a sharp interface and small Kelvin-Helmholtz vortices. The numerical
noise is moderate, despite the random nature of the scheme.
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A model for fluid flow in porous media with phase-dependent damping

Andrea Corli

(joint work with Haitao Fan)

We propose and discuss the following model for the isothermal and inviscid fluid
flow through a porous medium, in presence of liquid-vapor phase changes:

(1)







vt − ux = 0 ,
ut + p(v, λ)x = −α(λ)u ,
λt = 1

τ

(

p(v, λ)− pe
)

λ(λ− 1) .

Here t > 0, x ∈ R, v > 0 denotes the specific volume, u the velocity, λ ∈ [0, 1]
the mass-density fraction of the vapor in the fluid, pe an equilibrium pressure and
τ > 0 a reaction time. The pressure function p(v, λ) satisfies

(2) pv < 0, pλ > 0, pvv > 0, pvλ < 0,

so that (1) is a hyperbolic system of balance laws. The flow is hosted in a medium
that induces a friction force −α(λ)u. We assume that α(λ) > 0 for λ ∈ [0, 1) and
α(1) ≥ 0; from a physical point of view, the function α is a decreasing function of
λ.

The case without damping in the second equation has been studied in [6], even
in a more general framework, as far as traveling waves are concerned; the Riemann
problem in the limit case τ = ∞ has been considered in [2] while in [1] the global
existence of weak solutions and the vanishing relaxation limit has been proved.
Here, we are interested in traveling waves to (1). The case when α is a positive
constant was studied in [5]; analogous results are valid if α depends on λ but is
bounded away from zero [4]. The case when α(1) = 0 has been recently studied
in [3]; such an assumption applies to vapor flows in materials with very high
porosity. Now, we briefly introduce the dynamical system under consideration for
the analysis of traveling waves, thus accounting for the results in [5, 4, 3].

We denote U = (v, u, λ) and Ω = (0,+∞) × R × [0, 1]. A traveling wave to
(1) with constant speed c is a solution to (1) of the form U(ξ) = U

(

x−ct
τ

)

that
satisfies then the system

(3)







−cv′ − u′ = 0 ,
−cu′ + p′ = −A(λ)u ,
−cλ′ = (p− pe)λ(λ − 1) ,
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together with

(4)

{

(v, u, λ)(±∞) = (v±, u±, λ±) ,
(v′, u′, λ′)(±∞) = 0 ,

for (v±, u±, λ±) ∈ Ω. Here above we denoted A(λ) = α(λ)τ . By integrating from
ξ = −∞ to ξ = +∞ the first equation in (3) we get the necessary condition

(5) u− + cv− = u+ + cv+.

We denote

v̄ = v± +
1

c
u±.

The first equation in (3) fully determines u through v:

u(ξ) = u± − c (v(ξ)− v±) .

Having eliminated u, system (3) can be written as follows, including the conditions
at ±∞:

(6)















(c2 + pv)v
′ = Ac(v − v̄) + 1

cpλ(p− pe)λ(λ − 1),

λ′ = − 1
c (p− pe)λ(λ − 1),

(v, λ)(±∞) = (v±, λ±).

If we introduce the notation

s(v, λ) := c2 + pv,

g(v, λ) := Ac(v − v̄) +
1

c
pλ(p− pe)λ(λ − 1),

then, in turn, system (6) can be written as

(7)















sv′ = g,

λ′ = − 1
c (p− pe)λ(λ − 1),

(v, λ)(±∞) = (v±, λ±).

The equilibrium points of (7) are deduced by those of (3) and depend on the choice
of the end states (v±, u±, λ±).

Both in the case α(λ) > 0 and in the case α(λ) > 0 for λ ∈ [0, 1) and α(1) = 0,
we prove the existence and uniqueness of traveling waves for a large class of end
states. The analysis is rather subtle because of the interplay of three important
curves in the phase plane (v, λ): the equilibrium curve G where g vanishes, the
sonic curve S, defined by pv + c2 = 0, and the equilibrium pressure curve p = pe,
denoted by P . In particular, the dynamical system is singular on the sonic curve
S. Further, the case α(1) = 0 gives rise to several interesting patterns of solutions,
since in that case any state (v, λ = 1) is an equilibrium for the dynamical system.
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Multi-dimensional scalar conservation laws with fluxes discontinuous
in the unknown and the spatial variable

Piotr Gwiazda

(joint work with Miroslav Buĺıček, Josef Málek, Agnieszka

Świerczewska-Gwiazda)

The studies on scalar hyperbolic conservation laws, including the topic of dis-
continuous fluxes, are analytically interesting and often undertaken. The research
in this direction is a preface to studies on phase transition problems (discontinuity
of the flux in the unknown function) and spatially inhomogeneous materials (dis-
continuity of the flux in the space variable). The presented framework captures
implicit relations between the flux function and the unknown quantity, and can
be viewed as an introduction to considering interesting phenomena in elasticity
theory, namely the p−systems with an implicit relation between the stress tensor
and the deformation.

We consider the conservation (or rather balance) law as follows

∂u

∂t
+ divx F (x, u) = f(t, x, u)(1)

u(0, ·) = u0.(2)

The problem (1) was considered in case of the unbounded domain R
d, where

d denotes an arbitrary spatial dimension, u : R+ × R
d → R is an unknown and

F : Rd × R → R
d is a given flux of the quantity u, see [3, 4]. We were interested

in identifying under which assumptions for a flux function F one can show well-
posedness of the problem (1). We recall that for smooth F a weak solution to
(1) is called the Kružkov entropy solution if it satisfies for all k ∈ R the following
entropy inequality in the distributional sense in R+ × R

d

|u− k|,t + divx (sgn(u− k)(F (x, u)− F (x, k)))

+ sgn(u − k)divx F (x, k) ≤ 0.
(3)



Hyperbolic Techniques for Phase Dynamics 1697

Hence an important aim was that a class of these fluxes is equivalent to Kružkov
entropy solution in case that F is a sufficiently smooth function.

We provide a brief description of methodology in working with conservation
laws with discontinuous fluxes, for brevity assume for the moment that F depends
on u only. In the first step we identify a given discontinuous F with a continuous
curve that consists of the graph of F and the vertical parts of the graph, which
fill the jumps. Consequently, instead of a discontinuous F of the variable u we are
working with an implicit relation

(4) G(F , u) = 0 .

Equation (4) represents a curve in R
d+1 and we have one degree of freedom to set

up the “optimal” unknown (independent variable).
This leads us to the observation that it might be better in such cases to re-

formulate (1) in terms of the unknown F instead of in terms of the unknown u.
The simple one-dimensional procedure is not transferable to higher dimensions,
however the idea to transform the original problem into the new problem that has
better properties (continuous flux) is the key motivation. In fact, in the multi-
dimensional case we construct an appropriate parametrization of a discontinuous
curve in R

d+1 so that the composition of F with this parametrization has a natural
continuous extension.

We partially follow the idea of entropy measure valued solutions tools and the
method of doubling the variables, but on the level of measure valued solutions,
see [3, 4, 6, 8]. The starting point in this framework is the definition of entropy
measure valued solutions and the so-called contraction principle, which is satisfied
by entropy measure valued solutions. To provide the essence of this concept,
without introducing additional notions and notation, we recall them here, following
DiPerna, for the case of continuous fluxes, namely for the following problem in
R

d × R+

∂u

∂t
+ divx F (u) = 0,

u(·, 0) = u0,
(5)

with sufficiently regular F and u0.

Definition 1. A Young measure ν : Rd × R+ → Prob(R) is called an entropy
measure valued solution to (5) if

(6)
∂

∂t
〈ν(·), |λ− k|〉+ divx 〈ν(·), sgn(λ− k)(F (λ) − F (k))〉 ≤ 0

in distributional sense for all k ∈ R and if for all compact sets K ⊂ R
d

(7) lim
T→0

1

T

∫ T

0

∫

K

〈ν(x,t), |λ− u0(x)|〉 dx dt = 0.

In the above definition by Prob(R) we mean the space of probability measures.
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Theorem 1. Let ν and σ be two entropy measure valued solutions to (5). Then

(8)
∂

∂t
〈ν ⊗ σ, |λ − µ|〉+ divx 〈ν ⊗ σ, sgn(λ− µ)(F (λ) − F (µ))〉 ≤ 0

in distributional sense, where ν ⊗ σ denotes the product measure on R× R.

To generalize this notion to a class of fluxes F (x, u) discontinuous with re-
spect both to x and to u we follow several recent results and combine them in
a proper way to develop a unified theory. An important approach to problems
with x−discontinuous fluxes appears for d = 1 in [2] and later in [1]. The authors
generalized the entropy inequality (3) in a way that instead of a constant k they
considered a stationary solution, namely a function k(x) solving the equation

(9) ∂xF (x, k(x)) = 0.

This idea of extending the definition of Kružkov solutions to a discontinuous case
consisted in introducing adapted entropies E(x, u) = |u − k(x)|. For such choice
of entropies we observe that the last term in (3), which is not well-defined in case
of non-smooth F vanishes. For a sufficiently large class of k’s satisfying (9) the
uniqueness of solutions to (1)–(3) can be proved.

F (x, u) is Carathéodory,(10)

f(u) ≤ |F (x, u)| ≤ g(u),(11)

F (x, u) is for a.a. x one to one locally Lipschitz .(12)

Later Panov [7] generalized the method developed in [1] by assuming that F is
of the form

(13) F (x, u) = GGG(θ(x, u)),

where GGG ∈ C(R;Rd) and θ(x, u) : Rd × R → R is a Carathéodory function that
is for almost all x strictly increasing with respect to u and for which there exist
continuous functions f and g fulfilling f(u) → ∞ as |u| → ∞ such that

(14) f(u) ≤ |θ(x, u)| ≤ g(u).

In this setting he showed that it is natural to formulate the problem differently.
Let η(x, v) be the inverse to θ, i.e., θ(x, η(x, v)) = v. Then assuming that GGG, θ, η
and u are smooth one easily shows that u solves (1)–(3) if and only if u(t, x) :=
η(x, v(t, x)) (that is again smooth) satisfies for all k ∈ R

|η(x, v) − η(x, k)|,t+ div(sgn(v − k)(GGG(v) −GGG(k))) ≤ 0, in R
d+1
+ .(15)

in the sense of distribution. It is evident that for introducing a notion of a weak
solution satisfying (15) we do not need to require any smoothness of θ with respect
to x, which is the case if one assumes (3).
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Kinetic Relations for Moving Phase Boundaries

Wolfgang Dreyer

Introduction. We describe a liquid-vapor phase transition by the Euler equa-
tions for the variables ρ - mass density, v - velocity and T - temperature. We
consider both the isothermal and the adiabatic case. The interface between ad-
jacent phases is represented by a moving interface. Across the interface we may
have discontinuities of some fields. In the pure phases discontinuities may also
develop, but in this case the discontinuities are classical shocks. The evolution of
the interface are determined by interfacial balance equations and by a so called
kinetic relation, which relates the mass flux across the interface to a corresponding
thermodynamically consistent driving force. The main objective of this study is
the construction of a scheme that generates kinetic relations.
The interfacial equations of balance for mass, momentum and energy.
We consider an interface I that either separates two adjacent phases Ω± or it
indicates a classical shock. The interfacial normal and its normal speed are denoted
by ν and wν , respectively. The jump of a generic quantity χ across the interface is
denoted by [[χ]]. The classical Rankine-Hugoniot equations relies on the balance
equations for mass and momentum

(1) [[ρ(vν − wν)]] = 0, −ρ(vν − wν)[[v]] + [[p]]ν = 2γkMν.

and on the energy balance

(2) ρ(vν − wν)[[u+
p

ρ
+

1

2
(v −w)2]] + [[q]] · ν = 0.
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The newly introduced quantities are p - pressure, γ - surface tension, kM - mean
curvature, u - specific internal energy and q - heat flux.

Multiplication of the momentum balance by an interfacial tangent vector τ
yields that [[vτ ]] = 0, thus the tangential velocity is continuous and we can set
vτ = wτ implying (v −w)2 = (vν − wν)

2.
Constitutive model for pressure, internal energy, surface tension, en-
tropy and Gibbs energy. Pressure and the internal energy are given by consti-
tutive functions with respect to the variables T and ρ. In particular, the modelling
of phase transitions requires a non-monotone pressure - mass density dependence.
This property is encoded in the specific (Helmholtz) free energy, which is repre-

sented by the function ψ = ψ̂(T, ρ). There two further constitutive quantities that
will appear in the kinetic relation, namely s - specific entropy and g - specific
Gibbs free energy. All these functions can be derived from ψ, because, according
to the 2nd law of thermodynamics, we have

(3) p = ρ2
∂ψ

∂ρ
, u = −T 2 ∂

∂T
(
ψ

T
), s = −∂ψ

∂T
, g =

∂ρψ

∂ρ
.

The surface tension is also given by a constitutive function, and it can likewise
be derived from a free energy function. For illustration we assume now that the
interface I is equipped with own thermodynamic properties, that are described
by ρI - interfacial mass density, TI - interfacial temperature and ψI - interfacial
(Helmholtz) free energy density. Obviously the equations of balance (1) and (2)
must be changed if we have ψI = ψI(TI, ρI), but this will be discussed later. Here
it is only important that thermodynamics implies

(4) γ = ψI − ρIgI with gI =
∂ψI

∂ρI
,

where gI denotes the interfacial Gibbs free energy density.
On the role of the heat flux. In the isothermal case the variables are ρ, v and
wν . Then we only need the balance equations for mass and momentum for their
determination. The jump of the heat flux is needed so that the energy balance
is capable to allow [[T ]] = 0. In the adiabatic case we have q = 0 and the jump
[[T ]] 6= 0 is determined by the energy balance.
On the need of kinetic relations. Let us consider a Riemmann problem with
two initial states in the liquid and the vapor phase, respectively, as it is indicated
in Figure 1, see [1] for details. There are two possibilities to connect the two states
at later times. In the left Figure the initial states are connected by a discontinuity
and a rarefaction wave. However, it is also possible to connect the initial states
exclusively by a single discontinuity as in the right Figure. The obvious question
is now: Which solution is selected by nature?
Interfacial entropy production. The answer to this question relies on the
interfacial entropy production ζI ≥ 0. From the 2nd law of thermodynamics we
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Figure 1. The non-uniqueness of the Riemann problem.

can deduce

ζI = −[[(
1

TI
− 1

T
)qν ]]

+ [[(
gI
TI

− g

T
− 1

2T I
(vν − wν)

2 − (
1

TI
− 1

T
)(u+

p

ρ
))ρ(vν − wν)]] ≥ 0.

(5)

We proceed with special cases. In the isothermal case with ψI = constant, we
obtain

(6) TζI = −ρ(vν − wν)[[g +
1

2
(vν − wν)

2]] ≥ 0.

In the adiabatic case with ψI = constant, the inequality reduces to

(7) ζI = ρ(vν − wν)[[s]] ≥ 0.

Kinetic relation in the isothermal case. We decompose the mass flux into
the two mechanisms of the phase transitions, namely evaporation with rate γE and
condensation with rate γC. We write ρ(vν − wν) = m(γE − γC), where m is the
mass of an atom. A simple possibility to guarantee the sign of ζI is the choice

(8) ln(
γC
γE

) =
m

kT
[[g +

1

2
(vν − wν)

2]] implying ln(
γC
γE

)(γE − γC) ≤ 0.

Thus in the isothermal case the kinetic relation reads

(9) ρ(vν − wν) = mγC(exp(−
m

kT
[[g +

1

2
(vν − wν)

2]])− 1).

We observe that thermodynamics restricts the ratio of condensation and evapo-
ration rates. Only one of the two rates remains as an adjustable parameter. For
example, we may assume γC = constant. Another choice results from the kinetic
gas theory:

(10) γC =

√

kT

2πm

pV
kT

,

where pV is the pressure on the vapor side of the interface and k denotes the
Boltzmann constant.
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Kinetic relation in the adiabatic case. Here we use the same decomposition
of the mass flux and obtain in an analogous manner a kinetic relation for the
adiabatic case,

(11) ρ(vν − wν) = mγC(exp(
m

kT
[[s]])− 1).

Scheme for construction of kinetic relations. We conclude that two steps
are necessary to obtain a thermodynamic consistent kinetic relation.

(i): Calculate the interfacial entropy production as a bilinear form.
(ii): Relate the two factors to each other so that the sign of ζI is guaranteed

Discussion of more general cases. The presented scheme is the same in more
involved cases. However, the exploitation of the interfacial entropy production
might be very much more intricate. For illustration we go back to the entropy
inequality (5). Note that the mass flux is only outside the jump brackets if it is
continuous across the interface. If there is an interfacial mass density, the mass
flux is not continuous. Consequently, the binary product in the interfacial entropy
production is not ρ(vν − wν)[[A]], instead [[ρ(vν − wν)A]] = ρ+(v+ν − wν)A

+ −
ρ−(v−ν − wν)A

−. Thus we have different binary products on each side of the
interface whose further treatment must separately be carried out.
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Locally constrained conservation laws in traffic modeling

Paola Goatin

(joint work with Boris Andreianov, Christophe Chalons, Rinaldo M. Colombo,
Maria L. Delle Monache, Mauro Garavello, Massimiliano D. Rosini, Nicolas

Seguin)

Several phenomena displayed by vehicular traffic can be modeled using conser-
vation laws in one space-dimension, see for example [9] for a survey of available
models. Here we are interested in the following Cauchy problem with flux con-
straint

∂tρ+ ∂xf(ρ) = 0, t > 0, x ∈ R,(1)

ρ(0, x) = ρ0(x), x ∈ R,(2)

f(ρ(t, 0)) ≤ F (t), t > 0.(3)

This problem was originally proposed in [3, 4, 5] to model the presence of toll gates,
but can be applied to other situations arising in traffic flow, such as traffic lights
and construction sites [1, 5] or pedestrians exiting a corridor through a narrow
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exit [2, 4]. The model can also be extended to systems [8] and moving bottlenecks
caused by slow moving large vehicles [7].

For simplicity, here we assume that the flux function f : [0, 1] → R is Lipschitz
continuous and

f(ρ) ≥ 0, f(0) = f(1) = 0, f ′(ρ)(ρ̄− ρ) > 0 a. e. ρ ∈ [0, 1] \ {ρ̄},
for some ρ̄ ∈ (0, 1). Moreover, we take F ∈ L∞(R+; [0, f(ρ̄)]) and ρ0 ∈ L∞(R; [0, 1]).

We now explain how the Riemann solver for (1)-(3) is constructed. We denote
by R the standard Riemann solver for (1), i.e. (t, x) 7→ R(ρl, ρr)(x/t) is the
standard weak entropy solution of (1)-(2), corresponding to the Riemann initial
datum

ρ0(x) =

{

ρl si x < 0,
ρr si x > 0.

Taking F (t) ≡ F constant, we denote by ρ̌F ≤ ρ̂F the solutions of the equation
f(ρ) = F .

Definition (Riemann Solver). The Riemann solver RF : (ρl, ρr) 7→ RF (ρl, ρr)
for (1)-(3) is defined as follows.
If f

(

R(ρl, ρr))(0)
)

≤ F , then RF (ρl, ρr) = R(ρl, ρr).

Otherwise, RF (ρl, ρr)(λ) =

{

R(ρl, ρ̂F )(λ) if λ < 0 ,
R(ρ̌F , ρ

r)(λ) if λ > 0 .

Remark that, when the constraint is enforced, a discontinuity violating the
Lax entropy condition arises at x = 0. The non-classical problem (1)-(3) can be
interpreted as the singular limit of a classical Cauchy problem with discontinuous
flux. Fix ε > 0 and consider the problem

(4)

{

∂tρ
ε + ∂x (kε(t, x) f(ρ

ε)) = 0,
ρε(0, x) = ρ0(x),

kε(t, x) =







1 |x| > ε,
F (t)

f(ρ̄)
|x| ≤ ε.

(We refer the interested reader to [3] for a rigorous justification of the limiting
procedure.) Problem (4) fit the framework of [10, Theorem 4.5, 5.5 and 6.5], and
the associated entropy condition is given by

∫ +∞

0

∫

R

(|ρε(t, x)− κ| ∂t +Φ(ρε(t, x), κ)∂x) φ(t, x) dx dt

+

∫

R

|ρ0(x)− κ| φ(0, x) dx

+

∫ +∞

0

(

1− F (t)

f(ρ̄)

)

f(κ) (φ(t,−ε) + φ(t, ε)) dt ≥ 0,

for all κ ∈ [0, 1] and φ ∈ C1
c (R

+ ×R;R+), where we have noted Φ(a, b) = sgn(a−
b)(f(a)− f(b)). Remark that ρε satisfy the constraint f(ρε(t, x)) ≤ F (t) for a. e.
|x| < ε.
Therefore, we give the following definition for (1)-(3).
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Definition (Entropy Weak Solution). A function ρ ∈ L∞(R+×R; [0, 1]) is
an entropy weak solution of (1)-(3) if
(i) entropy inequalities are satisfied: for all φ ∈ C1

c (R
+ × R;R+) and every κ ∈

[0, 1],

(5)

∫ +∞

0

∫

R

(|ρ(t, x) − κ|∂t +Φ(ρ(t, x), κ)∂x) φ(t, x) dx dt

+

∫

R

|ρ0(x)− κ| φ(0, x) dx+ 2

∫ +∞

0

(

1− F (t)

f(ρ̄)

)

f(κ) φ(t, 0) dt ≥ 0;

(ii) the constraint is satisfied:

f((γlρ)(t)) = f((γrρ)(t)) ≤ F (t) a. e. t > 0,

where γl,r are the left and right strong trace operators at {x = 0}.

Remark. This definition selects the maximal solution, since all non-classical
stationary discontinuities at x = 0 between two states ρ2 and ρ1 with ρ1 < ρ2 and
f(ρ1) = f(ρ2) < F (t) are ruled out by (5).

Existence and stability results for entropy weak solutions of (1)-(3) are detailed
in [3], and in [2] for general fluxes with several points of local maximum/minimum.
The construction of corresponding finite volume schemes, and the proof of their
convergence, are given in [1].
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Energy consistent DG schemes for compressible two–phase flows

Jan Giesselmann

(joint work with Charalambos Makridakis, Tristan Pryer)

We describe a new class of discontinuous Galerkin (dG) finite element methods for
the Navier-Stokes-Korteweg system which are by design consistent with the energy
dissipation structure of the problem. The methods are of arbitrary high order of
accuracy in space and second order in time. They provide stable approximations
free of numerical artifacts.

Let Ω ⊂ R
2 be a bounded, open, connected set with Lipschitz boundary. Then

the Navier-Stokes Korteweg model describing the behaviour of the density ρ and
the velocity u in space and time reads

ρt + div(ρu) = 0

(ρu)t + div (ρu⊗ u+ p(ρ)Id) = div(S) + γρ∇∆ρ
in Ω× R>0,(1)

where

S = λ(div u)Id + µ(∇u+ (∇u)T ),

is the Navier-Stokes stress tensor modeling viscous effects, and λ and µ are viscosity
coefficients satisfying µ > 0 and λ + 2µ ≥ 0. Moreover, γ > 0 is a small number
determining the strength of capillary effects and surface tension. This system
is complemented by appropriate initial data ρ0,u0 and the following boundary
conditions

(2) u = 0, ∇ρ · ν = 0 in ∂Ω× R>0.

There are two special features of this model which are intimately linked to the
two phase character of the problem and surface tension effects: the third order
terms in the momentum balance and the non-monotone pressure law, see Figure 1.
In particular, to have two phases, we need a non-convex Helmholtz energy density
function and it holds

p(ρ) := ρW ′(ρ)−W (ρ) =⇒ p′(ρ) = ρW ′′(ρ).

,

Figure 1. Helmholtz energy density and pressure.
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It is classical to verify that smooth solutions of (1) satisfying (2) fulfill the
energy dissipation equality

(3)
d

dt

∫

Ω

W (ρ) +
ρ

2
|u|2 + γ

2
|∇ρ|2 dx = −

∫

Ω

S : ∇u dx ≤ 0.

The inequality in (3) reflects the second law of thermodynamics while the equality
shows that all energy dissipation in this model is due to viscous effects. The
Ginzburg-Landau part of the energy leads to diffuse ’smeared out’ interfaces of
non-zero thickness as well as to surface tension effects as the perimeter of the
interface is penalized energetically.

The Korteweg type third order term and the non-monotonicity of the pressure
function cause several issues in the numerical treatment of this problem. In previ-
ous numerical studies [4, 2, 1] it has been observed that “classical” explicit-in-time
finite volume (fv) and dG schemes using standard fluxes used in computational
(compressible) fluid dynamics introduce several numerical artifacts.

The first artifact is non-monotonicity of the energy, i.e., an analogue of (3) is
not true on the discrete level for classical fv and dG methods. This is mainly
due to the fact that these “classical” schemes introduce standard diffusion in the
mass conservation equation as a stabilising mechanism. While for convex energies
standard diffusion, in fact, leads to energy dissipation, it may cause an increase in
energy for multiphase flows [2]. Standard diffusion is also present in the (continu-
ous) finite element method proposed in [1].

The second artifact are so called parasitic currents, i.e., the schemes are not
well-balanced, as they do not preserve the correct (two phase) equilibria. Par-
asitic currents occur when equilibrium is approached and the numerical velocity
field does not vanish uniformly, but in the interfacial layer large velocities whose
magnitude is dependent on the gridsize and inversely dependent on the width of
interfacial layer appear [2, §5]. As the interfacial layer is extremely thin this ef-
fect cannot be neglected in practical computations, although it is compatible with
convergence of the scheme.

Both the non-monotone behaviour of the energy and the parasitic currents are
due to numerical regularisation terms which are not adapted to the variational
structure of the problem

Our approach is based on the idea that in case of an implicit-in-time discretisa-
tion no artificial regularisation in the space discretisation is needed. The main step
in the construction of our scheme is a careful choice of the primary and auxiliary
variables in the following first order system which is equivalent to (1) for smooth
solutions. The mixed formulation is then to seek (ρ,u, τ,q) such that

ρt + div(ρu) = 0

ρ(u)t + div(ρu⊗ u)− div(ρu)u+ ρ∇τ − 1

2
ρ∇|u|2 − µ∆u = 0

τ −W ′(ρ) + γ div(q)− 1

2
|u|2 = 0

q−∇ρ = 0

(4)
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where we have replaced divS by µ∆u for ease of exposition. The main feature of
this mixed formulation is that all test functions needed in deriving (3) are linearly
dependent on the primiary variables. Therefore, when we devise a dG scheme
based on (4), they are elements of the appropriate ansatz and test function spaces.

We develop a dG scheme employing central fluxes and a Crank-Nicholson-like
time discretisation based on the mixed formulation (4) . The details of this scheme
and the proof of equation (5) can be found in [3]. Provided the numerical solu-
tions are constructed in ansatz spaces enforcing the correct boundary conditions
this scheme is mass conserving while its main property is that the numerical ap-
proximations (ρnh,u

n
h , τ

n
h ,q

n
h) and (ρn+1

h ,un+1
h , τn+1

h ,qn+1
h ) at times tn and tn+1

satisfy

(5)

∫

Ω

W (ρn+1
h ) +

ρn+1
h

2
|un+1

h |2 + γ

2
|∇ρn+1

h |2 dx

−
∫

Ω

W (ρnh) +
ρnh
2
|un

h|2 +
γ

2
|∇ρnh|2 dx = −Bh(u

n+ 1
2

h ,u
n+ 1

2

h ) ≤ 0

where Bh(u
n+ 1

2

h ,u
n+ 1

2

h ) is a coercive discretisation of
∫

Ω

∣

∣

∣∇
(un

h + un+1
h

2

)∣

∣

∣

2

dx .

Equation (5) shows nonlinear stability of the scheme as well as the fact that entropy
dissipation is isolated to viscous effects.
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Nonconservative coupling and selection criteria

Benjamin Boutin

(joint work with Frédéric Coquel, Philippe G. LeFloch)

We consider the coupling of different nonlinear hyperbolic systems across a fixed
interface, say at x = 0 considering for convenience only the one-space variable
case, see [2], with unknown u(x, t) ∈ R

d: ∂tu + ∂xf
±(u) = 0, where t > 0 and

±x > 0 respectively. An augmented nonconservative PDE system is introduced
by the authors in [1] that allows us, via Dafermos’ self-similar viscosity method
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to obtain the existence of self-similar solutions to the coupled Riemann problem,
see also [3] for a similar approach. We then analyze and investigate the internal
structure of the interfacial layer and recover selection criteria associated with the
regularization mechanism. We then conclude by given evidence that solutions can
be non-unique, even in some apparently simple situations.
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Stationary Evaporation Waves in a Spherical Symmetric Nozzle

Haitao Fan

(joint work with XiaoBiao Lin)

We study the possibility of making liquids evaporate as it flowing through a
nozzle. We start with a model for flows involving liquid/vapor phase transitions:

(1)

ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρ(uu) +P) = 0,

(λρ)t +∇ · (λρu) = w

γ
+∇ · (µρ∇λ),

Et +∇ · (uE + u ·P) = κ∆T + L(T )∇ · (µρ∇λ),

P = (p+ (
2

3
ǫ1 − ǫ2)(∇ · u))I − ǫ1(∇u+∇uT ),

pρ > 0, pλ > 0.

The major symbols in the equations are as follows The major symbols in the
equations are as follows

ρ u λ E P
density velocity mass fraction energy density stress-strain

of vapor tensor

The vapor production rate is

w

γ
=

1

γ
(p− pe)λ(λ − 1)ρ,

where γ is the typical reaction time and pe the equilibrium pressure. The constants
µ is the diffusion coefficient, κ the heat conduction coefficient, ǫ’s the viscosity,
and L(T ) is the latent heat. we shall assume that

γ = ǫ/a, µ = ǫb.
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To mimic the fuel being injected into a cylinder of a internal combustion engine
through a cone shaped nozzle, we consider the spherical symmetric version of the
isothermal case

(2)

ρt + (ρu)r +
2ρu

r
= 0,

(ρu)t + (ρu2 + p)r +
2ρu2

r
= ǫ(ur +

2u

r
)r,

(λρ)t + (λρu)r +
2λρu

r
=

1

γ
(p− pe)λ(λ− 1)ρ+ µ((ρλr)r +

2ρλr
r

).

u

2

1

r = r 

r = r 

λ=0 λ=1

r = r 0

Figure 1

To achieve a steady evaporation inside the nozzle, we look for stationary solu-
tions of (2) of the shape shown in Figure 1. Such solutions satisfy

(3)

(ρu)r +
2ρu

r
= 0,

(ρu2 + p)r +
2ρu2

r
= ǫ(ur +

2u

r
)r,

(λρu)r +
2λρu

r
=
a

ǫ
(p− pe)λ(λ − 1)ρ+ ǫb((ρλr)r +

2ρλr
r

).

In the ǫ → 0+ limit, the system has two types of such solutions, where the
internal layers at r = r0 are supersonic and subsonic respectively, as shown in
Figure 2.

The existence of internal layers at r = r0 is given by the following two theorems.
Let E± denote the states at r = r0±.

Theorem 1. Given E±, there is a subsonic evaporation internal layer solution
if (a) u2 < pρ at E± and (b) p− < pe and (c) u2 > 4ab(pe − p) on the curve
m0(u− u−) + p(λ,m0/u)− p− = 0 where the momentum m = Cr−2.

Furthermore, the solution is monontone: λ′ > 0, u′ > 0.
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Figure 2. Left: Supersonic solution. Right: Subsonic solution

Theorem 2. Given E±, there is an unique supersonic evaporation internal layer
solution if u2 > pρ and p < pe at E+ and if u2 > 4ab[pe − p(λ = 0,m0/u)] for
u+ < u < u−.

Furthermore, the solution is monotone: λ′ > 0, u′ < 0.

The solution of the depicted in the smooth region of Figure 2 exists if r0 − r1
is small enough or |u2 − pρ| at r0 is large enough.

The existence of solutions to the limiting system is then extended to the exis-
tence of similarly shaped solutions for (3). This is done using geometric theory of
singular perturbations.

Theorem 3. Assume |ab| is sufficiently small, and that r0 − r1 is small enough
or |u2 − pρ| at r0 is large enough. Then the system (3) has solutions of the shape
in Figure 1.

The details of these results are given in [1].
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Entropy-Stable Path-Conservative Numerical Schemes

Carlos Parés

(joint work with M.J.Castro, U.S. Fjordholm, and S. Mishra)

In [4] Tadmor introduced a sufficient condition for the numerical flux of a conser-
vative method to be entropy-preserving. The goal of this work is to generalize this
theory to strictly hyperbolic nonconservative systems of the form

(1) ut +A(u)ux = 0, x ∈ R, t > 0,

equipped with an entropy pair, i.e. a pair of functions (η, q), η being convex, such
that

∇q(u) = ∇η(u) ·A(u), ∀ u ∈ R
n.
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More precisely, the goal is to design semi-discrete path-conservative numerical
schemes

d

dt
ui +

1

∆x
(D+

i−1/2 +D−
i+1/2) = 0

(see [3]) that are entropy-preserving in the following sense: there exists a consistent
numerical entropy flux Qi+1/2 such that the numerical solutions also satisfy the
equation:

(2)
d

dt
η(ui) +

1

∆x
(Qi+1/2 −Qi−1/2) = 0.

An entropy-preserving scheme is not expected to be stable in presence of shocks
and thus some numerical viscosity has to be added. What we propose here is
to stabilize entropy-preserving path-conservative numerical schemes by using the
physical viscosity of the problem. The resulting methods are expected to overcome,
at least partially, the difficulty of convergence of the numerical solutions to the
physical one discussed in [2]: see [1].
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A rigorous result on the discrete–continuum limit in traffic flow

Elena Rossi

Our aim is to investigate the connection between a macroscopic, or continuum,
model and a microscopic, or discrete, model for traffic flow. In particular, we
consider the Lighthill–Whitham and Richards model and a first order Follow the
Leader model respectively: the first consists in a conservation law closed by a
speed–density relation, the second in a system of ordinary differential equations.

The connection between these two descriptions is formalized and, through ad
hoc operators, it is established a relation between the corresponding variables.
Then, the discrete model is proved to converge to the continuum one in a sort
of kinetic limit, i.e. as the number of vehicles increases to infinity while the total
mass is kept fixed, see [2]. From the modelling point of view, this result justifies
the Lighthill–Whitham and Richards model as the limit of a first order follow the
leader model as the number of vehicles tends to infinity.
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Numerical algorithms were developed to integrate both the continuum and the
discrete models. The limiting procedure suggests the use of the ordinary differ-
ential system as a tool for the numerical integration of the corresponding partial
differential equation. However, such a numerical algorithm to compute the con-
tinuum solutions hardly competes with an ad hoc method.

From the numerical point of view, the limiting result is extended to the case
of two populations, referring to the macroscopic model in [1] and to the natural
multi–population analogue of the microscopic one.
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Bifurcation and stability of liquid-vapor phase boundaries

Heinrich Freistühler

(joint work with M. Kotschote, S. Benzoni-Gavage)

After recalling results and techniques for viscous and inviscid classical shock-
waves (Evans formulation, Majda determinant) the talk reported two results:

(a) The bifurcation of small-a,plitude traviling wave phase boundaries in appropri-
ate temperature-parameterized families of Navier-Stokes Allen-Cahn systems

∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu ⊗ u+ p(ρ, c)I) = ∇ · (µ(∇u)sym + (λ∇ · u)I − δρ∇c⊗∇c)
∂t(ρc) +∇ · (ρcu) = δ−

1
2 (ρq(ρ, c) +∇ · (δρ∇c))

Ū(τ, c, |∇c|) = U(τ, c) +
1

2
δ|∇c|2

U(τ, c) = Û(τ, c) +W (c, θ).

with

Û(τ, c) = (1 − c)f

(

τ − cτ1
1− c

)

,

f ′ < 0 < f ′′ and W., θ) undergoing a transition from convex (for θ > θ∗) to
convex-concave-convex (for θ < θ∗) as an example. The justification for this

form of Û is

Û = cU1(τ1) + cU2(τ2), τ = cτ1 + (1 − c)τ2

with τ1 = const, U1(τ1) = 0, τ2 = 1−cτ1
1−c , i.e. one phase (“1”) is strictly

incompressible.
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(b) The uniform Lopatinski stability of a phase front satisfying Euler in the bulk,

∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u+ p(ρ)I) = 0

with a convex-concave-convex p̃
(

1
ρ

)

and the jump conditions

[ρV ·N ] = 0

[ρV (V ·N − s) + p(ρ)N ] = σHN

[g +
1

2
(V ·N − s)2] = 0

accross the front with mean curvature H .

Mixed Systems in the Description of Traffic Flow

Francesca Marcellini

(joint work with Rinaldo M. Colombo and Michel Rascle)

We present mixed systems in the description of dynamics of traffic flow. In par-
ticular, we consider two different frameworks, both consisting in the coupling of
systems of different types and both displaying 2 phases.

The first one is the Free–Congested model, see [9], where a scalar conservation
law is coupled with a 2 × 2 system. The result is a macroscopic model based on
a non-smooth 2 × 2 system of conservation laws and displaying 2 distinct phases:
Free and Congested. Then, we present the coupling of a micro- and a macroscopic
models, the former consisting in a system of ordinary differential equations and
the latter in a scalar conservation law, see [8].

We recall at first the classical Lighthill-Whitham [14] and Richards [16] (LWR)
traffic model

(1) ∂tρ+ ∂x (ρ V ) = 0

which is a scalar conservation law, where ρ = ρ(t, x) is the (mean) traffic density
and V = V (ρ) is the (mean) traffic speed.

Concerning the Free–Congested model, we consider the LWR model and than
we extend this model with two different assumptions on the speed V . At first,
we assume that, at a given density, different drivers may differ in their maximal
speed w, so that V = wψ(ρ), with w ∈ [w̌, ŵ] , w̌ > 0. The function ψ describes
the attitude of drivers to choose their speed depending on the traffic density at
their location and the maximal speed w is a specific feature of every single driver.
Thus we are lead to study the system:

(2)

{

∂tρ+ ∂x(ρv) = 0
∂tw + v ∂xw = 0

with v = wψ(ρ) .
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The role of the second equation above is to let the maximal velocity w be prop-
agated with the traffic speed. We identify the different behaviors of the different
drivers by means of their maximal speed, see also [4, 5].
The second assumption on the speed is the introduction of a uniform bound, a
constant Vmax that the drivers do not exceed. We obtain the following model:

(3)

{

∂tρ+ ∂x(ρv) = 0
∂tw + v ∂xw = 0

with v = min {Vmax, w ψ(ρ)} .

As a consequence of the introduction of this speed bound we have the formation of
the two distinct phases, Free and Congested. The phases are presented in Figure 1;
see [9, Section 2] for the notations.

0

ρv

ρR

F

C

0

w

ρR

F

C

Vmax

ŵ

w̌

0

η

ρR

F
C

Figure 1. The phases F and C in the coordinates (ρ, ρv), (ρ, w)
and (ρ, η).

The system in (3) is not in conservation form for the second equation, so sim-
ilarly to [2, formula (3.1)], [3, formula (2.2)], [13, formula (1)], [15], we choose to
reformulate (3) in conservation form, as follows:

(4)

{

∂tρ+ ∂x (ρ v(ρ, η)) = 0
∂tη + ∂x (η v(ρ, η)) = 0

with v(ρ, η) = min

{

Vmax,
η

ρ
ψ(ρ)

}

.

This model consists of a 2× 2 system of conservation laws with a C0,1 but not C1

flow. Note in fact that η
ρ = w ∈ [w̌, ŵ].

We study the Riemann Problem for (4), see [9, Section 2]. This model is also
compared with other models of the same type in the current literature [2, 7, 17],
as well as with a kinetic one [5].

The second traffic flow model that we present is the Micro–Macro model, see [8],
consisting of a macroscopic and a microscopic descriptions glued together. The
macroscopic part is described again through the LWR traffic model, as in (1), and
the microscopic part through a Follow–the–Leader (FtL) model, see [1].

Microscopic models for vehicular traffic consist of a finite set of ordinary differ-
ential equations, describing the motion of each vehicle in the traffic flow. Below
we consider a first order FtL model, where each driver adjusts his/her velocity to
the vehicle in front, that is

(5) ṗi = v

(

ℓ

pi+1 − pi

)

.
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Here, pi = pi(t) is the position of the i-th driver, for i = 1, . . . , n, and pi+1−pi ≥ ℓ
for all i = 1, . . . , n− 1, the fixed parameter ℓ denoting the (mean) vehicles’ length.
Here, ℓ/(pi+1 − pi) is the local traffic density seen by the driver pi. Equation (5)
needs to be closed with the trajectory of the first driver pn. Throughout, we
carefully select assumptions allowing us to prove that all speeds are bounded.

Our aim is to consider a general situation in which the two descriptions (1)
and (5) are alternatively used in different segments of the real line. A similar
approach to traffic modeling is in [12], where the interface between the micro- and
macro description is kept fixed and the model in [2, 17] plays the role here played
by the LWR one. See also [10] for the case n = 1.

Some numerical results complete the study of the model and prove the rea-
sonableness of it’s solutions: in particular they expain how the two micro- and
macroscopic descriptions coexist in a single model, although being separated.

The Free–Congested and the Micro–Macro descriptions, both consist in the
coupling of systems of different types and both display 2 phases. Moreover both
the two descriptions display ”free boundaries” models to be determined. Another
analogy is the study of phase transitions, see also [6, 7, 9, 11]. In the Free–
Congested model a vehicle can enter in or exit from one of the two distinct phases,
depending on the traffic conditions. This does not occur in the Micro-Macro
model: there is a backward propagating exchange of information between the
different phases, although there is no exchange of mass.
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Entropy-stable discontinuous Galerkin finite element method with
streamline diffusion and shock-capturing

Andreas Hiltebrand

(joint work with Siddhartha Mishra)

We propose and analyse entropy-stable discontinuous Galerkin finite element meth-
ods for hyperbolic systems of conservation laws in several space dimensions. To
ensure entropy stability the discretisation is done in entropy variables and entropy-
stable numerical fluxes are used. This leads to a formally arbitrarily high order
accurate scheme. As we are interested in problems with shocks, a streamline dif-
fusion and a shock-capturing term (compare [2, 3]) are added to control spurious
oscillations at shocks. The resulting approximate solutions converge (under the
assumption of a uniform L∞ bound) to an entropy measure valued solution [1].
Various numerical experiments are shown to demonstrate the robustness and high
resolution property of the scheme.
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Numerical schemes that converge to entropy measure valued solutions
of systems of conservation laws

Siddhartha Mishra

Many interesting problems in physics and engineering are modeled using sys-
tems of hyperbolic conservation laws:

(1) ∂tu+∇ · f(u) = 0.

Here, u : Rn × R+ 7→ R
m is the vector of unknowns and f : Rm 7→ R

m is the
flux vector. The system has to be augmented with suitable initial and boundary
conditions.

It is well known that solutions to (1), even for smooth initial data, do develop
discontinuities in the form of shock waves in finite time. Hence, weak solutions of
(1) are sought by interpreting the equation in the sense of distributions. Additional
admissibility criteria or entropy conditions are imposed to ensure uniqueness of
weak solutions.

Although entropy solutions have been accepted as the standard mathematical
framework for solutions of systems of conservation laws, wellposedness results are
only available in the scalar case and for systems in one space dimension and with
small initial data. As of writing, there are no generic wellposedness results for
systems of conservation laws in several space dimensions.

Numerical schemes to approximate entropy solutions of (1) have undergone ex-
tensive development over the last three decades or so. Finite volume and finite
difference schemes based on (approximate) Riemann solvers, non oscillatory recon-
struction procedures such as TVD, ENO, WENO and strongly stability preserving
(SSP) Runge kutta time stepping methods, are very popular. Similarly, discontin-
uous Galerkin finite element methods and spectral viscosity have also been widely
used.

Again, rigorous convergence results for numerical schemes approximating sys-
tems of conservation laws are only available for scalar problems (and only for first
and second order schemes). No rigorous convergence results are currently available
for system of conservation laws, particularly in several space dimensions.

The issues of wellposedness for the continuous problem and convergence of nu-
merical approximations is intimately linked as numerical stability can be derived
only if the solutions of the PDE have appropriate stability properties. Further-
more, the convergence of numerical approximations provides a constructive proof
of existence for the underlying solutions of the PDE in question.

Given the lack of wellposedness results for multi-dimensional systems of con-
servation laws as well as the lack of rigorous convergence results for numerical
approximations, it is natural to question whether entropy solutions of systems of
conservation laws are well posed ? The question is investigated in a forthcoming
paper [1].

Extensive numerical experiments in [1] show that many standard numerical
schemes may not converge to any underlying function as the mesh is refined. Mesh
refinement yields structures at finer and finer scale and strongly suggests that the
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underlying entropy solutions are very unstable. Furthermore, a close examination
of ensembles of solutions hint at a different, (more wider) notion of solutions might
be appropriate in this context.

This more general concept of solutions is identified as entropy measure valued
solutions i.e, the solutions of (1) are no longer functions, but rather space-time
parametrized probability measures or young measures. In order words, the system
of conservation laws (1) is interpreted as a measure valued cauchy problem:

(2)
∂t〈ν, id〉+∇ · 〈ν, f〉 = 0

ν(x,0) = σx,

where σ ∈ Y(Rn,Rm) is the initial measure-valued data and ν ∈ Y(Rn×R+,R
m)

is the sought after measure valued solution. Here Y(A,B) is the set of young
measures mapping A to B. The above measure valued problem is augmented with
entropy conditions to define entropy measure valued solutions.

The appropriate notion of solutions is defined in [1]. In particular, the sense
in which the initial data is enforced is specified. The rest of [1] is focussed on
showing existence of entropy measure valued solutions to a generic system of con-
servation laws by proving convergence of numerical approximations to them. A set
of abstract stability criteria are proposed that amount to requiring that the ap-
proximate solutions (generated by the numerical scheme) are uniformly bounded
in L∞, satisfy a weak BV estimate and an entropy inequality. Given these as-
sumptions, the authors of [1] prove that the corresponding approximate solutions
generate a sequence of young measures that converges (sub sequentially) narrowly
to a entropy measure valued solution of (2).

Two sets of numerical schemes that satisfy the above criteria are arbitrarily
high-order TeCNO finite difference schemes of [2] and the space-time discontinuous
Galerkin schemes of [3]. Thus, these schemes are rigorously shown to converge to
entropy measure valued solutions of a generic system of conservation laws in several
space dimensions. This result should be contrasted with the failure to obtain a
rigorous convergence result for entropy solutions over the last three decades.

The rest of [1] examines different aspect of entropy measure valued solutions.
Suitable notion of stability are defined and explored using the convergent numer-
ical methods. In particular, strong stability i.e, if the initial measure valued data
converging (narrowly) to a atomic measure implies that entropy measure valued
solutions converge to a atomic measure, is precisely the classical notion of entropy
solutions. Numerical experiments indicate that many interesting systems of con-
servation laws, particularly the Euler equations of gas dynamics, are not strongly
stable. However, they also reveal that the solutions might be stable in more general
metrics.
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Sharp interface limit of a diffuse interface model of
Navier-Stokes-Allen-Cahn type for mixtures

Christiane Kraus

The mathematical main approaches to describe interfacial dynamics are diffuse
interface (DI) models and sharp interface (SI) models. In this contribution, we
consider the connection between these two kinds of models for the flow of com-
pressible mixtures. We study the sharp interface limit of the following diffuse
interface model for mixtures which is of Navier-Stokes-Allen-Cahn type:

∂tρ+ div(ρv) = 0,

∂tρα + div(ραv) =

N−1
∑

β=1

Mαβ△µβ , α = 1, . . . , N − 1,

∂t(ρv) + div(ρv ⊗ v) +∇
(

N−1
∑

α=1

ραµα + ρµρ −Ψ(ρ, ρα)

)

− 1

ε
∇W (ϕ)

= div(σNS(∇v)) − ε div
(

∇ϕ⊗∇ϕ− |∇ϕ|2I
)

,

ρ∂tϕ+ ρv · ∇ϕ = −µϕ, µϕ =
1

ε
W ′(ϕ)− ε∆ϕ,

where σNS is the classical Navier-Stokes stress tensor, µρ = ∂Ψ
∂ρ , µα = ∂Ψ

∂ρα
− ∂Ψ

∂ρ ,

α = 1, . . . , N − 1, and Ψ is the free energy given by

Ψ(ρ, ρα) = h(χ)ψ1(ρ, ρα) + (1− h(χ))ψ2(ρ, ρα).

Boundary conditions (BC)DI:

v = 0, ∇ϕ · ν = 0, ∇µα · ν = 0, α = 1, . . . , N − 1, on ∂Ω× (0, T ).

Initial conditions (IC)DI:

v(0) = v0∈H1
0 (Ω;R

n), ρ(0) = ρ0∈L4(Ω), ρα(0) = ρ0α∈L4(Ω), ϕ(0) = ϕ0∈L4(Ω)

with 0 < d < ρ0 for some constant d, 0 ≤ ρ0α, α = 1, . . . , N−1, and
∑N−1

α=1 ρ
0
α ≤ ρ0.

In the sharp interface limit ε → 0, we can show rigorously that under suitable
assumptions on Ω, W , h, ψ1 and ψ2 weak solutions of the DI-model converge to
weak solutions of the following SI-model, where Ω−(t) := {x ∈ Ω : ϕ(x, t) = −1},
Ω+(t) := {x ∈ Ω : ϕ(x, t) = +1} and Γ(t) := ∂Ω−(t) ∩ Ω(t), t ∈ (0, T ).
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In Ω±(t), t ∈ (0, T ):

∂tρ+ div(ρv) = 0,

∂tρα + div(ραv) =

N−1
∑

β=1

Mαβ△µβ , α = 1, . . . , N − 1,

∂t(ρv) + div(ρv ⊗ v) +∇
(

N−1
∑

α=1

ραµα + ρµρ −Ψ(ρ, ρα)

)

= div(σNS(∇v)),

µϕ = 0

On Γ(t), t ∈ (0, T ):

[[v]] = 0, v+·ν = v−·ν = wν , wν : normal velocity of Γ,

[[µα]] = 0, α = 1, . . . , N − 1,

[[ρα(v · ν − wν)]] = [[∇µα · ν]] , α = 1, . . . , N − 1,
[[

N−1∑

α=1

ραµα + ρµρ −Ψ(ρ, ρα)

]]

=
1

2
σκ, σ =

∫ +1

−1

√

2W (s) ds,

[[µϕ]] = 0

Boundary conditions (BC)SI:
v = 0, ∇µα · ν = 0, α = 1, . . . , N − 1, on ∂Ω× (0, T ).

Initial conditions (IC)SI:

v(0) = v0 ∈ H1
0 (Ω;R

n), ρ(0) = ρ0 ∈ L4(Ω), ρα(0) = ρ0α ∈ L4(Ω)

with 0 < d < ρ0 for some constant d, 0 ≤ ρ0α, α = 1, . . . , N−1, and
∑N−1

α=1 ρ
0
α ≤ ρ0;

Ω−(0) = Ω0,− with ∂Ω0,− ∩ ∂Ω = ∅, Ω0,− ⊂ Ω and
∫

Ω |∇χΩ0,− | <∞, where χΩ0,−

is the characteristic function of Ω0,−.

For the notion of weak solutions of the sharp interface model we use the varifold
concept of weak solutions introduced by Chen 96.

Definition 1. (Weak solutions of the sharp interface model)
A tuple (v, ρ, ρα,Ω

−, V ), α = 1, . . . , N−1, is called a weak solution of the SI-model
with (BC)SI and (IC)SI if the following properties are satisfied:

(i) Space and set properties:
v ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

ρ, ρα ∈ L∞(0, T ;L4(Ω)), α = 1, . . . , N − 1,
0 < d1 ≤ ρ and ‖ρ‖L∞(0,T ;L4(Ω)) < d2 for some constants 0 < d1, d2,

0 ≤ ρα,
∑N−1

α=1 ρα ≤ ρ,

Ω−
T := ∪0≤t<TΩ

−(t) ∪ {t} is a measurable subset of Ω × [0, T ) and
χΩ−

T
∈ L∞(0, T ;BV (Ω)).
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(ii) Varifold: V is a Radon measure on Ω × G × (0, T ), G := Sn−1/{ν,−ν},
such that for a.e. t ∈ (0,∞)

V = V t dt,

where V t is a Radon measure on Ω×G, called varifold.

In particular, for a.e. t ∈ (0, T ) and for all ζ ∈ C(Ω×G):
∫

Ω×G

ζ(x,p) dV t(x,p) =

n
∑

k=1

∫

Ω

htk(x)ζ
(

x,pt
k(x)

)

dλt(x),

where λt is a Radon measure on Ω such that 2σ|∇χΩ−(t)|(Ω) < λt(Ω) and

htk,p
t
k are λt-measurable R- and G-valued functions with

0 ≤ htk ≤ 1,

n
∑

k=1

htk ≥ 1,

n
∑

k=1

pt
k ⊗ pt

k = I, λt − a.e. .

The first variation is given by

〈δV t, ζ〉 =
∫

Ω×G(I − p× p) : ∇ζdV (x,p) for all ζ ∈ C∞(Ω,Rn).

(iii) Mass balances: For all ζ ∈ C∞
c ([0, T )× Ω)

∫

ΩT

(

ρ∂tζ + ρv · ∇ζ
)

dxdt = −
∫

Ω

ρ0ζ(0, ·) dx,
∫

ΩT

(

ρα∂tζ + ραv · ∇ζ −
N−1
∑

β=1

Mαβ∇µβ · ∇ζ
)

dxdt = −
∫

Ω

ρ0αζ(0, ·) dx,

where µα ∈ L2(0, T ;H1(Ω)), α = 1, . . . , N − 1.

(iv) Momentum balance: For all ζ ∈ C∞
c ([0, T )× Ω;Rn):

∫

ΩT

(

ρv · ∂tζ + ρv ⊗ v : ∇ζ +
(N−1
∑

α=1

ραµα + ρµρ −Ψ(ρ, ρα)

)

∇ · ζ
)

dxdt

−
∫

ΩT

σNS(∇v) : ∇ζ dxdt−
∫ T

0

〈δV t, ζ〉dt = −
∫

Ω

ρ0v0 · ζ(0, ·) dx

(v) Reduced Allen-Cahn type law: For all ζ ∈ C∞
c ([0, T )× Ω)

−2

∫

Ω−

(

ρ∂tζ + ρv · ∇ζ
)

dxdt =

∫

ΩT

µϕζ dxdt+ 2

∫

Ω0,−

ρ0ζ(0, ·) dx,

where µϕ ∈ L2(0, T ;L2(Ω)).

(vi) Energy estimate: For a.e. 0 < s ≤ t < T

λt(Ω)+

∫

Ω

(

Ψ(ρ(t), ρα(t)) +
ρ(t)

2
|v(t)|2

)

dx+

∫

ΩT

(

|∇v|2 +
N−1
∑

α=1

|∇µα|2

+ |µϕ|2
)

dxdτ ≤ λs(Ω) +

∫

Ω

(

Ψ(ρ(s), ρα(s)) +
ρ(s)

2
|v(s)|2

)

dx
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Theorem (K. 13) Convergence and Existence of weak solutions

For all ε ∈ (0, 1], let (v0
ε , ρ

0
ε, ρ

0
α,ε, ϕ

0
ε) ∈ H1

0 (Ω;R
N )×L4(Ω)× (L4(Ω))N−1×H1(Ω)

be given with
∫

Ω
ρ0ε dx = m. Furthermore, let

ED,ε(ϕ
0
ε, ρ

0
ε, ρ

0
α,ε) +

∫

Ω

ρ0ε
|v0|2
2

dx ≤ C, C > 0 constant,

and (vε, ρε, ρα,ε, ϕε) be a weak solution of the DI-model. Then there exists a
sequence {εk}k∈N such that weak solutions (vεk , ρεk , ρα,εk , ϕεk) of the DI-model
converge to a weak solution (v, ρ, ρα,Ω

−, V ) of the SI-model as k → ∞.

On the Cauchy problem for the Hunter–Saxton equation

Anders Nordli

The Hunter–Saxton equation given by

(1) (ut + uux)x =
1

2
u2x,

was proposed by Hunter and Saxton as an asymptotic model of a one dimen-
sional nematic liquid crystal [3]. In this talk we consider the Cauchy problem of a
generalization of (1) on the real line,

(ut + uux)x =
1

2
u2x +

1

2
ρ2,(2a)

ρt + (uρ)x = 0.(2b)

We show the existence of a Lipschitz continuous semigroup of conservative solu-
tions. This is done by mapping the problem to Lagrangian coordinates, solve it
and construct a metric, and then map the solution back to Eulerian coordinates.
The transformations between Eulerian and Lagrangian coordinates can be found
in [2]. A similar result for (1) was obtained in [1].
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On a simplified fluid dynamic description of some (exotic) renewable
power plants

Ingenuin Gasser

(joint work with Maria Bauer, Elisabetta Felaco)

In this talk we focus on a certain class of gas dynamics applications, which have
the following common features

• The main features of the flows are one dimensional or the application is
accessible by a one dimensional model.

• The flows are characterised by a low Mach number, i.e. the ratio between
a typical fluid velocity and the speed of sound is small.

• The temperature variations in the flows cannot be negleted. In some
examples the buoyancy force is the main driving force.

• A complete treatment of the application requires optimistion with respect
to certain data or parameters.

Let us mention a few examples which fullfill the above mentioned examples:

• chimneys [FG]
• solar updraft towers [SS, G]
• energy towers [Z, BG]
• gas pipelines [BGH]
• receivers in parabolic trough power station
• exhaust tubes [GR]
• road and railway tunnel fires [GS1, G1].

The underlying equations are obtained by balancing mass, momentum and en-
ergy using the 1d Euler equations of gas dynamics (for variable cross section)
with source terms. The various examples differ mainly in the source terms in the
momentum and in the energy balance. Typically viscosity and diffuison can be
neglected. In some cases – like in the case of an Energy Tower – we have a gas
mixture.

After an appropriate scaling small parameters can be identified. Important
parameters are the Mach number and the Froude number. Here the Mach number
is everywhere small and remains always small. Typically this requires increased
numerical effort when solving the fully compressible equations. The reason for
that is that one resolves all the acustics even though it is not important for the
above mentioned applications.

We use the smallness of the Mach number to perform an asymptotics and to
further simplify the models. In combination with a possible small Froude number
various asymptotic regimes are possible: small Mach number, Boussinesq, qua-
sistatic approximations etc. We analyse the resulting asymptotic equations. Fi-
nally we perform numerical simulations. The asymptotic models result to recover
the main features of the flows and to be numerically reasonalbe and robust.
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In fact, one aim is to obtain simple models which allow fast robust numeri-
cal simulation tools. This is important and necessary when applying control or
optimisation procedures or when considering applications on networks.

In the talk we focus on three applications: the chimney, the Solar Updraft
Tower and the Energy tower. For all we show the modelling approach, numerical
simulations, some optimisation with respect to parameters.

For the Solar Updraft Tower there are data from a prototype available [SS] and
therefore we can validate our model. We obtain not only very good qualitative
agreement but also surprisingly good quantitative agreement [G].

In case of the Energy Tower the model is used to confirm that such a power
plant could produce a positive net power output [BG]. In addition we can estimate
the net power as a function of temperature and relative humidity. Finally we can
show - as predicted - that there is an optimal spray rate.
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Multivalued equations motivated by granular flow model

Agnieszka Świerczewska-Gwiazda

(joint work with Piotr Gwiazda)

We study the system describing flow of granular avalanches. The derivation of
considered continuum flow models essentially bases on the fact that the character-
istic length in the flowing direction is in general much larger than the thickness of
an avalanche.

Such an approach resulted in depth-averaged equation governed by general-
ized system of shallow water equations (Saint-Venant equations). The evolution
of granular avalanches along an inclined slope is described by the mass and mo-
mentum conservation laws. Among the variety of models capturing the dynamics
of granular flow, the Savage-Hutter model, cf. [8], is one of the most commonly
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used frameworks. The model covers the process of fast moving avalanche, where
the contribution of kinetic energy is significant. The equations are obtained as a
multi-scale limit of the three-dimensional free surface incompressible Navier-Stokes
equations through depth-averaging process. Originally the model was proposed in
one-dimension setting and later extended to two-dimensional topography in [1].

The system proposed by Savage and Hutter, cf. [8] consists of conservation
laws (conservation of mass and balance of momentum) describing the motion of a
one-dimensional avalanche flow down a smoothly varying slope (hard surface)

∂

∂t
h+

∂

∂x
(hv) = 0

∂

∂t
(hv) +

∂

∂x

(

hv2 +
1

2
βh2

)

= hg,
(1)

where the dependent variables are the height h : R+ × R → R, and the velocity
v : R+×R → R. The height h is the thickness of the layer measured perpendicular
to the given surface, and v is the mean velocity obtained by averaging over the
thickness of the layer.

The coefficient β defines the geometry of the hard surface. We assume β =
cosγ(x) where γ(x) is the angle between down normal vector of the surface and
the gravitation vector. The right-hand side results from gravitation and friction,
i.e. internal friction (viscosity) and friction between granular layer and the given
surface, in particular g(v) := sin γ − sgn (v) cos γ with the following definition of
the function signum

sgn (v) :=

{

v/|v| for v 6= 0
0 for v = 0

Such defined function g is discontinuous what provides mathematical difficul-
ties. However, the crucial problem appears in physical description. Considering
static and flat problem (v = γ(x) = 0) one obtains that the only solutions to such
problem are constant solutions, what absolutely does not coincide with experi-
ments conducted on granular materials. To include this observation the function
g is extended to a multifunction as follows

g̃(v) =

{

sin(γ) + [−cos(γ),+cos(γ)] for v = 0,
sin(γ)− v

|v| cos(γ) for v 6= 0

and the second equation chagnes to the inclusion, namely

(2)
∂

∂t
(hv) +

∂

∂x

(

hv2 +
1

2
βh2

)

∈ hg̃.

For simplicity the dependence of g̃ and β on x will be ignored, what does not
influence the problem. The constant β is defined by β = k cos(γ), where −π

2 <
γ < π

2 is an angle between gravitational force and a constant slope ground and k
is a positive constant.

We shall now in more detail discuss the concept of working with the system
containing a differential inclusion (2). With some nonlinear transformations of
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this system (and introducing the variables u = (u1, u2) = (h, hv)) we obtain

(3)
∂

∂t
u+

∂

∂x
F (u) ∈ G̃(u),

where

(4) F (u) =





u1u2
u22
u1

+
u21
2



 and G̃(u) =

(

0
g̃(u2)

)

.

The proper class of solutions for the above system is the class of entropy weak
solutions.

Definition 1. We call u ∈ L∞([0, T )×R;R+×R) a weak entropy solution to the
system

∂

∂t
u+

∂

∂t
F (u) = G(t, x)

with the initial data u0 ∈ L∞(R;R+ × R) and source G ∈ L∞([0, T )× R;R2) iff

1. u is a weak solution, i.e. for all test functions ψ ∈ C1
c ([0, T )× R;R2) it holds

∫

[0,T )×R

[

u(t, x) · ∂
∂t
ψ(t, x) + F (u(t, x)) · ∂

∂x
ψ(t, x)

+G(t, x) · ψ(t, x)] dtdx +

∫

R

u0(x) · ψ(0, x)dx = 0

2. The entropy inequality
∫

[0,T )×R

[η(u(t, x))
∂

∂t
φ(t, x) + q(u(t, x))

∂

∂x
φ(t, x)

+∇uη(u(t, x)) ·G(t, x)φ(t, x)] dtdx +

∫

R

η(u0(x))φ(0, x)dx ≥ 0

holds for all nonnegative test functions φ ∈ C1
c ([0, T ) × R;R) and all convex

entropy-entropy flux pairs (η, q).

The above definition is standard in the theory of conservation laws. However
it cannot be used for system (3) because of the multifunction in a source term.
Therefore we need the following extension.

Definition 2. We call u ∈ L∞([0, T )×R;R+×R) a weak entropy solution to the
system (3) with the initial data u0 ∈ L∞(R;R+ × R) iff

1. ∃G(t, x) ∈ G̃(u(t, x)) for a.a. (t, x) ∈ [0, T )× R.

2. u is an entropy weak solution according to Definition 1 to a system

∂

∂t
u+

∂

∂x
F (u) = G(t, x).
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Among various analytical results on this topic (cf. [2, 3, 4, 5]), we concentrated
on L1-stability of the Cauchy problem for 2× 2 system coming out from the the-
ory of granular media, namely the system of two independent inclusions coupled
only by a right-hand side. The investigations are done in a class of weak entropy
solutions. For solution u ∈ L∞([0, T )×R;R+×R) in the sense of Definition 2 the
result of uniqueness for the Cauchy problem cannot be obtained because of the
possible occurrence of initial layer to such a solution.
Then it is natural to ask about possible class of solutions (and initial data) for
the Cauchy problem in which we have global in time existence and uniqueness
together. These are weak entropy solutions (in sense of Definition 2) with addi-
tional condition on the time regularity C0([0, T );L1

loc(R)). Note that this is the
typical time regularity for the uniqueness results for the scalar conservation law
(cf. [6, 7],).
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Travelling waves and kinetic relations

Nabil Bedjaoui

We present some properties of the kinetic relations generated by traveling wave
solutions of perturbed conservation laws.

We consider first the case of scalar conservation laws with concave-convex flux
which are supplemented with nonlinear, possibly singular, diffusive and dispersive
terms. The model takes the following form:

∂tu+ ∂xf(u) = βp+1
(

b(u, βux) |ux|pux
)

x
+ δ

(

c1(u) (c2(u)ux)x
)

x
.

The case p = 0, i.e, regular and linear diffusion, was treated in [1]. We generalize
these results in [2], for the case of singular diffusion (p > 0). The behavior of the
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kinetic function near the origin is carefully investigated. We discover that p = 1/3
and p = 1/2 are somewhat unexpected critical values.

In the second part, we present a system of two conservation laws arising in
elastodynamics and fluid dynamics in the case of concave-convex flux, with linear
viscosity and capillarity terms, i.e, of the form:

∂tv − ∂xu = 0,

∂tu+ ∂xσ(v) = β ∂x(b(v) ∂xu)− δ∂x(a(v)∂x(a(v)∂xv)).

The kinetic relation obtained in the hyperbolic-elliptic case, for the 2− Shock
wave is uniquely defined, but fails to be monotone near the Maxwell-line. This
means that the kinetic relation for the 1 − Shock wave is multivaluated in this
region (see [3]).
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Homogenization of Degenerate Porous Medium Type Equations in
Ergodic Algebras

Hermano Frid

(joint work with Jean Silva)

In this paper we consider the homogenization of a porous medium type equation
of the general form

(1) ut = ∆f(x,
x

ε
, u),

with (x, y, t) ∈ Ω × R
n × (0,∞), and Ω ⊂ R

n is a, bounded or unbounded, open
set . Here f is a continuous function of (x, y, u) and f(x, y, ·) is locally Lipschitz
continuous, uniformly in (x, y), and may be of two different types:

• In the type 1 case, f(x, y, ·) is a general strictly increasing function; this
is a mildly degenerate case.

• In the type 2 case, f(x, y, u) has the form h(x, y)F (u) + S(x, y), where
F (u) is just a nondecreasing function, which is not strictly increasing; this
is a strongly degenerate case. Let us denote by G the strictly increasing
right-continuous function such that F (G(v)) = v, for all v ∈ R.
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We consider the initial-boundary value problem where we prescribe an initial
condition of the form

(2) u(x, 0) = u0(x,
x

ε
),

and a boundary condition of the form

(3) f(x,
x

ε
, u(x, t)) | ∂Ω× (0,∞) = 0.

Our analysis applies equally well to a more general, non-homogeneous, boundary
condition of the form

f(x,
x

ε
, u(x, t)) | ∂Ω× (0,∞) = β(x),

for a function β ∈ C(Ω̄) ∩ H1
loc(Ω̄), where C(Ω̄) denotes the space of bounded

continuous functions on Ω̄, and H1
loc(Ω̄) denotes the space of functions defined

on Ω̄, which multiplied by any function in C∞
c (Rn) gives a function in the usual

Sobolev (Hilbert) space of first order H1(Ω̄). We address the homogeneous case
(3) just for convenience.

For fixed (x, u) ∈ Ω×R, we will assume that f(x, ·, u) ∈ A(Rn), where A(Rn) is
a general ergodic algebra, which means an algebra with mean value that is ergodic.
An algebra with mean value (algebra w.m.v., for short) is an algebra of bounded
uniformly continuous functions on R

n, invariant by translations, each member of
which possesses a mean value. It is said to be ergodic, roughly speaking, if, for
any function ϕ ∈ A, the averages of the translates ϕ(· + y), in balls of radius
R > 0, converge as R → ∞, in the norm of the mean value of the square of the
absolute value, to the mean value ϕ̄ of ϕ. The most elementary example of an
ergodic algebra is the space of continuous functions in R

n, which are periodic in
each coordinate ϕ(x + τiei), i = 1, · · · , n, for certain constants τi ∈ R, where ei
are the elements of the canonical basis of Rn. Another well known example is the
space of almost periodic functions which may be defined as the closure in the sup
norm of the space spanned by the set {eiλ·x : λ ∈ R

n}, in the complex case, or the
real parts of the functions in such space, in the real case (cf. [5, 4]). Many other
examples are known such as the space of Fourier-Stieltjes transforms, the weakly
almost periodic functions, etc.; we will comment a bit on such examples in Section 2
of [14], below. We recall that the theory of algebras w.m.v. and ergodic algebras
was first developed by Zhikov and Krivenko in [19] (see also [15]). Concerning the
initial data in (2), we will, in general, assume that u0 ∈ L∞(Ω;A(Rn)).

We present two main results (see Theorems 6.1 and 7.1 in [14]) concerning the
homogenization of the initial-boundary value problem (1), (2),(3).

Our first main result applies to an unbounded domain Ω and a general ergodic
algebra A(Rn), but we have to restrict ourselves to initial data that are “well-
prepared”, that is, of the form

u0(x, y) = g(x, y, φ0(x)),

for some φ0 ∈ L∞(Ω), where, for all (x, y) ∈ Ω × (0,∞), g(x, y, ·) is the strictly
increasing right-continuous function satisfying f(x, y, g(x, y, v)) = v, for all v ∈ R.
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Our second main result applies to a general initial data u0 ∈ L∞(Ω;A(Rn)),
but we have to compromise restricting ourselves to a bounded domain Ω and to
an ergodic algebra A(Rn) which is a regular algebra w.m.v., examples of the latter
being provided by the periodic, almost periodic, and Fourier-Stieltjes transform
functions, the precise definition is found in [14].

Both main results establish, under the mentioned assumptions, the weak star
convergence in L∞(Ω × (0,∞)) of the entropy solutions uε(x, t) of (1),(2),(3) to
the entropy solution ū(x, t) of the problem

(4)

ut = ∆f̄(x, u),

u(x, 0) = ū0(x),

f̄(x, u(x, t)) | ∂Ω× (0,∞) = 0,

where

ū0(x) =

∫

Rn

u0(x, y) dy,

and f̄(x, u) is defined by f̄(x, ḡ(x, v)) = v, with

(5) ḡ(x, v) :=

∫

Rn

g(x, y, v) dy.

In the case where f is of type 2, ḡ(x, ·), defined by (5), may, in general, be dis-
continuous, which is a bad situation for defining precisely f̄(x, ·), only from the
knowledge of ḡ. In order to avoid such indetermination, we impose the additional
assumption, concerning the functions h(x, y) and S(x, y) appearing in the defini-
tion of a pressure function of type 2:

(6) m ({z ∈ K : αh(x, z) + S(x, z) = v}) = 0,

for all (x, v) ∈ Ω × R, with α belonging to the discontinuity set of G, where
K is the compact space associated with the algebra w.m.v. A(Rn) and m is the
corresponding probability measure in K (cf., [3]). Under the assumption (6) the
function ḡ(x, ·), defined in (5), turns out to be continuous and strictly increasing,
and so is its inverse f̄(x, ·), which means that the limit problem (4) has, in any
case, a pressure function of type 1. This has the additional advantage of making
much easier to check the uniqueness of the solution of the limit problem, since, for
pressure functions of type 1, the notions of entropy and weak solutions coincide
(see details in [14]).

Moreover, both of our main theorems also give the existence of correctors, that
is, both theorems assert that

(7) uε(x, t)− g(x,
x

ε
, f̄(ū(x, t))) → 0, as ε→ 0 in L1

loc(Ω× (0,∞)).

Again, to obtain (7) in the case where f is of type 2, we make essencial use of
(6), which makes a study of sufficient conditions to guarantee this null measure
property of great interest, and we obtain such conditions. For details see [14].
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Strong Solutions to the Navier-Stokes Allen-Cahn equations

Matthias Kotschote

In this talk we study two problems which are connected. First, I introduce a
system of balance laws for two-phase mixtures of fluids undergoing phase tran-
sitions. In this model the interfaces between the phases are assumed to be of
“diffuse” nature, that is, sharp interfaces are replaced by narrow transition lay-
ers. These regions as well as the two species are located by a phase field variable
χ governed by the Allen-Cahn equation (AC), while the dynamics are described
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by the Navier-Stokes equations (NS). The model was proposed by Blesgen [1],
but recently I found out that Truskinowski [4] first developed this thermodynam-
ically and mechanically consistent set of partial differential equations extending
the Navier-Stokes equations to a compressible binary Allen-Cahn mixture.
The two-component (binary) viscous compressible fluid is characterised by its to-
tal density (of the mixture) ρ : J × Ω → R+, velocity field u : J × Ω → R

n,
temperature θ : J × Ω → R+ and phase field χ : J × Ω → [0, 1]; the unknown
functions ρ, u, θ and χ are governed by the so-called Navier-Stokes-Allen-Cahn
(NSAC) system
(1)

∂tρ+∇ · (ρu) = 0, (t, x) ∈ J × Ω,

∂t(ρu) +∇ · (ρu⊗ u)−∇ · (S + P) = ρfext, (t, x) ∈ J × Ω,

∂t(ρe) +∇ · (ρeu)−∇ · (α∇θ) −∇ · [(S + P) · u] = ρfext · u, (t, x) ∈ J × Ω,

∂t(ρχ) +∇ · (ρχu)− τ−1∇ · (ρδ∇χ) = h, (t, x) ∈ J × Ω,

with

(2)

S = 2µD(u) + λ∇ · uI, P = −ρ2∂ρψ − θρδ∇χ⊗∇χ,

ψ = ψ(θ, ρ, χ) + θ(W(θ, χ) +
δ

2
|∇χ|2), e = e +

1

2
|u|2,

e = ψ − θ∂θψ = ψ + θ∂θψ − θ2∂θW ,

h = −τ−1θ−1∂χ(ρψ) = −τ−1ρ(W ′(θ, χ) +
1

θ
∂χψ).

Here, the Helmholtz energy density ψ consists of two parts, namely ψ and the
so-called mixing energy

θ(W(θ, χ) +
δ

2
|∇χ|2)

which does not contribute to the internal energy e, since by using the Legendre
transformation we obtain

e = ψ − θ∂θψ = ψ − θ∂θψ − θ2∂θW .

Finally, these equations have to be complemented by initial conditions. One main
interest was to handle non-constant coefficients. In fact, we are able to allow
viscosity coefficients fulfilling the assumptions

(3) µ(θ, ρ, χ) > 0, 2µ(θ, ρ, χ) + λ(θ, ρ, χ) > 0, θ > 0, ρ > 0, χ ∈ [0, 1]

plus some regularity assumptions. Note that from the physical point of view it is
more reasonable to consider viscosities depending on χ to model different viscosi-
ties for different phases.
Under some physically reasonable assumptions on coefficients and Helmholtz en-
ergy density the following well-posedness result is available (see [2]).

Theorem 1. Let Ω be a bounded domain in R
n, n ≥ 1, with compact C2-boundary

Γ decomposing disjointly as Γ = Γd ∪̇Γs, J0 = [0, T0] with T0 ∈ (0,∞) and p ∈
(n+ 2,∞). Further, assuming certain positive and regularity assumptions on the
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coefficients and the Helmholtz energy density and fext ∈ Lp(J0; Lp(Ω;R
n)). Then

for each initial data (ρ0, w0) = (ρ0, u0, θ0, χ0) in

V := {(ρ, u, θ, χ) ∈ H1
p(Ω)×W2−2/p

p (Ω;Rn)×W2−2/p
p (Ω)×W2−2/p

p (Ω) :

(u(y)|ν(y) ≥ 0, ∀y ∈ Γ, ρ(x) > 0, θ(x) > 0, χ(x) ∈ [0, 1], ∀x ∈ Ω}
and boundary data with enough regularity, there is a unique solution (ρ, w) on a
maximal time interval, which is J∗ = [0, T ∗), T ∗ := T ∗(ρ0, w0) ∈ (0, T0] if the
solution is not global. The solution (ρ, w) belongs to the class Z1(J)× Z2(J),

Z1(J) := H2
p(J ; H

−1
p (Ω)) ∩C1(J ; Lp(Ω)) ∩ C(J ; H1

p(Ω)); H−1
p := (H̊1

p(Ω))
′,

Z2(J) := Z1(J)× Z2(J)× Z3(J),

Z1(J) := Z(J ;Rn), Z2(J) := Z(J ;R), Z3(J) := Z(J ;R),

Z(J ;E) := H1
p(J ; Lp(Ω;E)) ∩ Lp(J ; H

2
p(Ω;E)), E ∈ {Rn,R}, p ∈ (1,∞),

for each interval J = [0, T ], T < T ∗ , or to the class Z1(J0)×Z2(J0) if the solution
exists globally. The maximal time T ∗ is characterised by the property:

(4) lim
t→T∗

(ρ, w)(t) does not exist in V .

Moreover, χ stays in (0, 1) and, if additionally ∂χψ(χ, ρ, 0) = 0, the temperature θ
is nonnegative. The solution map (ρ0, w0) → (ρ, w)(t) generates a local semiflow
on the phase space in the autonomous case.

The second part of the talk is devoted to a stability result for the compress-
ible Navier-Stokes equations. This problem is connected to the before-mentioned
NSAC system by the following problem. Investigating the NSAC system regarding
stability of non-constant steady states, e.g. due to considering large non-constant
external forces, in the Lp framework, one immediately meets a regularity problem
inherent in the linearization of the equation of conservation of mass. Therefore,
to be able to handle the compressible Navier-Stokes equation regarding stability
is a first step for considering the NSAC system regarding the stability issue, since
the same problem arises due to the equation of conservation of mass being part of
NSAC as well.
A global existence and uniqueness is presented for the non-isothermal compress-
ible Navier-Stokes equations in bounded domains, where the initial data have to
be near equilibria. Moreover, exponential stability of equilibria in the phase space
is present and, above all, the approach in Eulerian coordinates is possible (see [3]).
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A New Quadratic Potential for Scalar Conservation Laws

Stefano Modena

(joint work with Stefano Bianchini)

We construct a new quadratic interaction potential Q for the Cauchy problem
associated to a scalar conservation law ut+ f(u)x = 0. The fundamental property
of Q is the following: when an interaction between two wavefronts having the
same sign occurs, Q decreases and its decrease controls the change in speed times
the strength of the shocks involved in the interaction. Moreover, although it can
increase when a collision between shocks having opposite sign occurs, we are able
to control its positive total variation with the total variation squared of the initial
datum (see [2] for the details).

Thanks to this fundamental property, we think that this potential will be able to
be used to prove useful results about the rate of convergence of the Glimm scheme,
which is the approximation algorithm used to prove the existence of solutions of
the Cauchy problem, about the stability of the solutions and about their structure.

Differently from other interaction potentials present in the literature (see for
instance [1]), the form of this functional is the natural extension of the original
Glimm functional [3], and coincides with it in the genuinely nonlinear case.

We also guess that our construction will be able to be extended to the vectorial
case of hyperbolic systems of conservation laws.
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Compressible multi-component flow including phase transition

Siegfried Müller

(joint work with Maren Hantke, Ee Han)

Flows of compressible two-phase and multi-component mixtures mixtures have a
wide range of applications. Difficulties in the modeling result from the interac-
tion of the fluids, especially from the exchange of mass and energy across phase
interfaces. So the treatment of the phase interfaces is in the focus of the modeling.

Several models are available in the literature, that are distinguished in sharp
interface and diffuse interface models. A detailed survey of these models can be
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found in Zein [13]. The model considered here was first proposed by Baer and
Nunziato [1] for detonation waves in granular explosives. Later it was modified
and generalized by several authors, see for example Saurel and Abgrall [9]. This
model fits into the class of multi-component fluids considered in the book of Drew
and Passman [2].

The original model by Baer and Nunziato is a full non-equilibrium model, which
means, each component has its own pressure, velocity and temperature. The mod-
ified model of Saurel and Abgrall also includes relaxation terms for the pressure
and the velocities of the components.

By instantaneous relaxation procedures equilibrium values for the pressure and
the velocity can be found. Using further relaxation procedures to drive the tem-
peratures and the chemical potentials into equilibrium mass transfer between the
phases can be modeled, see Saurel et al. [10] or Zein et al. [14]. Typically the
relaxation procedures for temperature and mass transfer are based on iterative
algorithms that are very much time-consuming, see [15]. Thus multi-dimensional
applications are only feasible in acceptable computational time on massive parallel
architectures. Therefore our main objective is to improve the relaxation models
and to design relaxation procedures that allow for efficient multi-dimensional com-
putations. Efficiency is further improved by combining these with multiresolution-
based grid adaptation techniques, see [6, 7].

Here we follow the ideas of Zein et al. [15] but improving the modeling in
several aspects. First of all, we simplify the relaxation procedures for pressure,
temperature and chemical potentials, both for two-phase models with two and
three components, respectively. In contrast to [15] we avoid the calculation of some
parameters and are able to find the relaxed pressures and temperatures directly
without performing an iterative procedure. In addition, the modeling of mass
transfer between two unpurified phases is improved. Instead of Gibbs free energies
we relax the chemical potentials. This allows to take into account additional
components in the phases by considering the mixture entropy and, thus, the model
becomes more physically sound. Furthermore, we avoid the artificial definition of
an interfacial region. This allows us to model physical cavitation, which means
that we can start from a pure liquid phase. The vapor phase will be created by
expansion. In previous work it was necessary to start with an appreciable amount
of vapor, for instance 1% in [14]. Nevertheless in our modeling we avoid unphysical
nucleation or unphysical cavitation.

For a physically relevant application we present simulations for laser induced-
cavitation bubbles. These are motivated by experiments of Lauterborn et al..
An overview on this work can be found in the recent review article [5]. Recent
experiments [11, 12] at elevated water temperatures indicate that the amount
of non-condensable gas in the bubble might have a significant influence on the
collapse and the rebound of the bubble. In the book of Müller [8], p. 301-312, it
is explained that beside water vapor at least one further substance must be inside
the bubble to guarantee a stable equilibrium state of a surviving bubble. In order
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to investigate this numerically the two-component model had to be generalized to
a multi-component model.

Quasi-one-dimensional numerical simulations of a collapsing bubble filled with
non-condensable gas and condensable water vapor in liquid water are performed for
varying amount of non-condensable gas. The computations show a strong effect
on the rebound with increasing amount of non-condensable gas. However, the
rebound is grid -dependent, i.e., the rebound increases under grid refinement. This
indicates that some physical effect is still missing in the model. The asymptotic
analysis of Guderley [4] for the collapse of a spherical shock wave in a single-phase
fluid indicate that viscosity and heat conduction might be accounted for. This is
in agreement with the findings in [3]. In addition, the phase transition might be
modeled in non-equilibrium because of the very high speeds of the phase interface
in the collapse.
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On the Zero Mach Limit of Compressible Two-Fluid Flow

Veronika Schleper

(joint work with Rinaldo M. Colombo)

The Zero Mach Limit of the compressible Euler equations is a classical problem
and a variety of publications can found, discussing this topic in the framework of
smooth solutions, see for example the classical results [2, 3, 5]. Contrary to the
classical setting, we consider a two-fluid setting with one compressible and one
weakly compressible phase and discuss the behavior of the system as the weakly
compressible phase tends to be incompressible.

The basic model for the presentation will be the sharp-interface two-fluid model
based on the isothermal Euler equations, given by

{

∂tρg + ∂x (ρgvg) = 0

∂t (ρgvg) + ∂x
(

ρgv
2
g + pg(ρg)

)

= 0
for x ∈ R \ [a(t), b(t)](1a)

{

∂tρl + ∂x (ρlvl) = 0

∂t (ρlvl) + ∂x
(

ρlv
2
l + pl(ρl)

)

= 0
for x ∈ [a(t), b(t)](1b)



















vg(t, a(t)−) = vl(t, a(t)+)

pg(ρg(t, a(t)−)) = pl(ρl(t, a(t)+))

vg(t, b(t)+) = vl(t, b(t)−)

pg(ρg(t, b(t)+)) = pl(ρl(t, b(t)−))

interface conditions.(1c)

where we allow for different pressure laws pg and pl in the different fluids. For
analytical reasons, we exclude vacuum states and assume that the pressure law
fulfills the standard requirements

p ∈ C4(R+;R+), p(ρ) > 0, p′(ρ) > 0, p′′(ρ) > 0, for all ρ ∈ R
+.(2)

In [1], a well-posedness result for system (1) was proven for initial data in L1 ∩
BV with small total variation. This result provides the existence of a standard
Riemann semigroup of solutions as well as the existence and regularity of the
interface movement.

When considering the Riemann problem at the interface, we observe that the
Lax curve associated with the liquid (and thus weakly compressible) fluid tends
to a horizontal line, see Figure 1. Therefore, in the incompressible limit, the inter-
face acts like a solid wall. This at first glance astonishing effect can be explained
through the fact that the two-fluid Riemann problem considers fluids with infi-
nite mass since they are present on the complete half space. Then it is obvious
that a volume of incompressible fluid cannot be accelerated by a finite transfer of
momentum.

It is therefore necessary to consider both interfaces and thus a Cauchy problem
to circumvent the problem of infinite mass. For the discussion of the zero Mach
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Figure 1. Illustration of the Lax-curves for gas (gray) and liquid
(blue). The left figure shows a compressible liquid, while the figure
on the right displays the case for a (very) weakly compressible
fluid. The solution to the interface Riemann problem is given by
the intersection point of the gray and blue curves.

limit, we restrict therefore to special initial data of the form

(ρ0, v0) =











(ρ̄g, v̄g) for x < a(0)

(ρol , v
o
l ) for a(0) < x < b(0)

(ρog, v
o
g) for x > b(0)

(3)

where we assume that (ρog, v
o
g) and (ρol , v

o
l ) fulfill the coupling conditions vog = vol

and pg(ρ
o
g) = pl(ρ

o
l ) and (ρ̄g, v̄g) can be connected to (ρog, v

o
g) by a shock of the

second family of small size σ.
A detailed study of the wave interactions with the boundary shows that the ini-
tial acceleration of the liquid segment tends to the acceleration predicted by the
incompressible Euler equations, i.e.

ȧ(0) = ḃ(0) =
pg(ρg(0, a(0)−))− pg(ρg(0, b(0)+))

ρol · (b(0)− a(0))
.(4)

For more details on the derivation of the limit as well as on numerical examples,
we refer the interested reader to [1, 4].
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Non-local constraints and crowd dynamics

Massimiliano D. Rosini

(joint work with B. Andreianov, C. Donadello)

Empirical studies [2] show that the capacity of the bottleneck can drop when high–
density conditions occur upstream of the bottleneck. The corresponding model is

∂tρ+ ∂xf(ρ) = 0, f (ρ(t, 0±)) ≤ p

(

∫

R−

w(x)ρ(t, x) dx

)

, ρ(0, x) = ρ0(x).(1)

Above, ρ ∈ [0, R] is the crowd density, f ∈ [0, f̄ ] is the flow, p > 0 is the capacity
of the exit in x = 0 as a function of the weighted average density in a bounded
left neighborhood of x = 0, w ≥ 0 is the weight and ρ0 is the initial density.

Theorem 1 ([1]). (i) For any ρ0 ∈ Linfty(R; [0, R]), (1) admits a unique solution
ρ. If ρ̃ is the solution corresponding to ρ̃0 ∈ Linfty(R; [0, R]), T > 0 and L ≫ 1,
then

‖ρ(T )− ρ̃(T )‖L1([−L,L];R) ≤ eCT‖ρ0 − ρ̃0‖L1([−(L+MT ),(L+MT )];R) ,

where M = Lip(f) and C = 2Lip(p)‖w‖Linfty(R−;R).

(ii) If ρ0 ∈ D =
{

ρ ∈ L1 (R; [0, R]) : Ψ(ρ) ∈ BV(R;R)
}

, Ψ(a, b) = sgn(a −
b) (f(a)− f(b)), then for a.e. t, s > 0, ρ(t, ·) ∈ D and

TV (Ψ (ρ(t))) ≤ Ct = TV (Ψ (ρ0)) + 4f(ρ̄) + C t ,

‖Ψ(ρ(t, ·))−Ψ(ρ(s, ·))‖L1(R;R) ≤ |t− s|Lip(Ψ)CT .
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Lipschitz semigroup and traveling waves for an integro–differential
equation for slow erosion

Graziano Guerra

(joint work with Rinaldo M. Colombo, Wen Shen)

Introduction. Granular matter is being poured from an uphill location outside
the interval of interest, and slides to the left down a hill. As it slides down,
it interacts with the standing layer phase. In [9] the following 2 × 2 system of
balance laws was proposed:

(1)

{

ht − (βhux)x = −γ (α− |ux|)h
ut = γ (α− |ux|) h
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where u(t, x) is the height of the standing phase while h(t, x) is the height of the
moving layer phase, α, β, γ are positive constants. Time-dependent solutions
for this model were first studied in [1, 11]. More complete models which include
energy balance were proposed in [5, 6]. We will always suppose a strictly positive
slope: ux ≥ c > 0. In [2] it is proved that, in the slow erosion limit (h → 0,
t→ +∞), the limit standing profile depends only on the initial profile and on the
total mass µ been poured from the uphill location outside the interval of interest.
The limit profile U (µ, x) satisfies the following hyperbolic equation with a non
local flux:

(2) Uµ(µ, x)−
(

exp

∫ +∞

x

f (Ux(µ, y)) dy

)

x

= 0, f (w) =
w − 1

w
.

The erosion function f describes the interaction between the moving and the
standing phase. It depends only on the slope and denotes the rate of mass being
eroded or deposited per unit length and per unit mass passing through. There is a
critical slope where no interaction happens and f vanishes. In a normalized model
one could choose the critical slope to be 1. To adhere to the usual notation in the
hyperbolic equations theory, we substitute µ with t in (2) and see what happens
if we consider a general erosion function f(w), not necessarily the one (2) which
arises from the slow erosion limit of (1).

Existence and stability of solutions. With the following hypotheses on f

(3) f(1) = 0, f ′ > 0, f ′′ < 0, lim
w→0+

f(w) = −∞, lim
w→+∞

f(w)

w
= 0

D. Amadori and W. Shen in [3, 4] proved the existence and uniqueness of the
solution to the Cauchy problem for (2). Allowing more erosion for large slopes i.e.
substituting the last condition in (3) with a linear growth condition at +∞:
limw→+∞ [f(w) − (ηow + β)] = 0, the solutions of (2) may develop various types
of singularities, including jumps in the profile U , see [10] for a detailed discussion.
Therefore, we expect U(t) to attain values in BV and its space derivative Ux

to be a measure. In order to give a meaning to (2), we introduce the inverse
function X = X(t, u) which is the graph completion of the inverse in space of U :
X(t, u) = x ⇐⇒ u ∈ [U(t, x−), U(t, x+)]. Whenever U has a jump, the inverse
function X remains constant over the interval of jump in U . Under the further
condition that there exists a positive κ such that

(4) U(t, x2)− U(t, x1) ≥ κ (x2 − x1) for all x1, x2 ∈ R, x1 ≤ x2 ,

the function X is Lipschitz continuous in u. Define the function z(t, u) to be
the u-derivative of X(t, u): z(t, u) =̇ Xu(t, u). This is a well defined function
z(t) ∈ L∞(R;R+). In the case of a smooth function U , we can rewrite the integral
in (2) as

(5)

∫ +∞

x

f (Ux(t, y)) dy =

∫ +∞

U(t,x)

g (z(t, v)) dv, g(s) = s f(1/s), s > 0.
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Remark that the right hand side in (5) is well defined also if U(t) ∈ BV(R;R).
From (2), thanks to (5) which allows to give a meaning to the nonlinear function
f applied to the measure Ux, we are led to consider the conservation law

(6) Ut(t, x) −
(

exp

∫ +∞

U(t,x)

g (z(t, v)) dv

)

x

= 0

where we treat as unknown the function z. Moreover, to allow the reconstruction
of U from z, we have to impose further constraints on z, namely that

(7) z(t) ∈ L∞(R;R+) and (z(t)− 1) ∈ L1(R;R) .

Under these conditions, we reconstruct U from z as follows:

(8) X(t, u) = u+

∫ u

−∞

(z(t, v)− 1) dv, U(t, x) = max {v ∈ R : X(t, v) ≤ x} .

In [7] the following theorem was proved.

Theorem 1. Fix T > 0 and consider the set

Z =̇

{

z ∈ BV (R; [0,+∞)) :
z is right-continuous, and
(z − 1) ∈ L1 (R; [0,+∞))

}

For any f satisfying (3) with the slow growth condition substituted by the linear
growth condition, let g be the corresponding erosion function defined in (5), then
there exists a map Sg : [0, T ]×Z → Z with the following properties:

(1) Sg
0 = Id and for any t1, t2 ∈ [0, T ] with t1 + t2 ∈ [0, T ], the semigroup

property holds: Sg
t1 ◦ S

g
t2 = Sg

t1+t2 .
(2) For any zo ∈ Z, the orbit t → Sg

t zo solves (6)–(8) in the sense of distri-
butions.

(3) There exists a constant L > 0, which depends on the system, on T and on
the L1 norm and total variation of the initial data, such that
∥

∥Sg
t z − S ḡ

t̄ z̄
∥

∥

L1
≤ L

(

t ‖g − ḡ‖W1,∞ + eLt ‖z − z̄‖L1 + |t− t̄|
)

.

Existence and stability of traveling waves. We consider “non decreasing”
initial data zo(u) ∈ [0, 1]:

(9) zo(u) =

{

1 (u < ua),

z̃o(u) (u ≥ ua),
z̃o(u2)− z̃o(u1) ≥ 0 for u2 ≥ u1 ≥ ua ,

define the “total drop”D =
∫

R
[1− zo(u)] du and consider the semigroup trajectory

z(t, u) = (Sg
t zo) (u). Then we introduce the drop function

(10) q(t, u) =

∫ +∞

u

[z(t, v)− 1] dv

and the new unknown ζ(t, q) defined by ζ (t, q(t, u)) = z (t, u). In [8] it is shown
that for smooth solution z (t, u) the corresponding function ζ (t, q) satisfies the

partial differential equation ζt − (1− ζ)
2
(

h′ (ζ) ζq − h (ζ)
2
)

F (ζ) = 0, (t, q) ∈
R

+× [−D, 0] where F (ζ) = exp
∫ 0

q
h (ζ (t, s)) ds and h (ζ) = g(ζ)

1−ζ . Traveling waves
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in the unknown z(t, u) turn out to correspond to stationary solutions in the un-
known ζ (t, q). The following theorems are proved in [8].

Theorem 2. For every value of total drop D, there exists exactly only one sta-
tionary traveling wave profile ζ(t, q) = ZD(q), defined on q ∈ [−D, 0].
Theorem 3. For every initial data (9), let D be its total drop, z(t, u) = (Sg

t zo) (u),
ζ (t, q(t, u)) = z (t, u) where q(t, u) is defined in (10), and ZD(q) be the unique
stationary profile whose existence is guaranteed by Theorem 2, then one has the
following convergence to the stationary traveling wave profile:
limt→+∞ ‖ζ(t, ·) − ZD(·)‖L1 = 0.
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Asymptotic-preserving schemes for unusual long-time asymptotics ond
2D unstructured grids

Rodolphe Turpault

(joint work with C. Berthon, P. LeFloch, F. Marche, C. Sarazin)

We consider the long-time behaviour of hyperbolic systems supplemented by
stiff source terms of the form:

∂tU + divF (U) = −σ(U)R(U),

which satisfy the asumptions stated in [2]. In particular, they have a limit regime
for u = QU ∈ IRn which writes:

(1) ∂tu− div
(

G(u,∇u)
)

= 0.
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Here, G is a nonlinear function.
The main purpose of this work concerns the numerical approximation of such
systems through long-time asymptotic preserving schemes for both 1D and 2D ge-
ometries on unstructured grids. During the last decade, several schemes which can
deal with scalar diffusive limits were proposed in the 1D case. However, none of
these methods can be extended to the more difficult situations, even in 1D. Further-
more, the extension for unstructured grids in 2D is far from being straightforward
in general. Indeed, only one such scheme has been designed for Friedrich-type
systems (see [2]). On the contrary, we will show that a suitable extension of the
scheme proposed in [1] naturally allows to tackle with these situations.
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Hyperbolic techniques for scalar degenerate parabolic problems

Boris Andreianov

(joint work with Mohamed Gazibo Karimou)

In the first part of the talk, we give a brief overview of the state of the art in
the theory of scalar hyperbolic-parabolic-elliptic equations

(P) b(u)t + divxf(u)−∆xφ(u) = 0

with initial conditions and, when relevant, boundary conditions. In particular, the
case (H) : b = Id, φ ≡ 0 is the hyperbolic scalar conservation law. Here b and φ
are continuous non-strictly increasing nonlinearities; their regions on degeneracy
sometimes correspond to different phases in the underlying physical models (flows
in porous media, sedimentation, road traffic, Stefan and Hele-Shaw problems,. . . ).
The goal of the talk is to highlight hyperbolic techniques that remain applicable
- and instrumental - for study of general degenerate parabolic equations (P). We
focus mainly in the hyperbolic-parabolic case (b = Id).

Indeed, notions of solution and well-posedness techniques for (P) are inspired
by the ones first established for the purely hyperbolic case (H). Early works on
the subject [19, 20] were carried out in the delicate BV setting; we refer to Evje
and Karlsen [11] for a description of solutions and well-posedness results in this
framework where existence is difficult to achieve. In the last fifteen years, the
entropy formulation for L∞ solutions [9], kinetic and renormalized formulations
for L1 solutions [10], [6] permitted to establish robust well-posedness and stability
results. The important feature these formulations have in common is that they
must keep track of parabolic dissipation associated with entropies (see, in par-
ticular, [20, 11, 9, 10, 6, 1]). Explicit representations of the dissipation measure
(actually, different representations were chosen within the different approaches to
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defining solutions) allow to go through the Kruzhkov doubling of variables method,
establishing uniqueness and stability of solutions. Further, existence can be ob-
tained by viscosity approximations or by convergent finite volume schemes (the
latter ones are applicable when diffusion is approximated in a way compatible with
the maximum principle, see [12]). At this stage, other “hyperbolic” techniques are
useful, such as the measure-valued solutions or strong precompactness properties
of sequences of solutions ([17]). Generalization to nonlinear diffusion operators can
be handled within this approach and elliptic degeneracy can be taken into account
following Alt and Luckhaus [2]. An example of well-posedness and structural sta-
bility study for a general triply degenerate parabolic problem in the framework of
Carrillo entropy solutions can be found in [4]. Let us mention that recently, similar
studies for nonlocal convection-diffusion problems have been developed ([1, 14]).

In the second part of this talk we concentrate on more recent trends related
to taking into account boundary conditions for (H) and then for (P): Dirichlet,
zero-flux, obstacle... Some of the results can be found in the authors’ work with K.
Sbihi [3] and M. Gazibo Karimou [5], we also discuss the ongoing work with Gazibo
and G. Vallet. Our goal is to set up techniques for treating initial-boundary value
problems for (P) by comparing a general solution u to a “trace-regular” solution
v. For trace-regular solutions, a strong interpretation of boundary condition can
be given in terms of a suitable maximal monotone graph ([3]); uniqueness of such
solutions is readily inferred (contrarily to the Otto’s weak trace approach [15], see
also [16, 18]). This program succeeded for the one-dimensional zero-flux problem

ut+
(

f(u)−φ(u)x
)

x
= 0 in (0, T )× (a, b), u|t=0 = u0,

(

f(u)−φ(u)x
)

|x=a,b = 0

under the assumption f(0) = 0 = f(umax), 0 ≤ u0 ≤ umax (see [5]), thus general-
izing the result of Bürger, Frid and Karlsen [8] obtained for (H). M. Gazibo also
justified in [13] convergence of an implicit finite volume scheme (in the spirit of
Eymard et al. [12]) for the zero-flux problem (P). The key ingredients were:

• the obvious trace-regularity of solutions to the one-dimensional stationary

problem v +
(

f(v)− φ(v)x

)

x
= g

• the notion of integral solution [7] to abstract evolution problems
• a new notion of “integral-process solution” to recast the nonlinear weak-*
compactness idea exploited in [12] within the abstract framework of [7].

On-going works concern extension of this kind of techniques to various boundary
conditions; they require obtention of wider classes of trace-regular solutions.
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[12] R. Eymard, T. Gallouët, R. Herbin and A. Michel. Convergence of a finite volume scheme
for nonlinear degenerate parabolic equations, Numer. Math. 92 (1) (2002) 41–82.

[13] M. Gazibo Karimou. Degenerate parabolic equation with zero flux boundary condition and
its approximations. In preparation.

[14] K.H. Karlsen and S. Ulusoy. Stability of entropy solution for Lévy mixed hyperbolic-parabolic
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Coupling, relaxation, adaptation of hyperbolic models

Edwige Godlewski

(joint work with C. Cancès, F. Coquel, H. Mathis, N. Seguin)

In the framework of the simulation of complex flows arising in industry, one may
think for instance of coolant water circuits in pressurized water reactors (PWR),
different models are used to treat the two-phase fluid flow in the different com-
ponents. If a 3D model with turbulence is required in the core, simpler laminar
1D models are sufficient to describe the flow in most parts of the pipes in regular
configuration, while in the case of loss-of-coolant accident, models should be able
to describe these highly unsteady compressible flows with phase transition.

Generally speaking, the simulation of a complex system where one has to handle
phenomena with different scales, both in time and space, involves several models,
this means in turn several numerical codes, which need to be coupled. Moreover,
this codes may already exist and have received some kind of validation, so they
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cannot be changed in the coupling beyond the change in boundary conditions.
Then, in order to reduce the computation time, and because the most refined
models are too costly to implement everywhere, one would like to use them only
when necessary. Which means the code should involve some indicator and adaptive
procedure able to detect when some fine scale needs to be resolved.

Our aim is to understand on some simplified but relevant models the whole
adaptation procedure, restricting ourselves to models of PDE of hyperbolic type
which are discretized by finite volume methods. For that, we split the problem
and address some key issues:

(1) identify suitable two-phase flow models
(2) define the interface coupling model
(3) derive numerical (finite volume) schemes with good stability properties
(4) describe the formal adaptation procedure,

together with some validation, either theoretical results for model problems or
numerical experiments on some realistic situations.

In fact, the three first points have already received a lot of attention for the
last few years, so we will mainly refer to some already published papers, only
introducing a little more precisely the topics addressed in each paper. We restrict
ourselves to a few selected papers in which many other references can be found.

Considering point (1), there exists a wide variety of models used for the simula-
tion of two-phase flows in industrial thermo-hydraulic codes: mixture, drift (homo-
geneous or not), two-fluid or even multi-field models, in one or several dimensions.
We are interested in exploiting some compatibility between models, either hierar-
chy which means that one model is obtained from the other by some known limiting
process, such as relaxation to equilibrium, or asymptotic behavior when passing
to the limit in some quantity (a flow entering a porous media, or large friction),
or assuming some simplifying assumption: isentropic flow, slab symmetry, etc.
For example [4] considers two Homogeneous Models (relaxation and equilibrium),
while [3] proves a formal hierarchy between a two-fluid and a drift model; [14] con-
tains theoretical results for a relaxation system approximating a fluid system; [11]
studies the asymptotic behavior of solutions of Euler system with large friction.

Addressing point (3) is at the source of our interest in relaxation schemes [5], [2],
[14], [11], [13], [1], [21]. Indeed, though the relaxation schemes we study result in
very simple HLL type schemes, they can be understood as using a Godunov solver
for a specific larger relaxation system. Then, these schemes inherit a good behavior
directly from the PDE system together with the exact Godunov solver; the compu-
tations are explicit since the relaxation system has only linearly degenerate fields.

For point (2), since the codes should not be modified, we consider a thin in-
terface and prescribe suitable boundary conditions on both sides of the coupling
interface. This point raises some issues which have to be well understood:
• interface coupling in model cases and theoretical justification: scalar laws [15],
[8]; linear systems [16]; the 2× 2 Jin-Xin relaxation system and its scalar limit [9];
• coupling a 2D or 3D PDE system with its 1D version [17],[18];
• coupling of two systems of the same dimension with different fluxes [6];
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• coupling of two systems of different dimensions.
In the second topic, one assumes some slab symmetry on one side, but the closure
laws coincide. The third topic may illustrate the case a fluid flow where two
different closure laws have been used in the modeling. The last one addresses the
coupling of two compatible models, such as a relaxation system and its equilibrium
limit as in [4], [9], or the full Euler system with energy and the isentropic Euler
system [6]; and more recently an hyperbolic system with its diffusion limit [7].

We come now to point (4), which is quite challenging. The adaptation procedure
computes an adapted solution at each time step tn; it involves the coupling of a
coarse model on a domain say Dn

c with a fine model in its complementary part,

say Dn
f , at an interface D

n

c ∩Dn

f which is found by some dynamical process. The

ideas have been presented shortly in [20] for the 1D case, in the ‘ideal’ context of a
relaxation system [12], coupled with its equilibrium limit. An indicator is found in
the first order term of the Chapman-Enskog expansion, at least its discrete coun-
terpart obtained by using a finite volume scheme. This corrector term naturally
‘measures’ the distance between the solution of the fine relaxation model with the
coarse equilibrium limit. In [19], the adaption algorithm is detailed in the mutidi-
mensional case, and illustrated by some convincing computations of compressible
two-phase flows which do not strictly enter the ‘ideal’ setting.

We are also interested in the theoretical justification for a toy model, where the
coarse model is a scalar law [10]. Though apparently simple, the situation is still
tricky since the solution computed by the adaptation procedure necessarily involves
discontinuity in the fluxes, and in order to use stability and error estimates, we
need first to introduce some regularization, linked to a small parameter which has
to be fitted wrt. the mesh size, the relaxation and the adaptation parameters.
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[3] A. Ambroso, C. Chalons, F. Coquel, T. Galié, E. Godlewski, P.-A. Raviart, N. Seguin, The
drift-flux asymptotic limit of barotropic two-phase two-pressure models, Commun. Math.
Sci. 6no. 2 (2008), 521–529.

[4] A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutière, P.-A. Raviart, N. Seguin,
The coupling of homogeneous models for two-phase flows, Int. J. Finite Volumes, 4(1)
(2007), 1–39.

[5] A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutière, P.-A. Raviart, N. Seguin,
Relaxation methods and coupling procedures, Internat. J. Numer. Methods Fluids 56 (2008),
no. 8, 1123–1129.

[6] A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutière, P.-A. Raviart, N. Seguin,
Coupling of general Lagrangian systems, Math. Comp., 77(262)(2008), 909–941.



1748 Oberwolfach Report 29/2013

[7] A.-C. Boulanger, C. Cancès, H. Mathis, K. Saleh and N. Seguin, OSAMOAL: Optimized
Simulations by Adapted MOdels using Asymptotic Limits, ESAIM: Proceedings Vol. 38
(2012) CEMRACS’11: Multiscale Coupling of Complex Models in Scientific Computing.

[8] B. Boutin, F. Coquel, E. Godlewski, Dafermos regularization for interface coupling of
conservation laws, Hyperbolic problems: theory, numerics, applications (2008) 567–575,
Springer, Berlin.
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Dynamic capillarity models for porous media flows: travelling waves
and non-classical shocks

Iuliu Sorin Pop

(joint work with Cornelis J. van Duijn, Yabin Fan, Lambertus A. Peletier)

1. Physical motivation

We investigate the existence of travelling waves for a mathematical model en-
countered in the flow of two fluid phases through a porous medium. In a simplified,
dimensionless framework, given the total velocity of the flow, the model reads [8]

(1) ∂tu+ ∂xf(u) = ε
(

H(u)∂xP
)

for all t > 0 and x ∈ R.
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Here u is the saturation of one fluid (e.g. water) and P the dimensionless capillary
pressure. The functions

(2) f(u) =
ko(u)

ko(u) +Mkw(u)
, H(u) = kw(u)f(u),

involve given monotone, bounded and continuous functions ko, kw. These are
determined experimentally for u ∈ [0, 1], and extended by constants outside this
interval. Typically, the function f has a convex-concave profile.

Standard models assume that P depends only on u. Alternatively, one has [7]

(3) P = Pe(u) + τ∂tu.

Pe, determined experimentally, is the equilibrium component in the capillary pres-
sure. The second term, involving a parameter τ ≥ 0, accounts for the dynamic
effects. Common choices in the porous media literature [8] are

ko(u) = u1+p, kw(u) = (1− u)1+q, and Pe(u) = (1 − u)−
1
λ ,

where p, q > 0, λ > 1 and M > 0 are model specific.
Note the presence of two dimensionless numbers: the capillary number ε and

the dynamic coefficient τ .

2. Trvelling waves and non-classical shocks

With the nonlinearities introduced in (2) and (3), (1) is a degenerate (pseudo)
parabolic equation. In the limit εց 0, it becomes the Buckley-Leverett equation:

(4) ∂tu+ ∂xf(u) = 0 for all t > 0 and x ∈ R,

a hyperbolic equation having (1) as physically motivated regularization. As in the
classical theory of hyperbolic conservation laws, one can study the existence of
travelling waves (TW) connecting two given states uℓ (the left state) and ur (the
right state) to define admissibility conditions for shock solutions to (4). Classical
shocks are obtained for equilibrium models, when τ = 0 in (3).

Motivated by the theory of non-classical shocks in [10], we study the existence
of TWs for the non-equilibrium models, when τ > 0. Clearly, these results will
depend on τ . If for τ > 0 the connectable states uℓ and ur differ from those
in the standard case τ = 0, this justifies considering undercompressive shocks.
Such shocks are motivated e.g. by dispersive waves [1]. Closely related is the
liquid-vapour transition in porous media analyzed in [2]. Concerning (1), the case
H(u) ≡ 1 and Pe(u) = u is analyzed in [5]. A phase plane analysis based on a
separation function is carried out in [12]. There saddle-to-saddle connections are
identified for cases when classical (i.e. sufficiently smooth TW) exist.

Here we focus on the degenerate case, when at least one of the states is either
0 or 1. For these values, H in (1) is vanishing and the model degenerates. We
restrict to the case uℓ > ur and let α be the point where the tangent line through
(ur, f(ur)) touches the graph of f . In this context, the following holds [4, 5]:

Theorem 1. If ur < α ≤ uℓ, there exits τ∗ > 0 such that

a. If 0 ≤ τ ≤ τ∗, TW connecting uℓ ≤ α to ur exist and are monotone.
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b. If τ > τ∗, there exists a unique ūℓ(τ) > α that can be connected to ur
through a monotone TW .

c. The ū− τ dependency is continuous and increasing for τ ≥ τ∗.

If τ > τ∗, let uℓ = u(τ). With u(τ) ∈ (ur, α) being the intermediate intersection
point of the graph of f with the chord (uℓ, f(uℓ)), (ur, f(ur)), then

d. For each uℓ ∈ (ur, u(τ)], there exists a TW connecting uℓ to ur.
e. For each uℓ ∈ (u(τ), ū(τ)), no TW connecting uℓ to ur exist.
f. For each uℓ ∈ (u(τ), ū(τ)), TW connecting uℓ to ū(τ) are possible.

For fixed ur, Fig. 1 left displays ū(τ) and u(τ) for various τ . These are computed
by a shooting method (see [4]).

Fig. 1. Left: The ū(τ ) and u(τ ) curves (left). Right: numerical solutions for the full

model (1), τ > τ∗ (solid) and τ = 0 (dotted).

As ε → 0, a TW in Theorem 1, case b becomes a shock for (1) that violates the
standard Oleinik entropy condition. For case f, a solution of the Riemann problem
for (4) where the initial condition involves uℓ and ur combines two shocks: one
upwards from uℓ to ū(τ)}, and one downwards from ū(τ) to ur. This is different
from the classical construction, where the solution is a shock down to ur, preceded
by a rarefaction wave from uℓ to the tangent point α if uℓ > α. This behaviour is
displayed in Fig. 1 right, presenting numerical solutions for the regularized models
with τ > τ∗, respectively τ < τ∗ (see [3, 6] for details). For computing the limit
shocks, a heterogeneous multiscale method is developed in [9].

A particular outcome of the degeneracy is observed in Fig. 1 left, where the
branches are plotted up to a maximal value τ∗. As τ ր τ∗, ū(τ) ր 1, where
H vanishes. This prevents solutions to become larger than 1, and smooth TW
connecting uℓ = 1 to ur do not exist anymore if τ > τ∗, [4]. Then non-smooth
TW solutions (sharp waves) as defined [11] are considered. These waves remain
1 up to a certain argument η1, where they start decreasing to ur. At η1, these
waves have a discontinuous derivative. More special is the doubly degenerate case,
when ur = 0 and τ > τ∗ implying that uℓ = 1. Then the waves may have
another discontinuity in the derivative at η0 > η1, when u approaches 0. This
situation is analyzed in detail in [4], and a selection criterion is introduced based
on regularizing the states. The resulting waves have a kink at η1 but approach 0
smoothly at some η0 ∈ (η1,∞). This situation is illustrated in Fig. 2, when the
wave is computed for τ > τ∗ and for uℓ = 1, ur = 0. In the zoomed views, a kink
appearing at η1 and the smooth transition to 0 are observed.
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Fig. 2. The TW for τ > τ
∗, uℓ = 1 and ur = 0 (left). Zoomed views: the transition

from u = 1 to u < 1 (kink, middle) and from u > 0 to u = 0 (smooth, right).
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On two problems involving nonlocal hyperbolic conservation laws

Paulo Amorim

(joint work with Rinaldo Colombo, Andreia Teixeira)

In this work, we consider two problems involving nonlocal hyperbolic conserva-
tion laws. The first problem is about giving a sense to a hyperbolic conservation
law with a constraint on the gradient of the solution. This is not straightforward
since conservation laws naturally develop discontinuities. We give a sense to this
problem by considering a related conservation law with a nonlocal term, and prove
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existence, uniqueness and stability of solution of the Cauchy problem. This is then
used to interpret the gradient constraint problem as a free boundary problem.

In the second part, we consider a class of nonlocal conservation laws used in
recent years to study crowd dynamics. Extending results in [3], we present a
convergence result for numerical approximations of this nonlocal model.

0.1. A hyperbolic conservation law with a gradient constraint. [1] In some
models involving nonlinear conservation laws, physical mechanisms exist which
prevent the formation of shocks, see [4]. This gives rise to conservation laws with
a constraint on the gradient of the solution. We approach this problem by studying
a related conservation law with a spatial nonlocal term.

More specifically, we consider the initial value problem for the scalar conserva-
tion law with an integral term

(1)
∂tw(t, x) + ∂x

(

f ′
(

∫ x

−∞

w(t, z)dz
)

g(w(t, x))
)

= 0,

w(0, x) = w0(x), x ∈ R, t ≥ 0,

with f, g : R → R given functions. The formulation (1) is motivated by the fol-
lowing problem: to find u(x, t) verifying, in some appropriate sense, the following
conservation law with a gradient constraint,

(2)
∂tu+ ∂x(f(u)) = 0, u(0, x) = u0(x),

|∂xu(t, x)| ≤M, x ∈ R, t ≥ 0,

for some M > 0.
Problem (2) has no ready interpretation in the scope of conservation laws.

Indeed, as is well known, a nonlinear conservation law will, even for smooth initial
data, develop discontinuities in finite time, whose onset is preceded by a blowup of
the spatial derivative. Therefore, it is hopeless to seek solutions verifying problem
(2), without some additional information.

We now describe our interpretation of problem (2), which leads to the formu-
lation (1). Setting w := ∂xu, then spatial differentiation of (2) gives formally

(3)
∂tw + ∂x

(

f ′
(

∫ x

−∞

w(t, z)dz
)

w
)

= 0,

|w(t, x)| ≤M,

so that the constraint on the gradient of u now acts on the function w itself. We
provide a formulation for this problem by replacing the term w appearing inside
the spatial derivative in (3) by a function with compact support g(w). This limits
the growth of |w| (and, formally, of the gradient |∂xu|). Thus, we arrive at problem
(1).

In [1], we establish existence, uniqueness, and continuous dependence results for
problem (1) through a time-stepping (or layering) argument. In turn, this gives
the following result for the problem with gradient constraint (2).
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Theorem. Suppose that the function g in (1) has the form g(w) = whǫ(w),
where h = hǫ is some regularization of the characteristic function 1[−M,M ], with
h = 1 on [−M + ǫ,M − ǫ], and let w be the solution of (1). Define the following
sets contained in (0, T )× R,

Iǫ = {(t, x) : |w| ≤M − ǫ},
Jǫ = {(t, x) : |w| =M},
Kǫ = ((0, T )× R) \ (Iǫ ∪ Jǫ).

Then, the function u :=
∫ x

−∞ w(t, y) dy solves the conservation law with gradient

constraint (2) in the sense that u is an entropy solution of

∂tu+ ∂x(f(u)) = 0,

|∂xu| < M,
on Iǫ,

u verifies
|∂xu| =M on Jǫ,

and u solves
∂tu+ ∂x(f(u))h(w) = 0

on the transition layer Kǫ. Furthermore, u verifies the estimate

u ∈ L∞(0, T ;W 1,∞(R)).

In particular, u is continuous on R for each t.

0.2. Convergence of a numerical scheme for nonlocal conservation laws.
This is joint work with Rinaldo Colombo (Brescia) and Andreia Teixeira (Lisboa).

We study in [2] a rather general class of 1D nonlocal conservation laws from a
numerical point of view. First, following [3], we define an algorithm to numerically
integrate them and prove its convergence. Then, we use this algorithm to inves-
tigate various analytical properties, obtaining evidence that usual properties of
standard conservation laws fail in the nonlocal setting. Moreover, on the basis of
our numerical integrations, we are led to conjecture the convergence of the nonlo-
cal equation to the local ones, although no analytical results are, to our knowledge,
available in this context.

Thus, we consider the Cauchy problem

(4)

{

∂tρ+ ∂x (f(t, x, ρ) v(ρ ∗ η)) = 0

ρ(0, x) = ρo(x)
(t, x) ∈ R

+ × R

and discretize it using an easy adaptation of the Lax–Friedrichs scheme.
Under an appropriate CFL condition, we obtain the following properties for the

numerical scheme:

• Positivity
• L1 estimate:

‖ρn‖L1 ≤ ‖ρo‖L1

• L∞ estimate:
‖ρn‖L∞ ≤ eLt‖ρo‖L∞
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• Total variation estimate:
∑

j∈Z

|ρnj+1 − ρnj | ≤
(

K2 t+
∑

j∈Z

|ρoj+1 − ρoj |
)

eK1t.

The constants K1,2,L depend on various norms of the data.

With an additional discrete entropy inequality, we obtain strong convergence of
the numerical scheme towards the unique entropy solution of (4).

In the standard (local) case, when the flow is independent of t and x, the L∞

norm and the total variation of the solution are well know to be non-increasing
functions of time. Here, on the contrary, the total variation and the L∞ norm of
the solution to (4) may well sharply increase due to the nonlocal terms, even when
the flow is independent from t and x.

Thus, we verify numerically in [2] that the usual properties of scalar conservation
laws fail in this nonlocal setting. Moreover, these behaviors are consistent with
the rigorous estimates obtained for the numerical solutions.
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Relative entropy methods for relaxation limits

Corrado Lattanzio

(joint work with A.E. Tzavaras)

Our aim is to analyze (singular) relaxation limits, in particular in the diffusive
regimes, in connection with relative entropy methods. These techniques has been
firstly utilized in the context of hyperbolic systems of conservation or balance laws
equipped with dissipative convex entropies by Dafermos [2] and DiPerna [3], thus
obtaining a remarkable stability formula. This property can be then utilized to
obtain weak–strong uniqueness and stability properties for solutions of the systems
under investigation. Lately, the same calculation has been carried out to compare
weak entropy solutions of a relaxation systems with smooth solutions of its formal
limit, in the case of hyperbolic relaxation (i.e. [1, 4, 6]), and, more recently, also
in the case of a diffusive limits [5].
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In this contribution, we shall generalize the results obtained in [5] to the frame-
work of a large friction theory converging toward gradient flows:

(1)















ρt + divx(ρu) = 0

(ρu)t + divx(ρu⊗ u) = − 1

ε2
ρ

(

u+∇x
δE [ρ]
δρ

)

,

whose formal limit is given by

(2) ρt + divx(ρu) = 0, u = −∇x
δE [ρ]
δρ

and E [ρ] is a convex functional. Starting from the energy dissipation for (1)

d

dt

(

E [ρ] + ε2

2

∫

ρ|u|2dx
)

+

∫

ρ|u|2dx = 0,

we obtain the following relative entropy estimate for any pairs of solutions (ρ, ρu)
and (ρ̄, ρ̄ū) of that system, the latter being smooth:

d

dt

(

E [ρ |ρ̄ ] +
∫

ε2

2
|u− ū|2dx

)

+

∫

ρ|u− ū|2dx

= −
∫

(

ε2ρ
(

(u − ū)⊗ (u− ū)
)

∇xū+ (divx ū)F [ρ |ρ̄ ]
)

dx,

where F [ρ] := 〈 δE[ρ]δρ , ρ〉 − E [ρ] stands for the “pressure” functional. In addi-

tion, from that relation, we also obtain the following relation for solutions ρ, ρ̄ (ρ̄
smooth) of (2):

d

dt
E [ρ |ρ̄ ] +

∫

ρ

∣

∣

∣

∣

∇x
δE [ρ]
δρ

−∇x
δE [ρ̄]
δρ

∣

∣

∣

∣

2

dx = −
∫

(divx ū)F [ρ |ρ̄ ]dx,

which is the relative entropy estimate related to the usual energy dissipation for
this gradient flow dynamics:

d

dt
E [ρ] +

∫

ρ

∣

∣

∣

∣

∇x
δE [ρ]
δρ

∣

∣

∣

∣

2

dx = 0.

Finally, the stability of the diffusive relaxation limit, and in particular its rigorous
justification, can also be achieved by using the following relative entropy estimate

d

dt

(

E [ρ |ρ̄ ] +
∫

ε2

2
|u− ū|2dx

)

+

∫

ρ|u− ū|2dx

= −
∫

(

ε2ρ
(

(u− ū)⊗ (u − ū)
)

∇xū+ (divx ū)F [ρ |ρ̄ ]
)

dx

−
∫

ε2ρ(u− ū) · ē
ρ̄
dx,

where this time (ρ, ρu) is any solution of (1), ρ̄, ū is a smooth solution of (2), and
the error term ē is given by ē = (ρ̄ū)t + divx(ρ̄ū⊗ ū).
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The above framework applies in particular to the case of the Euler equations
with large friction converging toward the porous medium equation [5], and to
the case of the diffusive relaxation limit of Keller–Segel type models. The latter
consists in the study of the singular limit ε→ 0 of the following hyperbolic–elliptic
system







































ρt +
1

ε
divxm = 0

mt +
1

ε
divx

m⊗m

ρ
+

1

ε
∇xp(ρ) = − 1

ε2
m+

X
ε
ρ∇xc

−△xc+ βc = ρ− 〈ρ〉,

where t ∈ R, x ∈ T
n, ρ ≥ 0, c ∈ R,m ∈ R

n and the pressure p(ρ) satisfies p′(ρ) ≥ 0.
For the sake of simplicity, we can assume the usual γ–law case for the pressure,
that is p(ρ) = kργ , k > 0 and γ ≥ 1. Moreover, the screening coefficient β is
nonnegative and the chemosensitive coefficient X is strictly positive. In addition,
the elliptic equation above is equipped with periodic boundary conditions and with
the constraint 〈c〉 = 0 if β = 0; here the notation 〈g〉 stands for the mean of g.
The formal limit of that system is given by

{

ρ̄t + divx
(

ρ̄∇x(X c̄− h′(ρ̄))
)

= 0

−△xc̄+ βc̄ = ρ̄− 〈ρ̄〉,

where h′′(ρ) = p′(ρ)
ρ . Then, the rigorous justification of this convergence by means

of the relative entropy estimate can be obtained under suitable conditions on γ,
β ≥ 0, X > 0 and on the mean 〈ρ〉 = 〈ρ̄〉.
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Error estimates for well-balanced Godunov schemes on scalar balance
laws

Debora Amadori

(joint work with Laurent Gosse)

The main goal of this report is to compare two different approaches in the
approximation of the scalar equation

(1) ∂tu+ ∂xf(u) = k(x)g(u) , k ∈ L∞
loc(R) ,

namely the Time-Splitting (TS) and Well-Balanced (WB) approach.

In summary, the Time-Splitting approach consists in the approximation of (1)
by treating in a separate way, as time evolves, the dynamic of the convective
equation

(2) ∂tu+ ∂xf(u) = 0 ,

and the one given by the source term:

(3) ∂tu = k(x)g(u) .

On the other hand, in the Well Balanced approach one considers (2) together
with the spatial dynamic given by the stationary equation:

(4) ∂xf(u) = k(x)g(u) .

Error estimates for time splitting operators were proved in [6, 5]:

‖u∆t(t, ·)− u(t, ·)‖L1(R) ≤ C exp(sup[k(x)g′(u)]t)
√
∆t .

In these proofs, the Gronwall Lemma is applied and an exponential increase is
possible when the source term is accretive, that is when

(5) sup
x,u

k(x)g′(u) > 0

for the solution under consideration. Numerical proofs show that the exponential
amplification can actually occur, see Fig. 1.

In this note we provide rigorous estimates for a WB approximation of Godunov
type. We will show that the error grows at most only linearly in time.

1. The main estimate

We provide (1) with initial data u0 ∈ BVloc(R) for t = 0 and assume that
the initial data are located in an invariant domain for the equation (see [1]). We
assume that f , g are smooth and that

(6) inf
u
f ′(u) > 0 .

Moreover we assume that the source term is accretive, see (5). Let L be an a-priori
bound on f ′. For ∆x > 0, let a uniform Cartesian grid be given with mesh-width
∆x and time-step ∆t, that satisfy the relation L∆t = ∆x. Then we define a WB
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Figure 1. Time-evolution of the L1 error for a rarefaction wave
solution of Burgers equation.

scheme for equation (1), that basically consists in a Godunov approximation for
the 2× 2 non-conservative system

∂tu+ ∂xf(u)− g(u)∂xa = 0 , ∂ta = 0 ,

where a is an antiderivative of k:

∂xa(x) = k(x) .

Assumption (6) ensures that this system is strictly hyperbolic.

Let u∆t be this WB approximation of (1) (see [1] for precise definitions). For a
specific Riemann invariant w, a local L1 error holds for u∆t(t, ·): for all t > 0 and
x1 < x2, one has

∫ x2

x1

|u∆t(t, x)− u(t, x)|dx ≤ min {E1, E2}(7)

where

E1(∆x, t) = C eκ‖k‖L1

(

∆x(TV{u0}+ 1) + TV{w0}L t
)

,

E2(∆x, t) =
√
∆x

√
A+∆xB .

Here C and κ are independent of time and ∆x, while A and B depend on time as
follows:

A(t) = (TV{w0}+ ‖k‖L1) ·
(

(L+ 1)TV{u0} eNt + ‖k′g‖∞h(t)
)

· h(t) ,

B(t) = TV{u0} eNt + ‖k‖∞ (TV{w0}+ ‖k‖L1) h(t)

being

h(t) =
eNt − 1

N
,

N = sup
{

k(x)g′(ξ) , x ∈ R , |ξ| ≤ max{‖u‖∞, ‖u∆t‖∞}
}

> 0 .
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Here above, w0 = w0(x) denotes the Riemann invariant at time t = 0. The L1,
L∞ norms and TV above are referred to the interval (x1 − Lt, x2).

The term E1 grows linearly in time, while E2 increases exponentially as time
evolves:

E2(∆x, t) ≤ C1

√
∆x eNt

for some constant C1 depending on the coefficients and on the initial data. Hence
the estimate (7) displays a linear growth in time beyond a certain time.

In terms of ∆x, notice that E1 does not vanish as ∆x → 0, differently from
E2. Therefore, the increased time accuracy is more effective when dealing with
medium size grids, which is actually what occurs in practice.

While the error term E2 is obtained through a classical Kuznetsov argument,
[4], for the term E1 a new approach is proposed: namely, the use of a decaying
Lyapunov functional equivalent to the L1 norm of two approximate (wave-front
tracking) solutions ([2]).

The existence of such a functional for equation (1) was established in [3]. In
reference [1], we employ successfully this tool to estimate the error between the
Well-Balanced-Godunov solution and the exact one.
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Numerical comparison of coupling conditions for the isothermal Euler
equations in tubes of varying cross sections

Raul Borsche

(joint work with Rinaldo M. Colombo, Mauro Garavello)

Consider the coupling of two circular tubes of different sizes. We compare numer-
ically the description by the 3D isothermal Euler equations with descriptions by
the 1D isothermal Euler equations equipped with different coupling consditions.
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The governing equations are
{

∂tρ+÷(ρ v) = 0
∂t(ρ v) +÷ (ρ v ⊗ v + p(ρ)I) = 0

and

{

∂tρi + ∂xqi = 0

∂tqi + ∂x

(

qi
2

ρi
+ p(ρi)

)

= 0
,

where i = l, r denotes the left and right tube. ρ is the fluid mass density, v is the
fluid speed, q = ρ v is its linear momentum density and p = p(ρ) is its pressure.
To complete the description in the 1D setting, coupling conditions of the form

Φ (al, ρl(t, 0−), ql(t, 0−); ar, ρr(t, 0+), qr(t, 0+)) = 0

have to be prescribed, where al and ar denote the cross sectional areas of the left
and right pipe. There exist various choices of the function Φ in the literature, see
for instance [3, 1, 2, 4].

In the case of the trivial stationary state q ≡ 0 most of the 1D descriptions
coincide with the 3D solutions. In the non-static cases we compare numerically
the behavior of the different 1D descriptions with the solutions of the 3D model.
As examples we study, starting from a stationary state, either shock or rarefaction
waves passing the junction from both sides. In all considered test cases the 3D
solutions show only in a small neighborhood of the jump in the area a spatially
dependent pattern. Aside from the junction a 1D description of the flow seems
appropriate. In each example there is always one candidate in set of considered
coupling conditions, which captures quite accurately the global behavior, but there
is none of them which is next to the 3D solutions in all cases.

Thus there is a possibility to describe the flow by 1D equations, but for a general
description the design of the coupling conditions is currently under investigation.
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Large time step and asymptotic preserving numerical schemes for the
gas dynamics equations with source terms

Christophe Chalons

(joint work with M. Girardin, S. Kokh)

We are interested in the simulation of subsonic compressible flows in a specific
regime where the (main) driving phenomena are stiff source terms and material
transport. More precisely, we consider the system of gas dynamics with external
body forces and friction. Such flow configuration may be encountered in several
industrial processes like the flows involved within the core of a nuclear power plant.



Hyperbolic Techniques for Phase Dynamics 1761

We propose here a method that fulfils our task by addressing three issues. First
we require our method to enable the use of large time steps in order to avoid classic
Courant-Friedrichs-Lewy (CFL) restriction based on the (fast) acoustic waves of
the model. Second, we want our method to accurately approximate (slow) waves
that account for material transport. Third, the discretization of the stiff source
terms with large time steps may severely affect the accuracy of the method. We
propose to overcome this difficulty by imposing an even stronger property on our
numerical scheme. Indeed, when one considers the asymptotic regime obtained
for both long time and large friction coefficients, the solution of the system is
formally expected to behave like the solution of a typical parabolic system. We aim
at deriving a scheme that preserves this property for the discrete approximation
of the solution. Such property is referred to as an asymptotic preserving (AP)
property. Since its introduction in the pioneer work of [5, 6], the notion of AP
numerical schemes has been investigated and implemented in the past years in
a wide range of context stemming from hydrodynamics with radiative transfer,
multiscale kinetics, diffusive limit of the transport equation, to problems similar
to our model. We refer the reader to the recent and abundant literature on this
topic for more details.

Classic means to fulfil our first requirement for avoiding CFL based on the acous-
tic waves, consists in deriving an implicit in time discretization. Unfortunately this
usually induces more numerical diffusion, including for the approximation of the
material waves. In order to meet both first and second needs, we propose a mixed
implicit-explicit strategy: the terms responsible for the acoustic waves receive a
time implicit treatment while the ones responsible for the transport waves are
treated by an explicit update. This task is achieved by means of a Lagrange-
Projection algorithm as in [3]. This approach provides a natural decoupling of the
acoustic waves and the material waves. An approximation based on a relaxation
strategy (see for instance [1] but also the pioneering references therein) provides a
simple mean to circumvent the nonlinearities involved with the equation of state
of the fluid.

The effects of both gravity and friction source terms are then incorporated
into the solver thanks to the concept of simple approximate Riemann solver and
consistency with the integral form introduced by Gallice [4]. This powerful method
allows to account for both source terms and convective fluxes at the same time.
It has been applied in [2] for deriving an explicit scheme for the same flow model.
We shall show that this approach can be followed within a mixed implicit-explicit
framework for designing an AP scheme.

To conclude and summarize, we propose a large time step and asymptotic pre-
serving scheme for the gas dynamics equations with external forces and friction
terms. By asymptotic preserving, we mean that the numerical scheme is able to
reproduce at the discrete level the parabolic-type asymptotic behaviour satisfied
by the continuous equations. By large time-step, we mean that the scheme is stable
under a CFL stability condition driven by the (slow) material waves, and not by
the (fast) acoustic waves as it is customary in Godunov-type schemes. Numerical
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evidences are proposed and show a gain of several orders of magnitude in both
accuracy and efficiency.
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Balance laws coupled with ordinary differential equations

Mauro Garavello

(joint work with Raul Borsche, Rinaldo M. Colombo)

We consider a system of hyperbolic balance laws coupled, through the boundary
data, with ordinary differential equations. More precisely, we study the following
system

(1)







































∂tu+ ∂xf(u) = g(u) t > 0, x > γ(t)
ẇ(t) = F (t, u(t, γ(t)), w(t)) t > 0
γ̇(t) = Π(w(t)) t > 0
b(u(t, γ(t))) = B (t, w(t)) t > 0
u(0, x) = uo(x) x > xo
w(0) = wo

γ(0) = xo

where u ∈ R
n, w ∈ R

m and γ ∈ R. The balance law ∂tu + ∂xf(u) = g(u) is
defined for t > 0 and x > γ(t) while γ(t) represents the position of a moving
boundary at time t, which is not given a priori. Note that the solution to this
partial differential equation depends on the position of the boundary and on the
solution to the ordinary differential equation ẇ(t) = F (t, u(t, γ(t)), w(t)) through
the boundary data b(u(t, γ(t))) = B (t, w(t)). Moreover the solution w to the
ordinary differential equation depends on the trace u(t, γ(t)) of the solution of the
balance laws. Here we present a result about the well posedness of solutions to (1)
and also about the stability, i.e. the continuous dependence of the solution with
respect to small variations of the source term g, of the vector fields F and Π and
of the boundary term B.
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Figure 1. A fluid in a pipe with a piston at one end.

The present framework comprehends, for instance, the Eulerian description of
a fluid in a pipe with a piston at one end, which leads to the following system (see
Figure 1)

(2)



































∂tρ+ ∂xq = 0

∂tq + ∂x

(

q2

ρ + p(ρ)
)

= −ν q|q|
ρ − g ρ sinα

V (t) =
q (t, γ(t)+)

ρ (t, γ(t)+)
V̇ = pext(t)− p (ρ (t, γ(t)+))− g sinα
γ̇(t) = V (t) .

Here, ρ is the gas density, q is its linear momentum density, p = p(ρ) is a pressure
law playing the role of the gas equation of state, V is the piston speed and γ
its position. Friction is described by the term −νq |q| /ρ, with ν being a suitable
constant, while pext denotes the external pressure. The slope of the pipe is α,
while g is gravity.

1. Analytical Results

Throughout, we denote R
+ = [0,+∞[. Let Ω ⊆ R

n be an open set. With
Br(w) we denote the open ball centered at w with radius r. Fix the reference
states û ∈ Ω, ŵ ∈ R

m and a point x̂ ∈ R. Define, for all positive δ, the sets

(3) U =
{

u ∈ û+ (BV ∩ L1)(R;Rn) : u(R) ⊂ Ω
}

, Uδ = {u ∈ U : TV (u) ≤ δ} .
On system (1) we require the following conditions, where we refer to [5, 7] for

the standard vocabulary about conservation laws.

(f): f ∈ C4(Ω;Rn) is smooth and such that, for all u ∈ Ω, Df(u) is strictly
hyperbolic and each characteristic field is either genuinely nonlinear or lin-
early degenerate. For u ∈ Ω and i = 1, . . . , n, call λi(u) the i-th eigenvalue
of Df(u) and ri(u) the corresponding right eigenvector. We may assume
that λi−1(u) < λi(u) for all u ∈ Ω and i = 2, . . . , n.

(g): For δo > 0, g : Uδo → L1(R;Rn) satisfies ‖g(u)− g(u′)‖L1 ≤ L1 ‖u− u′‖L1

and TV (g(u)) ≤ L2 for suitable L1, L2 > 0, and for every u, u′ ∈ Uδo .
(Π): Π ∈ C0,1(Rm;R).
(NC): There exist c > 0 and ℓ ∈ {1, 2, . . . , n−1} such that λℓ(û) < Π(ŵ)−c

and λℓ+1(û) > Π(ŵ) + c.
(b): b ∈ C1(Ω;Rn−ℓ) is such that det (Dub(û) [rℓ+1(û) · · · rn(û)]) 6= 0.
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(F): The map F : R+ × Ω × R
m −→ R

m is a Carathéodory function such
that it is locally Lipschitz continuous with respect to u and w, uniformly
in t and it has a sublinear growth with respect to w.

(B): B ∈ C1(R+ × R
m;Rn−ℓ) is locally Lipschitz continuous.

Remark that condition (NC) is a Non Characteristic condition, while condi-
tion (b) is the usual assumption on the assignment of boundary data in a non
characteristic problem for a conservation law, see for instance [1, 2, 3, 6].

Definition 1. Let T > 0 and the state û be fixed. A triple (u,w, γ) with

u ∈ C0 ([0, T ];U) w ∈ W 1,1 ([0, T ];Rm) γ ∈W 1,∞ ([0, T ];Rm)

is a solution to (1) on [0, T ] with initial datum (uo, wo, xo) such that uo ∈ U with
uo(x) = û for x < xo, wo ∈ R

m and xo ∈ R, if

(1) u solves






∂tu+ ∂xf(u) = g(u) (t, x) ∈ R
+ × ]γ∗(t),+∞[

b (u (t, γ∗(t)+)) = B∗(t) t ∈ R
+

u(0, x) = uo(x) x ∈ R
+.

on [0, T ] with B∗(t) = B (t, w(t)), γ∗(t) = γ(t) and initial datum uo;

(2) w(t) = wo +
∫ t

0
F∗ (τ, w(τ)) dτ for a.e. t ∈ [0, T ] with F∗(t) given by

F (t, u (t, γ(t)+) , w);

(3) γ(t) = xo +
∫ t

0 Π(w(τ)) dτ for a.e. t ∈ [0, T ].

We now present the main result of this work, which extends [4, Theorem 2.6]
allowing variations of g, B, F and Π.

Theorem 1. Assume we have functions f , g1, g2, b, B1, B2, F1, F2, Π1 and
Π2 such that f satisfies (f), g1 and g2 satisfy (g), b satisfies (b), B1 and B2

satisfy (B), F1 and F2 satisfy (F), and Π1 and Π2 satisfy (Π) and (NC).

Then, there exist positive δ, L, Tδ, domains D̂t (for t ∈ [0, Tδ]) and processes

P̂1(t, t0), P̂2(t, t0) : D̂t0 → D̂t0+t (t0, t0 + t ∈ [0, Tδ]) such that

(1) for all t0, t1, t2 with t0 ∈ [0, Tδ[, t1 ∈ [0, Tδ − t0[ and t2 ∈ [0, Tδ − t0 − t1],

then P̂l(t2, t0 + t1) ◦ P̂l(t1, t0) = P̂l(t1 + t2, t0) and P̂l(0, t0) = Id;

(2) for t0 ∈ [0, Tδ[, t ∈ [0, Tδ − t0], and (u,w, x), (ū, w̄, x̄) ∈ D̂t0

∥

∥

∥P̂1(t, t0)(u,w, x) − P̂2(t, t0)(ū, w̄, x̄)
∥

∥

∥

L1×Rm×R

≤ L (‖u− ū‖L1 + ‖w − w̄‖
Rm + |x− x̄|) + L (‖g1 − g2‖L1 + ‖B1 −B2‖L1)

+ L (‖F1 − F2‖∞ + ‖Π1 −Π2‖∞)

(3) for all (u0, w0, x0) ∈ D̂0, the maps t → P̂l(t, 0)(u0, w0, x0) (l ∈ {1, 2}),
defined for t ∈ [0, Tδ], solves (1) in the sense of Definition 1, respectively
with g = gl, B = Bl, F = Fl, Π = Πl (l ∈ {1, 2}).
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