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Abstract. The workshop ‘Group Theory, Measure, and Asymptotic Invari-
ants’ organized by Miklos Abert (Budapest), Damien Gaboriau (Lyon) and
Andreas Thom (Leipzig) was held 18 - 24 August 2013. The event was a con-
tinuation of the previous Oberwolfach workshop ‘Actions and Invariants of
Residually Finite Groups: Asymptotic Methods’ organized by Miklos Abert
(Budapest), Damien Gaboriau (Lyon) and Fritz Grunewald (Dusseldorf) that
was held September 5 - September 11, 2010. Fritz Grunewald passed away
in March 2010 and Andreas Thom joined the organizing team.

The workshop aimed to study finitely generated groups and group ac-
tions using ergodic and measure theoretic methods, incorporating asymp-
totic invariants, such as ℓ2-invariants, the rank gradient, cost, torsion growth,
entropy-type invariants and invariants coming from random walks and per-
colation theory.

The participant body came from a wide range of areas: finite and infinite
group theory, geometry, ergodic theory, graph theory, topology, probability
theory, representation theory, von Neumann algebras and ℓ2-theory. The par-
ticipants typically did not speak each other’s mathematical dialect fluently.
To address this situation, the organizers asked the speakers to put a special
emphasis on the first, introductory part of their talks. This aspect worked
very well.

As a general rule, the organizers asked speakers to talk about specific
subjects, not just any nice piece of their research. In some cases, this meant
sacrificing hearing about some new results from excellent mathematicians
that were further away from the workshop’s main directions.

Mathematics Subject Classification (2010): 20F69, 20E26, 22D40, 37A20, 05C25, 20E05, 22E15,

22E40, 37A50.
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Introduction by the Organisers

Invariant random subgroups, limit multiplicities and Benjamini-Schramm
convergence of graphs and Riemannian manifolds. A newly emerging topic
is invariant random subgroups (IRS’s). These are conjugacy invariant probabil-
ity measures on a space of subgroups of a fixed ambient (Lie or discrete) group.
It turns out that weak convergence of IRS’s corresponds to Benjamini-Schramm
convergence of the quotient spaces. For discrete groups, these are graphs, while
for Lie groups, they are locally symmetric spaces.

Tsachik Gelander gave a talk on his joint work with Miklos Abert, Nicolas
Bergeron, Ian Biringer, Nikolay Nikolov, Jean Raimbault, and Iddo Samet on In-
variant Random Subgroups in higher rank groups. The main result he talked
about was to show that for a higher rank simple Lie group G, any sequence of
locally symmetric G-spaces of finite volume converges to the symmetric space of
G. The proof uses the Stuck-Zimmer theorem. For compact spaces with some
natural additional conditions, it also implies the convergence of the normalized
Betti numbers. Nicolas Bergeron talked about the same project, but from a repre-
sentation theoretical point of view. In his talk Limit formulas along BS-converging
sequences of X-manifolds he showed how Benjamini-Schramm convergence implies
the convergence of the Plancherel measures. The methods employed here only
work in the cocompact setting. Tobias Finis talked about his joint work with Erez
Lapid and Werner Muller where they prove the corresponding theorems on limit
multiplicities for nonuniform lattices in SLn.

Lewis Bowen talked about his work on Cheeger constants and L2-Betti num-
bers. Here he finds a rather unexpected use of Benjamini-Schramm convergence
of Riemannian manifolds (using a generalization of the Lück approximation theo-
rem in this setting, due to Elek) to prove a uniform lower bound on the Cheeger
constant of certain natural families of discrete subgroups of Lie groups.

Arie Levit gave a talk on a generalization of the intermediate factor theorem to
local fields. His work in particular implies that in the presence of property (T), in
the above setting, the Stuck-Zimmer theorem holds.

ℓ2 Betti numbers, homology growth and spectral measure.
Wolfgang Lück talked about approximating L2-invariants and homological

growth. There is an interesting connection between homology growth, L2 Betti
numbers and other invariants, like the cost, the rank gradient and various torsions.
Lück gave a thorough survey on the known results and also talked about new di-
rections, like understanding the mod p homology growth and its connections to
the other invariants.

Balint Virag gave a talk on his joint work with Lukasz Grabowski on how to
defy an old conjecture of Lott and Lück on spectral measure. Note that their
result still leaves open the more important general conjecture on determinants to
hold.
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Russell Lyons gave a talk on L2-Betti numbers, cost, and the free uniform
spanning forest. After giving a very good introduction to the subject, he also
discussed some new results.

Hanfeng Li gave a talk about when the Fuglede-Kadison determinant is equal to
1. Li (partially in joint works with Chung, Kerr and Thom) made new advances on
the topic of entropy for principal algebraic actions of amenable and sofic groups.

Henrik Densing Petersen talked about his joint work on L2-invariants of locally
compact groups with Kyed and Vaes and also with Valette. Based on a previous
work of Gaboriau, they introduce L2 Betti numbers for locally compact groups in
a very general setting, using a von Neumann algebraic approach.

Ergodic theory of group actions. David Kerr gave an introductory talk to
sofic entropy with a special emphasis on Bernoulli actions.

François Le Mâıtre gave a talk on his exciting result on the topological rank
for full groups. He proved that the topological minimal number of generators for
the full group of a pmp equivalence relation always equals the floor of its cost plus
one.

Robin Tucker-Drob presented a measure theoretic proof of solid ergodicity for
Bernoulli shifts. This is a result of Chifan and Ioana who used von Neumann
algebraic tools: now there is an elementary proof. This was one of the talks where
the speaker presented the full proof for his result.

Orbit and measure equivalence, rigidity. Uri Bader gave a talk on his joint
work with Furman on a new perspective on super-rigidity. They give a new,
exciting representation theoretic proof of the Margulis supperrigidity theorem,
which also leads to natural generalizations. Bader also gave an evening session on
the details of the proof. Roman Sauer talked about his joint work with Uri Bader
and Alex Furman on L1-measure equivalence of hyperbolic lattices.

Jesse Peterson talked about his work with Thom and another with Creutz
on new results on character rigidity. Characters are positive definite, conjugacy
invariant functions. They have an intimate connection to von Neumann algebra
representations and also to invariant random subgroups (by the work of Vershik).
Here rigidity usually means a complete classification of irreducible characters.

Amenable-nonamenable groups. We had three nice talks on amenability-
nonamenability.

Kate Juschenko talked about her joint work with Nekrashevych and de la Salle
on amenability of groups acting by homeomorphisms on compact spaces. Here
they give a very general condition that implies that certain groups are amenable.

Rostislav Grigorchuk talke about his joint work with Benli and Vorobets on ran-
dom groups of intermediate growth. Here they build an interesting random model
that produces natural (uncountable) families of groups of intermediate growth.
The speaker analyzed the properties of these random groups.

Mikhail Ershov gave a talk on Tarski numbers. These are the minimal number
of pieces needed for a paradoxical decomposition of a nonamenable group. Among
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other results, the speaker presented how to use L2 Betti numbers to show that
Tarski numbers can get arbitrarily large.

There were also some exciting talks that would be hard to group together by
subject.

Denis Osin gave a talk on geometric and analytic negative curvature. The story
here is that various people studied various properties of group actions on metric
spaces and proved numerous theorems in deep papers. Osin showed that these
properties are actually all equivalent to what he calls acylindrically hyperbolic
groups.

John Wilson talked about ultraproducts of finite simple groups. He proves an
array of results, partially jointly with Thom.

Nir Avni gave a talk on his joint work with Aizenbud on the representation
growth of arithmetic lattices. This counts the number of rank n irreducible char-
acters of a given discrete group. The authors find some beautiful and unexpected
connections between the representation growth of an arithmetic lattice and the
singularities of the moduli space of the corresponding local systems on closed sur-
faces.

Chen Meiri gave a talk on the Group Large Sieve. This is a new sieve method
invented by Rivin, Kowalski, Lubotzky and Meiri that can be used to address
the asymptotic properties of random elements of discrete groups. Randomness
here is achieved by performing a long random walk with respect to some natural
generating set.
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Abstracts

Invariant Random Subgroups in higher rank groups

Tsachik Gelander

Based on a joint work with M. Abert, N. Gergeron, I. Biringer, N. Nikolov, J.
Raimbault, I. Samet [2, 1]

The aim of this lecture is to explain a new approach in the theory of lattices. The
idea is to associate lattices with measures defined on the space of closed subgroups
and to study the space of such measures. Remarkably, this naive approach has
proven very profitable and was a key to various recent achievements.

Let G be a locally compact second countable group, and recall the compact
space of closed subgroups SubG with the Chabauty topology. G acts continuously
on SubG by conjugations. An Invariant Random Subgroup (shortly IRS) of G is
a Borel regular G-invariant probability measure on SubG.

For any measure preserving action of G on a probability space Ω, it can be
shown that almost every stabilizer is a closed subgroup in G, and hence the push
forward of the measure from Ω to SubG is an IRS of G. It can also be shown (see
[2, Theorem 2.4]) that every IRS in G arises in this way. In particular, one can
consider (the conjugacy class of) a lattice Γ ≤L G as an example of an IRS —
we shall denote by µΓ the IRS on G induced by the G action on G/Γ with the
normalised measure.

Various people have recently become aware of the importance of IRS’s in many
branches of group theory, dynamics, geometry and representation theory, and
there has been a lot of works studying different aspects of IRS in different context
during the last three years. Here I will restrict to the work [2] which makes use
of the notion of IRS in order to study the asymptotic of L2-invariant of lattices in
semi-simple Lie groups, and report few results from this work. For simplicity of
the formulations of the results below let us restrict again to the case where G is
simple.

Some results about lattices can be extended to statement about IRS’s. For
instance the Borel density theorem can be generalized as follows:

Theorem 1. ([2, Theorem 2.5]) Let G be a simple real algebraic group and let
µ be an IRS without atoms1. Then µ is supported on discrete and Zariski dense
subgroups.

Of significant importance in this approach is the rigidity theorem of Nevo, Stuck
and Zimmer (proven in [6] relying on the later work [4]):

Theorem 2. Let G be a simple Lie group of real rank ≥ 2. Then every non-
transitive, ergodic probability measure preserving G-action is essentially free.

Relying on Theorem 2 and on property (T ) it is shown in [2]:

1As G is simple the atoms can only be supported on the trivial normal subgroups {1}, G.
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Theorem 3. ([2, Section 4]) Let G be a noncompact simple Lie group of rank
≥ 2. The non-atomic ergodic IRS in G are precisely µΓ, Γ ≤L G, and the only
accomulation point of the set {µΓ : Γ ≤L G} is the Dirac measure on the trivial
group {1}.

The following geometric result is a consequence of Theorem 3:

Theorem 4. ([2, Corolarry 4.10]) Let G be as in the previous theorem and let X =
G/K be the associated symmetric space. Let Γn be a sequence of representatives
for the distinct conjugacy classes of lattices in G and let Mn = Γn\X be the
corresponding X-orbifolds. Then for every R > 0 we have

lim
n→∞

vol({p ∈Mn : InjRadMn
(p) ≥ R}

vol(Mn)
= 1.

Associating a finite volume manifold together with a random point in it with
a probability measure on the space of pointed metric spaces, the last result is
interpreted as follows: If rank(X) ≥ 2, every sequence of X-manifolds, of finite
volume tending to infinity, locally converges (in the probabilistic sense of Benjamini
and Schramm, see [2] for a precise definition) to the universal cover X . The local
convergence to the universal cover implies convergence of certain topological and
representation theoretical invariants. When restricting to the subsequence Γnk

of uniform torsion free lattices (for which the Mnk
are compact manifolds) this

result is used to study the asymptotic of L2-invariants of G/Γnk
and of Mnk

=
Γnk

\X . In particular a uniform version of the de-George–Wallach theorem [3]
about multiplicity of unitary representations ([2, Section 7]) and a uniform version
of the Lueck approximation theorem ([2, Section 8]) are proved.

A family of lattices is called uniformly discrete if the minimal injectivity radius
of the corresponding locally symmetric manifolds is uniformly bounded from below.
A well known conjecture of Margulis (see [5, Page 322]) suggests that the family of
all torsion free arithmetic uniform lattices in a every given semisimple Lie group
is uniformly discrete. Two of the main results of [2] are:

Theorem 5. Let G be as above, and suppose that Γn ≤L G are non-conjugate
torsion free uniformly discrete lattices. Let π be a unitary representation of G and
let m(π,Γ) be the multiplicity of π in L2(G/Γ). Then

m(π,Γ)

vol(G/Γ)
→ d(π)

where d(π) is the formal degree of π and is nonzero iff π is a discrete series
representation.

Theorem 6. Let G and Γn be as above and denote Mn = Γn\X. Then for every
k ≤ dim(X) we have

bk(Mn)

vol(Mn)
→ βk(X)
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where bk denotes the k’th betti number and

βk(X) =

{
χ(Xd)
vol(Xd)

δ(G) = 0 and k = 1
2 dimX

0 otherwise,

where Xd is the compact dual of X equipped (like X) with the Riemannian metric
induced by the Killing form on Lie(G) and δ(G) = rankC(G)− rankC(K).
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Character rigidity and applications

Jesse Peterson

A character on a group Γ is a class function τ of positive type which is normalized
so that τ(e) = 1. The set of characters forms a convex space and the extreme
points are naturally in bijective correspondence (via the GNS-construction) to
unitary representations which generated von Neumann algebra is a finite factor.

In 1964, Thoma [11] initiated the systematic study of characters on infinite
discrete groups, classifying all extremal characters for the group of finite permu-
tations of the natural numbers. We’ll say a group Γ is character rigid if the only
extremal characters correspond to either the left regular representation or else a
finite dimensional representation. The first example of character rigid groups were
found by Kirillov [7] who showed this property for the groups PSLn(k) where
n ≥ 3, and k is an arbitrary infinite field. More recently Bekka [2] has shown
that, in fact, the group PSLn(Z) is also character rigid for n ≥ 3, giving the first
such example for an irreducible lattice in a higher rank semi-simple group. This is
significant since it was conjectured by Connes (based on the rigidity theorems of
Mostow, Margulis, and Zimmer) that all such lattices are character rigid (see the
discussion in [6]).

In my talk I discussed two new examples of this phenomenon for lattices, as well
as applications of such rigidity properties. This is based on two papers, the first
[10] is joint with Andreas Thom, and the second [4] is joint with Darren Creutz.
The first new class of examples we consider are similar to Kirillov’s and Bekka’s
results above for the case of PSL2. For an outline of the proof we refer the reader
[9] in the next report.
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Theorem 1. Let R be either an infinite field, or else a ring of algebraic integers
with infinitely many units, than PSL2(R) is character rigid.

The second class of examples has the advantage of holding for arbitrary lattices
in a class of groups. The proof is based on ideas from [3], which in turn go back
to ideas from [5], [1], and ultimately to the strategy developed by Margulis for his
Normal Subgroup Theorem [8].

Theorem 2. Let G = G1×G2 where each Gi is a semi-simple group with property
(T) and no compact factors. Suppose that G2 is totally disconnected. Then an
arbitrary irreducible lattice Γ < G is character rigid.

The rest of the talk consisted of giving applications of character rigid groups.
We state some simple examples below, for the most general statements, and their
proofs, consult [10].

Theorem 3. Suppose n ≥ 2 and k is a countably infinite discrete field, then any
non-trivial ergodic, probability measure preserving action of PSLn(k) is essentially
free.

Theorem 4. Suppose n ≥ 2 and k is an infinite discrete field which is not an
algebraic extension of a finite field. Then there is no non-trivial homomorphism
from PSLn(k) into U(R) where R denotes the hyperfinite II1 factor.

Theorem 5. Suppose n ≥ 3 and k is an infinite discrete field which is not an
algebraic extension of a finite field. Let M be a finite factor with Haagerup’s
property, e.g., Mj , R, or LFj, then for all ε > 0 there exists δ > 0, such that if
π : PSLn(k) → U(M) is such that ‖π(g)π(h)−π(gh)‖2 < δ for all g, h ∈ PSLn(k),
then ‖π(g)− 1‖2 < ε, for all g ∈ PSLn(k).

Theorem 6. Suppose n ≥ 2 and k is an infinite algebraic extension over a fi-
nite field, and let ω ∈ βN \ N be a non-principle ultrafilter. For each t ∈ [0, 1]
fix a projection pn ∈ P(R) with trace t and consider the homomorphism πt :
PSLn(k) → U(R) ⊂ U(Rω), given by πt(g) = pt + λ(g)p⊥t . Then every homomor-
phism π : PSLn(k) is conjugate to some πt.

Theorem 7. Suppose n ≥ 2 and k is an infinite algebraic extension over a finite
field, then for any subgroup Σ < PSLn(k), there exists a sequence {gl} ⊂ PSLn(k)
such that either ∪m ∩l>m glΣg

−1
l = PSLn(k), or ∩m ∪l>m glΣg

−1
l = {e}.

Theorem 8. Suppose n ≥ 2 and k is an infinite discrete field. Suppose that x =∑
g αgg ∈ C(PSLn(k)) is a self-adjoint element such that αe > 0, and

∑
g αg > 0.

Then x is of the form x =
∑

j a
∗
i ai +

∑
j(b

∗
j bj − bjb

∗
j ), for some finite collection of

elements {ai, bj} ⊂ C(PSLn(k)).
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Ego Prilozheniya 13 (1979), 28-39.
[9] J. Peterson, Character rigidity and its consequences, Oberwolfach report no. 43/2013.

[10] J. Peterson, A. Thom, Character rigidity for special linear groups, arXiv.org:1303.4007,
preprint 2013.

[11] E. Thoma, Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar un-
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Topological rank for full groups

François Le Mâıtre

Let R be a pmp equivalence relation on a standard probability space (X,µ).
Define its full group [R] to be the set of automorphisms T of the space X such that
T (x)Rx for all x ∈ X . Then every orbit equivalence yields a conjugation between
full groups and vice versa, so that the full group is a complete invariant for pmp
equivalence relations. It is thus natural to wonder how its algebraic properties
reflect properties of the pmp equivalence relation. For instance, Eigen [Eig81]
showed that R is ergodic iff [R] is simple.

Furthermore, the full group of a pmp equivalence relation is a Polish group
when endowed with the uniform metric du(S, T ) = µ({x ∈ X : S(x) 6= T (x)}.
So topological properties of [R] may also give us information on R. In this talk,
we are interested in the topological rank t([R]) of the full group of R, that is
the minimal number of elements needed to generate a dense full group. Kittrell,
Tsankov [KT10] and then Matui [Mat11] had previously obtained bounds for such
a number in terms of the cost of the equivalence relations (cf.[Gab00]) , and here
we give a definitive answer to this question by showing the following formula :

t([R]) = ⌊Cost(R)⌋+ 1.

It is then natural to wonder about the structure of the set t([R])-tuples which
topologically generate [R]. As a motivation, the Schreier-Ulam theorem states
that whenever G is a compact metrisable connected group, the set of pairs which
generate a dense subgroup is a dense Gδ in G

2. In our setting, such a result cannot
hold, for elements in a dense Gδ set can have arbitrarily small support, and hence
cannot even generate the equivalence relation R. However, when T has discrete
spectrum, the set of U ’s such that 〈T, U〉 = [RT ] is a dense Gδ. It would be nice
to generalize this result to a wider class of pmp automorphisms T .
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Limit formulas along BS-converging sequences of X-manifolds

Nicolas Bergeron

(joint work with Miklos Abert, Ian Biringer, Tsachik Gelander, Nikolay Nikolov,
Jean Raimbault, and Iddo Samet)

Let G be a connected center-free semisimple Lie group without compact factors,
K ≤ G a maximal compact subgroup and X = G/K the associated Riemannian
symmetric space. The subject of the talk was the study of the asymptotics of
L2-invariants of the spaces Γ\X , where Γ varies over the space of lattices of G.

In Tsachik Gelander’s talk BS-convergence was defined. Here we only recall
a particularly transparent case of BS-convergence: the case when a sequence of
locally symmetric spaces Γn\X converges to X .

Definition Let (Γn) be a sequence of lattices in G. We say that the X-orbifolds
Mn = Γn\X BS-converge to X if for every R > 0, the probability that the R-ball
centered around a random point in Mn is isometric to the R-ball in X tends to 1
when n→ ∞. In other words, if for every R > 0, we have

lim
n→+∞

vol((Mn)<R)

vol(Mn)
= 0,

where M<R = {x ∈M : InjRadM (x) < R} is the R-thin part of M .

A straightforward, and well studied, particular case is when Γ ≤ G is a lattice
and Γn ≤ Γ is a chain of normal subgroups with trivial intersection; in this case,
the R-thin part of Γn\X is empty for large n.

Uniform discreteness. A family of lattices (resp. the associated X-orbifolds) is
uniformly discrete if there is an identity neighborhood in G that intersects trivially
all of their conjugates. For torsion-free lattices Γn, this is equivalent to saying
that there is a uniform lower bound for the injectivity radius of the manifolds
Mn = Γn\X . In particular, any family (Mn) of covers of a fixed compact orbifold
is uniformly discrete. Margulis has conjectured that the family of all cocompact
torsion-free arithmetic lattices in G is uniformly discrete. This is a weak form of
the famous Lehmer conjecture on monic integral polynomials.
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BS-convergence and Plancherel measure. The main result discuted in the
talk says that BS-convergence to X implies a spectral convergence: namely, the
relative Plancherel measure of Γn\G will converge to the Plancherel measure of G
in a strong sense.

For an irreducible unitary representation π ∈ Ĝ and a uniform lattice Γ in G
let m(π,Γ) be the multiplicity of π in the right regular representation L2(Γ\G).
Define the relative Plancherel measure of Γ\G as the measure

νΓ =
1

vol(Γ\G)

∑

π∈Ĝ

m(π,Γ)δπ

on Ĝ. Finally denote by νG the Plancherel measure of the right regular represen-
tation L2(G).

Theorem Let (Γn) be a uniformly discrete sequence of lattices in G such that
the spaces Γn\X BS-converge to X . Then for every relatively quasi-compact νG-

regular subset S ⊂ Ĝ, we have:

νΓn
(S) → νG(S).

Note that the Plancherel measure of G depends on a choice of a Haar measure
on G as does vol(Γ\G).

Let d(π) be the ‘multiplicity’ — or rather the formal degree — of π in the
regular representation L2(G) with respect to the Plancherel measure of G. Thus,
d(π) = 0 unless π is a discrete series representation. the theorem implies the
following:

Corollary Let (Γn) be a uniformly discrete sequence of lattices in G such that

the spaces Γn\X BS-converge to X . Then for all π ∈ Ĝ, we have

m(π,Γn)

vol(Γn\G)
→ d(π).

In the special situation when (Γn) is a chain of normal subgroups with trivial
intersection in some fixed cocompact lattice Γ ≤ G, this corollary is the classical
theorem of DeGeorge and Wallach. In that very same situation the Theorem is
due to Delorme.

The classical theorem of DeGeorge and Wallach implies a corresponding state-
ment on the approximation of L2-Betti numbers by normalized Betti numbers
of finite covers, generalized by Wolfgang Lück to the CW-complex setting. The
theorem above implies the following uniform version of it.

Corollary Let (Mn) be a sequence of uniformly discrete compact X-manifolds
that BS-converge to X . Then for every k ≤ dim(X) we have

bk(Mn)

vol(Mn)
→ β

(2)
k (X).
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In the corollary, bk(Mn) is the k
th Betti number of Mn and

β
(2)
k (X) =

{
χ(Xd)
vol(Xd)

k = 1
2 dimX

0 otherwise,

is the kth L2-Betti number of X, where Xd is the compact dual of X equipped
with the Riemannian metric induced by the Killing form on Lie(G).

The material of the talk as well as the abstract are extracted from [1].
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A perspective on super-rigidity

Uri Bader

Margulis super rigidity is a thorem describing the algebraic representations of
lattices in higher-rank simple Lie group. In my talk I presented a new proof of this
theorem, based on the theory of algebraic representations of ergodic actions. The
new method of proof admits also proving various new generalizations of Margulis
and Zimmer Super-Rigidity theorems. The talk was based on a joint work with
Alex Furman.

When is the Fuglede-Kadison determinant equal to 1?

Hanfeng Li

The Fuglede-Kadison determinant was introduced in [5]. For a nice survey, see
[8]. Let Γ be a countable discrete group. Denote by CΓ the complex group ring
of Γ, and by tr the canonical trace of CΓ sending f =

∑
s∈Γ fss to feΓ , where

eΓ denotes the identity element of Γ. For each f ∈ CΓ, there is a unique Borel
probability measure on the interval [0, ‖f‖21], called the spectral measure of f∗f
and denoted by µf∗f , satisfying

∫ ‖f‖2
1

0

xn dµf∗f (x) = tr((f∗f)n)

for all n = 0, 1, 2, . . . . Here ‖f‖1 =
∑

s∈Γ |fs| denotes the ℓ1-norm of f =∑
s∈Γ fss. The Fuglede-Kadison determinant of f , denoted by detFK f , is defined

as

detFKf = e
1
2

∫ ‖f‖2
1

0
log x dµf∗f (x).

A crucial property of the Fuglede-Kadison determinant is the multiplicative prop-
erty:

detFK(fg) = detFKf · detFKg
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for all f, g ∈ CΓ. Lück’s modified determinant, denoted by det′FK f , is defined as

det′FKf = e
1
2

∫ ‖f‖2
1

0+
log x dµf∗f (x).

When the left multiplication of f on ℓ2(Γ) is injective, one has µf∗f ({0}) = 0 and
hence detFK f = det′FK f .

Denote by ZΓ the integral group ring of Γ. Lück’s Determinant Conjecture
says that det′FK f ≥ 1 for every f ∈ ZΓ. Elek and Szabó proved this conjecture
for sofic groups [4]. Recall that Γ is called sofic if for any finite subset F of Γ
and any ε > 0, there are some positive integer d and some map σ from Γ to the
permutation group Sd of {1, . . . , d} satisfying

ρHamming(σsσt, σst) ≤ ε

for all s, t ∈ F and

ρHamming(σs, σt) ≥ 1− ε

for all distinct s, t ∈ F . Here ρHamming denotes the Hamming distance on Sd

defined by

ρHamming(ϕ, ψ) =
|{a ∈ {1, . . . , d} : ϕ(a) 6= ψ(a)}|

d
.

Amenable groups and residually finite groups are all sofic. For a nice survey about
sofic groups, see [9].

From the Elek-Szabó result and the multiplicative property of the Fuglede-
Kadison determinant, it follows easily that if Γ is sofic and f ∈ ZΓ is invertible in
ZΓ, then detFKf = 1. Deninger asked the converse question under the additional
hypotheses of invertibility in ℓ1(Γ) [2, Question 26]:

Question 1. For a countable discrete group Γ, if f ∈ ZΓ is invertible in ℓ1(Γ) but
not invertible in ZΓ, then do we have detFK f > 1?

Question 1 was answered affirmatively by Deninger and Schmidt for the case Γ
is amenable and residually finite [3], by Chung and Li for the case Γ is amenable
[1], and by Kerr and Li for the case Γ is residually finite [7]. Now we answer it for
all sofic groups:

Theorem 2. For a countable sofic group Γ, if f ∈ ZΓ is invertible in ℓ1(Γ) but
not invertible in ZΓ, then detFK f > 1.

The proof of Theorem 2 uses sofic entropy. For a countable sofic group Γ, we fix
a sequence of maps Σ = {σi : Γ → Sdi

}i∈N, called a sofic approximation sequence
of Γ, satisfying the following conditions:

(1) for any s, t ∈ Γ, one has limi→∞ ρHamming(σi(s)σi(t), σi(st)) = 0;
(2) for any distinct s, t ∈ Γ, one has limi→∞ ρHamming(σi(s), σi(t)) = 1;
(3) limi→∞ di = ∞.

The existence of such a sofic approximation sequence is equivalent to the soficity
of Γ. Let α be a continuous action of Γ on a compact metrizable space X . Let ρ
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be a compatible metric on X . For any d ∈ N, we define a metric ρ2 on X{1,...,d}

by

ρ2(ϕ, ψ) = (
1

d

d∑

j=1

(ρ(ϕ(j), ψ(j)))2)1/2.

For any map σ : Γ → Sd, any δ > 0, and any finite F ⊆ Γ, we denote by
Map(ρ, F, δ, σ) the set of all ϕ ∈ X{1,...,d} satisfying ρ2(ϕ ◦ σs, αs ◦ ϕ) < δ for all
s ∈ F . For any ε > 0, denote by Nε(Map(ρ, F, δ, σ), ρ2) the largest cardinality of
subset Y of Map(ρ, F, δ, σ) satisfying ρ2(ϕ, ψ) ≥ ε for all distinct ϕ, ψ ∈ Y . Then
the topological entropy of α with respect to Σ, denoted by hΣ(X,Γ), is defined by

hΣ(X,Γ) = sup
ε>0

inf
F

inf
δ>0

lim sup
i→∞

logNε(Map(ρ, F, δ, σi), ρ2)

di
,

where F in infF ranges over all finite subsets of Γ [6]. It does not depend on the
choice of the metric ρ.

For any countable group Γ and any f ∈ ZΓ, denote by Xf the Pontryagin
dual of the countable discrete abelian group ZΓ/ZΓf . It is a compact metrizable
abelian group and can be described explicitly as the closed subgroup of (R/Z)Γ

consisting of all elements x satisfying xf∗ = 0. The left ZΓ-module structure
of ZΓ/ZΓf induces an action of Γ on Xf by continuous automorphisms, called
a principal algebraic action of Γ. Under the above identification of Xf with a
subgroup of (R/Z)Γ, this action is simply the restriction of the left translation to
Xf .

Using combinatorial independence, Kerr and Li proved the following [7, Propo-
sition 4.16 and Theorem 6.7]:

Lemma 3. Let Γ be a countable sofic group and Σ a sofic approximation sequence
of Γ. Let f ∈ ZΓ be invertible in ℓ1(Γ) but not invertible in ZΓ. Then hΣ(Xf ,Γ) >
0.

Recently we proved

Lemma 4. Let Γ be a countable sofic group and Σ a sofic approximation sequence
of Γ. Let f ∈ ZΓ such that the left multiplication of f on ℓ2(Γ) is injective. Then
hΣ(Xf∗f ,Γ) ≤ 4 log detFK f .

Now Theorem 2 follows from Lemmas 3 and 4 easily.
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ℓ
2-Betti numbers, cost, and the free uniform spanning forest

Russell Lyons

Let G be a Cayley graph of a group Γ with respect to a finite symmetric generating
set S. If Bn denotes the ball of radius n about the identity, then Bm ·Bn = Bm+n,
whence |Bm| · |Bn| ≥ |Bm+n|, and so by Fekete’s lemma, the exponential growth
rate gr(G) := limn→∞ |Bn|1/n exists. This rate depends on S, but whether it is
> 1 does not. In 1981, Gromov [4] asked whether gr(G) > 1 (exponential growth)
implies that infS gr(Γ, S) > 1 (uniform exponential growth). Over the years, this
implication was shown to hold for groups in the following classes: free; word
hyperbolic; solvable; linear; elementary amenable; and others. However, finally in
2004, Wilson [10] gave a counter-example that had other interesting properties: it
contained the free group on two letters, F2, and inf |S|=2 gr(Γ, S) = 1.

For K ⊂ Γ, define its external vertex boundary ∂SK := {x /∈ K ; xS ∩K 6= ∅}.

Let the expansion constant of G be Φ(Γ, S) := inf{ |∂SK|
|K| ; ∅ 6= K ⊂ Γ, K finite}.

This depends on S, but whether it is positive does not and is equivalent to Γ being
non-amenable. Since |Bn+1|/|Bn| ≥ 1 + Φ(G), we have gr(G) ≥ 1 + Φ(G). Thus,
non-amenable groups have exponential growth. However, there exist groups of
exponential growth that are amenable.

When is a group uniformly non-amenable, i.e., for which classes of groups does
Φ(Γ, S) > 0 imply that infS Φ(Γ, S) > 0? Work of [8, 9, 1, 2] showed that this im-
plication holds for the following classes: free; word hyperbolic; linear; and others,
but that certain Baumslag-Solitar groups are counter-examples. Wilson’s group is
also a counter-example since it is non-amenable (as it contains F2) but does not
have uniformly exponential growth.

Lyons, Pichot and Vassout [7] showed that Φ(Γ, S) ≥ 2β1(Γ), where the latter
is the first ℓ2-Betti number of Γ and does not depend on S. This is sharp for free
groups. We gave the proof of this inequality in our talk. This depends on the fact
[5, 6] that the expected degree of every vertex in the free uniform spanning forest,
FUSF, is equal to 2β1(Γ) + 2.

In place of β1(Γ), one can use 1 less than the cost of Γ, which is the infimum
of E[degG o]/2 over all random graphs G with vertex set Γ that are connected and
have a Γ-invariant law. Here, o is any element of Γ, say, the identity. However,
this is not known to be an improvement. That is, Gaboriau [3] has shown that
for all Γ, we have β1 + 1 is at most the cost of Γ and [3] asked whether they are
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equal. He noted that this would follow if for every ǫ > 0, there exists an invariant
connected random graph G = F ∪ ω, where F ∼ FUSF and E[degω o] < ǫ.

The cost of the random graph G is the infimum of E[degH o]/2 over all random
connected graphs H on Γ that are Γ-equivariant factors of G. The fixed-price
problem of [3] asks whether the cost of G is equal to the cost of Γ for all invariant
connected G. This would follow if the previous problem has a positive answer and,
in addition, FUSF is a Γ-equivariant factor of IID. This latter question is interesting
for several other reasons as well. A positive answer could help to answer currently
open questions about FUSF and provide a new technique for showing existence of
factor maps. On the other hand, if not, a negative answer could exhibit a new
technique for proving that processes are not factors.
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A measure theoretic proof of solid ergodicity for Bernoulli shifts

Robin Tucker-Drob

Chifan and Ioana have shown that the orbit equivalence relation SG associated to
the Bernoulli shift action of a countable group G on ([0, 1]G,mG) has the following
fundamental property, known as solid ergodicity: for any subequivalence relationR
of SG there is a countable partition X0, X1, X2, . . . of [0, 1]

G intoR-invariant Borel
sets such that R|X0 is hyperfinite and R|Xi is strongly ergodic for all i > 0. Their
proof uses the machinery of von Neumann algebras and it was unclear whether one
could give a direct proof which stays within the category of measure preserving
equivalence relations. In this talk I will indicate such a direct proof, which proceeds
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from the perspective of measure preserving actions of equivalence relations. I will
discuss the conceptual benefits and wide applicability of this perspective.
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Cheeger constants and L
2-Betti numbers

Lewis Bowen

The Cheeger constant of an infinite volume manifold X is the the infimum of
area(∂M)
vol(M) over all compact submanifolds M ⊂ X . It is denoted by h(X). Now,

suppose that X is a Riemannian manifold and C is a collection of subgroups of
the isometry group of X . We also require that for every Γ ∈ C that X/Γ is a
manifold and the quotient map X → X/Γ is a covering space. In this case, we
define the uniform Cheeger constant h(X |C) = inf{h(X/Γ) : Γ ∈ C}. This leads
to the main problem of this talk: determine whether h(X |C) = 0 or h(X |C) > 0
for some interesting cases. For example, an interesting case occurs when X is real
hyperbolic n-space Hn and Γ is the family of all free subgroups of the isometry
group which act nicely (properly discontinuously and freely).

Here are some motivations for this problem. The Cheeger constant is bounded
above and below by explicit quadratic functions of λ0(X), the zero-th eigenvalue
of the Laplacian. In the special case in which X = Hn/Γ is a real hyperbolic
manifold and Γ is geometrically finite, it is also related to the Hausdorff dimension
of the limit set of Γ via an explicit formula. So bounding the Cheeger constant
leads to bounds on λ0 and the Hausdorff dimension of the limit set (and similarly,
the critical exponent).

It is well-known that one can start with a convex cocompact surface group
in Isom(H3) and continuously deform it so that the Hausdorff dimension of the
limit set tends to 2, the maximum dimension. A natural question is: can this
be done one dimension higher? Does there exist a hyperbolic 3-manifold group
inside Isom(H4) whose Hausdorff dimension of the limit set is close to 3? It is
also natural to replace the source group here with a free group or a surface group,
as this appears to be related to the well-known problem: does there exist a real
hyperbolic 4-manifold which fibers over a surface (with fiber a surface)?

For one last motivation, let us note that Phillips-Sarnak and Doyle established
that h(Hn|Schottky) > 0 for n ≥ 3. That is to say: there is a uniform lower bound
(depending on dimension) for the Cheeger constant of Hn/Γ where Γ is a special
kind of free group called a Schottky group.

The main result of this talk is the following. Let Gd be the set of all groups Γ
such that

• Γ is residually finite;
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• for any Γ′ < Γ and any ǫ > 0 there exists a finite-index subgroup N ⊳ Γ′

with bd(N)[Γ′ : N ]−1 < ǫ.

Then if X is any contractible complete Riemannian manifold and there exists a

cocompact lattice Λ < Isom(X) such that Λ is residually finite and b
(2)
d (Λ) >

0 then h(X |Gd) > 0. This implies, for example, that h(H4|Free) > 0. More
generally, there exists a uniform lower bound on h(H4/Γ) where Γ is any hyperbolic
3-manifold group.

The key idea is a generalization of Gabor Elek’s result on the continuity of
normalized Betti-numbers with respect to Benjamini-Schramm convergence.

Approximating L
2-invariants and homological growth

Wolfgang Lück

Let G be a group together with an inverse system {Gi | i ∈ I} of normal subgroups
of G directed by inclusion over the directed set I such that [G : Gi] is finite.

We discuss the following result taken from [1, Theorem 1.1].

Theorem Let F
j
−→ X

f
−→ B be a fibration of connected CW -complexes. Consider

a homomorphism φ : π1(X) → G. Let p : X → X be the associated G-covering.
Let G1(F ) ⊆ π1(F ) be Gottlieb’s subgroup of the fundamental group of F . Sup-
pose that the image of G1(F ) under the composite φ◦π1(j) : π1(F ) → G is infinite.

If d is a natural number such that the (d+ 1)-skeleton of X is finite, then:

(1) We get for all n ≤ d

lim
i∈I

d
(
Hn(Gi\X)

)

[G : Gi]
= 0;

(2) We get for all n ≤ d

lim
i∈I

ln
(∣∣tors

(
Hn(Gi\X)

)∣∣)

[G : Gi]
= 0;

(3) We get for all n ≤ d

b(2)n

(
X ;N (G)

)
= lim

i→∞

bn(Gi\X ;K)

[G : Gi]
= 0;

(4) Suppose that X is a connected finite CW -complex. Then

lim
i∈I

ρ(2)
(
Gi\X;N ({1})

)

[G : Gi]
= lim

i∈I

ρZ
(
Gi\X

)

[G : Gi]
= 0;

(5) Suppose that both F and B are connected finite CW -complexes and that

ρ(2)(F ;N (H)) = 0, where H is the image of the composite π1(F )
π1(j)
−−−→

π1(E)
φ
−→ G and F is the covering associated to the induced epimorphism

π1(F ) → H . Then the L2-torsion ρ(2)
(
X ;N (G)

)
is defined and satisfies

ρ(2)
(
X;N (G)

)
= 0.
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Here d(Γ) is the minimal number of generators of a group Γ, b
(2)
n

(
X ;N (G)

)

and ρ(2)
(
X ;N (G)

)
denote the nth L2-Betti number and the L2-torsion of the

G-CW -complex X and ρZ(Gi\Xi) is
∑

n≥0(−1)n · ln
(
| tors(Hn(X/Gi))|

)
.

Let L
j
−→ X

f
−→ B be a fibration with a connected Lie group L as fiber such that

π1(L) is infinite and π2(B) = 0. Suppose that G = π1(X), φ = id so that X is the
universal covering of X . Then all assumptions in the theorem above are satisfied
and all the assertions hold.

We also get the following result, see [1, Corollary 1.13].

Theorem Let M be an aspherical closed manifold with fundamental group G =
π1(M). Suppose thatM carries a non-trivial S1-action or suppose that G contains
a non-trivial elementary amenable normal subgroup. Then we get for all n ≥ 0

lim
i→∞

bn(Gi\M̃ ;K)

[G : Gi]
= 0;

lim
i∈I

d
(
Hn(Gi\M̃)

)

[G : Gi]
= 0;

lim
i∈I

ln
(∣∣tors

(
Hn(Gi\M̃)

)∣∣)

[G : Gi]
= 0;

lim
i∈I

ρ(2)
(
Gi\M̃ ;N ({1})

)

[G : Gi]
= 0;

lim
i∈I

ρZ
(
Gi\M̃

)

[G : Gi]
= 0;

b(2)n (M̃ ;N (G)) = 0;

ρ(2)(M̃ ;N (G)) = 0.

We discuss the following two conjectures and why the results above give evi-
dence for them.

Conjecture Approximation Conjecture for L2-torsion
Let X be a finite connected CW -complex and let X → X be a G-covering.

(1) If the G-CW -structure on X and for each i ∈ I the CW -structure on
Gi\X come from a given CW -structure on X , then

ρ(2)(X;N (G)) = lim
i→∞

ρ(2)(Gi\X;N ({1}))

[G : Gi]
;

(2) If X is a closed Riemannian manifold and we equip Gi\X and X with the
induced Riemannian metrics, one can replace the torsion in the equality
appearing above by the analytic versions;
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(3) If b
(2)
n (X ;N (G)) vanishes for all n ≥ 0, then

ρ(2)(X ;N (G)) = lim
i→∞

ρZ(Gi\X)

[G : Gi]
.

Conjecture Homological growth and L2-torsion for aspherical closed manifolds
Let M be an aspherical closed manifold of dimension d and fundamental group
G = π1(M). Then

(1) For any natural number n with 2n 6= d we have

b(2)n (M̃ ;N (G)) = lim
i→∞

bn(Gi\M̃ ;K)

[G : Gi]
= 0.

If d = 2n is even, we get

b(2)n (M̃ ;N (G)) = lim
i→∞

bn(Gi\M̃ ;K)

[G : Gi]
= (−1)n · χ(M) ≥ 0;

(2) For any natural number n with 2n+ 1 6= d we have

lim
i∈I

ln
(∣∣tors

(
Hn(Gi\M̃)

)∣∣)

[G : Gi]
= 0.

If d = 2n+ 1, we have

lim
i∈I

ln
(∣∣tors

(
Hn(Gi\M̃)

)∣∣)

[G : Gi]
= (−1)n · ρ(2)

(
M̃ ;N (G)

)
≥ 0.
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Amenability of groups acting by homeomorphisms on compact spaces

Kate Juschenko

(joint work with V. Nekrashevych and Mikael de la Salle)

The subject of amenability essentially begins in 1900’s with Lebesgue. He asked
whether the properties of his integral are really fundamental and follow from
more familiar integral axioms. This led to the study of positive, finitely addi-
tive and translation invariant measure on different spaces. In particular the study
of isometry-invariant measure led to the Banach-Tarski decomposition theorem in
1924. The class of amenable groups was introduced and studied by von Neumann
in 1929 and he explained why the paradox appeared only in dimensions greater or
equal to three. In 1940’s and 1950’s a major contribution was made by M. Day in
his paper on amenable semigroups.

In 1940’s the amenability theory shifted into the field of functional analysis,
mainly due to the fact that integration agains a positive, finitely additive measure
on a spaceX produces a continuous linear functional µ on l∞(X) such thatm(1) =
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1 = ‖µ‖. Currently amenability theory appears in many fields of mathematics,
most notably in operator algebras, functional analysis, ergodic theory, probability
theory, harmonic analysis. Many conjectures are verified to be true on amenable
groups. In many cases when a statement is true for a particular amenable group,
for example for Z, it turns out to be true for all amenable groups. In spite of
the large list of equivalent definitions of amenability, it is frequently hard and
challenging to decide whether a particular group is amenable.

Our recent research develops a technique that can be used to prove amenability
of several classes of groups. Since simple groups are building blocks in the group
theory it is a natural question to try to find examples of simple amenable groups.
The classical example of finitely supported alternating group A(∞) is simple and
amenable, however A(∞) is not finitely generated. Surprisingly the question of ex-
istence of finitely generated simple and amenable group remained open for decades.
Recently, in collaboration with N. Monod, [6], we solved this longstanding problem
by showing that the full topological group of a Cantor minimal system is amenable.
The amenability of this group was previously conjectured by R. Grigorchuk and K.
Medynets, [4]. The algebraic properties of the full topological group were studied
by H. Matui, [], who proved that the commutator subgroup of [[T ]] is simple and
finitely generated for any Cantor minimal subshift [[T ]]. Two systems (T1, X1)
and (T2, X2) are flip-conjugate if T1 is conjugate to T2 or T−1

2 . By a result of
Giordano-Putnam-Skau, [3], the full topological group is a complete invariant of
flip-conjugacy for (T,X). Thus combining our result with results of Giordano-
Putnam-Skau and Matui we obtain 2ℵ0 pairwise non-isomorphic infinite amenable
simple finitely generated groups.

Continuing our work on amenability, together with V. Nekrashevych and M. de
la Salle, [5], we developed a machinery which produced even more new examples
of amenable groups with interesting properties and answered a sequence of open
problems. Our proofs are more of probabilistic nature: the main ingredient is to
find and an action of a group on a discrete set such that all connected components
of the Schreier graph of this action are recurrent (as simple random walk).

The main theorem covers amenability of several important classes of groups that
act on rooted trees: bounded automorphisms, groups generated by finite automata
of linear and quadratic growth. This covers and extends the main results of L.
Bartholdi, V. Kaimanovich and V. Nekrashevych, [2], as well as of Amir, Angel
and Virag, [1],. Their proof of amenability is very technical. In a sense, our
methods provide more direct and unified proof. Using our general approach we
also prove amenability of the groups which naturally appear in dynamic: one is
a holonomy group of the stable foliation of the Julia set of a Hénnon map, the
other is the iterated monodromy group of a mating of two quadratic polynomials.
Even though the technique is very general (it covered all known non-elementary
amenable groups!) we are convinced that it can be modified to cover many other
important examples, which we plan to chase in our future research.

An important and difficult question is to verify that the groups that satisfy
the conditions of our main theorem imply Liouville property, which is our work in
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progress. We also plan to develop further the existence of invariant means for the
cases when the Scheier graph of the action is not recurrent. The question of the
existence of means in the transient case is important for understanding amenability
of interval exchange transformation group and Thompson group F.
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Geometric and analytic negative curvature

Denis Osin

The action of a group G on a metric space S is called acylindrical if for every
ǫ > 0 there exist R,N > 0 such that for every two points x, y with d(x, y) ≥ R,
there are at most N elements g ∈ G satisfying d(x, gx) ≤ ε and d(y, gy) ≤ ε.
Informally, one can think of this condition as a kind of properness of the action
on S × S minus a “thick diagonal”.

In the recent years, many interesting results were obtained for groups that
admit a non-elementary action on a hyperbolic space which is acylindrical or
satisfies certain similar assumptions such as weak acylindricity introduced by
Hamenstädt, weak proper discontinuity introduced by Bestvina and Fujiwara, ex-
istence of weakly contracting elements in the sense of Sisto, or existence of non-
degenerate hyperbolically embedded subgroups introduced by Dahmani, Guirardel,
and Osin. I will explain that these classes are essentially the same and coincide
with the class of acylindrically hyperbolic groups which can be defined as follows:
A group is acylindrically hyperbolic if it admits a non-elementary acylindrical ac-
tion on a hyperbolic space. I will also discuss the relation between acylindrical
hyperbolicity and various classes of groups having “analytic negative curvature”,
namely the Monod-Shalom class Creg and the class Dreg introduced by Thom.
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Lamplighter groups, random Schrödinger operators, and the
Lott-Lück conjecture

Bálint Virág

(joint work with Lukasz Grabowski)

A random Schrödinger operator is a perturbation of the adjacency matrix of a
lattice such as

A+ αV,

where V is an i.i.d. diagonal matrix. In other versions edges are perturbed. It has
been known is the RSO literature, that the expected spectral measure Eµ satisfies

• Eµ(x, x + ε) ≤ c
| log ε| for most V when A = Zd

• Eµ has bounded density when V does
• Eµ(x, x + ε) ≤ cεγ for most V when A = Z
• Eµ(x, x + ε) ≥ cεγ for some x, some γ, certain Bernoulli V and A = Z
• Eµ(0, 0 + ε) ≥ c

| log ε|3 for some bond models.

The lamplighter product of a graph G and a rooted graph H has state space
{(η, x) ∈ HG × G | η(g) = root(H) for all but finitely many g}. There are two
edge sets A = {(η, x) ∼ (η, x′) | x ∼ x in G} and S = {(η, x) ∼ (η′, x) | η(x) ∼
η′(x) in H , and otherwise η = η′}.

Lamplighter products are spectrally equivalent to RSO:

σHG×G,p(A,S) = Eσp(A,S̃)

where p is a noncommutative polynomial and S̃ is the multiplication operator by
an i.i.d. random saple of σH .

The spectral equivalence resolves some open problems:

• the Lott-Lück conjecture does not hold: µG(0, ε) ≥
1

|logε|3 for some group.

• existence of point spectrum is sensitive to generators.
• ∃ groups with singular continuous spectra.
• relaxation-time asymptotics for finite lamplighter groups.

L
2-invariants of locally compact groups

Henrik Densing Petersen

In this talk we explain how to define L2-Betti numbers for any locally compact,
unimodular, second countable (henceforth abbreviated lcus) group G. The defini-
tion is motivated in part by a well-known theorem of D. Gaboriau: Given any two
lattices Γ,Λ in a locally compact group G,

βn
(2)(Γ) =

covolΓ

covolΛ
· βn(2)(Λ)
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for all n ∈ N. It then seems natural to look for an appropriate definition of βn
(2)(G)

satisfying

(1) βn
(2)(Γ) = covolΓ · βn

(2)(G)

for any lattice Γ. In [2] this was introduced as follows.
Recall that the continuous cohomology Hn(G, E) of a lcus group G with coef-

ficients in a locally convex G-module E is computed as the n’th homology of the
complex of inhomogeneous continuous cochains

0 // E
∂0

// C(G, E)
∂1

// C(G2, E)
∂2

// · · ·

where the coboundary maps are given by

(∂nξ)(g1, . . . , gn+1) = g1.ξ(g2, . . . , gn+1) +

n∑

i=1

(−1)iξ(g1, . . . , gigi+1, . . . , gn+1) +

+(−1)n+1ξ(g1, . . . , gn).

Then the L2-Betti numbers of G are by definition (extending directly the defi-
nition for discrete groups)

βn
(2)(G) = dimLGH

n(G,L2G).

Here LG is the group von Neumann algebra ofG and the dimension dimLG is the
extended von Neumann dimension, applied to the right-LG-module Hn(G,L2G).

Then equation (1) was shown to hold for G totally disconnected and/or admit-
ting a cocompact lattice in [2], and the result was extended to general G in [1] in
joint work with David Kyed and Stefaan Vaes. The general proof of (1) given in
[1] relies on the existence of cocompact lattices ”in a measurable sense” in any lcus
group G, and the methods developed there then allows direct generalizations of
several results on L2-Betti numbers of countable groups and equivalence relations.

For a short summary of the results of [2] see either the introduction of the thesis
itself, or [3]. In joint work with Alain Valette [4] we give a complete description
of the L2-Betti numbers of type I groups in terms of cohomology with coefficients
in irreducible representations.
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The intermediate factor theorem over local fields

Arie Levit

In the talk we discussed a generalization of the intermediate factor theorem to the
local field case.

Recall that given a locally compact group G, a G-space is a standard Borel
space (X,µ) with a Borel G-action such that µ is quasi-invariant under the action.
Moreover, the action is essentially transitive if there exists a conull orbit. An
ergodic action is properly ergodic if it is not essentially transitive. The action is
irreducible if every non-centeral normal subgroup acts ergodically. It is faithful if
for every g ∈ G, gx 6= x holds for x of positive measure. Finally, the action is
essentially free if µ-a.e. x ∈ X has trivial stabilizer in G.

Given a fixed local field k, the following is a generalization of the classical
intermediate factor theorem [5] for k-groups:

Theorem 5. Let G be a semisimple connected algebraic k-group without k-aniso-
tropic factors and of k-rank ≥ 2. Let X and Y be Gk-spaces such that X is
irreducible, ergodic and has an invariant probability measure. Let P ≤ G be a
minimal k-parabolic subgroup of G. Given a sequence of Gk-factor maps

(Gk/Pk)×X → Y → X

whose composition is the projection to X, there exists a parabolic k-subgroup Q
containing P such that

Y ∼= (Gk/Qk)×X

as Gk-spaces, and moreover the maps (Gk/Pk) × X → Y and Y → X are the
natural ones.

Furthermore, in the sitation that Gk has property (T ), the following is a gen-
eralization of the Stuck-Zimmer theorem to local fields (see [4]):

Theorem 6. Let G be as in the preivous theorem, and assume that Gk has prop-
erty (T ). Then every faithful, properly ergodic, irreducible and finite measure-
preserving Gk-action is essentially free.

Note that the factor theorem was proved by Margulis in the generality of local
fields [2] while both the intermediate factor and the Stuck-Zimmer theorems were
proved only for real Lie groups.

The original proof of the intermediate factor theorem in [5] contains a gap, that
was later noticed in [3] where an alternative proof of that theorem for real Lie
groups was also given. Our proof in [1] completes the gap in a way that is closer
in spirit to the proof of the factor theorem and extends to local fields.

We remark that the theorem for real Lie groups follows from the general case.
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Ultraproducts of finite simple groups: abstract and metric

John Wilson

Let G be an abstract ultraproduct
∏
Si/U of a family {Si | i ∈ I} of finite simple

groups and suppose that G is infinite. From the classification of the finite simple
groups and a result of F. Point, if the groups Si have bounded rank, then G
is a Chevalley group (possibly twisted) over an ultraproduct of finite fields. Such
groups turn out to be precisely the infinite simple groups that satisfy all first-order
sentences that hold in all finite groups, by a result of the author and Ryten.

Suppose instead that the groups Si have unbounded rank. In this case, it can
be assumed that the family {Si | i ∈ I} is contained in one of the following: (1)
the family of alternating groups; (2) the family of groups PSLn(q); (3) the family
of finite simple classical groups not of type PSLn(q). It was shown by Nikolov that
G has a unique infinite simple image S, and that S is a metric ultraproduct of the
groups Si with respect to the metric on Si given by conjugacy length, defined by
ℓ(x) = log |xSi |/ log |Si| for x ∈ Si. Current work of A. Thom and the speaker was
described, on recognition from the structure of centralizers in S which of cases (1),
(2) or (3) holds, and, in cases (2), (3), whether some prime predominates as the
defining characteristic for the groups Si.

On random groups of intermediate growth

Rostislav Grigorchuk

(joint work with Mustafa G. Benli, Yaroslav Vorobets)

Let G be a finitely generated group and S a finite set of generators of G. For
g ∈ G, let |g|S be the minimal number n such that g = s1 . . . sn where si ∈ S±.
The growth function of G (with respect to the generating set S) is the function
γSG(n) = #{g ∈ G | |g|S ≤ n}. For any two functions f, g let us write f � g if
there exists C > 0 such that f(n) ≤ Cg(Cn) for all n ∈ N, and write f ∼ g if
both f � g and g � f . It can be observed that the growth functions of a group
corresponding to different generating sets are ∼ equivalent.

In 1968 it became apparent that all known examples of groups have either
exponential growth or polynomial growth. That is γG ∼ en or γG � nd for some
d. John Milnor asked whether groups of intermediate growth exists. The first
examples of groups with intermediate growth were constructed by the author in
[Gri84] and in [Gri85].
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Let p be a a prime and let Ωp = {0, 1, . . . , p}N denote the set of infinite sequences
over the alphabet {0, 1, . . . , p} endowed with its natural topology and the shift map
τ : Ωp → Ωp for which τ(ω)n = ωn+1. For each ω ∈ Ωp, the speaker constructed
in [Gri84, Gri85] a finitely generated group Gω with a set Sω = {a, bω, cω} of
three generators, acting on the unit interval [0, 1] by Lebesgue measure preserving
transformations. One of the specific features of this construction is that if two
sequences ω, η ∈ Ωp, which are not eventually constant, have the same prefix of
length n, then the corresponding groups Gω, Gη have isomorphic Cayley graphs
in the neighborhood of identity of radius 2n−1. Therefore, removing the groups
Gω when ω is eventually constant and and replacing them by the corresponding
limit groups in the space of 3-marked groups M3, one obtains a compact subset
Gp = {(Gω, Sω) | ω ∈ Ωp} ⊂ M3 which is homeomorphic to Ωp via the map
(Gω , Sω) 7→ ω. Let Ωp,∞ denote the set of all sequences in which all symbols
{0, 1, . . . , p} appear infinitely often. In [Gri84] (for p = 2) and [Gri85] (for p > 2),
it was shown that the groups Gω for ω ∈ Ωp,∞ are examples of periodic p-groups
of intermediate growth hence making these examples interesting and related to
the Milnor problem mentioned in the previous paragraph and also to the Burnside
problem about periodic groups.

The growth rates of the groups in these families show a wide range of different
behavior. In [Gri84] it was shown that the set of growth rates in the family G2

contains an uncountable chain and also an uncountable anti-chain. It was also
shown in [Gri84] that for any subexponential function f , there exists Gω ∈ G2

having growth not slower than f . On the other hand, in [Gri84, Gri85] it was
observed that if the symbols {0, 1, . . . , p} are “uniformly” distributed in a sequence
ω ∈ Ωp, then the growth of the corresponding group Gω is no more than of a

function of the form en
α

for some α < 1.

The space Gp with the transformation T (Gω, Sω) = (Gτω, Sτω) induced by the
shift τ : Ωp → Ωp and T invariant probability measure on it constitutes a model
for a random group from the family Gp. A natural question is what group theoretic
properties are typical (in the sense of measure and in the sense of Baire category)
in Gp. Some properties (such as amenability or periodicity) are known to be typical
and this talk is concerned with the growth rate of a typical group.

Given ω ∈ Ωp, we denote the growth function of the group Gω (with respect to
the generating set Sω) by γω. The first result is:

Theorem 1. Suppose µ is a Borel probability measure on Ωp that is invariant
and ergodic relative to the shift transformation τ : Ωp → Ωp.

a) If the measure µ is supported on Ωp,∞, then there exists α = α(µ, p) < 1

such that γω(n) � en
α

for µ−almost all ω ∈ Ωp.
b) In the case µ is the uniform Bernoulli measure on Ω2, one can take α =

0.999

In fact, there is nothing special about the space M3 and the following holds:

Theorem 1’. For any k ≥ 2 and prime p, Mk contains a compact subset Kk =
{(Mω, Lω) | ω ∈ Ωp} homeomorphic to Ωp (via the map ω → (Mω, Lω)) such that
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if µ is a measure supported on Ωp,∞, invariant and ergodic relative to the shift,

then there exists α = α(µ, p) < 1 such that γMω
(n) � en

α

for µ-almost all ω ∈ Ωp.

Given two functions f1, f2 : N → N such that f1(n) � f2(n) � en, we say that
a group G has oscillating growth of type (f1, f2) if f1 � γG and γG � f2. The
existence of groups with oscillating growth follows from the results of [Gri84]. The
results of [KP13] and of [BE12, Bri11] provide more information in this direction.
Our next result deals with the growth of a typical group from the family Gp, from
a topological point of view.

Let θ2 = log(2)/ log(2/x0) where x0 is the real root of the polynomial x3+x2+

x− 2. We have θ2 < 0.767429. For a prime p ≥ 3, let θp = log(pp+1)
log(pp+1)−log(3/4) < 1 .

Theorem 3.

a) For any and θ > θp and any function f satisfying en
θ

≺ f(n) ≺ en, there
exists a dense Gδ subset Zp ⊂ Gp such that any group in Zp has oscillating

growth of type
(
en

θ

, f
)
.

b) For every θ and β with θp < θ < β < 1, there exists a dense Gδ subset of

Gp which consists of groups with oscillating growth of type
(
en

θ

, en
β
)
.

c) Given any ǫ > 0 and function f satisfying exp
(

n
log1−ǫ n

)
≺ f(n) ≺ en,

there is a dense Gδ subset E ⊂ {(Gω, Sω) | ω ∈ {0, 1}N} ⊂ G2 such that

any group in E has oscillating growth of type
(
exp

(
n

log1−ǫ n

)
, f

)
.

Again, one can generalize these to arbitrary k ≥ 2 and in particular, the follow-
ing holds.

Theorem 3’. for each k ≥ 2, θ > θp and function f satisfying en
θ

≺ f(n) ≺ en,
Mk contains a compact subset Ck homeomorphic to a Cantor set such that there
exists a dense Gδ subset C′

k ⊂ Ck which consists of groups with oscillating growth

of type
(
en

θ

, f
)
.

The reason why oscillating groups are typical in the categorical sense is the
existence of a countable dense subset in Gp consisting of groups of exponential
growth and also a dense subset of groups with the growth equivalent to the growth

of the groups G(01...p)∞ whose growths are bounded above by en
θp

by results of
[Bar98] and [MP01]. To prove part c) of Theorem 3, we use instead a result of
Erschler [Ers04] stating that the growth of the group Gω for ω = (01)∞ ∈ Ω2 is

slower than exp
(

n
log1−ǫ n

)
for all ǫ > 0.

We see that the growth of a typical group in the families Gp from a measure-
theoretic sense is radically different compared to the growth of a typical group in
the sense of category.
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On Tarski numbers

Mikhail Ershov

Let G be a discrete group. It is well known that G is non-amenable if and only if G
admits a paradoxical decomposition, that is, there exist positive integer n and m,
disjoints subsets A1, . . . , An, B1, . . . , Bm of G and elements g1, . . . , gn, h1, . . . , hm
of G such that

G = (⊔n
i=1Ai) ⊔ (⊔m

j=1Bj) = ⊔n
i=1giAi = ⊔m

j=1Bj .

If G is non-amenable, the minimal number of pieces in its paradoxical decompo-
sition, that is, the minimal value of n+m, is called the Tarski number of G and
denoted by T (G).

The following properties of Tarski numbers are well known (and easy to check):

(a) T (G) ≤ T (H) if H is either a subgroup or a quotient of G;
(b) T (G) ≥ 4 for any G, and equality holds if and only if G contains a non-

abelian free subgroup.

In addition, in [1] it was shown that T (G) ≥ 6 for any torsion group G.
In my talk, I discussed the following two new results on Tarski numbers:

Theorem 1. The set of possible values of Tarski numbers is unbounded.

Theorem 2. There exist groups whose Tarski number is equal to 6.

To the best of my knowledge, Theorem 2 provides the first examples of groups
whose Tarski number has been computed precisely and is not equal to 4.

Theorem 1 has been established by Ozawa and Sapir in a recent mathoverflow
post [6]. Ozawa first observed that if G is a non-amenable group such that every
m-generated subgroup is amenable, then T (G) > m + 2, and Sapir noticed that
such groups do exist for an arbitrarym. The latter is a consequence of the following
two results on Golod-Shafarevich groups:

(i) Every Golod-Shafarevich group is non-amenable [2].
(ii) For every m there exists an (m + 1)-generated Golod-Shafarevich group

all of whose m-generated subgroups are finite.
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I explained how to prove Theorem 1 essentially from scratch using only the fact
that there exists a Golod-Shafarevich group with property (T ) (the latter is one of
several ingredients of the proof of non-amenability of Golod-Shafarevich groups).
The same argument shows that there exists a non-amenable group G such that
the values of Tarski numbers of finite index subgroups of G are unbounded.

Theorem 2 is a direct consequence of the following two results:

Theorem 3. Let G be a 3-generated group with b
(2)
1 (G) ≥ 3

2 (where b
(2)
1 (G) is the

first L2-Betti number of G). Then T (G) ≤ 6. If in addition G is torsion, then
T (G) = 6.

Theorem 4. For any integer d ≥ 2 and any ε > 0 there exists a d-generated group

G with b
(2)
1 (G) > d− 1− ε.

Theorem 4 was established by Osin [5]; in fact, groups with such property can
be explicitly constructed. In my talk, I briefly outlined the proof of Theorem 3.
The main ingredient in the proof is the result of Lyons [4] which asserts that for
any finitely generated group G and any finite generating set S of G, the expected
degree of the free uniform spanning forest on the Cayley graph Cay(G,S) is equal

to 2b
(2)
1 (G) + 2.
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Limit multiplicities for SL(n)

Tobias Finis

(joint work with Erez Lapid, Werner Müller)

The limit multiplicity problem, which goes back to DeGeorge and Wallach, con-
cerns the asymptotic behavior of the spectra of lattices Γ (discrete subgroups of
finite covolume vol(Γ\G)) in a fixed semisimple Lie group G in the situation where
vol(Γ\G) → ∞. In a great number of cases, the normalized discrete spectra µΓ

converge then to the Plancherel measure µpl of the groupG, which is defined purely
in terms of the decomposition of the space L2(G), i.e., without any reference to
discrete subgroups.
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For uniform lattices Γ (lattices for which the quotient Γ\G is compact), general
results on this problem have been known for some time. The case of normal towers,
i.e., of descending sequences of finite index normal subgroups of a given uniform
lattice with trivial intersection, was completely resolved by Delorme [4]. Recently,
limit multiplicity has been shown for much more general sequences of uniform
lattices [1, 2].

In the case of non-compact quotients Γ\G, where the spectrum also contains a
continuous part, much less is known. In a recent joint preprint of the author with
E. Lapid and W. Müller [9], this case has been analyzed in a rather general setup.
An extension of these results will appear in a forthcoming paper of E. Lapid and
the author. (See [9, §1] for previous results in the literature.) The new approach is
based on a careful study of the spectral side of Arthur’s trace formula in the recent
form given in [5, 7]. The results are unconditional only for the groups GL(n) and
SL(n), but in the general case a substantial reduction of the problem is obtained.

1. The limit multiplicity property

Let G be a connected linear semisimple Lie group with a fixed choice of Haar
measure. Since the group G is of type I, we can write unitary representations
of G on separable Hilbert spaces as direct integrals (with multiplicities) over the
unitary dual Π(G), the set of isomorphism classes of irreducible unitary repre-
sentations of G with the Fell topology. The regular representation of G × G on
L2(G) decomposes as the direct integral of the tensor products π⊗ π∗ against the
Plancherel measure µpl on Π(G). The support of the Plancherel measure is called
the tempered dual Π(G)temp ⊂ Π(G). The Plancherel measure and the tempered
dual are well understood, mainly by the work of Harish-Chandra.

By definition, a Jordan measurable subset of Π(G)temp is a bounded set A such
that µpl(Ā − A◦) = 0. We say that a collection M of Borel measures µ on Π(G)
has the limit multiplicity property (property (LM)) if the following two conditions
are satisfied:

(1) For any Jordan measurable Borel set A ⊂ Π(G)temp we have1

µ(A) → µpl(A), µ ∈ M.

(2) For any bounded Borel set A ⊂ Π(G) \Π(G)temp we have

µ(A) → 0, µ ∈ M.

We will apply this setup to the regular representations RΓ of G on L2(Γ\G)
for lattices Γ in G. Consider the discrete part L2

disc(Γ\G) of L
2(Γ\G), namely the

sum of all irreducible subrepresentations, and denote by RΓ,disc the corresponding
restriction of RΓ. For any π ∈ Π(G) letmΓ(π) be the multiplicity of π in L2(Γ\G).
These multiplicities are known to be finite, at least if either G has no compact

1Here convergence means that for any ε > 0 the set of µ ∈ M with |µ(A) − µpl(A)| ≥ ε is

finite.
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factors or if Γ is arithmetic. We define the discrete spectral measure on Π(G) with
respect to Γ by

µΓ =
1

vol(Γ\G)

∑

π∈Π(G)

mΓ(π)δπ ,

where δπ is the Dirac measure at π.

2. Density principle and trace formula

We want to study property (LM) for the measures µΓ, where Γ ranges over a
collection of lattices in G. A basic approach to this problem is to use integration
against test functions on G and the trace formula. Let K be a maximal compact
subgroup of G. For a test function f ∈ C∞

c,fin(G), the space of smooth, compactly
supported bi-K-finite functions on G, we define its ”Fourier transform” on the

unitary dual by taking traces: f̂(π) = tr π(f), π ∈ Π(G). This defines µ(f̂) for

Borel measures µ on Π(G) (of course µ(f̂) might in general be divergent). In

particular we have µpl(f̂) = f(1) by Plancherel inversion and

µΓ(f̂) =
1

vol(Γ\G)
trRΓ,disc(f),

which is known to be convergent for arithmetic lattices Γ. Sauvageot’s density
principle [10], a refinement of the work of Delorme, amounts to the following:

Theorem 1 (Sauvageot). Let M be a collection of Borel measures on G and
assume that for all f ∈ C∞

c,fin(G) we have

µ(f̂) → µpl(f̂) = f(1), µ ∈ M.

Then M satisfies (LM).

For the purpose of illustration let now Γ be a cocompact lattice in G. For a
finite index subgroup ∆ of Γ and γ ∈ Γ set

c∆(γ) = |{δ ∈ ∆\Γ : δγδ−1 ∈ ∆}|.

Combining the density principle with the Selberg trace formula, which expresses
trR∆(f) in terms of orbital integrals of f associated to the conjugacy classes of
∆, we can reduce the limit multiplicity problem for collections D of finite index
subgroups ∆ of Γ to the following purely group-theoretical question: do we have

c∆(γ)

[Γ : ∆]
→ 0, ∆ ∈ D,

for any γ ∈ Γ, γ 6= 1? Note that for central elements γ (in particular for γ = 1),
we have obviously c∆(γ) = [Γ : ∆].

Can we expect that for irreducible arithmetic lattices the limit multiplicity
property holds for any collection of subgroups not containing non-trivial central
elements? For congruence subgroups of cocompact lattices (or for arbitrary finite
index subgroups in the higher rank case) this follows from [1, 2]. In the real rank
one case there are counterexamples if we allow arbitrary finite index subgroups.
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An independent proof of the congruence subgroup case will be contained in work
in preparation of E. Lapid and the author (see [6]).

For the non-cocompact lattices SL(n, oF ) ⊂ SL(n, F ⊗R), where F is a number
field, we can show the following:

Theorem 2. Let F be a number field. The collection of measures µΓ, where Γ
runs over all congruence subgroups of SL(n, oF ) not containing non-trivial central
elements, has the limit multiplicity property.

Note that for n ≥ 3 and F not totally complex, every finite index subgroup of
SL(n, oF ) is in fact a congruence subgroup.

It seems very likely that this result generalizes to the lattices SL(m, oD), where
D is a division algebra with center F that splits at the infinite places (we are
planning to include this case in a revised version of [9]). Unlike the results of [1, 2]
for cocompact lattices, our current proof does not cover more general sequences
of lattices, where infinitely many distinct commensurability classes are allowed,
although it might be possible to include this case by making the dependence of all
parameters on D and F explicit.

As mentioned already above, the proof of Theorem 2 is based on Arthur’s
trace formula [3], an elaborate extension of the Selberg trace formula to the non-
cocompact case. One needs to control both its geometric and its spectral side.
It is the spectral side which poses genuinely new problems. The contribution
from the continuous spectrum to RΓ involves generalized logarithmic derivatives
of intertwining operators. In [5, 7] it was shown that those can be rewritten in
terms of usual logarithmic derivatives A−1(s)A′(s) of operator-valued functions
A(s) of one variable. Each such operator can be decomposed as a product of a
scalar normalizing factor, which at least for GL(n) and SL(n) can be expressed
in terms of automorphic L-functions, and of a tensor product (over all places of
the ground field F ) of locally defined normalized intertwining operators, whose
matrix coefficients are essentially rational functions. The necessary control of
the scalar factors can be deduced from the theory of automorphic L-functions.
Regarding the local operators, the fact that only first derivatives occur implies
that we only need to bound the degrees of their matrix coefficients in terms of the
level of the congruence subgroup ∆, which was achieved (for GL(n) and SL(n)) in
[8]. The remaining group-theoretic ingredient is essentially a bound of the form
O([Γ : ∆]−ε) for the average value of c∆(γ) as γ runs over UP ∩ Γ, where P is
a parabolic subgroup of G for which UP ∩ Γ is a lattice in UP . Such a bound is
provided by our group-theoretic analysis (cf. [6]), as well as by the alternative
method of [1, 2].
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Representation growth and LocSys

Nir Avni

(joint work with A. Aizenbud)

For a group Γ, let rn(Γ) be the number of rank-n irreducible complex characters
of Γ. The representation growth of Γ is the asymptotic behavior of the sequence
rn(Γ). We find connections between the representation growth of an arithmetic
lattice of the form G(Z) and the singularities of the moduli space of G-local sys-
tems on closed surfaces. Our main theorem is the following:

Theorem Let G be a semisimple algebraic group defined over Z and let k be a nat-
ural number. Let Φ : G2k → G be the map Φ(x1, y1, . . . , xk, yk) = [x1, y1] · · · [xk, yk].
For every p, denote the Haar measure on the group G(Zp) by λp. The following
conditions are equivalent:

(1) For all p, we have rn(G(Zp)) = o(n2k−2).
(2) For all p, the push-forward of the Haar measure λ⊗2k

p under Φ has a
continuous density with respect to λp.

(3) The map Φ is flat and all of its fibers have rational singularities.
(4) The fiber Φ−1(1) has rational singularities.
(5) For all p, the moduli space of G(Zp)-local systems on a closed surface of

genus k has finite Atiyah–Bott volume.

We also show that these conditions hold for G = SLd if k ≥ 12. As an application,
we show that rn(SLd(Z)) = o(n22) for every d ≥ 3.
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L
1-measure equivalence of hyperbolic lattices

Roman Sauer

(joint work with Uri Bader, Alex Furman)

Two finitely generated groups Γ and Λ aremeasure equivalent if there is a Lebesgue
space (Ω, ν) – called a (Γ,Λ)-coupling – endowed with ν-preserving, commuting,
essentially free actions of Γ and Λ that admit ν-finite fundamental domains.

The basic example are two lattices in the same locally compact group G with
G serving as a coupling.

The choice of measurable fundamental domains X ⊂ Ω and Y ⊂ Ω leads to
cocycles α : Γ× Y → Λ and β : Λ×X → Γ that are defined by the equation

γy = α(γ, y)Y

and similarly for β. With l : Λ → R≥0 being the length function on Λ coming
from a word-metric on Λ, we call Ω a integrable (Γ,Λ)-coupling if there exist
fundamental domains such that the associated cocycles are integrable in the sense
that ∫

Y

l ◦ α(γ, y)dm(y) <∞ for every γ ∈ Γ,

and similarly for β. Two groups Γ,Λ are called L1-measure equivalent, if they
possess an integrable (Γ,Λ)-coupling.

Similarly to the classification of groups up to quasi-isometry or measure equiv-
alence, we would like to classify groups up to L1-measure equivalence. A natural
class to consider are lattices in semi-simple Lie groups. Alex Furman showed that
lattices in simple Lie groups of higher rank are rigid with respect to measure equiv-
alence [2]. More precisely, if Λ is measure equivalent to a lattice in a simple Lie
group G of higher rank, then Λ surjects onto a lattice in G with finite kernel. This
result also yields the L1-classification of such lattices. Concerning Lie groups of
rank 1 we prove the following [1]:

Theorem: Let G be the isometry group of real hyperbolic n-space with n ≥ 2
and let Γ < G be a lattice. In the case n = 2 we additionally assume that Γ is
cocompact. If Λ is a finitely generated group that is L1-measure equivalent to Γ,
then there are a finite group F and a lattice Λ̄ < G and a short exact sequence

1 → F → Λ → Λ̄ → 1.

If n = 2, then Λ̄ is a cocompact lattice.
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The Group Large Sieve

Chen Meiri

The sieve method, which is a classic one in Number Theory, can be applied to
study random walks on linear groups (and on general groups via their represen-
tations). Let Γ be a linear group generated by some finite symmetric set S. Let
wk be the kth-step of a random walk on the Cayley graph Cay(Γ, S). The main
interest is to estimate the probability that wk belongs to some subset T ⊆ Γ. The
starting point of the random walk is the identity so for every k ≥ 0,

(1) Prob(wk ∈ T ) =
|{(s1, . . . , sk) ∈ Sk | s1s2 · · · sk ∈ T }|

|S|k
.

There are two kinds of sieving techniques for groups. The first is called the
Affine Sieve and was developed by Jean Bourgain, Alex Gamburd and Peter Sar-
nak [BGS]. This method deals with arithmetic questions. A typical result of the
affine sieve is:

Theorem 1 (Bourgain-Gamburd-Sarnak). Let Γ ≤ SL(n,Z) be a finitely gener-
ated Zariski-dense subgroup with a finite generating set S. There are constants
r, t > 0 for which

Prob (tr(wk) has at most r prime factors) ∼
1

kt
.

The second technique is called the Group Large Sieve and was developed by
Igor Rivin [Ri], Emmanuel Kowalski [Ko], Alex Lubotzky and Chen Meiri. This
method deals with algebraic questions. A typical result of the group large sieve is:

Theorem 2 (Rivin, Kowalski). Let Γ ≤ SL(n,Z) be a finitely generated Zariski-
dense subgroup with a finite generating set S. There are constants α, c > 0 for
which

Prob (the characteristic polynomial of wk is irreducible) ≤ ce−αk.

The constants α and c depend on the generating set. To avoid the need to
specify the generating set we call a subset T exponentially small if for every finite
symmetric generating set there exist constants α, c > 0 for which

(2) Prob(wk ∈ T ) ≤ ce−αk.

The basic idea behind the sieve method is to study the properties of random
walks via their images in finite quotients. The key point is that the distributions
of the random walks in these finite quotients converge very fast to the uniform
ones.

Theorem 3 (Varju). Let Γ be a finitely generated Zariski-dense subgroup of
SL(n,Z) with a finite symmetric generating set S. There exist constants d ∈ N



Group Theory, Measure, and Asymptotic Invariants 2413

and α, β > 0 such that for every k, q ∈ N for which gcd(q, d) = 1 and q ≤ eβk and
every T ⊆ SL(n, q),

(3) Prob(πq(wk) ∈ T ) =
|T |

| SL(n, q)|
+ o(e−αk).

where πq : SL(n,Z) → SL(n, q) is the modulo-q homomorphism.

Theorem 3 can be used in an obvious way. For example, in order to bound the
probability that the characteristic polynomial of wk is reducible, it is enough to
bound the probability that for all primes p the characteristic polynomial of πp(wk)
is reducible.

The proof of Theorem 3 (and its generalizations to other linear groups) is based
on the strong approximation theorem of Boris Weisfeiler [We] and Madhav Nori
[No] and on the recent developments in the theory of expansion in groups and
spectral gaps. The development in the theory of expansion in groups is due to
Harald Helfgott [He], Emmanuel Breuillard, Ben Green and Terence Tao [BGT]
and by László Pyber and Endre Szabó [PS]. New methods for proving spectral
gap results by using the theory of expansion in groups were developed by Jean
Bourgain, Alex Gamburd and Peter Sarnak [BGS], Peter Varju [Va] and Alireza
Salehi-Golsefidy and Varju [SGV].

Finally, we would like to state some results which were proven by using the
group large sieve method. The Galois group of an element g ∈ SL(n,Z) is defined
to be the Galois group of the splitting field of its characteristic polynomial.

Theorem 4 (Rivin, Kowalski). The subset of SL(n,Z) consisting of the elements
whose Galois group is not isomorphic to the symmetric group Sym(n) is exponen-
tially small.

For a generalizations of this theorem to other arithmetic lattices see [JKZ] and
[LR].

The quantitative nature of the sieve method might be helpful for answering
non-quantitative questions. For example, a theorem of Ehud Hrushovski, Peter
Kropholler, Alex Lubotzky and Aner Shalev [HKLS] states that if Γ is a non-
(virtually-solvable) linear group and s ≥ 2 then the set {gm | g ∈ Γ & 2 ≤ m ≤ s}
does not contain a coset of a finite index subgroup. The proof of this theorem uses
the profinite topology and cannot be extended to the set of all powers. Using the
group large sieve, Alex Lubotzky and Chen Meiri generalized this result.

Theorem 5 (Lubotzky-Meiri). Let Γ ≤ GL(n,C) be a non-(virtually-solvable)
finitely generated group. The set {gm | g ∈ Γ & 2 ≤ m} is exponentially small. In
particular, it does not contain a coset of a finite index subgroup.

The Group Large Sieve method is also fruitful for groups which are not neces-
sarily linear. For example, the action of the Mapping Class Group MCG on the
first homology of the surface Σg induces a representation ρ : MCG → Sp(2g,Z).
Igor Rivin [Ri] and Emmanuel Kowalski [Ko] used this representation to show:

Theorem 6 (Rivin, Kowlaski). The set of non-(Pseudo-Anosov) elements in the
Mapping Class Group is exponentially small.
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The kernel of ρ is called the Torelii subgroup and it plays an important role in
the study of the mapping class group. Kowalski [Ko] asked if the same result is true
for the Torelli subgroup. Using the action of the Torelli group of the first homology
of covers of Σg, Justin Malestein and Juan Souto [MS] and Lubotzky-Meiri [LM2]
proved:

Theorem 7 (Malestein-Souto, Lubotzky-Meiri). The set of non-(Pseudo-Anosov)
elements in the Torelli group is exponentially small.
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[PS] L. Pyber and E. Szabó, Growth in finite simple groups of Lie type of bounded rank,

arXiv:1005.1858.
[Ri] I. Rivin, Walks on groups, counting reducible matrices, polynomials, and surface and free

group automorphisms, Duke Math. J. 142 (2008), no. 2, 353–379.
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Bernoulli actions and sofic entropy

David Kerr

For a probability-measure-preserving action G y (X,µ) of a countable amenable
group, the Kolmogorov-Sinai entropy is defined by taking a Følner sequence {Fn}
for G and setting

hµ(T ) = sup
P

lim
n→∞

1

|Fn|
H

( ∨

s∈Fn

s−1P

)
.

where H(·) is the Shannon entropy and P ranges over the finite measurable par-
titions of X . The Følner property enables one to prove the Kolmogorov-Sinai
theorem, which asserts that the above supremum is achieved on every finite gener-
ating partition. As a consequence, the entropy of a Bernoulli action Gy (Y, ν)G

is equal to the Shannon entropy of the base (Y, ν). By work of Ornstein in the
case G = Z [8, 9] and by Ornstein and Weiss in the general amenable case [10],
Bernoulli actions are classified by their entropy and every factor of a Bernoulli
action is Bernoulli.

By externalizing the averaging in the Kolmogorov-Sinai definition to an abstract
finite set on which the group approximately acts, Bowen introduced a more general
notion of measure entropy that applies to actions of countable sofic groups [2]. This
is defined as follows, in the generator-free formulation of [6]. Let G y (X,µ) be
a measure-preserving action of a countable sofic group. Soficity means that there
exists a sequence Σ of maps σi : G → Sym(di) into finite permutation groups
which are asymptotically multiplicative and free in the sense that

lim
i→∞

1

di

∣∣{k ∈ {1, . . . , di} : σi,st(k) = σi,sσi,t(k)}
∣∣ = 1

for all s, t ∈ G, and

lim
i→∞

1

di

∣∣{k ∈ {1, . . . , di} : σi,s(k) 6= σi,t(k)}
∣∣ = 1

for all distinct s, t ∈ G. Fixing such a Σ, we define Homµ(P , F, δ, σi) to be the
set of all homomorphisms from the algebra generated by P to the algebra of sub-
sets of {1, . . . , di} which, to within δ in a summable sense, are approximately
F -equivariant and approximately pull back the uniform probability measure on
{1, . . . , di} to µ. For a partition Q ≤ P , write |Homµ(P , F, δ, σi)|Q for the car-
dinality of the set of restrictions of elements of Homµ(P , F, δ, σi) to Q. We then
define the measure entropy

hΣ,µ(X,G) = sup
Q

inf
P≥Q

inf
F,δ

lim sup
i→∞

1

di
log |Homµ(P , F, δ, σi)|Q

where Q ranges over the finite measurable partitions of X and F over the finite
subsets of G. As in the amenable case,

• the entropy of a Bernoulli action of a countable sofic group is equal to the
Shannon entropy of its base [2, 7, 6],
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• Bernoulli actions of nontorsion countable sofic groups are classified by their
entropy [2].

Unlike in the amenable case,

• if G is nonamenable then there are Bernoulli actions of G which factor
onto every Bernoulli action of G [1],

• if G contains F2 then any two nontrivial Bernoulli actions of G factor onto
one another [5],

• many nonamenable groups, including property (T) groups, have Bernoulli
actions with non-Bernoulli factors [11, 12, 13, 14].

An action of a sofic group has completely positive entropy if every nontrivial
factor has positive entropy with respect to every sofic approximation sequence Σ.
A Bernoulli action Gy (Y, ν)G of an amenable G has completely positive entropy
because all factors are Bernoulli. Although it is possible for Bernoulli actions of
sofic groups to admit non-Bernoulli factors by the last point above, we nevertheless
show the following.

Theorem 1. A Bernoulli action G y (Y, ν)G of a sofic group has completely
positive entropy.

In [4] Bowen introduced an entropy-type invariant for free groups called the
f -invariant. He showed in [3] that the f -invariant coincides with a version of sofic
entropy which is locally computed by averaging over all sofic approximations on
a finite set instead of using a given sofic approximation. Using this fact and the
above theorem, we derive the following consequence.

Corollary 2. If a nontrivial factor of a Bernoulli action of a free group possesses
a finite generating partition, then it has strictly positive f -invariant.
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Université d’Orleans
B. P. 6759
45067 Orleans Cedex 2
FRANCE

Dr. Nir Avni

Department of Mathematics
Harvard University
Science Center
One Oxford Street
Cambridge MA 02138-2901
UNITED STATES

Dr. Uri Bader

Department of Mathematics
Technion - Israel Institute of
Technology
Haifa 32000
ISRAEL

Dr. Vincent Beffara
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École Normale Superieure de Lyon
46, Allee d’Italie
69364 Lyon Cedex 07
FRANCE

Christoph Gamm

Mathematisches Institut
Universität Leipzig
Johannisgasse 26
04103 Leipzig
GERMANY

Prof. Dr. Tsachik Gelander

Department of Mathematics
The Hebrew University
Givat Ram
Jerusalem 91904
ISRAEL

Dr. Lukasz Grabowski

Mathematical Institute
Oxford University
24-29 St. Giles
Oxford OX1 3LB
UNITED KINGDOM

Prof. Dr. Rostislav Ivan

Grigorchuk

Department of Mathematics
Texas A & M University
Mailstop 3368
College Station, TX 77843-3368
UNITED STATES

Dr. Cyril Houdayer
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