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Introduction by the Organisers

The seventh conference on “The Arithmetic of Fields” organized by Moshe Jarden
(Tel Aviv) and Florian Pop (Philadelphia) was held on 16 – 22 June 2013. The
participants came from 7 countries: USA (8), Germany (7), Israel (6), France (2),
Canada (1), England (1), and South Africa (1), All together, 26 people attended
the conference, seven were young researchers, and four were women.

Compared to the sixth conference, this time we had only “half a conference”,
the other half was on “Quadratic Forms and Linear Algebraic Groups”. That
subject was close enough to “Field Arithmetic” to organize each morning two
joint sessions for the two groups. The afternoon sessions were separate.

Most of the talks concentrated on the main theme of Field Arithmetic, namely
Galois groups and the interplay with the arithmetic of the fields. Some of the
talks had an arithmetical geometry flavour while others concentrated on valuation
theory.

Even the plenary talks on quadratic forms given by the other group were well
attended by the participants of our conference. We followed them with great
interest.
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All together, the organizers find the blend of young and experienced researchers
and the variety of subjects covered very satisfactory.
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Abstracts

Local Global Principles for Galois Cohomology

Julia Hartmann

(joint work with David Harbater, Daniel Krashen)

A classical theorem due to Albert, Brauer, Hasse, and Noether states that a central
simple algebra over a global field F is split (i.e., isomorphic to a matrix algebra)
if and only if it splits over the completions of F at all places.

It is known that the analog is generally false if one instead considers the function
field of a surface over a finite field (for any set of valuations). Kato suggested
viewing the theorem as a local global principle for Br(F )[m] = H2(F,Z/mZ(1))
for all m, where Z/mZ(n) is defined as µ⊗n

m if the characteristic of F does not
divide m. He further proposed an analog by considering the local-global map

Hn(F,Z/mZ(n− 1))→
∏

v∈Ω

Hn(Fv,Z/mZ(n− 1)).

Here Ω is a suitable set of valuations, and it should depend on the field F for
which n this is expected to be injective. In particular, he proved that this local-
global map is injective for n = 3 when F is the function field of a surface over a
finite field, with Ω the set of all discrete valuations. (Note that the corresponding
statement for n > 3 is vacuous in this situation.)

In this note, we consider function fields of curves over complete discretely valued
fields and show that for such fields, both the original Albert-Brauer-Hasse-Noether
theorem as well as Kato’s analog hold. More precisely, we show the following two
theorems.

Theorem 1 ([3], Theorem 3.3.6). Let F be a one variable function field over a
complete discretely valued field K. Assume that K is equicharacteristic and that
char(F ) ∤ m. Then

Hn(F,Z/mZ(n− 1))→
∏

v∈Ω

Hn(Fv,Z/mZ(n− 1))

is injective for all n > 1. Here Ω is the set of discrete (rank one) valuations of F .

Theorem 1 remains true for certain variations of the set Ω, for example one
may instead use the set of valuations that come from codimension one points on
a regular model of F over the valuation ring of K. After the talk, it was com-
municated to us by Parimala and Suresh that they have a different (unpublished)
proof of the theorem which does not need the equicharacteristic hypothesis.

Theorem 2 ([4], Corollary 9.13). Let F be a one variable function field over
a complete discretely valued field and let Ω be the set of all discrete (rank one)
valuations of F . Then the natural map

Br(F )→
∏

v∈Ω

Br(Fv)
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is injective.

Theorem 2 previously appeared in [1] (Theorem 4.3(ii)). It is used here as
an example application of a much more general theorem for nonabelian Galois
cohomology, see below.

The results of this note (and details about their proofs) may be found in [3]
and [4].

1. Proving Theorem 1

Theorem 1 is a consequence of the following

Theorem 3 ([3], Theorem 3.2.3). Let F be a one variable function field over a
complete discretely valued field K and let X be a regular model for F with closed
fiber X. Then the local-global map

Hn(F,Z/mZ(n− 1))→
∏

P∈X

Hn(FP ,Z/mZ(n− 1))

is injective for all n > 1. Here FP is the fraction field of the complete local ring
of X at the point P (the product is taken over all points of X, including generic
points of components of X).

To relate these two theorems, one considers the kernelsXn(F,A) andX
n
0 (X , A)

of the local-global maps, where more generallyA is any commutative group scheme.
If A is a finite commutative group scheme of order not divisible by the residue
characteristic of K, these fit into an exact sequence

0→X
n
0 (X , A)→X

n(F,A)→
∏

P∈X(0)

′
X

n(FP , A)→ 0

where the restricted product is taken over all closed points P of X . Using a result
of Panin ([5], Theorem C), one can deduce that X

n(FP , A) = 0 for all n > 1
and all P ∈ X(0) if K is equicharacteristic. Hence Theorem 1 and Theorem 3 are
equivalent under this hypothesis on K.

For the proof of Theorem 3, one considers a finite set of overfields of F that come
from patching. Let as before F be a one variable function field over a complete
discretely valued field K with ring of integers T , uniformizer t, and residue field
k. Let X be a normal model of F over T . Let P be a finite nonempty set of
closed points of the closed fiber X of X which contains all points at which X is
not unibranched. Let U denote the set of components of X \ P .

For U ∈ U , we let FU denote the fraction field of the t-adic completion of the
set {f ∈ F | f ∈ OX ,Q for all Q ∈ U}. For P ∈ P on the closure of U ∈ U , consider
height one prime ideals ℘ in the complete local ring of X at P which contain t.
For each such branch ℘, let F℘ denote the fraction field of the completion of the
localization of OX ,P at ℘. For notational simplicity, we introduce

F1 :=
∏

P∈P

FP F2 :=
∏

U∈U

FU F0 :=
∏

℘∈P

F℘

Theorem 3 is then deduced from the following local-global principle
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Theorem 4 ([3], Theorem 3.1.5). With notation as above, the local-global map

Hn(F,Z/mZ(n− 1))→ Hn(F1,Z/mZ(n− 1))×Hn(F2,Z/m(n− 1))

is injective for all m for which char(k) ∤ m and for all n > 1.

The key to proving this third version of the local-global principle is the existence
of the overfields F℘. In fact, we show that for A = Z/m(n), there is a long exact
sequence ([3], Theorem 3.1.3)

0 // A(F ) // A(F1)×A(F2) // A(F0):;
ON��

H1(F,A) // H1(F1, A)×H1(F2, A) // H1(F0, A) · · ·
which may be thought of as reminiscent of the usual Mayer-Vietoris sequence.
Thus injectivity at some level n comes from surjectivity at the previous level. We
explicitly show that

H1(F1,Z/mZ(1))×H1(F2,Z/mZ(1))→ H1(F0,Z/mZ(1))

is injective, using the geometric origin of the rings Fi. Combining this with the
norm residue isomorphism theorem (former Bloch-Kato conjecture) which im-
plies that every element in Hn(F0,Z/mZ(n)) is a sum of products of elements
in H1(F0,Z/mZ(1)), we obtain the statement of Theorem 4.

2. Proving Theorem 2

In order to prove Theorem 2, we more generally consider the first Galois co-
homology H1(F,G) of a not necessarily commutative linear algebraic group G.
Again, the kernel X(F,G) of the local-global map

H1(F,G)→
∏

v∈Ω

H1(Fv, G)

can in many cases be related to the kernel XP(X , G) of a local-global map

H1(F,G)→ H1(F1, G)×H1(F2, G)

coming from patching (the strategy is as in the first part, using a local-global map
with respect to points on the closed fiber of a regular model; we omit the details).
Via a 6-term exact sequence

1 // H0(F,G) // H0(F1, G)×H0(F2, G) // H0(F0, G):;
ON��

H1(F,G) // H1(F1, G)×H1(F2, G) // // H1(F0, G).

one can again reduce the injectivity of this finite local-gobal map to the surjectivity
on the level of H0. This surjectivity holds for linear algebraic groups that are
rational and connected by [2], Theorem 3.6. More generally, for nonconnected
rational linear algebraic groups (i.e. groups whose components are all rational
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varieties), we give an explicit description of the obstruction in terms of the so
called reduction graph Γ of a regular model of F :

Theorem 5 ([4], Corollary 6.5). Let F be as above and let G be a rational linear
algebraic group over F . Then XP(X , G) = Hom(π1(Γ), G/G0). In particular, it
is finite. It is trivial if and only if Γ is a tree or G is connected.

For the original obstruction set X(F,G) we show the following

Theorem 6 ([4], Theorem 8.10). Let F be a one variable function field over a
complete discretely valued field with residue field k, and let G be a rational linear
algebraic group. Suppose either k is algebraically closed of characteristic zero or G0

is defined and reductive over a regular model X of F . Then X(F,G) = XP(F,G).

In the special case when G = PGLd (for various d), we obtain Theorem 2.
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Upper bounds for Euclidean minima of abelian fields

Eva Bayer–Fluckiger

(joint work with Piotr Maciak)

Let K be an algebraic number field, and let OK be its ring of integers. Let
N : K → Q be the absolute value of the norm map. The number field K is said
to be Euclidean (with respect to the norm) if for every a, b ∈ OK with b 6= 0
there exist c, d ∈ OK such that a = bc + d and N(d) < N(b). It is easy to check
that K is Euclidean if and only if for every x ∈ K there exists c ∈ OK such that
N(x− c) < 1. This suggests to look at

M(K) = supx∈K infc∈OK
N(x − c),

called the Euclidean minimum of K.

The determination of Euclidean number fields and Euclidean minima is a clas-
sical problem – see for instance the survey of Lemmermeyer [L 95], as well as the
tables of Cerri [C 07]. Another classical problem is to find upper bounds for M(K)
in terms of the degree n = [K : Q] of the number field K, and of the absolute value
dK of its discriminant. Upper bounds valid for arbitrary number fields exist since
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the early 1950’s, due to work of Clarke and Davenport. In [BF 06], it is proved
that

M(K) ≤ 2−ndK .

If K is totally real, then a conjecture attribruted to Minkowski states that

M(K) ≤ 2−n
√
dK .

This is known for n ≤ 8 (cf. [HGRS 11]). One can also try to prove the conjecture
for some families of number fields. This is done in [BF 06], [BFN 05] and [BFS 06]
for certain cyclotomic fields. It is natural to ask the same question for abelian
number fields. We have

Theorem. [BFM 13] Let p be an odd prime number, and let K be an abelian
number field of conductor pr. If r ≥ 2, then we have

M(K) ≤ 2−n
√
dK .

In particular, Minkowski’s conjecture holds for totally real number fields of
conductor pr, when p is an odd prime and r ≥ 2.

The proof uses packing and covering invariants of number fields, following a
method of [BF 06]. A key ingredient is the determinantion of the trace form of
the ring of integers.
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Independence of ℓ-adic Galois representations

Sebastian Petersen

(joint work with Gebhard Böckle and Wojciech Gajda)

Let K be a field. We denote its absolute Galois group by Gal(K) and let

Ks (resp. K̃) be a separable (resp. algebraic) closure of K. Let L be the set
of all prime numbers. Let L′ ⊂ L. Assume we are given for every ℓ ∈ L′ a
topological group Gℓ and a continuous homorphism ρℓ : Gal(K) → Gℓ. Let
ρ : Gal(K)→∏

ℓ∈L′ Gℓ be the homomorphism induced by the ρℓ. Following Serre
[6] we call the family (ρℓ)ℓ∈L′ independent if ρ(Gal(K)) =

∏
ℓ∈L′ ρℓ(Gal(K)). We

denote by K(ρℓ) the fixed field of ker(ρℓ) in Ks and call K(ρℓ) the division field
of ρℓ. Note that (ρℓ)ℓ∈L′ is independent if and only if the sequence (K(ρℓ))ℓ∈L′ of
fields is linearly disjoint over K. We shall say that (ρℓ)ℓ∈L′ is almost independent
if there exists an open subgroup H of Gal(K) such that ρ(H) =

∏
ℓ∈L′ ρℓ(H).

The main examples of such families we are interested in arise as follows: Let
L′ := L r {char(K)}.

(a) Let A/K be an abelian variety. Then for ℓ ∈ L′ and i ∈ N the Galois

group Gal(K) acts on A[ℓi] = A(K̃)[ℓi] and also on the ℓ-adic Tate module
Vℓ(A) := (lim←−

i∈N

A[ℓi])⊗Qℓ. We consider the representation

σℓ,A : Gal(K)→ AutQℓ
(Vℓ(A)).

Then K(σℓ,A) is just the field K(A[ℓ∞]) obtained from K by adjoining
the coordinates of all division points in A[ℓ∞] =

⋃
i∈N A[ℓi] to K. Note

that the family (σℓ,A)ℓ∈L′ is independent if and only if (K(A[ℓ∞])ℓ∈L′ is a
linearly disjoint sequence of extension fields of K. If K is a number field,
then (σℓ,A)ℓ∈L′ is almost independent by a classical result of Serre dating
back to the 80’s (cf. [5]). Igusa had shown earlier that (σℓ,A)ℓ∈L′ is almost
independent if K is a finitely generated field of characteristic zero and A
is an elliptic curve with transcendental j-invariant.

(b) More generally let X/K be a separated algebraic scheme, d ∈ Z and q ∈ N.
For ℓ ∈ L′ we denote by

ρ
(q)
ℓ,X(d) : Gal(K)→ AutQℓ

(Hq(XK̃ ,Qℓ(d)))

the representation of the Galois group Gal(K) on the ℓ-adic étale coho-
mology group Hq(XK̃ ,Qℓ(d)) and by

ρ
(q)
ℓ,X,c(d) : Gal(K)→ AutQℓ

(Hq
c (XK̃ ,Qℓ(d)))

the representation of Gal(K) on the ℓ-adic étale cohomology group with

compact support Hq
c (XK̃ ,Qℓ(d)). We put ρ

(q)
ℓ,X := ρ

(q)
ℓ,X(0) and ρ

(q)
ℓ,X,c :=

ρ
(q)
ℓ,X,c(0). If X is an abelian variety and X∨ the dual abelian variety, then

there is an isomorphism of Qℓ[Gal(K)]-modules

Vℓ(X
∨) ∼= H1(XK̃ ,Qℓ(1)),
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and thus the representations σℓ,X∨ and ρ
(1)
ℓ,X(1) are isomorphic.

With a view towards generalizations of the results of Igusa and Serre mentioned

so far one may wonder in which circumstances the families (σℓ,A)ℓ∈L′ , (ρ
(q)
ℓ,X(d))ℓ∈L′

and (ρ
(q)
ℓ,X,c(d))ℓ∈L′ in the above examples are almost independent. In general they

are not; one needs additional assumptions on K. For example, if X = P1 and
q = 2, then dimQℓ

(H2(XK̃ ,Qℓ)) = 1 and the action of Gal(K) is given by the

inverse of the cyclotomic character εℓ : Gal(K) → Q×
ℓ for ℓ ∈ L′. It is a classical

result in number theory that (εℓ)ℓ∈L is almost independent provided K is a finitely
generated field of characteristic zero. On the other hand (εℓ)ℓ∈L is not almost
independent if K is a finitely generated field of positive characteristic, and there
are even examples of fields K of characteristic zero such that (εℓ)ℓ∈L is not almost
independent over K.

Also note that if the structure morphismX → Spec(K) factors through Spec(E)
for some finite Galois extension E/K and if I denotes the set of K-embeddings

E → K̃, then XK̃ = X ×K Spec(K̃) =
∐

i∈I X ×E,i Spec(K̃) and the action of

Gal(K) on H0(XK̃ ,Qℓ) =
∐

i∈I Qℓ is given by the natural action of Gal(K) on

I. Thus E ⊂ K(ρ
(0)
ℓ,X) for all ℓ ∈ L′ and consequently (ρ

(0)
ℓ,X)L′\I is not indepen-

dent for every finite subset I of L. This shows that one should hunt for “almost
independence results” rather than for “independence results”.

Theorem 1. Let K be a finitely generated field of characteristic zero. Let X/K

be a separated algebraic scheme, d ∈ Z and q ∈ N. Then the families (ρ
(q)
ℓ,X(d))ℓ∈L

and (ρ
(q)
ℓ,X,c(d))ℓ∈L are both almost independent.

In the important special case where K is a number field this theorem was
recently proved by Serre (cf. [6]) continuing and generalizing his earlier work on
abelian varieties over number fields (cf. [5]). In several places in the literature (cf.
[6], [4] and [7]) the question came up whether Theorem 1 holds in the case where
trdeg(K/Q) > 0. This question was finally solved in [3] by reducing it to the
number field case where it was already known thanks to the work of Serre. The
reduction used methods from group theory due to Nori and E. Artin, finiteness
theorems in geometric class field due to Katz and Lang, and the generic base
change theorem in étale cohomology (cf. [4]) of Katz and Laumon.

The hypothesis on the characteristic of K is crucial in Theorem 1: Let K
be a finitely generated field of positive characteristic p and L′ = L r {p}. We
already mentioned that then the family of cyclotomic characters (εℓ)ℓ∈L′ over K

is not almost independent, and hence (ρ
(2)
ℓ,P1

)ℓ∈L′ is not almost independent. For
a separated algebraic K-scheme X and q ∈ N one may ask, however, whether the

restricted family (ρ
(q)
ℓ,X |Gal(F̃pK))ℓ∈L′ is almost independent. (The answer is yes.)

Note that F̃pK/K is the rather small infinite algebraic extension of K obtained by
adjoining all roots of unity to K. Having gone that far it seemed natural to ask
for an analogue of Theorem 1 where the ground field is a geometric function field,
i.e. a finitely generated extension of an algebraically closed field. Such a result
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was independently obtained by Cadoret-Tamagawa (cf. [2]) and by the authors
(cf. [1]).

Theorem 2. Let K0 be an algebraically closed field of characteristic p ≥ 0 and
K/K0 a finitely generated extension. Let X/K be a separated algebraic scheme

and q ∈ N. Let L′ = L r {p}. Then the families (ρ
(q)
ℓ,X)ℓ∈L′ and (ρ

(q)
ℓ,X,c)ℓ∈L′ are

both almost independent.

In the case where K is a geometric function field we can say quite a bit about
the images of the representations under consideration.

Theorem 3. Let K0 be an algebraically closed field of characteristic p ≥ 0 and
K/K0 a finitely generated extension. Let X/K be a separated algebraic scheme and

q ∈ N. Let L′ = Lr{p}. Let either (ρℓ)ℓ∈L′ = (ρ
(q)
ℓ,X)ℓ∈L′ or (ρℓ)ℓ∈L′ = (ρ

(q)
ℓ,X,c)ℓ∈L′ .

Then there exists a finite extension K ′/K and a constant c ∈ N with the following
properties.

i) The group ρℓ(Gal(K ′)) is generated by its ℓ-Sylow subgroups for every
ℓ ∈ L′.

ii) For every ℓ ∈ L′ the group ρℓ(Gal(K ′)) has a normal series

ρℓ(Gal(K ′)) ⊲ Nℓ ⊲ Pℓ ⊲ {e}
such that ρℓ(Gal(K ′))/Nℓ is a finite product of finite simple groups of Lie
type in characteristic ℓ, the group Nℓ/Pℓ is a finite abelian group of order
prime to ℓ, the index [Nℓ : Pℓ] is (uniformly) bounded by c, and Pℓ is a
pro-ℓ group.

The proof of Theorems 1 and 2 in [1] makes crucial use of group theoreti-
cal results of Larsen and Pink and of finiteness properties of étale fundamental
groups. Furthermore we had to understand certain (tame) ramification properties

of families of the form (ρ
(q)
ℓ,X)ℓ∈L′ and (ρ

(q)
ℓ,X,c)ℓ∈L′ where X is a separated algebraic

scheme over K and K a function field over Fp. Our proof of the desired ramifica-
tion properties involves the alteration technique of de Jong and the local Langlands
correspondence proved by Lafforgue. Alternatively we could have applied a recent
result of Orgogozo in order to get these ramification properties.

In the case of abelian varieties one obtains the following

Corollary 4. Let either K0 be an algebraically closed field of arbitrary char-
acteristic or K0 = Q. Let K/K0 be a finitely generated field extension. Let
A/K be an abelian variety. Then there exists a finite extension E/K such that
(E(A[ℓ∞]))ℓ∈Lr{char(K)} is an E-linearly disjoint sequence of fields.

References
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Random Galois extensions of Hilbertian fields

Lior Bary-Soroker

(joint work with Arno Fehm)

A central problem in the theory of Hilbertian fields is to find conditions under
which a separable extension L of a Hilbertian field K is again Hilbertian (e.g.
when K = Q). The talk dealt with Galois extensions whose group has ‘finitely
many relations,’ in a certain sense. The main result presented is that typically,
those extensions are Hilbertian.

Theorem 1. Let K be a countable Hilbertian field and L/K a Galois extension.
Then the set of σ ∈ Gal(L/K)n for which L[σ] is not Hilbertian has Haar measure
0.

Here L[σ] is the fixed field of the minimal normal subgroup [σ] that contains
σ1, . . . , σn.

This theorem generalizes Jarden’s result for L = Ks, the separable closure of
K and settles a problem stemming from the work of Haran, Jarden, and Pop for
L = Qtot,S , the field of totally S-adic numbers, for a finite set of absolute values
S of Q.

In the proof, among other things, we use the infinite Ramesy theorem, for the
first time, to the best of our knowledge, in Field Arithmetics.

Permanence principles for Hilbertian fields

Arno Fehm

(joint work with Lior Bary-Soroker and Gabor Wiese)

A field K is Hilbertian if for every irreducible f ∈ K[T,X ] which is monic and
separable in X there exists τ ∈ K such that f(τ,X) is irreducible. Let K be
Hilbertian and L/K an algebraic extension. Classical results state that under any
of the following conditions, also L is Hilbertian:

(1) L/K is finite;
(2) L/K is small, i.e. for every n ∈ N there exist only finitely many fields

K ⊆M ⊆ L with [M : K] = n;
(3) L/K is abelian (Kuyk 1970);
(4) there exists a field K ⊆ M ⊆ L with M/K Galois and 1 < [L : M ] < ∞

(Weissauer 1982);
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(5) there exist Galois extensions M1,M2 of K with L ⊆M1M2, L 6⊆M1, and
L 6⊆M2 (Haran 1999);

The work [1] adds a new permanence principle to this list:

(6) there exist fields K = M0 ⊆ · · · ⊆ Mr with L ⊆ Mr such that for each i,
Mi+1/Mi is Galois with group abelian or a product of finite simple groups.

Note that (6) includes (3) as the special case r = 1 and M1/M0 abelian. Already
the case r = 2 and M2/M1, M1/M0 both abelian is new.

Let us call the extension L/K an H-extension if every intermediate field K ⊆
M ⊆ L is Hilbertian. Observe that (1), (2), (3) and (6) imply that L/K is such
an H-extension, while (4) and (5) do not.

Lemma 1. If (Kℓ)ℓ is a family of Galois H-extensions of K, and E/K is an
H-extension such that the family (KℓE)ℓ is linearly disjoint over E, then the com-
positum

∏
ℓ Kℓ is an H-extension of K.

Proof. Let K ⊆M ⊆∏
ℓ Kℓ. If for some ℓ, M ⊆ Kℓ, then M is Hilbertian because

Kℓ/K is an H-extension. If for some ℓ, M 6⊆ Kℓ and M 6⊆ ∏
ℓ′ 6=ℓKℓ′ , then M

is Hilbertian by (5). In the remaining case, M ⊆ ⋂
ℓ

∏
ℓ′ 6=ℓ Kℓ′E = E by linear

disjointness, hence M is Hilbertian because E/K is an H-extension.1 �

For a profinite group Γ, let D(Γ) denote the intersection over all open normal
subgroups N of Γ with Γ/N abelian or simple. Define a descending normal series
by Γ(0) = Γ, Γ(i+1) = D(Γ(i)), and let length(Γ) = inf{i : Γ(i) = 1} be the
abelian-simple length of Γ.

Lemma 2. Fix m ∈ N. The class of profinite groups Γ with length(Γ) ≤ m is
closed under taking normal subgroups, quotients, fiber products and inverse limits.
If N ✁Γ is a closed normal subgroup, then length(Γ) ≤ length(N) + length(Γ/N).

With this terminology, we can reformulate (6) as follows:

Theorem 3. If K is Hilbertian and L/K is a Galois extension of finite abelian-
simple length (i.e. length(Gal(L/K)) <∞), then L/K is an H-extension.
About the proof. The proof of this theorem utilizes Haran’s twisted wreath product
approach [3]. In order to apply it, one has to show that “abelian-simple length
grows in wreath products”: Let Γ0 ≤ Γ and A 6= 1 be finite groups with Γ0 acting
on A, and denote by A ≀Γ0 Γ = IndΓΓ0

(A)⋊Γ the twisted wreath product. We prove

that if [Γ(m)Γ0 : Γ0] > 2m, then (A ≀Γ0 Γ)
(m+1) ∩ IndΓΓ0

(A) 6= 1. �

We apply Theorem 3 to extensions arising from Galois representations: Fix
n ∈ N. For each prime ℓ let ρℓ : GK → GLn(Qℓ) be a continuous homomorphism,
let Kℓ be the fixed field of ker(ρℓ), and K(ρ) =

∏
ℓKℓ the compositum.

Proposition 4. If (ρℓ)ℓ is as above, then K(ρ)/K is an H-extension.

1This proof is a simplification of the original one published in [2].
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Sketch of proof. By a result of Larsen-Pink [5] there is a constant J(n) and, for
each ℓ, an intermediate field K ⊆ K ′

ℓ ⊆ Kℓ such that Kℓ/K
′
ℓ is Galois with

Gal(Kℓ/K
′
ℓ) pro-ℓ and K ′

ℓ/K is Galois with Gal(K ′
ℓ/K) an extension of a finite

group of order ≤ J(n) by an extension of a product of finite simple groups by
an abelian group. Let E =

∏
ℓK

′
ℓ. By Lemma 2, one has length(Gal(E/K)) ≤

2+log2 J(n), so E/K is an H-extension by Theorem 3. Since each Kℓ/K is Galois
with Gal(Kℓ/K) a compact subgroup of GLn(Qℓ), hence finitely generated as a
profinite group, Kℓ/K is an H-extension by (2). Since for each ℓ, Gal(KℓE/E) is
pro-ℓ, the family (KℓE)ℓ is linearly disjoint over E. Therefore, the claim follows
from Lemma 1. �

In the special case where the ρℓ arise from representations on the Tate module
of an abelian variety, we obtain the following:

Corollary 5 (Jarden’s conjecture). Let K be a Hilbertian field, A/K an abelian
variety, and K(Ator) the extension of K obtained by adjoining all torsion points
of A. Then K(Ator)/K is an H-extension.

In [4], this was proven for number fields K and conjectured for Hilbertian fields
K in general. Several further applications of Theorem 3 can be found in [1, Sec-
tion 5].
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Principal Bundles over Valued Fields

Laurent Moret-Bailly

(joint work with Ofer Gabber and Philippe Gille)

The slides of this talk are available on the author’s webpage:

http://perso.univ-rennes1.fr/laurent.moret-bailly/exposes.html

1. Notation and conventions; admissible valued fields

A valued field (K, v) is a field K equipped with a Krull valuation v of arbitrary

positive rank. We denote by K̂ the completion of K.

If K is a field, a K-variety is a K-scheme of finite type. A K-space is an
algebraic space X , of finite type and locally separated over K (recall that the
latter condition means that the diagonal map X → X ×K X is an immersion;
this is always the case if X is a variety). An algebraic group over K is a K-group
scheme of finite type.

If (K, v) is a valued field andX is aK-variety, the setX(K) ofK-rational points
of X admits a natural topology, inherited from the valuation topology on K. The
resulting topological space will be denoted by Xtop. This defines a functor from
K-varieties to topological spaces, which commutes with fiber products, takes open
(closed) immersions to open (closed) topological embeddings, separated varieties
to Hausdorff spaces, and the affine line to K with the usual valuation topology.

Assume moreover that (K, v) is Henselian. Then (“implicit function theorem”)
the above functor takes étale morphisms to local homeomorphisms. Furthermore,
the Xtop construction can be extended to the category of K-spaces, with the
same compatibility properties: see [2] for the special case of complete, rank one
valuations.

Definition 1. A valued field (K, v) is admissible if it is Henselian and its com-

pletion K̂ is a separable extension of K.

Admissible valued fields satisfy the following generalization of Greenberg’s ap-
proximation theorem [5]:

Theorem 2 (strong approximation theorem [6, Theorem 1.2]). Let (K, v) be an
admissible valued field, and let R ⊂ K be the ring of v. Let X be an R-scheme of
finite presentation.

Then, for each nonzero ideal J of R, there is an ideal J ′, with 0 6= J ′ ⊂ J , such
that (under the natural maps)

Im
(
X (R)→X (R/J)

)
= Im

(
X (R/J ′)→X (R/J)

)
.

This has important topological consequences. In particular:

Corollary 3 (see [6, Theorem 1.3]). Let (K, v) be admissible, and let f : X → Y
be a proper morphism of K-spaces. Then ftop : Xtop → Ytop has closed image.

(Note that ftop is not a closed map in general).
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2. Torsors; statement of the main result

Assume (K, v) is an admissible valued field, G is an algebraic K-group, Y is
a K-space, and f : X → Y is a G-torsor (for the fppf topology) over Y . Taking
rational points, we get a continuous free action of Gtop on Xtop and a continuous,
Gtop-invariant map ftop : Xtop → Ytop. We can factor ftop as

Xtop
α−−−−→ Xtop/Gtop

β−−−−→ Im(ftop)
γ−−−−→ Ytop .

quotient map continuous topological

bijection embedding

Our main theorem is:

Theorem 4. Notations and assumptions are as above.

(1) Im(ftop) is locally closed in Ytop.
Moreover, it is open and closed if G is smooth, and it is closed if G satisifes

Condition (*) (see Definition 5 below; in particular, this holds if G◦
red is smooth,

or if G is commutative).

(2) The map β ◦ α : Xtop → Im(ftop) is a principal Gtop-bundle (i.e. locally
isomorphic, with the Gtop-action, to the projection Im(ftop)×Gtop → Im(ftop)).

Equivalently, β is a homeomorphism and α is a principal Gtop-bundle.

3. Method of proof

3.1. The group G†, condition (*), and Gabber’s compactification. Let G
be an algebraic group over an arbitrary field K. Then [3, Lemma C.4.1] G admits
a largest smooth subgroup, which we denote by G†. It can be constructed as the
Zariski closure of the set of all points of G whose residue fields are separable over
K. It is functorial in G, and its formation commutes with separable ground field
extensions.

Definition 5. With the above assumptions, denote by K̄ an algebraic closure of
K. We say that G satisfies condition (*) if every subtorus of GK̄ is contained in
(G†)K̄ .

Condition (*) is easily seen to hold if G◦
red is smooth, or if G is commutative.

The homogeneous space Q := G/G† has a unique K-rational point; more gen-
erally, if T is a G-torsor over K, then T/G† has at most one rational point. The
following theorem is a special case of a result announced in [4]:

Theorem 6 (O. Gabber). With the above notation, there exist:

• a projective variety Qc with an action of G, carrying a G-linearized ample
line bundle,
• a G-equivariant open immersion Q →֒ Qc (we identify Q with its image
in Qc)
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such that Qc has a unique rational point (which of course must be the unique point
of Q(K)).

If, moreover, G satisfies condition (*), we can choose Qc in such a way that
every G-orbit of Qc defined over K (in the sense of [1, 10.2, Definition 4]) is
contained in Q.

3.2. Strategy of proof of Theorem 4. Starting with f : X → Y as in Theorem

4, we introduce the quotient Z := X/G† and we factor f as X
π−→ Z

h−→ Y . (Note
that even if X and Y are varieties, Z in general only exists as an algebraic space:
this is the main reason for stating our theorem with this generality).

First, note that π is a torsor under the smooth group G†. It follows easily

that Im(πtop) ⊂ Ztop is open and closed, and πtop is a principal G†
top-bundle over

its image. (The assumption that K̂ is separable over K is not used here). Also,

observe that G†
top = Gtop.

Next, it is easy to see that htop is injective. Moreover, we prove that it is in
fact a topological embedding, and its image is locally closed in Ytop, and closed
under condition (*). This makes essential use of Theorem 6 and the approximation
theorem.
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ihrer Grenzgebiete 21 (1990), Springer.

[2] B. Conrad, Weil and Grothendieck Approaches to Adelic Points, L’Ens. Math. (2) 58 (2012),
61–97.

[3] B. Conrad, O. Gabber, G. Prasad, Pseudo-reductive groups, Cambridge University Press
(2010).

[4] O. Gabber, On pseudo-reductive groups and compactification theorems, to appear in Ober-
wolfach Reports.

[5] M.J. Greenberg, Rational points in Henselian discrete valuation rings. Pub. Math. I.H.E.S.
31 (1966), 59–64.

[6] L. Moret-Bailly, An extension of Greenberg’s theorem to general valuation rings, Manusc.
Math. 139 (2012) 1, 153–166.

The u-invariant of a rational function field

David Leep

The (classical) u-invariant of a field F , written u(F ), is the maximum dimension
of an anisotropic quadratic form defined over F . We set u(F ) = ∞ if no such
maximum exists. The main question of this report is the problem of computing
u(k(t)) where k is a field and k(t) is the rational function field over k. Throughout
this report, k denotes a field with chark 6= 2.

Proposition 1. 2u(k) ≤ 2 sup{u(E) | [E : k] <∞} ≤ u(k(t)).

Proof. The first inequality is trivial and the second inequality is proved using
standard valuation theory. �
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Proposition 2. Let [E : k] = r. Then u(E) ≤ r+1
2 u(k).

Proof. See [L], Theorem 2.10. �

Proposition 2, currently the best known upper bound for u(E), is not strong
enough to even suggest the finiteness of u(k(t)) in Proposition 1. We now pursue
a second approach.

Let uk(r,m) denote the smallest integer such that every system of r quadratic
forms defined over k in more than uk(r,m) variables vanishes on an m-dimensional
affine linear space defined over k. Set uk(r,m) =∞ if no such integer exists. Note
that uk(1, 1) = u(k).

Proposition 3. 2u(k) ≤ uk(2, 1) ≤ u(k(t)).

Proof. Let q1 and q2 be two quadratic forms defined over k. Let q1 + tq2 de-
note the polynomial sum over k(t). The Amer-Brumer theorem (see [A] and [B])
states that q1 and q2 have a nontrivial common zero over k if and only q1 + tq2
is isotropic over k(t). This immediately implies that uk(2, 1) ≤ u(k(t)). The in-
equality 2u(k) ≤ uk(2, 1) comes from considering two anisotropic forms q1 and q2
in disjoint variables. �

Proposition 4. Let Q be a regular quadratic form defined over k(t). There exist
quadratic forms q1, q2 defined over k and an integer l ≥ 0 such that q1 + tq2 ≃k(t)

lH ⊥ Q.

Proposition 5 (Amer’s Theorem, [A]). Let q1 and q2 be two quadratic forms
defined over k. Then q1 and q2 vanish on a common m-dimensional affine linear
space over k if and only if q1 + tq2 vanishes on an m-dimensional affine linear
space over k(t).

Lemma 6.

(1) 2u(k) ≤ uk(2, 1) ≤ 3u(k).
(2) uk(2,m) + 2 ≤ uk(2,m+ 1) ≤ uk(2,m) + 3 for all m ≥ 1.
(3) uk(2, 1) + 2(m− 1) ≤ uk(2,m) ≤ uk(2, 1) + 3(m− 1) for all m ≥ 1.

Proof. Proofs of these inequalities can be found in [L]. �

Theorem 7. u(k(t)) = supm≥1{uk(2,m)− 2(m− 1)}.
Proof. By Lemma 6, we can assume that u(k) is finite and thus uk(2,m) is finite
for all m ≥ 1.

For arbitrary m ≥ 1, let q1, q2 be two quadratic forms defined over k in uk(2,m)
variables such that q1, q2 do not vanish on a common m-dimensional vector space
defined over k. By Proposition 5, q1 + tq2 doesn’t vanish on an m-dimensional
vector space over k(t). Thus we have q1 + tq2 ≃k(t) Q ⊥ lH ⊥ rad(q1 + tq2), where
Q is anisotropic over k(t) and l + dim(rad(q1 + tq2)) ≤ m− 1. Then

u(k(t)) ≥ dimQ = uk(2,m)− 2l− dim(rad(q1 + tq2)) ≥ uk(2,m)− 2(m− 1).

Thus, u(k(t)) ≥ supm≥1{uk(2,m)− 2(m− 1)}.
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Let Q be an anisotropic quadratic form defined over k(t). By Proposition 4,
there exist quadratic forms q1 and q2 defined over k such that q1 + tq2 ≃k(t) Q ⊥
(m − 1)H for some integer m ≥ 1. We have dim(q1 + tq2) ≤ uk(2,m), otherwise
q1 and q2 would vanish on a common m-dimensional vector space over k and thus
q1+tq2 would also vanish on an m-dimensional vector space over k(t) by the trivial
implication of Proposition 5. Thus

dim(Q) ≤ uk(2,m)− 2(m− 1) ≤ sup
m≥1
{uk(2,m)− 2(m− 1)}.

Therefore, u(k(t)) ≤ supm≥1{uk(2,m)− 2(m− 1)}. �

The second inequality in Proposition 3 is contained in Theorem 7 when m = 1.

Corollary 8. u(k(t)) ≤ N if and only if uk(2,m) ≤ 2(m− 1) +N for all m ≥ 1.

The estimate in Lemma 6 (3) implies that

uk(2, 1) ≤ uk(2,m)− 2(m− 1) ≤ uk(2, 1) + (m− 1)

for all m ≥ 1. By Corollary 8, these estimates are not strong enough to conclude
the finiteness of u(k(t)).

I have recently improved the estimates in Lemma 6 to obtain the following
result.

Theorem 9. uk(2,m) ≤M + 5
2 (m− 1) for some positive constant M and for all

m ≥ 1.

This improvement of Lemma 6, the first improvement since [L], is still not
strong enough to prove the finiteness of u(k(t)), but there is hope that additional
improvements will still be possible.
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Strong Approximation Theorem for absolutely irreducible varieties
over PSC Galois extensions of number fields

Aharon Razon

(joint work with W.-D. Geyer, M. Jarden)

Let K be a number field, V an infinite proper subset of the set of all primes of K,
and S a finite subset of V . Denote the maximal Galois extension ofK in which each
p ∈ S totally splits by Ktot,S . For each p ∈ V , let K̂p be a completion of K at p. If

p is non-archimedean, let ÔK,p be its valuation ring and let
˜̂OK,p be the integral

closure of ÔK,p in the algebraic closure,
˜̂
Kp, of K̂p. For an algebraic extension M
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of K and U ⊆ V , let OM,U = {z ∈ M | |zσ|p ≤ 1 ∀p ∈ U ∀σ ∈ Gal(K)}. (The

absolute value | |p is extended from K to K̂p and then to
˜̂
Kp in which we embed

K̃.)
For σ = (σ1, . . . , σe) ∈ Gal(K)e, let Ks(σ) = {x ∈ Ks | σi(x) = x, i = 1, . . . , e}

and let Ks[σ] be the maximal Galois extension of K contained in Ks(σ). Then,
for almost all σ ∈ Gal(K)e (with respect to the Haar measure), the field M =
Ks[σ] ∩Ktot,S satisfies the following strong approximation theorem: Let V ⊆ An

be an affine absolutely irreducible variety defined over K and let T ⊇ S be a finite
subset of V such that the primes in U = V r T are non-archimedean. Suppose

that V (
˜̂OK,p) 6= ∅ for each p ∈ U and that there exist a finite Galois extension L̂p

of K̂p and a nonempty p-open subset Ωp of Vsimp(L̂p) for each p ∈ T such that Ωp

is invariant under Gal(L̂p/K̂p) and L̂p = K̂p for each p ∈ S. Then, there exists
z ∈ V (OM,U ) such that zσ ∈ Ωp for each p ∈ T and each σ ∈ Gal(K).

Relaxing “L̂p is a finite Galois extension of K̂p” to “L̂p =
˜̂
Kp” for p ∈ T rS

in the local conditions, the strong approximation theorem can be extended to
absolutely irreducible affine varieties V defined over M by replacing the field K
with a finite subextension of M/K over which V is defined.

Definable henselian valuations

Jochen Koenigsmann

(joint work with Franziska Jahnke)

The arithmetic of henselian valued fields is largely (and in residue characteristic 0
entirely) determined by the arithmetic of residue field and value group. Conversely,
in most natural examples, the henselian valuation is encoded in the arithmetic of
the field.

In this talk we investigate the question when a henselian field K admits a
henselian valuation v encoded in the arithmetic of K in the sense that the valu-
ation ring Ov be definable by a first-order formula φ(x) in the language Lring =
{+, ·; 0, 1}:

Ov = {x ∈ K | φ(x)}.
Using three technical ingredients

• canonical p-henselian valuations
• topologically henselian fields á la Prestel-Ziegler
• an analysis of regular and antiregular ordered abelian groups

we give a complete classification of such fields in residue characteristic p = 0. If p >
0 the same classification goes through for tame fields, and, modulo a conjectured
weak converse Ax-Kochen/Ershov principle, in general.

In any case, almost all henselian valued fields do admit a definable henselian
valuation (using at most one, typically zero parameters).
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Local points on supersingular elliptic curves over Zp extensions

Mirela Ciperiani

Let E be an elliptic curve defined over Q and p a rational prime such that

• p ≥ 5,
• E has supersingular reduction at p.

Consider a finite extension L/Qp and a Zp-extension L∞/L. Denote by Ln the
unique subextension of L∞ such that deg(Ln/L) = pn. For simplicity, we assume
that E(Q)tors = 0.

Following Kobayashi we define

E+(Ln) = {P ∈ E(Ln) | trLn/Lm+1
P ∈ E(Lm) for all m ∈ 2Z, 0 ≤ m < n},

E−(Ln) = {P ∈ E(Ln) | trLn/Lm+1
P ∈ E(Lm) for all m ∈ 2Z+ 1, 0 ≤ m < n}.

In the case L = Qp, the following result was proven by Kobayashi for the
cyclotomic Zp-extension L∞/Qp and then generalized by Iovita and Pollack to
cover all totally ramified extensions L∞/Qp.

Theorem 1 (Kobayashi[Ko], Iovita-Pollack[IP]). If L∞/Qp is a totally ramified
Zp-extension then

E(Ln) = E+(Ln) + E−(Ln) and E+(Ln) ∩ E−(Ln) = E(L0)

for all n ≥ 1.

Consider

E±(L∞) = Lim
−→
n

E±(Ln) ⊆ E(L∞)

and then view

E±(L∞)⊗Qp/Zp ⊆ H1(L∞, Ep∞)

as modules over Λ = Zp[[Gal(L∞/L]]. The results of Kobayashi and Iovita -
Pollack allow us to deduce that

corankΛ

(
E+(L∞)⊗Qp/Zp ∩E−(L∞)⊗Qp/Zp

)
= 0,

and their method of proof also implies that

corankΛE
±(L∞)⊗Qp/Zp = 1 =

1

2
corankΛH

1(L∞, Ep∞).

We would like to show that

corankΛ

(
E+(L∞)⊗Qp/Zp ∩E−(L∞)⊗Qp/Zp

)
= 0,

corankΛE
±(L∞)⊗Qp/Zp =

1

2
corankΛH

1(L∞, Ep∞).

in greater generality and in particular we want to remove the assumption that
L = Qp. In this talk we described how we prove the following result:
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Theorem 2 (Çi). Let L be a quadratic extension of Qp and L∞/L be the unique
anticyclotomic Zp-extension of L. Then

corankΛ

(
E+(L∞)⊗Qp/Zp ∩E−(L∞)⊗Qp/Zp

)
= 0,

corankΛE
±(L∞)⊗Qp/Zp =

1

2
corankΛH

1(L∞, Ep∞) = 2.

As an application, we then discussed the effect of this local result on the image
complex multiplication points in the Selmer group.
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Period-index and u-invariant questions for fields

R. Parimala

(joint work with V. Suresh)

Let F be a field of characteristic not 2. The u-invariant u(F ) is defined to be the
maximum dimension of anisotropic quadratic forms over F . The behavior of the
u-invariant under rational function field extensions is very little understood.

For any field F , the Brauer p-dimension Brpdim(F ) of F is defined as the least
positive integer d such that for any central simple algebra A defined over any finite
extension of F of exponent a power of p, the index of A divides the dth power
of the exponent. The Brauer dimension of F is the maximum of the Brauer p-
dimensions of F as p varies over all primes. The behavior of the Brauer dimension
of a field again is very little understood under rational function field extensions.

There is a class of fields where there is way to understand the u-invariant and the
Brauer dimension under rational function field extensions. Let K be a complete
discrete valued field of characteristic zero with residue field κ. Let F be the function
field in one variable over K. Suppose char(κ) = p. Let l be a prime not equal
to p. Harbater, Hartmann and Krashen prove that for a prime l not equal to p,
if Brldim(κ′) ≤ d for every finite extension κ′ of κ and if brldim(E) ≤ d + 1 for
every function field E in one variable over κ, then Brldim(F ) ≤ d+2. This result
for K a p-adic field is due to Saltman. It remained open whether Brpdim(F ) is
finite for function fields of p-adic curves.

Let κ be a field of characteristic p > 0. The p-rank of κ is d if [κ : κp] = pd. We
prove that ifK is a complete discrete valued field of characteristic zero with residue
field κ of characteristic p > 0 with p-rank of κ equal to d, then, for a function
field F in one variable over K, Brpdim(F ) ≤ 2d + 2. We also prove that if the
residue field κ is a perfect field of characteristic 2, u(F ) ≤ 8. For function fields
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of p-adic curves, it follows that the Brauer dimension is 2. Further the u-invariant
of function fields of dyadic curves is 8, a result due to Heath-Brown and Leep.

The main ingredients in the proof are Kato’s filtration of the p-part of the Brauer
group of a complete discrete valued field of characteristic zero with residue field
of characteristic p and the patching theorems of Harbater-Hartmann-Krashen.

The inverse Galois problem and orthogonal groups

David Zywina

The Inverse Galois Problem asks whether every finite group occurs as the Galois
group of some extension of Q. This is a very difficult problem, and it is interesting
to prove it for special classes of simple groups.

Fix an odd integer n ≥ 5 and a prime ℓ ≥ 5. Let O(V ) be the group of
automorphisms of a non-degenerate quadratic space (V, q) with dimFℓ

V = n. The
commutator subgroup Ω(V ) of O(V ) is then a simple group (up to isomorphism,
it depends only on n and ℓ). Our main result is the following:

Theorem 1. The group Ω(V ) occurs as the Galois group of an extension of Q
(moreover, it occurs as the Galois group of a regular extension of Q(t)).

Reiter [3] proved Theorem 1 in the special case where 2 or 3 is not a square
modulo ℓ. Additional special cases of Theorem 1 for n = 5 and 7 were proved by
Häfner [1].

Consider the case n = 5. In this case, we have an exceptional isomorphism
Ω(V ) ∼= PSp4(Fℓ). For simplicity, we suppose that ℓ ≥ 17.

For a fixed s ∈ Q− {0, 1,−1}, consider the Weierstrass equation

(1) (t− s)y2 = x3 + 3(t2 − 1)3x− 2(t2 − 1)5.

This gives rise to an elliptic scheme E → U := A1
Q − {0, 1,−1, s}. Let E[ℓ] be the

ℓ-torsion subscheme of E; it can be viewed as a lisse sheaf of Fℓ-modules over U .
Taking étale cohomology, we obtain an Fℓ-vector space

Vℓ := H1
ét

(
P1
Q
, j∗(E[ℓ])

)
,

where j : U →֒ P1
Q is the inclusion morphism. The Fℓ-vector space Vℓ has dimension

5 and is acted upon by the absolute Galois group GalQ := Gal(Q/Q). We could
have also defined Vℓ as a factor of the group H2

ét(XQ,Fℓ(1)) for a related algebraic

surface X/Q.
Using the Weil pairing on E[ℓ] and the cup product, we obtain a non-degenerate

symmetric pairing Vℓ × Vℓ → Fℓ. The Galois action respects the pairing, and we
have a representation

ρs,ℓ : GalQ → O(Vℓ).

Using big monodromy arguments of Hall from [2], we show that

ρs,ℓ(GalQ) ⊇ Ω(Vℓ)

for “most” s.
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Fix such an s; we may further assume that it is of the form (−w2 +3)/(w2 +3)
for some w ∈ Q. We show that ρs,ℓ(GalQ) ⊆ ±Ω(Vℓ); this requires some known
cases of the Birch and Swinnerton-Dyer conjecture for elliptic curves over global
function fields. The connection with ρs,ℓ being that for all but finitely many primes
p 6= ℓ, we have

det(I − ρs,ℓ(Frobp)T ) ≡ L(T/p,Es,p) (mod ℓ),

where Es,p is the elliptic curve over Fp(t) defined by (1) and L(T,Es,p) ∈ Z[T ]
is its L-function. More precisely, we use a refined version of BSD to show that
2L(1/p,Es,p) and 2L(−1/p,Es,p) are both squares in Q.

Having an s ∈ Q− {0, 1,−1} for which Ω(Vℓ) ⊆ ρs,ℓ(GalQ) ⊆ ±Ω(Vℓ), we then
obtain Ω(Vℓ) as the Galois group of an extension of Q (note that the image of
Ω(Vℓ) and ±Ω(Vℓ) in O(Vℓ)/{±I} are both isomorphic to Ω(Vℓ)).
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On the Oort conjecture

Andrew Obus

(joint work with Stefan Wewers, Florian Pop)

The lifting problem for branched covers of curves asks whether a branched Ga-
lois cover of smooth projective curves in characteristic p lifts to characteristic zero.
While this question appears to be global, it has in fact been shown to be strictly
local. That is, it is sufficient to show that every germ of the cover lifts to charac-
teristic zero. This reduces the lifting problem for branched covers of curves to the
following local lifting problem:

Problem 1 (Local lifting problem). Let k be an algebraically closed field of char-
acteristic p, let K/k((t)) be a G-Galois extension, and let A be the integral closure
of k[[t]] in K. Does there exist a complete discrete valuation ring (R, π) of char-
acteristic 0 with residue field k and a finite Galois extension of Frac(R[[t]]) with
Galois group G in which the integral closure of R[[t]] has reduction modulo π that
is k[[t]]-isomorphic to A? If so, can we say anything about R?

The Oort conjecture (now a theorem of Obus-Wewers and Pop) states that the
local lifting problem always has a solution when G is cyclic. If p3 ∤ |G|, it is
further known that one can take R = W (k)(ζ|G|). For other cyclic groups G, this
is expected to hold, but is an open question.

For the proof of the Oort conjecture, one first easily reduces to the case G ∼=
Z/pn, for some n ≥ 1. The proof is divided into two parts. In order to state
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these parts more precisely, we introduce the concept (due to Pop) of essential
ramification. A cyclic Z/pn-extension of k[[t]] has n jumps (u1, . . . , un) in the
higher ramification filtration for the upper numbering, the so-called upper jumps.
By the Hasse-Arf theorem, these numbers are all integers. In fact, one can show
that ui+1 ≥ pui for all i ≤ n− 1, and that if ui+1 6= pui, then p ∤ ui+1.

Definition 2. A Z/pn-extension of k[[t]] with upper jumps (u1, . . . , un) is said to
have no essential ramification if, for every 1 ≤ i ≤ n− 1, we have ui+1 < pui + p.

Theorem 3 (Obus-Wewers, [OW12]). If a Z/pn-extension of k[[t]] has no essential
ramification, then it can be lifted to characteristic zero.

In Pop’s paper [Pop12], it is shown that any Z/pn-extension of k[[t]] has an
equicharacteristic deformation to an extension of k[[t, s]], whose generic fiber has
no essential ramification (in this case, since the generic fiber is an extension of
k[[t, s]][s−1], “no essential ramification” means no essential ramification over each
ramified maximal ideal). Pop is then able to use this deformation, together with
Theorem 3, to prove

Theorem 4 (Pop, [Pop12]). The Oort conjecture holds.

There are several ways of going about this proof. The one discussed in the
talk first constructs a Z/pn-cover of P1

k totally ramified at one point, where the
germ above the branch point is the original extension of k[[t]] (this technique is
due to Katz-Gabber-Harbater). Then, using the equicharacteristic deformation
and Theorem 3, it can be shown that this cover lifts over a rank 2, characteristic
zero valuation ring R with residue field k. An application of Robinson’s theorem
then shows that the lifting can be accomplished over a finite extension R/W (k).
Taking the relevant germ of this cover gives a lift of the original extension over R.

If G is a group for which the local lifting problem has a solution for all G-
extensions, then G is known as an Oort group. By Theorem 4, all cyclic groups
are Oort groups. Determining the list of Oort groups is a difficult open problem.

Work of Chinburg-Guralnick-Harbater and Brewis-Wewers has shown that the
only possible Oort groups are the cyclic groups, the dihedral groups of order 2pn

for some n, and the alternating group A4 for p = 2. It has been asserted by Bouw
that A4 is, in fact, an Oort group. We conjecture:

Conjecture 5. The dihedral groups Dpn of order 2pn for odd p are Oort groups.

More generally, for metacyclic groups of the form G = Z/pn ⋊ Z/m, where
p ∤ m, there is a known obstruction to lifting, called the Bertin obstruction, which
involves the higher ramification groups of the given extension. If the upper jumps
of the Z/pn-subextension are (u1, . . . , un), then the Bertin obstruction vanishes if
and only if G is abelian or center-free, and if each ui ≡ −1 (mod m) when G is
center-free. This obstruction vanishes when m = 2, as all upper jumps must be
odd. The following conjecture generalizes Conjecture 5:

Conjecture 6. For groups of the form Z/pn ⋊ Z/m, where p ∤ m, the Bertin
obstruction is the only obstruction to the local lifting problem.
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Proving this conjecture is equivalent to showing that lifts of certain cyclic local
extensions can be obtained in “Z/m-equivariant” ways. Preliminary progress to-
ward this conjecture has been made by Obus and Wewers. It should be mentioned
that, in the previous literature, to the best of our knowledge, there is not a single
non-cyclic Z/pn ⋊ Z/m-extension with p ∤ m and vanishing Bertin obstruction
which is known either to lift or not to lift!

The case of dihedral groups of 2-power order appears to be much more compli-
cated. However, Pagot has shown that Z/2 × Z/2 is an Oort group, and Brewis
has exhibited an example of a D4-extension in characteristic 2 that lifts to char-
acteristic zero.
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Higher reciprocity laws and rational points

V. Suresh

(joint work with J.-L. Colliot-Thélène and R. Parimala)

Let K be a number field and ΩK be the set of places of K. For v ∈ ΩK , let Kv

denote the completion of K at v. A classical theorem of Hasse and Minkowski
asserts that a quadratic form q over K is isotropic if it is isotropic over Kv for all
v ∈ ΩK .

One has more general local-global principles for homogeneous spaces under
connected linear algebraic groups. LetX be a projective homogeneous space under
a connected linear algebraic group defined over a number field K. A theorem of
Harder asserts that if X(Kv) 6= ∅, ∀v ∈ ΩK , then X(K) 6= ∅. For principle
homogeneous spaces under a semisimple simply connected linear algebraic groups,
a similar local-global result holds (Kneser, Harder, Chernousov). For a adjoint,
quasi-split or K-rational connected linear algebraic groups over K, a similar local-
global principle is a theorem of Sansuc.

Let K be a complete discrete valued field with residue field κ algebraically
closed. Let X be a smooth projective curve over K and F = K(X). Let ΩF be
the set of all discrete valuations of F . For ν ∈ ΩF , let Fν denote the completion
of F at ν. Let G be a connected linear algebraic group over F and

X
1(F,G) = ker(H1(F,G)→

∏

ν∈Ω

H1(Fν , G)).

The set X1(F,G) classifies all principal homogeneous spaces which have rational
points over Fν for all ν ∈ ΩF . A theorem of Harbater-Hartmann-Krashen asserts
that if G is a connected linear algebraic group over F which is F -rational, then
X

1(F,G) = {1}.
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In this talk we construct an example of a torus T over F = C((t))(x) with
X

1(F, T ) 6= {1}, thereby showing that the theorem of Harbater-Hartmann-
Krashen need not hold if G is not F -rational.

To construct our example we introduce an obstruction using a Bloch-Ogus com-
plex.

The Zassenhaus Filtration & The Structure of Absolute Galois Groups

Ido Efrat

Let G be a profinite group and p a prime number. The lower p-central filtration
G(n) and the p-Zassenhaus filtration G(n) of G are defined inductively by:

G(1) = G, G(n) =
∏

i+j=n

[G(i), G(j)] · (G(n−1))p

G(1) = G, G(n) =
∏

i+j=n

[G(i), G(j)] · (G(⌈n/p⌉))
p.

One has G(2) = G(2) = [G,G]Gp =
⋂{N ⊳ G | G/N ∼= Z/p}.

When G = GF is the absolute Galois group of a field F containing a root of
unity of order p, the following is known:

Theorem. (1) For p = 2, G(3) = G(3) =
⋂{N ⊳ G | G/N ∼= Z/2,Z/4, D4}

(Mináč–Spira, Ann. Math. 1996);
(2) For p > 2, G(3) =

⋂{N ⊳ G | G/N ∼= Z/p2, Mp3} (E–Mináč, Amer. J.
Math. 2011);

(3) For p > 2, G(3) =
⋂{N ⊳ G | G/N ∼= Z/p, Hp3} (E–Mináč).

Here, for p odd, Mp3 (resp., Hp3) is the unique non-abelian group of order p3

and exponent p2 (resp., p). The proofs are based on the Merkurjev–Suslin theorem.
The importance of G(3) and G(3) is demonstrated by the following result:

Theorem (E–Mináč). For G = GF as above, G/G(3) determines the cohomology
ring H∗(G) = H∗(G,Z/p) (with the cup product) and vice versa.

Note that when p > 2 (resp., p = 2), the group G/G(3) has exponent dividing p

(resp. ≤ 4). A analogous result for G/G(3) was proved jointly with Chebolu and
Mináč (Math. Ann. 2012).

We reported on a generalization of the above intersection theorems for higher
terms in the Zassenhaus filtration G(n). In the (much simpler) special case where
G is a free pro-p group the result states:

G(n) =
⋂

ρ

Ker(ρ), ρ : G→ GLn(Fp) is a continuous homomorphism

=
⋂
{N E G | G/N ≤ Un(Fp)}.

Here Un(Fp) denotes the group of all n × n unipotent upper-triangular matrices
over Fp.
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More generally, suppose that G is a profinite group satisfying:

(A1) There is a presentation 1→ N → S → G(p)→ 1, with S a free profinite
group and N ≤ S(n).

(A2) Denoting the subgroup of H2(G) generated by the image of the n-fold
Massey product H1(G)n → H2(G) by H2(G)n−Massey, the kernel

Ker
(
H2(G/G(n))n−Massey

inf−−→ H2(G)
)

is generated by n-fold Massey products.
We remark that under (A1), the n-fold Massey product is a single-valued map,

by results of Vogel (Crelle 2005), so (A2) makes sense.

Main Theorem. Assuming (A1) and (A2),

G(n+1) =
⋂
{N E G | G/N ≤ Un+1(Fp)}.

Assumptions (A1) and (A2) hold e.g., in the following cases:

(a) When n = 2 and G = GF for a field F containing a root of unity of order
p;

(b) When cdp(G) ≤ 1.

In particular, we recover the previously known intersection theorems for G(3), as
well as the above special case.

The 2-fold Massey product is just the cup product, so (A2) in case (a) fol-
lows easily from the injectivity of the Galois symbol map KM

2 (F )/p → H2(G)
(Merkurjev–Suslin). This leads to the following

Problem. Generalize the Merkurjev–Suslin theorem to n-fold Massey products.

On Galois sections for hyperbolic p-adic curves

Jakob Stix

(joint work with Florian Pop)

This note advocates a valuation theoretic point of view on Grothendieck’s section
conjecture in general, and for hyperbolic curves over p-adic fields in particular.

1. Valuative point of view towards the section conjecture

1.1. Packets of sections. Let X/k be a normal, geometrically irreducible variety
with function field K. Let GalK be the absolute Galois group of K, and view the
étale fundamental group π1(X) as its maximal quotient unramified over X :

GalK ։ Gal(K̃/K) = π1(X).
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Let w be a Krull k-valuation of K with residue field κ(w) = k. The decomposi-

tion group Dw̃|w ⊆ π1(X) determined by a prolongation w̃ | w to K̃ admits a nat-
ural projection Dw̃|w ։ Galκ(w) that always has a splitting σ : Galκ(w) → Dw̃|w.
We obtain a Galois section, i.e., a section of π1(X)→ Galk, as follows:

sw : Galk = Galκ(w)
σ−→ Dw̃|w → π1(X).

The section sw depends on the choice of splitting σ and on the choice of w̃. The
collection of all such sw associated to w is the packet of sections at w.

1.2. The section conjecture. Recall that a hyperbolic curve is a smooth geo-
metrically connected curve with non-abelian geometric étale fundamental group.

Conjecture 1 (Grothendieck’s section conjecture [G83]). Let k be a number field
and X/k a hyperbolic curve. Then every Galois section s : Galk → π1(X) is of
the form sw for a suitable choice of k-valuation w on the function field of X.

Remark 2. (1) Since the injectivity of the section map for hyperbolic curves

X(k)→ {s : Galk → π1(X) ; Galois section}, a 7→ sa

is well known, Conjecture 1 is equivalent to the original version from [G83].
(2) In fact, the valuation theoretic formulation of Conjecture 1 takes care of the

necessary correction of the original statement, see already in [G83], due to cuspidal
sections coming from rational points from the boundary of the compactification.

(3) With GalK → Galk instead of π1(X)→ Galk we obtain a birational version
of the section conjecture. This is in fact a theorem for the variant where k is a
finite extension of Qp due to Koenigsmann [K03].

2. Valuations on p-adic fields

2.1. The main theorem. We are now concerned with the p-adic version of Con-
jecture 1. From now on, let k/Qp be a finite extension with p-adic valuation v,
ring of integers ok, and residue field F. The variety X/k will be a hyperbolic curve.
We define

Valv(K) = {w ; Krull valuation on K extending v on k}
and similarly Valv(K̃). Then the main result of [PS09] is the following.

Theorem 3. Let k/Qp be a finite extension and X/k a hyperbolic curve with

function field K. Then for every Galois section s : Galk → π1(X) = Gal(K̃/K)

there is a valuation w̃ ∈ Valv(K̃) such that with w = w̃|K
s(Galk) ⊆ Dw̃|w ⊆ π1(X).

Remark 4. (1) Theorem 3 confirms a p-adic version of Conjecture 1: every Galois
section is of the form sw for a suitable valuation. Only the class of valuations has
to take into account also the more ”arithmetic” compactification by flat projective
ok-models of X , see below for the description of Valv(K̃). For an assertion towards
the uniqueness of the valuation w in Theorem 3 we refer to [PS09].
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(2) We set va for the k-valuation of K corresponding to the k-rational point
a ∈ X(k). The composition of valuations wa = v ◦ va yields a map

X(k)→ Valv(K), a 7→ wa

such that Dwa
= sa(Galk) up to conjugation. The p-adic section conjecture follows

from Theorem 3 if only valuations of the form wa admit sections of Dw̃|w → Galk.
(3) If the p-adic section conjecture turns out to be wrong, then Theorem 3 yields

the analogous correction with sections coming from valuations centered at infinity
as in the case for affine curves with Grothendieck’s original conjecture in [G83].

(4) There are conditional results due to Säıdi to lift Galois sections at least par-
tially towards birational Galois sections, namely to the cuspidally abelian quotient
of GalK relativeX , with the idea in mind to reduce the p-adic section conjecture to
Koenigsmann’s Theorem recalled above. Further weaker but unconditional lifting
results are obtained by Borne/Emsalem together with the author.

(5) Hoshi has shown that the geometrically pro-p version of the section conjec-
ture fails in explicit examples where non-geometric sections exist.

(6) Mochizuki deals with an analogue regarding Galois sections for the tempered
fundamental group of André, a group which is pro-discrete rather than pro-finite.

2.2. An application. Theorem 3 has the following consequence for Galois sec-
tions (trivial for Galois sections coming from k-rational points).

Theorem 5. Let k/Qp be a finite extension and X/k a proper hyperbolic curve
with proper flat model X → Spec(ok). Let Y = XF be the special fibre.

(1) If there is a Galois section s : Galk → π1(X), then the geometric speciali-
sation map sp : π1(X ⊗ kalg) ։ π1(Y ⊗ Falg) is surjective.

(2) Every Galois section s : Galk → π1(X) specialises to a unique Galois
section t : GalF → π1(Y ), i.e., there is a commutative diagram

π1(X)
sp // //

��

π1(Y )

��

Galk // //

s

JJ

GalF .

t

TT

2.3. The Riemann–Zariski space. The space of valuations Valv(K̃) can be
more geometrically understood as the Riemann–Zariski pro-space of (the closed
fibres of) all models. Let XH → X be the finite étale cover corresponding to
an open subgroup H ⊆ π1(X), and let XH be a proper flat ok-model of XH .

Any w̃ ∈ Valv(K̃) has a unique center in the special fibre XH,F by the valuative
criterion of properness, i.e., a point zw̃ such that the valuation ring of w̃ dominates
the local ring OX ,zw̃ . In fact, the map assigning the compatible system of centers

(⋆) Valv(K̃)
∼−→ lim←−

H,XH

XH,F, w̃ 7→ zw̃

is a homeomorphism of pro-finite spaces (for the patch topology on the left and
the constructible topology on the right).
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2.4. Fixed points. The map (⋆) is equivariant under π1(X) = Gal(K̃/K) and
Dw̃|w is precisely the stabilizer of w̃. By the usual compactness argument with
projective limits it suffices for Theorem 3 to show that Σ = s(Galk) ⊂ π1(X) has
a fixed point (generic or closed)

(XH,F)
Σ 6= ∅

for a cofinal set of open normal subgroups H✁π1(X) and equivariant models XH

on which Σ acts via a finite subgroup of π1(X)/H . Thus we first may assume XH

is a regular semistable model. The fibres of the projection to the stable model

XH →XH,stable

are trees of projective lines. Since a tree is a CAT(0)-space, any action by a finite
group on a tree has fixed points. It follows that the fibre over a Σ-fixed point of
(XH,stable)F again has a Σ-fixed point. We may therefore restrict to stable models.

3. The ℓ-adic Brauer group method

3.1. The locus of a Brauer class. Although it is counterintuitive that ℓ-adic
methods actually are able to detect the arithmetic in a Galois section, we next fix
a prime ℓ 6= p. The Brauer group method going back to Neukirch in the study of
absolute Galois groups of number fields is here based on the following.

The relative Brauer group ker(Br(k) → Br(X)) is cyclic of order the index of
X due to Roquette and Lichtenbaum. By [S10] the presence of a section implies
that the index is in fact a power of p, so that the map on ℓ-torsion

Br(k)[ℓ] →֒ Br(X)[ℓ] ⊆ Br(K)[ℓ]

is injective. In the limit over all neighbourhoods of s, i.e., for the fixed field
M = K̃Σ, the map Br(k)[ℓ] →֒ Br(M)[ℓ] remains injective. We now need a fine
local–global principle for the Brauer group due to Pop:

Theorem 6 ([P88] Thm 4.5). Let k/Qp be a finite extension and M/k a function
field of transcendence degree 1 over k. Then the restriction map

Br(M) →֒
∏

w∈Valv(M)

Br(Mh
w)

is injective. Here Mh
w denotes the henselisation of M in the valuation w.

It follows that there is a valuation wM ∈ Valv(M) such that Br(k)[ℓ] survives

in Br(Mh
wM

). Let w̃ be an extension of wM to K̃. Since Gal(K̃/M) = Σ ≃ Galk,
all intermediate fields are composita with extensions k′/k of the same degree. It

follows that [(K̃ ∩Mh
wM

) : M ] is prime to ℓ since otherwise Br(k)[ℓ] would not
survive. Therefore a suitable choice of ℓ-Sylow subgroup Σℓ ⊂ Σ is contained in

(⋆⋆) Σℓ ⊆ Gal(K̃/K̃ ∩Mh
wM

) = Dw̃|wM
⊆ Dw̃|w.



The Arithmetic of Fields 1803

3.2. Inertia. Let Θ ⊆ Σ be the image under s of the inertia group Ik ⊆ Galk and
let Iw̃|w ⊆ Dw̃|w denote the inertia group of w̃. Based on (⋆⋆) with considerable
more work for valuations w̃ associated to generic points of components of the
special fibre one may show the following.

Proposition 7. It is possible to choose w̃ such that Θℓ ⊆ Iw̃|w, where Θℓ is a
choice of ℓ-Sylow group of Θ.

4. Independence of ℓ-adic ramification

4.1. The kernel of specialisation. Let H✁π1(X) be an open normal subgroup
such that XH has a stable model XH,stable. We write Y =

⋃
α Yα for the union of

irreducible components of its reduced special fibre and may further assume that
all Yα are smooth and have genus ≥ 1. We consider the kernel of specialisation

NH := ker
(
H = π1(XH) ։ π1(XH)

)

which contains Iw̃|w ∩H for every valuation w̃ ∈ Valv(K̃). We further set

VH = Nab
H ⊗̂Qℓ

and for each w̃ ∈ Valv(K̃) we define a set of cardinality 1 or 2

Aw̃ = {α ; Yα contains the center of w̃ on XH,stable}.
By ℓ-adic étale cohomology computations and logarithmic geometry we show the

following statement on independence of ℓ-adic inertia. For simplicity of notation
we denote the discrete rank 1 valuation of K̃H associated to Yα by α.

Proposition 8. (1) For any choice of prolongation α̃ ∈ Valv(K̃) of each α,
the natural map ⊕

α

Iabα̃|α ⊗Qℓ →֒ VH

is injective.
(2) For every w̃ ∈ Valv(K̃) the map Iw̃|w ∩H → NH → VH factors as

Iw̃|w ∩H →
⊕

α∈Aw̃

Iabα̃|α ⊗Qℓ →֒ VH .

4.2. Sketch of proof for the existence of fixed points. Let σ ∈ Σ = s(Galk)
be arbitrary. Since Θ is a normal subgroup in Σ we obtain a commutative diagram

Θℓ ∩H ⊆

''PP
PP

PP
PP

PP

Iw̃|w ∩H

))❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘

Θ ∩NH
// VH

σΘℓσ
−1 ∩H ⊆

77♦♦♦♦♦♦♦♦♦♦

Iσ(w̃)|w ∩H

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧
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Because s is a Galois section, the composition

Zℓ(1) ≃ Θℓ ∩H → VH → Iabk ⊗Qℓ ≃ Qℓ(1)

is non-trivial. On the other hand, the image of Θ ∩ NH in VH spans at most a
1-dimensional subspace, since any closed subgroup of Ik has pro-ℓ completion of
rank at most 1. It follows from Proposition 8 that Θ ∩NH maps to the subspace

⋃

Aw̃∩Aσ(w̃)

Iabα̃|α ⊗Qℓ →֒ VH

whence Aw̃∩Aσ(w̃) 6= ∅. A combinatorial argument relying again on Proposition 8
shows that either an α ∈ Aw̃ is fixed by Σ, or Aw̃ is fixed by Σ as a set and consists
of two elements corresponding to components meeting in a unique node. In this
way we have found a fixed point under Σ on XH,stable and the sketch of the proof
of Theorem 3 is complete.
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The Birational Anabelian Theorem for Surfaces over Q

Aaron Michael Silberstein

A. Grothendieck first coined the term “anabelian geometry” in a letter to
G. Faltings [Gro97a] as a response to Faltings’ proof of the Mordell conjecture and
in his celebrated Esquisse d’un Programme [Gro97b]. The “yoga” of Grothendieck’s
anabelian geometry is that if the étale fundamental group πét

1 (X, x) of a variety
X at a geometric point x is rich enough, then it should encode much of the infor-
mation about X as a variety; such varieties X are called anabelian in the sense
of Grothendieck, and have the property that two anabelian varieties have iso-
morphic étale fundamental groups if and only if they are isomorphic; and that
the isomorphisms between their étale fundamental groups are precisely the iso-
morphisms between the varieties. Grothendieck did not specify how much extra
information should be encoded, and even to this day, there is not a consensus as
to how far we expect to be able to push anabelian phenomena. An anabelian
theorem (or conjecture) is a theorem (or conjecture) which asserts that a class
of varieties are anabelian.

Grothendieck wrote in [Gro97a] about a number of anabelian conjectures: one
regarding the moduli of curves, defined over global fields (which is still open);
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one regarding hyperbolic curves, defined over global fields; and a birational an-
abelian conjecture, which asserts that Spec of finitely-generated, infinite fields are
anabelian (in this case, we say the fields themselves are anabelian). The anabelian
conjecture for hyperbolic curves was proved in the 1990’s by A. Tamagawa and
S. Mochizuki ([Tam97], [Moc99]). The birational anabelian conjecture for finitely-
generated, infinite fields is a vast generalization of the pioneering Neukirch-Ikeda-
Uchida theorem for global fields ([Neu69], [Uch77], [Ike77], [Neu77]), and is now a
theorem due to F. Pop [Pop94].

Grothendieck remarked that “the reason for [anabelian phenomena] seems. . . to
lie in the extraordinary rigidity of the full fundamental group, which in turn springs
from the fact that the (outer) action of the ‘arithmetic’ part of this group. . . is
extraordinarily strong” [Gro97a].

F. Bogomolov had the surprising insight [Bog91] that as long as the dimension of
a variety is ≥ 2, anabelian phenomena can be exhibited — at least birationally —
over an algebraically closed field, even in the complete absence of the “arithmetic”
part of the group Grothendieck referenced.

Given a field K, we let GK denote the absolute Galois group of K, the profinite
group of field automorphisms of its algebraic closure K (see [NSW08] for more

details). Given two fields F1 and F2, we let Isomi(F1, F2) denote the set of iso-
morphisms between the pure inseparable (perfect) closures of F1 and F2, up to

Frobenius twists. Given two profinite groups Γ1 and Γ2, we let IsomOut
cont(Γ1,Γ2)

denote the set of equivalence classes of continuous isomorphisms from Γ1 to Γ2,
modulo conjugation by elements of Γ2. There is a canonical map

(1) ϕF1,F2 : Isomi(F1, F2)→ IsomOut
cont(GF2 , GF1)

which, in general, is neither injective nor surjective.
The birational theory of a variety of dimension n overK is encoded in its field of

rational functions, and every field finitely-generated over K and of transcendence
degree n arises as the field of rational functions of a K-variety of dimension n.
F. Pop, developing Bogomolov’s insight, conjectured an anabelian theorem for
fields, finitely-generated and of transcendence degree n ≥ 2 over an algebraically
closed field k. We complete the proof of:

Theorem 1 (The Conjecture of Bogomolov-Pop for k = Q,Fp). Let F1 and
F2 be fields finitely-generated and of transcendence degree ≥ 2 over k1 and k2,
respectively, where k1 is either Q or Fp, and k2 is algebraically closed. Then
ϕF1,F2 is a bijection. Thus, function fields of varieties of dimension ≥ 2 over
algebraic closures of prime fields are anabelian.

In [Pop11b], Pop proved that if GF1 ≃ GF2 then F1 and F2 have the same
characteristic and transcendence degree. Thus, the conjecture reduces to the case
when F1 and F2 are of the same characteristic and transcendence degree. Bogo-
molov and Tschinkel [BT08] provide a proof in the case of transcendence degree
= 2 when k = Fp. Pop proved that ϕ is a bijection when F1 has transcendence

degree ≥ 2 and k = Fp [Pop12a]; and when F1 has transcendence degree ≥ 3 and

k = Q [Pop11a]. We prove the missing case in [Sil13]:
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Theorem 2 (The Birational Anabelian Theorem for Surfaces over Q). Let F1 and
F2 be fields finitely-generated and of transcendence degree 2 over Q. Then ϕF1,F2

is a bijection.

The proof of Theorem 2 is substantially different in structure from the proofs
of the other cases of Theorem 1. They both have the same starting point, two
theorems due to Pop from [Pop11a]. To state these theorems, we need a definition:

Definition 3. A valuative prime divisor v on F is a discrete valuation, trivial
on K(F ), such that

(2) tr. deg.K(F ) Fv = tr. deg.K(F ) F − 1.

The valuation ring Ov is a discrete valuation ring. not every discrete valuation
ring gives rise to a prime divisor. For a general discrete valuation, tr. deg.K(F ) Fv ≤
tr. deg.K(F ) F − 1. When the equality is strict, we say that v has no transcen-
dence defect, and this condition is important in the proof of the birational an-
abelian conjecture for finitely generated fields; see [Pop94] for more details.

Definition 4. A rank-1 Parshin chain on F is a prime divisor. A rank-i
Parshin chain is a composite w ◦ v, where v is a rank-(i− 1) Parshin chain, and
w is a prime divisor on Fv.

Pop’s theorems are then:

Theorem 5 (Pop, [Pop11a]). Let F be a function field with K(F ) = Q and
tr. deg.

Q
F ≥ 2. Let Γ ⊆ GF be a closed subgroup, up to conjugacy. Then there

is a topological group-theoretic criterion, given one of the representatives of Γ to
determine whether there exists i and a rank-i Parshin chain v such that Γ is the
inertia group or decomposition group of v, and what this i is, if it exists.

Theorem 6 (Pop, [Pop12b]). (1) If S is a geometric set of prime divisors on
F , then a (possibly different) set S ′ of prime divisors on F is a geometric
set if and only if it has finite symmetric difference with S.

(2) There exists a group-theoretic recipe to recover

Geom(F ) =def {{(Tv, Dv) | v ∈ S} | S a geometric set}
directly from GF .

Previous results took data such as these and reconstructed F directly, in a pro-
cess which we now term birational reconstruction. However, in our approach,
we instead take the pair (GF ,S) and reconstruct a modelM(S) of F for which S
is the collection of inertia subgroups of all prime divisors onM(S). We obtain a
description of the geometry of M(S) without first reconstructing F , and we call
this approach geometric reconstruction. The main tool is the ability to inter-
pret intersection theory onM(S) using only group theoretic recipes applied to S
and GF , without any knowledge ofM(S) other than its existence; this technique
is the anabelian intersection theory.
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Pro-ℓ Galois Groups and Valuations

Adam Topaz

A central problem in birational anabelian geometry is to detect decomposition and
inertia subgroups of valuations in a given Galois group. Detecting decomposition
and inertia subgroups of large Galois groups (i.e. maximal pro-ℓ Galois groups
resp. absolute Galois groups) of almost arbitrary fields is essentially completely
understood and well-established in the literature; see [7], [4], [6] for the maximal



1808 Oberwolfach Report 30/2013

pro-ℓ case resp. [10] for the absolute Galois group case. The techniques employed
by the references mentioned above rely on the theory of rigid elements which was
first developed by Ware [12] then further expanded by Arason-Elman-Jacob [1]
and others [5], [8].

On the other hand, Bogomolov-Tschinkel [2], [3] developed a method to detect
decomposition/inertia groups using very small almost-abelian pro-ℓ Galois groups
under the added assumption that the base field contains an algebraically closed
field.

The main result presented in this talk unifies the two approaches above. In par-
ticular, we are able to detect so-called “minimized inertia/decomposition” groups
(which in many cases agree with the usual notion of inertia/decomposition) us-
ing almost-abelian pro-ℓ Galois groups of essentially arbitrary fields. For further
details concerning the history above and the results below, refer to [11].

For simplicity in exposition, we assume that ℓ is an odd prime, but analogous
results hold true also for ℓ = 2. Let K be a field with charK 6= ℓ and let n denote
either a positive integer or ∞. We denote by GK = Gal(K(ℓ)|K), the maximal
pro-ℓ Galois group of K. Furthermore, we denote

Ga,nK := GK/[GK ,GK ] · GℓnK , and Gc,nK := GK/[GK , [GK ,GK ]] · GℓnK .

Given σ, τ ∈ Ga,nK , we denote by [σ, τ ] = σ̃−1τ̃−1σ̃τ̃ where σ̃, τ̃ ∈ Gc,nK are lifts of
σ, τ . Since Gc,nK → Ga,nK is a central extension, [σ, τ ] doesn’t depend on the choice of
lifts. A pair of elements σ, τ ∈ Ga,nK will be called commuting-liftable provided
that [σ, τ ] = 0. Similarly, a subgroup Σ ≤ Ga,nK will be called commuting-liftable
provided that all pairs σ, τ ∈ Σ are commuting-liftable.

Denote by Ka,n the Galois extension of K with Gal(Ka,n|K) = Ga,nK . For
a valuation v of K with valuation ring (Ov,mv), we introduce the minimized
decomposition resp. inertia group of v:

Dn
v := Gal(Ka,n|K( ℓ

n√
1 +mv)), Inv := Gal(Ka,n|K(

ℓ
n
√
O×

v )).

If Zv resp. Tv denote the (usual) decomposition resp. inertia group of (some pro-
longation to Ka,n of) v in Ga,nK , then the following inequalities hold: Dn

v ≤ Zv,
and Inv ≤ Tv. Moreover, these inequalities are actually equalities provided that
the residue characteristic of v is different from ℓ. Regardless of the residue charac-
teristic of v, however, the structure (relative to (Ga,nK , [•, •])) of the minimized in-
ertia/decomposition groups of v resembles that of the usual inertia/decomposition
of a valuation whose residue characteristic is not ℓ, as illustrated by the following:

Theorem 1 ([11] Remark 7.7). In the notation above, let σ ∈ Inv and τ ∈ Dn
v be

given. Then [σ, τ ] = 0.

In particular, if Σ is a subgroup of Dn
v such that Σ/(Σ∩ Inv ) is cyclic, then Σ is

a commuting-liftable subgroup of Ga,nK . We are now ready to introduce the main
theorem of the talk:

Theorem 2 (Main Theorem). For all N ≫ n the following hold. Let K be a field
with µℓN ⊂ K and let Σ ≤ Ga,nK be given. Then following are equivalent:
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(1) There exists a valuation v of K such that Σ ≤ Dn
v and Σ/(Σ∩Inv ) is cyclic.

(2) There exists a commuting-liftable subgroup Σ′ ≤ Ga,NK whose image under

the canonical map Ga,NK ։ Ga,nK is Σ.

Moreover, if n = 1 then N = 1 suffices and if n 6= ∞, one can find an explicit
N 6=∞ which suffices.

The proof of the main theorem has three main ingredients which we describe
below: (1) Galois Cohomology and Milnor K-theory, (2) Valuation Theory, and
(3) the theory of Rigid Elements. Below we give a sketch of each ingredient and
how it it fits in to the proof of the Main Theorem.

Galois Cohomology and Milnor K-theory. In this part of the proof, we pro-
vide a classification of commuting-liftable pairs directly in terms of the arithmetic
structure of the field via Kummer theory. This is done in the following theorem:

Theorem 3 (see [11] Theorem 11). Let K be a field with charK 6= ℓ and µℓn ⊂ K.
Choose an isomorphism µℓn

∼= Z/ℓn and consider σ, τ ∈ Ga,nK as homomorphisms
K× → Z/ℓn using Kummer theory and this isomorphism. Then the following are
equivalent:

(1) [σ, τ ] = 0.
(2) σ(x) · τ(1 − x) = σ(1 − x) · τ(x) for all x ∈ K r {0, 1}.

Idea of Proof. This theorem is a group-theoretical interpretation of the Merkurjev-
Suslin theorem and its compatibility with Kummer theory. �

Valuation Theory. Suppose that the Main Theorem holds for subgroups Σ0 ≤
Ga,nK whose rank is two. Given a Σ as in the Main Theorem, we consider all rank-
two subgroups Σ0 ≤ Σ and to each one associate a valuation vΣ0 . Using techniques
from valuation theory, in this step we deduce that these vΣ0 are all comparable
valuations which proves the validity of the Main Theorem for Σ. Thereby, this
reduces the proof of the Main Theorem to proving the following:

Theorem 4 ([11] Theorem 3). For all N ≫ n the following hold. Let K be a field
with µℓN ⊂ K and let f, g ∈ Ga,nK be given. Then the following are equivalent:

(1) There exist lifts f ′, g′ ∈ Ga,NK of f, g such that [f ′, g] = 0.
(2) There exists a valuation v of K such that f, g ∈ Dn

v and 〈f, g〉/(〈f, g〉∩Inv )
is cyclic.

Moreover, if n = 1 then N = 1 suffices and if n 6= ∞, one can find an explicit
N 6=∞ which suffices.

Rigid Elements. The goal now is to prove Theorem 4. The implication (2) ⇒
(1) in Theorem 4 follows from Theorem 1, which follows from Theorem 3.

In the notation of Theorem 4, denote by T = ker f ∩ ker g where we consider
f, g as homomorphisms K× → Z/ℓn via Kummer theory. Assume furthermore

the existence of a commuting-liftable pair f ′, g′ ∈ Ga,NK which is a lifting for f, g ∈
Ga,nK . Denote by H the subgroup of K× generated by T and all x /∈ T such that
1+ x 6= 1, x mod T . It is a consequence of the theory of Rigid Elements (cf. [1]),
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that there exists a valuation v of K such that 1 + mv ⊂ T and O×
v ⊂ H . Note

that, if H = K×, this valuation v might be trivial. Thus, it suffices to prove:

Lemma 5 (Key Lemma). In the notation above, H/T is cyclic.

Remarks about the Proof. In the case where n = 1, the Key Lemma follows from
[9] Lemma 3.3 (a slightly weaker version of this lemma also appears in [8]). On
the other hand, if n = ∞ and K contains an ℓ-closed subfield, the Key Lemma
can be deduced in a similar fashion to [3] Proposition 4.1.2.

The general case is much more involved, and uses the restrictions imposed by
the existence of f ′, g′, along with Theorem 3, to show that H/T must be cyclic.
For the precise details concerning the general case, we refer the reader to [11]
Theorem 3. �
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Groups as Galois groups with local conditions

Pierre Dèbes

Fix a finite group G that we assume to be a regular Galois group over Q, that is,
there exists a Galois (field) extension F/Q(T ) of group G with F ∩ Q = Q. The
goal of the talk was to explain the following result jointly due to Nour Ghazi and
the speaker [1], to discuss some implications in Inverse Galois Theory and to show
some recent developments.
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In the statement, given t0 ∈ P1(Q), we use the notation Ft0/Q for the special-
ization F/Q(T ) at t0, i.e., the residue field of any prime above 〈T − t0〉 in the
integral closure of Q[T ]〈T−t0〉 in F (as usual use Q[1/T ]〈1/T 〉 instead if t0 =∞).

Also, a Grunwald problem for G (over Q) is a collection (Ep/Qp)p∈S of Galois
extensions of Qp of group contained in G, indexed by a prime p varying in a finite
set S of finite places of K, and a solution to this problem is a Galois extension
E/Q of group G such that for each p ∈ S, we have EQp/Qp = Ep/Qp (in a
fixed algebraic closure of Qp). The Grunwald problem (Ep/Qp)p∈S is said to be
unramified if each extension Ep/Qp is unramified (p ∈ S).

Theorem 1. There exist two integers m0, β > 0 such that for every x > 0 and
every unramified Grunwald problem (Ep/Qp)m0<p≤x for G, there is t0 ∈ Z such
that the following holds. For all integers t ≡ t0 modulo (β

∏
m0<p≤x p), t is not in

the finite list of branch points of F/Q(T ) and the specialization Ft/Q is a solution
to the Grunwald problem (Ep/Qp)p∈S.

Recall that
(a) from a famous counter-example of Wang [7], the unique unramified extension
E2/Q2 of group G = Z/8Z, viewed as a Grunwald problem, has no solution. This
shows that the restriction p > m0 cannot be totally removed in theorem 1.
(b) from a result due to Neukirch [5], if G is solvable of odd order, then every
Grunwald problem (unramified or not) has a solution (the special case “G cyclic”
being originally due to Grunwald, with a correction of Wang).

Definition 2. Given a real number ℓ ≥ 0, we say that the group G is of Tcheb-
otarev order ≤ ℓ, which we write tch(G) ≤ ℓ, if there exist real numbers m, δ > 0
such that for every x > 0 and every unramified Grunwald problem (Ep/Qp)m0<p≤x

for G, there exists a Galois extension E/Q such that these two conditions hold:
1. the extension E/Q is a solution to the Grunwald problem (Ep/Qp)m0<p≤x,
2. log |dE | ≤ δxℓ, where dE is the discriminant of E/Q.

Set B(x) = (β
∏

m0<p≤x p). Theorem 1 conjoined to the observation that one

can take 0 < t0 ≤ B(x), and that then we have log |dFt0
| ≤ δ log(B(x)) for some

δ > 0 and finally that log(B(x)) is classically asymptotic to x when x→ +∞, we
obtain the following.

Corollary 3. If a finite group G is a regular Galois group over Q, then tch(G) ≤ 1.

On the other hand, some famous estimates on the Tchebotarev density theo-
rem due to Lagarias, Montgomery and Odlyzko [3] show that, under the General
Riemann Hypothesis, for every finite group G, we have

tch(G) > (1/2)− ε, for every ε > 0

This raises the question of whether tch(G) > 1 for some group G, in which case
this group G would not be a regular Galois group over Q. At the moment, it
cannot even be excluded that tch(G) = ∞ for some group G, even under strong
forms of the classical (i.e. over Q) Inverse Galois Problem.
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The method of proof of theorem 1 provides in fact several specializations t0
satisfying the conclusion of theorem 1 and such that 0 < t0 ≤ B(x). More precisely
a lower bound of the form

B(x)

β

(
1

3|G|

)x/ log(x)

can be obtained for the number of these specializations t0. A next question is to
bound the corresponding specializations Ft0/Q that are non-isomorphic. This can
be achieved, first by reducing the question to counting integral points of given size
on a curve, thanks to some “twisting lemma”, and second, by using a result about
this last question that was obtained by Y. Walkowiak [7] by refining a method of
Heath-Brown [2] in the special case of curves.

The outcome is the following result.

Theorem 4. Assume G 6= {1} is a regular Galois group over Q and fix a regular
realization F/Q(T ) of G. Then there exist an integer m0 > 0 and a constant
α ∈]0, 1[ such that the following holds. For every suitably large real number y
and every unramified Grunwald problem (Ep/Qp)m0<p≤α log(y), specializations of
F/Q(T ) at integers provide at least yα non-isomorphic Galois extensions E/Q of
group G that are solution to the Grunwald problem and of discriminant ≤ y.

More precisely the constant α can be taken to be α = (4|G| degT (P ))−1, where
P (t, y) = 0 with P ∈ Q[T, Y ] monic in Y , is an affine model of the regular extension
F/Q(T ). From [6, §2.2], this value of α can be bounded from below by these more
intrinsic quantities: (6(2g+1)|G|2 log |G|)−1 and (6r|G|3 log |G|)−1 where g is the
genus of the function field F and r the number of branch points of F/Q(T ).

Theorem 4 can be compared to the Malle conjecture [4] which gives some as-
ymptotic formula, namely c(G) ya(G) (log(y))b(G) for the number of non-isomorphic
Galois extensions E/Q of group G and discriminant ≤ y (for some constants
a(G) ∈]0, 1] and b(G) ≥ 1 precisely defined by Malle and some constant c(G) > 0).
Malle even conjectures that his asymptotic formula still holds if some further local
conditions are prescribed at finitely many primes, with the same exponents a(G)
and b(G) but for some different constant c(G). Our result is thus a weak form of
this local Malle conjecture for regular Galois groups over Q.
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[7] Y. Walkowiak, “Théorème d’irréductibilité de Hilbert effectif”, Acta Arithmetica, 116/4,
(2005), 343–362.

Valuations on real function fields and lower bounds for the pythagoras
number

David Grimm

The pythagoras number p2(F ) of a field F is by definition the smallest n ∈ N such
that every sum of squares in F is equal to a sum of n squares in F , or∞ if no such
n exists. When F is the function field of a variety V over R (or any real closed
field), A. Pfister showed that p2(F ) ≤ 2d. Finding the exact value of p2(F ) (or
just good lower bounds) is an open problem.

W. Kucharz showed in [K1] for real function fields F/R in d variables that
p2(F ) ≥ d + 1, and he obtains the same lower bound more generally for real
closed base fields in [K2]. He derives this bound from a more general result on
minimal sets of generators for certain finitely generated ideals in the so called real
holomorphy ring of F/R as defined in [B, p. 148]. The latter relies on Hironaka’s
resolution of singularities and of points of indeterminacy of rational functions.
Furthermore, computations of Chern classes of vector bundles are used, and this
part of the proof does not seem to generalize to the situation of varieties V over
arbitrary formally real base fields K with formally real function field F = K(V )
(unless V contains a smooth K-rational point, or a closed point of odd degree).

I presented a more elementary proof for the lower bound p2(F ) ≥ d + 1 that
does not need to assume that the base field K of F/K is real closed. Furthermore,
Hironaka’s resolution results or computations of Chern classes of vector bundles
are not needed.

The case d ≥ 3 is easily dealt with. We use the fact that if F = K(V ) is formally
real, then V contains a smooth closed point P with formally real residue field
K(P ). The generic point of the exceptional fiber of the blowing-up of V along P
then yields a discrete valuation with real residue fieldK(P )(X1, . . . , Xd−1). Simple
valuation theoretic considerations show that p2(F ) ≥ p2(K(P )(X1, . . . , Xd−1)),
and for real rational function fields in at least two variables we have the better
lower bound p2(K(P )(X1, . . . , Xd−1)) ≥ (d − 1) + 2 = d + 1 due to an iteration
argument based on the Cassels-Pfister theorem and the fact that the bound holds
when d− 1 = 2 due to [CEP].

If d = 2, the same argument yields that p2(F ) ≥ p2(K(P )(X)). However, it is
known that p2(K(P )(X)) < 3 can occur even when K is not real closed (e.g. for
K = R((t))). So we need a different argument when d = 2. The key is the observa-
tion that it is sufficient to find a discrete valuation on F with nonreal residue field
in which −1 is not a square (a well chosen lift of a nontrivial representation of zero
as a sum of three squares then exhibits the lower bound p2(F ) ≥ 3). In geometric
terms, it is sufficient to find a geometrically irreducible curve C on the surface V
(which we can assume to be projective and normal) that does not contain points
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with formally real residue field. The generic point of C in V will then yield a val-
uation with residue field K(C). The way to obtain the existence of such a curve is
by considering hyperplane sections of V with respect to some well chosen embed-
ding in projective space. After enlarging the embedding dimension via a Veronese
map if necessary, we have V embedded in a larger variety W that is defined over Q
inside projective space while finding at the same time a hyperplane H defined over
Q that has no common R-points with W (and hence in particular with V ). The
completeness of the first order theory of real closed fields together with Bertini’s
theorem for generic hyperplane sections shows that after some (rational) small
ǫ-variation of the coefficients of H , we have that C = H ∩ V is a smooth geomet-
rically connected curve over K (and hence in particular geometrically irreducible)
that contains no point with formally real residue field.

In the case d = 1, we have in the rational case obviously that p2(K(X)) > 1,
as the pythagorean closure of a non-pythagorean field is always an infinite field
extension as was shown by Diller and Dress [B, Theorem 3.8].

Kucharz’ result on finitely generated ideals of the real holomorphy ring of a
function field F/R does not only yield the lower bound p2(F ) ≥ d + 1 for the
pythagoras number of a function field F/R in d variables, but in fact for all
higher even pythagoras numbers p2m(F ) as well (which is by definition the small-
est n ∈ N such that every sum of 2m-th powers is a sum of n such powers).
In fact, my more elementary approach generalizes also to the 2m-th pythagoras
number. However, since the proof for dimension d ≥ 3 is a mere reduction to
the case of a rational function field p2m(F ) ≥ p2m(K(P )(X1, . . . , Xd−1)), it re-
mains the task to find good lower bounds for the 2m-th pythagoras number of the
latter kind. One such lower bound (also for base fields that are not real closed)
can be obtained by adapting Kucharz’ proof to the situation of varieties over for-
mally real fields that contain a smooth rational point. The resulting lower bound
p2m(K(P )(X1, . . . , Xd−1)) ≥ (d−1)+1 = d in the rational case is slightly too bad
to prove Kucharz’ bound p2m(F ) ≥ d+1 for arbitrary real d-dimensional function
field F over general formally real fields. Summarized we obtain:

Theorem. Let F/K a real function field in d variables and let m ∈ N. Then
p2m(F ) ≥ d + 1 when m = 1, or d ≤ 2, or when the embedding K →֒ F admits a
section F → K ∪ {∞}. In the remaining cases we have p2m(F ) ≥ d.

Idealy, I would like to show p2m(F ) ≥ d + 1 unconditionally, which with my
method of proof would require a better lower bound for rational function fields.
Note that the Cassels-Pfister theorem for quadratic forms does not generalize to
higher degree forms, so it is not evident how one can obtain better lower bounds
for the 2m-th pythagoras number of higher dimensional rational function fields
from a good lower bound in small dimensions when m ≥ 2.
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