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Introduction by the Organisers

The workshop was organized by H. Eliasson (Paris), H. Hofer (Princeton) and
J.-C. Yoccoz (Paris). It was attended by more than 50 participants from 11 coun-
tries and covered a large area of dynamical systems centered around classical
Hamiltonian dynamics: KAM theory, Arnold diffusion, geodesic flows, periodic
solutions of symplectic flows, Floer homology. Other subjects treated where dy-
namics of PDEs, magnetic fields, quasi-periodic co-cycles and Schrödinger oper-
ators, pseudo-rotations, Teichmuller dynamics, pentagram maps, discrete bicycle
transformations, group actions and algebraic number theory.

C-Q Cheng and by V. Kaloshin presented their proofs of existence of Arnold
diffusion in “generic” nearly integrable Hamiltonian systems in 2 1

2 degrees of free-
dom. This is a fifty year old problem to whose solution many mathematicians, in
particular J. Mather, have contributed.

M. Berti presented a perturbation result of KAM-type for quasi-linear perturba-
tions of the KdV equation. Quasi-linear perturbations are particularly important
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for the connection of KdV with water wave equations whose perturbation theory
is one of the most challenging problem in the KAM-theory for PDE’s. M. Guardia
reported on growth of Sobolev norms for the non-linear cubic Schrödinger equa-
tion and L.-S. Young discussed a work on center manifolds and chaotic dynamics
in infinite dimension with applications to certain PDE’s.

A. Abbondandolo presented new results on the old problem of periodic so-
lutions in magnetic fields. V. Ginzburg P. Albers and U. Hryniewicz discussed
pseudo holomorphic curve and Floer homology methods in symplectic and con-
tact dynamics. M.-C. Arnaud reported on a generalization of the (former) Hopf
conjecture to Tonelli Hamiltonians.

Pseudo-rotations were discussed by B. Bramhan and P. Le Calvez and also in
the talk of J. Franks on Tits alternative for symplectic surface diffeomorphisms.
New results on reducibility and Lyapunov exponents for quasi-periodic co-cycles
were presented by N. Karaliolios, K. Bjerklöv and J. You. Teichmuller dynamics
was discussed in the talks of C. Matheus Silva Santos and C. Ulcigrai.

The meeting was held in an informal and stimulating atmosphere. The weather
was very nice the whole week and the traditional walk to St. Roman, this year
under the leadership of Sergei Tabachnikov, was even more pleasant than usual.
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value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2022

Boris Khesin (joint with Fedor Soloviev)
Higher-dimensional pentagram maps and KdV flows . . . . . . . . . . . . . . . . . 2025

John Franks (joint with Michael Handel)
The group of symplectic surface diffeomorphisms . . . . . . . . . . . . . . . . . . . . 2028



Dynamische Systeme 1979

Abstracts

Local and global instability in nearly integrable Hamiltonian systems

Marian Gidea

(joint work with Rafael de la Llave, Tere Seara)

1. Introduction

A remarkable paradigm in Hamiltonian instability is the Arnold diffusion prob-
lem, asserting that generic, nearly integrable Hamiltonian systems possess trajec-
tories that travel “wildly” and “arbitrarily far”.

More precisely, one starts with a Liouville integrable Hamiltonian system, which
determines a Liouville foliation of the phase space. Off the singular leaves of the
Liouville foliations, such a system can be locally described via action-angle coordi-
nates. Each trajectory of the system lying within an action-angle domain preserves
the action coordinate indefinitely. Then one acts on the integrable system with a
small perturbation of a generic type. One of the main question of the Arnold dif-
fusion problem is whether there exist trajectories whose action coordinate changes
by some positive constant independent of the size of the perturbation (diffusing
orbits), as well as trajectories that move with prescribed frequencies for prescribed
times (symbolic dynamics), for all sufficiently small perturbation. A survey on this
problem can be found in [3].

We have developed a toolkit of geometric techniques that can be applied to
prove the existence of diffusing orbits and of symbolic dynamics for large classes
of nearly integrable Hamiltonian systems. We provide an outline of the method,
as well as some relevant applications concerning both local and global aspects of
the diffusion problem.

2. Shadowing lemma

A key ingredient in our approach is a very general shadowing lemma for normally
hyperbolic invariant manifolds.

We consider a discrete dynamical system given by a Cr-smooth map f on a
compact, Cr-smooth manifold M , where r ≥ 2. We assume that there exists a
normally hyperbolic invariant manifold Λ in M , as well as a a compact, Cℓ−1-
smooth homoclinic manifold Γ ⊆W s(Λ) ∩Wu(Λ), for some 2 ≤ ℓ ≤ r.

Under certain conditions on Γ, there exists a Cℓ−1-diffeomorphism S : H− →
H+, with H−, H+ open sets in Λ, defined as follows: for each x ∈ Γ, let x− ∈ Λ be
the point uniquely defined by x ∈Wu(x−), and let x+ ∈ Λ be the point uniquely
defined by x ∈ W s(x+); then S(x−) = x+. The mapping S is referred at as the
scattering map associated to the homoclinic manifold Γ. In many examples, the
scattering map can be computed explicitly via perturbation theory. The scattering
map has been studied in [2].
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In this context, we have the following shadowing lemma type of result, saying
that for every pseudo-orbit obtained by alternately applying the scattering map
and some power of the inner map f|Λ, there exists a true orbit nearby.

Lemma 1. Assume that f :M →M , Λ ⊆M and Γ ⊆M are as above, and S is
the scattering map associated to Γ. Then, for every δ > 0 there exists N > 0 such
that for every sequence of points {yi}i≥0 of the type yi+1 = fmi ◦ S ◦ fni(yi), with
mi, ni ≥ N , there exists an orbit {zi}i≥0 of f , with zi+1 = fni+mi(zi), such that
‖zi − yi‖ < δ for all i ≥ 0.

The following result says that one can easily obtain pseudo-orbits as in Lemma
1 provided that f restricted to Λ satisfies some recurrence condition.

Theorem 1. Assume that f :M →M , Λ ⊆M and Γ ⊆M are as above, and S is
the scattering map associated to Γ. Assume that S preserves a measure absolutely
continuous with respect to Lebesgue measure on Λ. Let {xi}i=0,...,n be an orbit
segment of the scattering map, i.e., xi+1 = S(xi) for i = 0, . . . , n − 1. Assume
that each point xi of the orbit has a neighborhood Ui ⊆ Λ such that almost every
point in Ui is recurrent. Then, for every δ > 0 there exists an orbit {zi}i=0,...,n

of f in M , with zi+1 = fki(zi) for some ki > 0, such that d(zi, xi) < δ for all
i = 0, . . . , n.

We stress that, in the above statements, we do not require that Λ is a 2-
dimensional annulus, or that f is a twist map.

The statements of the Lemma 1 and of the Theorem 1 remain true if one
uses several scattering maps rather than one. In general, one has available an
abundance of homoclinic orbits and corresponding scattering maps.

3. Local diffusion results

We illustrate the application of the above shadowing results with an example
of a nearly integrable Hamiltonian system of the following type:

Hε(p, q, I, φ, t) = h0(I)±
(

1

2
p2 + V (q)

)

+ εh(p, q, I, φ, t; ε).(3.1)

where (p, q, I, φ, t) ∈ Rn × Tn × Rd × Td × T1.
We make the following assumptions:

(A1.) V , h0 and h are uniformly Cr for some r sufficiently large.
(A2.) The potential V is 1-periodic in q and has a unique non-degenerate global

maximum.
(A3.) The perturbation h is a trigonometric polynomial in (φ, t), and 1-periodic

in q.
(A4.) The perturbation h satisfies some explicit non-degeneracy condition (hy-

pothesis H4 is [1]), which is satisfied by an open dense set of perturbations
h.
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Theorem 2. Assuming the conditions A1-A4, there exists ε0 > 0, and ρ > 0 such
that, for each ε ∈ (0, ε0), there exists a trajectory x(t) of the Hamiltonian flow and
T > 0 such that

‖I(x(T ))− I(x(0))‖ > ρ.

A significant difference from other existing results is that we do not assume that
h0 has positive-definite normal torsion, i.e., ∂2h0/∂I

2 6= 0. Hence, approaches
based on KAM theory and Aubry-Mather theory do not apply in our context.

In the special case when Λ is 2-dimensional annulus and h0 has positive-definite
normal torsion we can also obtain quantitative estimates on the speed of the dif-
fusion. More precisely, we show the existence of trajectories x(t) which achieve a
change of orderO(1) in the action coordinate during a time of orderO(ε−1 ln(ε−1)).
This diffusion time has been conjectured as optimal by Lochak [6]. Moreover, we
can show the existence of diffusing orbits that visit any prescribed collection of
Aubry-Mather sets.

Another example that we can treat with our methods is a geodesic flow on
a compact manifold endowed with a generic Riemannian/Lorentz/Finsler metric,
subject to a perturbation by a time-dependent potential. We show that, if the
perturbation satisfies some mild recurrence condition, then there exist trajectories
of the perturbed system along which the energy grows to infinity in time, at a
linear rate. This energy growth rate is optimal. For details, see [5].

4. Global diffusion results

In the previous examples we focused on local diffusion, meaning that the diffus-
ing trajectories lie within a single action-angle domain. In general, the geometry
of an integrable system can be quite complicated, as the phase space is divided out
by the singular leaves of the Liouville foliation into distinct action-angle domains.
We now consider the question on whether, under generic conditions, there exist
diffusing orbits that travel arbitrarily far across these different regions, and also
follow prescribed frequencies of motion.

As an example, we consider a special class of a priori unstable Hamiltonian
systems of three-degrees of freedom. The unperturbed Hamiltonian system is a
product of a two-degree of freedom integrable Hamiltonian and a one-degree of
freedom pendulum. We assume that, on some fixed energy level, there exists a
normally hyperbolic invariant manifold diffeomorphic to a three-sphere, on which
the Hamiltonian satisfies a strict convexity condition. The sphere is divided out
by the singular leaves into disjoint, open domains, each completely described by
one action and two angle coordinates. We assume that the stable and unstable
invariant manifolds of the three-sphere coincide. We apply a small perturbation.
The normally hyperbolic invariant manifold survives if the perturbation is small
enough. Assuming some non-degeneracy conditions that are generic, the stable and
unstable invariant manifolds intersect transversally along homoclinic manifolds.
To each homoclinic manifold, one can associate a scattering map. Typically, there
are many geometrically distinct homoclinic manifolds. For a generic perturbation,
there exists a family of homoclinic manifolds with the property that the domains
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of the corresponding scattering maps cover all possible action level sets on each
action-angle domain of the three-sphere.

Under these assumptions, we show that there exist trajectories that follow any
prescribed sequence of frequencies of motion on the sphere. In this sense, we can
say that the perturbed system exhibits global diffusion relative to the three-sphere.
For details, see [4].
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KAM for quasi-linear KdV equations

Massimiliano Berti

The goal of this talk is to present recent existence results of Cantor families of
quasi-periodic solutions of Hamiltonian quasi-linear KdV equations like

(0.1) ut + uxxx − ∂xu
2 +N4(x, u, ux, uxx, uxxx) = 0 , x ∈ T ,

(0.2) ut + uxxx ± ∂xu
3 +N4(x, u, ux, uxx, uxxx) = 0 , x ∈ T ,

where the Hamiltonian quasi-linear term

(0.3) N4(x, u, ux, uxx, uxxx) := −∂x
[

(∂uf)(x, u, ux)− ∂x((∂uxf)(x, u, ux))
]

vanishes of order 4 at the origin, i.e. N4(x, εu, εux, εuxx, εuxxx) = O(ε4) as ε→ 0,
or, equivalently, the Hamiltonian density f vanishes of order 5, i.e. f(x, εu, εux) =
O(ε5). Then (0.1)-(0.2) may be seen, close to the origin, as “small” perturbations
of, respectively, the PDEs

(KdV) ut + uxxx − ∂xu
2 = 0 , (mKdV) ut + uxxx ± ∂xu

3 = 0

both focusing/defocusing. Both KdV and mKdV are completely integrable equa-
tions. The natural question that we pose is whether their periodic, quasi-periodic
or almost periodic solutions persist under small perturbations.

The first KAM results of quasi-periodic solutions have been proved by Kuksin [5]
and Kappeler-Pöschel [4] for semilinear Hamiltonian perturbations ε∂x(∂uf)(x, u),
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namely when the density f is independent of the first order derivatives ux, i.e. (0.3)
is a differential operator of order 1. This approach also works for Hamiltonian
pseudo-differential perturbations of order 2 (in space), but not for a general quasi-
linear perturbation as in (0.3), which is a nonlinear differential operator of the
same order (i.e. 3) as the constant coefficient linear operator ∂xxx. Such a strong
perturbation term makes the answer quite delicate.

Another difficulty is that (0.1)-(0.2) are completely resonant PDEs, namely the
linearized Airy-equation ut+uxxx = 0 (at the origin) possesses only the 2π-periodic
in time solutions

u(t, x) =
∑

j∈Z

uje
ij3teijx .

Hence the existence of quasi-periodic solutions of (0.1)-(0.2) is a purely nonlinear
phenomenon. The nonlinearity will “twist” the frequencies of the trajectories
according to the amplitude, producing quasi-periodic solutions.

Both (0.1) and (0.2) are Hamiltonian PDEs

ut = ∂x∇H(u) ,

where ∇H denotes the L2(Tx) gradient of

H =

∫

T

u2x
2

+
u3

3
+ f(x, u, ux)dx , H =

∫

T

u2x
2

∓ u4

4
+ f(x, u, ux)dx ,

and the phase space is H1
0 (T) := {u(x) ∈ H1(T,R) :

∫

T
u(x)dx = 0}.

Theorem 1 (’13, Baldi, Berti, Montalto [2]). Given ν ∈ N, let f ∈ Cq (with q :=
q(ν) large enough), f(u, ux) = O(|(u, ux)|5), and f reversible, namely f(u, ux) =
f(u,−ux). Then, for any choice of the “tangential sites”

S := {−̄ν , . . . ,−̄1, ̄1 , . . . , ̄ν} ⊂ Z \ {0} ,
the mKdV equation (0.2) possesses small amplitude quasi-periodic solutions with
Sobolev regularity Hs, s ≤ q, and zero Lyapunov exponents, of the form

u =
∑

j∈S

√

ξj e
iω∞

j (ξ)teijx + o(
√

ξ), ω∞
j (ξ)

ξ→0→ j3 , ξ−j = ξj ,

for a “Cantor-like” set of small amplitudes ξ ∈ Rν
+ with density 1 at ξ = 0. The

term o(
√
ξ) is small in the Hs-Sobolev norm. These quasi-periodic solutions are

linearly stable.
For the KdV equation (0.1) the same result holds for “generic” choices of the
tangential sites S.

Fixed the finite set of tangential sites S we perform a “very weak” Birkhoff
normal form whose goal is only to find an invariant manifold of solutions of the
third order approximate system, on which the dynamics is completely integrable.
This Birkhoff map is close to the identity up to a finite rank operator. Hence
it modifies N4 very mildly (for the more degenerate KdV equation (0.1) more
Birkhoff normal forms steps are required). This procedure is different with respect
to the usual Birkhoff normal forms. It is sufficient to find the first nonlinear
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approximation of the solutions so that the Nash-Moser iteration converges, and to
extract the approximate “frequency-to-amplitude” modulation. We can not rely
on the global “frequency-to-amplitude” map described in [4], because the Birkhoff
coordinates are close to the Fourier transform only up to smoothing operators of
order 1, and this does not seem enough to deal with quasi-linear perturbations
such as (0.3).

Then the solution is obtained by a Nash-Moser iterative scheme in Sobolev
scales. The key step is to construct an approximate inverse (à la Zehnder) of
the linearized operator. For that we implement the abstract procedure in Berti-
Bolle [3] developed to prove existence of quasi-periodic solutions for NLW (and
NLS) with a multiplicative potential. This general method, based on symplectic
techniques, decouples the “tangential” and the “normal” dynamics around the ex-
pected invariant torus, reducing the inversion of the full linearized operator to that
of the linearized equation in the normal directions. This corresponds to a quasi-
periodic linear Airy equation with variable coefficients which was investigated in
[1] studying forced perturbations of the Airy equation

(0.4) ut + uxxx + εf(ωt, x, u, ux, uxx, uxxx) = 0

where the nonlinearity is quasi-periodic in time with diophantine frequency

ω = λω̄ ∈ Rν , λ ∈ [1/2 , 3/2], |ω̄ · l| ≥ γ|l|−τ , ∀l ∈ Zν \ {0} .
The only “external” parameter in (0.4) is λ. The perturbation may depend on
uxxx in a nonlinear way (fully nonlinear PDE).

In [1] we first prove, under some assumptions on f (without which it is easy to
exhibit simple counterexamples), an existence theorem of quasi-periodic solutions
of (0.4). Then we also prove their linear stability if the nonlinearity is Hamiltonian
or reversible. In the Hamiltonian case, for example, we prove:

Theorem 2 (’12, Baldi, Berti, Montalto [1]). There exist s := s(ν) > 0, q :=
q(ν) ∈ N, such that for all ε ∈ (0, ε0), where ε0 := ε0(f, ν) is small enough, there
exists a Cantor set Cε ⊂ [1/2, 3/2] of asymptotically full Lebesgue measure, i.e.
|Cε| → 1 as ε→ 0, such that, ∀λ ∈ Cε the equation

(0.5) ut = ∂x∇H , H :=

∫

T

u2x
2

+ εF (ωt, x, u, ux) dx ,

has a quasi-periodic solution u(ε, λ) ∈ Hs with frequency ω = λω̄ satisfying
‖u(ε, λ)‖s → 0 as ε→ 0. Moreover such solution is linearly stable.

An essential ingredient in the proof is to conjugate the quasi-periodically forced
linear PDE

(0.6) ht + (1 + a3(ωt, x))∂xxxh+ a2(ωt, x)∂xxh+ a1(ωt, x)∂xh+ a0(ωt, x)h = 0 ,

obtained linearizing (0.5) at any approximate (or exact) solution u, to the dynam-
ical system of infinitely many harmonic oscillators

(0.7) v̇j + µjvj = 0 , ∀j ∈ Z , µj := i(−m3j
3 +m1j) + rj ∈ iR ,
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m3,m1 ∈ R , m3 = 1 +O(ε) , m1 = O(ε) , sup
j

|rj | ≤ Cε .

The main perturbative effect is clearly due to the term a3(ωt, x)∂xxx and the
standard reducibility KAM techniques do not work. The above conjugacy is ob-
tained by changes of variables, like quasi-periodic time-dependent diffeomorphisms
of the space variable x, multiplication operators and pseudo-differential operators,
in order to reduce (0.6) to a constant coefficients equation ht+m̃3∂xxxh+m̃1∂xh =
0, m̃1, m̃3 ∈ R, plus a bounded remainder of order 0. These preliminary transfor-
mations, which are inspired to the works of Iooss-Plotnikov-Toland in water waves
theory are very different from the usual KAM changes of variables. Then we per-
form a quadratic KAM reducibility scheme à la Eliasson-Kuksin, which completely
diagonalizes the linearized operator, obtaining (0.7).
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Hyperbolic fixed points and periodic orbits of Hamiltonian systems

Viktor L. Ginzburg

(joint work with Başak Z. Gürel)

The central theme of this work is the existence problem for periodic orbits of
Hamiltonian systems. We prove that for a certain class of closed monotone sym-
plectic manifolds any Hamiltonian diffeomorphism with a hyperbolic fixed point
must necessarily have infinitely many periodic orbits. Among the manifolds in this
class are, for instance, the complex projective spaces CPn.

More specifically, let M be a closed symplectic manifold. Recall that the mini-
mal Chern number N of M is defined by 〈c1(TM), π2(M)〉 = NZ, where N ≥ 0,
and that M is strictly monotone if N > 0 and c1(TM)|π2(M) = λ[ω]|π2(M) 6= 0
with λ > 0. Our main result is the following

Theorem 1 ([13]). Let M be a closed strictly monotone symplectic manifold of
dimension 2n such that N ≥ n/2 + 1. Assume that

β ∗ α = q[M ]

in the quantum homology HQ∗(M) for some ordinary homology classes α ∈ H∗(M)
and β ∈ H∗(M) with |α| < 2n and |β| < 2n. Then any Hamiltonian diffeomor-
phism ϕH of M with a contractible hyperbolic periodic orbit γ has infinitely many
periodic orbits.
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Note that in our conventions |q| = −2N . Furthermore, the assumption that γ
is contractible can be dropped when M is also toroidally monotone.

In addition to CPn, among the manifolds meeting the requirements of the theo-
rem are the complex Grassmannians Gr(2, N), Gr(3, 6) and Gr(3, 7), the products
CPm×P 2d and Gr(2, N)×P 2d, where P is symplectically aspherical and d+2 ≤ m
in the former case and d ≤ 2 in the latter, and monotone products CPm × CPm.

To put Theorem 1 in perspective, recall that for many closed symplectic man-
ifolds every Hamiltonian diffeomorphism has infinitely many periodic orbits and
even periodic orbits of arbitrarily large (prime) period whenever the fixed points
are isolated. This unconditional existence of infinitely many periodic orbits is usu-
ally referred to as the Conley conjecture. The Conley conjecture has been shown to
hold for all symplectic manifolds M with c1(TM) |π2(M)= 0 and also for negative
monotone manifolds; see [3, 10, 17] and also [8, 9, 12, 18, 21, 23]. Ultimately, one
can expect the Conley conjecture to hold for most of the symplectic manifolds.

There are, however, notable exceptions. The simplest one is S2: an irrational
rotation of S2 about the z-axis has only two periodic orbits, which are also the
fixed points; these are the poles. In fact, any manifold that admits a Hamiltonian
torus action with isolated fixed points also admits a Hamiltonian diffeomorphism
with finitely many periodic orbits. In particular, complex projective spaces, the
Grassmannians, and, more generally, most of the coadjoint orbits of compact Lie
groups as well as symplectic toric manifolds all admit Hamiltonian diffeomorphisms
with finitely many periodic orbits.

An analogue of the Conley conjecture applicable to such manifolds is the conjec-
ture that a Hamiltonian diffeomorphism with “more than necessary” fixed points
has infinitely many periodic orbits; see [19, p. 263]. Here “more than necessary” is
left deliberately vague although it is usually interpreted as a lower bound arising
from some version of the Arnold conjecture. For CPn, the expected threshold is
n+ 1. This conjecture, referred to as the HZ-conjecture in [14, 15], is inspired by
a celebrated theorem of Franks asserting that a Hamiltonian diffeomorphism of
S2 with at least three fixed points must have infinitely many periodic orbits, see
[6, 7] and also [8, 21] for further refinements and [2, 4, 20] for symplectic topological
proofs. (Franks’ theorem holds for area preserving homeomorphisms. However, the
discussion of possible generalizations of this stronger result to higher dimensions
is far outside the scope of this work.) In fact, one can more generally conjecture
that a Hamiltonian diffeomorphism has infinitely many periodic orbits whenever
it has fixed points which are “homologically or geometrically unnecessary”.

Theorem 1 provides some evidence supporting these conjectures beyond dimen-
sion two. (The HZ-conjecture, at least for non-degenerate Hamiltonian diffeo-
morphisms of CPn and some other manifolds, would follow if we could replace a
hyperbolic fixed point by a non-elliptic fixed point in the theorem.) Some further
evidence is given by the results of [14], where a “local version” of the conjecture
is considered, and also in [1, 15] concerning non-contractible periodic orbits.

Hyperbolicity is central to the proof of the theorem. (However, it can be re-
placed by a weaker requirement that γ is isolated as an invariant set.) The proof
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hinges on a result, of independent interest, asserting that the energy required for
a Floer connecting trajectory of an iterated Hamiltonian to approach a hyperbolic
orbit and cross its fixed neighborhood cannot be arbitrarily small: it is bounded
away from zero by a constant independent of the order of iteration. (This is not
true for, say, elliptic fixed points.) The proof of this lower bound relies on the
variant of Gromov compactness theorem established in [5].

Finally note that the presence of one hyperbolic orbit implies, C1-generically,
the existence of transverse homoclinic points via the so-called connecting lemma;
see [16, 24]. (The genericity assumption is essential here, although hypothetically
this could be a C∞-generic condition rather than C1.) The existence of transverse
homoclinic points has, in turn, rich dynamical consequences among which is the
existence of infinitely many periodic orbits. Thus, under certain additional con-
ditions on the ambient manifold, Theorem 1 recovers a fraction of this dynamics,
but does this unconditionally rather than generically. Note also that the existence
of infinitely many periodic orbits is a C1-generic phenomenon, as follows from the
closing lemma, [22], and in many instances even C∞-generic (see [11]).
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[12] V.L. Ginzburg, B.Z. Gürel, Conley conjecture for negative monotone symplectic manifolds,
Int. Math. Res. Not. IMRN, 2011, doi:10.1093/imrn/rnr081.
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Toward a smooth ergodic theory for infinite dimensional systems

Lai-Sang Young

The results I report on are part of a larger project the aim of which is to extend
smooth ergodic theory, or ergodic theory of hyperbolic systems, to infinite di-
mensional dynamical systems satisfying technical conditions consistent with those
defined by parabolic or dissipative evolutionary PDEs. Three sets of results are
reported: (1) Absolute continuity of the strong stable foliation for systems with
center manifolds; this result points to a notion of “almost everywhere” in Banach
spaces that is natural in dynamical contexts [1]. (2) For semiflows in Hilbert spaces
undergoing generic supercritical Hopf bifurcations, my co-authors and I proved
that under suitable conditions, small time- periodic kicks will lead to the creation
of strange attractors with SRB measures. These general results are applied to
concrete equations such as the 1D Brusselator [2]. (3) Semiflows on Hilbert spaces
admitting an invariant measure with only a single zero Lyapunov exponent are
considered, and results extending Katok’s earlier work on diffeomorphisms of fi-
nite dimensional manifolds, including the equivalence of and positive entropy with
the presence of horseshoes and exponential growth of periodic orbits, are reported
[3]. The results above are joint with three sets of co-authors; see below.
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Angular momentum and Horn’s problem

Alain Chenciner

The central configurations of n point masses in the euclidean space E are those
configurations

x = (~r1, · · · , ~rn) ∈ En

which, if released without initial velocity, homothetically collapse on their center
of mass when submitted to Newtonian attraction. For example, Lagrange has
proved that the only non collinear central configuration of 3 positive masses is the
equilateral triangle.

Such configurations are known (see [3, 4]) to admit periodic rigid motions, which
necessarily take place in an euclidean space E of even dimension 2p and are of the
form

~ri(t) = eωtJ~ri(0)), i = 1, · · ·n,
where J is a complex structure on E compatible with the euclidean structure,
that is an isometry such that J2 = −Id. The angular momentum bivector of such
a motion defines, via the euclidean structure, a J-skew-hermitian endomorphism
C of E of the form ω(S0J + JS0), where the symmetric non negative 2p × 2p
matrix S0 is the inertia matrix of the configuration x(0) and ω is a real frequency.
Replacing C by 1

ωJ
−1C, this leads to the following purely algebraic question :

Let S0 be a symmetric non negative 2p × 2p matrix; what is the image of the
mapping F which, to each J , associates the ordered spectrum {ν1 ≥ ν2 ≥ · · · ≥ νp}
of the J-hermitian matrix S0 + J−1S0J , considered as a complex p× p matrix ?

On the other hand, Horn’s problem (now solved independantly by Klyashko and by
Knutson and Tao) asks for the possible spectra of matrices of the form C = A+B,
where A and B are complex hermitian (or real symmetric) with given spectra.
Introducing two Horn’s problems, one in dimension p and one in dimension 2p,
one proves that the image of F is a convex polytope which can be described. The
precise result was conjectured in [1] and proved there in case p = 2; the general
case was proved in [2].

Moreover, to this polytope are associated subpolytopes whose faces correspond to
the only values of the angular momentum for which bifurcations could occur to
families of quasi-periodic relative equilibria with balanced configurations (see [4];
these are the configurations équilibrées of [3]).

References

[1] Alain Chenciner The angular momentum of a relative equilibrium, Discrete and Continuous

Dynamical Systems (issue dedicated to Ernesto Lacomba) (2012), 33 Number 3, March
2013, preprint http://arxiv.org/abs/1102.0025

[2] Alain Chenciner & Hugo Jimenez Perez Angular momentum and Horn’s problem
http://arxiv.org/abs/1110.5030, to appear in the Moscow Mathematical Journal

[3] Alain Albouy & Alain Chenciner Le problème des n corps et les distances mutuelles, Inven-
tiones Mathematicæ, 131, pp. 151-184 (1998)

[4] Alain Chenciner The Lagrange reduction of the N-body problem: a survey, Acta Mathemat-
ica Vietnamica (2013) 38: 165-186, preprint: http://arxiv.org/abs/1111.1334



1990 Oberwolfach Report 34/2013

Orderability of contactomorphism groups

Peter Albers

(joint work with W. Merry, U. Fuchs, U. Frauenfelder)

We study the notion of orderability of contactomorphism groups as introduced
by Eliashberg-Polterovich [EP00] and its connection to contact (non-)squeezing
[EKP06] using Rabinowitz Floer homology. Eliashberg-Polterovich define a natu-
ral partial order on the group of contactomorphisms Cont0(Σ, ξ) resp. its universal

cover C̃ont0(Σ, ξ) where (Σ, ξ) is a closed contact manifold. The main feature of
this partial order is that it is biinvariant. Eliashberg-Polterovich proved that the

partial order on Cont0(Σ, ξ) resp. C̃ont0(Σ, ξ) is trivial if and only if there ex-
ists a positive loop of contactomorphisms resp. a contractible positive loop. The
questions whether this partial order is non-trivial is very subtle. For instance on
S2n−1 a contractible positive loop exists whereas on its Z/2-quotient, RP2n−1, no
contractible positive loop exists. Nonetheless a (non-contractible) positive loop
does exist on RP2n−1 e.g. the Reeb flow of the standard contact form.

If the contact manifold is the boundary of a compact exact symplectic manifold
Cieliebak-Frauenfelder [CF09] constructed an invariant called Rabinowitz Floer
homology. Examples are unit cotangent bundles as boundaries of unit codisk
bundles. In this situation joint work with Frauenfelder [AF12] shows that pertur-
bations of the underlying Rabinowitz action functional on can be used to relate
a growth rate associated to a positive loops to growth rates of geodesics on the
underlying manifold of the cotangent bundle. This implies that unless this un-
derlying manifold is very simple, for instance spheres, projective spaces, there are
no positive loops. Simple means that the cohomology ring has more than one
generator.

Inspired by work of Sandon [San11] we studied jointly with Merry different
perturbations of the Rabinowitz action functional. We prove [AM13] that non-
vanishing of Rabinowitz Floer homology implies that there are no positive con-
tractible loops of contactomorphisms and several other related results. Moreover,
using spectral invariants we proved a general non-squeezing result. Both results
subsume all previously know examples.

Finally, reporting joint work in progress with Merry and Fuchs we relate the
orderability question to the famous Weinstein conjecture.
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Arnold diffusion in nearly integrable Hamiltonian systems

Chong-Qing Cheng

We consider nearly integrable Hamiltonian systems with 3 degrees of freedom:

(0.1) H(x, y) = h(y) + ǫP (x, y), (x, y) ∈ T3 × R3,

where h is assumed to strictly convex, namely, the Hessian matrix ∂2h/∂y2 is
positive definite. It is also assumed that minh = 0, both h and P are Cr-function
with r ≥ 8.

For E > 0, let H−1(E) = {(x, y) : H(x, y) = E} denote the energy level set,
B ⊂ R3 denote a ball in R3 such that

⋃

E′≤E+1 h
−1(E′) ⊂ B. Let Sa,Ba ⊂

Cr(T3 × B) denote a sphere and a ball with radius a > 0 respectively: F ∈ Sa

if and only ‖F‖Cr = a and F ∈ Ba if and only ‖F‖Cr ≤ a. They inherit the
topology from Cr(T3 ×B).

For perturbation P independent of y (classical mechanical system) we use the
same notation Sa,Ba ⊂ Cr(T3) to denote a sphere and a ball with radius a > 0

Let Ra be a set residual in Sa, each P ∈ Ra is associated with a set RP residual
in the interval [0, aP ] with aP ≤ a. A set Ca is said cusp-residual in Ba if

Ca = {λP : P ∈ Ra, λ ∈ RP }.
Let Φt

H denote the Hamiltonian flow determined by H . Given an initial value
(x, y), Φt

H(x, y) generates an orbit of the Hamiltonian flow (x(t), y(t)). An orbit
(x(t), y(t)) is said to visit Bδ(y0) ⊂ R3 if there exists t ∈ R such that y(t) ∈ Bδ(y0)
a ball centered at y0 with radius δ.

Theorem 1. Given any two balls Bδ(x0, y0), Bδ(xk, yk) ⊂ T3 × R3 and finitely
many small balls Bδ(yi) ⊂ R3 (i = 0, 1, · · · , k), where yi ∈ h−1(E) with E > 0 and
δ > 0 is small, there exists a cusp-residual set Cǫ0 such that for each ǫP ∈ Cǫ0 ,
the Hamiltonian flow Φt

H admits orbits which, on the way between passing through
Bδ(x0, y0) and Bδ(xk, yk), visit the balls Bδ(yi) in any prescribed order.

The result is generic not only in usual sense, but also in the sense of Mañé,
namely, it is a typical phenomenon when the system is perturbed by potential.
The details of the proof can be found in [1]. The results of the author for a priori
unstable systems can be found in [2, 3, 4].
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A criterium for the simplicity of Lyapunov exponents of origamis

Carlos Matheus

(joint work with Martin Möller and Jean-Christophe Yoccoz)

The Teichmüller flow is a renormalization dynamics for interval exchange trans-
formations, translation flows and billiards in rational polygons (cf. [17] and [19]).
Among its recent applications, let us mention that the confirmation by Delecroix-
Hubert-Lelièvre [3] of a conjecture of the physicists Hardy and Weber on abnormal
rates of diffusion of typical trajectories in typical realizations of Ehrenfest’s wind-
tree model and the classification of commensurability classes of all known ball
quotients by Kappes-Möller [13].

The phase space of Teichmüller flow is the moduli space Hg of unit area Abelian
differentials on Riemann surfaces of genus g ≥ 1, that is, the set of pairs (M,ω)
where M is a Riemann surface of genus g ≥ 1 and ω 6= 0 is an Abelian differ-
ential (holomorphic 1-form) with unit total area (i.e., (i/2)

∫

M ω ∧ ω = 1) modulo
biholomorphisms f : (M,ω) → (M ′, ω′) respecting the mark ω (i.e., f∗(ω′) = ω).

Given an Abelian differential (M,ω), let Σ be the (finite) set of zeroes of ω. By
taking local primitives of ω, one obtains a translation structure on M −Σ, i.e., an
atlas whose changes of coordinates are given by translations on the plane R2 ≡ C.
Conversely, from a translation structure, one can recover an Abelian differential
by pulling back (via the corresponding atlas) the holomorphic 1-form dz on C.

This correspondence between Abelian differentials and translation surfaces shows
that there exists a natural action of SL(2,R) on the moduli space Hg where an
element A ∈ SL(2,R) sends (M,ω) to the translation surface A · (M,ω) obtained
by post-composing the charts of the atlas of the translation structure (M,ω) with
A. In this language, the Teichmüller flow is the action of the diagonal subgroup
gt = diag(et, e−t) of SL(2,R).

The derivative Dgt of the Teichmüller flow has the form Dgt = diag(et, e−t)⊗
GKZ

t where GKZ
t is the so-called Kontsevich-Zorich (KZ) cocycle over the Te-

ichmüller flow gt. In other words, the KZ cocycle GKZ
t is the interesting part of

the derivative Dgt of Teichmüller flow.
As it turns out, KZ cocycle is a symplectic cocycle possessing 2g Lyapunov

exponents of the form 1 = λµ1 ≥ . . . λµg ≥ −λµg ≥ · · · ≥ −λµ1 = −1 with respect
to any ergodic gt-invariant probability measure µ. Furthermore, after the seminal
works of Zorich [18] and Forni [6], we know that the Lyapunov exponents ±λµi ,
i = 1, . . . , g, with respect to SL(2,R)-invariant probability measures µ drive the
deviations of ergodic averages of “most” interval exchange transformations and
translation flows related to the support of µ.
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In particular, the knowledge of the ergodic properties of SL(2,R)-invariant
probability measures on the moduli space Hg are relevant for many applications
and this (partly) explains the recent efforts to classify SL(2,R)-invariant ergodic
probability measures (see, e.g., the works of Calta [2] and McMullen [16] for com-
plete classification results in genus 2, and the recent preprint of Eskin and Mirza-
khani [5] for a “Ratner-like” theorem in any genus g ≥ 2).

Concerning the Lyapunov exponents of the KZ cocycle with respect to SL(2,R)-
invariant probability measures, Forni [6] and Avila-Viana [1] confirmed a conjec-
ture of Kontsevich and Zorich (based on some numerical experiments) on the sim-
plicity of the Lyapunov exponents of a major class of (absolutely continuous) er-
godic SL(2,R)-invariant probability measures on Hg known as Masur-Veech mea-
sures µMV , i.e., λ

µMV

i > λµMV

i+1 for each i = 1, . . . , g. On the other hand, Forni
and his coauthors (cf. [7] and [9]) gave examples of ergodic SL(2,R)-invariant
probability measures µEW and µO (on H3 and H4, resp.) where λµEW

2 = 0 = λµO

2 ,
and, a fortiori, there is no simplicity of (non-tautological) Lyapunov exponents.
Nevertheless, Forni [8] gave a criterion for the non-uniform hyperbolicity (i.e.,
lambdaµg > 0) of ergodic SL(2,R)-invariant µ, but, as it is pointed out in his
article, his conditions can not ensure simplicity in general.

This scenario motivates the following question: why a “naive” extension of
Avila-Viana methods for the simplicity of Lyapunov exponents of Masur-Veech
measures µMV does not work for general SL(2,R)-invariant ergodic probability
measures? The answer comes from a close inspection of Forni’s examples. In a
nutshell, these examples come from square-tiled surfaces or origamis, i.e., transla-
tion surfaces (M,ω) obtained from finite branched covers of (T2 = C/(Z⊕iZ), dz),
say π : (M,ω) → (T2, dz). It is know that the SL(2,R)-orbits of origamis are closed
in Hg and they support an unique ergodic SL(2,R)-invariant probability measure.
Also, still in the case of origamis, the first homology group H1(M,Q) decomposes

into the space H
(0)
1 (M,Q) consisting of homology classes in M projecting to 0 in

T2 and its symplectic orthogonal Hst
1 (M, mathbbQ) = π−1

∗ (H1(T
2,Q)) and this

decomposition is preserved by the KZ cocycle GKZ
t . In the case of Forni’s exam-

ples, Yoccoz and the author [15] showed that GKZ
t acts on H

(0)
1 (M,Q) via some

finite group of matrices, that is, the KZ cocycle is not sufficiently rich in the sense
of Furstenberg [10], Guivarch-Raugi [12], Goldsheid-Margulis [11] and Avila-Viana
[1] (for instance, its Zariski closure is far from the full symplectic group).

In this direction, Möller, Yoccoz and the author [14] showed that a “rich” KZ
cocycle suffices to ensure simplicity of Lyapunov exponents of (ergodic SL(2,R)-
invariant probability measures associated to) origamis. More precisely, the matri-
ces of KZ cocycleGKZ

t for origamis (M,ω) correspond to the action on homology of
its affine diffeomorphisms, i.e., homeomorphisms preserving the zeroes of ω whose
expressions in the charts of the translation structure (M,ω) are affine maps of R2.
We denote by Aff(M,ω) the group of affine diffeomorphisms of (M,ω), and, given
A ∈ Aff(M,ω), we let DA ∈ SL(2,R) denotes its linear part. In this language, we
proved that the following two results (the main theorems in [14]):
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Theorem A. Let (M,ω) be an origami without automorphisms (i.e., without
affine diffeomorphisms whose linear part is the identity matrix). Suppose that
there are two affine diffeomorphisms φ, ψ ∈ Aff(M,ω) such that:

(a) Dφ has trace > 2 and φ is Galois-pinching, i.e., the action of φ on

H
(0)
1 (M,Q) has real eigenvalues, irreducible characteristic polynomial and

largest possible Galois group.

(b) ψ acts on H
(0)
1 (M,Q) via a non-trivial unipotent matrix Id +N∗ so that

Im(N∗) is not Lagrangian.

Then, the Lyapunov exponents of (M,ω) are simple.

Theorem B. Let (M,ω) be an origami without automorphisms and suppose that
there are two affine diffeomorphisms φ, ψ ∈ Aff(M,ω) whose linear parts Dφ and
Dψ are b-reduced (i.e., their entries are positive, the top leftmost entry is larger
than the two anti-diagonal entries and the anti-diagonal entries are larger than
the right bottomost entry), φ is Galois-pinching and the actions φ∗, ψ∗ (resp.) of

φ, ψ (resp.) on H
(0)
1 (M,Q) have disjoint splitting fields, the minimal polynomial

of ψ∗ has degree > 2 and no irreducible factor of even degree. Then, the Lyapunov
exponents of (M,ω) are simple.

Closing this report, let us make some comments on these theorems.
Firstly, we restricted our attention to origamis because the Teichmüller flow on

SL(2,R)-orbits of origamis admit nice codings (countable Markov partitions with
good distortion properties) thanks to the relationship between the geodesic flow on
the modular curve H1 = SL(2,R)/SL(2,Z) and the continued fraction algorithm.
It is worth to point out that the presence of codings is also useful in Avila-Viana
arguments in [1] (in their context, the natural coding adapted to Masur-Veech
measures µMV is the so-called Rauzy-Veech algorithm). Nevertheless, after the
first versions of [14] were written, Eskin and the author [4] noticed that there is
no need for codings in the context of closed SL(2,R)-orbits such as the ones of
origamis. In other words, in this setting, the simplicity of Lyapunov exponents
can be detected from the monoid generated by φ and ψ.

Secondly, the assumption in item (b) in Theorem A can be geometrically ver-
ified (without calculations) if the origami (M,ω) has a rational direction with
homological dimension 1 < k < g in the sense of [8]. In practice, this means that,
for potential applications of Theorem A, once we have Galois-pinching, then the
simplicity is almost automatic in the sense that the item (b) is satisfied unless
your origami (M,ω) has a very special geometry (namely, no rational direction
with homological dimension 1 < k < g). Interestingly enough, the fact expressed
by Theorem A that simplicity is almost automatic from Galois-pinching fits nicely
the philosophy behind some work in progress by I. Rivin and P. Sarnak (whose
existence I learned from Eskin) where it is shown that a non-commutative monoid
of matrices containing Galois-pinching elements has full Zariski closure.

Thirdly, in our joint work with Möller and Yoccoz [14], we combine Theorem
A with Siegel’s theorem on the finiteness of integral points on algebraic curves of
genus > 0 to show that, if a conjecture of Delecroix-Lelièvre on the classification of
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SL(2,R)-orbits of origamis in the minimal stratum H(4) (i.e., the two connected
components of H3 with the smallest dimension) is true, then, for all but finitely
many origamis in H(4), the Lyapunov exponents are simple.

Finally, our Theorem B above was recently used by Eskin and the author [4]
to show that the simplicity of Lyapunov exponents associated to variations of
Hodge structures of mirror quintic Calabi-Yau 3-folds (a setting recently considered
by Kontsevich as a natural generalization of the Teichmüller flow on the unit
cotangent bundle of the moduli spaces of curves).

References

[1] A. Avila and M. Viana, Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich
conjecture, Acta Math. 198 (2007), 1–56.

[2] K. Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc. 17
(2004), 871–908.
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A finite dimensional approach to Bramham’s approximation theorem

Patrice Le Calvez

An irrational pseudo rotation is an area preserving homeomorphism of the Eu-
clidean unit disk D that fixes 0 and that does not possess any other periodic point.
To such a homeomorphism is associated an irrational number α 6∈ Q/Z character-
ized by the following: every point admits α as a rotation number. In particular
the Poincaré rotation number of the restriction of f to the unit circle S is α. In
the case where f is a Ck diffeomorphism, 1 ≤ k ≤ ∞, we will say that f is a
Ck irrational pseudo-rotation. Constructions of dynamically non trivial irrational
pseudo-rotations are based on the method of fast periodic approximations, start-
ing from the seminal paper of Anosov-Katok [1] to more recent developments (see
Fayad-Saprykina [4] for example).

Barney Bramham has recently proved the following (see [2]):

Theorem 1: Every C∞ irrational pseudo-rotation f is the limit, for the C0

topology, of a sequence of periodic smooth diffeomorphisms.

The result is more precise. Let (qn)n≥0 be a sequence of positive integers such
that the sequence (qnα)n≥0 converges to 0 in R/Z. One can construct a sequence
of homeomorphisms (fn)n≥0 fixing 0 and satisfying (fn)

qn = Id that converges to
f in the C0 topology. Such a map fn is C0 conjugate to a rotation of rational angle
(mod. π). Approximating the conjugacy by a smooth diffeomorphism permits to
approximate fn by a smooth diffeomorphism of same period.

The proof uses pseudoholomorphic curves techniques from symplectic geometry.
Trying to find a finite dimensional proof of this result is natural, as some results
of symplectic geometry admit finite dimensional proofs by the use of generating
families. A seminal example is Chaperon’s proof of Conley-Zehnder’s Theorem
via broken geodesics method (see [3]): if F is the time one map of a Hamiltonian
flow on the torus R2r/Z2r, a function can be constructed on a space R2r/Z2r ×
R2n whose critical points are in bijection with the contractible fixed points of
F . Studying the dynamics of the gradient vector field ξ permits to minimize the
number of critical points. Writing F as a composition of diffeomorphisms C1 close
to the identity is the way Chaperon constructs a generating family. Decomposing F
in monotone twist maps alternatively positive or negative is another possible way.
It is the fact that F is isotopic to the identity that is essential in the construction
of the vector field ξ, but in the general case ξ has no reason to be a gradient vector
field and its dynamics may be more complex. Nevertheless, if r = 1 it will satisfy
some “canonical dissipative properties” and its dynamics can be surprisingly well
understood (see [5] for the case where F is decomposed in monotone twist maps).
Among the applications, one can note the following approximation result (see [6]):
every minimal C1 diffeomorphism F of R2/Z2 that is isotopic to the identity is
a limit in the C0 topology of a sequence of periodic diffeomorphisms. The proofs
given in [2] and [6] share a thing in common: the construction of a foliation
satisfying a certain “dynamical transverse property” on which a finite group acts,
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the approximating map being naturally related to this action. In [2] the foliation is
defined on R×D×R/Z and the leaves are either pseudoholomorphic cylinders or
pseudoholomorphic half cylinders transverse to the boundary; in [6], the foliation is
singular and naturally conjugate to the foliation by orbits of ξ on an invariant torus.
Therefore it is natural to look for a proof of Bramham’s theorems by a method
close to the one given in [6]. The original proof of Theorem 1 is divided in two
cases: the case where the restriction of f to S is smoothly conjugate to rotation,
and the case where it is not. We succeeded to treat the first case, with some
improvements due to the fact that we work in the C1 category but unfortunately
could not get the general case. Therefore we will prove:

Theorem 1’: Every C1 irrational pseudo-rotation f , whose restriction to S is
C1 conjugate to a rotation, is the limit, in the C0 topology, of a sequence of periodic
smooth diffeomorphisms.

Observe that it is sufficient to prove Theorem 1’ in the case where the restriction
to S is a rotation. Indeed, every C1 diffeomorphism of S can be extended to a C1

area preserving diffeomorphism of D). So, every C1 irrational pseudo-rotation,
whose restriction to S is C1 conjugate to a rotation, is itself conjugate to a C1

irrational pseudo rotation, whose restriction to S is a rotation.

Let us explain the idea of the proof. The first difficulty arises from the fact that
f is defined on a surface with boundary. If one supposes that f |S is a rotation,
one can extend easily our map to the whole plane. Inside a small neighborhood of
D we extend our map by an integrable polar twist map and outside by a rotation
whose angle is irrational (mod. π) and close but different from 2πα. This implies
that S is accumulated by invariant circles Sp/q on which the map is periodic with
a rotation number p/q that is a convergent of α, where α+ Z = α. Our extended
map is piecewise C1 and one can construct a generating family of functions that
are C1 with Lipschitz derivatives. One knows that for every q ≥ 1, the fixed point
set of f q corresponds to the singular points of a gradient vector field ξq defined
on a space Eq depending on q. In particular each circle Sp/q corresponds to a
curve Σp/q of singularities of ξq. There is a natural action of Z/qZ that levaes
ξq invariant. A crucial point is the fact that ξq is A Lipschitz with a constant A
that does not depend on q. An important consequence is an uniform inequality
between the L2 norm of an orbit (the square root of the energy) and its L0 norm.
The fundamental result is the fact that Σp/q bounds a disk ∆p/q that contains the
singular point corresponding to the fixed point 0 and that is invariant by the flow
and by the Z/qZ action. Moreover the dynamics on ∆p/q is North-South and the
non trivial orbits have the same energy. This energy can be explicitely computed
and is small if p/q is a convergent of α. Consequently the vector field is uniformly
small on ∆p/q. The approximation map will be related to ξq|∆p/q

: one gets finite

dimensional analogous of the arguments of [2]. The existence of the disk ∆p/q

is a consequence of the fact that ξq admits a dominated structure: there exists
a canonical discrete Lyapounov function for the product flow on Eq × Eq. The
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vector field would have been C1, there would have exist a dynamically coherent
dominated splitting with ∆p/q as an integral manifold of the plane fields. In our
Lipschitz situation, one can still use a graph transformation method to construct
∆p/q and its invariance is a consequence of the following fact: the set {0}∪Sp/q is
a maximal unlinked fixed points set of f q, which means that there exists an isotopy
from identity to f q that fixes every point of {0}∪Sp/q and there is no larger subset
of the fixed point set of f q that satisfies this property.
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Growth of Sobolev norms for the cubic nonlinear Schrödinger equation

Marcel Guardia

(joint work with Vadim Kaloshin)

The purpose of this talk is to study the growth of Sobolev norms for the periodic
cubic defocusing nonlinear Schrödinger equation with a convolution potential,

(0.1)

{

− i∂tu+∆u+ V (x) ∗ u = |u|2u
u(0, x) = u0(x),

where x ∈ T2 = R2/(2πZ)2, u : R× T2 → C and V ∈ Hs0(T2), s0 > 0, with real
Fourier coefficients. We also include the case V = 0. This equation is globally well
posed in time in any Sobolev space Hs with s ≥ 1.

If we write the Fourier series

u(t, x) =
∑

n∈Z2

an(t)e
inx and V (x) =

∑

n∈Z2

vne
inx,

equation (0.1) becomes an infinite dimensional ordinary differential equation for
the Fourier coefficients an,

(0.2) −iȧn =
(

|n|2 + vn
)

an +
∑

n1,n2,n3∈Z
2

n1−n2+n3=n

an1
an2

an3
.
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Note that the assumption that V has real Fourier coefficients implies that for this
equation a = 0 is an elliptic critical point. Equation (0.2) is Hamiltonian.

The problem of growth of s-Sobolev norms in Hamiltonian Partial Differential
Equations (PDE) has drawn a wide attention in the past decades and was con-
sidered by Bourgain one of the next century problems in Hamiltonian PDE [2].
The importance of this phenomenon is that solutions undergoing a large growth
of s-Sobolev norm with s > 1 are solutions which, as time evolves, transfer energy
to higher and higher modes. The s-Sobolev norm is defined by

‖u(t)‖Hs(T2) := ‖u(t, ·)‖Hs(T2) :=

(

∑

n∈Z2

〈n〉2s|an|2
)1/2

,

where 〈n〉 = (1 + |n|2)1/2. It follows from conservation of energy that the H1-
norm of any solution of (0.1) is uniformly bounded. Therefore, if the Hs-norm
of a solution grows indefinitely for some given s > 1 while the H1-norm stays
bounded, the energy of the solution of (0.1) must be transferred to higher modes.

In [1] (see also [7]), Bourgain considered equation (0.1) with V = 0 and obtained
upper bounds for the possible growth of Sobolev norms. More concretely, he proved
that

‖u(t)‖Hs ≤ tC(s−1)‖u(0)‖Hs for t→ ∞.

In [2], Bourgain posed the following question, Are there solutions of (0.1) with
V = 0 with periodic boundary conditions in dimension 2 or higher with unbounded
growth of Hs-norm for s > 1?

Moreover, he conjectured, that the upper bound that he had obtained in [1]
was not optimal and that the growth should be subpolynomial in time, that is,

‖u(t)‖Hs ≪ tε‖u(0)‖Hs for t→ ∞, for all ε > 0.

The question posed by Bourgain is still open. The first result for (0.1) with
V = 0, is due to Kuksin. In [6], he proves the existence of solutions with any
prescribed growth of s-Sobolev norm taking initial data large enough (depending
on the prescribed growth). In this talk we are rather interested in showing growth
of Sobolev norms for solutions with small initial data. That is, for solutions close
(in some topology) to the solution u = 0. From the dynamical systems point of
view, u = 0 is an elliptic critical point and therefore, showing growth of Sobolev
norms for small initial data means that the critical point is unstable in the Sobolev
spaces Hs, s > 1. The first paper dealing with such setting is [3].

Theorem 3 ([3]). Fix s > 1, C ≫ 1 and µ ≪ 1. Then there exists a global
solution u(t) = u(t, ·) of (0.1) with V = 0 and T > 0 satisfying that

‖u(0)‖Hs ≤ µ, ‖u(T )‖Hs ≥ C.
Note that the initial Sobolev norm gives bounds for the mass and energy of the

solution u, which are constant as time evolves, and therefore are small for all time.
The paper [3] does not give estimates for the time T with respect to the growth of
the Sobolev norms, namely estimates of the speed of the growth. These estimates
have been obtained recently in [4].
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Theorem 4 ([4]). Let s > 1. Then, there exists c > 0 with the following property:
for any large K ≫ 1 there exists a a global solution u(t) = u(t, ·) of (0.1) with
V = 0 and a time T satisfying 0 < T ≤ Kc such that

‖u(T )‖Hs ≥ K ‖u(0)‖Hs .

Moreover, this solution can be chosen to satisfy

‖u(0)‖L2 ≤ K−σ.

for some σ > 0 independent of K.

Note that this theorem does not give any information of the initial Sobolev
norm but only on its growth. Nevertheless, it is dealing with small data since the
L2-norm of the solution is very small. One can impose also that the solution has
small initial s-Sobolev norm at the expense of obtaining a slower growth.

Theorem 5 ([4]). Let s > 1. Then there exists c > 0 with the following property:
for any small µ≪ 1 and large C ≫ 1 there exists a a global solution u(t) = u(t, ·)
of (0.1) with V = 0 and a time T satisfying

0 < T ≤
(C
µ

)c ln(C/µ)

such that

‖u(T )‖Hs ≥ C and ‖u(0)‖Hs ≤ µ.

In [5] it is shown that the instability mechanism developed in [3, 4] is also
valid, with some modifications, if one considers equation (0.1) with a convolution
potential. Therefore for this equation there also exist solutions with arbitrarily
high, but finite, growth of Sobolev norm.

Theorem 6 ([5]). Let s0 > 0 and s > 1 and take V ∈ Hs0(T2) with real Fourier
coefficients. Then, there exists c > 0 with the following property: for any large
K ≫ 1 there exists a global solution u(t) = u(t, ·) of (0.1) and a time T satisfying
0 < T ≤ Kc such that

‖u(T )‖Hs ≥ K ‖u(0)‖Hs .

Moreover, this solution can be chosen to satisfy

‖u(0)‖L2 ≤ K−σ.

for some σ > 0 independent of K.

We can also impose initial small Sobolev norm as in Theorem 5. Nevertheless,
then we obtain a slower growth, as happened in that theorem, and we need to add
the extra hypothesis that the potential satisfies V ∈ Hs0 with s0 > 70s/17 instead
of s0 > 0. This hypothesis is certainly not optimal. Nevertheless, it is needed with
our methods to impose the smallness of the initial Sobolev norms.

Theorem 7 ([5]). Fix s > 1 and Let s0 > 70s/17 and take V ∈ Hs0(T2) with real
Fourier coefficients. Then, there exists c > 0 with the following property: for any
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small µ ≪ 1 and large C ≫ 1 there exists a global solution u(t) = u(t, ·) of (0.1)
and a time T satisfying

0 < T ≤
(C
µ

)c ln(C/µ)

such that

‖u(T )‖Hs ≥ C and ‖u(0)‖Hs ≤ µ.
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Reducibility of quasiperiodic cocycles in semi-simple compact Lie
groups

Nikolaos Karaliolios

Let α ∈ T be a topologically minimal translation. This property is, by Kronecker’s
theorem, equivalent α being an irrational.

If we also let A(·) ∈ Cs(T, G), where G is a Lie group with Lie algebra g, and
s ∈ N ∪∞, the couple (α,A(·)) acts on the fibered space T × G → T defining a
diffeomorphism by

(α,A(·)).(x, S) = (x + α,A(x).S)

for any (x, S) ∈ T × G. We will call such a diffeomorphism a quasiperiodic co-
cycle over Rα (or simply a cocycle). The space of such actions is denoted by
SW s

α(T, G) ⊂ Diff s(T×G). We usually abbreviate the notation to SW s
α. Cocy-

cles are a class of fibered diffeomorphisms, since fibers of T×G are mapped onto
fibers, and the mapping from one fiber onto another in general depends on the
base point. We restrict ourselves to the case of a semi-simple compact Lie group,
and G will denote such a group from now on. We also remark that consideration
of tori of higher dimension is equally relevant, but since the main theorem is not
known to be true is these cases, we restrict ourselves to one-dimensional tori.

The n-th iterate of the action is given by

(α,A(·))n.(x, S) = (nα,An(·)).(x, S) = (x+ nα,An(x).S)
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where An(·) represents the quasiperiodic product of matrices equal to

An(·) = A(·+ (n− 1)α)...A(·)
for positive iterates. Negative iterates are found as inverses of positive ones:

(α,A(·))−n = ((α,A(·))n)−1

= (−nα,A∗(· − nα)...A∗(· − α))

The cocycle (α,A(·)) is called a constant cocycle if A(·) = A ∈ G is a constant
mapping. In that case, the quasiperiodic product reduces to a simple product of
matrices

(α,A)n = (nα,An)

and the dynamics become easy to describe. Another, more general, distinct class
of cocycles having relatively simple dynamics is given by the applications A(·)
taking values in an abelian subgroup of G. Such cocycles will be called abelian.

The relevant definition of dynamical conjugation in this case is the fibered
conjugation, defined by

ConjB(·).(α,A(·)) = (α,B(·+ α).A(·).B−1(·))
= (0, B(·)) ◦ (α,A(·)) ◦ (0, B(·))−1

where B(·) : Td → G. The dynamics of ConjB(·).(α,A(·)) and (α,A(·)) are
essentially the same, since

(ConjB(·).(α,A(·)))n = (nα,B(·+ nα).An(·).B(·))−1

Naturally, we will say that two cocycles are conjugate iff there exists such a con-
jugation B(·).

The most interesting cases of cocycles are those who are conjugate to a constant
one, called reducible cocycles, and those who are conjugate to an abelian cocycle,
called torus-reducible since an abelian subroup of a compact group is isomorphic
to a torus.

After having established the basic vocabulary, we can state the main theorem
discussed in the talk.

Theorem 3. Let α ∈ RDC and (α,A(·)) ∈ SW∞(T, G). Then, (α,A(·))χG is
accumulated by reducible cocycles in SW∞

χGα(χGT, G).

In other words, for such α, any cocycle (α,A(·)) in T×G has an iterate which
is accumulated by reducible cocycles and the maximal number χG of iterations
needed in order to satisfy this property depends only on the groupG. The constant
χG is related with the homotopy of the group, and is equal to 1 for G = SU(w+1),
and 2 for G = SO(3). For the remaining of this text we will suppose that χG = 1
in order to simplify the exposition. The set RDC ⊂ T stands for the Recurrent
Diophantine Numbers, and is a full Haar measure condition.

The proof of the theorem relies on the following results, which we will state
informally. Let (α,A(·)) ∈ SW∞

α . Then, for a.e. x ∈ T, and for n ∈ N large

enough, we can find a (maximal) subgroup G̃(x) = G0(x) × G+(x) ⊂ G, satisfy-
ing the following properties. The subgroup G0 is semi-simple, and for S ∈ G0,



Dynamische Systeme 2003

the curve t 7→ (α,A( ·−x
n ))n.(t, S) for t ∈ [−1, 1] is close to a constant. The

subgroup G+ is abelian (and therefore a torus Td), and for S ∈ G+, the curve
t 7→ (α,A( ·−x

n ))n.(t, S) for t ∈ [−1, 1] is close to a mapping t 7→ exp(tφ(x)), for

some φ(x) ∈ Rd →֒ g. Here, Rd is the Lie algebra of G+.

The groups G̃(x) are isomorphic for a.e. x. The vectors φ(x) are well defined
for a.e. x, depend measurably on x, and belong to the same class of vectors for
conjugation in g (i.e. in a single orbit under g ∋ s 7→ Ad(S).s ∈ g, for S ∈ G
and a fixed s ∈ g). This fact allows us to suppose that x = 0 is a ”good point”,
meaning that the subgroups G0 and G+, as well as the vector φ are well defined
at this point.

For the identification of the vector φ(0) we use the renormalization scheme
introduced in [6]. This scheme allows us to relate the dynamics of the given

cocycle (α,A(·)) with those of (αn, Ân(·)), where αn = Gn(α) and G is the Gauss

map α 7→ [α−1] ([·] is the integer part). The cocycle (αn, Ân(·)) is obtained via
continued fractions for α and conjugation in the fibers in an ”almost canonical”
way. By this, we mean that different cocycles (αn, Ân(·)) obtained in the same way
are conjugate to each other, and that when the dynamics of (αn, Aqn(·)) (qn is a
denominator of a convergent of α) approach the limit object described previously,

there is a natural way of obtaining (αn, Ân(·)) from the former. The proof of the
convergence of the scheme shows that that for n big enough the derivative of such
Ân(·) ∈ C∞(T, G) must be close to φ(0). Since Ân(·) is one-periodic, φ(0), if it is
non-zero, must be equal to the derivative of a periodic geodesic of G. Therefoere,
its class modulo conjugations is quantized. If φ(0) = 0, then Ân(·) is close to a
constant. In any case, we obtain

Theorem 4. The models of the dynamics of cocycles in SW∞
α are C∞-small

perturbations of abelian cocycles in SW∞
αn

, for n big enough.

In other terms, non-commutativity dies out (in a measurable way) due to er-
godicity of x 7→ x+ α. This observation is used in the proof of

Theorem 5. Periodic geodesics are accumulated by cocycles whose limit object
corresponds to a shorter geodesic.

Here, by shorter we mean that the derivative within G+ has smaller norm
after perturbation, and eventually that the subgroup G0 becomes bigger. The
perturbation consists in a careful choice of terms not commuting with G+.

This fact, together with

Theorem 6. If α ∈ RDC, then there exist n big enough such that (αn, Ân(·)) is
accumulated by cocycles conjugate to the corresponding geodesic.

allow us, after a finite number of arbitrarily small perturbations to obtain a
cocycle (α,A′(·)), close to (α,A(·)), for which the corresponding subgroupG0 = G.

Therefore, there exists an m ∈ N (m ≫ n) such that (αm, Â
′
m(·)) is close to a

constant. Then, the local density theorem obtained in [5] can be applied.
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Theorem 7. If α ∈ RDC, and (α,A′(·)) is as above, then there exist m big

enough such that (αm, Â
′
m(·)) is accumulated reducible cocycles.

The fact that ”hatted” cocycles are obtained ”almost canonically” by the ”un-
hatted” ones and the fact that perturbations can be chosen to be arbitrarily small
finishes the proof.
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First steps towards invariant circles using pseudoholomorphic curve
methods

Barney Bramham

Let D be the closed unit disk in the plane. For this talk a pseudo-rotation was a
C∞-diffeomorphism ϕ : D → D having the following three properties in common
with a rotation about the origin through an irrational angle: (1) ϕ is area and
orientation preserving, (2) ϕ fixes the origin, and (3) ϕ has no other periodic
points.

From work of Franks [6] one knows that the last property is equivalent to the
following condition: that there exists an irrational number α such that every orbit
having a well defined rotation number about the origin has rotation number α.
The number α is then refered to as the rotation number of ϕ.

In 1970 Anosov and Katok [1] constructed “exotic” pseudo-rotations. So called,
because they are ergodic (even weak mixing) and therefore cannot be simply in
the conjugacy class of a rotation. Their examples were C∞-limits of periodic
diffeomorphisms. In [2] we showed that every pseudo-rotation is the C0-limit of
periodic diffeomorphisms.

Given the C∞-convergence of the Anosov-Katok examples, and that these
should include some of the “worst case scenarios”, that is, where the limiting
system is as far as possible from integrable, it is natural to ask whether the above
C0-convergence can be strengthened to some Cr-topology for r > 0. The following
statement discussed in this talk is a small step in this direction.
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Theorem 8. 1 There exists a (non-empty, dense) subset L0 of the Liouville num-
bers such that the following holds. Let ϕ : D → D be a smooth irrational pseudo-
rotation having rotation number α in L0. Suppose also that ϕ satisfies the following
conditions on the boundary: for all z ∈ ∂D and v ∈ R2,

ϕ(z) = e2πiαz Dϕ(z)v = e2πiαv.

In other words, ϕ is a rotation up to first order on the boundary. Then there is
a sequence of smooth diffeomorphims ϕn : D → D, each periodic and fixing the
origin, and converging to ϕ in the uniform C0 topology, and moreover satisfying
the uniform bounds

sup
n∈N

‖Dϕn‖L∞(D) <∞.

In particular, for all γ ∈ (0, 1) we have convergence of ϕn → ϕ in the γ-Hölder
topology.

Another reason to be interested in getting stronger convergence of the approx-
imation maps is the following. The exotic pseudo-rotations of Anosov-Katok all
had Liouvillean rotation number. Fayad and Saprykina [4] were able to signifi-
cantly extend this statement and show that for every Liouville number α there
exists an ergodic (again even weak mixing) pseudo-rotation with rotation number
α. In particular such pseudo-rotations of course do not have interior invariant
circles.

In contrast, for pseudo-rotations with Diophantine rotation number Herman
showed that invariant circles always exist near the boundary. In [7] he raised
the question whether moreover Diophantine pseudo-rotations are always globally
conjugate to a rotation. In [5] Fayad and Krikorian prove that remarkably this is
the case when the pseudo-rotation is sufficiently close to a rotation. In general the
question remains open.

It seems natural to ask whether one could recover any of these existence results
for invariant circles using the periodic approximation maps. (Especially as it might
raise the possibility of moving away from the perturbative setting.) The naive idea
would be to show that under the Diophantine condition one can control, e.g. get
uniform Lipschitz bounds on, the invariant circles in the approximation maps and
preserve them in the limit. For this it would suffice to bound certain directional
derivatives of the approximation maps. Therefore we felt that the first small step
in this direction would be to show that the approximation maps converge in a
differentiable sense. This is the second motivation for theorem 8.

Of course, it is unfortunate that theorem 8 does not say anything for Diophan-
tine rotation numbers. Moreover, even C∞-convergence of the approximation
maps would not in imply invariant circles for the limit as this would contradict
the Anosov-Katok construction. So theorem 8 is very far from the statements one
would like to prove. But it begins to make progress on understanding the approx-
imation maps on an infinitesimal level, hence the, prematurely optimistic, allusion
to invariant circles in the talk title.

1The proof is still being written up.
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Tonelli Hamiltonians with no conjugate points and C
0 integrability

Marie-Claude Arnaud

(joint work with Marc Arcostanzo, Philippe Bolle, Maxime Zavidovique)

This talk deals with C0-integrable Tonelli Hamiltonians and Tonelli Hamiltonians
without conjugate points of the cotangent bundle T ∗Tn of the n-dimensional torus.

If the Tonelli Hamiltonian is a Riemannian metric, these properties coincide and
have strong implications. Indeed, Heber showed (see [3]) in 1994 that for every
Riemannian metric without conjugate points on the torus Tn, there is a continuous
foliation of the unit tangent bundle by tori which are Lipschitz, Lagrangian and
invariant by the geodesic flow. The same year, this was improved by Burago and
Ivanov who proved (see [2]) that such a metric has to be flat; as an immediate
consequence, the continuous foliation in Heber’s result is in fact smooth.

The notion of Tonelli Lagrangian is a vast extension of the concept of Riemann-
ian metric, but we prove that Heber’s result still holds:

Theorem 1 Let H be a Tonelli Hamiltonian on T ∗Tn. Then H has no conju-
gate points if and only if there is a continuous foliation of T ∗Tn by Lipschitz,
Lagrangian, flow-invariant graphs.

The proof uses ideas coming from weak KAM and Aubry-Mather theory. In fact,
we establish that each leaf of the above foliation is the Aubry set corresponding
to some cohomology class. More precisely, the first step of the proof is to see
that some of those Aubry sets (later denoted by GT,r, with T > 0 and r ∈ Zn)
are covered by periodic orbits of the Hamiltonian flow (φHt )t∈R, of a given period
T (and a given homology class r ∈ Zn). In particular, the dynamics on the
corresponding leaves is periodic.
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The existence of those particular leaves is used again to prove a second theorem.
Using a KAM theorem, we prove that such sets GT,r are accumulated by KAM
tori on which the dynamics is conjugated to an irrational rotation. We deduce:

Theorem 2 Let (φHt ) be a C∞ Tonelli flow of T ∗Tn with no conjugate points
and let F be the continuous foliation in invariant Lagrangian tori that is given by
theorem 1. Then there is a dense Gδ subset G of F such that, for every T ∈ G,
then φH1|T is strictly ergodic.

We recall:

Definition A set K ⊂ TTn that is invariant by a Tonelli flow (φHt ) is strictly
ergodic if:

– the restricted flow (φHt|K) has a unique invariant Borel probability measure;

this measure is denoted by µ;
– the support of µ is K.

The last section of this article is devoted to studying the entropy of Tonelli
Hamiltonians without conjugate points. Indeed, it is not hard to see that a regu-
lar completely integrable Hamiltonian system has zero topological entropy. When
singularities are allowed, the situation can become more complicated, as shown in
the article [1] of Bolsinov and Taimanov.
Hence it seems to be natural to ask what can happen for a C0-integrable Tonelli
Hamiltonian. In this case, we don’t know the restricted dynamics to all the in-
variant tori, hence it is not so obvious to decide if the topological entropy is zero
or not. An answer to this question is provided by the following:

Theorem 3 Let H : T ∗Tn → R be a C3 Tonelli Hamiltonian that is C0-integrable.
Then for every invariant Borel probability measure, the Lyapunov exponents are
zero.

This implies that both the metric, and topological entropies must also be 0.
Observe that the conclusion of theorem 3 is true for a C0-integrable Tonelli Hamil-
tonian defined on T ∗M for any closed manifold M .

Some interesting questions remain open after this work, as:

Questions
1) Does a C0 integrable Tonelli Hamiltonian exist that is not C1 integrable?
2) Can an invariant torus of a C0 integrable Tonelli Hamiltonian flow carry two
invariant measures that have not the same rotation number (see the appendix for
the definition of the rotation number)?
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Tire tracks geometry, continuous and discrete bicycle transformation,
and the filament equation

Serge Tabachnikov

The goal of this talk is two-fold. The first part is an exposition of the joint
work with R. Foote and M. Levi on the bicycle monodromy, see [5, 2]. The second
part concerns the continuous and discrete bicycle (Darboux, Bäcklund) tyransfor-
mation, its complete integrability and its relation with the filament (smoke ring,
binormal, local induction) equation. This is work in progress, see [7, 8].

The model of a bicycle is a directed segment of fixed length ℓ in the plane that
can move so that the trajectory of the rear end is always tangent to the segment
(since the rear wheel is fixed on the frame). Thus, given the rear wheel track γ
and the direction, the front track Γ is uniquely determined: Γ is the locus of the
end points of tangent segments to γ of length ℓ.

However, the front track Γ determines the rear track only if the initial position
of the bicycle is given. The monodromy mapMℓ(Γ) arises that assigns the terminal
position to the initial one. If Γ is a closed curve, Mℓ(Γ) is a self-map of a circle of
radius ℓ. A similar construction can be made in any dimension resulting in a map
of a sphere of radius ℓ.

The monodromy map Mℓ(Γ) is a Möbius transformation (the sphere is con-
sidered as the sphere at infinity of the hyperbolic space, and the Möbius group
as consisting of hyperbolic isometries). In the planar case, one identifies the cir-
cle with the real projective line via a stereographic projection, and the Möbius
transformations with fractional-linear ones.

A Möbius transformation of a circle can be elliptic, parabolic, or hyperbolic,
depending on the number of fixed points (0, 1, or 2). I outlined the proof of a
hundred-year-old Menzin’s conjecture: if Γ is an oval of area greater than πℓ2 then
the monodromy is hyperbolic. The proof makes use of a version of isoperimetric
inequality for curves with cusps (wave fronts).

Similar results hold in the spherical and hyperbolic geometries, see [3].
Start with a closed cooriented rear track γ and consider the respective front

track Γ. The monodromy Mℓ(Γ) has a fixed point, hence there is another fixed
point corresponding to another closed cooriented rear track, say γ′. The relation
between γ and γ′ is an involution. Change the coorientation of γ′ to the opposite,
and denote the resulting rear wheel track by γ∗. Let Γ∗ be the respective front
wheel track. The transformations γ 7→ γ∗ and Γ 7→ Γ∗ arise, called the bicycle
transformations. Denote by Tℓ the former.
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In dimension three, Möbius transformations are complex fractional-linear, hence
always have two fixed points. Thus Tℓ is always defined in R3.

The following properties are valid in all dimensions:

(1) The bicycle transformations with different length parameters ℓ commute:
Tℓ1 ◦ Tℓ2 = Tℓ2 ◦ Tℓ1 .

(2) If two curves are related by the bicycle transformation then their bicycle
monodromies, for all values of the length parameter λ, are conjugated:
Mλ(Tℓ(Γ)) =Mλ(Γ).

(3) The following are integrals of the bicycle transformations:
∫

Γ

Γ(t) ∧ Γ′(t) dt and

∫

Γ

(Γ(t) · Γ′(t)) Γ(t) dt

(the area bivector and the “center of mass”).

Define two differential 2-forms on parametric closed curves in R3. Let Γ(t) be
a curve and u(t), v(t) two vector fields along Γ. Then

ω(u, v) =

∫

u′(t) · v(t) dt, Ω(u, v) =

∫

det(Γ′(t), u(t), v(t)) dt.

Both forms are closed (in fact, exact).
One has the following result: The bicycle transformation preserves both forms,

ω and Ω.
If Γ(t) is an arc length parameterized curve in R3 then the evolution Γ̇ = Γ′×Γ′′

is called the binormal equation.
One has the following results: the filament equation also preserves the forms

ω and Ω. The two systems, the bicycle transformation and the filament equation,
commute and share integrals.

The sequence of integrals of the filament equation starts with
∫

1 dx,

∫

τ dx,

∫

κ2 dx,

∫

κ2τ dx,

∫
(

(κ′)2 + κ2τ2 − 1

4
κ4
)

dx, . . .

where τ is the torsion and κ is the curvature of a space curve, see, e.g., [4] .
A discrete version of the bicycle transformation is studied in [6, 8]. It is a

discrete time dynamical system on polygons depending in a parameter ℓ (the length
of the bicycle frame). In particular, the following construction of the circumcenter
of mass defines an integral of the discrete bicycle transformation in the plane; see
also [1].

Given a polygon, consider its triangulation and take the circumcenters of the
triangles with the weights equal to their areas. One has the following result: the
center of mass of these points is independent of the triangulation (likewise, in the
spherical and hyperbolic geometries, and for simplicial polyhedra too).
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Existence of special finite-energy foliations on SO(3) and applications
to positively curved geodesic flows on the 2-sphere

Umberto L. Hryniewicz

(joint work with Joan E. Licata, Pedro A. S. Salomão and Kris Wysocki)

The concept of a (stable) finite energy foliation, introduced by Hofer, Wysocki
and Zehnder in [6], is a powerful tool to study the global behavior of Hamiltonian
dynamics on contact-type three-dimensional energy levels. Loosely speaking, it
is a foliation of the energy level with a finite number of closed characteristics
removed, satisfying special properties. In particular, each page is transverse to the
Reeb flow, and is the projection of a finite-energy pseudo-holomorphic punctured
sphere in the symplectization of the energy level. The applications are numerous,
for instance, Hofer, Wysocki and Zehnder proved in [5] that strictly convex energy
levels in R4 always have a finite energy foliation in the form of an open book
decomposition with disk-like pages which are global surfaces of section for the
flow. In particular, with the help of a deep result due to Franks [1], they are able
to deduce the existence of two or infinitely many closed characteristics. In this
talk we describe two applications of this method.

The first explores relationships between Reeb dynamics and the topology of
three-dimensional contact-type energy levels. In order to investigate these rela-
tionships one may ask the following

Question I. Can the diffeomorphism type of a closed connected 3-manifold be
determined in terms of dynamical properties of a flow defined on it?

A result in this direction would provide a dynamical characterization of the
manifold. When one wishes to state and prove a characterization theorem it is
a common procedure to endow the space with additional structure, hoping that
this will provide additional tools. We propose to see the manifold as a contact-
type energy level, so we end up looking for a characterization theorem not only
of the diffeomorphism type but also of the induced contact structure. The tools
that become available taking this particular viewpoint come from the theory of
pseudo-holomorphic curves in symplectizations introduced by Hofer [2]. The study
of this question was initiated by Hofer, Wysocki and Zehnder in [3, 4] where the
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tight three-sphere was first dynamically characterized.

Theorem A. (Hryniewicz, Licata and Salomão [7]) Let (M, ξ) be a closed
connected tight contact 3-manifold such that c1(ξ) vanishes on π2(M). Then
(M, ξ) is contactomorphic to the standard lens space (L(p, q), ξstd) if, and only if,
ξ = kerλ for a contact form λ admitting a closed Reeb trajectory K such that

i) K is p-unknotted, has self-linking number −p, monodromy −q, its p-th
iterate has Conley-Zehnder index ≥ 3, and

ii) all other closed Reeb orbits which are contractible and have transverse
rotation number 1 are linked with K.

The methods used to prove Theorem A can also be used to construct global
surfaces of section for Reeb flows on (L(p, q), ξstd), even for binding orbits with high
Conley-Zehnder index. This has applications to the study of classical Hamiltonian
systems, like geodesic flows on the two-sphere and the planar circular restricted
three-body problem.

To describe the second application discussed in the talk we start by recalling
an old theorem due to Birkhoff. Geodesic flows on the two-sphere always have
simple closed geodesics, and to such a geodesic one can associate the so-called
Birkhoff annulus: this is embedded in the unit sphere bundle and consists of the
unit vectors along the geodesic pointing inside one of the hemispheres.

Theorem. (Birkhoff) If the Gaussian curvature is everywhere positive then a
Birkhoff annulus is a global surface of section.

What is unsatisfactory about this statement is that positivity of Gaussian cur-
vature is not a symplectically invariant condition, and one may ask

Question II. Is there a symplectically invariant condition which is sufficient for
constructing annulus-like global surfaces of section for Reeb flows on RP3 with its
standard contact structure?

The answer is provided by the following statement which is joint work with
Pedro A. S. Salomão and Kris Wysocki.

Theorem B. (Hryniewicz, Salomão and Wysocki [8]) Assume that a tight
Reeb flow on RP3 admits a pair of closed orbits P0, P1 forming a Hopf link.
If all closed Reeb orbits have Conley-Zehnder index greater than or equal to 1
and all closed Reeb orbits with Conley-Zehnder index 2 are not contractible in
RP3\(P0∪P1), then there exists an annulus-like global surface of section bounded
by P0 ∪ P1.

By a Hopf link in RP3 we mean a transverse link that lifts to the transverse
isotopy class of a standard Hopf link in the tight three-sphere. Theorem B implies
the result of Birkhoff. In fact, if γ(t) is a closed simple geodesic then γ̇(t) and
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−γ̇(−t) form a Hopf link, moreover, positivity of the Gaussian curvature forces
Conley-Zehnder indices to be strictly positive. The linking assumption is provided
by the Gauss-Bonnet theorem. Hence Birkhoff’s result gets generalized to a much
broader class of Hamiltonian systems, and the symplectically invariant condition
running in the background gets revealed.
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Arnold diffusion and weak quasiergodic hypothesis

Vadim Kaloshin

(joint work with Marcel Guardia, Ke Zhang)

1. Strong form of Arnold diffusion

Let (θ, p) ∈ T2 × B2 be the phase space of an integrable Hamiltonian system
H0(p) with T2 being 2-dimensional torus T2 = R2/Z2 ∋ θ = (θ1, θ2) and B

2 being
the unit ball around 0 in R2, p = (p1, p2) ∈ B2. Assume that H0 is strictly convex,
i.e. Hessian ∂2pipj

H0 is strictly positive definite.
Consider a smooth time periodic perturbation

Hε(θ, p, t) = H0(p) + εH1(θ, p, t), t ∈ T = R/Z.

We study a strong form of Arnold diffusion for this system, namely,

existence of orbits {(θε, pε)(t)}t going from one open set pε(0) ∈ U to another
pε(t) ∈ U ′ for some t = tε > 0.

Arnold [1] proved existence of such orbits for an example and conjectured that
they exist for a typical perturbation (see e.g. [2, 3, 4]).

Integer relations ~k · (∂pH0, 1) = 0 with ~k = (~k1, k0) ∈ (Z2 \ 0)×Z and · being
the inner product define a resonant segment. The condition that the Hessian of
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H0 is non-degenerate implies that ∂pH0 : B2 → R2 is a diffeomorphism and each
resonant line defines a smooth curve embedded into action space

Γ~k = {p ∈ B2 : ~k · (∂pH0, 1) = 0}.
If curves Γ~k and Γ~k′ are given by two linearly independent resonances vectors

{~k,~k′}, they either have no intersection or intersect at a single point in B2.

We call a vector ~k = (~k1, k0) = (k11 , k
2
1 , k0) ∈ (Z2 \ 0)×Z and the corresponding

resonance Γ = Γ~k space irreducible if either (k11 , k
2
1) = (1, 0) or (0, 1) or gcd(~k1) =

1, i.e. |k11 | and |k21 | are relatively prime.
Consider now two open sets U,U ′ ⊂ B2. Select a finite collection of space

irreducible resonant segments {Γj = Γ~kj
}Nj=1 for some collection of {~kj}Nj=1

• with neighbors ~kj and ~kj+1 being linearly independent,
• Γj ∩ Γj+1 6= ∅ for j = 1, . . . , N − 1 and so that
• Γ1 ∩ U 6= ∅ and ΓN ∩ U ′ 6= ∅.

We would like to construct diffusing orbits along a connected path formed by
segments inside Γj ’s, i.e. we select a connected piecewise smooth curve Γ∗ ⊂
∪N
j=1Γj so that Γ∗ ∩ U 6= ∅ and Γ∗ ∩ U ′ 6= ∅.
Consider the space of Cr perturbations Cr(T2 × B2 × T) with a natural Cr

norm given by maximum of all partial derivatives of order up to r, here r < +∞.
Denote by Sr = {H1 ∈ Cr(T2 × B2 × T) : ‖H1‖Cr = 1} the unit sphere in this
space. In [11] we prove the following

Theorem 8. In the above notations fix the piecewise smooth segment Γ∗ and 4 ≤
r < +∞. Then there is an open and dense set U = UΓ∗ ⊂ Sr and a nonnegative
function ε0 = ε0(H1) with ε0|U > 0. Let V = {ǫH1 : H1 ∈ U , 0 < ε < ε0},
then for an open and dense set of ǫH1 ∈ W ⊂ V , W 6= V the Hamiltonian system
Hǫ = H0 + ǫH1 has an orbit {(θε, pε)(t)}t whose action component satisfies

pε(0) ∈ U, pε(t) ∈ U ′ for some t = tε > 0

Moreover, for all 0 < t < tε the action component pε(t) stays O(
√
ε)-close to the

union of resonances Γ∗.

Rational points on on Γ∗ whose numerators and denominators are bounded by
a certain constant K depending on H0 and H1, but independent of ε, are called
strong double resonances. Diffusion away from strong double resonances is proven
in [5]. Moreover, the result in [5] applies to the above setting with any number of
degrees of freedom.

2. A weak form of quasiergodic hypothesis

A quasiergodic hypothesis states that a generic Hamiltonian system on a generic
energy surface has a dense orbit (see e.g. [6, 7, 9]).

In [10] we construct an example of a nearly integrable system of the form
H(θ, p) = 〈p, p〉/2 + εH1(θ, p) with p ∈ R3, θ ∈ T3 and 〈·, ·〉 being the dot prod-
uct. This system has an orbit dense in a set of Hausdorff dimension 5 inside of a
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5-dimensional energy surface. We also construct examples of Lyapunov unstable
KAM tori.

In [12] we modify this example and present an example of a nearly integrable
system of the same form H(θ, p) = 〈p, p〉/2 + εH1(θ, p) such that it has an orbit
dense in a set of positive 5-dimensional measure. In particular, such an orbit
accumulates to a positive measure set of KAM tori.

In [8] we considerably straighten both results. Let θ ∈ T2 and p ∈ B2. Suppose
H0 is sufficiently smooth and strictly convex. Consider a smooth time periodic
perturbation

Hε(θ, p, t) = H0(p) + εH1(θ, p, t), t ∈ T = R/Z.

Fix γ > 0 and τ > 0. We say that a vector ω ∈ R2 is (τ, γ)-diophantine if
|(ω, 1) · (k1, k0)| ≥ γ|(k1, k0)|−2−τ for any (k1, k0) ∈ (Z2 \ 0)× Z.

Theorem 9. [8] With the above notations there is r0 > 0 such that for any γ > 0
and τ > 0 and any r0 ≤ r < +∞ there is a dense set D in the unit sphere of
perturbations Sr such that for any H1 ∈ D there is ε with the property that Hε

has an orbit whose ω-limit set has Lebesgue measure at least (1 − γ) of Lebesgue
measure of T2×B2×T. In particular, the ω-limit set contains all KAM tori with
a (τ, γ)-diophantine rotation vector (ω, 1).

By KAM theorem (see e.g. Pöschel [13]) for any sufficiently smooth small
perturbation εH1 the Hamiltonian Hε(θ, p, t) has an invariant KAM torus for
any (τ, γ)-diophantine rotation vector (ω, 1). Denote by KAMτ,γ this union of
KAM tori. Then one can define Whitney topology for pertubations vanishing on
KAMτ,γ. Call such a Whitney topology KAM Whitney topology.

We also show that for each Hamiltonian H ′
ε from this Theorem there is a KAM

Whitney neighborhood such that conclusion holds for each element of this neigh-
borhood.
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Lagrange spectra for translation surfaces

Corinna Ulcigrai

(joint work with Pascal Hubert and Luca Marchese)

The classical Lagrange Spectrum is a well studied object in Diophantine approx-
imation and hyperbolic geometric. By Dirichlet theorem, for any irrational α ∈ R
there exists infinitely many integers p, q with q 6= 0 such that |α − p/q| < 1/q2.
Let L(α) = sup{c > 0 such that |α− p/q| < 1/(cq2) for infinitely many p, q}. One
can show that L(α) = +∞ for almost every α and L(α) is finite if and only if α
is of bounded type. The Lagrange spectrum L ⊂ R is the set of finite values L(α)
for α ∈ R\Q. An equivalent formulation of this Diophantine definition of L(α) is:

(0.1) L(α) = lim sup
q,p→∞

1

q|qα− p| .

The structure of L has been studied for more than a century. Some classical
results, which, with the only exception of the recent (P6), can be found in the
survey by Cusick and Flahive [1], are the following:

(P1) L ⊂ [
√
5,+∞) and the infimum

√
5 is achieved (Hurwitz 1891).

(P2) L is a closed subset of the real line (Cusick 1975).
(P3) The values L(β) for β quadratic irrational are dense in L (Cusick 1975).
(P4) L contains an Hall’s ray, that is [r,+∞) ⊂ L for some r > 0 (Hall 1947).

(P5) L ∩ [
√
5, 3) is a discrete set (Markoff 1879).

(P6) t 7→ Hdim(L ∩ (−∞, t]) is a Cantor staircase. (Moreira 2009, see [4]).

In order to generalize Lagrange Spectra to the setting of translation surfaces and
prove the analogous of properties (P1) to (P4), it is useful to first present two
equivalent definitions of L, one geometric and one dynamical. For the geometric
interpretation, consider an unimodular lattice Λα = Zv1 + Zv2 ⊂ R2 ∼= C where
v1, v2 are vectors with ℜv1 = −α,ℜv2 = 1 − α and let Tα = R2/Λα be the
associated flat torus. Remark that the Poincaré first return map of the linear
vertical flow on Tα is a rotation Rα(x) = x + α mod 1. Then one can show that
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if Area(v) = |ℜv||ℑv| denotes the area of the rectangle which has v as diagonal,

(0.2) a(Λα) := lim inf
ℑv→+∞

{Area(v), v ∈ Λα} =
1

L(α)
.

For the dynamical interpretation, let M1 = SL(2,R)/SL(2,Z) be the moduli
space of unimodular lattices (or flat tori). The linear action of the diagonal ma-
trices diag(et, e−t), t ∈ R, on a lattice Λ ⊂ R2 defines the geodesic flow (gt)t∈R on
M1. Let us recall that M1 is non compact and that the systole function given by
sys(Λ) := min{‖v‖, v ∈ Λ\{0}} is a proper function. We also have

(0.3) L(α) =
2

s2(Λα)
, where s(Λ) := lim inf

t→+∞
sys(gtΛ).

In particular, L(α) < +∞ if and only if the geodesic ray (gtΛα)t≥0 is bounded
in M1 and L can be interpreted as the set of depths of penetration of bounded
closed geodesics in the cusp of the modular surface H/SL(2,Z).

In order to generalize these three definitions (Diophantine, geometric and dy-
namical) of the Lagrange spectrum, we consider instead than a flat torus Tα a
higher genus translation surface X , that can be obtained for example by consider-
ing a polygon P (or more in general polygons) with pairs of parallel isometric sides
identified by translations (see for example [5] for definitions). We then replace the
moduli space of flat tori M1 by the moduli space of genus g and area one trans-
lation surfaces Mg, see e.g. [5]. Poincaré first return maps of the linear flow on
a translation surface to a transversal are interval exchange transformations (IETs
for short), i.e. piecewise isometries of the unit interval which generalize rotations
(see e.g. [5]). Let ǫq(T ) be the shortest length of an interval exchanged by the qth

iterate T q. We set

(0.4) L(T ) := lim sup
q→+∞

1

qǫq(T )
.

Remark that in the case of the rotation Rα, we have ǫq(Rα) = min0<p≤q |qα− p|.,
thus, definition (0.4) can be thought of as a generalization of (0.1).

The geometric quantity analogous to (0.1) associated to an area one translation
surface X is defined considering all saddle connections (s.c. for short) of X or
equivalently, if X is obtained from a polygon P , all generalized diagonals of P ,
that is all linear trajectories which connect a vertex of P to a vertex of P after
possibly crossing some pairs of identified sides. Then we can set

(0.5) a(X) := lim inf
ℑv→+∞

{Area(v), v saddle connection on X}.

Finally, for the dynamical definition that generalizes (0.3), consider the Teichmüller
geodesic flow (gt)t∈R on Mg which is given by the linear action of the diagonal
matrices diag(et, e−t), t ∈ R on the polygons in R2 defining X . For the systole
function given by sys(X) := min{|v|, v saddle connection on X}, we set

(0.6) s(X) := lim inf
t→+∞

sys(gtX), X ∈ Mg.
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As first shown by Vorobets (see also [3]), if the IET T is a Poincaré map of the
translation surface XT ∈ Mg, these quantities are related as in the case of the
torus, that is L(T ) = 1/a(XT ) = 2/s2(XT ).

Let I ⊂ Mg be any closed subset of Mg, invariant under the action of SL(2,R)
on Mg. In [3], we define the (generalized) Lagrange spectrum LI of the locus I
by

LI =

{

1

a(X)
, X ∈ I

}

⊂ R ∪ {+∞}.

In [3] we prove the following analogue of the properties (P1) to (P4) of the classical
Lagrange spectrum. Let us recall that an origami is a translation surface X which
is a branched cover of the standard torus R2/Z2 ramified over 0 (thus, X can be
obtained by identifying parallel sides of squares).

Theorem. Let I be a closed SL(2,R)-invariant subset of the moduli space Mg

consisting of translation surfaces with genus g and k singularities. Then

(P1)’ LI ⊂ [π 2g+k−2
2 ,+∞].

(P2)’ The finite Lagrange Spectrum LI ∩ R is a closed subset of the real line.
(P3)’ The values 1/a(X), where X ∈ I is a periodic point for the restriction of

the Teichmuller flow to I, are dense in LI .
(P4)’ If I contains an origami, then LI contains an Hall’s ray, that is there exist

an explic

Property (P1)′ follows from a easy upper bound for the systole function and we
do not claim that the bound stated is sharp. A natural and interesting open ques-
tion is to compute the analogous of the Hurwitz constant, that is of the minimum
of the spectrum LI in particular when I is a connected component of a stratum.

The continued fraction algorithm plays a crucial role in the proof of the results
(P1) to (P6) on the classical Lagrange spectrum L, thanks to the following beauti-
ful formula for L(α). Let α = a0+[a1, a2, . . . ] be the continued fraction expansion
of α. Then we have

(0.7) L(α) = lim sup
n→∞

(

[an−1, . . . , a0] + an + [an+1, an+2, . . . ]
)

.

The main tools for the proof of the above results are two analogous explicit formu-
las to compute the values in LI via two generalizations of the continued fraction
algorithm. The first, used to prove (P2)’ and (P3)’, is the so-called Rauzy-Veech
induction for interval exchange transformations (see [5]). The second, used for
(P4)’ is an extension of the formula (0.7) to origamis which exploits a finite exten-
sion of the Farey map. The formulas are of independent interest and in particular
the first one shows that Rauzy-Veech induction can be used to study invariant
loci and the geometry of strata. Using these formulas and exploiting a symbolic
coding of bounded Teichmüller geodesics by a subshift of finite type (provided
by the Rauzy-Veech induction), we are able to adapt the strategy of the classical
proofs by Hall and Cusick (see [1]) and hence prove (P2)’, (P3)’ and (P4)’.
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We conclude by mentioning that it is not clear whether to expect or not that
a generalization of the discreteness property (P5) to Lagrange spectra of transla-
tion surfaces hold. Some interesting results addressing this question for a similar
generalization of the Lagrange spectrum in the context of IETs of 3 intervals were
recently announced by Ferenczi [2]. In the special case of loci I that are SL(2,R)
orbits of an origami, in work in progress jointly with P. Hubert, L. Marchese
and S. Lelièvre, we use a refinement of the formula for origamis to study the fine
structure of the spectra of some explicit examples of origamis with 6 and 7 squares.
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The dynamics of a class of quasi-periodic Schrödinger cocycles

Kristian Bjerklöv

We are interested in the dynamics of the one-parameter family of quasi-periodic
Schrödinger cocycle maps, parameterized by the real number E, and given by

(0.1)
(ω,AE) : T× R2 → T× R2

(θ, x) 7→ (θ + ω,AE(θ)x).

Here AE : T → SL(2,R) is defined by

AE(θ) =

(

0 1
−1 λf(θ)− E

)

(E ∈ R).

We shall assume that f : T → R is a C2-function with exactly two, non-degenerate,
critical points, and that the base frequency ω ∈ T (= R/Z) satisfies the Diophan-
tine condition

inf
p∈Z

|qω − p| > κ

|q|τ for all q ∈ Z \ {0}

for some constants κ > 0 and τ ≥ 1. Furthermore, we shall assume that the
coupling constant λ is large (depending on ω and f).

The cocycle (0.1) is closely related to the family of discrete Schrödinger opera-
tors

(Hθu)n = −(un+1 + un−1) + λf(θ + (n− 1)ω)un,

acting on l2(Z). The spectrum of Hθ is denoted by σ(H). It is well-known that
it is independent of θ ∈ T, since f is continuous. Moreover, the cocycle (0.1) is
uniformly hyperbolic iff E /∈ σ(H).
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Under the above assumptions on f and ω, Sinai [8] has shown that the operator
Hθ has a pure-point spectrum with exponentially decaying eigenfunctions for a.e.
θ ∈ T, provided that λ is sufficiently large. Moreover, the spectrum σ(H) is a
Cantor set. (Very similar results were also obtained by Fröhlich-Spencer-Wittwer
[4].)

By γ(E) we denote the (upper) Lyapunov exponent, i.e.,

γ(E) = lim
n→∞

1

n

∫

T

log ‖An
E(θ)‖dθ (≥ 0)

where An
E(θ) := AE(θ + (n− 1)ω) · · ·AE(θ + ω)AE(θ) (n > 0).

Since SL(2,R) acts, in the natural way, on the real projective line P1(R), the
cocycle (ω,AE) induces a ”projective flow” on the space T× P1(R). We let

ΦE : T× P1(R) → T× P1(R)

denote this map. Since P1(R) is isomorphic to T, we can view ΦE as a map on
the two-torus T2.

By works of M. Herman [5] and R. Johnson [6], we know that if γ(E) > 0
for some E ∈ R, then the map ΦE has either exactly two minimal sets (if the
cocycle (0.1) is uniformly hyperbolic) or one unique minimal set (if (0.1) is not
uniformly hyperbolic). Understanding the geometry of the unique minimal set is
an interesting problem.

Our main results are the following:
Theorem. Let f and ω be as above. There exists a λ0 = λ0(ω, f) > 0 such that
the following holds for all λ ≥ λ0:

(1) The Lyapunov exponent γ(E) satisfies

γ(E) ≥ 2 logλ

3
for all E ∈ R.

(2) If E is on the edge of an open gap in the spectrum σ(H), then there exists
a phase θ ∈ T and a vector u ∈ l2(Z), exponentially decaying at ±∞, such
that Hθu = Eu.

(3) The map ΦE has exactly two invariant and ergodic probability measures
for all E ∈ R, and, moreover,

ΦE is minimal ⇐⇒ E ∈ σ(H) \ {edges of open gaps}.
Note that the theorem applies to the almost Mathieu case, that is, the case

when f(θ) = cos(θ), which is by far the most studied case.
The proof of the Theorem is based on a detailed analysis of the map ΦE . The

analysis does not depend on the fact that this map comes from the linear system
(0.1), and can be generalized to other classes of quasi-periodically forced circle
maps.

It is an interesting problem to find conditions on f : T → R under which one has
γ(E) ≥ c logλ (c > 0 some constant) for all E ∈ R, provided that λ is sufficiently
large. This is true if f is (non-constant and) real-analytic [9]. It is also true for
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”many” functions f of Gevrey class [7] and of class C3 [3], but it is not true if one
only assumes f to be continuous [2].

Another open problem is to describe the dynamics of the map ΦE (for all E)
under more general assumptions on f .

References
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The Fried entropy for smooth group actions and connections with
algebraic number theory

Svetlana Katok

(joint work with A. Katok and F. Rodriguez Hertz)

It is well-known that the standard notion of entropy for an action of locally com-
pact topological group G by measure-preserving transformations assign value zero
to the entropy of any smooth action unless the group G is virtually cyclic, i.e. a
compact extension of Z or R. We study numerical entropy-type invariants suit-
able for smooth actions of higher rank abelian groups on n-dimensional compact
smooth manifolds by smooth transformations preserving a Borel probability mea-
sure µ. One such invariant, based on averaging approach, was introduced by D.
Fried in 1983 [1] and for many years was essentially forgotten. We rediscovered it,
but later found Fried’s paper and now call this invariant the Fried entropy. For a
Zk-action α it is given by the formula

h∗α =
2k

k!vol(B(hαµ))
,

where B(hαµ) is the unit ball in the entropy norm/semi-norm of the action α.
Arithmeticity of maximal rank smooth abelian actions (k = n − 1) proved by
A. Katok and F. Rodriguez Hertz [2] implies that the Fried entropy for maximal
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rank positive entropy actions is closely related to regulators of totally real number
fields. This leads to striking conclusions: (i) for maximal rank actions the Fried
entropy can only take countably many values, (ii) in the weakly mixing case the
Fried entropy is either equal to zero or is bounded away from zero by a positive
function that depends only on the dimension n and grows exponentially with it.
More precisely, the Fried entropy can be expressed as

h∗α =
mRK2n−1

(

2n−2
n−1

) ,

where m is a positive integer and RK is the regulator of a totally real algebraic
number field K associated to the algebraic model measurably isomorphic to α
(by the Arithmeticity theorem mention above). We use Zimmert’s analytic lower
bound for regulators [3] for s = 0.35 to obtain h∗α > 0.000752 exp(0.244n).

Inspection of the number fields data at http://www.lmfdb.org/ identifies the
quartic totally real number field of discriminant 725 as the field that conjecturally
minimizes h∗α. For it h

∗
α = 0.330027....
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A nightcap on magnetic dynamics

Karl Friedrich Siburg

(joint work with Andreas Knauf and Frank Schulz)

Consider a magnetic field in R3 whose field lines are perpendicular to the plane
R2×{0} ∼= R2. Then the motion of a particle of unit mass and unit charge in that
plane is modelled by Newton’s Second Law

(0.1) q̈ = B(q)Jq̇

where B : R2 → R describes the field strength and the term on the right hand
side is the Lorentz force corresponding to the magnetic field, with J being the

symplectic matrix

(

0 1
−1 0

)

. The differential equation (0.1) can be written as

the Hamiltonian system generated by the Hamiltonian H : T ∗R2 → R, H(q, p) =
1
2‖p‖2 on (T ∗R2, ω) with the twisted symplectic form

ω = ω0 +B(q)dq1 ∧ dq2
where ω0 = dλ = dp1 ∧dq1 + dp2 ∧dq2 stands for the standard symplectic form on
T ∗R2.
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In this talk, we study the dynamics of (0.1) from two perspectives. First of
all, we assume that the magnetic field consists of n ≥ 2 disjoint disk bumps, and
explain why this system carries positive topological entropy htop ≥ logn. Secondly,
we develop a scattering theory for magnetic fields vanishing at infinity, and show
that under certain asymptotic assumptions on B there exists a well defined Møller
transformation.
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Closed orbits for exact magnetic flows on surfaces below the Mañé
critical value

Alberto Abbondandolo

(joint work with Leonardo Macarini and Gabriel P. Paternain)

Let M be an oriented closed surface equipped with a Riemannian metric g and a
closed one-form θ. Denote by ı the almost complex structure induced by g and by
f : M → R the function defined by the identity dθ = fdΩg, where Ωg is the area
form induced by g. The magnetic flow equation for curves x : R →M is

(0.1) ∇tẋ = f(x)ıẋ,

where ∇t denotes the covariant derivatives. This second order equation defines a
flow on TM which preserves the energy function

E : TM → R, E(x, v) :=
1

2
gx(v, v).

The equation (0.1) is the Euler-Lagrange equation associated to the Lagrangian

L : TM → R, L(x, v) :=
1

2
gx(v, v) + θx(v).

Like the geodesic flow, the magnetic flow preserves the sphere-bundles E−1(κ),
but, unlike the former flow, its behavior varies with the energy κ ∈ [0,+∞).
Significant energy values are the Mañé critical values

cu := inf {κ | Sκ(γ) ≥ 0 for every γ contractible loop} ,
c0 := inf {κ | Sκ(γ) ≥ 0 for every γ null-homologous loop} ,

where Sκ is the action functional

Sκ(γ) :=

∫ T

0

(

L(γ, γ̇) + κ
)

dt, γ : R/TZ →M,

on loops of arbitrary period T > 0. In general, 0 ≤ cu ≤ c0. The functional Sκ is
bounded from below on a given connected component of the free loop space ofM if
and only if κ ≥ cu. When κ > c0, the hypersurface E−1(κ) is of restricted contact
type, and the magnetic flow on E−1(κ) is conjugated to a Finselr geodesic flow,
up to a time reparametrization. In the latter energy range, multiplicity results
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for closed orbits can be thus deduced by corresponding statements about Finsler
geodesics. In particular, if M is not the 2-sphere, then E−1(κ) has infinitely
many closed orbits. If M is the 2-sphere, there are at least two closed orbits, as
proved in [5], and Katok’s example from [8] shows that there might be only two.
The existence of infinitely many closed orbits holds also for M 6= S2 and κ >
cu, because one can minimize Sκ on infinitely many mutually coprime connected
components of the free loop space.

The energy range below cu is less understood. In this energy range, there is
always a closed orbit with negative action Sκ [9, 11], and there is a second closed
orbit with positive action Sκ for almost every κ ∈ (0, cu) [6]. In this talk we shall
discuss the following improvement of the above mentioned results:

Theorem 10. For a.e. κ ∈ (0, cu) there are infinitely many periodic orbits on
E−1(κ).

Some preliminary discussion is needed, before presenting a sketch of the proof.
The right functional setting for studying the functional Sκ is obtained by identi-
fying the T -periodic loop γ : R/TZ → M with the pair (x, T ), where x : T :=
R/Z →M , x(s) := γ(Ts), and by seeing Sκ as a smooth functional on

Λ :=W 1,2(T,M)× (0,+∞).

Here W 1,2(T,M) denotes the Hilbert manifold of loops of Sobolev class W 1,2 on
M . The starting point of our proof is the already mentioned existence of a close
orbit with negative action from [9, 11], which can be upgraded to the following
statement (see [7, 2]):

Theorem 11. For every κ ∈ (0, c0) there exists a closed orbit ακ of energy κ with
Sκ(ακ) < 0, all of whose iterates are local minimizers of Sκ on Λ.

One would like to exploit the above result and the fact that Sκ is unbounded
from below on each connected component of Λ for κ < cu, in order to find other
closed orbits as mountain pass critical points. The main difficulty is the fact that
Sκ fails to satisfy the Palais-Smale (PS) condition when κ ≤ cu. Indeed:

Lemma 2 ([6, 1]). Let γn = (xn, Tn) be a PS sequence for Sκ. Then:

(i) If 0 < T∗ ≤ Tn ≤ T ∗ < +∞, then (γn) is compact.
(ii) If Tn → 0 then (xn) converges to a constant loop and Sκ(γn) → 0.
(iii) If κ > cu then (Tn) is bounded from above (but not necessarily if κ ≤ cu).

After these preliminaries, we sketch the proof of Theorem 1 under the following
simplifying assumptions:

(a) ακ is a strict local minimizer for every κ ∈ (0, cu);
(b) the map κ 7→ ακ is continuous;
(c) for a.e. κ ∈ (0, cu) all the closed orbits on E−1(κ) are non degenerate.

These assumptions are very strong and are introduced here only for the sake of
simplicity. See [2] for the proof of Theorem 1 under the only assumption (c). The
proof in the general case uses ideas from [4] and will appear elsewhere.
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Fix a compact interval I ⊂ (0, cu) and find a loop β in the same component of
the ακ’s such that

Sκ(β) < Sκ(ακ), ∀κ ∈ I.

Denoting by γn the n-th iterate of the loop γ, we define the minimax values

cn(κ) := inf
u∈C([0,1],Λ)

u(0)=αn
κ , u(1)=βn

max
σ∈[0,1]

Sκ(u(σ)), ∀n ∈ N, ∀κ ∈ I.

By (a) we have cn(κ) > Sκ(α
n
κ), and from (b) we deduce that for every n ∈ N the

function κ 7→ cn(κ) is increasing on I. Moreover, Bangert’s homotopy argument
from [3] allows to prove that

cn(κ) ≤ −an+ b, ∀κ ∈ I, ∀n ∈ N,

for suitable positive constants a, b. In particular, cn(κ) → −∞ for n→ ∞.
Struwe’s monotonicity argument from [10] allows to prove that if cn is differen-

tiable at κ, then cn(κ) is a critical value of Sκ. The following heuristic argument
explains how the differentiability of cn allows to bypass the lack of the PS condi-
tion: fix a small ǫ > 0 and find a path uκ connecting αn

κ and βn such that

cn(κ) + ǫ = Sκ(uκ(1/2)),

and dSκ(uκ(1/2)) is small. By differentiating with respect to κ we obtain

c′n(κ) = dSκ(xκ, Tκ)[∂κuκ(1/2)] + Tκ, where (xκ, Tκ) = uκ(1/2),

so Tκ has an upper bound. In this way we can construct a PS sequence with
bounded periods, which converges to a critical point by Lemma 3, if n is so large
that cn(κ) < 0.

Since monotone functions are a.e. differentiable, we obtain a full measure subset
K ⊂ I such that cn(κ) is a critical value of Sκ for every κ ∈ K and every n ∈ N.
For such a κ the functional Sκ has a sequence of critical points γn with action going
to −∞. By (c), up to considering a smaller K, we may assume that the mountain
pass critical points γn’s are non-degenerate and hence have Morse index one. An
extension of Bott’s index iteration theory to the free period action functional Sκ
allows to prove that a non-degenerate critical point of Sκ with Morse index one
has positive mean index. Together with the fact that Sκ(γn) → −∞, this allows
to exclude that the γn’s are iterates of only finitely many closed orbits. Therefore,
for every κ ∈ K the level E−1(κ) has infinitely many periodic orbits. Since the
compact subinterval I ⊂ (0, cu) is arbitrary, the thesis of Theorem 1 follows.
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Higher-dimensional pentagram maps and KdV flows

Boris Khesin

(joint work with Fedor Soloviev)

The pentagram map was originally defined by R. Schwartz in [6] as a map
on plane convex polygons considered up to their projective equivalence, where a
new polygon is spanned by the shortest diagonals of the initial one. This map
is the identity for pentagons, it is an involution for hexagons, while for polygons
with more vertices it was shown to exhibit quasi-periodic behaviour under itera-
tions. The pentagram map was extended to the case of twisted polygons and its
integrability in 2D was proved in [5], see also [7].

While this map is in a sense unique in 2D, its generalizations to higher di-
mensions seem to allow more freedom. A natural requirement for such general-
izations, though, is their integrability. It turns out that that there is no natural
generalization of this map to polyhedra, but one can suggest natural integrable
generalizations of the pentagram map to the space of generic twisted polygons.

Define a twisted n-gon in a projective space RPd with a monodromy M ∈
SLd+1(R) as a doubly-infinite sequence of points vk ∈ RPd, k ∈ Z such that

vk+n = M ◦ vk for each k ∈ Z and where M acts naturally on RPd. We assume
that the vertices vk are in general position (i.e., no d + 1 consecutive vertices lie

in the same hyperplane in RPd), and denote by Pn the space of generic twisted
n-gons considered up to the projective equivalence. General pentagram maps are
defined as follows.

Definition. We define two types of diagonal hyperplanes for a given twisted
polygon (vk) in RPd. The higher diagonal hyperplane P hi

k is defined as the hyper-
plane passing through d vertices of the n-gon by taking every other vertex starting
with vk:

P hi
k := (vk, vk+2, vk+4, ..., vk+2(d−1)) .

The dented diagonal plane hyperplane Pm
k for a fixed m = 1, 2, ..., d − 1 is the

hyperplane passing through all vertices but one from vk to vk+d by skipping only
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the vertex vk+m:

Pm
k := (vk, vk+1, ..., vk+m−1, vk+m+1, vk+m+2, ..., vk+d) .

Now the corresponding higher or dented pentagram maps T hi and Tm on twisted
polygons (vk) in RPd are defined by intersecting d consecutive diagonal hyper-
planes:

Tvk := Pk ∩ Pk+1 ∩ ... ∩ Pk+d−1 ,

where for T hi and Tm one uses the definition of the hyperplanes P hi
k and Pm

k

respectively. These pentagram maps are generically defined on the classes of pro-
jective equivalence of twisted polygon: T : Pn → Pn.

Example. For d = 2 both definition coincide with the classical 2D pentagram
map in [6]. For d = 3 the map T hi uses the diagonal planes passing through
P hi
k := (vk, vk+2, vk+4), while P

1
k = (vk, vk+2, vk+3) and P

2
k = (vk, vk+1, vk+3).

Theorem. The higher T hi and dented Tm pentagram map on both twisted and
closed n-gons in any dimension d and any m = 1, ..., d− 1 is an integrable system
in the sense that it admits a Lax representation with a spectral parameter.

Integrability for these maps in 2D (which coincide in this dimension) was proved
in [5], while its Lax representation was found in [7]. For higher pentagram maps
their Lax representation with a spectral parameter was found in [2]. It was based
on a scale invariance of such maps proved in [2] for 3D and in [4] for higher d. For
the dented pentagram maps their Lax representations and scale invariance in any
dimension were described in [3]. The Lax representation provides first integrals
(as the coefficients of the corresponding spectral curve) and allows one to use
algebraic-geometric machinery to prove various integrability properties.

We also refer to [2, 3] for a detailed description of the algebraic-geometric in-
tegrability of these maps in 3D. One can show that in these cases the space of
twisted n-gons in the complex space CP3 is generically fibered into (Zariski open
subsets of) tori whose dimension is described in terms of n.

Remark. More generally, one can define generalized pentagram maps TI,J
on (projective equivalence classes of) twisted polygons in RPd, associated with
(d− 1)-tuple of numbers I and J : the tuple I defines which vertices to take in the
definition of the diagonal hyperplanes Pk, while the tuple J determines which of
the hyperplanes to intersect in order to get the image point Tvk. In general, their
integrability is yet unknown, but there exists the following duality between such
pentagram maps:

T−1
I,J = TJ∗,I∗ ◦ Sh ,

where I∗ and J∗ stand for the (d − 1)-tuples taken in the opposite order and Sh
is any shift in the indices of polygon vertices, see [3].

Remark. In [2, 3] it was also proved that the continuous limit of any higher or
dented pentagram map (and more generally, of any generalized pentagram map) in

RPd is the (2, d+1)-KdV flow of the Adler-Gelfand-Dickey hierarchy on the circle.
For 2D this is the classical Boussinesq equation on the circle: utt+2(u2)xx+uxxxx =
0, which appears as the continuous limit of the 2D pentagram map [5].
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A different integrable generalization to higher dimensions was proposed in [1],
where the pentagram map was defined not on generic, but on the so-called corru-
gated polygons. These are twisted polygons in RPd, whose vertices vk−1, vk, vk+d−1,
and vk+d span a projective two-dimensional plane for every k ∈ Z. The penta-
gram map on corrugated polygons (denoted by Tcor) is integrable and admits an
explicit description of the Poisson structure, a cluster algebra structure, and other
interesting features [1]. It turns out that the pentagram map Tcor can be viewed
as a particular case of the dented pentagram map:

Theorem [3]. This pentagram map Tcor is a restriction of the dented pentagram

map Tm for any m = 1, ..., d−1 from generic n-gons Pn in RPd to corrugated ones
(or differs from it by a shift in vertex indices). In particular, these restrictions for
different m coincide modulo an index shift.

Furthermore, by considering more general diagonal hyperplanes Pk, such as
“deep-dented diagonals”, i.e., those skipping more than one vertex, one can con-
struct new integrable systems.

Theorem [3]. The deep-dented pentagram maps in RPd are restrictions of
integrable systems to invariant submanifolds and have Lax representations with a
spectral parameter.

The main tool to prove integrability in this more general setting is an intro-
duction of the corresponding notions of partially corrugated polygons, occupying
intermediate positions between corrugated and generic ones. This approach brings
about the following question, which manifests the change of perspective on gen-
eralized pentagram maps: Choose the diagonal hyperplane Pk so that the corre-
sponding pentagram map turned out to be non-integrable.
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[4] G. Maŕı-Beffa, On integrable generalizations of the pentagram map, preprint (2013), 16pp.;
arXiv:1303.4295.

[5] V. Ovsienko, R. Schwartz, S. Tabachnikov, The pentagram map: a discrete integrable sys-
tem, Comm. Math. Phys., vol. 299 (2010), 409–446; arXiv:0810.5605

[6] R. Schwartz, The pentagram map, Experiment. Math., vol. 1 (1992), 71–81.
[7] F. Soloviev, Integrability of the pentagram map, to appear in Duke Math Journal, 33pp.;

arXiv:1106.3950.



2028 Oberwolfach Report 34/2013

The group of symplectic surface diffeomorphisms

John Franks

(joint work with Michael Handel)

This talk focuses on some of the algebraic properties of symplectic diffeomorphisms
of compact genus zero surfaces.

Definition. We will denote by Centr(f), the centralizer of f, the subgroup of
Diffr(M) whose elements commute with f, and by Centrµ(f) the subgroup of
Symprµ(M) whose elements commute with f. We will denote by Centr(f), the
centralizer of f, the subgroup of Diffr(M) whose elements commute with f, and
by Centrµ(f) the subgroup of Sympr

µ(M) whose elements commute with f.

A natural question in light of work of Farb and Shalen [1] on Diffω(S1) is the
following: Suppose M is a closed surface and f ∈ Diffω(M) has infinite order.
Then is its centralizer, Centω(f), always virtually abelian? We are able to answer
this for the case of Sympωµ(M) when M has genus zero.

Theorem 12. Suppose M has genus zero and f ∈ Sympωµ(M) has infinite order,
then Centωµ(f), the centralizer of f in Sympω

µ(M) is virtually abelian.

In fact this is a special case of a more general result which is proved by the
same techniques:

Theorem 13. Suppose M is a compact oriented surface of genus zero and G is
a subgroup of Sympωµ(M). Suppose further that G has an infinite normal solvable
subgroup. Then G is virtually abelian.

An important corollary of Theorem 13 is the following.

Corollary 1. Suppose M is a compact surface of genus zero and G is a solvable
subgroup of Sympωµ(M), then G is virtually abelian.

The proof of these results is based on the observation that there are three types
of structure for f ∈ Symp∞µ (M). LetM be a compact oriented surface with genus
zero and let G be a subgroup of Symp∞µ (M).

• G contains an element of positive entropy
• G contains an element f which is multi-rotational, i.e. if M = S2, then f
has entropy 0 and at least three periodic points.

• G is a pseudo-rotation group.

and these exhaust the possibilities.

Definition 1. Suppose M is a compact genus zero surface and f ∈ Symp∞µ (M)
and that the number of periodic points of f is greater than the Euler characteristic
of M . If f has infinite order and entropy 0, we will call it a multi-rotational
diffeomorphism.

Definition 2. An infinite order element f ∈ Symprµ(S
2) is a pseudo-rotation if

for every n > 0 has exactly two fixed points, i.e. f has two fixed points and no
other periodic points.
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The case of Theorem 1 when G contains an element of positive entropy is due
to Katok [3]. The that G contains an element f which is multi-rotational, relies
on previous work of the author and Michael Handel providing a structure theorem
for entropy zero area preserving diffeomorphisms of genus zero surfaces (see [2]).
The last case is covered by the following:

Theorem 14. Suppose f is an infinite order pseudo-rotation. Then Centωµ(f),

the centralizer of f in Sympωµ(S
2) is virtually abelian.

Recall that the Tits alternative is satisfied by a group G if every subgroup (or
by some definitions, every finitely generated subgroup) of G is either virtually
solvable or contains a non-abelian free group. This is a deep property known for
finitely generated linear groups and some groups arising in geometric group theory.
It is an important open question for Diffω(S1). (It is not true for Diff∞(S1).)

Conjecture 15 (Tits alternative). If M is a compact surface then every finitely
generated subgroup of Sympω

µ(M) is either virtually solvable or contains a non-
abelian free group.

We are able to prove a special case of this conjecture.

Theorem 16. Suppose M is a compact genus zero surface and G is a subgroup
of Sympω

µ(M). If G contains at least one multi-rotational element then either G
contains a subgroup isomorphic to F2, the free group on two generators, or G has
an abelian subgroup of finite index.
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Mathématiques
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Department of Mathematics
University of Central Florida
Orlando, FL 32816
UNITED STATES

Dr. Doris Hein

School of Mathematics
Institute for Advanced Study
Einstein Drive
Princeton NJ 08540
UNITED STATES

Dr. Sonja Hohloch

École Polytechnique Fédérale de
Lausanne
SB MATHGEOM CAG
MA B2 (Bâtiment MA)
Station 8
1015 Lausanne
SWITZERLAND



2032 Oberwolfach Report 34/2013

Dr. Umberto Hryniewicz

Instituto de Matematica - UFRJ
Av. Athos da Silveira Ramos 149
Universitaria - Ilha do Fundao
Caixa Postal 68530
Rio de Janeiro CEP 21941-909
BRAZIL

Prof. Dr. Vadim Y. Kaloshin

Department of Mathematics
University of Maryland
College Park, MD 20742-4015
UNITED STATES

Nikolaos Karaliolios

125 Blvd. Richard Lenoir
75011 Paris
FRANCE

Prof. Dr. Anatole B. Katok

Department of Mathematics
Pennsylvania State University
303 McAllister Building
University Park, PA 16802
UNITED STATES

Prof. Dr. Svetlana Katok

Department of Mathematics
Pennsylvania State University
University Park, PA 16802
UNITED STATES

Prof. Dr. Boris A. Khesin

Department of Mathematics
University of Toronto
40 St George Street
Toronto, Ont. M5S 2E4
CANADA

Prof. Dr. Andreas Knauf

Department Mathematik
Universität Erlangen-Nürnberg
Bismarckstr. 1 1/2
91054 Erlangen
GERMANY

Prof. Dr. Gerhard Knieper

Fakultät für Mathematik
Ruhr Universität Bochum
44780 Bochum
GERMANY

Prof. Dr. Patrice Le Calvez
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