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Introduction by the Organisers

The half-size workshop was organized by Detlev Hoffmann (Dortmund), Alexan-
der Merkurjev (Los Angeles), and Jean-Pierre Tignol (Louvain-la-Neuve), and
was attended by 26 participants. Funding from the Leibniz Association within
the grant “Oberwolfach Leibniz Graduate Students” (OWLG) provided support
toward the participation of one young researcher. Additionally, the “US Junior
Oberwolfach Fellows” program of the US National Science Foundation funded
travel expenses for one post doc from the USA.

The workshop was the twelfth Oberwolfach meeting on the algebraic theory
of quadratic forms and related structures, following a tradition initiated by Man-
fred Knebusch, Albrecht Pfister, and Winfried Scharlau in 1975. Throughout the
years, the theme of quadratic forms has consistently provided a meeting ground
where methods from various areas of mathematics successfully cross-breed. Its
scope now includes aspects of the theory of linear algebraic groups and their ho-
mogeneous spaces over arbitrary fields, but the analysis of quadratic forms over
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specific fields, such as function fields and fields of characteristic 2, was also the
focus of discussions. The talks covered a wide range of topics including, among
others, cohomological invariants, local-global principles and patching, field invari-
ants pertaining to quadratic and hermitian forms and to central simple algebras,
and a proof of the Grothendieck-Serre conjecture on principal bundles over certain
regular semi-local rings.

As the workshop was held simultaneously with another half-size workshop on
the related subject of “The Arithmetic of Fields”, the organizers of both meetings
jointly decided to schedule each morning two plenary talks, one from each group.
Ten lectures were thus addressed to the participants of both workshops; they were
given by Eva Bayer-Fluckiger, David Grimm, David Leep, Raman Parimala, and
Venapally Suresh from the “Quadratic Forms” side, and by Pierre Dèbes, Ido Efrat,
Julia Hartmann, Laurent Moret-Bailly, and David Zywina from the “Arithmetic of
Fields” side. Concerning details for these latter talks, we refer to the “Arithmetic
of Fields” report in this volume. The program also comprised eleven lectures held
in parallel with those of the other group. The lectures were of 50 minutes each.
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Abstracts

Failure of the local-global principle for isotropy of quadratic forms

over surfaces

Asher Auel

(joint work with R. Parimala and V. Suresh)

Let X be an integral scheme, K its function field, Ω the set of rank 1 discrete
valuations on K, and Kv the completion of K at v ∈ Ω. We assume throughout
that 2 is invertible on X . Let q be a nondegenerate quadratic form over K and
qv = q ⊗K Kv. The local-global principle for isotropy of quadratic forms is the
statement: if qv is isotropic for all v ∈ Ω then q is isotropic over K. A natural
question is: does the local-global principle hold for a given function field K?

We mention three examples. First, the local-global principle holds if K is a
global field by the Hasse–Minkowski theorem. Second, let K be the function
field of a smooth proper curve X over an algebraically closed field k. Here, Ω is in
bijection with the set of closed points of X . By Tsen’s theorem, all quadratic forms
of dimension ≥ 3 are isotropic. An anisotropic form q of dimension 2 is similar
to the norm form of a separable quadratic field extension L/K, corresponding
to a finite flat quadratic cover Y → X between smooth proper curves. Then
qv is isotropic if and only if the fiber of Y → X is split over the closed point
corresponding to v ∈ Ω. Hence qv is isotropic for all v ∈ Ω if and only if Y → X
is étale (indeed, k is algebraically closed). The Riemann–Hurwitz formula implies
that this is only possible if the genus of X is positive. We conclude that the
local-global principle holds over K if and only if X = P1. Third, there is a similar
situation when K is the function field of a smooth proper curve X over a complete
discretely valued field k. In this case, the local-global principle holds whenX = P1,
fails in general for quadratic forms of dimension 2 over higher genus curves, and
holds for forms of dimension ≥ 3, by the results of Colliot-Thélène, Parimala, and
Suresh [7] using the patching techniques of Harbater, Hartmann, and Krashen [8].

It is the second example above that we generalize to higher dimension.

Theorem 1. Let k be an algebraically closed field of characteristic not 2 and K
the function field of a surface X over k. Then there are counterexamples to the
local-global principle for quadratic forms of dimension 4 over K.

We remark that K is a C2-field, hence all quadratic forms of dimension ≥ 5 are
isotropic. Earlier, there were known counterexamples to the local-global principle
over special classes of surfaces yet the question was still open for rational surfaces.

These counterexamples arise as an application of classification results for qua-
dratic forms of dimension 4. Given a nondegenerate quadratic form q of dimension
4 over a field k (of any characteristic), the even Clifford algebra C0(q) is a quater-
nion algebra over the discriminant extension, which is an étale quadratic k-algebra
l. Similar quadratic forms yield isomorphic even Clifford algebras. Conversely,
given a quaternion algebra A over l, which has trivial corestriction to k, there is
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an associated similarity class qA/l/k of quadratic forms of dimension 4 over k, called
the norm form. In fact, the even Clifford algebra and norm form define inverse
bijections between the set of similarity classes of nondegenerate quadratic forms
of dimension 4 with discriminant extension l/k and the set of isomorphism classes
of quaternion algebras over l with trivial corestriction to k, see [10, IV.15.B].

This has been generalized to a classification of regular quadratic forms of di-
mension 4 over affine schemes by Knus, Parimala, and Sridharan [9], and more
generally, regular line bundle-valued quadratic forms of dimension 4 by [2, §5.3],
in terms of Azumaya quaternion algebras A over étale quadratic covers Y → X .
A line bundle-valued quadratic form (E, q, L) over a scheme X is the datum of a
locally free OX -module E of finite rank, an invertible sheaf L, and a quadratic
form q : E → L. The even Clifford algebra C0(E, q, L) was defined by Bichsel and
Knus [5]. The notion of similarity is replaced by projective similarity, which allows
for scaling by global units as well as tensoring by invertible modules.

We generalize these classification results to the degenerate context. Let X be
an integral scheme with 2 invertible and D ⊂ X a divisor. A line bundle-valued
quadratic form (E, q, L) has simple degeneration along D if its restriction to XrD
is regular and if for each point x of D, the quadratic form q ⊗OX

OX,x has dis-
criminant in mX,x r m2

X,x and contains a regular subform of codimension 1. If

X is regular, then the center of C0(E, q, L) defines the finite flat quadratic dis-
criminant cover Y → X . If (E, q, L) has simple degeneration and even dimension,
then C0(E, q, L) becomes an Azumaya algebra over Y , a result of Kuznetsov [11,
Prop. 3.13]. Our main construction is, given an Azumaya quaternion algebra A
over Y , a line bundle-valued norm form qA/Y/X of dimension 4 over X .

Theorem 2 ([3]). Let X be a regular integral scheme of dimension ≤ 2 with 2
invertible and Y → X a finite flat quadratic cover with regular branch divisor D.
Then the even Clifford algebra and norm form define inverse bijections between the
set of projective similarity classes of quadratic forms (E, q, L) of dimension 4 with
simple degeneration and discriminant cover Y → X and the set of isomorphism
classes of Azumaya quaternion algebras over Y having split norm to X.

We now review the key ingredients of the proof. The first is a norm (or core-
striction) map for Azumaya algebras with respect to finite flat covers of schemes of
dimension ≤ 2. Our construction uses Zariski patching techniques of Ojanguren,
relying on results of Colliot-Thélène and Sansuc [6, §2]. For the Brauer group, such
a norm map was defined in greater generality by Deligne in SGA 4, Exp. 17, §6.2.
Second, we prove the smoothness of the nonreductive special orthogonal group
scheme SO(E, q, L) over X associated to a quadratic form with simple degenera-
tion, which allows to extend the exceptional isomorphisms of type 2

A1 = D2 to
this context. Third, we prove the Grothendieck–Serre conjecture for such special
orthogonal (and projective) group schemes over discrete valuation rings. The proof
then proceeds by patching the classical norm form (for étale quadratic covers) over
X r D with suitably chosen quadratic form models having simple degeneration
over the local rings of generic points of components of D.
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Finally, to construct counterexamples to the local-global principle for the func-
tion field K of a smooth proper surface X over an algebraically closed field k, we
have two cases. First, if 2Br(X) 6= 2, then a given 2-torsion Brauer class α has a
quaternion algebra representative by the “period = index” result of Artin [1]. By
“purity for division algebras” for schemes of dimension ≤ 2, a result going back
to Auslander and Goldman [4], there exists an Azumaya quaternion algebra A on
X whose generic fiber is α. Then the reduced norm Nrd : A → OX is a locally
isotropic quadratic form by Tsen’s theorem, yet is anisotropic over K. Second, in
the case when 2Br(X) = 0, we utilize our results. We prove a geometric lemma
showing that there always exists a finite flat quadratic cover Y → X between
smooth surfaces, having smooth branch divisor, such that 2Br(Y ) 6= 0. Then as
in the previous case, there exists a nonsplit Azumaya quaternion algebra A over
Y , which now has split norm to X by our hypothesis in this case. Since the norm
form qA/Y/X of dimension 4 has simple degeneration, it contains a regular subform
of rank 3, hence is locally isotropic by Tsen’s theorem. Finally, the norm form is
anisotropic over K since its even Clifford algebra gives back the nonsplit algebra
A over Y , appealing to the fact that a quadratic form of rank 4 is isotropic if and
only if its even Clifford algebra is split over the discriminant extension.

Similar considerations can lead to counterexamples to the local-global principle
for quadratic forms of dimension 4 over function fields of curves over totally imag-
inary number fields. An important open question remains: does the local-global
principle hold for quadratic forms of dimension ≥ 5 over such fields?
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Upper bounds for Euclidean minima of abelian fields

Eva Bayer

(joint work with Piotr Maciak)

Let K be an algebraic number field, and let OK be its ring of integers. Let
N : K → Q be the absolute value of the norm map. The number field K is said
to be Euclidean (with respect to the norm) if for every a, b ∈ OK with b 6= 0
there exist c, d ∈ OK such that a = bc + d and N(d) < N(b). It is easy to check
that K is Euclidean if and only if for every x ∈ K there exists c ∈ OK such that
N(x− c) < 1. This suggests to look at

M(K) = supx∈K infc∈OK
N(x − c),

called the Euclidean minimum of K.

The determination of Euclidean number fields and Euclidean minima is a clas-
sical problem – see for instance the survey of Lemmermeyer [L 95], as well as the
tables of Cerri [C 07]. Another classical problem is to find upper bounds forM(K)
in terms of the degree n = [K : Q] of the number field K, and of the absolute value
dK of its discriminant. Upper bounds valid for arbitrary number fields exist since
the early 1950’s, due to work of Clarke and Davenport. In [BF 06], it is proved
that

M(K) ≤ 2−ndK .

If K is totally real, then a conjecture attribruted to Minkowski states that

M(K) ≤ 2−n
√
dK .

This is known for n ≤ 8 (cf. [HGRS 11]). One can also try to prove the conjecture
for some families of number fields. This is done in [BF 06], [BFN 05] and [BFS 06]
for certain cyclotomic fields. It is natural to ask the same question for abelian
number fields. We have

Theorem. [BFM 13] Let p be an odd prime number, and let K be an abelian
number field of conductor pr. If r ≥ 2, then we have

M(K) ≤ 2−n
√
dK .

In particular, Minkowski’s conjecture holds for totally real number fields of
conductor pr, when p is an odd prime and r ≥ 2.

The proof uses packing and covering invariants of number fields, following a
method of [BF 06]. A key ingredient is the determinantion of the trace form of
the ring of integers.
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Journal dethéorie des nombres de Bordeaux 17 (2005), 437-454.

[BFS 06] E. Bayer–Fluckiger, I. Suarez. Ideal lattices over totally real number fields and Eu-
clidean minima, Archiv Math., 86 (2006), 217-225.

[C 07] J-P. Cerri. Euclidean minima of totally real number fields: algorithmic determination,
Math. Comp. 76 (2007), 1547-1575.

[HGRS 11] R. J. Hans-Gill, M. Raka and R. Sehmi. On Conjectures of Minkowski and Woods
for n = 8, Acta Arith. 147 (2011), 337-385.

[L 95] F. Lemmermeyer. The Euclidean algorithm in algebraic number fields, Expo. Math. 13
(1995), 385-416.

On cohomological invariants of adjoint algebraic groups

Vladimir Chernousov

In my talk we discussed some consequences of Merkurjev’s classification of co-
homological invariants of adjoint algebraic groups in degree 3.

We first recall what is a cohomological invariant. Let G be a split semisim-
ple algebraic group defined over a field k and M a discrete Gal(ks/k)-module.
Consider two functors from the category Fields of field extensions of k into the
categorySets of sets: the functor H1(−, G) of isomorphism classes of G-torsors
and the functor of the abelian Galois cohomology groups Hn(−,M) with coeffi-
cients in M . A cohomological M -invariant (or invariant with coefficients in M)
in degree n is a morphism a : H1(−, G) → Hn(−,M) of our two functors. An
invariant a is called normalized if a([ξ]) = 0 where ξ is a trivial cocycle (torsor).

The group of all normalized invariants in degree n with coefficients in M is
denoted by Invn(G,M)norm. It is an interesting (and difficult) open problem of
computing this group even in the simplest case when G is simple and M = Z/2.
We refer to [2] and [3] for basic properties and known results on cohomological
invariants of algebraic groups.

In degree n = 3 the group Inv3(G,Q/Z(2))norm contains an obvious subgroup
Inv3(G,Q/Z(2)dec consisting of decomposable invariants which are cup product
of invariants in degree 2 (all of them come from Tits algebras) with constant

invariants in degree 1. This group is canonically isomorphic to Ĉ ⊗ k× where C

is the kernel of a simply connected covering G̃ → G and hence the problem of
computing of Inv3(G,Q/Z(2))norm is reducing to computing of the quotient group

Inv3(G,Q/Z(2))ind := Inv3(G,Q/Z(2))norm/Inv
3(G,Q/Z(2)dec

called the group of indecomposable invariants.
In a recent beautiful paper [6] A. Merkurjev constructed an exact sequence

consisting of 5 terms involving Inv3(G,Q/Z(2))norm, CH2(BG)tors, where BG is
the classifying space of G, and some other arithmetical data related to G and
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C. Using this sequence he showed that if additionally G is simple adjoint then
Inv3(G,Q/Z(2))ind 6= 0 if and only if G is of type Cn, Dn with n divisible by 4,
E6 and E7. Furthermore, he also proved that for a split G of type Cn, Dn, E6 with
n divisible by 4 one has

Inv3(G,Q/Z(2))ind ≃ Z/2

and for a split group G of type E7

Inv3(G,Q/Z(2))ind ≃ Z/3.

It is worth mentioning that in the case char(k) 6= 2 and G is of type C4m a non-
trivial indecomposable invariant was constructed in [5]. The sketch of construction
such an invariant for type D4m was done in [6] using the same ideas as for C4m.
As for a nontrivial indecomposable invariant for type E7, it was constructed in [4].

In the first part of my talk we gave a uniform construction of nontrivial in-
decomposable cohomological invariants with coefficients in Z/2 for split adjoint
groups of types C4m, D4m and E6. The main idea is to consider orthogonal rep-
resentations λ : G → O(f) of the group G in question. Any such representation
induces a natural mapping H1(F,G) → H1(F,O(f)) where F/k is any field exten-
sion. Recall that elements of H1(F,O(f)) are in one-to-one correspondence with
isomorphism classes of nondegenerate quadratic forms over F having the same
dimension as f . Thus to every [ξ] ∈ H1(F,G) we may associate in a functorial
way a nondegenerate quadratic form fξ.

If now n is a maximal positive integer such that for all field extensions F/k and
all cocycles ξ ∈ Z1(F,G) the classes of fξ−f are contained in In(F ) then we have
a well-defined nontrivial cohomological invariant

aλ : H1(−, G) −→ In/In+1 ≃ Hn(−,Z/2)
in degree n with coefficients in Z/2. Recall that the last isomorphism is due to
Voevodsky’s theorem.

It easily follows from our construction that n ≥ 2. Therefore to construct a
nontrivial indecomposable cohomological invariant for G in question in degree 3
we need only to produce an orthogonal representation λ of G with the properties:

(1) fξ − f ∈ I3(F ) for all field extensions F/k and all [ξ] ∈ H1(F,G);
(2) there exists a field extension F/k and a class [ξ] ∈ H1(F,G) such that

fξ − f 6∈ I4(F );
(3) aλ is indecomposable.

Take λ to be the adjoint representation ad : G →֒ GL(Lie(G)) of G. It is well
known that ad(G) ⊂ O(f) where f is a normalized Killing form on Lie(G). Let φ
be a canonical mapping φ : Spin(f) → O(f). It induces the following diagram:

H −−−−→ Spin(f)
y

y

G −−−−→ O(f)

where H is the connected component of the preimage φ−1(G).
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Proposition 1. If G is an adjoint group of one of the following types C4m, D4m

or E6 then H ≃ G.

According to the proposition any cocycle ξ ∈ Z1(F,G) can be viewed as a
cocycle with coefficients in Spin(f). It then follows immediately that the class of
the quadratic form fξ − f lives in I3(F ) so that property (a) follows.

As for properties (2) and (3) we may assume without loss of generality that k
is algebraically closed. Let T ⊂ G me a maximal split torus and let c ∈ Aut(G)
be such that c2 = 1 and c(t) = t−1 for every t ∈ T . It is known that such an
automorphism exists and it is inner for G in question so that c ∈ G. Call A0 the
kernel of “multiplication by 2” on T . Let A = A0 × {1, c} be the subgroup of G
generated by A0 and by the element c defined above. The group A is isomorphic
to (±1)r+1.

Take F = k(t1, . . . , tn, u) where n is the rank of G and t1, . . . , tn and u are
independent indeterminates. We have

H1(F,A) = H1(F,Z/2)× . . .×H1(F,Z/2).

Identify H1(F,Z/2) with F×/(F×)2 as usual. Then u and the ti’s define elements
(u) and (ti) of H

1(F,Z/2). Let ξA be the element of H1(F,A) with components
((t1), . . . , (tr), (u)). Let ξ = ξG be the image of ξA in H1(F,G). Using results of
[1] one can prove the following proposition which establishes properties (2) and
(3).

Proposition 2. In the notation above the quadratic form fξ − f is not hyperbolic
and fξ − f 6∈ I4(F ).

In the second part of the talk with the use of Merkurjev’s classification [6]
of cohomological invariants of adjoint groups in degree 3 and the above game
with Killing forms we constructed new cohomological invariants for groups of type
Cn, Dn.

Theorem 3. Let G be a split adjoint group over a field k of characteristic 6= 2 of
type Cn or Dn where n = 4m + i and i = 1, 2, 3. Then there exists a nontrivial
cohomological invariant c4 : H1(−, G) → H4(−,Z/2) in degree 4 with coefficients
in Z/2.
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Pfister involutions in characteristic two

Andrew Dolphin

Over fields of characteristic different from 2 it is well-known that a quadratic
form of dimension a 2 power is anisotropic or hyperbolic over any field extension if
and only it is similar to a Pfister form. That is, if and only if it is a tensor product
of 2 dimensional quadratic forms. Since we can associate to any symmetric bilinear
form, and hence to any quadratic form over a field of characteristic different from 2,
an orthogonal involution on a split central simple algebra, it is natural to consider
whether there are central simple algebras with involution with analogous properties
to Pfister forms.

Let (A, σ) be a central simple algebra of degree a 2 power with orthogonal
involution over a field F . We denote the central simple algebra (resp. the algebra
with involution) obtained by extending scalars over a field extension K/F as AK
(resp. (A, σ)K ).

Assuming that the characteristic of F is different from 2, in [1] it is asked
whether the following are equivalent:

(1) (A, σ) is isomorphic to a product of quaternion algebras with involution.
(2) For all field extensions K/F such that AK is split, there exists a Pfister

form π over K such that (A, σ)K is isomorphic to the adjoint algebra with
involution of π.

(3) For any field extension L/F , (A, σ)L is either anisotropic or hyperbolic.

That (1) implies (2) is know as the Pfister Factor Conjecture, and was proven
in [2]. That (1) implies (3), and the equivalence of (2) and (3), follows from
the Pfister Factor Conjecture and the non-hyperbolic splitting result of [5]. The
converse implication, (2) or (3) implies (1), is still an open question in general.

Analogous questions may be asked when we consider fields of characteristic 2.
However, just as the theories of quadratic forms and bilinear forms diverge when
the characteristic of the base field is 2, we also get two divergent objects when
considering algebras with orthogonal involution.

Firstly, we have algebras with quadratic pairs (see [7, Section 5]). These are
objects that play an analogous role to quadratic forms as algebras with involution
do to symmetric bilinear forms. That is, to any nonsingular quadratic form we
may associate an ‘adjoint’ quadratic pair defined on a split central simple algebra.
In this case, one may formulate the above question in a completely analogous way
for decomposable quadratic pairs. That is, an algebra with quadratic pair that
is isomorphic is a product of quaternion algebras with involution and a quadratic
pair on a quaternion algebra. In this case, only (1) implies (2) has been shown in
upcoming joint work with K. J. Becher.

Alternatively we may formulate the question in terms of algebras with orthog-
onal involution and symmetric bilinear forms over a field of characteristic 2. The
theory of symmetric bilinear forms in characteristic 2 has several features that
mean we must be slightly more careful in our formulation of the analogous question
to that posed in [1]. Over fields of characteristic different from 2, all 2-dimensional
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isotropic symmetric bilinear forms are isometric to the hyperbolic plane. This is
not true in characteristic 2, and the wider variety of isotropic 2-dimensional forms
means that we must use the weaker property of metabolicity rather than hyper-
bolicity in the formulation of our problem and be more careful with our statement.
For example, there exist metabolic bilinear forms of dimension a 2 power that are
not similar to bilinear Pfister forms. That is, they are not isometric to a tensor
product of 2-dimensional bilinear forms. Metabolicity for algebras with involution
is studied in [3].

Conversely however, the isotropy behaviour of symmetric bilinear forms over
quadratic separable extensions is particularly simple. Anisotropic symmetric bi-
linear forms remain anisotropic over any separable extension (see [6, (10.2.1)]).
We can often exploit this property to investigate symmetric bilinear forms over
fields of characteristic 2 with much simpler methods than those needed over fields
of characteristic different from 2.

We therefore ask the following question. Let (A, σ) be a non-metabolic central
simple algebra with orthogonal involution over a field of characteristic 2. Are the
following equivalent:

(1) (A, σ) is isomorphic to a product of quaternion algebras with involution.
(2) For all field extensions K/F such that AK is split, there exists a bilin-

ear Pfister form π over K such that (A, σ)K is isomorphic to the adjoint
involution of π.

(3) For any field extension L/F , (A, σ)L is either anisotropic or metabolic.

For this question, that (1) implies (2) is very simply shown by passing to a separa-
ble closure of K and using the fact that symmetric bilinear forms do not become
anisotropic over a separable extension. As in the case of characteristic different
from 2, (3) or (2) implies (1) is still open in general.

We show that (1) implies (3) using the splitting results of [4] and the refined
Witt decomposition shown in [8].
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Gabber’s compactifications of algebraic groups and homogeneous

spaces

Philippe Gille

Introduction

Let k be a field, ks a separable closure and let k be an algebraic closure of k.

If G/k is an algebraic group (or more generally an homogeneous space
X = G/H), it is of interest to compactify it in an equivariant way with respect
to the left action. More precisely, by a G–equivariant compactification of X , we
mean a G-open and dense embedding X →֒ Xc where Xc is a projective k–scheme.

In geometric invariant theory, we require more properties for compactifications:
smoothness, nice boundary, “modular understanding” of the functor of points, . . .
Let us mention here for example the de Concini-Procesi“wonderful” compactifica-
tion of semisimple adjoint groups by [CP] and two different compactifications of
the linear groups (Kausz [K], Huruguen [Hu, §2.2]).

The “wonderful compactification” is actually equivariant for G⋊Aut(G); this
is also the case when compactifiying the one dimensional split torus Gm by the
projective line P1

k. One cannot require that in the general case as we will see for
higher tori. We have Aut(G2

m) = GL2(Z) and we claim that there is no projective
compactification of T = G2

m which is G2
m ⋊ GL2(Z)-equivariant. Assume that

T c is such a compactification; the toric surface T c can be desingularized in a
canonical way so that we can assume that T c is a smooth toric surface. But
the automorphism group of T c is in this case algebraic by a result of Harbourne
[Ha, cor. 1.4], this is a contradiction. However for the split tori Gnm, the theory
of fans permits to contruct equivariant compactifications under Gnm ⋊ Γ for an
arbitrary finite subgroup Γ of GLn(Z) (Brylinski, Künnemann, see [CTHS]); by
Galois descent it provides nice compactications of arbitrary k–tori.

Our purpose is mainly arithmetic so that we are not interested in the geometry
of the compactifications but wish to control the rational points of the boundary.
To be clearer, let us start with the following fact taken from the proof of lemma
12 in [CTS].

Lemma 1. Let T/k be an anisotropic torus. Then there exists a T–compactification
T c such that T (k) = T c(k).

Proof. Let K/k be a finite Galois extension which splits T . Then there exists

an embedding i : T →
(
RK/k(Gm,K)

)n
where RK/k(Gm,K) denotes the Weil

restriction torus. We denote by R1
K/k(Gm,K) = ker

(
RK/k(Gm,K) → Gm

)
the

kernel of the norm map NK/k. Since T anisotropic, T embeds in
(
R1
K/k(Gm,K)

)n

and the statement boils down to the case of the norm one torus H = R1
K/k(Gm,K).

The norm one torusH embeds in an equivariant way to the projective hypersurface
of equation x[K:k] = NK/k(y) inside P(k ⊕K). �

This fact admits the following generalization.
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Theorem 2. (Borel-Tits, [BT, th. 8.2]). Assume that k is perfect and that G/k
is affine and smooth. Then the following are equivalent:

(1) G is k-wound, i.e. G admits no k–subgroup isomorphic to Ga or Gm;

(2) G admits a G–equivariant compactification Gc such that G(k) = Gc(k).

Note that (2) =⇒ (1) is trivial since a k–embedding f : Ga → G extends to a

k–map f̃ : P1
k → Gc. Since G is affine, f cannot extend to a k–morphism P1

k → G,

so that f̃(∞) ∈ Gc(k) \ G(k). Similarly a k–embedding for Gm → G provides at
least one point of Gc(k) \G(k).
Remark 3. Still assuming that k is perfect, a general smooth connected k-groupG
fits in an exact sequence 1 → L→ G→ A→ 1 where A is an abelian variety and L
is a smooth affine k-group (Chevalley). Note that G is k-wound iff L is k-wound,
so that (2) =⇒ (1) holds. For (1) =⇒ (2), the trick is to compactify fiberwise
with respect to G → A, that is by taking the contracted product Gc = G ∧L Lc
over A. For a non-connected smooth G, we repeat the same trick with the exact
sequence 1 → G0 → G→ F → 1 where F is finite étale over k and G0 the neutral
component of G [DG, II.5.1].

Gabber’s compactifications

From now one, we assume that k is of characteristic p > 0. Gabber proved a
similar statement than Theorem 2.

Theorem 4. [G, Theorem B] Let G/k be an algebraic group. Then the following
are equivalent:

(1) G is k-wound, i.e. G admits no k–subgroup isomorphic to Ga or Gm;

(2) G admits a G–equivariant compactification Gc such that G(k) = Gc(k).

Furthermore, if G is affine, we can assume that Gc is equipped with an ample
line bundle which is G–linearized.

Again the theorem is the implication (1) =⇒ (2), namely the construction of
compactifications.

Remarks 5. (a) Note that G is not assumed to be smooth.

(b) The affine case is the main one. Assuming it holds, one deals firstly with the
case of G not affine and connected. It fits then in an exact sequence 1 → L →
G → A → 1 where L is affine and A an abelian variety [SGA3, 12.5.(5)]. The
same trick than in Remark 3 works and provides the desired compactification of
G from a compactification of L and idem to pass to the non-connected case.

(c) The theorem was previously known in the case of a commutative k–group as a
result by Bosch-Lütkebohmert-Raynaud, [BLR, §10.2, th. 7]).
(e) Let F/k be a field extension such that GF is F -wound. If Gc is a Gabber’s
compactification of G/k, it can be shown than GcF is is a Gabber’s compactification
of GF /F .
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From now on, we deal then with an affine algebraic k-group G. The talk dis-
cussed mainly the reduction of the theorem to the smooth case. The k-group G
admits a maximal closed k–subgroup denoted by G† [CGP, C.4.1]. It is charac-
terized by the fact that G†(ks) = G(ks) or equivalently that (G/G†)(ks) = {x0}.
For reducing to the smooth case, the main new step is to provide a nice compact-
ification of the homogeneous space X = G/G†.

Theorem 6. (Gabber, 2011, see [GGMB]). The homogeneous space X admits a
G–compactification Xc equipped with an ample G–linearized line bundle such that
Xc(ks) = {x0}.

In the proof we gave the full proof of this last result which was used in the talk
by Laurent Moret-Bailly. From this fact, the reduction to the smooth case goes by
a dévissage argument from the G†-torsor G→ G/G† of the same vein than lemma
15 of [BLR, §10.2].
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ihrer Grenzgebiete 21 (1990), Springer-Verlag.
[CTHS] J.-L. Colliot-Thélène, D. Harari, A. N. Skorobogatov, Compactification équivariante
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Permutation modules and motives of geometrically rational surfaces

Stefan Gille

This is a report on the work in progress [4]. Let F be a perfect field with
algebraic closure F̄ and absolute Galois group GF = Gal(F̄ /F ). We set X̄ :=
F̄ ×F X for an F -scheme X . Let S be a geometrically rational F -surface, by



Quadratic Forms and Linear Algebraic Groups 1835

which we understand a smooth projective and geometrically integral F -scheme of
dimension 2, such that S̄ := F̄ ×F S is birational isomorphic to the 2-dimensional
projective space over F̄ .

Assume that S has an F -rational point. Then S decomposes

S ≃ SpecF ⊕M ⊕ Z(2)

in the category of (effective) Chow motives with integral coefficients Chow(F ).
(Here Z(1) denotes the Tate motive and we have set Z(i) := Z(1)⊗ i for i ≥ 0.)

To understand the middle part M of this decomposition one observes first that
the natural homomorphisms

(1) HomChow(F )((SpecE)⊗ Z(1),M) −→ HomGF
(CH0(Ē),CH1(S̄)) ,

α 7−→ (F̄ ×F α)∗
and

(2) HomChow(F )(M, (SpecE)⊗ Z(1)) −→ HomGF
(CH1(S̄),CH0(Ē)) ,

β 7−→ (F̄ ×F β)∗
are isomorphisms for any étale F -algebra E. (The second isomorphism uses the
fact that since S is a geometrically rational surface the intersection pairing PicS̄×
PicS̄ −→ Z is a regular symmetric bilinear form which is GF -invariant.)

As well known the GF -module CH0(Ē) is a permutation module for all étale
algebras E and every GF -permutation module is isomorphic to CH0(Ē) for some
étale F -algebra E. Using this fact and the Rost nilpotence theorem for geo-
metrically rational surfaces in Chow(F ), see [2, 3], one deduces from the above
isomorphisms (1) and (2) the following result:

Theorem. Let S be a geometrically rational F -surface, such that S(F ) 6= ∅. Then
the motive of S in Chow(F ) is 0-dimensional (equivalently, a direct summand of
Z⊕ [(SpecE) ⊗ Z(1)]⊕ Z(2) for some étale F -algebra E) if and only if PicS̄ is a
direct summand of a GF -permutation module.

The proof of this theorem is constructive and can be used to compute the motive
of some geometrically rational surfaces. For instance, if S is a Del Pezzo surface
of degree 6 with rational point then PicS̄ is always a direct summand of a GF -
permutation module and it turns out that the middle part of the motive of S is a
direct summand of (SpecE)(1), where E is the product of a cubic and a quadratic
étale algebra over F .

Remarks.

(i) In a letter [1] to the author Colliot-Thélène showed that PicS̄ is a direct
summand of a GF -permutation module if and only if CH0(L ×F S) is
torsion free for all field extensions L ⊇ F .

(ii) Using the same method one can show the following (which seems to be
well known):
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Theorem. Let X be a smooth projective F -scheme, such that the motive
of X is geometrically split in the category of Chow motives with rational
coefficients Chow(F,Q), i.e. the motive of X̄ is isomorphic to a (finite)
direct sum of twists of Tate motives in Chow(F̄ ,Q). Then the motive of X
is zero dimensional in Chow(F,Q).
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Valuations on real function fields and lower bounds for the pythagoras

number

David Grimm

The pythagoras number p2(F ) of a field F is by definition the smallest n ∈ N such
that every sum of squares in F is equal to a sum of n squares in F , or ∞ if no such
n exists. When F is the function field of a variety V over R (or any real closed
field), A. Pfister showed that p2(F ) ≤ 2d. Finding the exact value of p2(F ) (or
just good lower bounds) is an open problem.

W. Kucharz showed in [K1] for real function fields F/R in d variables that
p2(F ) ≥ d + 1, and he obtains the same lower bound more generally for real
closed base fields in [K2]. He derives this bound from a more general result on
minimal sets of generators for certain finitely generated ideals in the so called real
holomorphy ring of F/R as defined in [B, p. 148]. The latter relies on Hironaka’s
resolution of singularities and of points of indeterminacy of rational functions.
Furthermore, computations of Chern classes of vector bundles are used, and this
part of the proof does not seem to generalize to the situation of varieties V over
arbitrary formally real base fields K with formally real function field F = K(V )
(unless V contains a smooth K-rational point, or a closed point of odd degree).

I presented a more elementary proof for the lower bound p2(F ) ≥ d + 1 that
does not need to assume that the base field K of F/K is real closed. Furthermore,
Hironaka’s resolution results or computations of Chern classes of vector bundles
are not needed.

The case d ≥ 3 is easily dealt with. We use the fact that if F = K(V ) is formally
real, then V contains a smooth closed point P with formally real residue field
K(P ). The generic point of the exceptional fiber of the blowing-up of V along P
then yields a discrete valuation with real residue fieldK(P )(X1, . . . , Xd−1). Simple
valuation theoretic considerations show that p2(F ) ≥ p2(K(P )(X1, . . . , Xd−1)),
and for real rational function fields in at least two variables we have the better
lower bound p2(K(P )(X1, . . . , Xd−1)) ≥ (d − 1) + 2 = d + 1 due to an iteration
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argument based on the Cassels-Pfister theorem and the fact that the bound holds
when d− 1 = 2 due to [CEP].

If d = 2, the same argument yields that p2(F ) ≥ p2(K(P )(X)). However, it is
known that p2(K(P )(X)) < 3 can occur even when K is not real closed (e.g. for
K = R((t))). So we need a different argument when d = 2. The key is the observa-
tion that it is sufficient to find a discrete valuation on F with nonreal residue field
in which −1 is not a square (a well chosen lift of a nontrivial representation of zero
as a sum of three squares then exhibits the lower bound p2(F ) ≥ 3). In geometric
terms, it is sufficient to find a geometrically irreducible curve C on the surface V
(which we can assume to be projective and normal) that does not contain points
with formally real residue field. The generic point of C in V will then yield a val-
uation with residue field K(C). The way to obtain the existence of such a curve is
by considering hyperplane sections of V with respect to some well chosen embed-
ding in projective space. After enlarging the embedding dimension via a Veronese
map if necessary, we have V embedded in a larger varietyW that is defined over Q
inside projective space while finding at the same time a hyperplane H defined over
Q that has no common R-points with W (and hence in particular with V ). The
completeness of the first order theory of real closed fields together with Bertini’s
theorem for generic hyperplane sections shows that after some (rational) small
ǫ-variation of the coefficients of H , we have that C = H ∩ V is a smooth geomet-
rically connected curve over K (and hence in particular geometrically irreducible)
that contains no point with formally real residue field.

In the case d = 1, we have in the rational case obviously that p2(K(X)) > 1,
as the pythagorean closure of a non-pythagorean field is always an infinite field
extension as was shown by Diller and Dress [B, Theorem 3.8].

Kucharz’ result on finitely generated ideals of the real holomorphy ring of a
function field F/R does not only yield the lower bound p2(F ) ≥ d + 1 for the
pythagoras number of a function field F/R in d variables, but in fact for all
higher even pythagoras numbers p2m(F ) as well (which is by definition the small-
est n ∈ N such that every sum of 2m-th powers is a sum of n such powers).
In fact, my more elementary approach generalizes also to the 2m-th pythagoras
number. However, since the proof for dimension d ≥ 3 is a mere reduction to
the case of a rational function field p2m(F ) ≥ p2m(K(P )(X1, . . . , Xd−1)), it re-
mains the task to find good lower bounds for the 2m-th pythagoras number of the
latter kind. One such lower bound (also for base fields that are not real closed)
can be obtained by adapting Kucharz’ proof to the situation of varieties over for-
mally real fields that contain a smooth rational point. The resulting lower bound
p2m(K(P )(X1, . . . , Xd−1)) ≥ (d−1)+1 = d in the rational case is slightly too bad
to prove Kucharz’ bound p2m(F ) ≥ d+1 for arbitrary real d-dimensional function
field F over general formally real fields. Summarized we obtain:

Theorem. Let F/K a real function field in d variables and let m ∈ N. Then
p2m(F ) ≥ d + 1 when m = 1, or d ≤ 2, or when the embedding K →֒ F admits a
section F → K ∪ {∞}. In the remaining cases we have p2m(F ) ≥ d.
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Idealy, I would like to show p2m(F ) ≥ d + 1 unconditionally, which with my
method of proof would require a better lower bound for rational function fields.
Note that the Cassels-Pfister theorem for quadratic forms does not generalize to
higher degree forms, so it is not evident how one can obtain better lower bounds
for the 2m-th pythagoras number of higher dimensional rational function fields
from a good lower bound in small dimensions when m ≥ 2.
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Hermitian forms over quaternion algebras

Nikita A. Karpenko

(joint work with Alexander Merkurjev)

We study a hermitian form h over a quaternion division algebra Q over a field.
If the characteristic of the field is 2, we additionally assume that h is alternating
(as defined in [4, §4.A]). For generic h and Q (defined as in the beginning of
[3, §6]), for any integer i ∈ [1, n/2], where n := dimQ h, we show in our Main
Theorem ([3, Theorem 10.1]) that the variety of i-dimensional (over Q) totally
isotropic right subspaces of h is 2-incompressible (see [1] for definition). The proof
is based on a computation of the Chow ring for the classifying space of a certain
parabolic subgroup in a split simple adjoint affine algebraic group of type Cn
made in [3, §5]. As an application, we determine the smallest value of Alexander
Vishik’s J-invariant of a non-degenerate quadratic form divisible by a 2-fold Pfister
form ([3, Corollary 11.3]); we also determine the biggest values of the canonical
dimensions of the orthogonal Grassmannians associated to such quadratic forms
(see [3, Corollary 11.2]).

The general outline of the paper follow the pattern of [2], where hermitian forms
over quadratic extension fields (in place of quaternion algebras) and quadratic
forms divisible by 1-fold Pfister forms have been treated.

Acknowledgements. We thank Burt Totaro for useful advices. The speaker
gratefully acknowledges hospitality of the Fields Institute for Research in Mathe-
matical Sciences (Toronto, Ontario), the Department of Mathematics of University
of Toronto, and Thematic Program on Torsors, Nonassociative Algebras and Co-
homological Invariants (January–June 2013).
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Some field invariants in characteristic two related to the u-invariant

Ahmed Laghribi

Let F be a field of characteristic 2, and φ a quadratic form over F . We denote
by ql(φ) (resp. dimφ) the quasilinear part of φ (resp. the dimension of φ). The
form φ is called nonsingular if dimql(φ) = 0, singular if dimql(φ) > 0, and totally
singular if dim φ = dimql(φ). The integer dimφ − dimql(φ) is called the regular
dimension of φ, we denoted it by rdimφ.

Let Q(F ) (resp. T (F )) denote the set of F -quadratic forms (resp. the set of
totally singular F -quadratic forms) up to isometry. Because of the distinction be-
tween singular forms and nonsingular forms, Baeza introduced the two invariants:

u(F ) = sup{dimφ | φ is nonsingular and anisotropic},
û(F ) = sup{dimφ | φ ∈ Q(F ) is anisotropic}.

Obviously, u(F ) ≤ û(F ), and the invariant u(F ) takes only even values because a
nonsingular form is of even dimension.

An important question consists in giving the possible values of the û-invariant
(resp. u-invariant) of a field of characteristic 2. In [4] Mammone, Tignol and
Wadsworth proved the following:

(A) There exists a field F such that u(F ) = û(F ) = 6.
(B) For any integer n ≥ 2, there exists a field F such that u(F ) = 2n and

û(F ) = ∞.
(C) For any integers n, m such that 2m ≥ 2n ≥ 4 and m ≥ n− 1, there exists

a field F such that u(F ) = 2n and û(F ) = 2m.

Also Mammone, Moresi and Wadsworth proved that the û-invariant can not
take the integers 2n − 1 (n ≥ 2) and 5 [3]. As we may verify in [4], the fields
F in (B) and (C) satisfy the condition û(F ) = [F : F 2], or equivalently, û(F ) =
sup{dimφ | φ ∈ T (F ) is anisotropic}. Also, the claim that the û-invariant can
not take the integers 2n − 1 (n ≥ 2) is based on the double inequality [F : F 2] ≤
û(F ) ≤ 2[F : F 2] [3]. So, many information on the values of the û-invariant are
controlled by totally singular forms. Moreover, concerning the field F in (C), we
do not know if there exists an anisotropic, not totally singular, form φ such that
û(F ) = dimφ. This motivates the idea to get information on the supremum of the
dimensions of anisotropic not totally singular forms, independently of the forms
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in T (F ). To this end, we consider the set Q′(F ) = Q(F ) \T (F ), and we introduce
the following invariant:

ũ(F ) = sup{dimφ | φ ∈ Q′(F ) is anisotropic}.
Also, for r, s ≥ 1 integers, we consider the following invariants:

ur(F ) = sup{dimφ | φ ∈ Q′(F ) is anisotropic and rdimφ = 2r},

ũs(F ) = sup{dimφ | φ ∈ Q′(F ) is anisotropic and dimql(φ) = s}.
In what follows we give some elementary relations between the invariants u, û,

ũ, ur and ũs:

• u(F ) ≤ ũ(F ) ≤ û(F ).
• For any integers r, s ≥ 1, we have:





ur(F ) ≤ ũ(F ) ≥ ũs(F )

ur+1(F ) ≤ ur(F ) + 1

ũs+1(F ) ≤ ũs(F ) + 1.

(⋆)

• u1(F ) ≤ ũ(F ) ≤ 2u1(F )− 2.
• If u(F ) = 2n, then u(F ) ≤ un−k(F ) + k for 0 ≤ k ≤ n− 1.
• If un(F ) = 2n, then u(F ) = un(F ).
• If ũ(F ) 6= û(F ), then û(F ) = [F : F 2].

Our aim is to treat the following question:

Question 1. What are the possible values of the invariants ũ, ur and ũs?

The main results on this question are as follows:

(1) For the ũ-invariant:

Theorem 2. (a) ũ(F ) 6= 3, 5, 7.
(b) For any integers n ≥ 2, m ≥ 2n− 2 and k ≥ m+2, there exists a field F such
that u(F ) = 2n, ũ(F ) = u1(F ) = 2 + 2m and û(F ) = 2k.
(c) For any integer n ≥ 2, there exists a field F such that u(F ) = 2n and ũ(F ) =
u1(F ) = ∞.

The fields given in statements (b) and (c) of Theorem 2 have the property that
the invariants ũ and u1 coincide. In general, these two invariants are different, for
example, we proved that the field F given in (A) satisfies u1(F ) = 4 and ũ(F ) = 6.

(2) For the ur-invariant:

Theorem 3. (a) For any integer n ≥ 1, there exists a field F such that u1(F ) =
2n + 1.
(b) For any integers m, r ≥ 1, there exists a field F such that ur(F ) = 2r + 2m.
(c) For any integer r ≥ 2, there exists a field F such that ur(F ) = 2r and
ur−1(F ) = 2r − 1. In particular, ur(F ) = ur−1(F ) + 1.
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In view of the inequality ur+1(F ) ≤ ur(F ) + 1 given in (⋆), and statement (c)
of Theorem 3, we proved that for r = 2n (n ≥ 1), there exists a field F such that
ur(F ) < ur−1(F ) + 1.

Moreover, it follows from (⋆) that if ur(F ) if finite, then uk(F ) is also finite for
any k ≥ r+1, but the converse is not true in general. Indeed, for any integer r ≥ 1,
we proved the existence of a field F such that ur(F ) = ∞ and ur+1(F ) = 2(r+1),
in particular, uk(F ) <∞ for any k ≥ r + 1.

(3) For the ũs-invariant:

Proposition 4. For any integers l, r, s ≥ 1 such that 2l−1 < s ≤ 2l et r ≥ 2l−s
2 ,

there exists a field F such that ũs(F ) = 2r + s.

The proofs of the results above are based on the following:
(1) Let D = [b1, a1) ⊗F · · · ⊗F [br, ar) be a tensor product of n quaternion

F -algebras, and K = F (
√
c1, · · · ,

√
cm) such that [K : F ] = 2m. If D ⊗F K is a

division algebra, then u(F ) ≥ 2(r + 1), û(F ) ≥ 2r+m, and φ := a1[1, b1] ⊥ · · · ⊥
ar[1, br] ⊥ 〈〈c1, · · · , cm〉〉 is anisotropic, in particular, ũ(F ) ≥ 2r + 2m.

(2) LetD be a division F -algebra of degree 2n, and φ an anisotropic F -quadratic
form such that rdimφ = 2r (r ≥ 1) and dimql(φ) = s. Then, D ⊗F F (φ) is a
division algebra in the following cases:

• dimφ > 2 + dimF D.
• r = n and s ≥ 2.
• r > n and s ≥ 1.

The point (2) is based on the index reduction theorems [4, Th. 3, Th. 4]. The
proof of statement (a) of Theorem 3 uses the following result: If φ and ψ are
anisotropic F -quadratic forms such that dim φ = 2n + 1 (n ≥ 1), dimψ > dimφ
and rdimφ = rdimψ = 2, then φ is anisotropic over F (ψ). This result, which is a
consequence of some results in [5], was proved by another argument using the fact
that any anisotropic not totally singular F -quadratic form of dimension 2n + 1
becomes an anisotropic Pfister neighbor over a suitable extension of F .

In additional to statement (b) of Theorem 2, the ũ-invariant can take any
power of 2. Indeed, it was proved in [3] that there exists a field F such that
u(F ) = û(F ) = 2m (m ≥ 0), in particular, this field satisfies ũ(F ) = 2m because
u(F ) ≤ ũ(F ) ≤ û(F ). Still for even integers, we do not know if the ũ-invariant
takes the integers 4 + 2m for m ≥ 3. For odd integers, and in view of statement
(a) of Theorem 2, we ask the following question:

Question 5. Does there exist a field F such that ũ(F ) = 9?

Moreover, using the double inequality u1(F ) ≤ ũ(F ) ≤ 2u1(F )−2, we conclude
that ũ(F ) 6= 2n − 1 (n ≥ 2) when u1(F ) is a power of 2.

We also discussed the following classical question:

Question 6. (Universality) Suppose that u(F ) < ∞. Is any anisotropic nonsin-
gular F -quadratic form of dimension u(F ) universal?
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This question has a positive answer if u(F ) = 2 or 4 (due to Baeza [1]). We
proved that the answer is also positive if u(F ) = 6. If u(F ) = 8, we have the
following partial result: If φ is an anisotropic nonsingular F -form of dimension 8
and c ∈ F ∗ such that indC(cφ) ≤ 2, then φ ⊥ 〈c〉 is isotropic.
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The u-invariant of a rational function field

David Leep

The (classical) u-invariant of a field F , written u(F ), is the maximum dimension
of an anisotropic quadratic form defined over F . We set u(F ) = ∞ if no such
maximum exists. The main question of this report is the problem of computing
u(k(t)) where k is a field and k(t) is the rational function field over k. Throughout
this report, k denotes a field with chark 6= 2.

Proposition 1. 2u(k) ≤ 2 sup{u(E) | [E : k] <∞} ≤ u(k(t)).

Proof. The first inequality is trivial and the second inequality is proved using
standard valuation theory. �

Proposition 2. Let [E : k] = r. Then u(E) ≤ r+1
2 u(k).

Proof. See [L], Theorem 2.10. �

Proposition 2, currently the best known upper bound for u(E), is not strong
enough to even suggest the finiteness of u(k(t)) in Proposition 1. We now pursue
a second approach.

Let uk(r,m) denote the smallest integer such that every system of r quadratic
forms defined over k in more than uk(r,m) variables vanishes on an m-dimensional
affine linear space defined over k. Set uk(r,m) = ∞ if no such integer exists. Note
that uk(1, 1) = u(k).

Proposition 3. 2u(k) ≤ uk(2, 1) ≤ u(k(t)).

Proof. Let q1 and q2 be two quadratic forms defined over k. Let q1 + tq2 de-
note the polynomial sum over k(t). The Amer-Brumer theorem (see [A] and [B])
states that q1 and q2 have a nontrivial common zero over k if and only q1 + tq2



Quadratic Forms and Linear Algebraic Groups 1843

is isotropic over k(t). This immediately implies that uk(2, 1) ≤ u(k(t)). The in-
equality 2u(k) ≤ uk(2, 1) comes from considering two anisotropic forms q1 and q2
in disjoint variables. �

Proposition 4. Let Q be a regular quadratic form defined over k(t). There exist
quadratic forms q1, q2 defined over k and an integer l ≥ 0 such that q1 + tq2 ≃k(t)
lH ⊥ Q.

Proposition 5 (Amer’s Theorem, [A]). Let q1 and q2 be two quadratic forms
defined over k. Then q1 and q2 vanish on a common m-dimensional affine linear
space over k if and only if q1 + tq2 vanishes on an m-dimensional affine linear
space over k(t).

Lemma 6.

(1) 2u(k) ≤ uk(2, 1) ≤ 3u(k).
(2) uk(2,m) + 2 ≤ uk(2,m+ 1) ≤ uk(2,m) + 3 for all m ≥ 1.
(3) uk(2, 1) + 2(m− 1) ≤ uk(2,m) ≤ uk(2, 1) + 3(m− 1) for all m ≥ 1.

Proof. Proofs of these inequalities can be found in [L]. �

Theorem 7. u(k(t)) = supm≥1{uk(2,m)− 2(m− 1)}.
Proof. By Lemma 6, we can assume that u(k) is finite and thus uk(2,m) is finite
for all m ≥ 1.

For arbitrarym ≥ 1, let q1, q2 be two quadratic forms defined over k in uk(2,m)
variables such that q1, q2 do not vanish on a common m-dimensional vector space
defined over k. By Proposition 5, q1 + tq2 doesn’t vanish on an m-dimensional
vector space over k(t). Thus we have q1 + tq2 ≃k(t) Q ⊥ lH ⊥ rad(q1 + tq2), where
Q is anisotropic over k(t) and l + dim(rad(q1 + tq2)) ≤ m− 1. Then

u(k(t)) ≥ dimQ = uk(2,m)− 2l− dim(rad(q1 + tq2)) ≥ uk(2,m)− 2(m− 1).

Thus, u(k(t)) ≥ supm≥1{uk(2,m)− 2(m− 1)}.
Let Q be an anisotropic quadratic form defined over k(t). By Proposition 4,

there exist quadratic forms q1 and q2 defined over k such that q1 + tq2 ≃k(t) Q ⊥
(m − 1)H for some integer m ≥ 1. We have dim(q1 + tq2) ≤ uk(2,m), otherwise
q1 and q2 would vanish on a common m-dimensional vector space over k and thus
q1+tq2 would also vanish on anm-dimensional vector space over k(t) by the trivial
implication of Proposition 5. Thus

dim(Q) ≤ uk(2,m)− 2(m− 1) ≤ sup
m≥1

{uk(2,m)− 2(m− 1)}.

Therefore, u(k(t)) ≤ supm≥1{uk(2,m)− 2(m− 1)}. �

The second inequality in Proposition 3 is contained in Theorem 7 when m = 1.

Corollary 8. u(k(t)) ≤ N if and only if uk(2,m) ≤ 2(m− 1) +N for all m ≥ 1.

The estimate in Lemma 6 (3) implies that

uk(2, 1) ≤ uk(2,m)− 2(m− 1) ≤ uk(2, 1) + (m− 1)
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for all m ≥ 1. By Corollary 8, these estimates are not strong enough to conclude
the finiteness of u(k(t)).

I have recently improved the estimates in Lemma 6 to obtain the following
result.

Theorem 9. uk(2,m) ≤M + 5
2 (m− 1) for some positive constant M and for all

m ≥ 1.

This improvement of Lemma 6, the first improvement since [L], is still not
strong enough to prove the finiteness of u(k(t)), but there is hope that additional
improvements will still be possible.
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A proof of conjecture of Serre and Grothendieck on principal bundles

over regular local rings containing infinite fields

Ivan Panin

(joint work with Roman Fedorov)

Assume that U is a regular scheme, G is a reductive U -group scheme, and G
is a principal G-bundle. It is well known that such a bundle is trivial locally in
étale topology (see e.g. [Gro3, Section 6]) but in general not in Zariski topology.
Grothendieck and Serre conjectured that G is trivial locally in Zariski topology, if
it is trivial at all the generic points. More precisely

Conjecture (Grothendieck-Serre). Let R be a regular local ring, let K be its field
of fractions. Let G be a reductive group-scheme over U := specR, let G be a
principal G-bundle. If G is trivial over specK, then it is trivial. Equivalently, the
map

H1
ét
(R,G) → H1

ét
(K,G),

induced by the inclusion of R into K, has a trivial kernel.

The main result of this talk is Theorem 1. It asserts that this conjecture holds
for regular local rings R, containing infinite fields. Our proof was inspired by the
theory of affine Grassmannians. It is also based significantly on the geometric part
of the paper [PSV1] of the second author with A. Stavrova and N. Vavilov.
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Here is a list of known results in the same vein, corroborating the Grothendieck–
Serre conjecture.

• The case where the group scheme G comes from the ground field k is com-
pletely solved by J.-L. Colliot-Thélène, M. Ojanguren, M. S. Raghunatan and
O. Gabber: in [CTO] and [Rag1], [Rag2] when k is infinite; O. Gabber [Gab]
announced a proof for an arbitrary ground field k.

• The case of an arbitrary reductive group scheme over a discrete valuation ring
is completely solved by Y. Nisnevich in [Nis].

• The case where G is an arbitrary torus over a regular local ring was settled
by J.-L. Colliot-Thélène and J.-J. Sansuc in [CTS].

• For some simple group schemes of classical series the conjecture is solved in
works of the second author, A. Suslin, M. Ojanguren and K. Zainoulline [PS],
[OP], [Zai], [OPZ].

• Under an isotropy condition on G the conjecture is proven in a short series
of preprints [PSV1], [PSV2], [Pan].

• The case of strongly inner simple adjoint group schemes of type E6 and E7

is done by the second author, V. Petrov, and A. Stavrova in [PPS]. No isotropy
condition is imposed there.

• The case when G is of the type F4 with trivial g3-invariant is settled by
V. Chernousov in [Che].

Main results

Recall that an R-group scheme G is called reductive, if it is affine and smooth
as an R-scheme and if, moreover, for each algebraically closed field Ω and for
each ring homomorphism s : R → Ω the scalar extension GΩ is a connected
reductive algebraic group over Ω. This definition of a reductive R-group scheme
coincides with [DG, Exp. XIX, Defn. 2.7]. A well-known conjecture due to J.-
P. Serre and A. Grothendieck [Ser, Remarque, p.31], [Gro1, Remarque 3, p.26-27],
and [Gro2, Remarque 1.11.a] asserts that given a regular local ring R and its field
of fractions K and given a reductive group scheme G over R the map

H1
ét(R,G) → H1

ét(K,G),

induced by the inclusion of R into K, has a trivial kernel. The following theorem,
which is the main result of the present paper, asserts that this conjecture is valid,
provided that R contains an infinite field.

Theorem 1. Let R be a regular semi-local domain containing an infinite field,
and let K be its field of fractions. Let G be a reductive group scheme over R.
Then the map

H1
ét(R,G) → H1

ét(K,G),

induced by the inclusion of R into K, has a trivial kernel.
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In other words, under the above assumptions on R and G, each principal G-
bundle over R having a K-rational point is trivial.

Theorem 1 has the following

Corollary. Under the hypothesis of Theorem 1, the map

H1
ét(R,G) → H1

ét(K,G),

induced by the inclusion of R into K, is injective.

Theorem 2. Let R be the semi-local ring of finitely many closed points on an
irreducible smooth affine variety over an infinite field k, set U = specR. Let G be
a simple simply-connected group scheme over U (see [DG, Exp. XXIV, Sect. 5.3]
for the definition).

Let Z ⊂ P1
U be a closed subset, quasi-finite and surjective over U . Let G be

a principal G-bundle on P1
U such that its restriction to P1

U − Z is trivial. Then
there exists a closed subscheme Y ⊂ P1

U étale over U such that Y ∩Z = ∅ and the
restriction of G to P1

U − Y is a trivial G-bundle.

The main idea is to choose Y (finite and étale over U such thatG has a parabolic
group subscheme defined over Y and modify the bundle G in a neighborhood of
Y ). We use the technique of henselization. An essentially equivalent proof is based
on formal loops.
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Period-index and u-invariant questions for fields

R. Parimala

(joint work with V. Suresh)

Let F be a field of characteristic not 2. The u-invariant u(F ) is defined to be the
maximum dimension of anisotropic quadratic forms over F . The behavior of the
u-invariant under rational function field extensions is very little understood.

For any field F , the Brauer p-dimension Brpdim(F ) of F is defined as the least
positive integer d such that for any central simple algebra A defined over any finite
extension of F of exponent a power of p, the index of A divides the dth power
of the exponent. The Brauer dimension of F is the maximum of the Brauer p-
dimensions of F as p varies over all primes. The behavior of the Brauer dimension
of a field again is very little understood under rational function field extensions.

There is a class of fields where there is way to understand the u-invariant and the
Brauer dimension under rational function field extensions. Let K be a complete
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discrete valued field of characteristic zero with residue field κ. Let F be the function
field in one variable over K. Suppose char(κ) = p. Let l be a prime not equal
to p. Harbater, Hartmann and Krashen prove that for a prime l not equal to p,
if Brldim(κ′) ≤ d for every finite extension κ′ of κ and if brldim(E) ≤ d + 1 for
every function field E in one variable over κ, then Brldim(F ) ≤ d+2. This result
for K a p-adic field is due to Saltman. It remained open whether Brpdim(F ) is
finite for function fields of p-adic curves.

Let κ be a field of characteristic p > 0. The p-rank of κ is d if [κ : κp] = pd. We
prove that ifK is a complete discrete valued field of characteristic zero with residue
field κ of characteristic p > 0 with p-rank of κ equal to d, then, for a function
field F in one variable over K, Brpdim(F ) ≤ 2d + 2. We also prove that if the
residue field κ is a perfect field of characteristic 2, u(F ) ≤ 8. For function fields
of p-adic curves, it follows that the Brauer dimension is 2. Further the u-invariant
of function fields of dyadic curves is 8, a result due to Heath-Brown and Leep.

The main ingredients in the proof are Kato’s filtration of the p-part of the Brauer
group of a complete discrete valued field of characteristic zero with residue field
of characteristic p and the patching theorems of Harbater-Hartmann-Krashen.

Skew hermitian forms over quaternion algebras

Anne Quéguiner-Mathieu

(joint work with Jean-Pierre Tignol)

The dimension, the discriminant and the Clifford invariant are classical invariants
of quadratic forms that do extend to the setting of central simple algebras with
orthogonal involutions. Under some additional assumptions on the algebra, namely
that it has index dividing half its degree, one can also define an analogue of the
Arason invariant, which is the degree 3 invariant occuring in Milnor’s conjecture.
If the underlying algebra has degree 12, this invariant need not be represented by
a cohomology class of order 2, as opposed to what happens for quadratic forms,
and also for involutions in smaller degree (see [4]).

In a joint paper in preparation with Jean-Pierre Tignol, we study this invariant
in degree 12 and index 2. In particular, we prove the following, which gives a very
explicit description of the algebras with involution we are interested in:

Theorem 1. Let (A, σ) be a degree 12 algebra with orthogonal involution. We
assume A is Brauer equivalent to a quaternion algebra Q and σ has trivial dis-
criminant and trivial Clifford invariant. Then, there exists quaternion algebras Qi
and Hi, for 1 ≤ i ≤ 3 such that H1H2H3 is split, QiHi is Brauer equivalent to Q
for all i, and

(A, σ) ∈ ⊞1≤i≤3(Qi, )̄⊗ (Hi, )̄,

meaning that (A, σ) is a direct sum of those three degree 4 products.
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Note that such a direct sum is not uniquely defined by the data of the summands
(see [2]).

Given an additive decomposition of (A, σ) as in the theorem, we may consider
the finite subgroup U of Br2(F ) generated by the Brauer classes of the quaternion
algebras Qi, Hi. It contains at most 8 elements, all of index at most 2. It appears
that the Arason invariant of σ, which takes values in H3(F,Q/Z)/F× · [Q] is
closely related to the homology of the complex in Galois cohomology which was
introduced and studied by Peyre in [3], namely

F× · U → H3(F,Q/Z) → H3(F (X),Q/Z),

where F× ·U denotes the subgroup of H3(F,Q/Z) which consists of cup products
(λ) · α, where λ ∈ F× and α ∈ U , and X is the product of the Severi-Brauer
varieties of the quaternion algebras of U . One of the main results of our paper
asserts

Theorem 2. The homology of Peyre’s complex is generated by the class of the
Arason invariant of (A, σ).

Note that the algebras with involution (A, σ) we are studying here are always
split by a quadratic extension of the base field (since they are of index 2), and
also hyperbolic over a quadratic extension of F (see [1]). Nevertheless, they are
not always split and hyperbolic over a quadratic extension of F . Using the results
mentioned above, we give a necessary and sufficient condition under which such
a quadratic splitting field does exist. In particular, we provide an example of an
(A, σ) for which the Arason invariant is represented by a cohomology class of order
2, and yet, (A, σ) does not admit any quadratic splitting field.
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On the splitting of quasilinear quadratic forms

Stephen Scully

Let (V, φ) be a quadratic space over a field F . Among the basic invariants of
φ are its anisotropic part φan and total index it(φ), the latter being defined as
the largest dimension of a totally isotropic subspace of V . Via a construction
due to Knebusch ([Kne76]), these invariants can be extended to an important
collection of higher invariants of φ. Explicitly, one may define an integer h(φ)
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and a sequence
(
Fr, φr, ir(φ)

)
0≤r≤h(φ)

, where Fr is an extension of F , φr is an

anisotropic quadratic form over Fr and ir(φ) is a non-negative integer, as follows:

• Set F0 = F , φ0 = φan and i0(φ) = it(φ).
• Suppose that Fr and φr are defined. If dim φr ≤ 1, then r = h(φ). Oth-
erwise, set Fr+1 to be the function field Fr(φr) of the integral projective
quadric over Fr defined by the vanishing of φr , and set φr+1 = (φFr+1

)an
and ir+1(φ) = it

(
(φr)Fr+1

)
.

The sequence i(φ) =
(
ir(φ)

)
0≤r≤h(φ)

is called the standard splitting pattern of φ.

This invariant provides a useful means by which to pre-classify quadratic forms
according to what one may term their ‘algebraic complexity’, and has been the
focus of intense study since its introduction to the subject. In recent decades, the
advent of powerful ‘motivic’ methods has led to remarkable progress in this area
of research. Among the highlights of this progress, we can mention the following
celebrated result of Vishik.

Theorem 1 (A. Vishik, [Vis11]). Let φ be an anisotropic quadratic form of di-
mension ≥ 2 over a field F of characteristic 6= 2, and write dim φ − i1(φ) =
2r1 − 2r2 + . . . + (−1)s−12rs, where r1 > r2 > . . . > rs−1 > rs + 1 ≥ 1. Let

2 ≤ l ≤ s, and let dl =
∑l−1
i=1(−1)i−12ri−1 + ǫ(l) ·∑s

j=l(−1)j−12rj , where ǫ(l) = 1

(0) if l is even (odd). Suppose that L is an extension of F such that it(φL) > dl.
Then it(φL) ≥ dl + i1(φ).

Vishik’s theorem (based on the existence of so-called excellent connections in
the motives of smooth quadrics) is a major achievement for the theory of quadratic
forms which subsumes a number of earlier breakthroughs, including Karpenko’s so-
lution of Hoffmann’s conjecture on the possible values of the invariant i1 ([Kar03]).
At present, many results of this kind are limited to the case of fields of character-
istic different from 2. For non-singular forms, this limitation is largely accounted
for by the prominent use of Steenrod operations on mod-2 Chow groups which are
not yet constructed in characteristic 2. The characteristic-2 theory of quadratic
forms is, however, more complex than its ‘good-characteristic’ counterpart due to
the existence of singular anisotropic forms in this setting. If one allows for the case
of singular forms, then non-traditional phenomena manifest themselves. Coupled
to the fact that contemporary geometric methods are less readily available in the
presence of singularities, this has resulted in a comparatively modest progression
of the singular theory. The goal of this talk is to present some new results on the
standard splitting of quadratic forms for the extreme, yet fundamental, class of
totally singular (or quasilinear) forms.

Assume henceforth that char F = 2. We say that φ is quasilinear if φ(v+w) =
φ(v) + φ(w) for all v, w ∈ V . It is not difficult to see in this case that h(φ) ≤
log2(dim φ), which already highlights the distinction to be drawn between the non-
singular and quasilinear settings. Nevertheless, in analogy with the characteristic-
not-2 theory, the ‘simplest’ type of splitting is exhibited here by the diagonal
parts of bilinear Pfister forms (or quasi-Pfister forms): an anisotropic quasilinear
quadratic form φ is similar to an n-fold quasi-Pfister form if and only if i(φ) =
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(2n−1, 2n−2, . . . , 2, 1). It is therefore natural to introduce the quasi-Pfister height
of φ as the smallest r ≥ 0 such that φr is similar to a quasi-Pfister form (such
an r exists). Laghribi ([Lag04]) has described the anisotropic forms of quasi-
Pfister height ≤ 1: they are precisely the anisotropic quasi-Pfister neighbours (i.e.,
forms similar to subforms of codimension < 2n−1 in n-fold quasi-Pfister forms).
The following proposition indicates that the study of this invariant is key for
understanding the standard splitting pattern as a whole (for example, an explicit
description of the forms of quasi-Pfister height 2 would already yield a full set of
restrictions on the possible values of the invariant i1).

Proposition 2. Let φ be an anisotropic quasilinear quadratic form over F , and

let 1 ≤ s < hqp(φ). Then there exists an extension F̃ of F such that hqp(φF̃ ) ≤ s
and ir(φF̃ ) = ir(φ) for all 0 ≤ r < s.

While we cannot address the problem of classifying forms of small quasi-Pfister
height (≥ 2) at present, some progress has been made towards understanding the
structure of the standard splitting pattern in the quasilinear case. One of the
main results achieved in this direction is the following theorem, which is directly
analogous to the l = 2 case of Vishik’s Theorem 1.

Theorem 3. Let φ be an anisotropic quasilinear quadratic form of dimension ≥ 2
over F , and write dim φ = 2n +m, where n ≥ 0 and 1 ≤ m ≤ 2n. Suppose that L
is an extension of F such that it(φL) < m. Then it(φL) ≤ m− i1(φ).

As an immediate corollary of Theorem 3, we obtain the following partial result
towards an analogue of Karpenko’s theorem on the values of i1.

Theorem 4. Let φ be an anisotropic quasilinear quadratic form of dimension ≥ 2
over F , and write dim φ = 2n +m, where n ≥ 0 and 1 ≤ m ≤ 2n. Then either
i1(φ) = m or i1(φ) ≤ m/2.

Theorem 4 extends earlier work of Hoffmann and Laghribi ([HL06]), who es-
tablished the upper bound i1(φ) ≤ m (which is itself used in the proof of Theorem
4). It may also be deduced from the following result on the general shape of the
standard splitting pattern for quasilinear forms.

Theorem 5. Let φ be an anisotropic quasilinear quadratic form of dimension ≥ 2
over F such that hqp(φ) > 0. Then i1(φ) ≤ i2(φ) ≤ . . . ≤ ihqp(φ).

Theorem 5 shows that the standard splitting pattern admits a hill-type structure
in this setting: it is monotonic increasing up to the hqp(φ)

th entry, and consists
of descending powers of 2 thereafter. This novel feature of the quasilinear theory
has important further implications. For example, it may be used in conjunction
with the above results to establish the following theorem, directly analogous to a
conjecture of Hoffmann (cf. [Hof95, §4]) concerning non-singular quadratic forms
with so-called maximal splitting (which remains wide open, even in characteristic
different from 2).
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Theorem 6. Let φ be an anisotropic quasilinear quadratic form over F such that
2n + 2n−2 < dim φ ≤ 2n+1 for some n ≥ 2. If i1(φ) = dim φ − 2n, then φ is a
quasi-Pfister neighbour.

As indicated above, much of the geometric approach which has been highly
succesful in the characteristic-not-2 theory is not applicable here. A key tool
in our approach to the above results is the following ‘functorial’ property of the
standard splitting pattern in the quasilinear setting. The r = 1 case of this result,
due to Totaro ([Tot08]), is directly analogous to a celebrated result of Karpenko
and Merkurjev which establishes a similar functorial property of the canonical
dimension of smooth quadrics ([KM03]).

Theorem 7. Let φ and ψ be anisotropic quasilinear quadratic forms of dimension
≥ 2 over F such that φF (ψ) is isotropic. Then h(ψ) ≤ h(φ) and:

(1) dim ψr ≤ dim φr for all 1 ≤ r ≤ h(ψ).
(2) dim ψr = dim φr for all 1 ≤ r ≤ h(ψ) if and only if ψF (φ) is isotropic.
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Higher reciprocity laws and rational points

V. Suresh

(joint work with J.-L. Colliot-Thélène and R. Parimala)

Let K be a number field and ΩK be the set of places of K. For v ∈ ΩK , let Kv

denote the completion of K at v. A classical theorem of Hasse and Minkowski
asserts that a quadratic form q over K is isotropic if it is isotropic over Kv for all
v ∈ ΩK .

One has more general local-global principles for homogeneous spaces under
connected linear algebraic groups. LetX be a projective homogeneous space under
a connected linear algebraic group defined over a number field K. A theorem of
Harder asserts that if X(Kv) 6= ∅, ∀v ∈ ΩK , then X(K) 6= ∅. For principle
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homogeneous spaces under a semisimple simply connected linear algebraic groups,
a similar local-global result holds (Kneser, Harder, Chernousov). For a adjoint,
quasi-split or K-rational connected linear algebraic groups over K, a similar local-
global principle is a theorem of Sansuc.

Let K be a complete discrete valued field with residue field κ algebraically
closed. Let X be a smooth projective curve over K and F = K(X). Let ΩF be
the set of all discrete valuations of F . For ν ∈ ΩF , let Fν denote the completion
of F at ν. Let G be a connected linear algebraic group over F and

X
1(F,G) = ker(H1(F,G) →

∏

ν∈Ω

H1(Fν , G)).

The set X1(F,G) classifies all principal homogeneous spaces which have rational
points over Fν for all ν ∈ ΩF . A theorem of Harbater-Hartmann-Krashen asserts
that if G is a connected linear algebraic group over F which is F -rational, then
X

1(F,G) = {1}.
In this talk we construct an example of a torus T over F = C((t))(x) with

X
1(F, T ) 6= {1}, thereby showing that the theorem of Harbater-Hartmann-Krashen

need not hold if G is not F -rational.
To construct our example we introduce an obstruction using a Bloch-Ogus com-

plex.

Signatures of hermitian forms and applications

Thomas Unger

(joint work with Vincent Astier)

In [1], [2] and [3] we started developing the theory of signatures of hermitian forms,
defined over central simple algebras with involution (with respect to orderings on
the base field), inspired by [4]. In contrast to classical signatures of quadratic
forms, signatures of hermitian forms should be considered as relative invariants.
Below we present a summary of our work thus far.

Let F be a formally real field with space of orderings XF and Witt ring W (F ).
Let (A, σ) be an F -algebra with involution, i.e. a pair consisting of a finite-
dimensional F -algebra A, whose centre Z(A) satisfies [Z(A) : F ] ≤ 2, and which
is assumed to be either simple (if Z(A) is a field) or a direct product of two simple
algebras (if Z(A) = F×F ), and an F -linear involution σ : A→ A. For ε ∈ {−1, 1}
let Wε(A, σ) be the Witt group of Witt equivalence classes of ε-hermitian forms
defined on finitely generated right A-modules. This is a W (F )-module. All forms
are assumed to be non-singular and are identified with their classes in Wε(A, σ).

Let A be Brauer equivalent to an F -division algebraD and let ϑ be an involution
on D of the same kind as σ. Then (A, σ) and (D,ϑ) are Morita equivalent and we
obtain a (non-canonical) isomorphism of W (F )-modules Wε(A, σ) ≃ Wεµ(D,ϑ)
with µ ∈ {−1, 1}. For the purpose of the study of signatures we may assume that
ε = µ = 1, cf. [1, 2.1].
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Let P ∈ XF , let FP denote a real closure of F at P and consider

(⋆) W (A, σ) // W (A⊗F FP , σ ⊗ id)
MP

// Wε(DP , ϑP )
signP

// Z,

where the first map is induced by scalar extension, the second map is an isomor-
phism of W (FP )-modules induced by Morita equivalence and signP is either the
classical signature isomorphism if ε = 1 and (DP , ϑP ) ∈ {(FP , id), (FP (

√
−1),−),

((−1,−1)FP
,−)} (where − denotes conjugation and quaternion conjugation, re-

spectively), or ε = −1 and signP ≡ 0 if (DP , ϑP ) ∈ {(FP , id), ((−1,−1)FP
,−), (FP×

FP , ̂)} (where ̂ denotes the exchange involution), and where in each case the in-
dicated involutions are obtained after a further application of Morita equivalence.
We call Nil[A, σ] := {P ∈ XF | signP ≡ 0} the set of nil-orderings of (A, σ). It
depends only on the Brauer class of A and the type of σ. In addition it is clopen

in XF [1, 6.5]. We write X̃F := XF \Nil[A, σ].
Definition 1. Let h ∈ W (A, σ), P ∈ XF and MP as in (⋆). The M-signature of

h at (P,MP ) is defined by signMP

P h := signP (MP (h ⊗ FP )) and is independent
of the choice of FP .

If we choose a different Morita map M ′
P in (⋆), then sign

M
′

P

P h = ± signMP

P h,
cf. [1, 3.4], which prompts the question if there is a way to make the M -signature
independent of the choice of Morita equivalence. It follows from [1, 6.4] and [2,
3.2] that:

Theorem 2. There exists H ∈ W (A, σ) such that signMP

P H 6= 0 for all P ∈ X̃F .

Definition 3. Let P ∈ X̃F , let MP be any Morita map as in (⋆), let H be as

in (2) and let δ ∈ {−1, 1} be the sign of signMP

P H . Let h ∈ W (A, σ). The H-

signature of h at P is defined by signHP h := δ signMP

P h. If P ∈ Nil[A, σ], we set

signHP h := 0.

The H-signature at P is independent of the choice of Morita equivalence MP

and is a refinement of the definition of signature in [4], the latter not being defined
when σ becomes hyperbolic over A⊗F FP , cf. [1, 3.11]. The H-signature has many
pleasing properties, cf. [5, 4.1] for (iv) and [1, 3.6, 8.1] for the other statements:

Theorem 4.

(i) Let h be a hyperbolic form over (A, σ), then signHP h = 0.
(ii) Let h1, h2 ∈W (A, σ), then signHP (h1 ⊥ h2) = signHP h1 + signHP h2.

(iii) Let h ∈W (A, σ) and q ∈ W (F ), then signHP (q · h) = signP q · signHP h.
(iv) (Pfister’s local-global principle) Let h ∈ W (A, σ). Then h is a torsion form

if and only if signHP h = 0 for all P ∈ XF .
(v) (Going-up) Let h ∈ W (A, σ) and let L/F be an algebraic extension of ordered

fields. Then signH⊗L
Q (h⊗ L) = signHQ∩F h for all Q ∈ XL.

(vi) (Going-down: Knebusch trace formula) Let L/F be a finite extension of

ordered fields and let h ∈ W (A ⊗F L, σ ⊗ id). Then signHP (Tr∗A⊗FLh) =∑
P⊆Q∈XL

signH⊗L
Q h for all P ∈ XF , where Tr∗A⊗FLh denotes the Scharlau

transfer induced by the A-linear homomorphism idA⊗TrL/F : A⊗F L→ A.
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The pair (ker signP , ker sign
H
P ) is a prime m-ideal of the W (F )-module W (A, σ)

whenever P ∈ X̃F in the following sense, cf. [2, 4.1]:

Definition 5. Let R be a commutative ring and let M be an R-module. An
m-ideal of M is a pair (I,N) where I is an ideal of R, N is a submodule of M ,
and such that I ·M ⊆ N .

An m-ideal (I,N) of M is prime if I is a prime ideal of R (we assume that all
prime ideals are proper), N is a proper submodule of M , and for every r ∈ R and
m ∈M , r ·m ∈ N implies that r ∈ I or m ∈ N .

We obtain a classification à la Harrison and Lorenz-Leicht, cf. [2, 5.5, 5.7]:

Theorem 6. Let (I,N) be a prime m-ideal of the W (F )-module W (A, σ).

(a) If 2 6∈ I, then one of the following holds:

(i) There exists P ∈ XF such that (I,N) = (ker signP , ker sign
H
P ).

(ii) There exist P ∈ XF and a prime p > 2 such that (I,N) =
(
ker(πp ◦

signP ), ker(π ◦ signHP )
)
, where πp : Z → Z/pZ and π : Im signHP →

Im signHP /(p · Im signHP ) are the canonical projections.
(b) If 2 ∈ I, then I = I(F ), the fundamental ideal of W (F ). Furthermore, a pair

(I(F ), N) is a prime m-ideal of W (A, σ) if and only if N is a proper submodule
of W (A, σ) with I(F ) ·W (A, σ) ⊆ N .

When 2 ∈ I, N is not uniquely determined by I (in contrast to the 2 6∈ I case),
since there are in general several proper submodules N of W (A, σ) containing
I(F )·W (A, σ), such as I(F )·W (A, σ) itself and I(A, σ), the submodule ofW (A, σ)
consisting of all classes of forms of even rank. In general I(F ) ·W (A, σ) 6= I(A, σ),
cf. [2, 5.8]. Also, I(A, σ) can be singled out by a natural property, cf. [2, 5.10].

The following result is [1, 7.2]:

Theorem 7. Let h ∈ W (A, σ). The total H-signature signH h : XF → Z, P 7→
signHP h is continuous (with respect to the Harrison topology on XF and the discrete
topology on Z).

Finally, we present some results from [3]. Let C(XF ,Z) denote the ring of

continuous functions from XF to Z and consider the group homomorphism signH :
W (A, σ) → C(XF ,Z), h 7→ signH h.

Theorem 8. For every f ∈ C(XF ,Z) there exists n ∈ N such that 2nf ∈ Im signH .
In other words, the cokernel of signH is a 2-primary torsion group.

Definition 9. The stability index of (A, σ) is the smallest k ∈ N such that

2kC(XF ,Z) ⊆ Im signH if such a k exists and ∞ otherwise. It is independent

of the choice of H . The group coker signH is up to isomorphism independent of
the choice of H . We denote it by SH(A, σ) and call it the stability group of (A, σ).

It follows from Theorems 4(iv) and 8 and from [6, 6.1] that

Theorem 10. LetWt(A, σ) denote the torsion subgroup ofW (A, σ). The sequence

0 // Wt(A, σ) // W (A, σ)
signH

// C(XF ,Z) // SH(A, σ) // 0
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is exact. The groups Wt(A, σ) and SH(A, σ) are 2-primary torsion groups.
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Université Catholique de Louvain
SST/ICT/INMA - Euler
Avenue Georges Lemaitre, 4-6
1348 Louvain-la-Neuve
BELGIUM

Dr. Philippe Gille

ENS Paris
45, rue d’Ulm
75005 Paris
FRANCE

Prof. Dr. Stefan Gille

Dept. of Mathematics & Statistics
University of Alberta
632 Central Academic Bldg.
Edmonton AB T6G 2G1
CANADA

Dr. David Maximilian Grimm

EPFL
SB IMB CSAG (Batiment MA)
Station 8
1015 Lausanne
SWITZERLAND

Prof. Dr. Detlev Hoffmann

Fakultät für Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44227 Dortmund
GERMANY

Dr. Nikita Karpenko

Département Mathématiques
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Université Catholique de Louvain
Chemin du Cyclotron, 2
1348 Louvain-la-Neuve
BELGIUM

Stephen Scully

Department of Mathematics
The University of Nottingham
Nottingham NG7 2RD
UNITED KINGDOM

Dr. Anastasia Stavrova

Dept. of Mathematics & Mechanics
St. Petersburg State University
Starys Petergof
Universitetsky Pt., 28
198 504 St. Petersburg
RUSSIAN FEDERATION

Prof. Dr. Venapally Suresh

Dept. of Mathematics & Computer
Science
Emory University
400, Dowman Dr.
Atlanta, GA 30322
UNITED STATES

Prof. Dr. Jean-Pierre Tignol

ICTEAM Institute
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