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Introduction by the Organisers

Algebraic K-theory and motivic cohomology are both tools providing a systematic
way of producing invariants for algebraic or geometric structures. Their definition
and many methods are taken from algebraic topology, but they have found par-
ticularly fruitful applications for problems of algebraic geometry, number theory,
quadratic forms, or group theory. Motivic cohomology and algebraic K-theory are
closely related by a spectral sequence, but have different special features.

The workshop program presented a varied series of lectures on the latest devel-
opments in the field. The 51 participants came mostly from Europe and North
America, but there were also participants from Japan, Korea, and South America.
The participants ranged from leading experts in the field to younger researchers
and also some graduate students. 19 one-hour talks presented a wide range of lat-
est results on the theory and its applications, reflecting a good mix of nationalities
and age groups as well.

We now want to describe in more detail the topics which were touched.
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Computations in K-theory and A1-homotopy theory. Cortiñas applied the
Borel regulator to obtain results on the assembly map for groups, and Vishik de-
scribed unstable operations on algebraic cobordism and, more generally, so-called
theories of rational type. Asok gave a description of the unstable A1-homotopy

groups πA1

2 (A2 \ 0) and πA1

3 (A3 \ 0) and a conjectural description of πA1

n (An \ 0)
for n ≥ 4.

Categorical constructions for K-theory and motives. Tamme introduced a
new theory, differential algebraic K-theory, which combines spectra of manifolds
with algebraic K-theories and is related to analytic index theorems as conjectured
by Lott as well as constructions of explicit elements in algebraic K-theory. Hes-
selholt introduced a new theory, called real algebraic K-theory, which is a theory
for exact categories with duality, which also works if the prime 2 is not invertible
in the coefficients. Ivorra extended some work of Kahn and Yamazaki on reproc-
ity functors, which are certain Nisnevich sheaves with transfers, which are not
necessarily A1-invariant, and defined an analogue of the Somekawa K-group for
them. Bondarko discussed how to extend the definition of Kahn and Sujatha of a
birational category of motives over a field to rather general base schemes.

Categories of mixed motives, and motivic cohomology. Kelly outlined how
the results of Gabber on alterations (refining the previous results by de Jong) allow
to prove all results on Voevodsky motives over a field k without using resolution, as
long as one inverts the exponential characteristic p in the coefficients. Spitzweck
defined a theory of categories of mixed motives for schemes of finite type over
Dedekind rings (of possibly mixed characteristic), satisfying the six functor for-
malism.

A1-homotopy theory. Wendt discussed the failure of homotopy invariance and
even weak homotopy invariance for the homology of algebraic groups. For any
schemeX of finite type over a subfield k of C, Drew constructed Hodge realizations
on the Morel-Voevodsky stable homotopy category SH(X), with values in M.
Saito’s category of mixed Hodge modules, which is compatible with Grothendieck’s
six functors in this setting. Weibel settled a conjecture of Voevodsky concerning
the slices of KGL∧n in the stable homotopy category over rather general bases.

Chow groups and algebraic cycles. Pirutka proved that the (suitably defined)
integral Tate conjecture holds for cubic fourfolds over a finite field of characteristic
at least 5. For simple CM abelian varieties A over Q, Sugiyama discussed the
relationship between the validity of the Hodge conjecture for A and the Tate
conjecture on the reduction A0 of A at a non-archimedean place w of Q. Zhong
studied the torsion of Chow groups of complete flag varieties for linear groups over
a field k and in particular a bound on the exponent. For a prime p, Totaro studied
the mod-p-Chow ring CH∗(BG)/p of an affine group scheme over C as a model
case for mod p Chow groups in general.
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Arithmetic. Lichtenbaum proposed a new conjecture on the special values of the
zeta functions of schemes of finite type over Z. Schmidt defined a reciprocity map
from Weil étale Suslin homology of an arbitrary variety over a finite field to the
abelianized tame fundamental group and showed that it is an isomorphism after
completion provided resolution of singularities holds over the field.

Foundations. Voevodsky, cofounder of the theory of motivic cohomology and
A1-homotopy theory, has more recently proposed a new logical foundation for
mathematics and a formal language supposed to enable computer-based proof
checks. Grayson gave an introduction into this theory, which is intuitively linked
to the language of homotopy theory and was the topic of a special year at the
Institute for Advanced Study at Princeton culminating in a 600 page book on this
theory.
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Abstracts

On the failure of weak homotopy invariance

Matthias Wendt

(joint work with Kevin Hutchinson)

Homotopy invariance of algebraic K-theory can be stated as group homology
isomorphisms H•(GL∞(R),Z) ∼= H•(GL∞(R[T ]),Z) for R an arbitrary regular
ring. Examples of Krstić-McCool for SL2 and Wendt for SL3 have shown that
such isomorphisms typically do not exist for algebraic groups unless R is a field.
These examples motivate the following weaker version of homotopy invariance:
let k be a field and k[∆•] be the standard simplicial k-algebra with n-simplices
k[∆n] = k[X0, . . . , Xn]/(

∑
Xi− 1). For an algebraic group G over k, consider the

simplicial group G(k[∆•]) and define the group homology of G made A1-invariant
as H•(BG(k[∆•]),Z). There is a natural change-of-topology morphism G(k) →
G(k[∆•]). We say that group homology of G has weak homotopy invariance for
the field k if the change-of-topology morphism induces an isomorphism

H•(G(k),Z)→ H•(BG(k[∆•]),Z).

If true, weak homotopy invariance would allow to use A1-homotopy theory to prove
theorems or do computations in group homology. However, we have the following
negative results for the third homology of SL2, cf. [HW13]:

(1) For k a number field and ℓ an odd prime, the kernel of the change-of-
topology morphism

H3(SL2(k),Z/ℓ)→ H3(BSL2(k[∆
•]),Z/ℓ)

is not finitely generated.
(2) For k a field complete with respect to a discrete valuation, with residue

field k (assume for simplicity algebraically closed), the change of topology
morphism

H3(SL2(k),Z[1/2])→ H3(BSL2(k[∆
•]),Z[1/2])

factors through K ind
3 (k)⊗Z[1/2], and its kernel surjects onto the pre-Bloch

group P(k)⊗ Z[1/2].

The proof of these results (and others of a similar nature) combines two in-
gredients: on the one hand, the group homology of SL2 made A1-invariant can
be studied via A1-homotopy theory. On the other hand, a series of recent pa-
pers by Kevin Hutchinson [Hut11a, Hut11b] provides a lot of knowledge about
H3(SL2(k),Z[1/2]), its relation with refined pre-Bloch groups as well as the exis-
tence of residue maps for pre-Bloch groups.

The basis of assertion (1) is a size comparison: fibre sequences in A1-homotopy
theory can be used to establish stabilization results forH•(BSp2n(k[∆

•]),Z) which
imply that H3(BSL2(k[∆

•]),Z[1/2]) ∼= H3(Sp∞(k),Z[1/2]) is a finitely generated
Z[1/2]-module for k a number field. On the other hand, the residue maps on
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refined Bloch groups defined by Hutchinson imply that for k a number field there
is a morphism

H3(SL2(k),Z[1/2])→
⊕

p⊆Ok prime

P(Ok/p)⊗ Z[1/2]

with finite cokernel, hence H3(SL2(k),Z[1/2]) is not finitely generated. The as-
sertion (1) follows using the fact that #P(Fq) = q + 1 and Chebotarev density.

Assertion (2) follows from a comparison of Z[k×/(k×)2]-module structures on
both sides. The natural k×-action by conjugation descends to the square class
ring on both sides. Moreover, on the A1-homotopy side, it descends even further
to a module structure under the Grothendieck-Witt ring GW (k). Therefore, the
change-of-topology map factors as

H3(SL2(k),Z)→ H3(SL2(k),Z)⊗Z[k×/(k×)2] GW (k)→ H3(BSL2(k[∆
•]),Z)

In the situation of (2) and taking Z[1/2]-coefficients, the group in the middle can
be identified with H3(SL2(k),Z[1/2]) ⊗Z[k×/(k×)2] Z ∼= K ind

3 (k) ⊗ Z[1/2] and the
claim follows again from residue map computations of Hutchinson.

In particular, our results imply that even the weak homotopy invariance with
finite coefficients can fail for fields which are not algebraically closed. However, it
should be emphasized that the methods do not apply to k algebraically closed.
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Differential algebraic K-theory

Georg Tamme

(joint work with Ulrich Bunke)

1. Motivation

Let R be the ring of integers in a number field and denote by Σ the set of em-
beddings R →֒ C. If V is a locally constant sheaf of finitely generated projective
R-modules on a manifold M , called bundle for short, we get, for each σ ∈ Σ, a
flat C-vector bundle Vσ → M . By a geometry gV on V we mean a collection
of hermitian metrics on the Vσ which is compatible with the action of complex
conjugation. The choice of a geometry gV on V allows one to construct a charac-
teristic form ω(V, gV ) given by the Kamber-Tondeur forms of the flat bundles Vσ

with hermitian metrics. These are closed odd differential forms which represent
the Borel regulator class of V .
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Lott [5] defined a secondary K-group KR
0
(M) in terms of generators and re-

lations: A generator is a triple V̂ := (V, gV , η) where V is a bundle as above,
gV is a geometry on V , and η is an even differential form (modulo exact forms),

such that dη = ω(V, gV ). There is a relation V̂0 − V̂1 + V̂2 = 0 if there is an
exact sequence of the underlying bundles V : 0 → V0 → V1 → V2 → 0 such
that η0 − η1 + η2 ≡ T (V , gV ) modulo exact forms, where gV = (gV0 , gV1 , gV2) and
T (V , gV ) is a version of the Bismut-Lott higher analytic torsion form associated
to the sequence V with geometries gV0 , gV1 , gV2 [1]. Lott proves that the functor

KR
0
is homotopy invariant. However, it is not part of a generalized cohomology

theory.
Given a proper submersion of manifolds π : W → B with metric and connection,

Lott defines an analytic push-forward π! : KR
0
(W )→ KR

0
(B). He shows that it

is independent of the additional geometric choices, and hence of topological nature.
Denote by KRR/Z∗ the cohomology theory defined by the R/Z-version of the

algebraic K-theory spectrum KR of R. Lott conjectures the following secondary
index theorem:

Conjecture (Lott). There is a natural transformation KR
0
→ KRR/Z−1 un-

der which the analytic push-forward π! corresponds to the Becker-Gottlieb-Dold
transfer on the right hand side.

The main result of this report is the proof of the first part of this conjecture
concerning the existence of such a natural transformation.

2. Differential algebraic K-theory for number rings

A bundle V on the manifoldM defines a class [V ] ∈ KR0(M) in the cohomology
theory defined by the spectrum KR. The main feature of differential algebraic K-

theory K̂R0(M) is that a class x̂ ∈ K̂R 0(M) combines the information about an
underlying K-theory class, denoted I(x̂) ∈ KR0(M), and an odd differential form,
denoted R(x̂), representing the Borel regulator class of I(x̂), with secondary data.
The precise construction is due to Bunke-Gepner [2] (see also Section 3 below).

There is a cycle map which associates to a bundle V with geometry gV a

class cycl(V, gV ) ∈ K̂R 0(M) such that I(cycl(V, gV )) = [V ] and R(cycl(V, gV )) =
ω(V, gV ). By construction, there is also a map a from even differential forms

(modulo exact forms) to K̂R0 such that R ◦ a is the exterior differential d of

forms and im(a) = ker(I). Moreover, the so-called flat part K̂R0
flat(M) = {x̂ ∈

K̂R0(M) |R(x̂) = 0} turns out to be naturally isomorphic to KRR/Z−1(M).

Theorem. If V : 0 → V0 → V1 → V2 → 0 is an exact sequence of locally
constant sheaves of finitely generated projective R-modules on the manifold M ,
and gV = (gV0 , gV1 , gV2) is a collection of geometries on the Vi’s, then the relation

cycl(V0, g
V0)− cycl(V1, g

V1) + cycl(V2, g
V2) = a(T (V , gV ))

holds true in K̂R0(M).
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The theorem implies that sending a generator (V, gV , η) for Lott’s secondary

K-group to the class cycl(V, gV ) − a(η) ∈ K̂R0(M) gives a well defined map

KR
0
(M) → K̂R0

flat(M) ∼= KRR/Z−1(M) and hence settles the first part of
Lott’s conjecture.

The proof of the theorem uses in an essential way the extension of differential
algebraic K-theory from number rings to higher dimensional schemes developed
in [3].

3. The case of higher dimensional schemes

In this generalized setting, differential algebraic K-theory is a functor of two
variables, a smooth manifold M and a regular separated scheme X of finite type

over Spec(Z), denoted by M × X 7→ K̂0(M × X). The idea is that the Borel
regulator in the number ring case should now be replaced by Beilinson’s regulator.
To this end, we introduce a complex DR(M × X) built from smooth differential
forms on the manifold M × X(C) which computes the cohomology of M with
coefficients in the absolute Hodge cohomology of X .

In this setting, a bundle is locally free sheaf of finitely generated pr−1
X OX -

modules on the topological space M × X . Such a bundle V gives rise to a class
[V ] ∈ KX0(M), where KX is the algebraic K-theory spectrum of X . To V we
can associate a C-vector bundle VC →M×X(C) which is naturally equipped with
a flat partial connection ∇I in the M -direction and holomorphic structure ∂̄ in
the X-direction. A geometry gV on V is given by a pair of a hermitian metric
and a connection that extends the partial connection ∇I + ∂̄, such that the metric
and the connection locally on M extend to some compactification of X . Using a
geometry gV on V we can construct a characteristic form ω(V, gV ) ∈ DR(M ×X)
which represents the Beilinson regulator of [V ].

The construction of the complex DR and the characteristic form ω(V, gV ) is
inspired by work of Burgos-Wang [4].

Denote by H the Eilenberg-MacLane functor from chain complexes to spectra.

In order to define K̂ 0(M ×X) we construct sheaf of spectra K on the category of
pairs (M,X), where M is a smooth manifold and X a scheme as above, such that
K(M ×X) is a model of the function spectrum KXM , and a map of sheaves of
spectra r : K→ H(DR) which induces Beilinson’s regulator on homotopy groups.

We then define the presheaf of spectra K̂ as the homotopy pull-back

K̂
R

//

I

��

H(σ≥0 DR)

��

K
r

// H(DR),

where σ≥0 denotes the stupid truncation in degree 0, and define

K̂ 0(M ×X) := π0(K̂(M ×X)).
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There exist maps a,R, and I as in the number ring case and their properties follow
formally from the definition via a homotopy pull-back.

There is a cycle map that associates a differential algebraic K-theory class

cycl(V, gV ) ∈ K̂R 0(M ×X) to a bundle V on M ×X with geometry gV . It has
similar properties as before.

4. The proof of the Theorem

For the proof of the theorem, we let X := Spec(R). The extension of bundles
of R-modules V on M with geometries gV as in the Theorem corresponds to an
extension of bundles with geometry on M ×X as in Section 3.

We naturally construct a sheaf W with geometry gW on M ×X ×Z P1
Z which

restricts to (V0 ⊕ V2, g
V0 ⊕ gV2) at 0 and to (V1, g

V1) at ∞. Then

∑

i

(−1)i cycl(Vi, g
Vi) = cycl(W, gW )

∣∣
0
− cycl(W, gW )

∣∣
∞
.

There is a natural homotopy operator
∫

: DR(M ×X ×Z P1
Z)

∗ → DR(M ×X)∗−1

and one shows that

cycl(W, gW )
∣∣
0
− cycl(W, gW )

∣∣
∞

= a

(∫
R
(
cycl(W, gW )

))
= a

(∫
ω(W, gW )

)
.

To conclude, we observe that the naturality of the construction together with the
axiomatic characterization of the Bismut-Lott torsion form imply that

∫
ω(W, gW ) ≡

T (V , gV ) modulo exact forms.
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An application of Borel regulators to the K-theory of group rings

Guillermo Cortiñas

(joint work with Gisela Tartaglia)

The talk was about our joint article arXiv:1305.1771. Let G be a group, Fin
the family of its finite subgroups, and E(G,Fin) the classifying space. Let L1 be
the algebra of trace-class operators in an infinite dimensional, separable Hilbert
space over the complex numbers. Consider the rational assembly map in homotopy
algebraic K-theory

HG
p (E(G,Fin),KH(L1))⊗Q→ KHp(L

1[G])⊗Q.

The rational KH-isomorphism conjecture predicts that the map above is an iso-
morphism; it follows from a theorem of Yu (see arXiv:1106.3796,
arXiv:1202.4999) that it is always injective. We prove the following.

Theorem 1. Assume that the map above is surjective. Let n ≡ p + 1 mod 2.
Then:

i) The rational assembly map for the trivial family

HG
n (E(G, {1}),K(Z))⊗Q→ Kn(Z[G]) ⊗Q

is injective.
ii) For every number field F , the rational assembly map

HG
n (E(G,Fin),K(F )) ⊗Q→ Kn(F [G])⊗Q

is injective.

We remark that the K-theory Novikov conjecture asserts that part i) of the
theorem above holds for all G, and that part ii) is equivalent to the rational injec-
tivity part of the K-theory Farrell-Jones conjecture for number fields.

The idea of the proof of the theorem above is to use an algebraic, equivariant
version of Karoubi’s multiplicative Chern character, which we introduce in the
article. Our character is defined for all C-algebras; in the case of finite dimensional
Banach algebras, it agrees with Karoubi’s. In particular, by work of Karoubi,
the Borel regulator can be recovered from the multiplicative character applied to
C. This allows us to relate the assembly map with L1 coefficients to those with
coefficients in number fields and in Z.
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Real algebraic K-theory

Lars Hesselholt

(joint work with Ib Madsen)

We define a 2-functor that to an exact category with duality (C , D, η) assigns
a real symmetric spectrum KR(C , D, η) and prove real versions of both the group
completion theorem and the additivity theorem. We stress that we do not require
that 2 be invertible in the sense that C be enriched in Z[1/2]-modules.

We recall that a (strong) duality structure on a category C is a pair (D, η) of a
functor D : C op → C and a natural isomorphism η : idC → D ◦Dop such that the
quadruple (Dop, D, η, ηop) is an adjoint equivalence of categories from C to C op.
For instance, if A is a ring, and if (L, α) is a pair of a right A⊗A-module L = L12

and an A⊗A-linear map α : L12 → L21 such that (1) the right A-modules L1 and
L2 are finitely generated and projective; (2) α ◦ α = idL; and (3) the unique map
of A-A-bimodules 1A2 → 1HomA(L2, L1)2 that to 1 assigns α is an isomorphism,
then there is a duality structure on the category P(A) of (small) finitely generated
projective right A-modules with D(P ) = HomA(P,L1)2 and ηP (x)(f) = α(f(x)),
and every duality structure on P(A) is, up to equivalence, of this form.

A real space is a left G-space and a real map is a G-equivariant map for the
group G = Gal(C/R). For example, the one-point compactifications S2,1, S1,0,
and S1,1 of C, R, and iR are pointed real spaces. A real symmetric spectrum is a
symmetric spectrum E = {Er, σr : Er ∧ S2,1 → Er+1} in the category of pointed
real spaces with respect to the sphere S2,1. The category of real symmetric spectra
has a model structure defined by Mandell, the associated homotopy category of
which is the G-stable homotopy category. The real algebraicK-groups of (C , D, η)
are defined to be the (RO(G)-equivariant) homotopy groups

KRp,q(C , D, η) = [Sp,q,KR(C , D, η)]R

given by the abelian groups of morphisms in the homotopy category of real sym-
metric spectra from Sp,q = (S1,0)∧(p−q) ∧ (S1,1)∧q to KR(C , D, η). In particular,
the groups KRp,0(C , D, η) are the hermitian K-groups of (C , D, η).

The construction of KR(C , D, η) is based on the real Waldhausen construction

(C , D, η)
✤ // (S2,1C [−], D[−], η[−])

that to a pointed exact category with duality associates a simplicial pointed exact
category with duality. (By the latter we mean a simplicial pointed exact category
S2,1C [−] together with a duality structure (D[n], η[n]) on S2,1C [n] such that

S2,1C [n]op
D[n]

//

θ∗

��

S2,1C [n]

θ̄∗

��

S2,1C [m]op
D[m]

// S2,1C [m]

commutes for every θ : [m]→ [n]. Here θ̄ : [m]→ [n] is given by θ̄(i) = n−θ(m−i).
Note that this is not a simplicial object in the category of pointed exact categories
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with duality.) By definition, the category

S2,1
C [n] ⊂ Cat(Cat([2], [n]),C )

is the full subcategory of functors A : Cat([2], [n])→ C that satisfy that

(1) for all µ : [1]→ [n],

A(s0µ) = A(s1µ) = 0,

a fixed null-object; and
(2) for all σ : [3]→ [n], the sequence

A(d3σ)
f

// A(d2σ)
g

// A(d1σ)
h

// A(d0σ)

is 4-term exact in the sense that f is an admissible monomorphism, h an
admissible epimorphism, and g induces an isomorphism of a cokernel of f
onto a kernel of h;

and D[n] and η[n] are defined by D[n](A)(θ) = D(A(θ̄)op) and η[n]θ = η. We note
that the construction is similar to the usual Waldhausen construction, which we
will write (S1,1C [−], D[−], η[−]), substituting Cat([2], [n]) for Cat([1], [n]). We also
remark that S2,1C [0] and S2,1C [1] consist of a single object and a single morphism,
while S2,1C [2] is isomorphic to C via the functor that takes A to A(id[2]).

Definition. The real algebraic K-theory spectrum of a pointed exact category
with duality (C , D, η) is the real symmetric spectrum with rth space

KR(C , D, η)r = |N(iS2r,r
C [−], D[−], η[−])[−]|R

given by the realization of the nerve of the subcategory of isomorphisms in the
r-simplicial pointed exact category with duality obtained by applying the real
Waldhausen construction r times to (C , D, η) and with the rth structure map

KR(C , D, η)r ∧ S2,1 σr
// KR(C , D, η)r+1

induced by the inclusion of the 2-skeleton in the last S2,1-direction.

The involution on KR(C , D, η)r is obtained from the duality structure in a way
that was explained in the lecture. In particular, the subspace of G-fixed points
in the 0th space KR(C , D, η)0 is naturally weakly equivalent to the realization of
the nerve of the category Sym(iC , D, η) of symmetric spaces in (iC , D, η). It has
objects pairs (c, b) of an object c and an isomorphism b : c → D(cop) in C such
that b is symmetric in the sense that it is equal to its adjoint D(bop) ◦ ηc and has
morphisms g : (c, b)→ (c′, b′) the isomorphisms g : c→ c′ such that

c
b

//

g

��

D(cop)

c′
b′

// D(c′op)

D(gop)

OO

commutes.
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Theorem (Real group completion theorem). Let (C , D, η) be a pointed exact
category with duality and suppose that the exact category C is split-exact. Then
for every H ⊂ G and positive integer r, the canonical ring homomorphism

H∗(KR(C , D, η)H0 )[π0(KR(C , D, η)H0 )−1]→ H∗((Ω
2r,rKR(C , D, η)r)

H)

is an isomorphism.

The following statement was identified by Schlichting as the appropriate version
of the additivity theorem for real algebraic K-theory.

Theorem (Real additivity theorem). Let (C , D, η) be a pointed exact category
with duality. Then the duality-preserving functor

(S1,1C [3], D[3], η[3]) // (C × C × C , γ13 ◦ (D ×D ×D), η × η × η)

that to A : Cat([1], [3]) → C associates (A(01), A(12), A(23)) induces a level weak
equivalence of real algebraic K-theory spectra.

The proof proceeds by exhibiting (four) explicit (real) simplicial homotopies,
and is modelled on McCarthy’s proof of the additivity theorem for Waldhausen
algebraic K-theory. As an important corollary, we show that the real algebraic
K-theory spectrum is positively fibrant in the following sense.

Corollary. Let (C , D, η) be a pointed exact category with duality. Then for every
positive integer r, the adjoint structure map

KR(C , D, η)r
σ̃r

// Ω2,1KR(C , D, η)r+1

is a real weak equivalence.

ldh descent for Voevodsky motives

Shane Kelly

The assumption that resolution of singularities is true litters Voevodsky’s work
on motives. While it has been proven to hold over a characteristic zero field, in
positive characteristic resolution of singularities remains one of the most important
open problems in algebraic geometry.

In 1996 de Jong published a theorem which can be used to replace some resolu-
tion of singularities arguments if we are willing to work with rational coefficients.
More recently, Gabber has a theorem in the same spirit which provides an alter-
native if we forego knowledge of torsion equal to the characteristic.

A weak version of this theorem of Gabber is the following.

Theorem 1 (Gabber [1, Theorem 3]). Let X be a separated scheme of finite type
over a perfect field k and l a prime distinct from the characteristic of k. There
exists a smooth quasi-projective k scheme X ′, and a k-morphism X ′ → X that is
proper, surjective, such that every generic point of X ′ maps to a generic point of X,
and such that the field extensions at generic points are finite of degree prime to l.
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In this talk we outline how this theorem of Gabber can be used to remove the
assumption of resolution of singularities, if we work with Z[1/p]-coefficients (where
p is the exponential characteristic of the base field).

To apply resolution of singularities, Voevodsky and Suslin introduced the cdh
topology. We describe in this talk a slightly finer topology which allows one to
apply the above theorem of Gabber.

Definition 1. The ldh topology on the category of separated schemes of finite
type over a noetherian base scheme is the coarsest topology such that cdh covering
families are covering families, and so are singletons {f : Y → X} containing a
finite flat surjective morphism of constant degree prime to l.

The difficult applications of the resolution of singularities hypothesis in [2] are
all via the following theorem. Recall that C•(F )(−) is the complex of presheaves
F (∆• × −), where ∆• is the canonical cosimplicial scheme which has ∆n =
Spec(k[t0, . . . , tn]/(

∑n
i=0 ti = 1)).

Theorem 2 ([2, Chapter 5, Theorem 4.1.2]). Suppose k is a perfect field that
satisfies resolution of singularities, and let F be a presheaf with transfers on the
category of separated schemes of finite type over k. If the cdh associated sheaf Fcdh

is zero, then the complex F (∆• ×−) on the full subcategory of smooth schemes is
exact as a complex of Nisnevich sheaves.

The most important theorem presented in this talk is the following.

Theorem 3 ([3, Theorem 5.3.1]). Suppose k is a perfect field of exponential char-
acteristic p, and let F be a presheaf of Z(l)-modules with transfers on the category
of separated schemes of finite type over k (with l 6= p). If the ldh associated sheaf
Fldh is zero, then the complex F (∆•×−) on the full subcategory of smooth schemes
is exact as a complex of Nisnevich sheaves.

A consequence is the following.

Corollary 1. All the results in [2] remain true without the hypothesis of resolution
of singularities, if Z[1/p]-coefficients are used.

Via a formal adjunction argument, Theorem 3 follows once one has shown that
in the Morel-Voevodsky stable homotopy category SH(k), any module over the
object HZ(l) that represents motivic cohomology with Z(l)-coefficients satisfies
descent for the ldh topology.

The first main technical theorem used to show this descent statement is the
following.

Theorem 4 ([3, Theorem 3.8.1]). Suppose that F is a Nisnevich sheaf of Z(l)-
modules on the category of separated schemes of finite type over a perfect field k
of exponential characteristic p 6= l. We suppose further that

(1) F is unramified in the sense of Morel, i.e., for every open immersion of
smooth schemes U → X the morphism F (X)→ F (U) is
(a) injective if U contains all the points of codimension zero of X, and
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(b) an isomorphism if U contains all the points of codimension ≤ 1 of X,
(2) F has a “structure of traces”, i.e., attached to every finite flat surjective

morphism f : Y → X there is a morphism Trf : F (Y )→ F (X), and these
morphisms satisfy appropriate additivity, functoriality, base-change, and
degree-formula axioms (see [3, Definition 3.3.1] for a precise definition),

(3) F (X)→ F (Xred) is an isomorphism for every scheme X.

Then for every n ≥ 0 the canonical morphism Hn
cdh(−, Fcdh) → Hn

ldh(−, Fldh)
is an isomorphism of presheaves, and this presheaf has a canonical structure of
presheaf with transfers.

This theorem is applied to show that the cdh and ldh descent spectral sequences
associated to an object of SH(k) are isomorphic, if the object has a structure of
traces (for a suitable notion of a structure of traces, see [3, Definition 4.3.1]). The
second technical theorem is the following.

Theorem 5 ([3, Corollary 5.2.4]). Suppose that k is a perfect field of exponential
characteristic p 6= l. For any object E ∈ SH(k) the object HZ(l) ∧ E has a
canonical structure of traces.
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Unstable operations in small theories

Alexander Vishik

In Algebraic Geometry there are two types of theories: “large” ones represented
by some spectra in the A1-homotopy category, and indexed by two numbers Aj,i,
and “small” ones typically given by pure parts A2∗,∗ of “large” theories. The latter
theories are called oriented cohomology theories and can be defined axiomatically
(see [6, Definition 2.1]) by the standard axioms of D.Quillen - see [2, Definition
1.1.2] plus the localisation axiom where one requires right exactness only. The
good thing about them is that the set of such theories is stable under change
of coefficients. Examples of “small” theories are CH∗, K0, and the Algebraic
Cobordism of M.Levine-F.Morel Ω∗ which is the universal such theory.

The construction of cohomological operations in such theories, and especially, in
Algebraic Cobordism was an important open problem for some time. The case of
stable operations can be dealt with due to universality result of M.Levine-Morel ([2,
Theorem 1.2.6]) and reorientation procedure of I.Panin-A.Smirnov ([4, 3]) , which
produces Landweber-Novikov operations. But the unstable case was completely
open, as aside from couple of isolated examples nothing was known.
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Our new approach permits to describe/construct all additive (unstable) opera-
tions An → Bm, as long as the source theory is “good”.

We say that a theory A∗ is constant if it satisfies:

(CONST ) A = A∗(Spec(k))
∼=
→ A∗(Spec(L)), for any f.g. field ext. L/k.

This implies that one has canonical splitting A∗(X) = A ⊕ A
∗
(X), where the

second summand consists of classes having positive codimension of support.
We say that a theory A∗ is of rational type, if it is constant and the natural

sequence:
⊕

W→X×P1

A∗+1(W )
i⋆0−i⋆1→ lim

V→X
A∗(V )→ A∗(X)→ 0

is exact, where the first sum is taken over all projective maps with smooth W of
dimension ≤ dim(X), and such that the preimages W0 →֒ W and W1 →֒ W of 0
and 1 are divisors with strict normal crossing, and the second limit is taken over
the category of projective maps with smooth V of dimension < dim(X). This way,
a theory is defined inductively on the dimension of X .

It appears that such theories are exactly ones obtained from Algebraic Cobor-
dism of M.Levine-F.Morel by change of coefficients:

Proposition ([6, Proposition 4.8])
A∗ is of rational type ⇔ A∗ = Ω∗ ⊗L A.

In particular, Ω∗, CH∗,K0 are of rational type.
Our main result is the following:

Main Theorem. ([6, Theorem 5.1])
Let A∗ be a theory of rational type, and B∗ - any theory. There is 1-to-1 corre-
spondence between additive (unstable) operations An → Bm and transformations:
An((P∞)×r)→ Bm((P∞)×r), r ∈ Z≥0 commuting with the pull-backs for:

(i) the action of Sr;
(ii) the partial diagonals;
(iii) the partial Segre embeddings;
(iv) (Spec(k) →֒ P∞)× (P∞)×s, ∀s.

In Topology, an analogous result was obtained by T.Kashiwabara in [1]. Our
methods though are quite different, as we are working not with spectra, but with
theories themselves (using induction on the dimension of X).

This result permits to reduce the study of additive operations from a theory of
rational type to “Algebra”. As applications we get the following results:

Theorem 1 ([6, Theorem 6.1])
Additive (unstable) operations Ωn → Ωm are exactly those L ⊗Z Q-linear com-
binations of the Landweber-Novikov operations which take integral values on all
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(P∞)×r.

We also show that stable ones among them are exactly L-linear combinations,
but this result does not require the above technique.

Theorem 2 ([6, Theorem 6.8])
Let A∗ be a theory of rational type, and B∗ - any theory. Then multiplicative
operations A∗ → B∗ are in 1-to-1 correspondence with morphisms of formal group
laws (A,FA)→ (B,FB).

As an application, we significantly extend the result of Panin-Smirnov-Levine-
Morel:

Theorem 3 ([6, Theorem 6.9])
Let B∗ be any theory, and b0 ∈ B be not a zero divisor. Let γ = b0x + b1x

2 +

b2x
3 + . . . ∈ B[[x]]. Then there exists a multiplicative operation Ω∗ G

→ B∗ with
γG = γ if and only if the shifted FGL F γ

B ∈ B[b−1
0 ][[x, y]] has coefficients in B (no

denominators). In such a case, the operation is unique.

In the original result, b0 was invertible (which restricted applications to stable
operations only). As an important example of situation with non-invertible b0, we
can now construct T.tom Dieck - style Steenrod operations in Algebraic Cobordism
- see [6, Theorem 6.17]:

Ω∗ Sq
→ Ω∗[[t]]/

(
p ·Ω t

t

)
.

Another important application of Theorem 2 is the construction of Integral (!)
Adams Operations for all theories of rational type:

Theorem 4 ([6, Theorem 6.15])
For any A∗ = Ω∗ ⊗L A, and any k ∈ Z, there exists unique unstable (for k 6= 1)
multiplicative A-linear operation Ψk : A∗ → A∗ with γΨk

= k ·A x (“formal” prod-
uct). In the case of K0 these are classical Adams operations.

In Topology, such operations were constructed by W.Wilson in [7, Theorem
11.53].

Finally, we can produce Symmetric Operations for all primes p - see [6, Theorem
6.18], which was the main motivation behind the current work. These operations
have applications to questions of rationality of cycles - see [5].
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A new conjecture on special values of scheme zeta-functions

Stephen Lichtenbaum

Let X be a regular scheme, projective, connected and flat over Spec Z, of Krull
dimension d. A point x of |X | is closed if and only if the residue field κ(x) is finite,
in which case we define the norm N(x) of x to be the cardinality of κ(x). Let
s ∈ C. The scheme zeta-function of X ζ(X, s) is defined to be

∏
x(1−N(x)−s)−1.

This product is convergent for Res > d, and defines an analytic function of s
in this range. A well-known conjecture asserts that ζ(X, s) can be analytically
continued to a meromorphic function of s in the entire complex plane, and we wil
be tacitly assuming the truth of this conjecture when we talk about special values
of ζ(X, s) at integers ≤ d.

We are interested in the behavior of ζ(X, s) at integral points n, so we would
like to give formulas for the order a(X,n) of the zero of ζ(X, s) at s = n, and the
leading term ζ∗(X,n) defined to be lims→n(ζ(X, s)(s− n)−a(X,n).

There is a beautiful conjecture of Soulé which asserts that for any connected
X of finite type over Spec Z of Krull dimension d, a(X,n) =

∑
i=0(−1)

idim

(K ′
i(X)(d−n) ⊗ Q). Here Ki(X)(r) denotes the subgroup of Ki(X) consisting of

elements of Adams weight r, and is well-defined up to torsion. Since this talk will
be focused on motivic cohomology, we will replace K ′

i(X)(r) by its conjectured

equivalent motivic cohomology group H2r−i
M (X,Z(r)). Since after tensoring with

Q the Zariski and étale motivic cohomology groups are the same, at this point we
may use either one, although for the leading term, étale cohomology is necessary.
For us, motivic cohomology will mean the hypercohomology of the sheafification
of Bloch’s higher Chow groups complex [1]

We will concentrate for the rest of this talk on formula for the leading term
ζ∗(X,n) which we hope are valid up to sign and powers of 2. Previously, conjec-
tured special-value formulas have been given by Bloch and Kato ([2]) for suffiiently
positive integers and Fontaine and Perrin-Riou ([3]) for all integers. fontaine as-
serts in [3] that these two conjectures agree when the Bloch-Kato one is defined,
but does not give a complete proof.

In any case, both of these conjectures involve the Hasse-Weil L-functions Li(X, s)
of X , rather than the scheme zeta-function. The Li(X, s) only depend on the

generic fiber XQ of X , and are related to ζ(X, s) by ζ(X, s) =
∏

i(L
′
i(X, s)(−1)i ,
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where L′
i(X, s) = Li(X, s) if X is smooth over Spec Z. In general, the two L-

functions differ only by products of polynomials in p−s, where p is the characteris-
tic of a prime where X has bad reduction. Whether our conjecture is compatible
with the previous conjectures is in general a non-trivial question. We do not give
any conjectures involving L′

i(X, s), as it is not clear how to distribute the torsion
terms in the formula for ζ∗(X, s)

Our conjectured formula involves the orders of finite groups and also determi-
nants (regulators). We begin with the finite groups:

Let |N | denote the order of the finite group N , and let Hi(X,Z(r)) denote the
étale motivic cohomology of X . (We put Z(r) = 0 if r is negative.)

Let A(X, r) =
∏2r+1

i=0 (|Hi(X,Z(r))tor |)
(−1)i+1

.
Remark: the natural conjecture here is that if i ≤ 2r+1, Hi(X,Z(r)) is finitely

generated, so its torsion subgroup is finite.

Let B(X, r) =
∏2d+3−2r

i=0 (|Hi(X,Z(d+ 1− r)tor)|
(−1)i+1

).
Let XC denote the fibered product X×ZC, with its complex analytic structure.

Let C(X, r) =
∏2d

i+0 |(H
i
B)

+(XC,Z(r))tor |
(−1)i , where HB denotes the usual

singular cohomology of XC. If r is even, H+
B denotes the subgroup of HB left fixed

by the automorphism σ of XC induced by complex conjugation on C. If r is odd,
H+

B denotes the subgroup of elements x in HB such that σ(x) = −x.

Let d(X, i, j, k) = |Hj(Z, Rkπ∗λ
i(ΩX))tor|,

χ(X, i) =
∏d

k=0

∏d
j=0 d(X, i, j, k)(−1)(j+k)

.

Let D(X, r) =
∏r

i=0 χ(X, i)(−1)i .
Let E1(X, r) = A(X, r)B(X, r)C(X, r)D(x, r). Then E1(X, r) represents the

torsion contribution to ζ∗(X, r).
We now consider the regulator terms:
We first recall that if (*) =

0→ V0 → V1 · · · → Vn → 0

is an exact sequence of complex vector spaces, and we give ourselves bases Bi for
Vi, we can define the determinant of (*) with respect to the Bi, generalizing the
usual definition of the determinant for n = 1. If each of the Vi is given to us as
(Mi)C = Mi ⊗Z C, where Mi is a finitely generated abelian group, and we take
bases of the Vi coming from generators for the Mi modulo torsion, then, up to
sign, the determinant of (*) is independent of the choice of generators.

Now let M be the motive Hi(X, r), and consider the six-term, conjecturally
exact sequence of complex vector spaces which Fontaine associates with M :

0→ H0
f (M)C → Ker(αM )→ H1

c (M)C → H1
f (M)C → Coker(αM )→ H2

c (M)C → 0

wnere αM is the map from HB(M)+ to HDR(M)/F0 induced by the period
map. We give our interepretations of integral bases for the groups in this exact
sequence, somewhat modified from Fontaine:
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Hi
B(M)(r) is the vector spaceHI

B(M)C, with a basis given by a basis forHB(M)
multiplied by (2πi)r/Γ∗(r). Here Γ∗(r) is the leading term of Γ(s) at s = r, and
is equal to (r − 1)! if r ≥ 1 and ((−r)!)(−1) if r ≤ 0.

Hi(XC,Ω
r) has a basis given by Hi(X,λIΩX/Z), where λi denotes derived ex-

terior power.
H1

f (M) = Hi+1
M (X,Z(r)), if i ≤ 2r− 2 and equals the subgroup (H2r

et (X,Z(r))0
of H2r

et (X,Z(r)) consisting of étale cycles homologically equivalent to zero, if i =

2r − 1. If i ≥ 2r − 2, let H1
f (M) = Hom(KerH2d−i

et (X,Z(d− r),Z)

M∗(1) = H2d−i−2(X, d − r), and Hi
c(M) = H

(2−i)
f (M∗(1)). Note that this is

the definition of M∗(1) given in Flach ([4]), while Fontaine ([3]) gives M∗(1) =
Hi(X, i+ 1− r). Flach’s definition seems better.

If i = 2r, H0
f (M) = H2r

et (X,Z(r)/ ∼, where ∼ denotes homological equivalence.

Otherwise H0
f (M) = 0.

For r fixed let Zi(X, r) be the determinant of the six-term sequence correspond-
ing to the motive Hi(X, r), with the indicated integral structures., and let Z(X, r)

be the alternating product
∏

i Zi(X, r)(−1)i . Then the final conjecture is

ζ∗(X, r) = E(X, r)Z(X, r)

up to sign and powers of 2.
Warning: this conjecture should be taken with many grains of salt. I have not

carefully checked it for misprints and obvious errors, nor calculated it in enough
different kinds of examples to be thoroughly convinced. It should be possible,
making standard assumptions, to check its compatibility with the standard con-
jectural functional equation of Serre, but I have not done that. I welcome any
comments and corrections.
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The Tate conjecture for integral classes on cubic fourfolds

Alena Pirutka

(joint work with F.Charles)

Let F be a finite field and let X be a smooth and projective variety over F. Denote
F̄ an algebraic closure of F and G = Gal(F̄/F). The Tate conjecture [10] predicts
that the cycle class map

CHi(X̄)⊗Qℓ →
⋃

U

H2i
ét (X̄,Qℓ(i))

U ,

where the union is over all open subgroups U of G, X̄ = X ×F F̄ and ℓ 6= char(F),
is surjective. By a restriction-corestriction argument, this statement is also equiv-
alent to the surjectivity of the map

CHi(X)⊗Qℓ → H2i
ét (X̄,Qℓ(i))

G.

In the integral version one is interested in the cokernel of the following map

(1) CHi(X̄)⊗ Zℓ →
⋃

U

H2i
ét (X̄,Zℓ(i))

U ,

and, as a stronger version, in the cokernel of the map

(2) CHi(X)⊗ Zℓ → H2i
ét (X̄,Zℓ(i))

G

or of the map

(3) CHi(X)⊗ Zℓ → H2i
ét (X,Zℓ(i)).

The map (1) is not surjective in general: the counterexamples of Atiyah-
Hirzebruch [1], revisited by Totaro [11], to the integral version of the Hodge con-
jecture, provide also counterexamples to the integral Tate conjecture [3]. More
precisely, one constructs a torsion class α in H4(X̄,Zℓ(2)), which is not algebraic,
for some smooth and projective variety X constructed as a quotient of a smooth
complete intersection in Pn by a free action of a finite group. To establish that α
is not algeraic, one uses Steenrod operations.

In the case of curve classes, i.e. for i = dim(X) − 1, Schoen established in [9]
that the map (1) is surjective if the Tate conjecture holds for divisors on surfaces.

The cokernel of the map (3) for codimension 2 cycles has been also expressed
in terms of the third unramified cohomology group in recent works [5, 4]. More
precisely, if

M = Coker[CH2(X)⊗ Zℓ → H4(X,Zℓ(2))]

then the torsion subgroup Mtors of M is isomorphic to the quotient of the group
H3

nr(X,Qℓ/Zℓ(2)) by its maximal divisible subgroup. Using this description, Pari-
mala and Suresh [8] establish that the map (3) is surjective for codimension 2
cycles on threefolds X fibred in conics over a geometrically ruled surface S over
F. For quadric fibrations over a surface S over F, the map (3) is not surjective
in general: one can construct examples of non-algebraic non-torsion classes for
i = 2 in the case when the general fibre is a quadric of dimension 3 and S = P2

F
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(see [7, 6]). However, the case when the general fibre in a quadric of dimension 2
remains open.

In a joint work with F.Charles [2], we establish that the first version of the
integral Tate conjecture holds for codimension 2 cycles on cubic fourfolds X over
F, if the charF is at least 5 : for such X , the map (1) is surjective for i = 2. The
goal of this talk is to explain our approach, which is also inspired by the work
of Claire Voisin [12] where she establishes the integral Hodge conjecture for cubic
fourfolds over C.
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Hodge realizations of triangulated mixed motives

Brad Drew

Fix a subfield k ⊆ C and a finite type k-scheme X . In [2], J. Ayoub constructs a
Betti realization functor from SH(X), the Morel-Voevodsky stable homotopy cat-
egory of X , to the derived category of analytic sheaves of abelian groups on X(C).
This realization functor is compatible with Grothendieck’s six functors f∗, f∗, f!,
f !, ⊗ and hom. We describe an analogue of M. Saito’s derived category of mixed
Hodge modules on X that receives a “Hodge realization” functor from SH(X)
compatible with Grothendieck’s six functors and Ayoub’s Betti realization. We
also construct a deRham realization functor whose target is the derived category
of holonomic DX -modules.
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Notation. • For simplicity, fix a quasi-projective k-schemeX and let Sm ↓X
denote the category of smooth, quasi-projective X-schemes.
• Let MHS denote the category of polarizable Q-mixed Hodge structures
andM := Cplx(Ind(MHS)) that of unbounded cochain complexes of ind-
objects of MHS.
• Let yM,X : Sm ↓X → Psh(Sm ↓X,M) denote the M-enriched Yoneda
embedding, which takes Y to the presheaf given by W 7→

⊕
morX(W,Y ) 1M,

where 1M is the unit of the symmetric monoidal categoryM.
• Let σ1 : X → Gm,X be the unit section, 1X(1) := coker(yM,X(σ1))[−1]

the Tate object and SpS(X,M) the category of symmetric 1X(1)-spectra
in PSh(Sm ↓X,M).

Theorem 1. There exists a combinatorial, stable, left proper, symmetric monoidal
model structure satisfying the monoid axiom on SpS(X,M) whose homotopy cat-
egory SHM(X) is theM-enriched stable homotopy category of [1, 4.5.24].

Specifically, SHM(X) is the category obtained by localizing PSh(Sm ↓X,M) with
respect to quasi-isomorphisms, forcing Nisnevich descent and A1-homotopy invari-
ance, and inverting the Tate object with respect to the tensor product.

Developing ideas of [1] and [3], one obtains a six functor formalism for SHM(−).
In order to study this functoriality, it is useful to observe that the “trivial π1(MHS)-
representation” functor α∗ : Mod(Q) → Ind(MHS) and any fiber functor ω :
MHS→ Mod(Q) induce Quillen adjunctions

SpS(X,Q)
α∗

// SpS(X,M)
α∗

oo

ω∗

// SpS(X,Q),
ω∗

oo

where SpS(X,Q) is obtained by replacingM by Cplx(Mod(Q)) in the construc-

tion of SpS(X,M). In particular, SHQ(X) := ho(SpS(X,Q)) is theQ-localization
of SH(X). Furthermore, the derived functor Lω∗ is conservative and Lα∗ and Lω∗

are compatible with the six functors.

Theorem 2. Assume k = C.

(1) There exists a commutative algebra E ∈ CAlg(PSh(Sm ↓C,M)) such that
the rth cohomology object hrE(X) is isomorphic to the Betti cohomology
Hr

Betti(X,Q) equipped with the Q-mixed Hodge structure of Deligne [4] for
all r ∈ Z, X ∈ Sm ↓C.

(2) There exists E ∈ CAlg(SpS(C,M)) such that

RhomM(yM,C(X), E(r)) ∼= E(X)⊗ 1(r)

for all r ∈ Z, X ∈ Sm ↓C, where RhomM denotes theM-enriched derived
mapping space and 1(r) the rth Tate twist in MHS.

The proof of the first assertion relies on the theory of (∞, 1)-categories as developed
in [6, 7] and in particular on the rectification results contained therein.

If we define EX := Lπ∗E ∈ CAlg(SpS(X,M)) for all π : X → Spec(C),
then the category D(EX) := ho(Mod(EX)) is a variant of M. Saito’s derived
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category of mixed Hodge modules. Indeed, D(ESpec(C)) ∼= D(Ind(MHS)) and
homD(EX)(EX , EX(r)[s]) is the absolute Hodge cohomology of X .

The six functor formalism on SHM(−) induces another relating the categories
D(EX) and one technical advantage of the latter category vis-à-vis M. Saito’s
category is the possibility of defining these six functors using Quillen adjunctions
rather than via constructions at the level of triangulated categories. Moreover,
the desired Hodge realization functor is quite natural in this setting: it suffices to
consider the canonical functor (−)⊗LEX : SHQ(X)→ D(EX), which is compatible
with Grothendieck’s six functors.

One can recover the data “of geometric origin” in D(EX) from SH(X) as fol-
lows. Let Eabs := Rα∗E and D(Eabs,X) := ho(Mod(Eabs,X)). The canonical functor
(−) ⊗L Eabs,X : SHQ(X) → D(Eabs,X) factors through the category of Bĕılinson
motives DM

B
(X) defined in [3, 14.2.1]. The arguments of [5] apply mutatis mu-

tandis to D(Eabs,X) to give a weight structure compatible with that of loc. cit. on
DMB(X).

If T denotes a triangulated category with small coproducts, let Tc denote the
full subcategory of ℵ0-compact objects. Also, we let Db

h(DX) denote the derived
category of complexes of DX -modules with bounded holonomic cohomology.

Theorem 3. For any nonsingular, quasi-projective C-scheme X, there exists a
canonical symmetric monoidal, triangulated functor

̺∗dR,X : SHc(X)→ Db
h(DX)

that commutes with f∗ for f : X → Y any morphism of two such schemes, f∗
for f projective and f! for f smooth. This functor ̺∗dR,X induces a fully faithful
symmetric monoidal, triangulated functor

χ∗
dR,X : Dc(EdR,X) →֒ Db

h(DX)

compatible with f∗, f∗ for f projective and f! for f smooth, where the commutative
ring spectrum EdR,X ∈ CAlg(SpS(X,Q)) represents algebraic deRham cohomol-
ogy.

The proof of this theorem relies heavily on the theory of (∞, 1)-categories and the
universal property of the (∞, 1)-categorical stable homotopy category [8, Corollary
1.2]. Also, note that ̺∗dR,X and χ∗

dR,X are symmetric monoidal with respect to a

monoidal structure on Db
h(DX) Verdier dual to the usual one.

If T (X) is a family of symmetric monoidal, triangulated categories indexed
by nonsingular quasi-projective C-schemes endowed with a six functor formalism,
then, for each such X , Tgm(X) denotes the full subcategory of objects of geometric
origin, i.e. the thick triangulated subcategory of T (X) generated by the objects
f∗1Y for all f : Y → X projective, where 1Y is the monoidal unit object of T (Y ).

Let EBetti,X ∈ CAlg(SpS(X,Q)) represent Betti cohomology with rational
coefficients. The period isomorphism induces an equivalence of commutative
ring spectra EBetti,X ⊗Q C ∼= EdR,X and the equivalence Dgm(EBetti,X ⊗Q C) ∼=
Dgm(X(C),C) of [3, 17.2.22] therefore implies the following.
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Corollary (Riemann-Hilbert). Let X be a nonsingular quasi-projective C-scheme.
There exists an equivalence of symmetric monoidal, triangulated categories

Dgm(X(C),C) ∼= Dgm(DX)

compatible with f∗, f∗ for f projective and f! for f smooth.

In fact, the theory of modules over EdR,X makes sense for singular C-schemes
and this Riemann-Hilbert correspondence extends immediately to the singular case
if we define Dc(EdR,X) to be the derived category of DX -modules of geometric
origin on the possibly singular C-scheme X .
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[5] D. Hébert. Structure de poids à la Bondarko sur les motifs de Beilinson. Compos. Math.,

147(5):1447–1462, 2011.
[6] J. Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Princeton

University Press, Princeton, NJ, 2009.
[7] J. Lurie. Higher Algebra. http://www.math.harvard.edu/ lurie/papers/higheralgebra.pdf,

August 2012.
[8] M. Robalo. Noncommutative Motives I: A Universal Characterization of the Motivic Stable

Homotopy Theory of Schemes, January 2013. http://arxiv.org/pdf/1206.3645.pdf.

A motivic Eilenberg-MacLane spectrum in mixed characteristic

Markus Spitzweck

In our talk we presented a family of motivic spectra over base schemes which
can be viewed as a good candidate for the motivic Eilenberg-MacLane spectra.

We first give some overview over the story so far.

• If k is a field and X a smooth scheme over k, then

HomDM(k)([X ],Z(i)[j]) ∼= HomSH(k)(Σ
∞
T X+,Σ

j,i
MZ)

∼= CHi(X, 2i− j),

where the last isomorphism is a result of Voevodsky [1].
• In general Voevodsky defined a motivic Eilenberg-MacLane spectrum over
any base scheme, but its properties are so far not very well known (there
are results of Cisinski-Deglise for its rationalization).
• If k has characteristic 0 there is an equivalence

Ho(MZ−Mod) ≃ DM(k),

see [2].
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• For general base schemesX Cisinski-Deglise defined a category of so-called
Beilinson-motives DMB(X) satisfying the six functor formalism (by work
of Ayoub [3]), see [5].

We outlined the contruction of a motivic spectrum MZS over the spectrum S
of a given Dedekind domain of mixed characteristic which enjoys the following
properties:

(1) If X is a smooth scheme over S, then

Hom(Σ∞
T X+,Σ

j,i
MZS) = Hj

M(X,Z(i)),

where the latter group denotes Levine’s motivic cohomology defined using
Bloch’s cycle complexes.

(2) MZS has an E∞-structure (which then can be strictified to a strictly com-
mutative symmetric motivic ring spectrum by a theorem of Hornbostel).

(3) If p ∈ S is a point, f : Spec(κ(p)) the canonical morphism, then

f∗
MZS

∼= MZκ(p),

where the latter spectrum denotes the usual motivic Eilenberg-MacLane
spectrum over κ(p).

(4) If f is as above and p is closed, then

f !
MZS

∼= MZκ(p)(−1)[−2].

As application we can define motivic triangulated categories with integral coef-
ficients over any base scheme which have many expected properties. To do so let
X be a Noetherian seperated finite dimensional scheme and f : X → Spec(Z) the
structure morphism. Let

MZX := f∗
MZSpec(Z)

and

DM(X) := Ho(MZX−Mod).

Then again by the work of Ayoub the assignment

X 7→ DM(X)

satisfies the six functor formalism (this is true for any cartesian family of E∞-
spectra).

Let X be a smooth scheme over a Dedekind ring of mixed characteristic and Y
be smooth over X . Then we have

HomDM(X)([Y ],Z(i)[j]) ∼= Hj
M(Y,Z(i)).

Let X be an arbitrary base scheme, i : Z →֒ X a closed inclusion and j : U ⊂ X
the open complement. Then we have for F ∈ DM(X) an exact triangle

j!j
∗F → F → i∗i

∗F → j!j
∗F [1].

In the talk we gave a sketch of the construction of MZS :
One uses the Bloch-Kato conjecture (now a theorem due to Voevodsky and

coworkers) and work of Geisser [4] to define MZ/pn outside characteristic p by
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truncated étale sheaves and corrects it at characteristic p using logarithmic de
Rham-Witt sheaves.

Taking the limit one gets the p-completions MZ∧p.
These then are glued with the Beilinson-spectrum along an arithmetic square.
This is done such that property (3) is satisfied.
By construction property (1) holds with finite coefficients. To prove it with

integral coefficients one introduces a second motivic spectrum by a strictification
procedure out of the motivic cycle complexes and compares it via étale cycle class
maps to MZS .

The proof of property (3) makes use of results of Bloch-Kato [6].
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Lefschetz classes of simple abelian varieties

Rin Sugiyama

We consider a certain property for abelian varieties of CM-type over Qalg and
for abelian varieties over F. Here Qalg denotes the algebraic closure of Q in C, and
F denotes an algebraic closure of a finite field Fp with p-elements. In this paper, an
abelian variety over Qalg means an abelian variety over C which is defined over a
number field. An abelian variety A over C is said to be of CM-type if the reduced
degree of the Q-algebra End0(A) := End(A) ⊗ Q is equal to 2 dimA. By a result
of Serre–Tate [4, Theorem 6], for an abelian variety A of CM-type over Qalg and
for any prime w of Qalg dividing p, one can consider the reduction A0/F of A at w.
We then discuss a relationship between a certain property for an abelian variety
A of CM-type over Qalg and for its reduction A0 at a prime of Qalg.

For a relationship between the Hodge conjecture and the Tate conjecture for
abelian varieties, we know a result of Milne [3, Theorem 1.2]: Let A be an abelian
variety of CM-type over Qalg and let A0 be its reduction at a prime of Qalg. Under
an assumption, if the Hodge conjecture holds for all powers of A, then the Tate
conjecture holds for all powers of A0.

Instead of the conjectures, we consider property (∗) for A0 (resp. A) which is
in fact a sufficient condition for the Tate conjecture (resp. the Hodge conjecture).
Our main result (Theorem 1) gives a kind of answer of the following questions.
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Questions: (1) Does property (∗) for A imply property (∗) for the reduction of
A at any prime of Qalg?

(2) Are there any class of abelian varieties A of CM-type over Qalg such that
property (∗) for its reduction A0 implies property (∗) for A?

To state property (∗), we define some cohomology classes:

Definition. (1) Let A1 be an abelian variety of dimension g over a finite subfield
Fq of F. Let A0 be the abelian variety A1⊗Fq

F. Let ℓ be a prime number different
from p. For each integer i with 0 ≤ i ≤ g, we define the space of the ℓ-adic Tate
classes of degree i on A0 as follows:

T i
ℓ (A0) := lim

−→
L/Fq : finite

H2i(A0,Qℓ(i))
Gal(F/L).

Let A be an abelian variety of dimension g over C. For each integer i with
0 ≤ i ≤ g, we define the space of the Hodge classes of degree i on A as follows:

Hi
hodge(A) := H2i

Betti(A,Q) ∩Hi(A,Ωi)

(2) A Tate (resp. Hodge) class is said to be algebraic if it belongs to the image
of the cycle class map.

Tate conjecture. All Tate classes are algebraic on A0.

Hodge conjecture. All Hodge classes are algebraic on A.

Definition. The elements of the Qℓ-subalgebra (resp. the Q-subalgebra ) of

g⊕

i=0

T i
ℓ (A0)

(
resp.

g⊕

i=0

Hi
hodge(A)

)

generated by all Tate (resp. Hodge) classes of degree one are called the Lefschetz
classes on A0 (resp. A).

We consider the following property about Lefschetz classes:

Property (∗) : All Tate classes are Lefschetz on all powers of A0.
(All Hodge classes are Lefschetz on all powers of A)

By a result of Tate, if property (∗) holds for A0, then the Tate conjecture holds
for all powers of A0. Similarly, by the Lefschetz–Hodge theorem, if property (∗)
holds for A, then the Hodge conjecture holds for all powers of A. For example,
property (∗) holds for products of elliptic curves, which is proved by Spiess in case
over F, by Tate, Murasaki, Imai and Murty in case over C. However, there are
examples of abelian varieties for which property (∗) does not hold, but the Tate
(or Hodge) conjecture holds ([1], [6], [3, Example 1.8]).

Theorem 1. Let A be a simple abelian variety of CM-type over Qalg.
(1) Assume that the CM-field End0(A) is an abelian extension of Q. If property

(∗) holds for A, then for any prime w of Qalg, property (∗) holds for a simple
factor of the reduction of A at w.
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(2) Let w be a prime of Qalg. Let A0 be the reduction of A at w. Assume that
the restriction of w to the reflex field of A is unramified over Q and its absolute
degree is one.

(a) If the Hodge conjecture holds for all powers of A, then the Tate conjecture
holds for all powers of A0.

(b) Property (∗) holds for A if and only if property (∗) holds for A0.

Let C be a class of simple abelian varieties A of CM-type over Qalg whose CM-
field End0(A) is an abelian extension of Q. Then by Theorem 1, this class C gives
an answer of the above questions in the following sense: for any A in C, property
(∗) holds for A if and only if for any prime w of Qalg, property (∗) holds for
simple factors of the reduction of A at w.

The keys of proof of main result:

(1) To give necessary and sufficient conditions for property (∗) for A and for
A0 by “arithmetic words” (see lemmas below);

(2) To compare the conditions for A and for A0 using a result of Shimura–
Taniyama on the prime ideal decomposition of Frobenius endomorphism
[5].

Lemma 1 (cf. [2]). Let A be a simple abelian variety with many endomorphisms
over Qalg. Assume that the CM-field E := End0(A) is an abelian extension over
Q. Let G be the Galois group Gal(E/Q). Then property (∗) holds for A if and
only if ∑

σ∈G

ϕ(σ)χ(σ) 6= 0

for any character χ of G such that χ(ι) = −1. Here ϕ : G → {0, 1} be the map
defined by the representation of E on the tangent space of A at zero.

Lemma 2 ([7]). Let A0 be a simple abelian variety over F. Assume that the
center C0 of End0(A0) is an abelian extension of Q. Let G0 be the Galois group
Gal(C0/Q). Let p be a prime of C0 dividing p. Then property (∗) holds for A0 if
and only if ∑

σ∈G0

ordp(σπ)χ(σ) 6= 0

for any character χ of G0 such that χ(ι) = −1. Here π ∈ C0 is the Frobenius
endomorpihsm defined over a finite subfield of F.
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Toward a meta-stable range in A1-homotopy theory of punctured
affine spaces

Aravind Asok

(joint work with Jean Fasel)

Suppose k is a perfect field having characteristic unequal to 2. Write Sk for the
category of schemes that are separated, smooth and of finite type over k. Write
H·(k) for the Morel-Voevodsky unstable pointed A1-homotopy category [MoVo99].
A (pointed) k-space X (resp. (X , x)) is a (pointed) simplicial Nisnevich sheaf on
Sk. Given two pointed k-spaces (X , x) and (Y, y), we write [(X , x), (Y, y)]A1 for

homH·(k)(X ,Y). If (X , x) is a pointed k-space, write πA1

i (X , x) for the Nisnevich

sheaf associated with the presheaf U 7→ [Si
s ∧ U+, (X , x)]A1 .

Point An \ 0 by (1, 0, . . . , 0), and suppress this base-point from notation. Re-

sults of Morel yield a description of πA1

n−1(A
n \ 0), n ≥ 2, as the sheaf KMW

n of
“unramified Milnor-Witt K-theory.” In previous work, the authors provided a de-

scription of πA1

2 (A2 \ 0) and πA1

3 (A3 \ 0) [AsFa12a, AsFa12b]. The goal of the talk

was to provide a conjectural description of πA1

n (An \ 0) for n ≥ 4. The proposed
description is in two parts.

Suslin matrices and the degree map. Schlichting and Tripathi constructed an or-
thogonal Grassmannian OGr and showed that Z × OGr represents Hermitian
K-theory in the unstable A1-homotopy category [ScTr12]. They also establish a
geometric form of Bott periodicity in Hermitian K-theory that identifies various
loop spaces of Z×OGr in terms of other natural spaces; we summarize this result
as follows.

Proposition 1. There are weak equivalences of the form

Ω1
sΩ

i
P1(Z×OGr)

∼
−→





O if i ≡ 0 mod 4

GL/Sp if i ≡ 1 mod 4

Sp if i ≡ 2 mod 4, and

GL/O if i ≡ 3 mod 4;

Here O := colimn O(q2n), where q2n is the standard hyperbolic form, Sp :=
colimn Sp2n, GL/Sp := colimn GL2n/Sp2n, and GL/O := colimn GL2n/O(q2n).
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The class of 〈1〉 ∈ GW (k) yields a distinguished element inGW (k) = [Spec k+,Z×
OGr]A1 . An adjunction argument can be used to show that this element corre-
sponds to a distinguished class in [An \ 0, Pn]A1 , where Pn is either O, GL/O, Sp
or GL/Sp depending on whether n is congruent to 0, 1, 2 or 3 modulo 4.

Let Q2n−1 be the smooth affine quadric defined as a hypersurface in A2n given
by the equation

∑
i xixn+i = 1. There is an A1-weak equivalence Q2n−1 → An \ 0

defined by projecting onto the first n variables. Each variety Pn is an ind-algebraic
variety, and Suslin inductively defined certain matrices Sn that correspond to
morphisms sn : Q2n−1 → Pn [Su77].

Proposition 2. The distinguished homotopy classes [An \ 0, Pn]A1 described in
the previous paragraph is represented by the morphism sn : Q2n−1 → Pn given by
the matrix Sn.

The A1-homotopy sheaves of O,GL/O, Sp and GL/Sp can be identified in
terms of the Nisnevich sheafification of Schlichting’s higher Grothendieck-Witt

groups. Indeed, πA1

i (O) ∼= GW0
i+1, π

A1

i (GL/O) ∼= GW1
i+1, π

A1

i (Sp) ∼= GW2
0 and

πA1

i (GL/Sp) ∼= GW3
i+1. In general, the sheaves GWj

i are viewed as 4 periodic

in j. Therefore, the morphism sn yields, upon applying the functor πA1

n (·), a
morphism

sn∗ : πA1

n (An \ 0) −→ GWn
n+1.

This morphism is not surjective for n ≥ 4, but it does coincide with a corresponding

morphism constructed in the computations of πA1

2 (A2 \ 0) and πA1

3 (A3 \ 0).
Recall the contraction of a sheaf F is defined by the formula F−1(U) := ker((id×

e)∗ : F(Gm×U)→ F(U)), where e : Spec k → Gm is the unit section. One defines
F−i inductively as (F−(i−1))−1.

Theorem 3. The morphism sn∗ becomes surjective after (n− 3)-fold contraction
and split surjective after n-fold contraction.

Motivic Hopf maps and the kernel of the degree map. In [AsFa12b], we introduced

the geometric Hopf map ν : A4 \ 0 → P1∧2
and showed that it was P1-stably

essential (i.e., is not null A1-homotopic after repeated P1-suspension). For any
integer n ≥ 2, set

νn := Σn−2
P1 ν : An+2 \ 0 −→ P1∧n

.

Applying πA1

n (·) to the above morphism yields a map

(νn)∗ : KMW
n+2 −→ πA1

n+1(P
1∧n

).

For n ≥ 4, Morel’s Freudenthal suspension theorem yields isomorphisms

πA1

n (An \ 0)
∼
−→ πA1

n+1(P
1∧n

),

so in this range, we can view (νn)∗ as giving a map KMW
n+2 → πA1

n (An \ 0).
For n = 3, Morel’s Freudenthal suspension theorem only yields an epimorphism.

We can refine this result to provide an analog of the beginning of the EHP sequence
in A1-homotopy theory. A particular case of the general result we can establish
can be stated as follows.



1894 Oberwolfach Report 32/2013

Theorem 4. There is an exact sequence of the form

πA1

5 (P1∧3
)

H
−→ πA1

5 (Σ1
s(A

3 \ 0)∧2)
P
−→ πA1

3 (A3 \ 0)
E
−→ πA1

4 (P1∧3
) −→ 0.

The morphism H in the above exact sequence conjecturally admits a description
as a variant of the Hopf invariant in Chow-Witt theory. Assuming this, the results

we have proven on πA1

3 (A3\0) show that ν3∗ factors through an explicit quotient of
KMW

5 . In turn, this (conjectural) computation suggests the following conjecture.

Conjecture 5. For any integer n ≥ 3, the morphism νn∗ factors through a mor-

phism KM
n+2/24→ πA1

n+1(P
1∧n

).

The structure of πA1

n (An \ 0). We now study the relationship between the two
morphisms constructed above. Using an obstruction theory argument, one can
demonstrate the following result.

Proposition 6. For any integer n ≥ 4, the composite map

KMW
n+2 −→ πA1

n (An \ 0) −→ GWn
n+1

is zero.

Combining everything discussed so far, one is led to the following conjecture.

Conjecture 7. For any integer n ≥ 4, there is an exact sequence of sheaves of
the form

KM
n+2/24 −→ πA1

n (An \ 0) −→ GWn
n+1.

The sequence becomes short exact after n-fold contraction.

Remark 8. The conjecture above stabilizes to an unpublished conjecture of F.
Morel on the stable motivic π1 of the motivic sphere spectrum. Using the motivic
Adams(-Novikov) spectral sequence, K. Ormsby and P.-A. Østvær have checked
that after taking sections over fields having 2-cohomological dimension ≤ 2, the
2-primary part of the stable conjecture is true. Nevertheless, the stable conjec-
ture does not imply the conjecture above (even for large n) because of a lack of a
Freudenthal suspension theorem for P1-suspension. On the other hand, the con-
jecture above for every n sufficiently large implies the stable conjecture.

Remark 9. By the results of [AsFa12b], the above conjecture immediately implies
“Murthy’s conjecture:” if X is a smooth affine (d + 1)-fold over an algebraically
closed field k, and E is a rank d vector bundle on X, then E splits off a free rank
1 summand if and only if 0 = cd(E) ∈ CHd(X). However, the conjecture is much
stronger: it gives the complete secondary obstruction to splitting a free rank 1
summand of a vector bundle on a smooth affine scheme.
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On the torsion of Chow group of twisted complete spin flags

Changlong Zhong

(joint work with Sanghoon Baek, Kirill Zainoulline)

Theorem 1. Let k be an arbitrary field, and let G be a split simple simply con-
nected linear algebraic group over k. Suppose that G is of Dynkin type Bn or Dn.
Let X = G/B be the variety of complete flags of G, and let ξ ∈ H1(k,G). Then
for 1 ≤ d ≤ 2n− 3, the torsion of CHd(ξX) is annihilated by

Md := (d− 1)!

d∏

i=2

2i+1[
i

2
]!(i− 1)!.

Here ξX is the twisted variety of X twisted by the 1-cocycle ξ. This theorem,
together with all theorems below are due to Baek–Neher–Zainoulline [1] for 2 ≤ d ≤
4, and are due to the author jointly with Baek and Zainoulline [2] for 5 ≤ d ≤ 2n−3.
Remark.

(1) Clearly the integer Md does not depend on the rank of the group G.
(2) Note that CH1(ξX) ∼= Pic(ξX), so there is no torsion at codimension 1.

On the other hand, if G is of type An or Cn, then there is no torsion part
in CHd(ξX) for any d ≥ 1.

(4) There are some computations by Karpenko on the order of the torsion
of CHd for 2 ≤ d ≤ 4. On the other hand, Karpenko and Merkurjev
constructed some example of quadrics whose CH4 has infinite torsion part.

We sketch the proof as follows.
Step 1. Let Λ be the group of characters of G, and let W be the Weyl group of
G. Let Ia ⊂ S∗(Λ) and Im ⊂ Z[Λ] be the augmentation ideals, respectively. There
exists an isomorphism φd : Z[Λ]/Id+1

m → S∗(Λ)/Id+1
a . Let IWm (resp. IWa ) be the

ideal of Z[Λ] (resp. S∗(Λ)) generated by W -invariant elements in Im (resp. Ia).

Definition 2 ([1]). The smallest integer τd such that

τd · (I
W
a /(IWa ∩ Id+1

a )) ⊂ φd(I
W
m /(IWm ∩ Id+1

m ))

is called the d-th exponent of the W -action.

The existence of τd is proved in [1]. Mover, τ1 = 1 for all G, and τd = 1 for all
d ≥ 1 if G is of type A or C. Moreover

Theorem 3. If G is of type Bn or Dn, and if 2 ≤ d ≤ 2n− 3, then τd|2.
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Step 2. There exists a commutative diagram

(1) Idm/Id+1
m

(−1)d−1(d−1)!φd
//

cm

��

Sd(Λ)

ca

��

γd/d+1(X)
cd

// CHd(X).

Here ca and cm are the characteristic maps of CH and K0, respectively, and cd is
the d-th Chern class. γd/d+1(X) is the d-th associated quotient of the γ-filtration.
It is known that cm is surjective with ker cm = IWm , and IWa ⊂ ker ca.

Theorem 4. Let G be of type Bn or Dn, and suppose 2 ≤ d ≤ 2n− 3. Then

(1) The index of the embedding (IWa )(d) ⊂ (ker ca)
(d) has an upper bound

(d− 1)!ηdτd.
(2) The torsion part of γd/d+1(ξX) is killed by (d− 1)!τdηd.

The proof of part (1) uses the basic polynomial invariants in S∗(Λ), and that
of part (2) follows from diagram chasing of diagram (1) and the isomorphism
γd/d+1(X) ∼= γd/d+1(ξX) in [3].
Step 3. Let τ∗(ξX) be the topological filtration. Via the relationship γd(ξX) ⊂

τd(ξX), one obtain an upper bound of the annihilator of the torsion of τd/d+1(ξX).
Finally, using the Riemann–Roch Theorem without denominators, we obtain the
upper bound in Theorem 1.
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Non-commutative localizations and weight structures; applications to
birational motives

Mikhail Bondarko

(joint work with Vladimir Sosnilo)

In my talk (based on the recent preprint [BoS13]) I explained that weight struc-
tures in (localizations of) triangulated categories are closely related with non-
commutative localizations of arbitrary additive categories. Localizing an arbitrary
triangulated C by a set S of morphisms in the heart Hw of a weight structure
w for it one obtains a triangulated category endowed with a weight structure w′.
Note here: though the definition and several properties of weight structures are
quite similar to those for t-structures, the obvious analogue of this localization
statement for t-structures is certainly wrong.
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The heart Hw′ of the weight structure w′ obtained is a certain idempotent
completion of the (’non-commutative’) localization Hw[S−1]add of Hw by S. Here
Hw[S−1]add is the natural categorical version of the Cohn’s localization for a
ring (see [Coh85]) i.e. the functor Hw → Hw[S−1]add is universal among all the
additive functors that make the elements of S invertible.

In particular, taking C = Kb(A) for an additive A we obtain a very efficient
tool for computing A[S−1]add. Using it (together with the yoga of weight decom-
positions) we generalize the calculations of [Ger82] and of [Mal82] from the case
of categories of finitely generated projective modules over a ring to the one of
arbitrary additive categories. Note here: A[S−1]add coincides with the ’abstract’
localization A[S−1] (as constructed in [GaC67]) if S contains all A-identities and
is closed with respect to direct sums.

The motivating example for our work was the triangulated category of bira-
tional motives. We define the latter generalizing the definition given in [KaS02] to
the case of a (more or less) arbitrary base scheme U ; so, birational equivalences
are inverted in (a version of) effective geometric Voevodsky’s motives over U . We
obtain: there exists a weight structure wbir on the category DMo(U) obtained.
Hwbir is given by retracts of birational motives of (smooth) U -schemes; our results
yield certain new formulas for morphism groups in Hwbir ⊂ DMo(U). The exis-
tence of wbir previously was only known for U being (the spectrum of) a perfect
field; even in this case we obtain a new ’elementary’ proof of this fact. As shown in
previous papers (starting from [Bon10]), the existence of a weight structure yields
functorial weight filtrations and weight spectral sequences for any cohomology
theory that factorizes through birational motives, and a conservative exact weight
complex functor whose target is Kb(Hwbir). We also calculate the Grothendieck
group of DMo(U). Lastly, we note that our (new, general) results on localizations
of triangulated categories endowed with adjacent weight and t-structures yield:
restricting the canonical t-structure for the derived category of presheaves with
transfers (over an arbitrary U) to the category of birational motivic complexes
yields the homotopy t-structure for it. We also obtain a description of the heart of
the latter t-structure; again, this generalizes the corresponding results of [KaS02]
to the case of an arbitrary U .
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Chow rings of finite groups and modules over the Steenrod algebra

Burt Totaro

Morel-Voevodsky and I constructed an algebro-geometric model of the classifying
space of a group [4, 6]. For any affine group scheme G of finite type over a field k,
we get a ring CH∗BG, the Chow ring of algebraic cycles on the classifying space
of G. Each group CHiBG coincides with CHi of a certain smooth k-variety (the
quotient by G of an open subset of a vector space). The definition is natural, in
that the ring CH∗BG is exactly the ring of characteristic classes with values in the
Chow ring for principal G-bundles (in the fppf topology) over smooth k-schemes.
We focus on the case where G is a finite group, viewed as an algebraic group over
k.

If the field k is the complex numbers, then the topological realization of BG is
the classifying space of G as a topological group, and so we have a ring homomor-
phism

CH∗BG→ H∗(BG,Z).

This is always an isomorphism after tensoring with the rationals, but it need not be
an isomorphism integrally. The fact that not all the cohomology of a finite group
is algebraic can be viewed as the source of Atiyah-Hirzebruch’s counterexamples
to the integral Hodge conjecture for certain quotient varieties [1]. Fix a prime
number p, and write CH∗

G = CH∗(BG)/p and H∗
G = H∗(BG,Fp). The problem

of computing CH∗
G is a model case for the mod p Chow groups of smooth varieties

more generally.
Some fundamental questions about the Chow ring of a finite group are open.

It is not known whether the mod p Chow groups CHi
G are finite for all i. We do

know that the Chow ring CH∗
G is generated by elements of bounded degree, and so

finiteness of each group would imply that CH∗
G is a finitely generated Fp-algebra.

Also, CH∗
G is generated by transferred Euler classes in many examples, but not

much is known about when that happens. (An n-dimensional representation V of
a group H has an Euler class χ(V ) = cn(V ) in CHn

H , and we consider the transfer
maps trGH : CH∗

H → CH∗
G for all subgroups H of G.) Guillot showed that CH3

G

does not consist of transferred Euler classes for the extraspecial group of order 27

(a subgroup of Spin(7)), but no such example is known at odd primes [2].
The talk studied Chow rings using Henn-Lannes-Schwartz’s ideas about the

cohomology of finite groups [3]. Given an unstable module N over the Steenrod
algebra, the topological nilpotence degree d0(N) is the supremum of the natural
numbers d such that N contains the dth suspension of a nonzero unstable module.
The mod p cohomology of any space is an unstable module over the Steenrod
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algebra, and so in particular H∗
G is an unstable module. Henn-Lannes-Schwartz’s

basic result is that for any compact Lie group G, d0(H
∗
G) is equal to the smallest

number d such that the map

H∗
G →

∏

V⊂G

H∗
V ⊗Fp

H≤d
CG(V )

is injective. The product runs over the elementary abelian p-subgroups V of G,
and the map comes from the group homomorphism V × CG(V ) → G. Since the
cohomology of elementary abelian groups is known, we can say that H∗

G is detected
using the cohomology of G and certain subgroups of G in degrees at most d0(H

∗
G).

Henn-Lannes-Schwartz showed that for every prime number p and every finite
group G with a faithful complex representation of dimension n, d0(H

∗
G) is at most

n2. We show that in fact d0(H
∗
G) is less than 2n, as well as more precise bounds

[7]. That should be a useful tool for computing group cohomology. Next, for
a finite group G, we define the topological nilpotence degree of the mod p Chow
ring, d0(CH∗

G), to be the smallest number d such that CH∗
G is detected as above

in degrees at most d. We conjecture that this number coincides with the largest
number d such that CH∗

G, as a module over the Steenrod algebra, contains the
dth suspension of a nonzero unstable module.

Although that conjecture is open, having an upper bound for d0(CH∗
G) is imme-

diately useful for computing the Chow ring. We prove that for G with a faithful
representation of dimension n over k, d0(CH∗

G) is less than n, as well as more
precise bounds. We also prove the analogue for Chow rings of Symonds’s theorem
on degrees of generators for group cohomology [5]. As a result, we compute the
Chow ring completely for several classes of p-groups: the 14 groups of order 16,
the 5 groups of order p3, 12 of the 15 groups of order p4 for an odd prime p, and
several infinite families of p-groups. Also, for all 51 groups of order 32 and all 15
groups of order p4 with p odd, the Chow ring consists of transferred Euler classes
[7].
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K-groups of reciprocity functors

Florian Ivorra

(joint work with Kay Rülling)

In this talk we give a survey of the main results of [3].
In [3] a notion of reciprocity functors is introduced. Early in the 90’s, Kahn

suggested to use the local symbols of Rosenlicht and Serre [8, 10] for smooth
commutative algebraic groups in order to develop a theory which contains algebraic
groups and homotopy invariant Nisnevich sheaves with transfers, see e.g. [5]. Our
approach is inspired by his idea, and in [3] reciprocity functors are introduced as
functors defined over finitely generated field extensions of F and regular curves
over them.

Given reciprocity functors M1, . . . ,Mn, our main construction is a reciprocity
functor T(M1, . . . ,Mn) that we call the K-group of M1, . . . ,Mn, although it is
much more than a group, it is a reciprocity functor. This construction is related to
the K-group associated by Somekawa [11] with a family of semi-Abelian varieties
and its variants introduced in [7, 1, 4].

1. Around the theorem of Nesterenko-Suslin

In [4], Kahn and Yamazaki have constructed an isomorphism

(∗) K(F,F1, . . . ,Fn) ≃ HomDMeff
−

(Z,F1 ⊗ · · · ⊗Fn)

where the Fi’s are homotopy invariant Nisnevich sheaves with transfers, the left
hand side is a Somekawa type K-group and the right hand side is the group of
morphisms in Voevodsky’s category of effective motivic complexes. This result
implies in particular the generalizations of the theorem of Nesterenko-Suslin [6]
due to Raskind-Spieß [7] and Akhtar [1].

Bloch and Esnault have also proved an additive variant of Nesterenko-Suslin’s
theorem (see [2]) where the absolute Kähler differentials replace the Milnor K-
groups (this result has been generalized by Rülling in [9]).

2. Reciprocity functors

Let F be a perfect field. Let Reg be the category of regular F -schemes of
dimension 6 1, that are separated and of finite type over some finitely generated
field extension k/F . A reciprocity functor M is a Nisnevich sheaf with transfers
on Reg satisfying certain conditions. The most important of them is the modulus
condition that may be stated as follows. For all regular projective and connected
curves C/k over some finitely generated extension k/F , all non-empty open subsets
U ⊆ C and sections a ∈ M (U), there exists an effective divisor m with support
equal to C \ U and such that

∑

P∈U

vP (f)Trκ(P )/κC
sP (a) = 0,
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where f ∈ K× is any non-zero element in the function field K of C, which is con-
gruent to 1 modulo m (i.e. div(f−1) > m). Here vP is the discrete valuation associ-
ated with the closed point P ∈ C, kC = H0(C,OC), and sP : M (U)→M (κ(P )),
Trκ(P )/κC

: M (κ(P )) → M (κC) are the morphisms given by the structure of
presheaf with transfers.

As suggested by B. Kahn, examples of reciprocity functors are: (a) smooth
commutative algebraic groups over F (this essentially follows from a theorem of
M. Rosenlicht [8]); (b) homotopy invariant Nisnevich sheaves with transfers (more
precisely, by going to the generic stalks, each homotopy invariant Nisnevich sheaf

with transfers F defines a reciprocity functor F̂ ); (c) Rost’s cycle modules; (d)
absolute Kähler differentials.

One can use the same computations as in [10] to show that a reciprocity functor
M ∈ RF has local symbols that satisfy a reciprocity law for regular projective
curves over finitely generated extensions k/F . More precisely, let C be such a
curve (with function field K) and P ∈ C be a closed point, the local symbol at P
is a bilinear map

(−,−)P : M (K)×K× →M (k),

which is continuous, when M (K) and M (k) are equipped with the discrete topol-
ogy and K× with the mP -adic topology. These local symbols provide an increasing
and exhaustive filtration Fil•PM (K), where Fil0PM (K) = MC,P and FilnPM (K)
is the subgroup consisting of the elements a ∈M (K) such that (a, 1+mn

P )P = 0.

3. K-groups of reciprocity functors

Now let M1, . . . ,Mn and N be reciprocity functors. Then a n-linear map
of reciprocity functors Φ : M1 × · · · ×Mn → N is a n-linear map of sheaves,
which is compatible with pullback, satisfies a projection formula, and the following
condition

(L3) Φ(Filr1P M1(K)× · · · × FilrnP Mn(K)) ⊂ Fil
max{r1,...,rn}
P N (K),

for all regular projective curves C with function field K, all closed points P ∈ C
and all positive integers r1, . . . , rn > 1. We denote by n − Lin(M1, . . . ,Mn;N )
the group of n-linear maps as above. The main theorem of [3] is the following:

Theorem. The functor RF→ (Abelian groups), N 7→ n−Lin(M1, . . . ,Mn;N )
is representable by a reciprocity functor

T(M1, . . . ,Mn).

We call T(M1, . . . ,Mn) the K-group of M1, . . . ,Mn, although it is much more
than a group, it is a reciprocity functor. We would like to call this a tensor
product, unfortunately it is not clear whether associativity is satisfied (one reason
is the condition (L3)). But other properties of a tensor product hold: we have
commutativity, compatibility with direct sums, the constant reciprocity functor Z
is a unit object.
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4. Some computations

One of the main computation is the following theorem:

Theorem. Let F1, . . . ,Fn ∈ HINis be homotopy invariant Nisnevich sheaves
with transfers. There exists a canonical and functorial isomorphism of reciprocity
functors

T(F̂1, . . . , F̂n)
∼
−→ (F1 ⊗HINis

· · · ⊗HINis
Fn)̂ .

Let us emphasize that the definition of the K-group of reciprocity functors is
different from the Somekawa type one. In particular the above theorem does not
follow from the isomorphism (∗).

Theorem. Assume F has characteristic zero. Then there is an isomorphism for
all finitely generated extension k/F

θ : Ωn
k/Z

≃
−→ T(Ga,Gm, . . . ,Gm︸ ︷︷ ︸

n copies

)(k).

The above theorem provides a link with [2]. This result does not hold in positive
characteristic. B. Kahn conjectured that one should have T(Ga,Ga) = 0. This is
indeed the case. More generally we prove the following vanishing result:

Theorem. Assume char(F ) 6= 2. Let M1, . . . ,Mn be reciprocity functors. Then

T(Ga,Ga,M1, . . . ,Mn) = 0.
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Suslin Homology and Class Field Theory

Alexander Schmidt

(joint work with T. Geisser)

Let k be a field of characteristic p ≥ 0. We denote the category of separated
schemes of finite type over k by Sch/k. The tame fundamental group πt

1(X) of
X ∈ Sch(X) classifies (curve-)tame finite étale coverings of X (cf. [KSc]) and is
a quotient of the usual étale fundamental group πet

1 (X) in a natural way. Dually,
for every m ∈ N, we have the subgroup H1

t (X,Z/mZ) ⊂ H1
et(X,Z/mZ) which

classifies isomorphism classes of tame Z/mZ-torsors over X . The inclusion is
equality if X is proper or if p ∤ m.

Let k = F be a finite field. Sending a closed point x ∈ X to its Frobenius
automorphism Frobx defines a homomorphism

Z0(X) −→ πab
1 (X)

from the group of zero cycles of X to its abelianized fundamental group. Let
Cn(X) = Cor(∆n, X) denote the group of finite correspondences from the n-
dimensional standard simplex to X . The integral Suslin homology of X is defined
by HS

n (X,Z) = Hn(C•(X)), see [SV]. By [Sc, Thm. 8.1] the composite Z0(X)→

πab
1 (X) ։ πt,ab

1 (X) factors through HS
0 (X,Z) inducing

recX : HS
0 (X,Z)→ πt,ab

1 (X). (1)

Theorem 1 (Schmidt/Spiess [SS],[Sc]). If X is smooth, then recX fits into an
exact sequence

0 −→ HS
0 (X,Z)

rec
−→ πt,ab

1 (X) −→ Ẑ/Z −→ 0.

The induced map on the degree zero subgroups rec0X : HS
0 (X,Z)0 → πt,ab

1 (X)0 is
an isomorphism of finite abelian groups.

Theorem 1 generalizes the unramified class field theory of Kato and Saito [KaS],
[Sa] to the case of smooth, not necessarily proper schemes. Recently, Kerz and
Saito [KeS] found a generalization which describes the full fundamental group
πab
1 (X) by using “Chow groups with modulus” instead of Suslin homology.
Note that the assumption on X being smooth is vital in Theorem 1. The

cokernel of recX classifies completely split coverings and might be large if X is not
geometrically unibranch. Furthermore, even for proper, normal schemes there are
examples where recX is not injective [MAS].

Next we are going to construct a reciprocity map for varieties over algebraically
closed fields. Let k be algebraically closed, U, X ∈ Sch(k), U regular, and α ∈
Cor(U,X) a finite correspondence. For any m ∈ N, we construct a functor

α∗ : PHS(X,Z/mZ) −→ PHS(U,Z/mZ)

from the category of étale Z/mZ-torsors on X to those on U which gives back the
usual pull-back map α∗ : H1

et(X,Z/mZ)→ H1
et(U,Z/mZ) on isomorphism classes
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and which sends tame torsors to tame torsors. For a tame Z/mZ-torsor T on X
and a finite correspondence α : ∆1 → X we obtain the tame, hence trivial torsor
α∗(T ) on ∆1 ∼= A1. Parallel transport therefore induces an isomorphism

Φpar : 0∗(α∗(T ))
∼
−→ 1∗(α∗(T ))

of Z/mZ-torsors over ∆0. If α represents a 1-cocycle in the mod m Suslin com-
plex, we furthermore obtain a tautological identification

Φtaut : 0
∗(α∗(T ))

∼
−→ 1∗(α∗(T )).

Hence there is a unique 〈α, T 〉 ∈ Z/mZ such that

Φpar = (translation by 〈α, T 〉) ◦ Φtaut.

Theorem 2. For any X ∈ Sch/k the assignment (α, T ) 7→ 〈α, T 〉 induces a
pairing

HS
1 (X,Z/mZ)×H1

t (X,Z/mZ) −→ Z/mZ

of finite abelian groups. If p | m assume that resolution of singularities holds
over k. Then the pairing 〈 , 〉 is perfect and we obtain a reciprocity isomorphism

recX : HS
1 (X,Z/mZ)

∼
−→ πt,ab

1 (X)/m.

For (m, p) = 1 we have the comparison isomorphism of Suslin-Voevodsky [SV]

αX : H1
et(X,Z/mZ)

∼
→ H1

S(X,Z/mZ). Therefore, for (m, p) = 1, the source
and the target of recX are known to be isomorphic abelian groups from the very
beginning. However, the isomorphism αX of [SV] zig-zags through Ext-groups in
various categories and is difficult to understand. The merit of Theorem 2 should
be seen in constructing an explicit isomorphism which naturally extends to the
case that m is divisible by p. However, we also have

Theorem 3. For (m, p) = 1, recX coincides with the dual of the Suslin-Voevodsky
isomorphism αX .

Returning to the case that k = F is finite, we recall the notion of Weil-Suslin
homology introduced by Geisser [Ge]: Let F̄ be an algebraic closure of F, X ∈
Sch/F and X̄ = X ×F F̄. The Frobenius automorphism Frob ∈ Gal(F̄/F) acts on
Cn(X̄) = Cor(∆̄n, X̄) for all n and the Weil-Suslin homology of X with values in
an abelian group A is defined by

HWS
n (X,A) = Hn

(
cone(C•(X̄)⊗A

1−Frob
−→ C•(X̄)⊗A)

)
.

The obvious homomorphism HS
0 (X,Z) → HWS

1 (X,Z) is conjectured to be an
isomorphism if X is smooth.

In a similar spirit as above, one constructs compatible pairings for all m

HWS
1 (X,Z/mZ)×H1

t (X,Z/mZ) −→ Z/mZ.

These pairings and the natural maps HWS
1 (X,Z) → HWS

1 (X,Z/mZ) induce a
homomorphism

recWS
X : HWS

1 (X,Z)→ πt,ab
1 (X) (2)
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such that composition with H0
S(X,Z) → HWS

1 (X,Z) is the map recX defined in
(1) above.

Theorem 4. Assume that resolution of singularities holds over F. Then, for any
X ∈ Sch/F the map recWS

X induces an isomorphism

HWS
1 (X,Z)∧ → πt,ab

1 (X)

on profinite completions.
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Slices of co-operations for KGL

Chuck Weibel

(joint work with Pablo Pelaez)

We settle a conjecture of Voevodsky [1] concerning the slices of KGL ∧ KGL
and KGL∧n in the stable homotopy category over a base S which is smooth over
a perfect field, and more generally over any finite-dimensional noetherian base
satisfying mild conditions.

Adams showed that the ring π∗(KU ∧ KU) is not just an algebra over KU∗

but a Hopf algebroid; it follows that the cosimplicial ring n 7→ π∗(KU∧n+1) is the
cobar complex over this algebroid. This forms the background for the conjecture.

The slices sqE of a motivic spectrum E were defined by Voevodsky in [1]. If
E is a ring spectrum, the direct sum s∗E = ⊕sqE of the slices sqE of E form a
graded ring spectrum. For example, s∗KGL ∼= s0(KGL)[u, u−1] by periodicity.

Let the tensor product E ⊗ A of a spectrum E with an abelian group A have
its usual meaning, and let E ⊗ π2∗KU∧n+1 denote the direct sum of the motivic
spectra (T q ∧E)⊗π2qKU∧n+1. Finally, let HZ denote the spectrum representing
motivic cohomology. The following result verifies Voevodsky’s conjecture.
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Theorem: Suppose that S is smooth over a perfect field. Then there is an iso-
morphism of motivic spectra in SH(S). Then there is an isomorphism of cosim-
plicial motivic spectra:

s∗(KGL∧∗+1) ∼= HZ⊗ π2∗KU∧∗+1.

Voevodsky’s conjecture is intertwined with other conjectures of Voevodsky, that
the maps HZ ← 1 → KGL induce isomorphisms on zero-slices. Here is a more
general result; as usual, [E,F ] denotes homotpy classes of maps E → F .

Theorem: Suppose that S is a finite-dimensional noetherian scheme. Then:
(a) There are isomorphisms for all n ≥ 0:

s0(KGL)⊗ π2∗KU∧n ∼=
−→ s∗(KGL∧n).

(b) Suppose in addition that s0(1) ∼= s0(KGL) and that [s0(1), s0(1)] is torsionfree.
Then the maps in (a) are the components of an isomorphism of cosimplicial motivic
ring spectra:

s∗(KGL∧∗+1) ∼= s0(1)⊗ π2∗KU∧∗+1.

Here are the main steps in the proof. The isomorphisms in (a) are proven using
a toy version of the theorem, namely that

s∗(KGL ∧ P∞∧∗) ∼= s0(KGL)⊗ π2∗(KU ∧CP∞∧∗)

The ring F of numerical polynomials is a subring of Q[t] with basis the polynomials(
t
n

)
, and KU∗(CP

∞) ∼= KU∗⊗F . The heart of the argument is that the projective
bundle theorem that KGL ∧ P∞ ∼= KGL⊗ F identifies the product

KGL ∧ P∞ ∧ P∞ → KGL ∧ P∞

with the map KGL ⊗ F ⊗ F → KGL ⊗ F given by the product F ⊗ F → F .
By a result of Gepner-Snaith-Spitzweck-Østvær, this implies that KGL∧KGL ∼=
KGL⊗ F [1/t].

Everything in (b) but compatibility with the coface ∂0 and codegeneracy σ0

follows easily from (a). We use the hypothesis that s0(1) ∼= s0(KGL) to show
compatibility with ∂0, and the hypothesis that [s0(1), s0(1)] is torsionfree to show
compatibility with σ0.
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Homotopy type theory

Daniel R. Grayson

Homotopy type theory with the univalence axiom of Voevodsky provides both
a new logical foundation for mathematics and a formal language usable with com-
puters for checking the proofs mathematicians make daily. As a foundation, it
replaces Zermelo-Fraenkel set theory with a framework where sets are defined in
terms of a primitive notion called “type”. As a formal language, it encodes the ax-
ioms of mathematics and the rules of logic simultaneously, and promises to make
the extraction of algorithms and values from constructive proofs easy. With a
semantic interpretation in homotopy theory, it offers an alternative world where
the proofs of basic theorems of homotopy theory can be formalized with minimal
verbosity and verified by computer.

The aim of the talk was to expose these recent ideas and developments, due
to various participants in the just-concluded special year at the Institute for Ad-
vanced Study in Princeton. A 600 page book has been produced explaining ho-
motopy type theory and how to make proofs using the new foundations, entitled
“Homotopy Type Theory: Univalent Foundations of Mathematics” and available
at http://homotopytypetheory.org/book/.

One of the evident annoyances of the use of set theory as a foundation for
mathematics is the existence of stupid propositions, such as whether 2 is an element
of 3, or whether the natural number 5 is equal to the integer 5. The truth of such
propositions depends on the precise definitions used in setting up the mathematical
objects to be discussed, but is ultimately irrelevant to mathematicians. Type
theory avoids the first sort of stupid proposition above by discarding the relation
that says that one set is an element of another: instead, elements and the “types”
they belong to are different kinds of things, and each element is born knowing
its type; that information is now part of the grammar of the theory, rather than
part of the mathematical content. Type theory avoids the second sort of stupid
proposition by using an equality relation that can be applied only to compare
elements of the same type.

Homotopy type theory is a more fundamental version of type theory, which
refrains from positing that two proofs of the same equality are equal. It reveals a
world where types are like topological spaces, elements are like points, proofs of
equality between two elements are like paths, and proofs of equality between two
proofs of equality are like homotopies between paths. In this world, we regard a
proof that x = y as providing a way to “identify” x with y; the “identification”
chosen matters in subsequent reasoning. A dictionary is constructed that links
certain propositions to traditional notions of homotopy theory. In particular, one
may describe the types that replace the propositions of set theory (they are like
spaces that are empty or contractible), the types that replace the sets of set theory
(they are like spaces every component of which is contractible), and the maps
between types that are “equivalences” (they are like homotopy equivalences).

The Univalence Axiom of Voevodsky posits a way to convert equivalences to
identifications. As a consequence, in its presence, there are no stupid propositions,
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because every definition, every proposition, and every proof can be transported
from one type to any equivalent type. Voevodsky’s theorem states that there is
a model in simplicial sets that demonstrates the consistency of homotopy type
theory with the axiom added (relative to the consistency of traditional mathemat-
ics). Voevodsky’s conjecture is that constructive proofs using the axiom remain
computable; establishing it is an important problem.

The higher inductive types of Lumsdaine and Shulman allow new types to be
constructed synthetically, cell by cell, and allow new proofs of traditional theorems
of homotopy theory, such as the Freudenthal Suspension Theorem and the Blakers-
Massey Theorem, to be proven in new and beautiful ways. For details, see Chapter
8 of the book.

Reporter: Patrick Forré
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SWITZERLAND

Prof. Dr. Jean-Louis

Colliot-Thelene

Laboratoire de Mathématiques
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Universitätsstr. 31
93053 Regensburg
GERMANY



Algebraic K-theory and Motivic Cohomology 1911

Prof. Dr. Bruno Kahn

Institut de Mathématiques
Université Paris VI
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