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Abstract. High-dimensional problems appear naturally in various scientific
areas, such as PDEs describing complex processes in computational chemistry
and physics, or stochastic or parameter-dependent PDEs leading to determin-
istic problems with a large number of variables. Other highly visible examples
are regression and classification with high-dimensional data as input and/or
output in the context of learning theory. High dimensional problems cannot
be solved by traditional numerical techniques, because of the so-called curse
of dimensionality.

Such problems therefore amplify the need for novel theoretical and com-
putational approaches, in order to make them, first of all, tractable and,
second, offering finer and finer resolutions of relevant features. Paradoxically,
increasing computational power serves to even heighten this demand. The
wealth of available data itself becomes a major obstruction. Extracting es-
sential information from complex structures and developing rigorous models
to quantify the quality of information in a high dimensional context leads to
tasks that are not tractable by existing methods.

The last decade has seen the emergence of several new computational
methodologies to address the above obstacles. Their common features are the
nonlinearity of the solution methods as well as the ability of separating solu-
tion characteristics living on different length scales. Perhaps the most promi-
nent examples lie in adaptive grid solvers, tensor product, sparse grid and
hyperbolic wavelet approximations and model reduction approaches. These
have drastically advanced the frontiers of computability for certain problem
classes in numerical analysis.

This workshop deepened the understanding of the underlying mathemat-
ical concepts that drive this new evolution of computation and promoted
the exchange of ideas emerging in various disciplines about the handling of
multiscale and high-dimensional problems.



2180 Oberwolfach Report 39/2013

Mathematics Subject Classification (2010): 16xx (Numerical Analysis and Scientific Computing).

Introduction by the Organisers

Inherently high-dimensional problems appear naturally in various scienitific areas,
such as the Fokker-Planck and the Schrödinger equations as examples of PDEs
describing complex processes in computational chemistry and physics, or stochas-
tic or parameter-dependent PDEs leading to deterministic problems with a large
number of variables. Complex scientific models like climate models, of turbulence,
fluid structure interaction, nanosciences and reliability control, demand finer and
finer resolution in order to increase reliability. This demand is not simply solved by
increasing computational power. Indeed, higher computability even contributes to
the problem by generating wealthy data sets for which efficient organization prin-
ciples are not available. Extracting essential information from complex structures
and developing rigorous models for quantifying the quality of information is an
increasingly important issue. This manifests itself through recent developments in
various areas.

The mathematical methods emerging to address these problems have to exploit
in a much more subtle way the structure of the problem in order to extract the
necessary information. They have several common features including the ques-
tion whether the underlying objects have a sufficiently small information content,
how this content might be accessible through certain sparse representations, the
nonlinearity of the solution methods as well as the ability of separating solution
characteristics living on different length scales. Having to deal with the appearance
and interaction of local features at different levels of resolution has, for instance,
brought about spatially adaptive methods as a key methodology that has advanced
the frontiers of computability for certain problem classes in numerical analysis.

A related but different concept for managing the interaction of different length
scales centers on wavelet bases and multilevel decompositions. In the very spirit
of harmonic analysis they allow one to decompose complex objects into simple
building blocks that again support analyzing multiscale features. However, for
high-dimensional problems, wavelets are not the only answer although they may
serve as a reference for classical representations.

While this ability was exploited first primarily for treating explicitly given ob-
jects, like digital signals and images or data sets, the use of such concepts for
recovering also implicitly given objects, like solutions of partial differential or
boundary integral equations, has become a major recent focus of attention. The
close marriage of discretization, analysis and the solution process based on adaptive
wavelet methods has led to significant theoretical advances as well as new algorith-
mic paradigms for linear and nonlinear stationary variational problems. Through
thresholding and best N -term approximation based on wavelet expansions, con-
cepts from nonlinear approximation theory and harmonic analysis become practi-
cally manageable. In our opinion, these ideas have opened promising perspectives
not only for signal and image processing but also for the numerical analysis of
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differential and integral equations covering, in particular, such operator equations
with high dimensional deterministic or stochastic parameter dependence. For the
latter, smooth dependence of the solution on the parameters can be exploited for
achieving highly efficient approximations.

These various concepts have developed relatively independently of one another.
Our previous Oberwolfach Workshops “Wavelet and Multiscale Methods” held in
July 2004, August 2007 and August 2010 sought to bring various disciplines utiliz-
ing multiscale techniques together by inviting leading experts and young emerging
scientists in areas that rarely interact. Those workshops not only accelerated the
advancement of nonlinear and multiscale methodologies but also provided benefi-
cial cross–fertilizations to an array of diverse disciplines which participated in the
workshop, see the Oberwolfach Reports 34/2004, 36/2007 and 33/2010. Among
the several recognizable outcomes of the workshops were: (i) the emergence of com-
pressed sensing as an exciting alternative to the traditional sensing-compression
paradigm, (ii) fast online computational algorithms based on adaptive partition
for mathematical learning, (iii) clarification of the role of coarsening in adaptive
numerical methods for PDEs, (iv) injection of the notion of sparsity into stochastic
models to identify computational paradigms that are more efficient than Monte
Carlo techniques.

One of the main objectives of this workshop was to foster synergies by the inter-
action of scientists from different disciplines resulting in more rapid developments
of new methodologies in these various domains. It also served to bridge theoretical
foundations with applications, such as mathematical finance, quantum chemistry,
signal and image processing, complex fluid flows. Examples of conceptual issues
that were advanced by our workshop were:

• adaptive and nonlinear multilevel methods for high-dimensional PDEs;
• multilevel and high dimensional meshless methods;
• Convergence of low-rank tensor approximations to solutions of high-dimen-
sional PDEs;

• adaptive treatment of nonlinear and time–dependent variational problems;
• interaction of different scales under nonlinear mappings;
• convergence theory and analysis for model reduction;
• extension of model reduction methods to unsymmetric, indefinite and sin-
gularly perturbed problems;

• polynomial interpolation and adaptive quadrature in high dimensions;
• uncertainty quantification and stochastic inversion;
• regularity of solutions to stochastic differential equations;
• high dimensional dynamical systems for modeling flocking and consensus
formation;

• harmonic analysis and frames on general compact domains and manifolds.

The workshop had large success in bringing together researchers from diverse
disciplines who rarely see one another but have common interest in high dimen-
sional problems and their numerical treatment. This led to a lot of interesting
discussions and new ideas that will surely be pursued over the next years.
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In summary, we feel that the conceptual similarities that occur in these diverse
application areas suggest a wealth of synergies and cross–fertilization. These con-
cepts are in our opinion not only relevant for the development of efficient solution
methods for large scale and inherently high-dimensional problems but also for
the formulation of rigorous mathematical models for quantifying the extraction of
essential information from complex objects in many dimensions.

As in the previous workshops, the participants are experts in areas like nonlin-
ear approximation theory (e.g., Cohen, Dahmen, DeVore), statistical learning the-
ory (e.g., Kerkyacharian, Picard), tensor approximations (Grasedyck, Hackbusch,
Oseledets, Schneider, Yserentant), sparse grids (e.g., Harbrecht, Schwab), finite el-
ements (e.g., Oswald, Stevenson), convergence of adaptive methods (e.g. Dahlke,
Stevenson), spectral methods (e.g., Canuto), harmonic analysis and wavelets (e.g.,
Cohen, Dahmen, Petrushev, Schneider), strongly nonlinear DPEs in high dimen-
sions (e.g., Süli), numerical fluid mechanics and conservation laws (e.g., Müller,
Popov, Tadmor), inverse problems (e.g., de Mol), multiscale modeling (e.g., Müller,
Ohlberger, Tadmor), parameter-dependent PDE-constrained control problems (e.g.,
Kunoth), model reduction and reduced basis functions (e.g., Dahmen, Grepl,
Ohlberger, Urban, Wojtaszczyk), stochastic PDEs and regularity of their solutions
(e.g., Dahlke, Larsson, Nobile, Schwab), modeling flocking and consensus forma-
tion processes (e.g. Fornasier, Tadmor) and tractability of multivariate problems
(Wozniakowski).
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Abstracts

Space-time sparse tensor Petrov-Galerkin discretization of parabolic

evolution equations

Roman Andreev

Introduction.

The main novel contribution of this work is the construction of practical algo-
rithms for the stable solution of linear parabolic evolution equations in space-time
sparse tensor product finite element spaces that are specified a priori. Further-
more, we propose efficient multilevel preconditioners. All results are reflected in
numerical experiments.

Sparse-tensor discretizations of parabolic evolution equations were considered
in [4], but were not shown to be stable; on the other hand, space-time adaptive
wavelet discretizations of [5] are optimal in terms of work and accuracy, but require
Riesz bases of wavelet type that are difficult to construct in practice, especially on
non-trivial domains.

Main theoretical results are given in [1]. For details, as well as further references
we refer to [2]. A concise modular Matlab implementation is described in [3].

Model problem. Let D be an open, connected, nonempty and bounded subset
of Rd with a locally Lipschitz continuous boundary ∂D, and J = (0, T ) a bounded
nonempty temporal interval. We will have T := 2. Consider the linear parabolic
evolution equation ∂tu(t, x) − ∇ · (a(t, x)∇u(t, x)) = f(t, x), (t, x) ∈ J ×D, with
the initial condition u(0, x) = g(x), x ∈ D, and boundary condition u(t, x) = 0,
(t, x) ∈ J × ∂D. Here and in the following, ∇· and ∇ denote the divergence and
the gradient with respect to the spatial variable x. To formalize the equation, we
introduce the Lebesgue/Sobolev spaces H := L2(D) and V := H1

0 (D), and define
the Bochner spacesX := L2(J ;V )∩H1(J ;V ′) and Y := H×L2(J ;V ). Recall that
X embeds continuously into C0([0, T ];H). We write (·, ·) for the scalar product on
H and for the duality pairing on V ′×V . We define the family of symmetric linear
operators A(t) : V → V ′, a.e. t ∈ J , by (A(t)χ)(χ) :=

∫
D
a(t, x)∇χ(x) · ∇χ(x)dx,

χ ∈ C∞
0 (D). If a ∈ L∞(J × D) is uniformly positive, f ∈ L2(J ;V ′) and g ∈

H , a well-posed space-time (variational) formulation of the parabolic evolution
equation is given by: find u ∈ X such that Bu = F in Y ′, where B : X → Y ′

and F ∈ Y ′ are defined by (Bw)(v) :=
∫
J (∂tw + Aw, v1)dt + (w(0), v0), and

Fv :=
∫
J
(f, v1)dt+ (g, v0), for all w ∈ X and (v0, v1) ∈ Y .

Discretization framework. We describe the stable approximate resolution of
Bu = F . Assume that subspaces XL ⊂ X and YL ⊂ Y satisfy the so-called dis-
crete inf-sup condition γL := inf‖wL‖X=1 sup‖vL‖Y =1(BwL)(vL) > 0. In this con-

text, wL, resp. vL, range in XL \{0}, resp. YL \{0}. The minimal residual discrete
solution is defined as uL := uL(F ) := argminwL∈XL

RF (wL), where RF (wL) :=
sup‖vL‖Y =1 |(F − BwL)(vL)|, wL ∈ XL. One can show that F 7→ uL(F ) is linear

and continuous, the quasi-optimality estimate ‖u − uL‖X ≤ γ−1
L ‖B‖‖u − wL‖X ,
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wL ∈ XL, holds. Given bases on Φ ⊂ XL and Ψ ⊂ YL, define the Gram matrices
B := (BΦ)(Ψ), M := (Φ,Φ)X , N := (Ψ,Ψ)Y and the vector F := FΨ. Expand-
ing uL = Φ⊤u in terms of the basis Φ, the minimal residual discrete solution is
obtained from B⊤N−1Bu = B⊤N−1F. The (symmetric positive definite) matrix
B⊤N−1B can be preconditioned with M−1, and the resulting condition number is
bounded by γ−2

L ‖B‖2, motivating the application of the conjugate gradient method
for the iterative solution.

Main results. We now discuss how discrete trial and test spaces XL ⊂ X and
YL ⊂ Y satisfying the discrete inf-sup condition γL > 0 can be constructed. To
that end, for each integer L ≥ 0, let {0, T } ⊂ TL ⊂ [0, T ] be a temporal mesh con-
sisting of 2L+1 + 1 equispaced nodes. Let EL ⊂ H1(J), resp. E′

L ⊂ L2(J), be the
space of piecewise affine continuous, reps. piecewise constant, functions on TL. Let
VL ⊂ VL+1 ⊂ V be a sequence of finite-dimensional nested subspaces whose union

is dense in V . We assume that κ := infL≥0

[
inf‖χ′

L‖V ′=1 sup‖χL‖V =1(χ
′
L, χL)

]
,

is positive. This is, e.g., the case for continuous piecewise affine functions on a
quasi-uniform sequence of simplicial triangulations of a polygonal domain D.

ForM andN we will substitute computationally accessible spectrally equivalent
matrices. Let Pk : L2(J) → Ek, k ≥ 0, and Qℓ : H → Vℓ, ℓ ≥ 0, be orthogonal
projections. Then M is taken as the Gram matrix of the symmetric linear operator
M : X → X ′ given by M :=

∑
k,ℓ≥0(2

2ℓ + 22k−2ℓ)(Pk ⊗ Qℓ). The matrix N is
defined similarly.

Let now XL := EL ⊗ VL. Then there exists c > 0 such that the following holds
for any L ≥ 0:

a) For YL := VL × [EL+1 ⊗ VL] or YL := VL × [E′
L+1 ⊗ VL], one has γL ≥ cκ.

b) For YL := VL × [E′
L ⊗ VL] one has only conditional stability γL ≥ cCFLL

for CFLL := 2−(L+1)|t− s| sup‖χ′

L
‖V ′=1 ‖χL‖V . Note that this discretization, with

trapezoidal quadrature in time, exactly corresponds to the Crank-Nicholson time-
stepping scheme.

The estimates are illustrated in the following plots. These show the minimal
and the maximal singular values of the preconditioned system matrix for the case
a = 1 with continuous piecewise affine functions VL on a uniform partition of
D := (−1, 1) with 2L+1 − 1 inner nodes.

a) For YL := VL × [EL+1 ⊗ VL], or YL := VL × [EL ⊗ VL]:

b) For XL = VL ⊗ E2L with YL := VL × [E′
2L ⊗ VL], or XL = VL ⊗ EL with

YL := VL × [E′
L ⊗ VL]:



Multiscale and High-Dimensional Problems 2189

Space-time sparse tensor product. Another pair of discrete trial and test
spaces that satisfy the discrete inf-sup condition γL ≥ cκ > 0 are the space-
time sparse tensor product subspaces XL :=

∑
k+ℓ≤L Ek ⊗ Vℓ and YL := VL ×∑

k+ℓ≤LEk+1 ⊗ Vℓ. To illustrate the potential of the space-time sparse tensor

product (STP) subspaces we consider the semi-linear parabolic evolution equation
∂tu(t, x)−∂xxu(t, x)+10u(t, x)3 = f(t, x) on the spatial domain D := (−1, 1) with
VL as above, for the non-separable source f(t, x) = sin(πt/2)2 cos(cos(πt/2) + x)
and with initial value g = 0. This equation can be cast into the operator form
Bu +G(u) = F , and we solve it by the fixed point iteration w 7→ uL(F −G(w)),
resulting in the sequence of discrete solutions for each i = 0, 1, . . .. We compare
the error in X with the corresponding solutions on the full tensor product (FTP)
subspaces in terms of the total number of degrees of freedom 1) for fixed i = 10
with L = 0, . . . , 7, and 2) for L = 0, . . . , 7 as a function of the number of fixed
point iterations i:

In particular, one observes the expected improved rate of the sparse-tensor
product solution, and a discretization-independent contraction rate in the fixed
point iteration.

Acknowledgment. Swiss NSF 127034 & ERC AdG 247277, held by Ch. Schwab,
ETH Zürich.
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Adaptive near–optimal rank tensor approximation for

high–dimensional operator equations

Markus Bachmayr

(joint work with Wolfgang Dahmen)

We consider a framework for the construction of iterative schemes for operator
equations that combine adaptive approximation in a basis and low-rank approx-
imation in tensor formats. Our starting point is an operator equation Au = f ,
where A : H → H′ is a bounded and elliptic linear operator, where H is a function
space on a product domain in potentially high dimension d. Assuming that a Riesz
basis of H is available, the original problem can be rewritten equivalently as a bi-
infinite linear system Au = f , where u, f ∈ ℓ2, and the infinite matrix A : ℓ2 → ℓ2
is bounded and continously invertible. In what follows, ‖·‖ always denotes the
norm on ℓ2.

Under the given assumptions, the Richardson iteration for the continuous prob-
lem un+1 = un − ω(Aun − f) is convergent for sufficiently small ω > 0. This is
the starting point for adaptive wavelet methods [3] that dynamically approximate
this ideal iteration by finite quantities. They exploit the approximate sparsity of
the coefficient sequences u, f , and of the operator A.

The new aspect here is that we make use of additional tensor product structure
of the problem. For this discussion, we assume H = H1 ⊗ · · · ⊗ Hd, and that we
have a tensor product Riesz basis {Ψν := ψν1 ⊗ · · · ⊗ ψνd}ν∈Nd of H. Note that
these assumptions can be relaxed, which is necessary e.g. for problems on Sobolev
spaces; the latter case, however, requires special care.

We now use a structured tensor format for coefficient sequences with respect to
{Ψν}. An example of a suitable tensor structure is the Tucker or subspace format,

(1) u =

∞∑

k1=1

· · ·
∞∑

kd=1

ak1,...,kd
U

(1)
k1

⊗ · · · ⊗U
(d)
kd
,

with the order-d core tensor a and orthonormal mode frames U
(i)
k ∈ ℓ2. An alter-

native that is also suitable for higher dimensions is the hierarchical Tucker format,
which amounts to a further recursive decomposition of the core tensor in (1), and
retains the important properties of the Tucker format. A common feature of both
formats is of particular interest for our purposes: near-best approximations by
lower-rank tensors, with controlled error in ℓ2-norm, can be computed by proce-
dures implementable by standard linear algebra routines. Concerning these and
related tensor representations, we refer to [4] and the references therein.

In the case of the Tucker format, the resulting approximation of u is of the form

u =

r1∑

k1=1

· · ·
rd∑

kd=1

ak1,...,kd

d⊗

i=1

( ∑

νi∈Λi⊂N

U
(i)
ki,νi

ψνi

)
.

This is a highly nonlinear type of approximation: besides the multiplicative non-
linearity in the tensor representation, we aim to adaptively and simultaneously
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determine suitable finite approximation ranks r1, . . . , rd (with additional ranks for
the decomposition of a in the hierarchical format), the active indices Λi for the
mode frames, and corresponding coefficients.

This is accomplished by a perturbed iteration

(2) un+1 = Rε1(n)Cε2(n)

(
un − ω(Aε3(n)(un)− fε3(n))

)
.

Here fε and Aε approximate f and the action of A, respectively, leading to an
implicit adjustment of approximation ranks and active basis indices; Rε yields a
recompressed low-rank approximation with error bound ε; and Cε is a coarsening
operation that eliminates basis indices corresponding to negligibly small coeffi-
cients.

A crucial aspect is that the latter operation needs to be performed by inspecting
only lower-dimensional quantities derived from the high-dimensional coefficient
sequence. To this end, we consider the lower-dimensional sequences

(π(i)(v))νi :=
( ∑

ν1,...,νi−1,
νi+1,...,νd

|vν1,...,νd |2
) 1

2

, i = 1, . . . , d,

whose entries, making use of orthonormality properties of the underlying tensor
format, can be computed efficiently [2]. Deleting the basis indices corresponding
to the smallest entries of the π(i)(v) yields a realization of Cεv with the desired
properties.

Under the present quite general assumptions, we can give a choice of parameters
for the iteration (2) that ensures its convergence. Under suitable further condi-
tions, we can obtain estimates for its complexity in dependence on the target accu-
racy as well. For such a result, we need appropriate approximability assumptions.
On the one hand, we assume that u, f , and A each have low-rank approximations
for which the error in ℓ2- and spectral norm, respectively, decays exponentially or
almost exponentially with the maximal rank in the respective representation. On
the other hand, we assume that the best N -term approximations for π(i)(f) and
π(i)(u) converge as N−s for some s > 0. This corresponds to approximate sparsity
of mode frames. Furthermore, we assume that the lower-dimensional factors in the
approximations of the operator have suitable wavelet compressibility properties.
These exemplary assumptions hold in a number of applications, see e.g. [1].

As our main result [2], we find that under these conditions, (2) produces uε

with ‖uε − u‖ ≤ ε using a number of operations that can be bounded by

C|ln ε|Kε− 1
s .

Here C and K are independent of ε, with only algebraic and logarithmic explicit
dependencies, respectively, on d; there may, however, be further dependencies on
d via the approximability of A, f , and u. In other words, up to a fixed polyloga-
rithmic factor we recover the complexity of approximating the lower-dimensional
tensor components of the solution. Moreover, assuming an appropriate dimension-
dependence of the required approximability estimates, the complexity of the iter-
ation has an algebraic dependence on d.



2192 Oberwolfach Report 39/2013

References

[1] M. Bachmayr. Adaptive Low-Rank Wavelet Methods and Applications to Two-Electron
Schrödinger Equations. PhD thesis, RWTH Aachen, 2012.

[2] M. Bachmayr and W. Dahmen. Adaptive near-optimal rank tensor approximation for
high-dimensional operator equations. arXiv:1304.7796 [math.NA], 2013.

[3] A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods II – beyond the
elliptic case. Foundations of Computational Mathematics, 2(3):203–245, 2002.

[4] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus, volume 42 of Springer
Series in Computational Mathematics. Springer-Verlag Berlin Heidelberg, 2012.

Instance optimality for hp-type approximation

Peter Binev

Adaptive approximation by piecewise polynomials can be generalized in differ-
ent ways. One of the most investigated forms of it, often used in finite element
methods (FEM), is the hp-approximation in which the local size of the elements
of the partition and the degree of the polynomials may vary but the total number
of degrees of freedom is controlled.

Given a domain D, we partition it using a fixed binary refinement scheme
and relate each partition to a binary tree T with root D and leaves L(T ) that
correspond to the elements of the partition. As usual, subdividing the element
corresponding to the node ∆ ∈ L(T ) into two is related to adding two nodes ∆′

and ∆′′ to the tree and connecting them to ∆. We referred to ∆ as ”parent” of
the new nodes ∆′ and ∆′′, called ”children” of ∆. Note that the binary tree T
should be admissible, namely, with the exception of the root for each node ∆ of T
its sibling is also in T .

We consider a sequence of polynomial spaces P1 ⊂ P2 ⊂ P3 ⊂ ... of orders
p = 1, 2, 3, ... and assume that the orders correspond to the numbers of degrees
of freedom introduced by the polynomial space. Evidently, in multidimensional
settings the order cannot correspond to the degree of the polynomial space. There
are two options to recommend in such cases: (i) to consider Pk to be a linear
combination of k monomials; or (ii) to set Pk = Pk−1 in case k is not high enough
to match the number of degrees of freedom of the next polynomial space of choice.

Given a tree T , we define an hp-tree T hp and an approximating space A(T hp)
by decorating each leave ∆ ∈ L(T ) with a polynomial space Pp(∆) of a node-specific

order p(∆). The complexity N = N (T hp) of the approximation by functions from
A(T hp) is set to be N (T hp) :=

∑
∆∈L(T ) p(∆).

Given a function f , we define its best hp-type approximation as

σn(f) := inf
N (T hp)≤n

inf
fn∈A(T hp)

Ef (fn) ,

where Ef (fn) = E(T hp) is the error of approximating f by fn.
The goal of this research is to examine hp-adaptive approximation and to estab-

lish for it results similar to the ones from [3] used in [2] and several other papers
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as an important ingredient in proving optimal rates of convergence for adaptive
FEM.

We assume that for any node ∆ ∈ T we can calculate the local error of approx-
imation ek(∆) by functions from Pk at the element of the partition corresponding
to ∆. We also assume that these errors satisfy the subadditivity condition that in
this setup is as follows:

ek(∆) ≥ ek+1(∆) for k ≥ 1 and e1(∆) ≥ e1(∆
′) + e1(∆

′′) ,

where ∆′ and ∆′′ are the children of ∆. A weaker assumption, similar to the one
considered in [3], can be handled using the same general ideas.

The total error E(T hp) is defined as

E(T hp) :=
∑

∆∈L(T hp)

ep(∆)(∆) .

Note that because of the subadditivity condition often the total error is not exactly
the norm of the difference f − fn. For example, in L2 we have to define Ef (fn) :=
‖f − fn‖2L2

.
We want to establish a coarse-to-fine algorithm that analyzes the errors at the

current tree T hp
N and decides how to define the next tree T hp

N+1 with the degrees
of freedom increased by one. To this end, we introduce the admissible binary
tree T h

N with root node D and number of leaves #L(T h
N ) = N . For each node

∆ ∈ T h
N define T h

N(∆) to be the maximal subtree of T h
N with root ∆. The order

p(∆) := #L(T h
N (∆)) of a node ∆ ∈ T h

N is defined as the number of leaves of the

tree T h
N (∆). Then for every subtree T of T h

N with root node D, the tree T hp
N is

defined by assigning the polynomial orders p(∆) for ∆ ∈ L(T ).
We have to show now how to define the tree T h

N and then how to choose its
subtree T in such a way that the error is as small as possible.

The first part of the algorithm follows the ideas from [3] and [1] and defines the
modified error functionals

ẽh(D) := e1(D) and ẽh(∆) :=

(
1

e1(∆)
+

1

ẽh(∆+)

)−1

,

where ∆+ is the parent of the node ∆ 6= D. Although these quantities are good
indicators how to grow the tree T h

N , they have to be further adjusted to take
into account the improvements of the approximation provided by the hp-option.
The adjusted quantities ẽ(∆) are defined below. We then grow T h

N to T h
N+1 by

subdividing the leaf ∆N ∈ L(T h
N ) with the largest ẽ(∆N ) = ẽN := max

∆∈L(T h
N
)
ẽ(∆).

In the second part of the algorithm we check in a fine-to-coarse manner which
subtree T of T h

N gives the smallest total error. We start with T = T h
N and set

ẽ(∆) := ẽh(∆) for all leaves ∆ ∈ L(T h
N ). In the course of the algorithm we observe

the dynamic quantities

Ehp(∆) :=
∑

∆′∈L(T h
N
(∆)∩T )

ep(∆′)(∆
′) ,
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where T is the current subtree. We examine level by level, starting from the
finest, the internal nodes ∆ of T and compare this quantity with ep(∆)(∆). If

ep(∆)(∆) < Ehp(∆), we make ∆ a leaf node of T by trimming all its descendants

and also modify ẽ(∆′) := ẽ(∆′)
ep(∆)(∆)

Ehp(∆)
for all ∆′ ∈ L(T h

N (∆)); otherwise we do

nothing at this step. It should be clear that after examining all the internal nodes
this algorithm will result in a subtree T and the corresponding decorated tree T hp

with minimal total error E(T hp) among all the subtrees T of T h
N . We denote this

optimal hp-tree by T hp
N .

It is important to note that once the tree T hp
N is found, it is not necessary to

repeat the second part of the algorithm in its entirety to obtain T hp
N+1 but only

to reexamine the quantities related to the node ∆, subdivided to receive T h
N+1

from T h
N , and all its ancestors. Therefore, the complexity of the algorithm varies

between O(N logN) for well balanced trees to O(N2) for highly unbalanced ones.
The analysis of the performance of the algorithm is based on the comparison of

the resulting tree T hp
N with the best possible hp-tree T ⋆

n with n degrees of freedom.

We set t := mink≤N ẽk and estimate in terms of t the errors Ehp(T hp
N ) from above

and Ehp(T ⋆
n) from below to obtain the following result.

Theorem. Let T hp
N is the tree received by the algorithm. Then for n ≤ N we have

Ehp(T hp
N ) ≤ N + n− 1

N − n+ 1
σn(f) .

Assuming that the calculation of each local error ek(∆) requires at most constant
number of operations, the complexity of the algorithm cannot exceed O(N2).

Acknowledgement: This work was supported by NSF grant DMS 1222390.
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Low-rank techniques applied to moment equations for the stochastic

Darcy problem with lognormal permeability

Francesca Bonizzoni

(joint work with Fabio Nobile, Daniel Kressner and Christine Tobler)

In many natural phenomena and engineering applications the problem data
are either incompletely known or contain a certain level of uncertainty due to
the material properties, boundary conditions, loading terms, domain geometry,
etc. One way to treat and include this uncertainty in the model is to describe
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the problem data as random variables or random fields, so that the deterministic
problem turns into a stochastic differential equation.

The solution of a stochastic differential equation is itself a random field u(ω)
with values in a suitable function space V . The description of the stochastic
solution requires the knowledge of its statistical moments. The simplest approach
is Monte Carlo Method, which however is very costly and performs a slow rate
of convergence, even if independent of the probability space dimension. As an
alternative, a generalized Polynomial Chaos Expansion of the stochastic solution,
coupled with a projection or interpolation strategy, may be considered. It exploits
the regularity of the solution in the random variable, but can not handle with high
dimensional probability spaces. We propose to derive the moment equations, that
is the deterministic equations solved by the probabilistic moments of the stochastic
solution.

We are interested in studying the fluid flow in a heterogeneous porous domain.
To model this phenomenon we consider the Darcy boundary value problem with
randomly varying permeability:

(1) −divx (a(ω, x)∇xu(ω, x)) = f(x)

where the forcing term is deterministic. A frequently used model in geophys-
ical applications [9, 8] describes the permeability as a lognormal random field:
a(ω, x) = eY (ω,x), Y (ω, x) Gaussian random field with standard deviation σ. Re-
cently it has appeared also in the mathematical community: see e.g. [4, 7, 6].

Under the assumption of small standard deviation σ, we expand the random
solution u(Y, x) in Taylor series in a neighborhood of E[Y ], and approximate u

using its Taylor polynomial TKu =
∑K

k=0
uk

k! . This approach is known as per-
turbation technique. We provide an a priori error bound which both predicts the
divergence of the Taylor series for any positive σ, and the existence of an optimal
degree Kσ

opt such that adding further terms to the Taylor polynomial will deterio-
rate the accuracy instead of improving it. Our theoretical findings are confirmed
by some numerical tests in the simple case where a single random variable is con-
sidered. The divergence of the Taylor series is strictly linked to the model we
have adopted. Indeed, if the permeability is described as a finite or infinite sum
of bounded random variables, then the convergence of the Taylor series has been
proved. [1, 5].

The Taylor polynomial is directly computable only in the finite-dimensional set-
ting, that is when Y (ω, x) is parametrized by a finite number of random variables.
In the infinite-dimensional setting the Taylor polynomial involves the Gateaux
derivatives of u with respect to Y , which are not computable. However, it is pos-

sible to derive the deterministic equations solved by E[TKu] =
∑K

k=0
E[uk]
k! , with

K ≤ Kσ
opt.

Starting from the stochastic problem (1) we derive the problem solved by E[uk]
for k = 0, . . . ,K and state its well-posedness. The solution of this k-th order
correction problem requires the solution of a recursion on the (l+1)-points corre-
lations E[uk−l⊗Y ⊗l], for l = 1, . . . , k. Each correlation E[uk−l⊗Y ⊗l] is defined on
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the tensorized domain D×(l+1), and solves a high dimensional problem, which we
prove to be well-posed and for which we show regularity results in mixed Hölder
spaces.

In the discrete setting, each correlation E[uk−l⊗Y ⊗l] is represented by a tensor
of order l + 1. The curse of dimensionality affects the recursion we are studying,
since the number of entries of a tensor grows exponentially in its order. To over-
come this problem, we propose to store and make computations between tensors in
a data-sparse or low-rank format. Of particular interest is the Tensor Train (TT)
format. A tensor in TT-format is represented as a linear combination of order
three tensors whose dimensions are called TT-ranks. We represent all correlations
E[uk−l⊗Y ⊗l] in TT-format so that the curse of dimensionality is greatly reduced.

We develop an algorithm in TT-format able to compute E[TKu], the K-th
order approximation of E[u]. In the simple one-dimensional case D = [0, 1] we
perform some numerical tests both to study the complexity of the algorithm and
the accuracy of the TT-solution. We compare the TT-solution with a collocation
or Monte Carlo solution.

A short version of this work can be found in [2], whereas all the details can be
found in [3].
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A multivariate approximation problem in statistics

Dietrich Braess

(joint work with Holger Dette)

The problem of constructing optimal designs for the discrimination of several
regression models is considered. You are given k real-valued functions fj(x) and
regression functions vj(x, θj) ⊂ Vj . Here fj arises from a priori information on a
model, and it is compared with the regression function of a different model. Some
components of f = (f1, . . . , fk) and some components of v = (v1, . . . , vk) may
coincide if they are involved in more than one comparison.

We consider designs that are defined as probability measures with finite support
on a compact interval X. If the design ξ has masses w1, . . . , wν at the distinct
points x1, . . . , xν , then observations are taken at these points with the relative
proportions given by the masses.

A design is considered as optimal if it is the solution of the max-min problem

max
ξ

min
θ

∫

X

∑

j

|fj(x) − vj(x, θj)|2dξ.

The min problem describes how good the functions fj can be approximated by the
regression function vj (that refers to a different model). A good approximation is
associated with a bad discrimination. Therefore we have the max-min problem.

Let 〈·, ·〉 be the inner product in Euclidean k-space and | · | be the associated
norm, and we write the max-min problem as

max
ξ

min
θ

∫

X

|f(x)− v(x, θ)|2dξ.

If the family V = ⊗Vj is linear or appropriate conditions are satisfied in the
nonlinear case, then there is no duality gap, i.e., the max-min problem and the
min-max problem have the same solution

max
ξ

min
θ

∫

X

|f(x)− v(x, θ)|2dξ

min
θ

max
ξ

∫

X

|f(x)− v(x, θ)|2dξ = min
θ

‖f(x)− v(x, θ)‖2.

Here ‖ · ‖ denotes the sup norm on X .
In the linear case there is a straight forward generalization of the classical theory

of univariate Chebyshev approximation [2].

——–Characterization Theorem Let f ∈ C(X)k and V be an n-dimensional
subspace of C(X)k. Set ε := f − u. The function u is a best approximation to f
in V if there exist ν ≤ n+1 points x1, x2, . . . , xν with |(f − u)(xi)| = ‖f −u‖ and
there are ν weights w1, w2, . . . , wν ≥ 0,

∑ν
i=1 wi = 1 such that the functional

ℓ(g) :=
1

‖ε‖

ν∑

i=1

wi 〈ε(xi), g(xi)〉
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satisfies

ℓ(ε) = ‖ε‖, ‖ℓ‖ = 1, and V ⊂ ker(ℓ).

The points xi become the sample points and the wi their weights.
The characterization theorem gives rise to the impression that the numerical

determination of the design ξ is easy, but the existing algorithms were known to
be successful only for k = 1 and k = 2. It is less known that this holds also for
a famous algorithm that is based on the equivalence theorem by Atkinson and
Fedorov [1]

A shortcoming of the characterization theorem is the fact that the cardinality
ν of the support of the design ξ is bounded from above by dimV + 1, but this
bound may be far from the actual number of support points that is often close to
maxj dimVj + 1. A real-life problem cited in [2, 3] has an optimal design with 4
points although the dimension of V is 15. The consequences are severe.

The approach to the solution of the approximation problem is usually by an
iteration. Each iteration step has two parts like the classical Remez algorithm for
univariate functions. Let u0 be a suboptimal approximation. In the first part the
extreme points, say x1, x2, . . . , xν , of the error function

|ε0| = |f − u0|
are chosen as candidates for the support. The second part with the improvement
of the parameters θ and v = v(·, θ) is the difficult one.

We describe a procedure of Newton type for the linear case. It applies similarly
to the gradient space in the nonlinear case. The minimization of the error at the
points xi by a correction v is given by

min
v∈V

max
1≤i≤ν

|(f − u0 − v)(xi)|2 = min
v∈V

max
1≤i≤ν

|ε0(xi)|2 − 2 〈ε0(xi), v(xi)〉+ |v(xi)|2}.

Now we proceed in the spirit of Newton’s method and drop the quadratic term to
obtain a linear program,

min
v∈V

max
1≤i≤ν

|ε0(xi)|2 − 2 〈ε0(xi), v(xi)〉}.

Unfortunately, the objective function is no longer bounden from below. The New-
ton corrections turn out to be useless. The difference between the number of
restrictions and the number of variables is so great that even a damping of the
correction does not help whenever k ≥ 3.

A partial improvement is obtained by performing the minimization successively
in the subspaces Vj instead of doing it at once in the entire space. The reduction
of the dimension yields linear programs with lower bounds. This is only a prepara-
tion, but it is an important one. It makes that the restrictions wi ≥ 0 are satisfied
in the following step without requiring them explicitly.

Since the original minimization problem is not suitable for the numerical so-
lution, we return to the max-min problem and consider a linearization of the
saddle point problem. The sample points xi are considered as fixed in this part of
the exchange algorithm, and we write the max-min problem with the correction
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v =
∑

j θjvj in matrix-vector notation

max
w

min
θ

{θ′A(w)θ − 2w′Rθ + b′w},

subject to the normalization e′w :=
∑

i wi = 1. The matrices A(w), R, and the
vector b can be found in [2]. In particular, the (inner) minimization for given w
gives rise to a linear equation. We compute the matrix A(w) for a guess of w and
obtain a linear saddle point problem




A −RT

−R e
eT








θ
w
λ



 =




0

− 1
2b
1



 .

Here λ is the Lagrange multiplier associated to the normalization of the weights.
This iterative procedure yields designs with an efficiency of 99.9% in 8 to 12

steps, i.e., we get optimal designs up to rounding errors. Moreover we get designs
with the right number of support.

Concluding remark. We returned successfully from the approximation prob-
lem to the max-min problem but not to a procedure that was motivated by the
equivalence theorem by Atkinson and Fedorov [1, 4].

————-
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High-dimensional adaptive sparse polynomial interpolation and

application for parametric and stochastic elliptic PDE’s

Moulay Abdellah Chkifa

(joint work with Albert Cohen and Christoph Schwab)

The numerical approximation of parametric partial differential equations is a
computational challenge, in particular when the number of involved parameter is
large. We considers a model class of second order, linear, parametric, elliptic PDEs
on a bounded domain D with diffusion coefficients depending on the parameters
in an affine manner. For such models, it was shown in [2] that under very weak
assumptions on the diffusion coefficients, the entire family of solutions to such
equations can be simultaneously approximated in the Hilbert space V = H1

0 (D)
by multivariate sparse polynomials in the parameter vector y with a controlled
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number N of terms. The convergence rate in terms of N does not depend on the
number of parameters in V , which may be arbitrarily large or countably infinite,
thereby breaking the curse of dimensionality. However, these approximation re-
sults do not describe the concrete construction of these polynomial expansions,
and should therefore rather be viewed as benchmark for the convergence analysis
of numerical methods. We present the polynomial interpolation process in high
dimension proposed in [4]. We show that the interpolation operator can be recur-
sively computed using a Newton-like interpolation formula in dimension 1. The
interpolation points are picked in a multi-dimensional grid based on a tensoriza-
tion of an infinite uni-dimensional sequence. We show through an analysis of the
Lebesgue constant that the stability of the interpolation process is very tied to
the choice of the infinite sequence. For instance, linear growth of the Lebesgue
constants is insured when the sequence is of type of the so-called ℜ-Leja sequence
studied in [3]. Numerical experiments are presented in large parameter dimension
and confirm the effectiveness of the process.
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Adaptive wavelet methods for SPDEs: Theoretical analysis and

practical realization

Stephan Dahlke

(joint work with P.A. Cioica, N. Döhring, S. Kinzel, F. Lindner, T. Raasch,
K. Ritter and R.L. Schilling)

We are interested in the numerical treatment of stochastic partial differential
equations (SPDEs) of the form

(1) du(t) = (A(u(t)) + F (t, u(t)))dt+ B(t, u(t))dWt,

on a bounded Lipschitz domain O ⊆ Rd, where W = (W (t))t∈[0,T ] is a cylindrical
Wiener process. These equations have important applications, e.g., in compu-
tational finance, epidemiology, population genetics and many others. We are in
particular concerned with adaptive numerical schemes based on wavelets. The first
step is the theoretical foundation of adaptive numerical methods for SPDEs. It is
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well–known that the order of approximation that can be achieved by adaptive and
other nonlinear methods is determined by the regularity of the exact solution in
the specific scale Bs

τ,τ (O), 1/τ = s/d+ 1/2, of Besov spaces. In contrast, the ap-
proximation order of nonadaptive (uniform) schemes is determined by the Sobolev
smoothness. Therefore, to justify the use of adaptive algorithms, sufficiently high
Besov regularity (in above scale), compared to the Sobolev smoothness has to be
established. It turns out that for linear SPDEs of the form:

(2) du(t) =

d∑

µ,ν=1

aµνuxµxν
dt+

∞∑

k=1

gk(t)dwk
t ,

this is indeed the case. To establish Besov regularity, the first step is to study
these equations in weighted Sobolev spaces. We consider the spaces

Hm
p,θ(O) :=

{
u : ρ|α|Dαu ∈ Lp(O, ρθ−ddx) for all α ∈ N

d with |α| ≤ m
}
,

where ρ is some distance to the boundary, and their stochastic counterparts

H
γ
p,θ(O, T ) := Lp

(
ΩT ,P ,P⊗ λ; Hγ

p,θ(O)
)
,

H
γ
p,θ(O, T ; ℓ2) := Lp

(
ΩT ,P ,P⊗ λ; Hγ

p,θ(O; ℓ2)
)
,

Uγ
p,θ(O) := Lp

(
Ω,F0,P;H

γ−2/p
p,θ+2−p(O)

)
.

Then we seek for solutions in the spaces:

H
γ
p,θ(O, T ) :=

{
u ∈ H

γ
p,θ−p(O, T ) : u(0, · ) ∈ Uγ

p,θ(O) and

du = f dt+
∞∑

κ=1

gκ dwκ
t for some

f ∈ H
γ−2
p,θ+p(O, T ), g ∈ H

γ−1
p,θ (O, T ; ℓ2)

}
,

The following theorem has been proved in [5]:

Theorem 1. Let γ ∈ R. For p ∈ [2,∞), there exists a constant κ0 ∈ (0, 1),
depending only on d, p, (aµν)1≤µ,ν≤d and O, such that for any θ ∈ (d + p − 2 −
κ0, d + p − 2 + κ0), g ∈ H

γ−1
p,θ (O, T ; ℓ2) and u0 ∈ Uγ

p,θ(O), Equation (2) has a

unique solution u in the class H
γ
p,θ(O, T ). For this solution

(3) ‖u‖p
H

γ

p,θ
(O,T )

≤ C

(
‖g‖p

H
γ−1
p,θ

(O,T ;ℓ2)
+ ‖u0‖pUγ

p,θ
(O)

)
,

where the constant C depends only on d, p, γ, θ, (aµν)1≤µ,ν≤d, T and O.

Based on this result, the following fact has been shown in [2]:

Theorem 2. Let g ∈ H
γ−1
2,θ (O, T ; ℓ2) and u0 ∈ Uγ

2,θ(O) for some γ ∈ N, where θ
fulfils

θ ∈ (d− κ0, d+ κ0),
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with κ0 from Theorem 1. Let u be the unique solution in the class H
γ
2,θ(O, T ) of

Equation (2) and assume furthermore that

(4) u ∈ L2

(
ΩT ; W

s
2 (O)

)
for some s ∈

(
0, γ ∧

(
1 +

d− θ

2

)]
.

Then, we have

u ∈ Lτ (ΩT ;B
α
τ,τ (O)),

1

τ
=
α

d
+

1

2
, for all α ∈

(
0, γ ∧ sd

d− 1

)
,

and the following estimate holds

(5) ‖u‖Lτ(ΩT ;Bα
τ,τ (O)) ≤ C

(
‖g‖

H
γ−1
2,θ (O,T ;ℓ2)

+ ‖u0‖Uγ
2,θ(O) + ‖u‖L2(ΩT ;W s

2 (O))

)
.

The constant C depends only on d, γ, α, s, θ, (aµν)1≤µ,ν≤d, T and O.

Generalizations to other kinds of noise such a multiplicative noise and to semi-
linear SPDEs also exist [1, 2].

Since the Sobolev smoothness is multiplied by d/(d− 1), the Besov smoothness
of the solution is generically higher than the Sobolev regularity so that the use of
adaptive wavelet algorithms is completely justified.

The next step is the practical realization of these schemes. To discretize the
underlying SPDE, we use the horizontal method of lines, i.e., the Rothe method.
We interpret the SPDE as an abstract Cauchy problem in a suitable function
space and discretize first in time, then in space. Then, in each time step, an
elliptic subproblem has to be solved which will be performed by the well-known
adaptive wavelet algorithms that are guaranteed to converge with optimal order
[4]. Although each subproblem can be solved up to any given tolerance, it remains
to investigate how the errors in the different time steps accumulate. We present
a strategy for the choice of the tolerances such that the overall Rothe scheme
provides the same approximation order in time as the unperturbed one (where the
elliptic subproblems are solved exactly). We need the following assumptions:

• A : D(A) ⊂ U → U is linear, densely defined, strictly negative definite,
and self-adjoint. Zero belongs to the resolvent set of A and the inverse
A−1 : U → U is compact. There exists an α > 0 such that (−A)−α is a
trace class operator on U .

• For certain parameters ρ ≥ 0, σ < 1, β < (1− α)/2,

F : D((−A)ρ) → D((−A)ρ−σ),

B : D((−A)ρ) → L(ℓ2;D((−A)ρ−β)),

are both globally Lipschitz continuous.

Under these assumptions and for a uniform discretization in time with stepsize
τ the following holds [3].

Theorem 3. Let (u(t))t∈[0,T ] be the unique mild solution to Eq. (1) and let

δ < min{1− σ, (1 − α)/2− β}.
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Let (uk)
K
k=1 be the time discretization by means of the linearly-implicit Euler

scheme. Then (
E‖u(T )− uK‖2D((−A)ρ)

)1/2

≤ Cτδ

with C = C(u0, δ, A,B, F, α, β, σ, T ).

The next theorem states the conditions under which the perturbed system re-
alizes the same order of convergence in time [3].

Theorem 4. Let (u(t))t∈[0,T ] be the unique mild solution to Eq. (1) and let

δ < min{1− σ, (1 − α)/2− β}.
If one chooses

ǫk ≤ τ1+δ

for all k = 0, . . . ,K−1, K ∈ N, then the output ũK of the inexact linearly-implicit
Euler scheme satisfies

(
E‖u(T )− ũK‖2D((−A)ρ)

)1/2

≤ Cτδ

with C = C(u0, δ, A,B, F, α, β, σ, T ).
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Multivariate polynomial interpolation on monotone sets

Nira Dyn

(joint work with Michael S. Floater)

This talk presents results from [1]. A monotone set of indices in Rd is a subset
of Zd

+ such that

α ∈M ⇒ {β ∈ Z
d
+ : β ≤ α} ⊂M.

In this talk we investigate interpolation from the space of polynomials related to
M , span{xα = xα1

1 . . . xαd

d : α ∈M}, at the d-dimensional interpolation points

{xα = (x
[1]
α1 , . . . , x

[d]
αd) : α ∈ M}, where {x[j]i }i∈Z+ is a sequence of distinct real

numbers for j = 1, . . . , d.
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The focus of the talk is the expression of the interpolant defined by M , P (M),
in terms of tensor-product polynomial interpolants, corresponding to blocks of
indices. For a monotone set which is a union of n blocks, Mn = ∪n

i=1Bi, we obtain
the combinatorial formula

P (Mn) =

n∑

k=1

(−1)k−1
∑

1≤i1<i2<...ik≤n

P (Bi1 ∩Bi2 . . . ∩Bik)

and its simplification

P (M) =
∑

α∈M

cαP (Bα), cα =
∑

ǫ∈Iα

(−1)|ǫ|,

where Iα = {ǫ ∈ {0, 1}d : α + ǫ ∈ M}. A wide class of indices for which
the corresponding coefficients cα vanish is given. The simplified formula is then
applied to the example of interpolation by total degree polynomials,

P ({α : |α| ≤ m}) =
min{m,d−1}∑

j=0

(
d− 1

j

)
(−1)j

∑

|α|=m−j

P ({β : β ≤ α}).

Similar formulas were obtained for piecewise polynomial interpolants on sparse
grids for the numerical solution of PDE. In particular the formula for the total
degree interpolant given above is similar to the ”combination technique” for sparse
grids (see e.g. [2]).
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Reduced basis methods for parametrized optimal control problems

Martin A. Grepl

(joint work with Mark Kärcher)

Many problems in science and engineering can be modeled in terms of op-
timal control problems governed by parametrized partial differential equations
(PDEs) [6]. While the PDE describes the underlying system or component be-
havior, the parameters often serve to identify a particular configuration of the
component — such as boundary and initial conditions, material properties, and
geometry. The solution of these problems using classical discretization techniques
such as finite elements or finite volumes is sometimes computationally expensive
and time-consuming. One way to decrease the computational burden is the sur-
rogate model approach, where the original high-dimensional model is replaced by
a reduced order approximation. These ideas have received a lot of attention in
the past and various model order reduction techniques — e.g., proper orthogonal
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decomposition (POD), reduction based on inertial manifolds, and reduced basis
methods — have been used in this context. However, the solution of the reduced
order optimal control problem is generally suboptimal and reliable error estimation
is thus crucial.

A posteriori error bounds for reduced order solutions of optimal control prob-
lems have been proposed for proper orthogonal decomposition (POD) and reduced
basis surrogate models in [9] and [2, 7], respectively. However, all of these results
have slight deficiencies, i.e., evaluation of the bounds in [9] requires a forward-
backward solution of the underlying high-dimensional state and adjoint equations
and is thus computationally expensive, the error estimator in [2] is not a rigorous
upper bound for the error, and the result in [7] only applies to optimal con-
trol problems without control constraints involving stationary (time-independent)
PDEs.

In this talk, we employ the reduced basis method [8] as a surrogate model for the
solution of optimal control problems. We consider the following simplified problem
setting: Given µ ∈ D ⊂ RP , we want to solve the optimal control problem

(1) min J(y, u;µ) s.t. (y, u) ∈ Y × U solves a(y, v;µ) = b(v;µ)u, ∀v ∈ Y.

Here, µ and D are the parameter and parameter domain, respectively; Y is an
appropriate Hilbert space with associated inner product (w, v)Y and norm ‖ · ‖Y ;
Ω ⊂ Rd, d = 1, 2, 3, is our spatial domain, a point in which shall be denoted
(x1, . . . , xd); u ∈ U ≡ R is the (scalar) control; y(µ) ∈ Y is the state variable;
b is a linear bounded functional on Y ; and, for any µ ∈ D, a(·, ·;µ) : Y × Y →
R is a coercive continuous bilinear form. Finally, the quadratic cost functional
J(·, ·;µ) : Y ×U → R is given by J(y, u;µ) = 1

2 ‖y−yd‖2L2(D)+
λ
2 ‖u−ud‖2U , where

yd ∈ Y and ud ∈ U are the desired state and control, respectively; D ⊂ Ω is a
measurable set; and λ > 0 is the given regularization parameter. It follows from
our assumptions that there exists a unique optimal solution to (1) [6].

In the reduced basis methodology, we next introduce a truth finite element
approximation space YN ⊂ Y of very large dimension N and reduced basis space
YN ⊂ YN of dimension N , where usually N ≪ N . We denote the truth and
reduced basis solutions to the optimal control problem (1) — obtained through
a Galerkin projection onto the respective spaces — by (y∗N , u

∗
N ) ∈ YN × U and

(y∗N , u
∗
N) ∈ YN × U , respectively.

We first show, for the simple problem setting (1), how to derive rigorous and
efficiently evaluable a posteriori error bounds for the optimal control, ‖u∗N −u∗N‖U ,
and the associated cost functional, |J(y∗N , u∗N ;µ) − J(y∗N , u

∗
N ;µ)| [3, 4]. We start

with the bound from [9], replace the required high-dimensional state and adjoint
solution by the solution to the associated reduced basis approximation, and bound
the error introduced by extending the standard reduced basis a posteriori error
bounds. The error bound for the cost functional is based on the standard result
in [1], again by extending standard reduced basis a posteriori error bounds. The
offline-online decomposition directly applies to the reduced basis optimal control
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problem and the associated a posteriori error bounds: the computational complex-
ity in the online stage to evaluate (y∗N , u

∗
N) as well as the control and associated

cost functional error bounds depends only on N and is independent of N . Our
approach thus allows not only the efficient real-time solution of the reduced op-
timal control problem, but also the efficient real-time evaluation of the quality of
the suboptimal solution.

Finally, we consider various extensions of the problem setting (1) to elliptic
optimal control problems with distributed controls and to parabolic problems with
multiple (time-dependent) controls and control constraints [5]. We also present
numerical results to confirm the validity of our approach. In the parabolic case, for
example, we can guarantee — thanks to our a posteriori error bounds — a relative
error in the control of less than 1% whilst obtaining an average (online) speed-up
of approximately 580 for the solution of the reduced basis optimal control problem
compared to the truth finite element optimal control problem and an average
speed-up of approximately 400 for the solution of the optimal control problem and
evaluation of the error bound for the control and cost functional.
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Numerical tensor calculus and tensorisation

Wolfgang Hackbusch

The numerical tensor calculus is concerned with the representation of tensors
from

V :=

d⊗

j=1

Vj

and the treatment of the various operations between tensors. Vj are any vector
spaces; e.g., function spaces like L2(Ωj), discrete analogues like Rnj , operators
between tensor spaces, or their discrete analogues: matrix spaces Rnj×mj .

A well-suited method for a data-sparse representation of v ∈ V is the hierar-
chical tensor format (cf. [11]). It is characterised by (a) a dimension splitting tree
TD and (b) subspaces Uα ⊂ Vα :=

⊗
j∈α Vj . More precisely, D := {1, . . . , d}, TD

is a binary tree with vertices α ⊂ D such that α = α1 ∪α2 is the disjoint union of
the sons α1, α2 of α. The set of leaves L(TD) consists of {j}, j ∈ D. The subspaces
satisfy the nestedness condition

(1) Uα ⊂ Uα1 ⊗ Uα2 for α ∈ TD\L(TD).

At the root, v ∈ UD holds (cf. [9, Chap. 11]).
Given so-called representation ranks rα (α ∈ TD) and the tuple r = (rα), the

set Hr of hierarchical tensors of representation rank r is defined by

Hr = {v ∈ V : ∃Uα with (1) and v ∈ UD} .
In fact, an α-rank rankα(v) (cf. [12]) and subspaces Umin

α (v) of minimal dimension
can be defined such that Hr = {v ∈ V : rankα(v) ≤ rα} and Uα = Umin

α (v) have
dimension rankα(v). For best approximation problems it is important that Hr is
weakly closed (cf. [4]).

For the numerical implementation the subspaces Uα are spanned by bases

{b(α)ℓ : 1 ≤ ℓ ≤ rα}. However, only for α ∈ L(TD) the bases are stored explic-

itly. Otherwise, we make use of (1) and store only the matrices C(α,ℓ) ∈ Rrα1×rα2

whose entries satisfy

b
(α)
ℓ =

rα1∑

i=1

rα2∑

j=1

C
(α,ℓ)
ij b

(α1)
i ⊗ b

(α2)
j (α1, α2 sons of α).

Finally, v ∈ UD is characterised by v = c
(D)
1 b

(D)
1 (note that rD = 1 holds).

The overall storage of v ∈ Hr is (d− 1) r3 + rdn, where r := maxα rα and n :=
maxj dim(Vj).

Basic operations in Hr are basis transformation, transformation to orthonormal
bases, and in particular the computation of the HOSVD (higher order singular
value decomposition, cf. [2], [5]), which allows an easy truncation of tensors to
smaller representation ranks with full control of the error (even other norms than
Hilbert norms can be obtained, cf. [10]). The typical cost of tensor operations is
O(dr4 + r2dn) (cf. [9, Chap. 13])



2208 Oberwolfach Report 39/2013

The TT format corresponds to the hierarchical format with the linear tree
TD = {{j}, {1, . . . , j} : 1 ≤ j ≤ d}, where the sons of {1, . . . , j} are {1, . . . , j − 1}
and {j}, and where the subspaces Uj = Vj are chosen with maximal dimension
(cf. [14, 15, 16], [9, Chap. 12]).

Since the order d of the tensor appears linearly, there is no curse of dimen-
sionality. One may even map standard vectors v ∈ Rn (n = 2d) into tensors

v of the isomorphic tensor space V :=
⊗d

j=1 R
2. The concrete isomorphism

is v[i1, . . . , id] = v[i] (0 ≤ i ≤ n − 1) with the binary integer representation
i = i1+2i2+ . . . (0 ≤ ij ≤ 1). This procedure is called tensorisation (cf. [9, Chap.
14]). It can be considered as a multi-scale approach, since the different directions
j = 1, . . . , d correspond to different scales of the grid function v ∈ Rn (think of
vi = ϕ(ih), h = 1/n, for a function ϕ on [0, 1]).

The advantage of the tensorisation comes from the fact that the tensor trunca-
tion can be applied to v and yields vε with ‖v − vε‖ ≤ ε. For sufficiently smooth
functions, one obtains a strong data compression up to O(log n). Furthermore, all
operations like scalar products, Hadamard products, convolutions (cf. [8]) can be
applied to the tensorised vectors with a cost corresponding to the compressed data
size.

Upper estimates for the obtainable data size can be obtained from the data
size of approximations by exponential sums (cf. [1]), trigonometric polynomial, hp
methods (cf. [6]), or wavelets. Differently from the previous approaches, the tensor
truncation is a blackbox method, which needs no a priori knowledge about the po-
sition of singularities and no adaptive approach. Therefore, the implementational
overhead is minimal.

For a survey concerning low-rank tensor approximations see [9] and [7].
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N-term approximation and Besov regularity for parametric elliptic

PDEs

Markus Hansen

We are interested in the Besov regularity for non-parametric and parametric
problems. More specifically, in a first step we shall investigate the regularity of
solutions to the problem

(1) −∇
(
A(x) · ∇u(x)

)
= f in D , u|∂D = 0 ,

where A = (ai,j)
d
i,j=1 is symmetric, with further properties to be specified later

on, and D ⊂ Rd, d ∈ {2, 3} is a bounded Lipschitz domain either of polygonal
(d = 2) or polyhedral (d = 3) structure (see [4] for more details on this type of
domains). The study of the regularity of this problem will consist of two parts:
First we consider the regularity in unweighted and weighted Sobolev spaces, and
subsequently we investigate embeddings of the weighted Sobolev spaces into Besov
spaces.

N-term approximation of elliptic PDEs. It is well-known that Besov spaces
are closely related to approximation classes for several approximation procedures,
in particular also for n-term wavelet approximation and adaptive Finite element
approximation. Apart from the classical result by DeVore, Jawerth and Popov [3],

which identifies the approximation class Aα/d
τ

(
Lp(D)

)
as the Besov space Bα

τ,τ (D),
1
τ = α

d +
1
p , 1 < p <∞, there is the following more recent result: If D is a bounded

Lipschitz domain and s0 − s1 > d( 1
p0

− 1
p1
), 0 < p0 ≤ p1 ≤ ∞, then it holds

σN (f)Lp1(D) . N−s0/d‖f |Bs0
p0,∞(D)‖ .

This result can be found in [2]. In the sequel we hence focus on the Besov spaces
Bs

τ,∞(D), for suitable parameters s and τ .
Now lets turn back to the weighted Sobolev spaces and the regularity of elliptic

problems. It is known that on non-smooth domains the solution for (1) even for
smooth data will possess only limited Sobolev regularity. For instance, a famous
result by Jerison and Kenig shows that on general Lipschitz domains the solution
u to Poisson’s problem (with homogeneous Dirichlet boundary condition) belongs
only to H3/2(D), even for smooth right-hand side f . To circumvent this deficiency,
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one approach for polygonal and polyhedral domains consists in studying regularity
in the scale of weighted Babuška-Kondratiev spaces Km

a , defined via

Km
a (D) =

{
u
∣∣∣‖u|Km

a (D)‖2 =

∫

D

∑

|α|≤m

∣∣ρ(x)|α|−aDαu(x)
∣∣2 dx <∞

}
,

where m ∈ N0 , a ∈ R, and ρ is the regularized distance to the singular set S ⊂ ∂D
(see [6] for a construction of a smooth distance function). This singular set S
consists exactly of those points on the boundary, where singularities may occur:
For polygons S consists of its vertices, for polyhedra S generally consists of its
vertices and edges. Within this scale of function spaces, a regularity result can be
formulated as follows:

Proposition 1. Let D ⊂ Rd be a bounded domain with polyhedral structure.
Consider problem (1) with

ai,j ∈ Wm
∞ =

{
v : D −→ R

∣∣ ρ|α|Dαv ∈ L∞(D) , |α| ≤ m
}
.

for all 1 ≤ i, j ≤ d. Assume that the associated bilinear form is bounded and
coercive on H1(D). Then there exists some a > 0 such that for any m ∈ N0,
any |a| < a and any f ∈ Km−1

a−1 (D) the problem (1) admits a uniquely determined

solution u ∈ Km+1
a+1 (D), and it holds

‖u|Km+1
a+1 (D)‖ ≤ C ‖f |Km−1

a−1 (D)‖
for some constant C independent of f .

Our first main result then can be summarized as follows. Therein we denote by
δ the dimension of the singular set (for polygons, singularities possibly occur only
in its vertices, for polyhedra in its vertices and edges).

Theorem 1. Let D ⊂ Rd be some bounded polyhedral domain. Further suppose
min(s, a) > δ

dm. Then there exists some 0 < τ0 ≤ 2 such that we have an embed-
ding

Km
a (D) ∩Hs(D) →֒ Bm

τ,∞(D) →֒→֒ L2(D)

for all τ∗ < τ < τ0, where
1
τ∗

= s
d + 1

2 . Consequently,

σN (u)L2(D) . N−m/dmax
(
‖u|Km

a (D)‖ , ‖u|Hs(D)‖
)
, u ∈ Km

a (D) ∩Hs(D) .

In particular, under the assumptions of Proposition 1 the solution u ∈ Km+1
1 (D)

of problem (1) for f ∈ Hm−1(D) →֒ Km−1
−1 (D) can be approximated at the rate

σN (u)H1(D) . N−m/d‖f |Hm−1(D)‖ .
The argument is based on corresponding results in [1] and mainly uses wavelet

characterizations of Besov spaces. Noteworthy is a wavelet based splitting of
u ∈ Km

a (D) ∩ Hs(D) into a regular part (interior wavelets), governed by the
weighted regularity, and a singular part (wavelets whose support intersects the
singular set), where the unweighted regularity comes into play.
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Parametric elliptic PDEs. In a second part, we now thansfer the above results
for a single elliptic PDE to a parametric PDE. More specifically, we now study in
the problem

(2)

−∇
(
A(y)∇u(y)

)
= f(y) in D ,

u(y) = 0 on ∂dD ,

∇A
ν u(y) = g(y) on ∂nD ,

where A = (ai,j)
d
i,j=1 and ai,j : U −→ L∞(D) are given fixed mappings with

parameter domain U = [−1, 1]N, i.e. the countable cartesian product of intervals
[−1, 1], either interpreted as the unit ball of ℓ∞(N) or as the compact subset of
the Frechet space RN (i.e. equipped with the product topology).

For every fixed parameter, we are back in the setting of the first part. Here
we are interested in regularity results for the parametric mapping y 7→ u(y)
form the parametric domain into Bm

τ,∞(D). It is known (see [5]) that Gateaux-
differentiability of order k of the input data f , g and ai,j transfers to differen-

tiability of u of the same order, where we consider u with values in Km+1
a+1 (D).

Moreover, this remains true for k = ∞ and even for analytic functions.

Theorem 2. Let the assumptions of Theorem 1 be fulfilled for every parameter y ∈
U . Then, under corresponding assumptions on the differentiablity (or analyticity,
respectively) of f , g and ai,j, the mapping U ∋ y 7→ u(y) ∈ Bm

τ,∞(D) is Gateaux-
differentiable of order k (or analytic, respectively).

Finally, we turn to generalized polynomial chaos (gpc) expansions of the para-
metric mapping u(y), e.g. into a series

u(y) =
∑

ν∈F

wνTν(y) , F = {ν ∈ N
N

0 : supp ν <∞} ,

of tensorized Chebyshev polynomials. Therein the coefficients wν itself again be-
long to Bm

τ,∞(D). To obtain approximation results for the fully discretized prob-
lem, i.e. for a wavelet system (ψi)i∈I on D we consider N -term approximation
w.r.to the system (ψI)i∈I ⊗ (Tν)ν∈F , we have to equilibrate the approximation of
the expansion by appropriate partial sums, and the approximation of the exact
Chebyshev coefficients. For approximation results by partial sums we need to as-
sume some specific structure for A(y): For A(y) = a(y)Id, Id being the identity
matrix, and a(y) = a0 +

∑
j≥1 yjφj we obtain the following result:

Theorem 3. Denote by (ψi)i∈I some wavelet basis for Bm
τ,∞(D). Assume

∑

j≥1

‖φj‖pWm
∞

(D) <∞

for some 0 < p < 1. Then the N -term approximation error with respect to the
dictionary (φi)i∈I ⊗ (Tν)ν∈F can be estimated by

σN (u)H1
0 (D) ≤ cN−min(m/d,r) , r =

1

p
− 1 .
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Multilevel quadrature for elliptic stochastic partial differential

equations

Helmut Harbrecht

(joint work with Michael Peters and Markus Siebenmorgen)

1. Introduction

This talk is concerned with elliptic second order boundary value problems with
random diffusion. In parametrized form, such problems are of the form

(1)
find u ∈ L2

ρ

(
�;H1

0 (D)
)
such that

− div
(
α(y)∇u(y)

)
= f in D for all y ∈ �,

where D ⊂ Rd is the physical domain, ρ : � → R≥0 is the joint density function,
and � = (−1, 1)m (in the uniformly elliptic case) or � = Rm (in the log-normal
case) is the parameter domain of the stochastic variable. The quantities of interest
are the solution’s expectation

(2) Eu(x) =

∫

�

u(x,y)ρ(y) dy,

its variance, or even higher order moments.
A principal approach to compute (2) is the Monte Carlo method. However, it

is extremely expensive to generate a large number of suitable samples and to solve
the deterministic boundary value problem (1) on each sample. To overcome this
obstruction, the multilevel Monte Carlo method (MLMC) has been developed in
[1]. From the stochastic point of view, it is a variance reduction technique which
considerably decreases the complexity. The idea is to combine the Monte Carlo



Multiscale and High-Dimensional Problems 2213

quadrature of the stochastic variable with a multilevel splitting of the Bochner
space which contains the random solution. Then, to compute (2), most samples
can be performed on coarse spatial discretizations while only a few samples must
be performed on fine spatial discretizations. This proceeding is a sparse grid
approximation of the expectation. If we replace the Monte Carlo quadrature by
another quadrature rule for high-dimensional integrals, we obtain for example
the multilevel quasi Monte Carlo method (MLQMC) or the multilevel Gaussian
quadrature method (MLGQ).

2. Quadrature in the stochastic variable

To compute the integral (2), we have to provide a sequence of quadrature for-
mulae {Qℓ} for the Bochner integral

I : L2
ρ(�;X) → X, Iv =

∫

�

v(·,y)ρ(y) dy

where X ⊂ L2(D) denotes a Banach space. The quadrature formula

(3) Qℓ : L
2
ρ(�;X) → X, Qℓv =

Nℓ∑

i=1

ωℓ,iv(·, ξℓ,i)ρ(ξℓ,i)

is supposed to fulfill the error bound

‖(I −Qℓ)v‖X . 2−ℓ‖v‖H(�;X)

uniformly in ℓ ∈ N, where H(�;X) ⊂ L2
ρ(�, X) is a suitable Bochner space.

3. Finite element approximation in the spatial variable

In order to apply the quadrature formula (3), we shall calculate the solution
u(y) ∈ H1

0 (D) of the diffusion problem (1) in certain points y ∈ �. To this end,
consider a coarse grid triangulation/tetrahedralization T0 = {τ0,k} of the domain
D. Then, for ℓ ≥ 1, a uniform and shape regular triangulation/tetrahedralization
Tℓ = {τℓ,k} is recursively obtained by uniformly refining each triangle/tetrahedron
τℓ−1,k into 2n triangles/tetrahedrons with diameter hℓ ∼ 2−ℓ. Then, define the
finite element spaces

Sℓ(D) := {v ∈ C(D) : v|∂D = 0 and v|τ is linear for all τ ∈ Tℓ} ⊂ H1
0 (D)

and let
Gℓ(y) : H

1
0 (D) → Sℓ(D), v 7→ vℓ

denote the Galerkin projection related with (1), given by Galerkin orthogonality
∫

D

α(x,y)∇
(
v(x)− vℓ(x)

)
∇wℓ(x) dx = 0 for all wj ∈ Sℓ(D).

Then, the approximate solution Gℓ(y)u(y) ∈ Sℓ(D) to (1) of a finite element
method in the space Sℓ(D) satisfies the error estimate

‖u(y)−Gℓ(y)uℓ(y)‖H1(D) . 2−ℓ

√
αmax(y)

αmin(y)
‖u(y)‖H2(D)
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provided that the domain D is convex and f ∈ L2(D).

4. Multilevel quadrature

We now have to combine the quadrature method with the multilevel finite
element discretization. To this end, we define the ansatz spaces

V
(1)
j :=

{
Gj(y)v(x,y) : v ∈ C

(
�;H1

0 (D)
)
and y ∈ �

}
⊂ L2

ρ

(
�;Sj(D)

)
.

To compute the expectation (2), we shall apply the quadrature rule Qj to the
finite element solution in Sj(D) which yields

(4) Eu(x) ≈ Qj

(
Gj(y)u(x,y)

)
=

Nj∑

i=0

ωj,iGj(ξj,i)u(x, ξj,i)ρ(ξj,i).

This can be interpreted as the full tensor product approximation of the function

Eu in the product space V
(1)
j ⊗V (2)

j where the quadrature rule Qj serves as “space”

V
(2)
j . It produces the error estimate

∥∥∥Eu(x)−Qj

(
Gj(y)u(x,y)

)∥∥∥
H1(D)

. 2−jj‖u‖H(�;H1(D))∩L2
ρ(�;H2(D)).

In contrast to this, setting G−1(y) := 0 for all y ∈ �, the sparse tensor product

of the spaces V
(1)
j and V

(2)
j is built with the help of the complement spaces

W
(1)
ℓ :=

{(
Gℓ(y) −Gℓ−1(y)

)
v(x,y) : v ∈ C

(
�;H1

0 (D)
)
and y ∈ �

}
⊂ V

(1)
ℓ

in accordance with

̂
V

(1)
j ⊗ V

(2)
j =

j⊕

ℓ=0

W
(1)
ℓ ⊗

( j−ℓ⊕

ℓ′=0

W
(2)
ℓ′

)
=

j⊕

ℓ=0

W
(1)
ℓ ⊗ V

(2)
j−ℓ.

This means, we consider the sparse tensor product approximation

Eu(x) ≈
j∑

ℓ=0

Qj−ℓ

(
Gℓ(y)u(x,y) −Gℓ−1(y)u(x,y)

)

=

j∑

ℓ=0

Nj−ℓ∑

i=0

ωj−ℓ,i

(
Gℓ(ξj−ℓ,i)u(x, ξj−ℓ,i)−Gℓ−1(ξj−ℓ,i)u(x, ξj−ℓ,i)

)
ρ(ξj−ℓ,i).

Loosely speaking, the function u ∈ L2
ρ

(
�;H1

0 (D)
)
is divided into j slices which

are related to the modulus of its entity. Then, for every slice, the precision of the
quadrature is properly chosen. We refer to Figure 1 for a graphical illustration.

Under the assumption that the random solution provides mixed regularity in
terms of u ∈ H

(
�;H2(D)

)
, the multilevel quadrature produces essentially the

same accuracy as the standard tensor product quadrature (4):

∥∥∥∥Eu(x)−
j∑

ℓ=0

Qj−ℓ

(
Gℓ(y)u(x,y) −Gℓ−1(y)u(x,y)

)∥∥∥∥
H1(D)

. 2−jj‖u‖H(�;H2(D)).
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✲
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Figure 1. Visualization of the multilevel quadrature.

Notice that the multilevel quadrature idea can be generalized also to higher order
moments or other output functionals, see [2, 3] for the details.
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Analysis on convex subset of a Riemannian manifold and classical

polynomial approximation

Gerard Kerkyacharian

(joint work with P. Petrushev, Y. Xu)

It is a classical topic to look to orthonormal basis of polynomials on a compact
set X of Rd, with respect to some Radon measure µ. For exemple : the one
dimensional interval (Jacobi), the unit sphere (Spherical harmonics), the ball and
the simplex (work of Petrushev, Xu, ...) In this framework, one can be interested
in the best approximation of functions by polynomials of fixed degree, in Lp(µ),
and to built a suitable frame for characterization of function spaces related to
this approximation. This constructions have been carried using special functions
estimates.

We will be interested by spaces where the polynomials give the spectral spaces of
some positive selfadjoint operator. Under suitable conditions, a ”natural” metric
ρ could be defined on X such that (X, ρ, µ) is a homogeneous space, and if the
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associated semi-group has a good ”Gaussian” behavior, then we could apply the
procedure developed in recent works by P. Petrushev, T. Coulhon and G.K., to
built such frames, and such function spaces.

Actually we will show that analysis on ”convex” open set in a Riemannian
manifold can help to understand these classical topics.
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Isotropic Gaussian random fields on the sphere

Annika Lang

(joint work with Christoph Schwab)

Sample regularity and fast simulation of isotropic Gaussian random fields on the
sphere are for example of interest for the numerical analysis of stochastic partial
differential equations and for the simulation of ice crystals or Saharan dust particles
as lognormal random fields. In what follows we recall the results from [2], which
include the approximation of isotropic Gaussian random fields with convergence
rates as well as the regularity of the samples in relation to the smoothness of
the covariance expressed in terms of the decay of the angular power spectrum.
As example we construct isotropic Q-Wiener processes out of isotropic Gaussian
random fields and discretize the stochastic heat equation with spectral methods.

Before we state the results, we start with a short review of the basics. There-
fore, let (Ω,A, (Ft), P ) be a filtered probability space and denote by S2 ⊂ R3

the unit sphere. A A ⊗ B(S2)-measurable mapping T : Ω × S2 → R is called an
isotropic Gaussian random field if, for all k ∈ N, x1, . . . , xk ∈ S2, a1, . . . , ak ∈ R,

the real-valued random variable
∑k

i=1 aiT (xi) is Gaussian and the distribution
of (T (x1), . . . , T (xk)) is invariant under rotations. By [3], the isotropic Gaussian

random field T admits a Karhunen–Loève expansion T =
∑∞

ℓ=0

∑ℓ
m=−ℓ aℓmYℓm,

where (Yℓm, ℓ ∈ N0,m = −ℓ, . . . , ℓ) denotes the sequence of spherical harmonic
functions and (aℓm, ℓ ∈ N0,m = −ℓ, . . . , ℓ) is a sequence of normally distributed
random variables, whose properties are characterized by the angular power spec-
trum (Aℓ, ℓ ∈ N0). For ℓ ∈ N, m = 1, . . . , ℓ, and ϑ ∈ [0, π], let

Lℓm(ϑ) :=

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pℓm(cosϑ)
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be a weighted version of the associate Legendre polynomials (Pℓm, ℓ ∈ N0,m =
0, . . . , ℓ). Then the random field generated by

∞∑

ℓ=0

(√
AℓX

1
ℓ0Lℓ0(ϑ) +

√
2Aℓ

ℓ∑

m=1

Lℓm(ϑ)(X1
ℓm cos(mϕ) +X2

ℓm sin(mϕ))
)
+ E(T )

is equal in law to T , where ((X1
ℓm, X

2
ℓm), ℓ ∈ N0,m = 0, . . . , ℓ) is a sequence of

independent standard normally distributed random variables with X2
ℓ0 = 0 for all

ℓ ∈ N0. A truncation of the series expansion leads to the following convergence
results which rely on the decay of the angular power spectrum.

Theorem 1. Assume that Aℓ ≤ C · ℓ−α for some α > 2 and C > 0. Then for all
0 < p < +∞ there exists Ĉp > 0 such that

‖T − T κ‖Lp(Ω;L2(S2)) ≤ Ĉp · κ−(α−2)/2,

where the truncated series expansion T κ is given by

κ∑

ℓ=0

(√
AℓX

1
ℓ0Lℓ0(ϑ) +

√
2Aℓ

ℓ∑

m=1

Lℓm(ϑ)(X1
ℓm cos(mϕ) +X2

ℓm sin(mϕ))
)
+ E(T ).

Furthermore, for all β < (α− 2)/2 it holds asymptotically ‖T − T κ‖L2(S2) ≤ κ−β,
P -a. s..

The decay of the angular power spectrum is linked to the regularity of the
covariance kernel in the following proposition and can be extended to non-integers
with fractional weighted Sobolev spaces.

Proposition 2. For every n ∈ N0, it holds that the sequence (ℓn+1/2Aℓ, ℓ ≥ n) is

in ℓ2(N0) if and only if the covariance kernel (1−µ2)n/2 ∂n

∂µn

∑∞
ℓ=0Aℓ

2ℓ+1
4π Pℓ(µ) is

in L2(−1, 1), where (Pℓ, ℓ ∈ N0) denotes the sequence of Legendre polynomials.

Furthermore, the decay of the angular power spectrum determines the sample
regularity of the random field.

Theorem 3. Assume that
∑∞

ℓ=0Aℓℓ
1+β < +∞ for some β > 0. Then there exists

a continuous modification of T which is Hölder continuous with exponent γ for all
γ < min{β/2, 1}. Furthermore, the modification is k-times continuously differen-
tiable for all k < β/2− 1. The corresponding lognormal random field exp(T ) has
the same regularity properties.

The Hölder continuity in the previous theorem is proven using the following
lemma and a version of the Kolmogorov–Chentsov theorem, which we state for
completeness, while the differentiability is a direct consequence of Sobolev em-
beddings. The same regularity of the lognormal random field results from the
properties of the exponential function. Samples of Gaussian and the correspond-
ing lognormal random fields are shown in Figure 1.
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(a) α = 5 (b) α = 5 (c) α = 3 (d) α = 3

Figure 1. Samples of isotropic Gaussian and the corresponding
lognormal random fields as radius of the deformed sphere with
Aℓ = (ℓ+ 1)−α.

Lemma 4. Assume that
∑∞

ℓ=0Aℓℓ
1+β < +∞ for some β ∈ [0, 2]. Then the

corresponding kernel function k(r) =
∑∞

ℓ=0Aℓ
2ℓ+1
4π Pℓ(cos r) satisfies that

|k(0)− k(r)| ≤ Cβr
β

for some Cβ > 0, which implies that for all 0 < p < +∞ there exists Cβ,p > 0
such that

E(|T (x) − T (y)|2p) ≤ Cβ,p d(x, y)
βp.

The second step in the proof is the Kolmogorov–Chentsov theorem for random
fields on S2 which is proven by applying a version of the theorem for domains on
six charts and patching the resulting random fields together with a partition of
unity. This is extended to general manifolds and from Hölder continuity to Hölder
differentiability in [1].

Theorem 5 (Kolmogorov–Chentsov theorem). Let T be a random field on S2 that
satisfies

E(|T (x)− T (y)|p) ≤ Cd(x, y)2+ǫp

for some p > 0, C > 0, and some ǫ ∈ (0, 1]. Then there exists a continuous
modification of T that is locally Hölder continuous with exponent γ for all γ ∈ (0, ǫ).

Besides the already mentioned application to lognormal random fields, isotropic
Gaussian random fields can also be used to define a Q-Wiener process W taking
values in L2(S2) by the Karhunen–Loève expansion

∞∑

ℓ=0

√
Aℓβ

1
ℓ0(t)Lℓ0(ϑ) +

√
2Aℓ

ℓ∑

m=1

Lℓm(ϑ)(β1
ℓm(t) cos(mϕ) + β2

ℓm(t) sin(mϕ)),

where ((β1
ℓm, β

2
ℓm), ℓ ∈ N0,m = 0, . . . , ℓ) is a sequence of independent Brownian

motions and β2
ℓ0 = 0 for ℓ ∈ N0. Here, the covariance operator Q is characterized

by QYℓm = AℓYℓm. Let us observe that the Laplace–Beltrami operator ∆S2 on S2

satisfies that ∆S2Yℓm = −ℓ(ℓ + 1)Yℓm. We want to simulate the stochastic heat
equation on S2 driven by additive Q-Wiener noise on some finite time interval

dX(t) = ∆S2X(t) dt+ dW (t)
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with initial condition X(0) = X0 ∈ L2(Ω;L2(S2)), i. e., in mild form

X(t) = X0 +

∫ t

0

∆S2X(s) ds+

∫ t

0

dW (s) = X0 +

∫ t

0

∆S2X(s) ds+W (t).

This equation can be expanded with respect to the spherical harmonic functions
and leads to the stochastic differential equations

(X(t), Yℓm)L2(S2) = (X0, Yℓm)L2(S2) − ℓ(ℓ+ 1)

∫ t

0

(X(s), Yℓm)L2(S2) ds+ aℓm(t)

with scaled Brownian motions aℓm, which can be solved with the variations of
constants formula. We are able to simulate the solution with the observation that
the stochastic convolutions

∫ t

0
e−ℓ(ℓ+1)(t−s) dβℓm(s) are by the Itô formula normally

distributed with mean zero and variance (2ℓ(ℓ + 1))−1(1 − e−2ℓ(ℓ+1)t). In what
follows, we obtain convergence results under weaker assumptions on (Aℓ, ℓ ∈ N0)
than in Theorem 1 due to the smoothing of the heat kernel.

Theorem 6. Assume that Aℓ ≤ C · ℓ−α for some α > 0 and C > 0. Then, for all
0 < p < +∞, t < +∞, and κ ∈ N,

‖X(t)−Xκ(t)‖Lp(Ω;L2(S2)) ≤ Ĉp · κ−α/2

with Ĉp > 0 independent of the time discretization, where Xκ denotes the trun-
cated Karhunen–Loève expansion of the solution of the stochastic heat equation.
Furthermore, for all β < α/2 it holds asymptotically ‖X(t)−Xκ(t)‖L2(S2) ≤ κ−β,
P -a. s..
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Adaptive, hierarchical cones of convex functions

Jean-Marie Mirebeau

A number of mathematical problems are formulated, or can be formulated, as
the minimization of a convex functional over the cone of convex functions over a
convex domain Ω of Rd. Among them the best known is Optimal Transport, with
the standard quadratic transportation cost. Let us also mention Newton’s problem
of the convex body of least resistance [5] moving through a gas of particles. The
monopolist problem, arising from economics and introduced in 1978 [7], is one of
our main motivations. Despite a significant research effort [8, 2, 3, 1], numerical
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studies of this problem, in dimension d ≥ 2, remain expensive and limited to small
resolutions.

While existence results for the solutions of these problems follow from standard
convex analysis, obtaining numerical approximations raises unexpected issues, due
to the difficulty of discretizing the cone of convex functions. For simplicity, we
assume that the domain is bi-dimensional, Ω ⊂ R2, and sampled on a grid X :=
Ω ∩ Z2 containing N points. Smooth convex functions u : Ω → R are locally
characterized by the inequalities, in the sense of symmetric matrices

∀x ∈ Ω, d2u(x) < 0.

A discretization of the cone of convex functions, based on this characterization and
using O(N) semi-definite (non-linear) constraints, was presented in [1]. However,
a discrete map on X obeying these constraints cannot in general be extended into
a convex continuous map on Ω, which is an issue for some applications. On the
other hand, convex functions u : Ω → R are also characterized by the linear,
non-local inequalities

(1) ∀x, y ∈ Ω, ∀ 0 ≤ λ ≤ 1, u(λx+ (1 − λ)y) ≤ λu(x) + (1 − λ)u(y).

The cone of restrictions to X of convex maps

(2) Conv(X) := {u|X ; u : Ω → R
d, convex},

has a minimal characterization [2] in terms of O(N2) non-local linear inequalities
of form similar to (1). Let us also mention a third discretization introduced in [3],
also based on O(N2) non-local, linear inequalities.

Our objective is to combine the strongpoints of these different methods - number
of constraints growing (quasi-)linearly with N := #(X), simple linear constraints,
discrete maps that are restrictions of convex maps - by the use of adaptive, mul-
tiscale constructions. For that purpose, we have introduced a hierarchical family
of sub-cones Conv(V) ⊂ Conv(X), each defined by some linear inequalities asso-
ciated to a stencil : the data V = (V(x))x∈X of a selected collection of neighbors
V(x) ⊂ X , for each x ∈ X (see Figure 1, center). The number of inequalities defin-
ing Conv(V) is bounded by #(V) := ∑

x∈X #(V(x)), up to a fixed multiplicative
constant. For each convex map u : Ω → R, there exists a stencil V depending on u
and X , such that u|X ∈ Conv(V) and #(V) . N ln3N (to be precise, this estimate
holds in average over random grid orientations). We use adaptive stencil refinement
strategies, allowed by the hierarchy property Conv(V ∩V ′) = Conv(V)∩Conv(V ′),
to iteratively construct in applications a problem dependent stencil V . (Ideally,
this would be the stencil V of minimal cardinality such that the cone Conv(V) con-
tains the restriction to X of the continuous problem solution.) The constructed
local stencils V(x), x ∈ X , are generally sparse and highly anisotropic (Figure
1, center), and the corresponding linear constraints defining Conv(V) are in part
short range, and in part domain wide. Our discretization of the cone of convex
functions is thus neither local [1], nor global [2, 3], but adaptive and hierarchical,
multi-scale and anisotropic.
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Figure 1. Left: solution u of (3). Center: stencil V(x) used in
the computation, at a few points x ∈ X . Right: optimal product
line Q (black contour), which is here the union of a “low end”
one dimensional segment and of a “high end” two dimensional
domain; optimal pricing strategy π (colors).

We applied the proposed method to an economical problem, where a monopolist
[7] wants to design a product line Q, and a pricing strategy π : Q → R so as to
maximize his profit in a captive market (“take it or leave it” sales policy, rational
customers, no second hand market). We illustrate here a prototypical example, see
[3] for details, where products q are characterized by two traits: q ∈ Q ⊂ R2

+, and

have production cost 1
2‖q‖2. The utility of a product q to a customer z is modeled

by the scalar product 〈z, q〉; customers have have uniform density on [1, 2]2, they
are rational and individually choose the product of maximal net utility (or no
product at all): u(z) := max{0, maxq∈Q〈z, q〉 − π(q)}. This net utility u is thus
convex by construction, and maximizing the monopolist’s profit amounts to, see
[3]:

(3) min

{∫

[1,2]2

(
1

2
‖∇u‖2 − 〈u, z〉+ u

)
dz; u convex, u ≥ 0

}
.

The monopolist’s optimal product line Q is recovered from the minimizing net
utility u as Q := {∇u(z); z ∈ [1, 2]2}, and the optimal pricing strategy π as
the Legendre Fenchel dual of u. Numerical experiments reproduce an expected
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qualitative model prediction: high-end products are more diverse than low-end
products, see Figure 1 right.

In summary, we address variational problems posed on the cone of convex func-
tions using a numerical method involving adaptive, anisotropic, sparse, long range
stencils. The underlying domain needs to be a grid, since its arithmetic properties
play an essential role. This is part of a larger program to apply similar strategies
to stiff and strongly anisotropic Partial Differential Equations (PDEs), which has
already seen some success with Anisotropic Diffusion [4], and Anisotropic static
Hamilton-Jacobi PDEs [6].

References

[1] N. E. Aguilera, P. Morin. Approximating optimization problems over convex functions,
Numerische Mathematik, vol. 111, no 1, p. 1-34, 2008.

[2] G. Carlier, T. Lachand-Robert, and B. Maury. A numerical approach to variational
problems subject to convexity constraint, Numerische Mathematik, vol. 88, no 2, p.
299-318, 2001

[3] I. Ekeland, and S. Moreno-Bromberg. An algorithm for computing solutions of variational
problems with global convexity constraints, Numerische Mathematik, vol. 115, no 1, p.
45-69, 2010.

[4] J. Fehrenbach, and J.-M. Mirebeau. Sparse Non-Negative Stencils for Anisotropic Diffu-
sion, Journal of Mathematical Imaging and Vision, to appear, 2013

[5] T. Lachand-Robert, and M. A. Peletier Newton’s Problem of the Body of Minimal Re-
sistance in the Class of Convex Developable Functions, Mathematische Nachrichten, vol.
226, p. 153-176, 2000

[6] J.-M. Mirebeau. Efficient Fast Marching with Finsler Metrics, Numerische Mathematik,
to appear, 2013

[7] M. Mussa, and S. Rosen, Monopoly and product quality, Journal of Economic Theory,
vol. 18, p. 301-317, 1978
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Stability of Petrov-Galerkin discretizations: Application to the weak

space-time formulation for parabolic PDEs

Christian Mollet

Suppose that we have a boundedly invertible operator B ∈ L(X,Y ′) mapping
from a Hilbert space X into a dual Hilbert space Y ′. We denote by L(X,Y ′) the
set of all linear and bounded mappings form X into Y ′. Consider the abstract
operator equation

Bu = f, u ∈ X, f ∈ Y ′.

A Petrov-Galerkin solution is now given as the solution uj ∈ Sj of the discrete
variational problem

〈Buj , qℓ〉 = 〈f, qℓ〉 for all qℓ ∈ Qℓ,
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for reasonably chosen discrete subspaces Sj ⊂ X and Qℓ ⊂ Y . The stability of
such Petrov-Galerkin approaches is characterized by the discrete inf-sup condition

inf
vj∈Sj\{0}

sup
qℓ∈Qℓ\{0}

|〈Bvj , qℓ〉|
‖vj‖X‖qℓ‖Y

=: βj,ℓ > 0.

In order to obtain well-defined solutions which converge quasi-optimally to the
exact solutions, it is crucial that this discrete inf-sup constants βj,ℓ can be bounded
from below by a constant β independently of the discretizations. Therefore, one
needs to construct appropriate discretization spaces Sj and Qℓ. It turned out that
one generally has to enrich the test space in order to ensure uniform stability. This
in turn leads to a minimal residual Petrov-Galerkin approach [1]. We were able to
prove stability for sufficiently regular operators under standard smoothness and
approximation properties of the discrete spaces [5].

Moreover, we can explicitly state the number of extra layers L ensuring stability
of the minimal residual Pertov-Galerkin approach when choosing ℓ ≤ j + L and
also the lower bound β of the discrete inf-sup condition is given explicitly. The
ideas for the proof mainly stem form [3].

Next, this result will be applied to the full space-time weak formulation of
parabolic problems, which serves as an important model example. Starting with
a parabolic PDE in standard weak form with respect to space

du

dt
+Au = f in Ω× [0, T ]

u = g on ∂Ω× [0, T ]

u(·, 0) = u0 in Ω,

the space-time formulations reads as

〈Bu, q〉 = ℓ(q) ∀q ∈ Y := L2(0, T ;V ) ∩H1
{T}(0, T ;V

′),

where

〈Bu, q〉 :=
∫ T

0

−
〈
u(t),

dq(t)

dt

〉
dt+

∫ T

0

〈A(t)u(t), q(t)〉 dt,

ℓ(q) :=

∫ T

0

〈f(t), q(t)〉 dt+ 〈u0, q(0)〉,

with solution space X := L2(0, T ;V ) and H1
{T}(0, T ;V

′) := {φ ∈ H1(0, T ;V ′) :

φ(T ) = 0}, cf. [2, 6]. A detailed stability analysis for such problem classes using
slightly different techniques can also be found in [1]. A criterion for the regularity
of the operator B which only depends on the spatial operator A was already
given in [2], so we restrict ourselves mainly to the choice of appropriate discrete
subspaces. We choose the temporal and spatial hierarchy of subspaces

Sx
j0 ⊂ Sx

j0+1 ⊂ · · · ⊂ Hm(Ω), closHm(Ω)




∞⋃

j=j0

Sx
j



 = Hm(Ω),
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and similar St
j , Q

x
ℓ and Qt

ℓ and define the corresponding tensor product spaces

Sj := St
j ⊗ Sx

j ⊂ L2(0, T ;V ) = X,

Qℓ := Qt
ℓ ⊗Qx

ℓ ⊂ L2(0, T ;W ) ∩H1
{T}(0, T ;H) = Y+.

Moreover, we arrange the temporal (’t’) and spatial (’x’), primal(’ ’) and dual (’∼’)
subspaces such that they are L2-stable and satisfy Jackson and Bernstein estimates
with given parameters γFk

respectively dFk
. These conditions are satisfied e.g.

for B-Splines on uniform grids with grid spacing 2−j respectively 2−ℓ, where the
parameters dFk

in the Jackson estimates are simply given by the polynomial order
and the parameters γFk

in the Bernstein estimates by the global smoothness of
the B-Splines. It is worth mentioning that these conditions are not only restricted
to uniform grids, but also hold for certain sparse tensor grids for instance. When
using wavelet bases respectively Riesz bases, one can easily show that the discrete
inf-sup constants are equivalent to the smallest singular values of the corresponding
system matrices, i.e.,

βj,ℓ = inf
vj∈Sj\{0}

sup
qℓ∈Qℓ\{0}

|〈Bvj , qℓ〉|
‖vj‖X‖qℓ‖Y

∼ λmin(B
T
j,ℓBj,ℓ)

1
2 =: σmin(Bj,ℓ).

That is, one can study the qualitative behavior of the discrete inf-sup constants
via these singular values. Our predictions on the stability, especially in view of
the dependence on the refinement levels ℓ and j with respect to the test and
trial spaces, respectively, are underlined e.g. by the numerical results in Figure 1.
In Figure 1 we considered the smallest and largest singular values of the system

Figure 1. Plot of σmin(Bj,ℓ) ∼ βj,ℓ for same levels j = ℓ and
fixed level ℓ = 12.
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matrices which stem from the ODE

du(t)

dt
= f(t), t ∈ [0, 1],

with zero initial condition. We observe that all theoretical predictions are already
confirmed by this ODE example. Considering e.g. the Helmholz equation, i.e.,
a PDE with Bochner spaces respectively tensor product spaces involved, yields
qualitatively similar results. These results for a parabolic PDE can be found in
[5].

It can be expected, that the results can be improved by replacing Sj by S(j1,j2) :=
St
j1
⊗Sx

j2
and also Qℓ by Qℓ1,ℓ2 := Qt

ℓ1
⊗Qx

ℓ2
, since the levels with respect to time

and space can be handled differently. Moreover, one could try to apply the used
techniques also to stochastic partial differential equations, as for instance to a
space-time weak formulation of the stochastic heat equation [4].
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Effective boundary conditions for compressible flows over rough

boundaries

Siegfried Müller

(joint work with Wolfgang Dahmen, Giulia Deolmi)

Domains with microscopic rough boundaries frequently arise in applications in en-
gineering. For instance, space shuttles are often covered with tiles, while small air
injecting nozzles are used over wings of aircrafts to reduce the drag [14]. Exam-
ples can also be found in nature, e.g. the skin of sharks [10], and in everyday life,
e.g. golf balls.

The challenge inherent in the numerical simulation of such problems is the high
resolution that is needed to resolve the roughness. In general, the computational
costs will be prohibitively high and a direct numerical simulation will not be feasi-
ble although nowadays computer are becoming even more powerful. To deal with
this type of problems we thus need concepts that allow to quantify the influence of
small scale effects on the resolved large scale effects without resolving small scale
structures. For this purpose concepts based on either homogenization techniques
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[5, 13, 15] or (heterogeneous) multiscale modeling [8, 9] can be used. These con-
cepts need always to be adapted to the problem at hand, i.e., for a given concrete
application the main task is to derive an appropriate upscaling strategy.

Our particular interest is on the flow over a rough surface. A possible approach
for the derivation of an appropriate upscaling strategy is to smooth artificially the
boundary and solve the flow equations in the artificial smooth domain, cf. [1, 12].
Of course, this will introduce a significant error because micro-scale effects due
to the roughness are discarded in this zeroth order solution. Therefore it has to
be corrected by an appropriate correction term that depends on macro-scale and
micro-scale variables. Plugging the modified solution into the original problem,
another typically much simpler problem, the so-called cell problem, can be derived
by means of an asymptotic expansion. In addition, we obtain also a correction
for the boundary conditions on the artificial smooth surface where the solution
of the cell problem enters. These are referred to as effective boundary conditions
or Navier wall law [6] and can be considered the upscaling model. Finally the
effective problem can be solved on the smooth domain with the effective boundary
conditions.

Previous work in this regard has been done for laminar and incompressible
fluid flow modeled by the incompressible Navier-Stokes equations for moderate
Reynolds numbers: in [1] a Navier wall law is derived applying homogenization
techniques starting from a Taylor expansion of velocity and pressure. In [2, 4, 3]
these ideas are extended to the unsteady problem. In [12, 11] effective bound-
ary conditions at the contact interface between a porous medium and a viscous
incompressible fluid are derived. The corresponding asymptotic expansions have
analogies with those in [1]. However, instead of applying a Taylor expansion, a
zeroth order approximation is computed firstly on a smooth subset of the rough
domain and then it is continuously extended to the boundary of effective domain
including the roughness where it establishes the Navier wall law.

In our work we adapt the ideas of Achdou et al. [1] for incompressible low
Reynolds number flow to the more complex mathematical model of the compress-
ible Navier-Stokes equations, where transport effects are dominating dissipative
effects due to viscosity and heat conduction and boundary layers are much thin-
ner. As a consequence some simplifications adopted in [1] cannot be applied here.
In particular, for compressible flows the solution of the zeroth order approximation
enters the cell problem, so we must deal with a coupling between micro and macro
scales. For this purpose we approximate the zeroth order problem by van Driest’s
similarity solution for the laminar compressible boundary layer of a flat plate.
From this we compute the macro-scale parameters involved in the cell problem on
the micro scale. Averaging the solution of the cell problem provides us with the
effective constant that characterizes the Navier wall law in the effective problem on
the smooth domain. The ill-conditioning of the effective problem is overcome using
an a posteriori procedure based upon the multiscale-based adaptive algorithm.

For proof of concept we investigate the laminar flow over a flat plate with par-
tially embedded periodic roughness. The roughness elements are characterized by
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different heights and spacings. Of particular interest is the skin friction coefficient
that serves as a measure for the quality of the effective model compared to direct
numerical simulations performed on the rough domain. Details on the results can
be found in [7].

In future work we will investigate laminar as well as turbulent flow over riblet
structures in three dimensions. Opposite to the two-dimensional configuration
considered in the present work the roughness will be aligned in spanwise direction
instead of streamwise direction. This configuration is certainly more appropriate
to reduce drag by influencing turbulence structures near to the surface. This tech-
nology might be useful to increase the efficiency of nowadays airplanes with regard
to energy consumption where riblet structures are mounted to the airplane wings.
Alternatively, one might think of high-frequency waves actuated in spanwise di-
rection on the surface of an airplane.
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Model reduction for multiscale problems

Mario Ohlberger

(joint work with F. Albrecht, M. Drohmann, B. Haasdonk, P. Henning,
S. Kaulmann, and B. Schweizer)

In this contribution we present efficient numerical multiscale methods for flow
in heterogeneous porous media, in particular also in situations where the result-
ing equations are to be solved repeatedly for varying parameters, as e.g. in the
context of uncertainty quantification, time dependent scenarios or optimal con-
trol problems. We discuss a posteriori based discretization methods and suggest
a suitable conceptual approach for an efficient numerical treatment of parameter-
ized variational multiscale problems where the parameters are either chosen from
a low dimensional parameter space or consists of parameter functions from some
compact low dimensional manifold that is embedded in some high dimensional
or even infinite dimensional function space. Our general approach [14] covers a
large class of numerical multi-scale schemes based on an additive splitting of func-
tion spaces into macroscopic and fine scale contributions combined with a tensor
decomposition of function spaces in the context of multi query applications.

In detail, let U, V denote suitable function spaces over a domain Ω ⊂ Rd and
let us look at solutions uǫµ ∈ U of parameterized variational problems of the form

Rǫ
µ[u

ǫ
µ](v) = 0 ∀v ∈ V.

with an ǫ and µ-dependent mapping Rǫ
µ : U → V ′ where ǫ denotes a parameter

that indicates the multiscale character of the problem, and µ : Ω → Rp, p ∈ N

denotes a vector of parameter functions that do not depend on ǫ.
Numerical multiscale methods make use of a possible separation of scales in

the underlying problem. The macroscopic scale is defined by a priori chosen
macroscopic approximation spaces UH ⊂ U, VH ⊂ V , typically chosen as piece-
wise polynomial functions on a uniform coarse partition TH of Ω. The fine scale
in the multiscale problem is usually defined by a priori chosen microscopic ap-
proximation spaces Uh ⊂ U, Vh ⊂ V , also typically chosen as piecewise polynomial
functions on a uniform fine partition Th of Ω. For suitable choices of polynomial
degrees and meshes the spaces should satisfy UH ⊂ Uh ⊂ U , and VH ⊂ Vh ⊂ V ,
respectively. In this setting, let us denote with πUH

: U → UH , πVH
: V → VH

projections into the coarse spaces. We then define fine parts of Uh, or Vh through

Uf,h := {uh ∈ Uh : πUH
(uh) = 0}, Vf,h := {vh ∈ Vh : πVH

(vh) = 0}.
The discrete solution uǫµ,h ∈ Uh is then defined through its decomposition uǫµ,h =

uH + uf,h ∈ UH ⊕ Uf,h, satisfying

Rǫ
µ[uH + uf,h](vH) = 0 ∀vH ∈ VH ,(1)

Rǫ
µ[uH + uf,h](vf,h) = 0 ∀vf,h ∈ Vf,h.(2)

In a further step, a localization of the fine scale correction uf,h is obtained.
Thus, let a coarse partition TH of Ω and macroscopic discrete function spaces
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UH(TH), VH(TH) be given, e.g. by choosing globally continuous, piecewise poly-
nomial finite element spaces on TH . Furthermore, we choose quadrature rules

(ωT,q, xT,q)
Q
q=1 for T ∈ TH and associate with each quadrature point xT,q a local

function space U δ
f,xT,q

which might e.g. be given as

U δ
f,xT,q

:= {uf,xT,q
= uf,h|Y δ(xT,q) : uf,h ∈ Uf,h)}

where Y δ(xT,q) is an appropriate discrete δ-environment of xT,q that can be de-
composed with elements from the fine mesh Th. Local function spaces V δ

f,xT,q
are

defined analogously.
Next, we define local corrector operators QxT,q

: UH → U δ
f,xT,q

through an

appropriate localization of 2, e.g.

Rǫ
µ[uH +QxT,q

(uH)](vf,xT,q
) = 0 ∀vf,xT,q

∈ V δ
f,xT,q

.(3)

A corresponding local reconstruction operator RxT,q
is then given as

RxT,q
(uH) = uH +QxT,q

(uH)(4)

and we obtain the overall method using numerical quadrature in the coarse scale
equation (1) and by replacing uH + uf,h in (1) by the localized reconstruction
RxT,q

(uH). Depending on the choice of trail and test functions, and on the choice
of specific localizations of the function space for the fine scale correctors and by
choosing corresponding localized corrector operators a variety of numerical multi-
scale methods can be recovered. For a detailed derivation of the multiscale finite
element method (MsFEM), the variational multiscale method, and the heteroge-
neous multiscale method (HMM) in such a framework we refer to the expositions
in [6] and [12]. We in particular focus on a posteriori error estimation and adaptiv-
ity for HMM approximations of elliptic problems [13, 7] and for approximation of
immiscible two phase flow in porous media [9, 10]. We also refer to [9] for homoge-
nization of degenerate two phase flow in porous media in a more complex situation
where also jumps in the capillary pressure and relative permeability curves on the
fine scale are allowed. Finally, we present an a posteriori error estimate for MsFEM
that in particular is able to measure the error due to oversampling in heterogeneous
scenarios [8].

To efficiently cope with two phase flow in porous media in multi-query scenar-
ios, we introduce the reduced basis approach [5] with extensions for non-linear
PDEs, based on the concept of empirical operator interpolation [3]. Numerical
experiments are given for two phase flow in porous media [4]. Finally, we present
a generalization of the classical projection based reduced basis approach to effi-
ciently cope with multiscale problems in multi-query scenarios. Let thus suppose
that in a first step we have computed snapshots, i.e. solutions uǫµ,h with our fa-
vorite numerical multiscale method for suitable chosen parameters µi, i = 1, . . . , N .
The choice of suitable parameters may for example be done by a Greedy algo-
rithm based on efficient a posteriori error estimates. Let us denote ΦN a or-
thogonalized Basis of VN := span(µi, i = 1, . . . , N). The classical reduced basis
approach is based on approximating solutions by linear expansions of the form
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uǫµ,N (x) =
∑N

i=1 aiφi(x), x ∈ Ω. Hence, the spatial variation of the solution is
represented by the globally defined basis functions only. Here, we apply a general-
ization of this approach (see [14]) by replacing the linear combination of reduced

basis functions by the nonlinear combination uǫµ,N =
∑N

i=1 ai(x)φi(x), with the
hope to significantly reduce the number N of reduced basis functions needed to
represent the solution manifold of the underlying parameterized problem. Here
the coefficients ai are now supposed to be macroscopic functions that are able to
take care of the macroscopic spatial variation of the solution manifold. Let us for
instance assume ai ∈ UH , while φi ∈ VN ⊂ Uh. The reduced multiscale solution

space is then given as UH,N := {uH,N(x) =
∑N

i=1 ai(x)φi(x)|ai ∈ UH , φi ∈ ΦN}
and a corresponding reduced scheme is obtained by suitable projection of the
original problem onto such function spaces.

Particular realizations of this approach are the local reduced basis discontinuous
Galerkin method [11] and the localized reduced basis multiscale method [2], but
also other approaches such as the mixed multiscale finite element method using
limited global information [1], the generalized finite element method or partition
of unity methods fit into this framework.

Numerical experiments are given to demonstrate the efficiency of the new ap-
proach.
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Compactly supported frames for spaces of distributions in the

framework of Dirichlet spaces

Pencho Petrushev

(joint work with Shai Dekel, Gerard Kerkyacharian, and George Kyriazis)

Compactly supported frames and bases are an important tool in Harmonic
analysis and its applications in allowing to represent functions and distributions
in terms of building blocks of small supports. Our goal is to construct frames with
compactly supported frame elements of small shrinking supports in the general
framework of Dirichlet spaces [1, 3], which we next describe briefly:

I. We assume that (M,ρ, µ) is a metric measure space satisfying the conditions:
(M,ρ) is a locally compact metric space with distance ρ(·, ·) and µ is a positive
Radon measure such that the following volume doubling condition is valid

0 < µ(B(x, 2r)) ≤ c0µ(B(x, r)) <∞ for all x ∈M and r > 0,

where B(x, r) is the open ball centered at x of radius r and c0 > 1 is a constant.
II. The main assumption is that the local geometry of the space (M,ρ, µ) is

related to an essentially self-adjoint positive operator L on L2(M,dµ) such that
the associated semigroup Pt = e−tL consists of integral operators with (heat)
kernel pt(x, y) obeying the conditions:

• Small time Gaussian upper bound:

(1) |pt(x, y)| ≤
C⋆ exp{− c⋆ρ2(x,y)

t }√
µ(B(x,

√
t))µ(B(y,

√
t))

for x, y ∈M, 0 < t ≤ 1.

• Hölder continuity: There exists a constant α > 0 such that

∣∣pt(x, y)− pt(x, y
′)
∣∣ ≤ C⋆

(ρ(y, y′)√
t

)α exp{− c⋆ρ2(x,y)
t }√

µ(B(x,
√
t))µ(B(y,

√
t))

for x, y, y′ ∈M and 0 < t ≤ 1, whenever ρ(y, y′) ≤
√
t.
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• Markov property:

∫

M

pt(x, y)dµ(y) ≡ 1 for t > 0.

Above C⋆, c⋆ > 0 are structural constants.
A natural effective realization of the above setting appears in the general frame-

work of strictly local regular Dirichlet spaces with a complete intrinsic metric,
where it only suffices to verify the local scale-invariant Poincaré inequality and
the global doubling condition on the measure and then the above general setting
applies in full. A key observation is that situations, where our theory applies are
quite common, in particular, this theory applies on Lie groups or homogeneous
spaces with polynomial volume growth, complete Riemannian manifolds with Ricci
curvature bounded from below and satisfying the volume doubling condition. Nat-
urally, it covers the more classical cases on the sphere, interval, ball, and simplex
with weights. For more details, see [1, 3, 4].

We build on results on functional calculus, frames and spaces of distributions
developed in [1, 3]. To achieve our goals we first develop a general small pertur-
bation scheme for construction of frames in a general quasi-Banach space B of
distributions given a pair of dual frames {ψξ}, {ψ̃ξ}. In fact, this is the situation
in [3]. Such a method has been developed in [7] in the more favorable situation
when a single frame {ψξ} for B exists. The latter scheme can be applied directly
in our setting in the spacial case when the spectral spaces have the polynomial
property (see [3]) as on the sphere, interval, ball, and simplex. The idea of these
schemes is rooted in the development of bases in [9], also in [5, 6].

The construction of compactly supported frames relies heavily on the finite
speed propagation property of solutions of the wave equation associated with the
operator L. This property follows from the Gaussian bound (1) on the heat kernel
pt(x, y). The finite speed propagation property alone, however, is not sufficient.
The other properties of the heat kernel and the doubling condition on the measure
are also important for the development of a complete theory. In particular, they
allowed to develop in [3] Besov and Triebel-Lizorkin spaces with full set of indices
and their frame characterization, which play a critical role here.

Compactly supported frames have already been constructed on the sphere in
[7] and on the ball with weight wµ(x) = (1 − |x|)µ−1/2, where µ is a half integer
and µ ≥ 0 in [8]. One of the strengths of our method is that although it is general
it allows to obtain in particular settings better results than the existing ones.
For example, combining results from this work and [4] enable us to improve the
results on the ball from [8] by relaxing the condition on µ from a half integer and
µ ≥ 0 to any µ > −1/2. Another application of the current results and results
from [4] is to the development of compactly supported frames on the interval with
Jacobi weights and on the simplex with weights.

A key feature of the new frames is that they can be used for decomposition of
the Besov and Triebel-Lizorkin spaces in the general framework of Dirichlet spaces
developed in [3], and therefore, in many particular settings of interest.
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An important application of the compactly supported frames from this work is
to atomic Hardy spaces Hp

A, 0 < p ≤ 1. The compactly supported frames provide
a vehicle in establishing Littlewood-Play characterization of the Hardy spaces Hp

A

and their frame decomposition.
The results of this work are established with complete proofs in [2].
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Maximum principle and entropy consistency for numerical

approximations of nonlinear hyperbolic conservation laws

Bojan Popov

(joint work with Jean-Luc Guermond and Orhan Mehmetoglu)

The scalar theory for nonlinear hyperbolic conservation laws is well developed.
Namely, maximum principle, entropy stability and convergence of viscosity ap-
proximations has been established a long time ago. However, in the case of second
or higher order schemes, there are few limited convergence results. We present here
our recent stability and convergence result for the second order Nessyahu-Tadmor
scheme, see [1, 2].

Theorem 1 (Mehmetoglu and P.). Let f ∈ C4(R) be strictly convex. Then, under
a standard CFL condition the Nessyahu-Tadmor scheme based on the minmod
limiter converges strongly on compact sets to the unique entropy solution of the
conservation law

ut + f(u)x = 0, (x, t) ∈ R× (0,∞)

for any initial data u(x, 0) = u0(x) ∈ L∞(R).
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The relation of the above result with entropy viscosity and entropy stable
schemes will be explained. In the case of the Euler system of gas dynamics,
we will present a class of viscosity approximations and prove that they have an
invariant domain property (the analog of maximum principle for systems). More-
over, we will identify the subclass of these approximations which is consistent with
all entropy inequalities, see [3]. The connections with the related works of Lax
[4], Tadmor [5], and Harten et al. [6] will be discussed. Some numerical results
obtained with entropy viscosity schemes based on this first order approximation
of the Euler system will be presented.
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Convergence of dynamical low rank approximation in hierarchical

tensor formats

Reinhold Schneider

(joint work with M. Bachmayr)

Let V1, . . . ,Vd Hilbert spaces, where e.g. Vi = Rni or Vi = L2(R) may hold.
An order-d tensor over these spaces is then given by any U ∈ ⊗d

i=1Vi. For sake of
simplicity let us interpret such tensors as multivariate functions

U : I1 × · · · × Id → R, x = (x1, . . . , xd) 7→ U(x1, . . . , xd),

with index sets Ii to be either discrete, e.g. Ii = {1, . . . , ni} in case that Vi = Rni ,
or continuous, e.g. Ii = R in the case that, for instance, Vi = L2(R). Such tensors
play an important role in the description of many complex systems. While in some
applications, they are given explicitly, they are often defined only implicitly as the
solution partial differential or integral equations in high dimensions. e.g in Rd.
Examples are the Fokker-Planck equations or many body Schrödinger equations.
At the latest after a discretization, tensor quantities take on nd different values
(x1, . . . , xd), assuming n = max{ni; i = 1, . . . , d}. The complexity O(nd) grows at
least exponential in d, Even if n is small. e.g. n = 2, for large d it is impossible to
handle the full tensor. Tensor product approximation aims to approximate these
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tensors by products of univariate functions. In tensor product approximation, the
Hierarchical Tucker tensor format (HT) (Hackbusch-Kühn) and Tensor Trains
(TT) (Tyrtyshnikov-Oseledets) have been introduced recently offering stable and
robust approximation by a low order cost, see [2]. The representation of these
tensors can be described by a tensor network with tree structure. The appearing
component tensors are of low order, e.g. for binary trees they are of order 3,
independent of the original order d. For example, the TT format provides a
special case of hierarchical tensor formats. Here U(x1, . . . , xd) is represented in
terms of d component matrices U1(x1), U2(x2), . . . , Ud(xd). A value of U at point
(x1, . . . , xd) can be computed by

U(x1, . . . , xd) = U1(x1)U2(x2) · · ·Ud(xd) ,

or explicitely

=

r1∑

k1=1

. . .

rd−1∑

kd−1=1

U1(x1, k1)U2(k1, x2, k2) . . . Ud−1(kd−2, xd−1, kd−1)Ud(kd−1, xd).

The numbers ri, define the rank numbers of the TT decomposition or the rank
vector r = (r1, . . . , rd−1) that mainly governs the complexity of the representa-
tion. Letting r = max ri, storage of the TT decomposition is O(r2nd) and is thus
formally free from the curse of dimensionality. For many problems of interest,
which could not be handled so far, this approach has the potential to circumvent
from the curse of dimensionality. The important observation is that the hierar-
chical tensors inherit major properties from low rank factorization of matrices. It
is already known that, given a partition tree, then the optimal ranks are defined
by the rank of the corresponding matricisation or matrix unfolding At, see [2].
Moreover a quasi-optimal approximation can be found from the singular value
decomposition of these matrices, the HOSVD see [2]. Best N -term approxima-
tion resultss has been derived from this observation in a recent paper [7]. Let
At = UTΣV , (SV D) Σ = diag(σi) be the singular value decomposition of the
unfolding at a node t in the tree. For 0 < p ≤ 2, we refer to the the nuclear norm
p = 1 and van Schatten class quasi-norms

‖At‖∗,p :=
(∑

i

σp
t,i

) 1
p .

Then, by Stechkins lemma the best rank rt, for s :=
1
p − 1

2 , best N-term approxi-

mation satisfies

inf
rank V≤k

‖At −V‖2 . r−s
t ‖At‖∗,p .

Furthermore this results is quite sharp. Altogether this implies the following result.

Theorem 1. Assume that ‖A‖∗,p := maxt ‖At‖∗,p < ∞, and |r| := max{rt},
then

inf
{V :ranks of V≤r}

‖U − V ‖2 . C(d)|r|−s‖A‖∗,p
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with a prefactor C(d) .
√
d , scaling mildly with d. Notice that the complexity

scales ♯U . d|r|3 (HT), (. nd|r|2 (TT)).

It has been shown in [7] thatmixed Sobolev spaces are embedded in these classes.
Perhaps, due to the complexity scaling O(r3), these results are only suboptimal for
these classes. In a forthcoming paper. with M. Bachmayr, consider the following
parabolic problem, see e.g. [5]

U̇ = (−A+ B)U + f , U0 ∈ Mr ,

where A is the sum of univariate operators. We notice that the simple transfor-

mation U → Ũγ(t) = eγtU(t) does not change the rank structure. It provides the
transformed equation

U̇γ = (−A− γ + B)Uγ + f−γ , U0 ∈ Mr .

In this setting, we derive the following kind of regularity result, provide that the
right hand side is sufficiently regular in the above setting i.e. ft ∈ L∗,p, ∀t.
Theorem 2. Let 1 ≤ p ≤ 2, i.e. we consider only those van Schatten classes
which are Banach spaces,

B =
∞∑

k=1

Bx,k ⊗By,k ,
∞∑

k=0

‖Bx,k‖L∗,p→L∗,p
‖By,k‖L∗,p→L∗,p

≤ L <∞ , for all t,

(1) if L is sufficiently small, then

‖U‖∗,p <∞

(2) there exist γ ∈ R such that

‖Ũγ‖∗,p <∞
The set of tensors of prescribed rank is neither a linear space nor convex. It has

been shown, partly by the author [6], that given a tree, the set hierarchical tensor of
optimal rank forms smooth (open) manifoldsMr. For numerical computations, we
cast the computation of an approximate solution into an optimization problems
constraint to this manifold. In particular, for approximation by elements from
this highly nonlinear manifold , we apply the well known Dirac Frenkel variational
principle, see e.g [3],

U̇(t) = argmin{‖V − (−A+ B)Ψ(t) + f(t)‖ : V ∈ TU} .
By straightforward manipulations, this provides the equations of motion in weak
form,

〈U̇ + (A− B)Ψ− f, V 〉 , ∀V ∈ TU , U(0) = Ψ0 ∈ Mr .

or
U̇ = PTU

(−A+ B)Ψ + f, U(0) = Ψ0 ∈ Mr .

In [4], we have analysed the (open) manifold of such tensors and its projection onto
the tangent space TU at point U(t) ∈ Mr . First convergence estimates in L2 has
been derived, providing quasi-optimal converge local in time, i.e. for 0 ≤ t ≤ T ,
T sufficiently small.



Multiscale and High-Dimensional Problems 2237

The Dirac Frenkel principle is a Galerkin approximation, where the differential
equation has to be satisfied in weak form on the tangent space TU at each time
U(t). In a forthcoming paper with M. Bachmayr [1], we tried to extend some
results from well established theory of spatial Galerkin approximation w.r.t. a fixed
linear ansatz space, e.g. FEM space. Aside the fact that in our case the space TU ,
is not fixed, it moves by time, further obstructions has to be handled. Due to the
richness of the present nonlinear parametrization, we cannot expect quasi-optimal
convergence for long times without severe restrictions and further assumptions.
Indeed some counter examples are provided. Our major assumption requires that
the actual approximation, together with the a quasi best approximation, touches
only those parts of the manifold, where the curvature is bounded by a uniform
constant ρ.
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Sparse quadrature approach to Bayesian inverse problems

Christoph Schwab

(joint work with Claudia Schillings)

We consider the parametric deterministic formulation of Bayesian inverse prob-
lems with distributed parameter uncertainty from infinite dimensional, separable
Banach spaces X , with uniform prior probability measure on space X of all un-
certainties. Under the assumption of given observation data δ subject to additive
observation noise η ∼ N(0,Γ) with positive covariance Γ, an infinite-dimensional
version of Bayes’ formula has been shown in [14].

For problems with uncertain, distributed parameters u ∈ X (which could be
a diffusion coefficient, elastic moduli in solid mechanics, shape of the domain
D of definition of the physical problem [1], kinetic parameters in stoichiometric
models of reaction-systems in biological systems [4, 7], permeability in porous
media or optimal control of uncertain systems [9]), we develop a practical, adaptive
computational algorithm for the efficient approximation of the infinite-dimensional
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integrals with respect to the Bayesian posterior (conditional on given data δ) µδ

which arise in Bayes’ formula in [14].
The Bayesian posterior µδ is shown to admit a representation in terms of a

(generalized) polynomial chaos expansion in the (countably many) coordinates yj
which parametrize the uncertainty. We prove that if the uncertain datum u ∈ X
admits the (norm-convergent in X) expansion

u = 〈u〉+
∑

j≥1

yjψj(x)

with |yj| ≤ 1 and with (‖ψj‖X)j≥1 ∈ ℓp(N) for some 0 < p < 1, then the solution
q(u) = (A(u))−1f of the parametric operator equation will depend holomorphically
on the parameters yj, with precise control of the domain of holomorphy [3, 8, 5, 1,
9]. In two-scale limits of homogenization theory, these domains are independent
of physical scale parameters [8].

We prove, generalizing [13], that the holomorphic dependence on the param-
eters yj of the forward solution of the above problems implies p-sparsity of the
polynomial chaos expansion for the parametric forward solution q(u) = (A(u))−1f
and also for the density function of derivative of the Bayesian posterior µδ with
respect to the prior µ0, conditional on given data δ.

The proof of the p-sparsity in [12, 10] is based on verification of holomorphic
dependence of the polynomial chaos representation for the density of the Bayesian
posterior with respect to the prior, following the proofs in the linear, elliptic dif-
fusion problems in [3, 13].

Based on this sparsity result, dimension independent convergence rates of best
N -term approximations of the parametric forward map as well as of the paramet-
ric density of the Bayesian posterior with respect to uniform prior follows from
Stechkin’s lemma.

We propose a deterministic, adaptive algorithm inspired by [6] and analogous to
the adaptive interpolation methods in [2] and the references there. The proposed
algorithm determines iteratively, and depending on the observation data δ and the
observation noise variance Γ a sequence of quadrature dimensions and quadrature
orders.

Convergence rates for the adaptive Smolyak quadrature approximation are
shown, computationally, to coincide with the best N term approximation rates
of the Bayesian posterior density which, in turn [12, 10] depend only on the spar-
sity class (characterized in turn by the summability exponent p ∈ (0, 1) of the
uncertain distributed parameter u ∈ X).

Convergence rates are obtained in [12, 10] via monotone L∞ N -term approxi-
mations of the posterior density from [2]. The resulting rates 1/p − 1 are larger
than the rate 1/2 afforded by Monte-Carlo methods and their variants (notably
MCMC) for p < 2/3 when stated in terms of the numberN of (numerical) solutions
of the forward problems which are necessary in the quadrature algorithm.
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Applications with verified holomorphic dependence include high-dimensional
parametric initial value problems [4], semilinear elliptic equations [5, 1] with uncer-
tain differential operators, parabolic evolution problems with uncertain operators
[1], elliptic multiscale problems with uncertain coefficients [8] and from biologi-
cal systems sciences [7], as well as optimal control of uncertain systems [9], and
problems with uncertain shape [1].

Numerical examples are presented for diffusion problems with uncertain diffu-
sion coefficient from [12], [10], and for large, parametric systems of initial value
problems from stoichiometric models for biological systems with mass-action ki-
netics from [4, 7]. Computational savings with respect to adaptivity in the forward
solver are indicated. Here, we present numerical experiments based on the para-
metric, parabolic initial boundary-value problem

∂tq(t, x) − div(u(x)∇q(t, x)) = f(t, x) (t, x) ∈ T ×D ,

q(0, x) = 0 x ∈ D ,

q(t, 0) = q(t, 1) = 0 t ∈ T ,

with f(t, x) = 100 · tx, D = (0, 1) and T = (0, 1). The uncertain coefficient u

is parametrized as u(x, y) = ā +
∑128

j=1 yjψj ,where ā = 1 and ψj = αjχDj
with

Dj = [(j − 1) 1
128 , j

1
128 ], y = (yj)j=1,...,128 and αj =

0.6
jζ
, ζ = 3. Figure 1 shows the

convergence behavior of the adaptive Smolyak algorithm for the approximation of
the normalization constant considering a variation of the number of observation
points as well as of the observational noise. A detailed discussion of the numerical

Figure 1. Comparison of the estimated error and actual error

of the normalization constant Z = Eµδ

[1] with respect to the car-
dinality #Λ of the index sets ΛN (Clenshaw-Curtis quadrature)
with K = 1, 3, 9 (number of observation points), η ∼ N (0, 1) (l.),
η ∼ N (0, 0.52) (m.), η ∼ N (0, 0.12) (r.).

experiments for the parametric, parabolic evolution problem with random coef-
ficients can be found in [10]. The numerical experiments indicate that, as the
observation noise with variance Γ → 0, growth of the constants in the Smolyak
quadrature error estimates. In [11], we present an asymptotic analysis and prove
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C ∼ exp(b/Γ) for some constants b, C > 0. We also show in [11] that the Bayesian
estimate admits a finite limit in the case Γ → 0, and propose regularization of the
integrand functions arising in the computation of the conditional expectation.
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Instance optimality of the adaptive maximum strategy

Rob Stevenson

(joint work with Christian Kreuzer and Lars Diening)

Adaptive algorithms for the solution of PDEs that have been proposed since
the 70’s are nowadays standard tools in science and engineering. In contrast
to uniform refinements, adaptive mesh modifications do not guarantee that the
maximal mesh size tends to zero. For this reason, even convergence of adaptive
finite element methods (AFEM’s) was unclear for a long time, though practical
experiences often showed optimal convergence rates.

In one dimension, convergence of an AFEM for elliptic problems was proved by
Babuška and Vogelius in [3] under some heuristic assumptions. Later, Dörfler in-
troduced in [5] a bulk chasing marking strategy thereby proving linear convergence
of an AFEM in two space dimensions for a sufficiently fine initial triangulation.
This restriction was removed in [7, 8] by Morin, Nochetto, and Siebert.

In [1], Binev, Dahmen and DeVore extended the AFEM analysed in [7] by a
a so-called coarsening routine, and showed that the resulting method is instance
optimal, cf. also [2]. This means that the energy norm of the error in any approx-
imation produced by the algorithm, with underlying triangulation denoted as T ,
is less than some constant multiple of the error w.r.t. any admissible triangulation
T̃ satisfying #(T̃ \ T⊥) ≤ λ#(T \T⊥), for some fixed constant λ ∈ (0, 1). Here, an
admissible triangulation is a conforming triangulation, which is created by finitely
many newest vertex bisections (NVB) from a fixed initial triangulation T⊥.

In [10], it was shown that already without the addition of coarsening, the AFEM
is class optimal: Whenever the solution can be approximated at some asymptotic
(algebraic) convergence rate s by finite element approximations, then the AFEM
produces a sequence of approximations, which converges with precisely this rate
s. In [4], a similar result was shown with a refinement routine that is not required
to produce “interior nodes”, and with a different treatment of the approximation
of the right-hand side. In that paper, the AFEM is considered as a procedure for
reducing the total error, being the sum of the error in the energy norm and the
so-called oscillation. This is also the point of view that will be taken in the present
work.

In the last few years, in numerous works class optimality results for AFEMs have
been derived for arbitrary space dimensions, finite elements of arbitrary orders,
the error measured in L2, right-hand sides in H−1, nonconforming triangulations,
discontinuous Galerkin methods, general diffusion tensors, (mildly) non-symmetric
problems, nonlinear diffusion equations, and indefinite problems.

In all these works the marking strategy is bulk chasing, also called Dörfler
marking. In [9], Morin, Siebert and Veeser considered also the maximum and
equidistribution strategies, without proving any rates though.

In our recent work [6], we consider a standard AFEM, so without coarsening,
in the model setting of Poisson’s equations with homogeneous Dirichlet bound-
ary conditions on a two-dimensional polygonal domain, the error measured in the
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energy norm, square integrable right-hand side, linear finite elements, and con-
forming triangulations created by NVB. The refinement routine is not required
to create interior nodes in refined triangles. Our method utilizes a (modified)
maximum marking strategy for the standard residual error estimator organised by
edges.

The maximum strategy marks all edges for bisection whose indicator is greater
or equal to a constant µ ∈ (0, 1] times the largest indicator. This strategy is
usually preferred by practitioners since, other than with Dörfler marking, it does
not require the sorting of the error indicators, and in practise the results turn out
to be very insensitive to the choice of the marking parameter µ ∈ (0, 1].

Roughly speaking, our modification of the maximum marking strategy replaces
the role of the error indicator associated with an edge S by the sum of the error
indicators over those edges that necessarily have to be bisected together with S in
order to retain a conforming triangulation.

The main result of [6] states, that for any µ ∈ (0, 1], our AFEM is instance
optimal for the total error. Clearly, instance optimality implies class optimality
for any (algebraic) rate s, but not vice versa.

To prove instance optimality, we will show that the total energy associated with
any triangulation T produced by our AFEM is not larger than the total energy
associated with any conforming triangulation T̃ created by NVB with #(T̃ \T⊥) ≤
λ#(T \ T⊥), for some fixed constant λ ∈ (0, 1). Here the total energy is defined as
the sum of the Dirichlet energy and the “element residual part of the a posteriori
estimator”.
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Analysis and approximation of Hamilton–Jacobi–Bellman equations

with Cordès coefficients

Endre Süli

(joint work with Iain Smears)

Non-divergence form linear second-order elliptic equations with discontinuous
coefficients do not generally possess a weak formulation in the Sobolev space H1,
thus presenting an obstacle to their numerical solution by classical finite element
methods.

Consider, for example, the boundary-value problem

Lu = f in Ω,

u = 0 on ∂Ω,
(1)

on a bounded open convex domain Ω in Rn, where f ∈ L2(Ω), and L is a second-
order elliptic operator in non-divergence form, i.e., the leading term of L is of the
form

∑n
i,j=1 aij uxixj

, with coefficients aij ∈ L∞(Ω).
PDEs of this form appear in many areas, including probability theory, stochas-

tic analysis and statistical physics. Such equations also arise as linearizations of
fully nonlinear PDEs, as obtained for instance from the use of iterative solution
algorithms. In such cases, it can rarely be expected that the coefficients of the
operator be smooth or even continuous. For example, in applications to Hamilton–
Jacobi–Bellman equations, the coefficients aij may be merely essentially bounded.

In the case of continuous but possibly non-differentiable coefficients in the dif-
ferential operator, the Calderón–Zygmund theory of strong solutions establishes
the well-posedness of the boundary-value problem (1) in sufficiently smooth do-
mains. However, without additional hypotheses, well-posedness of (1) is generally
lost in the case of discontinuous coefficients.

Despite these difficulties, well-posedness, for solutions in the space H2(Ω) ∩
H1

0 (Ω), is recovered in convex domains for elliptic operators L with L∞ coefficients,
provided that the coefficients of L satisfy an additional condition, known as the
Cordès condition; in the case when Lu :=

∑n
i,j=1 aij uxixj

, the Cordès condition

demands the existence of an ε ∈ (0, 1] such that, for a.e. x ∈ Ω,

(2)
|a|2

(Tr (a))2
≤ 1

n− 1 + ε
,

where |·| represents the Frobenius norm of a matrix and Tr (·) denotes the trace
of a matrix. The Cordès condition encompasses a large range of applications. For
example, in two spatial dimensions, the condition amounts to simply requiring
uniform ellipticity of the diffusion coefficient.

Unlike elliptic equations in divergence form, the literature on the numerical
analysis of non-divergence form equations is comparatively sparse. In view of
the applications mentioned above, it is important to consider methods that do
not assume a priori information about the location of the discontinuities of the
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coefficients. Our main objective is the construction of stable and convergent high-
order finite element methods, and their rigorous mathematical analysis, for non-
divergence form linear second-order elliptic PDEs, and the (fully nonlinear) elliptic
Hamilton–Jacobi–Bellman equation.

The application of a conforming finite element method to (1) would require at
least H2-regularity of the approximation, which, in turn, amounts to an, exces-
sively restrictive, C1-continuity condition on the finite element space. For this
reason, we consider discontinuous Galerkin (DG) finite element methods, which
allow the approximation to be discontinuous between elements in the computa-
tional grid, with the continuity conditions being enforced only weakly through the
discretized problem. These methods have been analyzed and applied to a large
range of PDEs. The ability of DG methods to handle hp-refinement, where one
varies both mesh size and polynomial degree, is of significant interest here, in view
of the potential loss of higher regularity of the solution near discontinuities of the
coefficients. Indeed, hp-refinement has been used in the context of continuous and
discontinuous Galerkin finite element methods to obtain exponential convergence
for problems with non-smooth solutions.

We propose a new hp-version DG finite element method for linear second-order
elliptic PDEs in non-divergence form, satisfying a Cordès condition. It is shown
that the method exhibits a convergence rate that is optimal with respect to the
mesh size h and suboptimal with respect to the polynomial degree p by only
half an order. Numerical experiments demonstrate the accuracy of the method
and illustrate the potential of exponential convergence under hp-refinement for
problems with discontinuous coefficients and nonsmooth solutions. The Cordès
condition (2) plays a central role in the numerical analysis of the proposed method
(cf. [1]).

We further construct an hp-version DG finite element method for the numerical
solution of, fully nonlinear, second-order elliptic Hamilton–Jacobi–Bellman (HJB)
equations:

(3) sup
α∈Λ

[Lαu− fα] = 0 in Ω,

where Ω is a bounded open convex domain in Rn, n ≥ 2, Λ is a compact metric
space, and the Lα, α ∈ Λ, are elliptic operators of the form

(4) Lαv =

n∑

i,j=1

aαij vxixj
+

n∑

i=1

bαi vxi
− cα v.

The function cα is supposed to be non-negative on Ω, for each α ∈ Λ. We assume
the Cordès condition: there exist λ > 0 and ε ∈ (0, 1] such that, for each α ∈ Λ,

(5)
|aα|2 + |bα|2/2λ+ (cα/λ)2

(Tr (aα) + cα/λ)
2 ≤ 1

n+ ε
in Ω,

where |·| represents the Euclidian norm for vectors and the Frobenius norm for
matrices. In the special case bα ≡ 0 and cα ≡ 0 for each α ∈ Λ, we set λ = 0 and
the Cordès condition (5) is replaced by (2).
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HJB equations characterize the value functions of stochastic control problems,
which arise from applications in engineering, physics, economics, and finance. The
solution of (3) leads to the best choices of controls from the set Λ for steering a
stochastic process towards optimizing the expected value of a functional.

We prove the existence and uniqueness of a strong solution (in H2(Ω)∩H1
0 (Ω))

of equation (3). We then construct a stable, consistent, convergent and high-order
hp-version DG finite element method, for which we prove convergence rates in a
discrete H2-type norm that are optimal with respect to mesh size, and suboptimal
in the polynomial degree by only half an order. In contrast with monotone finite
difference schemes, the proposed method is consistent regardless of the choice of the
mesh, thereby permitting hp-refinement on very general shape-regular sequences
of meshes. Our numerical experiments show gains in computational efficiency,
flexibility, and accuracy over existing monotone methods (cf. [2]).
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Clustering and consensus in collective dynamics

Eitan Tadmor

1. Self-organized dynamics. We discuss self-organized dynamics of agent-
based models with focus on a prototype model driven by non-symmetric self-
alignment. Models for self-alignment dynamics have appeared in a large variety
of different contexts, including load balancing in computer networks, evolution of
languages, gossiping, algorithms for sensor networks, emergence of flocks, herds,
schools and other biological “clustering”, pedestrian dynamics, ecological models,
multi-agent robots, models for opinion dynamics, economic networks and more;
consult [4, 5, 6, 9, 10, 11, 13, 14, 15, 16, 18, 23] and the references therein.

The starting point for our discussion is the evolution of N agents, each of which
is identified by its “position” pi(t) ∈ Rd. The position pi(t) may account for
opinion, velocity, or other attributes of agent “i” at time t. Each agent adjusts its
position according to the position of his neighbors:

d

dt
pi = α

∑

j 6=i

aij(pj − pi), aij ≥ 0.

Here, α > 0 is a scaling parameter and the coefficients aij quantify the strength of
interaction between agents i and j: the larger aij is, the more weight is given to
agent j to align itself with agent i, based on the difference of their positions pi−pj .
The underlying fundamental assumption here is that agents do not react to the
position of others but to their differences relative to other agents. In particular, the
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aij ’s themselves are allowed to depend on the relative differences, pi−pj. Indeed,
we consider nonlinear models in the sense that the coefficients may depend on the
position, aij = aij(P(t)), P(t) := {pk(t)}k.

2. Unconditional consensus and flocking. We distinguish between two
main classes of self-alignment models. In the global case, the rules of engagement
are such that every agent is influenced by every other agent, aij > η > 0. The
dynamics in this case is driven by global interactions. We have a fairly good
understanding of the large time dynamics of such models, e.g., [3, 6, 8, 20, 21, 24]:
global interactions which are sufficiently strong lead to unconditional consensus in
the sense that all initial configurations of agents concentrate around an emerging

limit state, the “consensus” p∞ : pi(t)
t→∞−→ p∞.

In more realistic models, however, interactions between agents are limited to
their local neighbors, [1, 2, 7, 22]. The behavior of local models where some of the
aij may vanish, requires a more intricate analysis. In the general scenario for such
local models, agents tend to concentrate into one or more separate clusters. The
particular case in which agents concentrate into one cluster, that is the emergence
of a consensus or a flock, depends on the propagation of uniform connectivity of
the underling (weighted) graph associated with the adjacency matrix, {aij}. Thus,
the question of consensus for local models is resolved here in terms of persistence
of connectivity over time. However, even if the initial configuration is assumed
connected, there is still a possibility of losing connectivity as the aij ’s may vary
in time together with the positions P(t). This leaves open the main question of
tracing the propagation of connectivity in time.

3. Heterophilious interactions. Many standard models for self-organized
dynamics in social, biological and physical science make the intuitive assumption
that the intensity of alignment increases as agents get closer, reflecting a com-
mon tendency to align with those who think or act alike. “Birds of feather flock
together” reflects our intuition that increasing intensity of alignment as the dif-
ference of positions decreases, is more likely to lead to a consensus. We argue
in [21] that the converse is true: heterophily — the tendency to bond more with
those who are different rather than with those who are similar, plays a decisive
role in the process of clustering. In particular, sufficiently strong heterophilious
interactions enhance consensus. We are not unaware that this phenomenon of
enhanced consensus in the presence of heterophilious interactions, may have in-
triguing consequences in different areas other than social networks, e.g., global
bonding in atomic scales, avoiding materials’ fractures in mesoscopic scales, or
“cloud” formations in macroscopic scales.
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Reduced basis methods for transport dominated problems

Gerrit Welper

(joint work with Wolfgang Dahmen and Christian Plesken)

The reduced basis method has been successfully applied to a wide range of prob-
lems including elliptic and parabolic parametric PDEs. However, its application
to transport dominated problems is still difficult and the main obstructions are ex-
amined in the first part of the talk. Especially, we wish to apply the known greedy
theory from [2, 1, 7], to find reduced bases that achieve optimal convergence rates
with respect to the Kolmogorov n-width. This amounts to finding new snapshots
satisfying the weak greedy condition: Find a parameter µn+1 such that

inf
ϕ∈Xn

‖uµn+1 − ϕ‖ ≥ c sup
µ

inf
ϕ∈Xn

‖u− ϕ‖

whereXn is the current reduced basis, uµ is the solution of the parametric PDE for
the parameter µ and c ≥ 0 is a constant. We follow the typical approach to solve
this optimization problem by providing two major ingredients for the transport
dominated case:

(1) A numerical scheme that produces, up to constants, a best approximation
uµ,n ∈ Xn , i.e.

‖uµ − uµ,n‖ ≤ C inf
ϕ∈Xn

‖uµ − ϕ‖,

to the solution uµ of the parametric PDE for a fixed parameter µ, where
C > 0 is a constant.

(2) An error estimate for ‖uµ − uµ,n‖.
While these two ingredients are well understood in the elliptic case, they are

typically not satisfied by standard methods for transport dominated problems,
like SUPG, variational multiscale or DG schemes. However, they are provided by
some more recent methods from [5, 6, 3, 4]. These schemes can be understood as a
“stabilization on the infinite dimensional level” by first providing two, eventually
parameter dependent Hilbert spaces such that the operator Aµ of the parametric
PDE is an isomorphism satisfying a mapping property

‖ · ‖Xµ
∼ ‖Aµ · ‖Y ′

µ
.

For convection dominated convection-diffusion problems, it is ensured that the
involved constants do not depend on the Péclet number, in fact the norms can be
chosen such that the constants are one.

This mapping property allows the construction of residual based error estima-
tors presented in the talk. In addition, it also implies that the infinite dimensional
operator satisfies an inf-sup condition. It follows that a Petrov-Galerkin method
yields a best approximation (up to constants) from the reduced basis if we can
guarantee a discrete inf-sup condition. However, the corresponding test spaces are
typically parameter dependent, whereas we wish to have only one single reduced
test space for computational efficiency. To this end, the Petrov-Galerkin method is
reformulated as a saddle point problem which requires the same inf-sup condition
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but allows a test space which is larger than the trial space. This freedom is then
used to find a test space that achieves a discrete inf-sup condition uniformly in
the parameter.

To actually compute these test spaces, we use a greedy strategy (see [8]) by
inductively adding a test function for the parameter and trial function with worst
discrete inf-sup constant. For singularly perturbed convection-diffusion equations,
it is shown that this “inner” greedy loop terminates after O(n) steps where n is
the size of the reduced trial space.

These constructions provide all ingredients of the indicated ansatz to achieve
the week greedy property. This yields the main result of the talk: The proposed
method produces reduced bases for which the error of the reduced basis approxi-
mation has the same rate as the Kolmogorov n-width.

Finally, the theoretical statements are supplemented by numerical tests.
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Properties of greedy algorithm used in reduced basis method

Przemek Wojtaszczyk

Reduced basis: Let ∆ ⊂ Rd be a compact set e.g. ∆ = [0, 1]d with d big and let

(1) Dµf = g µ ∈ ∆

be a family of problems. For a given µ ∈ ∆ solving (1) is time consuming.
However we want to prepare ourselves to do it fast – on line. The idea of reduced

basis method is the following. We solve (1) for µ1, . . . , µn to get fµ1 , . . . , fµn
and
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for given µ we approximate the solution

fµ ∼
n∑

j=1

ajfµj
.

The real question is how to find basis elements? Greedy selection was suggested
by Maday-Patera-Turinici, 2002 and used many times in various problems.

Let K =: {fµ : µ ∈ ∆} be a compact subset of certain Banach space X or a
Hilbert space H .

We define µ1, . . . µn as follows (fj =: fµj
)

(1) f1 = argmax{‖f‖ : f ∈ K}
(2) Given f1, . . . , fn we define En = span {f1, . . . , fn} and put

fn+1 = argmax{dist (f, En) : f ∈ K}
To estimate the performance of this procedure we define σn(K) = sup

f∈K
dist (f, En).

Recall the classical Kolmogorov width

dn(K) = inf
F

sup
f∈K

dist(f, F )

for F a subspace of dimension ≤ n. Clearly always dn(K) ≤ σn(K) so we need to
estimate σn(K) from above by dm(K).

Among other things the following sample results will be discussed.
Note that fn ∈ K, so En is spanned by a basis of functions from K. There is

no such requirement in the definition of Kolmogorov widths. We define

d̄n(K) = inf
F

sup
f∈K

dist(f, F )

where F is a subspace of dimension ≤ n spanned by elements from K.
Theorem [1] The following holds:

(i) For any compact set K ⊂ H and any n ≥ 0, we have

d̄n(K) ≤ (n+ 1)dn(K).

(ii) Given any n > 0 and ǫ > 0, there is a set K ⊂ H such that

d̄n(K) ≥ (n− 1− ǫ)dn(K).

It is notable that in many cases this extra factor is not relevant.
Theorem [2] For the greedy algorithm in a Hilbert space H and for any

compact set K and N ≥ 1, N = km with k ≥ 1 we have

σkm(K) ≤
√
2(dm(K))1−

1
k

in particular

σ2m(K) ≤
√
2
√
dm(K),

n = 1, 2 . . . .
Theorem [1, 2] If dn(K) ≤ C0n

−α, n = 1, 2, . . . , then σn(K) ≤ C1n
−α,

n = 1, 2 . . . , with C1 := 25α+1C0.

Similar results hold in the Banach space setting [2] but the right hand side has
an extra factor of order

√
n or somewhat bigger.
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Tractability of multivariate problems

Henryk Woźniakowski

Many multivariate problems suffer from the curse of dimensionality. This is
usually for multivariate problems defined in the worst case setting over isotropic
classes of functions for which the role of each group of variables is the same. We
illustrate the curse by two examples of multivariate integration defined for classes
of smooth functions. We indicate three possible ways to vanquish the curse of
dimensionality. They are:

• increasing smoothness with respect to successive variables,
• monitoring different groups of variables by decreasing weights,
• switching to a more lenient setting such as the randomized or the average
case setting.

The thorough study of various tractability issues can be found in [1, 2, 3].
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Regularity and approximability of the solutions to the chemical

master equation

Harry Yserentant

(joint work with Ludwig Gauckler)

The chemical master equation is a fundamental equation in chemical kinetics.
It is an adequate substitute for the classical reaction-rate equations whenever sto-
chastic effects become relevant. In the present talk we gave a simple argument
showing that the solutions of a large class of chemical master equations, including
all those in which elementary reactions between two and more molecules do not
generate a larger number of molecules than existed before, are bounded in poly-
nomially weighted ℓ1-spaces. As an illustration for the implications of this kind
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of regularity we analyzed the effect of truncating the state space. This leads to
an error analysis of the finite state projection of the chemical master equation, an
approximation that underlies many numerical methods.

The chemical master equation can be regarded as a differential-difference equa-
tion, a differential equation in time and a difference equation in the rest of the
variables, or in other words a possibly infinite system

d

dt
p(Ω; t, x) =

R∑

r=1

(
ar(t, x− νr) p(Ω; t, x− νr)− ar(t, x) p(Ω; t, x)

)
, x ∈ Ω,

of ordinary differential equations. The solution components are labeled by vectors
x ∈ Zd and take the value p(Ω; t, x) = 0 for all x outside a given subset Ω of Zd. The
νr are given elements in Zd and the coefficient functions ar(t, x) are nonnegative
and continuous in the variable t for each single x.

The existence and uniqueness of a minimal nonnegative solution for given sum-
mable, nonnegative initial values can be shown by means of a monotonicity argu-
ment due to Reuter and Ledermann [1]. We have shown a priori estimates

∑

x∈Ω

γ(x) p(Ω; t, x) ≤ c(t)
∑

x∈Ω

γ(x) p(Ω; 0, x)

for these solutions, with weight functions γ : Zd → R≥0 satisfying an estimate

R∑

r=1

ar(t, x)
(
γ(x+ νr)− γ(x)

)
≤ κ(t) γ(x)

for all x in the domains Ω under consideration. In particular, we studied the
case of the set Ω = Nd

0 that is relevant for chemical kinetics. Assume that the
coefficient functions ar(t, x) grow at most linearly in x for those indices r for
which the components of νr sum up to a positive value. This condition is satisfied
in chemical kinetics if one restricts oneself to systems in which reactions between
two and more molecules are excluded that generate a larger number of molecules
than existed before. For all multi-indices α > 0 the moments

∑

x∈Ω

xαp(Ω; t, x)

then remain finite and can be estimated by the moments of the initial values. This
fact can be used to study the convergence rate of finite state projections p(Ωn; t, x)
in which the solution on the whole set Ω = Nd

0 is replaced by solutions p(Ωn; t, x)
on finite subsets Ωn of Nd

0, with same initial values on Ωn. Choosing

Ωn =
{
x ∈ N

d
0

∣∣x1 + . . .+ xd < n
}
,

the ℓ1-error tends super-algebraically to zero, corresponding initial values provided.

References

[1] Reuter, G. E. H., Ledermann, W: On the differential equations for the transition proba-
bilities of Markov processes with enumerably many states. Proc. Cambridge Philos. Soc.
49:247–262, 1953.



Multiscale and High-Dimensional Problems 2253

[2] Gauckler, L., Yserentant, H.: Regularity and approximability of the solutions to the chem-
ical master equation. Matheon-Preprint 1010 (2013), urn:nbn:de:0296-matheon-12146.

Reporter: Angela Kunoth



2254 Oberwolfach Report 39/2013

Participants

Dr. Roman Andreev

University of Maryland
CSCAMM
4146 CSIC Building # 406
Paint Branch Drive
College Park, MD 20742-3289
UNITED STATES

Dr. Blanca Ayuso de Dios

Centre de Ricerca Matematica
Departament de Matematicas
Universitat Autonoma de Barcelona
08193 Bellaterra (Barcelona)
SPAIN

Dr. Markus Bachmayr

Institut für Geometrie und Praktische
Mathematik
RWTH Aachen
Templergraben 55
52056 Aachen
GERMANY

Prof. Dr. Peter G. Binev

Department of Mathematics
University of South Carolina
Columbia, SC 29208
UNITED STATES

Dr. Francesca Bonizzoni

CSQI-MATHICSE
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