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Abstract. The Willmore functional evaluated on a surface immersed into
Euclidean space is given by the L2-norm of its mean curvature. The interest
for studying this functional comes from various directions. First, it arises in
applications from biology and physics, where it is used to model surface ten-
sion in the Helfrich model for bilipid layers, or in General Relativity where it
appears in Hawking’s quasi-local mass. Second, the mathematical properties
justify consideration of the Willmore functional in its own right. The Will-
more functional is one of the most natural extrinsic curvature functionals for
immersions. Its critical points solve a fourth order Euler-Lagrange equation,
which has all minimal surfaces as solutions.
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Introduction by the Organisers

In recent years there has been substantial progress concerning analytical and geo-
metrical questions related to the Willmore functional. Highlights include the study
of surfaces with square integrable second fundamental form, the compactness of
W 2,2-conformal immersions, the regularity of weak solutions of the Willmore equa-
tion and the resolution of the longstanding Willmore conjecture.

The aim of this mini-workshop was to bring together people involved in pro-
pelling the above mentioned research highlights. In particular, our intention was
to make a connection between the experts on minimal surfaces and corresponding
min-max techniques that were a crucial ingredient in the proof of the Willmore
conjecture, and the experts for the analysis developed for second order curvature
functionals such as the Willmore functional.
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For this purpose two mini-courses were delivered by Fernando Marques (Min-
max theory and the Willmore conjecture) and Tristan Rivière (The variations of
the Willmore Lagrangian, a parametric approach). Moreover, every participant
gave a talk, with plenty of time left for discussions.
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Abstracts

Min-max theory and the Willmore conjecture

Fernando Codá Marques

(joint work with André Neves, Imperial College - UK)

In 1965, T. J. Willmore conjectured that the integral of the square of the mean
curvature of any torus immersed in Euclidean three-space is at least 2π2. In this
series of three lectures we will describe a proof of this conjecture that uses the
min-max theory of minimal surfaces.

The Willmore conjecture can be reformulated as a question about surfaces in
the three-sphere because if π : S3 \ {(0, 0, 0, 1)} → R3 denotes the stereographic
projection and Σ ⊂ S3 \ {(0, 0, 0, 1)} is a closed surface, then

∫

Σ̃

H̃2dΣ̃ =

∫

Σ

(1 + H2)dΣ.

Here H and H̃ are the mean curvature functions of Σ ⊂ S3 and Σ̃ = π(Σ) ⊂ R3,
respectively. The quantity W(Σ) =

∫
Σ

(1 + H2) dΣ is then defined to be the

Willmore energy of Σ ⊂ S3. This energy is specially interesting because it has
the remarkable property of being invariant under conformal transformations of
S3. This fact was already known to Blaschke and Thomsen in the 1920s. The
Willmore Conjecture has received the attention of many mathematicians since the
late 1960s.

Our Main Theorem is:

Theorem A. Let Σ ⊂ S3 be an embedded closed surface of genus g ≥ 1. Then

W(Σ) ≥ 2π2,

and the equality holds if and only if Σ is the Clifford torus up to conformal trans-
formations of S3.

To each closed surface Σ ⊂ S3, we associate a canonical 5-dimensional family
of surfaces in S3 with area bounded above by the Willmore energy of Σ. This
area estimate follows from a calculation of A. Ros, a special case of the Heintze-
Karcher inequality. The family is parametrized by the 5-cube I5, and maps the
boundary ∂I5 into the space of geodesic spheres in a topologically nontrivial way
if genus(Σ) ≥ 1. The whole proof revolves around the idea of showing that the
Clifford torus S1( 1√

2
) × S1( 1√

2
) ⊂ S3 can be produced by applying min-max

theory for the area functional to the homotopy class of this family. One key point
is that, by a result of F. Urbano, the Clifford torus is the only non-totally geodesic
minimal surface in S3 with Morse index at most 5. After ruling out great spheres
by a topological argument, the proof of Theorem A then reduces to the following
statement about minimal surfaces in the three-sphere, also proven using min-max
methods:
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Theorem B. Let Σ ⊂ S3 be an embedded closed minimal surface of genus g ≥ 1.
Then area(Σ) ≥ 2π2, and area(Σ) = 2π2 if and only if Σ is the Clifford torus up
to isometries of S3.

The plan is to start with an overview of the argument. We will then proceed to
the construction of the canonical family and derivation of its main properties. We
will derive a key identity according to which the topological degree of the map that
gives the center of the spheres in the boundary of the family is equal to the genus
of the original surface. We will talk about the Almgren-Pitts min-max theory for
the area functional, and we will explain the topological argument that rules out
the possibility of producing great spheres by the min-max process. We will then
finish with the proofs of Theorems A and B.

References

[1] F. C. Marques, A. Neves Min-max theory and the Willmore conjecture, to appear in the
Annals of Mathematics, 1–96 (2012).

The variations of Willmore Lagrangian, a parametric approach

Tristan Rivière

(joint work with Yann Bernard, Laura Keller, Paul Laurain and Andrea
Mondino)

The course was divided into 3 main parts.
During the first hour we introduced the notion of weak immersions of two dimen-

sional manifolds and we presented some properties of this space, which happens
to be a Banach manifold. In particular we established the fact that to each weak
immersions corresponds a smooth conformal structure and the attached mapping
into the Teichmüller space is smooth. The ultimate goal of this first part was to
give an almost weak compactness result for sequences of weak immersions of closed
surfaces with uniformly bounded Willmore energy and controled conformal class.

The second part of the course was devoted to the first variations of Willmore
energy. After having recalled the classical Willmore equation we explained the
incompatibility of the equation with the notion of weak immersions. We then de-
rived a conservative form of the Willmore equation which this time makes sense
for weak immersions. The ultimate goal of this second hour was to present a
regularity result as well as a strong compactness result for weak Willmore immer-
sions which has been derived from the existence of additional conservation laws
for Willmore immersions and their interpretation in the light of integrabiity by
compensation theory. Combining the two first hours we can in particular deduce
the existence of Willmore minimizer under various constrained in the framework
of weak immersions (under fixed topology assumption, with prescribed conformal
class, with prescribed isoperimetric ratio for spheres and tori in R3, etc.).

The last part of the lecture was devoted to the blow-up analysis and the proof
of ”bubble tree” type convergences for sequences of Willmore surfaces with uni-
formly bounded energy and controlled conformal type. The ultimate goal of this
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third hour was to present a Willmore-energy quantization result for sequences
of Willmore immersions with uniformly bounded Willmore energy and controled
conformal class.

Most of the results presented in this mini-course have been obtained by the
lecturer in various collaborations together with Yann Bernard, Laura Keller, Paul
Laurain and Andrea Mondino.

Scherk’s surface and the large-genus limit of the Willmore Problem

Rob Kusner

Let αg be the infimal area for compact minimal surfaces of genus g embedded in S3,
and let βg be the infimum of the Willmore bending energy W (Σ) :=

∫∫
Σ

(1+H2)da

among all compact genus g surfaces Σ ⊂ S3. Clearly αg ≥ βg. Lawson’s [6]
minimal surfaces Σg = ξg,1 give 8π > αg ≥ βg (see [3]). Both αg (see [2]) and βg

(see [8, 4, 1]) are realized by surfaces of genus g. The solution [7] to the Willmore
Conjecture [9] gives α1 = β1 = 2π2, realized only by the Clifford torus or any of
its images under Möbius transformation; it also shows αg ≥ βg > 2π2 for g > 1.
For genus g > 1 it has been conjectured [3] that αg = βg = area(Σg). In the
large-genus limit it it is known [5] that αg, βg → 8π as g → ∞. It can also be
shown these smallest-area minimal surfaces subconverge as stationary varifolds to
the union of two great two-spheres S2 ⊂ S3, and it is conjectured these intersect
orthogonally along a great circle (and correspondingly for the W -minimizers, up
to Möbius transformation). In this talk we explained how a rescaling argument
using the Lawson surfaces shows βg ≤ αg ≤ 8π − c(π2 )/g + o(1/g) as g → ∞;
here c(θ) > 0 is a universal constant representing the “area deficit” (compared
with a pair of planes) for the singly-periodic Scherk minimal surface Sθ ⊂ R3 of
“wing” angle θ ∈ (0, π2 ]. We also showed c(θ) → 0 as θ → 0, and discussed why
c(θ) attains its maximum at θ = π

2 , lending evidence for the above conjectures, at
least, asymptotically.
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Two-dimensional curvature functionals with superquadratic growth

Ernst Kuwert

(joint work with Tobias Lamm and Yuxiang Li)

Let Σ be a two-dimensional, closed differentiable manifold and p > 2, hence

W 2,p(Σ,Rn) ⊂ C1,1− 2

p (Σ,Rn) by the Sobolev embedding theorem. On the open

subset of immersions W 2,p
im (Σ,Rn) we consider the two functionals

Ep(f) =
1

4

∫

Σ

(1 + |A|2)
p
2 dµg,

Wp(f) =
1

4

∫

Σ

(1 + |H |2)
p
2 dµg.

Here g denotes the first fundamental form with induced measure µg, A = (D2f)⊥

the second fundamental form, and H is the mean curvature vector. The main
result presented in the talk is:

Theorem Let f ∈ W 2,p
im (Σ,Rn) be a critical point of Wp or Ep, where 2 < p < ∞.

Then local graph representations of f are smooth.

In a graph representation, the Euler-Lagrange equations become fourth order el-
liptic systems, where the principal term has a double divergence structure. The
systems are degenerate, in the sense that in both cases the coefficient of the prin-
cipal term involves a (p− 2)-th power of the curvature, which a priori may not be
bounded. For the functional Wp(f), our first step towards regularity is an improve-
ment of the integrability of H . For this we employ an iteration based on a new
test function argument. More precisely, we solve the equation Lgϕ = |H |λ−1H
for appropriate λ > 1 and then insert ϕ as a test function. Here the operator
Lg =

√
det ggαβ∂2

αβ comes up in the principal term of the equation.

Unfortunately, the same strategy does not apply in the case of the functional
Ep(f), since then the corresponding operator is a full Hessian and hence the equa-
tion would be overdetermined. Instead we first use a hole-filling argument to show
power decay for the Lp integral of the second derivatives, and derive L2 bounds for
the third derivatives by a difference-quotient argument; these steps follow closely
the ideas of Morrey [4] and Simon [5]. In the final critical step we adapt a Gehring
type lemma due to Bildhauer, Fuchs and Zhong [1] as well as the Moser-Trudinger
inequality to get that the solution is of class C2.

As second issue we addressed the existence of minimizers for the functionals. By
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the compactness theorem of Langer [2], sequences of closed immersed surfaces

fk : Σ → Rn with Ep(fk) ≤ C subconverge weakly to an f ∈ W 2,p
im (Σ,Rn), after

suitable reparametrization and translation. In particular, we have existence of a
smooth Ep minimizer in the class of immersions f : Σ → Rn for p > 2. On the
other hand, boundedness of Wp(f) is not sufficient to guarantee the required com-
pactness. This is illustrated by joining two round spheres by a shrinking catenoid
neck, showing that the 8π bound in the following result is optimal.

Theorem Let Σ be a closed surface and fk ∈ W 2,p
im (Σ,Rn) be a sequence of

immersions with 0 ∈ fk(Σ) and

Wp(fk) ≤ C and lim inf
k→∞

1

4

∫

Σ

|Hk|2 dµgk < 8π.

After passing to fk◦ϕk for appropriate ϕk ∈ C∞(Σ,Σ) and selecting a subsequence,

the fk converge weakly in W 2,p(Σ,Rk) to an f ∈ W 2,p
im (Σ,Rn). In particular, the

convergence is in C1,β(Σ,Rn) for any β < 1 − 2
p and we have

Wp(f) ≤ lim inf
k→∞

Wp(fk).

For functionals with similar growth conditions the existence of minimizers was
proved in [3] in the setting of curvature varifolds.

A classical approach to the construction of harmonic maps, due to Sacks & Uh-
lenbeck, is by introducing perturbed functionals involving a power p > 2 of the
gradient. One motivation for our analysis is an analogous approximation for the
Willmore functional

W(f) =
1

4

∫

Σ

|H |2 dµg =
1

4

∫

Σ

|A|2 dµg + πχ(Σ).(1)

The Willmore functional does not satisfy a Palais-Smale type condition, since it
is invariant under the group of Möbius transformations. A suitable version of the
Palais-Smale condition is however valid for the functionals Ep and Wp with p > 2.
At the end of talk, we explained a concentration compactness alternative for the
limit p ց 0.
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Regularity theory for a class of critical Cauchy-Riemann-type PDE

and its relationship to harmonic maps and conformal immersions in

two dimensions

Ben Sharp

We will study a linear first order system, a connection ∂ problem, on a vector
bundle equipped with a connection, over a Riemann surface. We show optimal
conditions on the connection forms which allow one to find a holomorphic frame,
or in other words to prove the optimal regularity of our solution. The underly-
ing geometric principle, discovered by Koszul-Malgrange [4], is classical and well
known; it gives necessary and sufficient conditions for a connection to induce a
holomorphic structure on a vector bundle over a complex manifold. Here we ex-
plore the limits of this statement when the connection is not smooth and our
findings lead to a very short proof of Hélein’s regularity theorem for weakly har-
monic maps in two dimensions [2] as well as recovering an energy convexity result
of Colding-Minicozzi for small energy harmonic maps [1] and an estimate of Lamm
and Lin [5] concerning conformally invariant variational problems in two dimen-
sions. The main point of reference is [7].

It is well known that the complex derivative ∂u for harmonic maps u : Σ →
N from a Riemann surface into a closed Riemannian manifold solve a Cauchy
Riemann equation

(1) ∂u∗TN (∂u) = 0

where ∂u ∈ Γ(u∗TN ⊗ ∧(1,0)T∗
C

Σ) and ∂u∗TN is the induced covariant Cauchy
Riemann operator given by the pulled-back Levi Civita connection on N . Locally,
setting α := ∂u it reads

∂αi = −Γi
jkα

j ∧ αk

and we see that for weakly harmonic maps u ∈ W 1,2(Σ,N ) (so α ∈ L2) we have

that ∂α ∈ L1. Hence obtaining higher regularity is an issue from this point since
the L1 theory for singular integrals is not sufficient to induce a bootstrapping
argument.

This perspective has already been used in the context of the regularity the-
ory, by Frédéric Hélein [3], however in order to get (1) into the position where a
bootstrapping argument can be used, one is first required to consider only targets
with a trivial tangent bundle. This can be done by proving that there is a totally
geodesic embedding of any such N into a topological torus, thus enabling us to
make this assumption without loss of generality.

In contrast we study such first order equations in a more general form and prove
a regularity theorem in this setting, allowing us to side-step the technical issue of
trivialising the tangent bundle of N . Specifically we consider a rank m vector
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bundle over a Riemann surface, equipped with an L2 connection, respectively
(Em,Σ,∇), and sections α ∈ L2 ∩ Γ(E ⊗ ∧(1,0)T∗

C
Σ) solving

(2) ∂∇(α) = 0.

In what follows D ⊂ C denotes the unit disc and represents a piece of Σ over which
E is trivial. Our main result is the following

Theorem. Suppose locally the connection forms ωz ∈ L2(D, gl(m) ⊗ ∧1T∗R2)
satisfy the following condition: Given the unique forms ω̂ ∈ L2(D, u(m)⊗∧1T∗R2)
with ω̂z = ωz (one can always find these) then by a Hodge decomposition

ω̂ = da + ∗db

for a, b ∈ W 1,2(D, u(m)) and b|∂D = 0. We impose that ∇b ∈ L2,1 - the strongest
Lorentz space associated with L2. Then there exist ǫ,K > 0 such that whenever

‖ω‖L2 + ‖∇b‖L2,1 ≤ ǫ

there exists a change of frame S ∈ L∞ ∩W 1,2
loc (D,Gl(m,C)) such that

∂S = −ωzS

with

‖dist(S,U(m))‖L∞(D) ≤ Kǫ

and for any U
c→֒ D there exists some C = C(U) < ∞ such that

‖∇S‖L2(U) ≤ C‖ω‖L2.

Moreover on D, α solves

∂(S−1α) = 0

and we have α ∈ (L∞ ∩W 1,2)loc along with |α|2 ∈ h1(D) the local Hardy space.

There are counter-examples to this theorem if one relaxes the condition on ∇b
in the Lorentz space setting, thus the result is sharp in this sense.

As alluded to above, the hypotheses of this theorem are applicable to the study
of harmonic maps, and more generally critical points of any quadratic conformally
invariant elliptic Lagrangian in two dimensions - though in the latter setting one
is required first to apply results of Rivière [6] and Lamm-Lin [5]. Moreover if
one considers a (smooth, say) conformal immersion u of a disc into a Riemannian
manifold with finite area and bounded Willmore energy then its complex derivative
α = ∂u also solves an equation of the form (2). Under the added assumption that
the mean curvature H ∈ W 1,2 one can apply the theorem above.

We end by listing two fundamental theorems related directly to harmonic maps
that we recover from the above theorem, here B1 ⊂ R2 is the unit disc with the
flat metric.

Theorem (Hélein). Suppose u : B1 → N is a weakly harmonic map where N is
a Cl submanifold of Rm such that the second fundamental form is bounded with
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respect to the induced metric and l ≥ 2. Then for all β ∈ (0, 1) there exist ǫ = ǫ(N )
and C = C(N , β) such that if

‖∇u‖L2(B1) ≤ ǫ

then
[∇lu]BMO(B 1

2

) + ‖u‖Cl−1,β(B 1

2

) ≤ C‖∇u‖L2(B1).

We also recover the following Energy convexity theorem in [1], from which local
uniqueness of harmonic maps follows easily in two dimensions. The proof can be
found in [1, Appendix C] however now we can assume that N is C2 with bounded
second fundamental form and we do not need to make any assumptions on the
tangent bundle.

Theorem (Colding-Minicozzi). Let u, v ∈ W 1,2(B1,N ) and suppose that u is
weakly harmonic map where N is a C2 submanifold of Rm with bounded sencond
fundamental form. Then there exists some ǫ = ǫ(N ) such that if u− v ∈ W 1,2

0 and

‖∇u‖L2(B1) ≤ ǫ

then ∫

B1

|∇v|2 − |∇u|2 ≥ 1

2

∫

B1

|∇(v − u)|2.

References

[1] Tobias H. Colding and William P. Minicozzi, II. Width and finite extinction time of Ricci
flow. Geom. Topol., 12(5):2537–2586, 2008.
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Area comparison in manifolds with a lower bound on the scalar

curvature

Mario Micallef

(joint work with Vlad Moraru)

This was a report on a joint work with Vlad Moraru and on some recent devel-
opments by Moraru. I presented an area comparison theorem for totally geodesic
surfaces in 3-manifolds with a lower bound on the scalar curvature, which is an op-
timal analogue of a theorem of Heintze, Karcher and Maeda for minimal surfaces
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in manifolds with non-negative Ricci curvature. The theorem is optimal in the
sense that examples by Moraru show that it does not hold in manifolds of dimen-
sion greater than or equal to 4. The area comparison theorem provides a unified
proof of three splitting & rigidity theorems for 3-manifolds with lower bounds on
the scalar curvature that were first proved, independently, by Cai-Galloway (zero
case), Bray-Brendle-Neves (positive case) and Nunes (negative case).

Recently, Moraru established a rigidity theorem for manifolds of dimension ≥ 4
with a lower bound on the scalar curvature and which contain an area minimizing
hypersurface where area is equal to the lower bound in terms of the σ-constant
provided by a theorem of Cai-Galloway.

Dynamical stability and instability of Ricci-flat metrics

Reto Müller

(joint work with R. Haslhofer)

While Willmore surfaces are the critical points of the Willmore energy, an ex-
trinsic curvature functional, this talk is concerned with critical points of intrinsic
curvature functionals.

Let M be a compact manifold. A Ricci-flat metric on M is a Riemannian metric
with vanishing Ricci curvature. Ricci-flat metrics are fairly hard to construct, and
their properties are of great interest. They are the critical points of the Einstein-
Hilbert functional, E(g) =

∫
M

RgdVg and of Perelman’s λ-functional [5],

(1) λ(g) = inf
f∈C∞(M)∫
M

e−fdVg=1

∫

M

(
Rg + |∇f |2g

)
e−fdVg.

Obviously, they are also the fixed points of Hamilton’s Ricci flow,

(2) ∂tg(t) = −2Rcg(t),

In this talk, we are concerned with the stability properties of Ricci-flat metrics
under Ricci flow. This stability problem has previously been studied by Sesum
[6] and Haslhofer [3] under additional integrability assumptions, generalizing in
turn previous work by Guenther-Isenberg-Knopf [2]. In this talk, we show how the
integrability assumption of Sesum and Haslhofer can be removed. More precisely,
we prove the following results.

Theorem 1 (Dynamical stability, [4]). Let (M, ĝ) be a compact Ricci-flat man-
ifold. If ĝ is a local maximizer of λ, then for every Ck,α-neighborhood U of ĝ
(k ≥ 2), there exists a Ck,α-neighborhood V ⊂ U such that the Ricci flow starting
at any metric in V exists for all times and converges (modulo diffeomorphisms) to
a Ricci-flat metric in U .
Theorem 2 (Dynamical instability, [4]). Let (M, ĝ) be a compact Ricci-flat mani-
fold. If ĝ is not a local maximizer of λ, then there exists a nontrivial ancient Ricci
flow {g(t)}t∈(−∞,0] that converges (modulo diffeomorphisms) to ĝ for t → −∞.
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Perelman’s monotonicity formula for λ implies that the ancient Ricci flow ob-
tained in Theorem 2 must become singular in finite time and hence leaves any
Ck,α-neighborhood of ĝ.

Theorems 1 and 2 describe the dynamical behavior of the Ricci flow near a given
Ricci-flat metric. In fact, they show that dynamical stability and instability are
characterized exactly by the local maximizing property of λ, observing whether
or not λ ≤ 0 in some Ck,α-neighborhood of ĝ (k ≥ 2). The converse implications
follow immediately from Perelman’s monotonicity formula, i.e. if the conclusion of
Theorem 1 holds, then ĝ it is a local maximizer of λ; if the conclusion of Theorem
2 holds, then ĝ is not a local maximizer of λ.

Another related notion is linear stability, meaning that all eigenvalues of the
Lichnerowicz Laplacian Lĝ = △ĝ +2Rmĝ are nonpositive. If ĝ is a local maximizer
of λ, then it is linearly stable [1, Thm. 1.1]. If ĝ is linearly stable and integrable,
then it is a local maximizer of λ, c.f. [3, Thm. A].

In addition to applying to the more general nonintegrable case, the proofs that
we give here are substantially shorter than the previous arguments from [6, 3]. Our
main technical tool is the following  Lojasiewicz-Simon inequality for Perelman’s
λ-functional, which generalizes [3, Thm. B] to the nonintegrable case.

Theorem 3 ( Lojasiewicz-Simon inequality for λ, [4]). Let (M, ĝ) be a closed Ricci-
flat manifold. Then there exists a C2,α-neighborhood U of ĝ in the space of metrics
on M and a θ ∈ (0, 1

2 ], such that

(3) ‖Rcg + Hessgfg‖L2(M,e−fg dVg)
≥ |λ(g)|1−θ ,

for all g ∈ U , where fg is the minimizer in (1) realizing λ(g).

Theorem 3 can be used as a general tool to study stability and convergence
problems for the Ricci flow, and might thus be of independent interest. A key
step in our proofs of Theorems 1 and 2 is then to modify the Ricci flow by an
appropriate family of diffeomorphisms so that we can on the one hand exploit
the geometric inequality (3) and on the other hand retain the needed analytic
estimates.
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Some applications of W 2,2 conformal immersions to the Willmore

functional

Yuxiang Li

Let (Σ, h) be a Riemann surface without boundary. We define a W 2,2-conformal
immersion from (Σ, h) into Rn as follows:

Definition 1. A map f ∈ W 2,2(Σ, h,Rn) is called a conformal immersion, if

df ⊗ df = e2uh with ‖u‖L∞(Σ) < +∞.

We denote the set of all such immersions by W 2,2
conf (Σ, h,Rn). If f ∈ W 2,2

loc (Σ, h,Rn)

with df ⊗ df = e2uh and u ∈ L∞
loc(Σ), we say f ∈ W 2,2

conf,loc(Σ, h,Rn).

When f ∈ W 2,2
conf,loc(D \ {0},Rn), we proved in [K-L] the following:

Theorem 1. [K-L] Suppose that f ∈ W 2,2
conf,loc(D\{0},Rn) satisfies

∫

D

|Af |2 dµg < ∞ and µg(D) < ∞,

where gij = e2uδij is the induced metric. Then f ∈ W 2,2(D,Rn) and we have

u(z) = λ log |z| + ω(z) where λ ≥ 0, λ ∈ Z, ω ∈ C0 ∩W 1,2(D),

−∆u = −2λπδ0 + Kge
2u in D.

The density of f(Dσ) as varifolds at f(0) is given by λ + 1 for any small σ > 0.

Thus, when Σ is closed, a branched W 2,2-conformal immersion of (Σ, h) can be
defined as follows:

Definition 2. We say f : (Σ, h) → R
n is a branched conformal immersion or

f ∈ W 2,2
b,c (Σ, h,Rn), if we can find finite points p1, · · · , pm ∈ Σ, such that f ∈

W 2,2
conf,loc(Σ \ {p1, · · · , pm}, h,Rn) with

µ(f) +

∫

Σ

|Af |2dµf < +∞.

We can check that the Gauss-Bonnet formula and the Helein’s convergence
theorem [H] still hold for W 2,2-conformal immersion sequences. As an applica-
tion, we get in [K-L] the existence of conformally constrained minimizers in any
codimension below 8π. This is also obtained independantly in [R] by Rivière.

Further, using blowup analysis, we get the following:

Theorem 2. [C-L] Suppose that {fk} is a sequence of W 2,2 branched conformal
immersions of closed Riemann surfaces (Σ, hk) in Rn and hk is a smooth metric
with constant curvature. If fk(Σ) ∩BR0

6= ∅ for a fixed R0 and

sup
k

{µ(fk) + W (fk)} < +∞,
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then either {fk} converges to a point, or there is a stratified surface Σ∞ with

g(Σ∞) ≤ g(Σ), a map f0 ∈ W 2,2
b,c (Σ∞,Rn), such that a subsequence of {fk(Σ)}

converges to f0(Σ∞) in Hausdorff distance with

µ(f0) = lim
k→+∞

µ(fk) and W (f0) ≤ lim
k→+∞

W (fk).

For any η ∈ C∞
0 (Rn), we have

lim
k→+∞

∫

Σ

η(fk)dµfk =

∫

Σ∞

η(f0)dµf0 .

Moreover, if y1, . . . , ym ∈ fk(Σ) for all k, then y1, . . . , ym ∈ f0(Σ∞).

As an application, we proved that for any ǫ > 0, we can find an embedded
Willmore sphere S, which has at most 5 singularities, such that

W (S) ≤ 4π + ǫ.
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Min-max Theory in Geometry

André Neves

(joint work with Fernando Marques)

Min-max theory was first used in Geometry by Birkhoff in the 20’s to show
that every sphere admits a close embedded geodesic. Since then the technique
was explored to show that every sphere admits three closed embedded geodesics
(Lusternick and Shnirelmann), that every manifold of dimension no bigger than
eight admits a smooth embedded minimal hypersurface (Pitts and Schoen-Simon
for the regularity), and that every 3-sphere admits an embedded minimal sphere
(Simon-Smith).

Recently, Fernando and I used this technique to prove the Willmore conjecture
and, with Agol, we also used this technique to solve a conjecture regarding two
component links with least Mobius energy.

In the end, I mentioned my new result with Fernando Marques, where we show
that manifolds with dimension no bigger than eight having a metric of positive
Ricci curvature, admit an infinite number of minimal embedded hypersurfaces.
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A local rigidity result for the deSitter-Schwarzschild space

Ivaldo Nunes

(joint work with Davi Maximo)

In [6], Schoen and Yau made the important observation that the second varia-
tion formula of area provides an interesting interplay between the scalar curvature
of an orientable Riemannian three-manifold (M, g) and the topology of an ori-
entable compact stable minimal surface Σ ⊂ M . As a consequence, we have that
if (M, g) has nonnegative scalar curvature, then either Σ is a two-sphere or a
totally geodesic two-torus.

Motivated by the above, Cai and Galloway [2] proved that if (M, g) is a Rie-
mannian three-manifold with nonnegative scalar curvature and Σ is an embedded
minimal two-torus which is locally of least area (which is a condition stronger
than stability), then Σ is flat and totally geodesic, and M splits isometrically as
a product (−ǫ, ǫ) × Σ. The analogous rigidity result in the case where Σ has ei-
ther positive constant Gauss curvature or negative constant Gauss curvature were
recently proved in [1] and [5], respectively. We note that Micallef and Moraru [4]
have found an alternative argument to prove these splitting results.

Our local rigidity result for the deSitter-Schwarzschild space is inspired by the
above splitting results. The deSitter-Schwarzschild metrics are complete periodic
rotationally symmetric metrics on R× S2 with constant positive scalar curvature,
and have Σ0 = {0} × S2 as a strictly stable minimal two-sphere. They appear as
spacelike slices of the deSitter-Schwarzschild spacetime, which is a solution to the
vacuum Einstein equation with a positive cosmological constant. The deSitter-
Schwarzschild metrics constitute a one-parameter family of metrics {ga}a∈(0,1)

and, in our work, we scale each ga to have scalar cuvature equal to 2.
In [3], we begin by considering the general situation of a two-sided closed surface

Σ which is a critical point of the Hawking mass on a Riemannian three-manifold
(M, g) with R ≥ 2. We recall that the Hawking mass of a compact surface Σ ⊂
(M, g), denoted by mH(Σ), is defined as

mH(Σ) =

( |Σ|
16π

)1/2(
1 − 1

16π

∫

Σ

H2 dσ − Λ

24π
|Σ|
)
,

where H is the mean curvature of Σ and Λ = inf R. By writing the Euler-Lagrange
equation of the Hawking mass, we prove that whenever Σ has nonnegative mean
curvature then it must be minimal or umbilic with R = 2 and constant Gauss
curvature along Σ.

In particular, whenever (M, g) is the deSitter-Schwarzschild space (R× S
2, ga),

the above says that critical points of the Hawking mass are either minimal surfaces
of slices {r} × S2.

The above considerations are evidence that local maximum of the Hawking mass
in (R × S2, ga) must be slices. In our first result we show that slices are indeed
local maxima in the following sense:
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Theorem 1. Let Σr = {r} × S
2 be a slice of the deSitter-Schwarzschild manifold

(R × S2, ga). Then there exists an ǫ = ǫ(r) > 0 such that if Σ ⊂ R × S2 is an
embedded two-sphere, which is a normal graph over Σr given by ϕ ∈ C2(Σr) with
‖ϕ‖C2(Σr) < ǫ, one has

(i) either mH(Σ) < mH(Σr);
(ii) or Σ is a slice Σs for some s.

The proof follows by showing that the second variation of the Hawking mass at
each slice if strictly negative, unless the variation has constant speed, and using
this to argue maximality among surfaces that are graphs with small C2 norm over
the slice.

Our second result is a local rigidity result for the deSitter-Schwarzschild space
(R×S2, ga) which involves strictly stable minimal surfaces and the Hawking mass.
We prove:

Theorem 2. Let (M, g) be a Riemannian three-manifold with scalar curvature
R ≥ 2. If Σ ⊂ M is an embedded strictly stable minimal two-sphere which locally
maximizes the Hawking mass, then the Gauss curvature of Σ is constant equal to
1/a2 for some a ∈ (0, 1) and a neighborhood of Σ in (M, g) is isometric to the
deSitter-Schwarzschild metric ((−ǫ, ǫ) × Σ, ga) for some ǫ > 0.

The idea of the proof goes as follows. Let λ1(Σ) denote the first eigenvalue of
the Jacobi operator of Σ. The first step is to prove an infinitesimal rigidity along
Σ which is obtained as follows. Using the fact that Σ is strictly stable we get an
upper bound of the form

(1) (1 + λ1(Σ))|Σ| ≤ 4π.

On the other hand, the fact that Σ locally maximizes the Hawking mass implies
(1) with opposite sign. Therefore equality is achieved and from it the infinitesimal
rigidity is attained.

From this infinitesimal rigidity we next are able to construct a foliation of a
neighborhood of Σ by embedded constant mean curvature two-spheres {Σ(t) ⊂
M}t∈(−ǫ,ǫ), where Σ(0) = Σ. Finally, by using the properties of the foliation Σ(t)
we obtain, decreasing ǫ if necessary, a monotonicity of the Hawking mass along
Σ(t). In particular, we get that mH(Σ(t)) ≥ mH(Σ) for all t ∈ (−ǫ, ǫ). The rigidity
result then follows from this.
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A local regularity theorem for the network flow

Felix Schulze

(joint work with Tom Ilmanen, André Neves)

The network flow is the evolution of a network of curves under curve shortening
flow in the plane, where it is allowed that at triple points three curves meet under
a 120 degree condition. We present here a local regularity theorem for the network
flow, which is similar to the result of B. White, [1], for smooth mean curvature
flow.

In the statement of the following theorem k is the curvature of the evolving net-
work. We denote with Θ(x, t, r) the Gaussian density density ratio of radius r,
centered at the space-time point (x, t). By Huisken’s monotonicity formula this
a increasing function in r and the limit as r → 0 is called the Gaussian density

Θ(x, t). We denote with ΘS1 =
√

2π
e > 3

2 the Gaussian density of the centered

self-similarly shrinking circle.

Theorem. Let (γt)t∈[0,T ) be a smooth, regular network flow which reaches the
point x0 at time t0 ∈ (0, T ]. Let 0 < ε, η < 1. There exist C = C(ε, η) such that if

Θ(x, t, r) ≤ ΘS1 − ε

for all (x, t) ∈ Bρ(x0) × (t0 − ρ2, t0) and 0 < r < ηρ for some η > 0, where
(1 + η)ρ2 ≤ t0 < T . Then

|k|2(x, t) ≤ C

σ2ρ2

for (x, t) ∈
(
γt ∩B(1−σ)ρ(x0)

)
× (t0 − (1 − σ)2ρ2, t0) and all σ ∈ (0, 1).
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Constrained Willmore Surfaces

Yann Bernard

The seminal work [Ri1] of Tristan Rivière showed that in local conformal coordi-
nates, the Willmore operator may be recast in a conservative form (i.e. written as
the flat divergence of a suitable quantity). In the first part of the presentation, this
fact was derived from “first principles”. To do so, one considers an embedded sur-
face Σ ⊂ R3 with local coordinates {x1, x2} and described by a three-component

function ~Φ. We then consider a variation of the form

δ~Φ = B~n + Aj∂j~Φ ,

where ~n is the outward unit normal to Σ, and B and Aj are arbitrary. For any
subset Σ0 ⊂ Σ, one shows that there holds

(1) δ

∫

Σ0

H2dvolg =

∫

Σ0

[
BW + ∇j

(
H∇jB −B∇jH + H2Aj

)]
dvolg ,

where W is the Willmore operator

W := ∆gH + 2H(H2 −K) .

Specializing to rigid translations (which leave the Willmore energy unchanged)
begets a stress tensor

~T j := H∇j~n− ~n∇j ~H + H2∇j~Φ

satisfying

(2) ∇j
~T j = −W ~n .

This is the identity originally derived in [Ri1]. Similarly, a rigid rotation in (1)
yields a “torque” and an analogue of (2). Finally, one may also consider a dilation
to obtain yet another analogue of (2). Namely,

{
∇j

(
~T j × ~Φ + ~H ×∇j~Φ

)
= −W ~n× ~Φ

∇j

(
~T j · ~Φ) = −W n · ~Φ .

We then perform three Hodge decompositions1:




~T j = ∇j ~V + |g|− 1

2 ∂⊥
j
~L ; ∆g

~V = −W ~n

|g|− 1

2 ~L× ∂⊥
j
~Φ − ~H ×∇j~Φ = ∇j ~X + |g|− 1

2 ∂⊥
j
~R ; ∆g

~X = ∇j ~V × ∂j~Φ

|g|− 1

2 ~L · ∂⊥
j
~Φ = ∇jY + |g|− 1

2 ∂⊥
j S ; ∆gY = ∇j ~V · ∂j~Φ ,

for some ~L, ~R, and S. It can then directly be verified that2



− |g| 12 ∆gS = ∂j~n · ∂⊥
j
~R + |g| 12∇j

(
~n · ∇j ~X

)

− |g| 12 ∆g
~R = ∂j~n× ∂⊥

j
~R + ∂j~n ∂⊥

j S + |g| 12∇j

(
~n×∇j ~X + ~n∇jY

)

∂j

(
S ∂⊥

j
~Φ + ~R× ∂⊥

j
~Φ + |g| 12∇j~Φ

)
= |g| 12∇j

(
∇j ~X × ∂j~Φ + ∇jY ∂j~Φ

)
.

1∂⊥

1
:= −∂2 and ∂⊥

2
= ∂1.

2the last identity can be obtained through considering an “inversion” in (1).
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The second part of the presentation dealt with isolated branch points. We

consider a local immersion ~Φ : D2 \ {0} → R3 with

~Φ ∈ C0(D2) ∩ C∞(D2 \ {0}) and

∫

D2

|~I|2g dvolg < ∞ ,

where ~I is the second fundamental form. According to [KL] and [Ri2], we may

assume, after reparametrization if necessary, that ~Φ is conformal. Furthermore,
there exists a finite integer θ0 ∈ {1, 2, . . .} such that locally around the singularity
at the origin, there holds

|~Φ|(x) ≃ |x|θ0 and |∇~Φ|(x) ≃ |x|θ0−1 .

We then specialize to the class of constrained Willmore immersions satisfying the
equation

(3) W = − e−2λℜ
(
H0f

)
on D2 \ {0} ,

where λ is the conformal parameter, H0 is the Weingarten operator, and f is some
integrable anti-holomorphic function given, in general, independently of the geo-
metric data. Such immersions include as examples Willmore immersions (with
f ≡ 0) and CMC immersions (f = e2λHH0, anti-holomorphic owing to the
Codazzi-Mainardi identity). Constrained Willmore immersions also occur as lim-
its of Palais-Smale sequences for the Willmore functional [BR1]. The constrained
Willmore equation (3) is satisfied by the critical points of the Willmore energy
restricted to a fixed conformal class [BPP, KS, Ri2, S]. This prompts us in par-
ticular to refer to the anti-holomorphic function f in (3) as Lagrange multiplier.

In [B], it was observed that

ℜ(H0f)~n = div
(
e−2λM [f ]∇⊥~Φ

)
where M [u] :=

(
−ℑ(u) ℜ(u)
ℜ(u) ℑ(u)

)
.

Using the aforementioned observation on the operator W , the constrained Will-
more equation thus reads

div
(
∇ ~H + H2∇~Φ −M [e−2λf − 2HH0]∇⊥~Φ

)
= ~0 on D2 \ {0} .

Defining the first residue

~β0 :=
1

2π

∫

∂D2

~ν ·
(
∇ ~H + H2∇~Φ −M [e−2λf − 2HH0]∇⊥~Φ

)
,

where ~ν is the outward unit normal to D2, enables us to infer the existence of ~L
satisfying

(4) ∇⊥~L := ∇ ~H + H2∇~Φ −M [e−2λf − 2HH0]∇⊥~Φ − ~β0∇ log |x| .
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Proceeding as above, one finds a pair (S, ~R) ∈ W 1,2(D2)2 which satisfy on the
whole unit-disk D2 the system

(5)





−∆S = ∇~n · ∇⊥ ~R + div
(
~n · ∇ ~X

)

−∆~R = ∇~n×∇⊥ ~R + ∇~n · ∇⊥S + div
(
~n×∇ ~X + ~n∇Y

)

−∆~Φ =
(
∇S −∇⊥Y

)
· ∇⊥~Φ +

(
∇~R−∇⊥ ~X

)
×∇⊥~Φ ,

while{
∆ ~X = − ~β0∇ log |x| × ∇~Φ

~X = ~0
;

∆Y = − ~β0∇ log |x| · ∇~Φ in D2

Y = 0 on ∂D2 .

Calling upon standard Wente-type estimates, one infers from the first two equa-

tions in (5) that ∇S and ∇~R must in Lp(D2) for all p < ∞. Moreover, using the
last equation in (5) along with

− 1

2
∆~n = div

(
~H ×∇⊥~Φ

)
− e2λK~n

yields that ∇~n lies in BMO(D2). Furthermore, we deduce a first asymptotic
behavior for the conformal immersion near the singularity3:

Proposition 1. There exists ~A := ~A1 + i ~A2 ∈ C3 with

~A1 · ~A2 = 0 , | ~A1| = | ~A2| 6= 0 , ~n(0) · ~A = ~0

and
~Φ = ℜ

(
~A zθ0

)
+ O1(|z|θ0+1−ǫ) ∀ ǫ > 0 .

In turn, since the Lagrange multiplier function f is anti-holomophic and inte-
grable, we may write it as f = aµz

µ + [C∞
anti-holo] for some coefficient aµ 6= 0 and

some integer µ ≥ −1. In particular, with ~A as in Proposition 1, we may write

e−2λf∂z~Φ = ∂z̄ ~Fµ + ~J

with ~Fµ :=
2aµ

θ0| ~A|2
~A

{
2 log |z| , µ = θ0 − 2

(µ + 2 − θ0)−1z µ+2−θ0 , µ 6= θ0 − 2

and ~J = O(|z|µ+2−θ0).
Note that (4) may be equivalently recast in the form

∂z̄
(
~H − ~β0 log |z| + ~Fµ − i~L

)
= −H2∂z̄~Φ − 2(HH0)∂z~Φ + ~J .

Setting

∂z̄ ~Q = −H2∂z̄~Φ − 2(HH0)∂z~Φ + ~J

gives rise to a meromorphic function

~E := ~H − ~β0 log |z| + ~Fµ − i~L− ~Q

with a pole at the origin of order

max{0, θ0 − 2 − µ} ≤ β ≤ θ0 − 1 .

3we introduce on D2 the complex coordinates z := x1 + ix2 and z̄ := x1 − ix2.
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We call the integer β the second residue at the origin. It is a decisive quantity:

Theorem 1. Locally around the singularity, there holds for all ǫ > 0:

~Φ = ℜ
(
~A zθ0 +

θ0−β∑

j=1

~Bjz
θ0+j + ~C|z|2θ0z−β

)
+ c0~β0|z|2θ0

(
log |z|2θ0 − 4

)

+ Oθ0−β+1

(
|z|2θ0−β+1−ǫ

)
,

where ~A is as in Proposition 1, while ~Bj, ~C, and c0 6= 0 are constants.
In particular, we have

~Φ ∈
⋂

p<∞

{
W 2,p , θ0 = 1

W θ0+2−β,p , θ0 ≥ 2

Furthermore, the mean curvature vector satisfies

~H = ℜ(~Cβ z
−β) + ~β0 log |z| + Oθ0−β−1(|z|1−β−ǫ) ∀ ǫ > 0 ,

for some constant ~Cβ ∈ C3.

In order to ensure the smoothness of the immersion through the branch point
at the origin, it is necessary (although not always sufficient) to demand that both

residues β and ~β0 vanish. Namely,

Theorem 2. Suppose that both residues vanish. Then

(i) if θ0 < µ + 2, the immersion is smooth across the branch point;
(ii) if θ0 = µ + 2, the immersion is Cθ0+1,1−ǫ ∀ ǫ > 0.

In the special case when there is no branch point at the origin, it is possible to
infer that

Corollary 1. Suppose the origin is a regular point (i.e. the immersive nature of
~Φ holds there). Then

(i) if the Lagrange multiplier f is regular at the origin (µ ≥ 0), the immersion
is smooth;

(ii) if the Lagrange multiplier f is singular at the origin (µ = −1), the immer-
sion is C2,1−ǫ ∀ ǫ > 0.

Finally, these results apply to specific types of constrained Willmore immersions
so as to yield:

Corollary 2. (i) A CMC immersion has vanishing residues. It is thus smooth
across branch points and regular points alike.

(ii) A Willmore immersion is smooth across regular points. It is smooth across
a branch point if both corresponding residues vanish (see [BR2]).

Amongst others, these results are contained in the article [B].
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A Li-Yau type inequality for free boundary surfaces with respect to

the unit ball

Alexander Volkmann

A classical inequality due to Li and Yau [5] states that for a closed immersed
2-surface F : Σ → Rn the Willmore energy W(F ), given by

W(F ) :=
1

4

∫

Σ

H2 dH2
F∗δ,

can be bounded from below by 4π times the maximum multiplicity of the surface.
Here, the mean curvature H is defined to be the trace of the second fundamental
form, and H2

F∗δ denotes the 2-dimensional Hausdorff measure with respect to F ∗δ,
the pullback metric of the euclidean metric in Rn along F .

In [6] Simon used a special test vector field in the first variation identity to
prove a monotonicity identity for closed immersed surfaces with square integrable
mean curvature, which as a corollary lead to a new proof of the Li-Yau inequality
(see also [4]).

In this talk we consider compact free boundary surfaces with respect to the unit
ball B in Rn, i.e. compact surfaces Σ ⊂ Rn, the boundaries ∂Σ 6= ∅ of which meet
the boundary ∂B of the unit ball B orthogonally. More precisely, we consider
integer rectifiable 2-varifolds µ in Rn of compact support Σ := spt(µ), Σ∩∂B 6= ∅,

with generalized mean curvature ~H ∈ L2(µ;Rn) such that

(1)

∫
divΣX dµ = −

∫
~H ·X dµ

for all vector fields X ∈ C1
c (Rn,Rn) with X ·γ = 0 on ∂B, where γ(x) = x denotes

the outward unit normal to B (the open unit ball in Rn). Furthermore, we assume
that µ(∂B) = 0.
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It follows from the work of Grüter and Jost [3] that µ has bounded first variation
δµ. Hence, by Lebesgue’s decomposition theorem there exists a Radon measure
σ = |δµ|xZ (Z = {x ∈ Rn : Dµ|δµ|(x) = +∞}) and a vector field η ∈ L1(σ;R3)
with |η| = 1 σ-a.e. such that

(2) δµ(X) =def

∫
divΣX dµ = −

∫
~H ·X dµ +

∫
X · η dσ

for all X ∈ C1
c (R3,R3). It easily follows from (1) that

spt(σ) ⊂ ∂B and η ∈ {±γ} σ-a.e..

We shall henceforth refer to such varifolds µ as free boundary varifolds (with
respect to the unit ball).

In case µ is given by a smooth embedded surface Σ (i.e. µ = H2
xΣ) η is the

outward unit conormal to Σ and σ = H1
x∂Σ, and we say that Σ is a free boundary

surface (with respect to the unit ball).
Inspired by the interpretation of Simon’s test vector field, a desingularized-cut-

off version of Y (x) = x−x0

|x−x0|2 , as the gradient of the Newtonian potential of R
2

evaluated in Rn, we use a desingularized-cut-off version of the gradient of the
Neumann Green’s function of the Laplacian with respect to the unit disk in R2,
evaluated in Rn to plug into equation (1).

From this we obtain a monotonicity identity for these surfaces, which is analo-
gous to Simon’s monotonicity identity [6].

Lemma. For x0 ∈ R
n consider the functions gx0

and ĝx0
given by

gx0
(r) :=

µ(Br(x0))

πr2
+

1

16π

∫

Br(x0)

| ~H |2 dµ +
1

2πr2

∫

Br(x0)

~H · (x − x0) dµ

and

ĝx0
(r) := gξ(x0)(r/|x0|)

− 1

π(|x0|−1r)2

∫

B̂r(x0)

(|x− ξ(x0)|2 + Px(x− ξ(x0)) · x) dµ

− 1

2π(|x0|−1r)2

∫

B̂r(x0)

~H · (|x− ξ(x0)|2x) dµ

+
1

2π

∫

B̂r(x0)

~H · x dµ +
µ(B̂r(x0))

π
,

for x0 6= 0, where ξ(x) := x
|x|2 , B̂r(x0) = Br/|x0|(ξ(x0)), and

ĝ0(r) = − 1

π
min(r−2, 1)µ(Rn) − min(r−2, 1)

2π

∫
~H · x dµ.
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Then for any 0 < σ < ρ < ∞ we have

1

π

∫

Bρ(x0)\Bσ(x0)

∣∣∣∣
1

4
~H +

(x − x0)⊥

|x− x0|2
∣∣∣∣
2

dµ

+
1

π

∫

B̂ρ(x0)\B̂σ(x0)

∣∣∣∣
1

4
~H +

(x− ξ(x0))⊥

|x− ξ(x0)|2
∣∣∣∣
2

dµ(3)

= (gx0
(ρ) + ĝx0

(ρ)) − (gx0
(σ) + ĝx0

(σ)),

where the second integral in (3) is to be interpreted as 0 in case x0 = 0. Here
(x − x0)⊥ := (x − x0) − Px(x − x0), where Px denotes the orthogonal projection
onto Txµ, the approximate tangent space of µ at x. In particular, g + ĝ is non-
decreasing.

As a consequence we obtain area bounds, and the existence of the density at
every point on the surface, that is for every x0 ∈ Rn the following quantity is well
defined

θ̃2(µ, x0) :=

{
limrց0

(
µ(Br(x0))

πr2 + µ(B̂r(x0))
π(|x0|−1r)2

)
;x0 6= 0,

limrց0
µ(Br(0))

πr2 .

As a limiting case of the monotonicity identity we obtain the following inequality.

θ̃2(µ, x0) ≤ 1

8π

∫
| ~H |2 dµ+

1

2π

∫
~H ·x dµ+

µ(Rn)

π
=

1

8π

∫
| ~H |2 dµ+

1

2π

∫
x·η dσ.

This inequality can be seen as a generalization of a sharp isoperimetric inequality
for free boundary minimal surfaces with respect to the unit ball in Rn due to
Fraser and Schoen [2, Theorem 5.4 & Corollary 5.5] to not necessarily minimal
surfaces. In this context we also mention the work of Brendle [1] in which the
author had used a similar idea to ours to generalize the Fraser-Schoen inequality
to higher-dimensional free boundary minimal surfaces with respect to the unit ball
in Rn.

The Willmore energy W(F ) of a smooth immersed compact orientable surface
F : Σ → Rn with boundary ∂Σ is given by

W(F ) :=
1

4

∫

Σ

H2 dH2
F∗δ +

∫

∂Σ

κg dH1
F∗δ,

where κg denotes the geodesic curvature of ∂Σ as a curve in Σ. For free boundary
surfaces with respect to the unit ball we have that

κg = Dτη · τ = Dτ (η · xx) · τ = x · η, (τ ∈ T (∂Σ), |τ | = 1)

hence the Willmore energy may be rewritten as

W(F ) =
1

4

∫

Σ

| ~H |2 dH2
F∗δ +

∫

∂Σ

x · η dH1
F∗δ,

which can also be made sense of for free boundary varifolds with respect to the
unit ball.

Finally, we have the following Li-Yau type theorem.
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Theorem. For any immersion F : Σ → R
n of a compact free boundary surface

with respect to the unit ball in Rn and the image varifold µ = θH2
xF (Σ), where

θ(x) = H0(F−1({x})), we have

H0(F−1({x, ξ(x)})) = θ̃2(µ, x) ≤ 1

2π
W(F ),

in particular

(4) W (F ) ≥ 2π,

and if
W (F ) < 4π,

then F is an embedding. Moreover, equality in (4) implies that F parametrizes a
round spherical cap or a flat unit disk.
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Gradient flow for the Möbius energy

Simon Blatt

In his 1991 paper [4], Jun O’Hara introduced the Möbius energy

E(Γ) :=

∫

Γ

∫

Γ

(
1

|y − x|2 − 1

dΓ(x, y)2

)
dH1(y)dH1(x)

for embedded curves Γ ⊂ R3, where dΓ(x, y) denotes the length of the shorter
arc connecting the two points x and y and H1 is the one-dimensional Hausdorff
measure. We want to discuss some recent results regarding the negative gradient
flow of this energy. We are looking at a smooth family of embedded closed curves
Γt, t ∈ [0,∞) which satisfies the evolution equation

(1) ∂⊥
t Γt = −HΓt ∀t ∈ [0, T )

where HΓt is the L2-gradient of the Möbius energy. Already Freedman, He, and
Wang [2] showed that this gradient can be expressed by

HΓ := 2 lim
ε→0

∫

Γ−Bε(x)

(
2
P⊥
τΓ(x)

(y − x)

|y − x|2 − κΓ(x)

)
dH1(x)

|y − x|2 .
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In the formula above τΓ stands for the unit tangent along Γ and P⊥
τΓ(x)

= id −
〈·, τΓ(x)〉τΓ(x) denotes the orthogonal projection of R3 onto the normal space of
Γ in x.

Due to the Möbius invariance of this energy and based on numerical experi-
ments, one expects that in general this flow develops singularities after finite or
infinite time. In this talk we analyze these singularities by constructing a blowup
profile.

The fundamental result is the following: There is an ε > 0 such that either the
solution of the gradient flow smoothly exists for all time or there exists a sequence
of times tj , radii rj → 0 and points xj ∈ Γtj such that

∫

Γtj
∩Brj

(xj)

∫

Γtj
∩Brj

(xj)

|τΓtj
(x) − τΓtj

(y)|2

|x− y|2 dH1(y)dH1(x) ≥ ε,

i.e. a small quantum of energy concentrates as we approach the singularity. Fur-
thermore, by picking the times tj and points xj a bit more carefully one can show
that the rescaled curves

Γ̃j :=
1

rj

(
Γtj − xj

)

satisfy

‖∂k
s γ̃j‖L∞ ≤ Ck

where γ̃j is an arc-length parametrization of Γ̃j . Hence, using Arzela-Ascoli’s

lemma we can choose a subsequence of Γ̃j converging locally smoothly to a limit

curve Γ̃∞, the blowup profile. Due to our construction, this profile will be properly
embedded, has finite Möbius energy, cannot be a straight line, and satisfies the
equation

(2) HΓ̃∞ ≡ 0.

In the last part of the talk, we discussed compact and non-compact planar solu-
tions of (2) using the following interpretation of this equation which is motivated
by the work of He [3]. In contrast to He’s approach, we do not explicitly use the
Möbius invariance of the energy:

Given two points x, y ∈ Γ there is either a unique circle or a straight line –
which we like to think of as a degenerate circle – going through x and y and being
tangent to Γ at x. Note that this is the same circle, used to define the integral
tangent-point energies. We denote by κΓ(x, y) the curvature vector of this circle
in x and set κΓ(x, y) = 0 if the tangent on Γ in x is pointing in the direction of y
– which is the curvature of the straight line. Since

κΓ(x, y) = 2
P⊥
τ(x)(y − x)

|y − x|2 ,

HΓ ≡ 0 is equivalent to

lim
ε→0

∫

Γ−Bε(x)

κΓ(x, y) − κΓ(x)

|y − x|2 H1(y) = 0
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Figure 1. This picture shows the two circles playing a role in
the geometric interpretation of the Euler-Lagrange equation of
the Möbius energy: The blue circle is the osculating circle at x
while the red circle is the circle going through x and y and being
tangent to Γ at x.

for all x ∈ Γ.
Using this geometric version of the equation, we can prove the following

Theorem 1. Let Γ ⊂ R2 be a properly embedded open or closed smooth curve of
bounded curvature which satisfies

H̃Γ := 2 lim
ε→0

∫

Γ∩(B 1

ε
(x)−(Bε(x))

(
2
P⊥
τΓ(x)

(y − x)

|y − x|2 − κΓ(x)

)
dH1(x)

|y − x|2 = 0.

Let furthermore x ∈ Γ be a point in which the curvature of Γ does not vanish, and
such that the open ball Bx whose boundary is the osculating circle on Γ satisfies
either Bx ∩ Γ = ∅ or Γ ⊂ Bx. Then Γ = ∂Bx, i.e. Γ agrees with its osculating
circle in x.

Since all planar curves except the straight lines have such a point x, we get

Theorem 2. The only properly embedded open or closed smooth curves Γ ⊂ R2

which satisfy H̃Γ are circles and straight lines.

In [1] it was proven that near local minimizers the flow exists for all time and
converges to a local minimizer on the same energy level as time goes to infinity.
Combining this with the argument above, we get that the flow for closed planar
curves exists for all time. A similar analysis of the asymptotic behavior for planar
curves finally leads to

Theorem 3. If Γ0 is a planar curve, the solution of (1) exists smoothly for all
time and converges to a circle as t → ∞.
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A frame energy for tori immersed in Rm: sharp Willmore-conjecture

type lower bound, regularity of critical points and applications

Andrea Mondino

(joint work with Tristan Rivière)

The purpose of the seminar is to present some recent results contained in [15]
regarding the Dirichlet energy of moving frames associated to tori immersed in
Rm, m ≥ 3. Moving frames have been played a key role in the modern theory of
immersed surfaces starting from the pioneering works of Darboux [5], Goursat [7],
Cartan [2], Chern [3]-[4], etc. (note also that in the book of Willmore [25], the
theory of surfaces is presented from Cartan’s point of view of moving frames, and
the recent book of Hélein [8] is devoted to the role of moving frames in modern
analysis of submanifolds; see also the recent introductory book of Ivey and Lands-
berg [10]). Indeed, due to the strong link between moving frames on an immersed
surface and the conformal structure of the underlying abstract surface, the impor-
tance of selecting a “best moving frame” in surface theory is comparable to fixing
an optimal gauge in physical problems (for instance for the study of Einstein’s
equations of general relativity it is natural to work in the gauge of the so called
harmonic coordinates, for the analysis of Yang-Mills equation it is convenient the
so called Coulomb gauge, etc.).

Before going to the description of the main results, we define the objects of our
investigation.

Let T2 be the abstract 2-torus and let ~Φ : T2 →֒ Rm,m ≥ 3, be a smooth immersion
(let us start with smooth immersions, then we will move to weak immersions).

One denotes with T ~Φ(T2) the tangent bundle to ~Φ(T2), a pair ~e := (~e1, ~e2) ∈
Γ(T ~Φ(T2)) × Γ(T ~Φ(T2)) is said a moving frame on ~Φ if, for every x ∈ T2, the

couple (~e1(x), ~e2(x)) is a positive orthonormal basis for Tx
~Φ(T2) (with positive

we mean that we fix a priori an orientation of ~Φ(T2) and that the moving frame
agrees with it).

Given ~Φ and ~e as above we define the frame energy as the Dirichelet energy of
the frame, i.e.

(1) F(~Φ, ~e) :=
1

4

∫

T2

|d~e|2 dvolg ,

where d is the exterior differential along ~Φ, dvolg is the area form given by the

immersion ~Φ, and |d~e| is the length of the exterior differential of the frame which

is given in local coordinates by |d~e|2 =
∑2

k=1 |d~ek|2 =
∑2

i,j,k=1 g
ij∂xi

~ek · ∂xj
~ek;

here ~u · ~v denotes the euclidean scalar product in Rm.
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By projecting on the normal and on the tangent spaces and using Gauss Bonnet
Theorem, the frame energy decomposes as

(2) F(~Φ, ~e) =
1

2

∫

T2

|~e1 · d~e2|2g dvolg +

∫

T2

| ~H |2 dvolg := FT (~Φ, ~e) + W (~Φ) ,

where ~H is the mean curvature vector and W is the Willmore functional (in our

convention W (S2) = 4π) and FT (~Φ, ~e) := 1
2

∫
T2 |~e1 · d~e2|2g dvolg, called tangential

frame energy, is the L2-norm of the covariant derivative of the frame with respect
to the Levi-Civita connection.

Let us observe that the frame energy F is invariant under scaling and un-
der conformal transformations of the pullback metric g, but not under conformal
transformations of Rm. Therefore, even if natural on its own, F can be seen as
a more coercive Willmore energy where the extra term FT prevents the degener-
ations caused by the action of the Moebius group of Rm and the degeneration of
the confomal class of the abstract torus. More precisely we have the the following
proposition.

Proposition 1. For every C > 0, the metrics induced by the framed immersions
in F−1([0, C]) are contained in a compact subset of the moduli space of the torus.

The proof of Proposition 1 is remarkably elementary and makes use just of the
Fenchel-Borsuk lower bound [6]-[1] on the total curvature of a closed curve in Rm.
Combining Proposition 1 with the celebrated results of Li-Yau [12] and Montiel-
Ros [16] on the Willmore conjecture, we manage to prove the following sharp lower
bound (with rigidity) on the frame energy.

Theorem 1. Let ~Φ : T2 →֒ Rm be a smooth immersion of the 2-dimensional torus
into the Euclidean 3 ≤ m-dimensional space and let ~e = (~e1, ~e2) be any moving

frame along ~Φ.
Then the following lower bound holds:

(3) F(~Φ, ~e) :=
1

4

∫

T2

|d~e|2 dvolg ≥ 2π2 .

Moreover, if in (3) equality holds then it must be m ≥ 4, ~Φ(T2) ⊂ Rm must be, up
to isometries and dilations in Rm, the Clifford torus

(4) TCl := S1 × S1 ⊂ R
4 ⊂ R

m ,

and ~e must be, up to a constant rotation on T (~Φ(T2)), the moving frame given by
( ∂
∂θ ,

∂
∂ϕ ), where of course (θ, ϕ) are natural flat the coordinates on S1 × S1.

Remark 1. Thanks to (2), in codimension one, the lower bound (3) follows by the
recent proof of the Willmore conjecture by Marques and Neves [13] using min-max
principle; the approach here is a more direct energy based consideratton. Indeed

from their result non just the frame energy, but the Willmore functional W (~Φ) is

bounded below by 2π2 for any smooth immersed torus, and W (~Φ) = 2π2 if and

only if ~Φ is a conformal transformation of the Clifford torus. Curiously, our lower
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bound seems to work better in codimension at least two, where it becomes sharp
and rigid; clearly, in codimension one it is not sharp because of the nonexistence
of flat immersions of the torus in R3 and because of the Marques-Neves proof of
the Willmore conjecture.
Let us also mention that Topping [24, Theorem 6], using arguments of integral
geometry (very far from our proof), obtained an analogous lower bound on an
analogous frame energy for immersed tori in S3 under the assumption that the
underlying conformal class of the immersion is a rectangular flat torus.

For variational matters. the framework of smooth immersions has to be relaxed
to a weaker notion of immersion introduced by the second author in [19] and de-
noted by E(T2,Rm). Let us remark that Proposition 1 and Theorem 1 holds for
weak immersions as well. In order to perform the calculus of variations of the
frame energy, we establish that F is differentiable in E(T2,Rm) and we compute
the first variation. As for the Willmore energy (as well as for many important
geometric problems as Harmonic maps, CMC surfaces, Yang Mills, Yamabe, etc.)
the equation we obtain is critical. It is therefore challenging to prove the regularity
of critical points of the frame energy.
Inspired by the work of Hélein [8] on CMC surfaces and of the second author on
Willmore surfaces [18] (see also [14] for the manifold case and [21] for a compre-
hensive discussion), in order to study the regularity of the critical points of the
frame energy we discover some new hidden conservation laws and we use them in
order to deduce an elliptic system involving Jacobian nonlinearities satisfyed by
the critical points of F . Thanks to this special form, using the theory of integrabil-
ity by compensation (for a comprehensive treatment see [20]), we are able to show
smoothness of the solutions of this critical system. The smoothness of the critical
points of the frame energy follows.

Finally we discuss an application of the tools developed here to the study of
regular homotopy classes of immersions, more precisely we prove that in each of
the two regular homotopy classes of tori immersed into R3 (for more details see
[22],[23],[9] and [17]) there exists a smooth minimizer of the frame energy F ; such
immersion can be seen as a natural representant of its own class.
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