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Abstract. Let W be a polynomial or power series in several variables, or,
more generally, a nonzero element in some regular commutative ring. A
matrix factorization of W consists of a pair of square matrices X and Y of
the same size, with entries in the given ring, such that the matrix product
XY is W multiplied by the identity matrix. For example, if X is a matrix
whose determinant is W and Y is its adjoint matrix, then (X, Y ) is a matrix
factorization of W .

Such matrix factorizations are nowadays ubiquitous in several different
fields in physics and mathematics, including String Theory, Commutative
Algebra, Algebraic Geometry, both in its classical and its noncommutative
version, Singularity Theory, Representation Theory, Topology, there in par-
ticular in Knot Theory.

The workshop has brought together leading researchers and young col-
leagues from the various input fields; it was the first workshop on this topic
in Oberwolfach. For some leading researchers from neighboring fields, this
was their first visit to Oberwolfach.

Mathematics Subject Classification (2010): 18Dxx, 18E30, 81T40, 14F05, 13Dxx, 16Gxx.

Introduction by the Organisers

The workshopMatrix Factorizations in Algebra, Geometry, and Physics, organised
by Ragnar-Olaf Buchweitz (Toronto), Kentaro Hori (Kashiwa), Henning Krause
(Bielefeld) and Christoph Schweigert (Hamburg) has brought together 50 partic-
pants from the fields of algebra, geometry and mathematical physics.

The concept of matrix factorization as here understood was introduced in 1980
by D. Eisenbud. He showed that matrix factorizations of W are essentially the
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same as maximal Cohen-Macaulay modules over the associated hypersurface ring
and that consequently any projective resolution of a module over a local hyper-
surface ring becomes eventually 2–periodic, the periodic part given by a matrix
factorization.

During the 1980’s, algebraic as well as geometric aspects of matrix factoriza-
tions were studied by M. Auslander, R.-O. Buchweitz, D. Eisenbud, G. M. Greuel,
J. Herzog, H. Knörrer, I. Reiten, F.-O. Schreyer and many others, with impor-
tant applications to Singularity Theory, Algebraic Geometry and Representation
Theory.

In particular, it was shown that (homotopy classes of) matrix factorizations
of W form a triangulated category that is equivalent to the stabilized derived
category of the usually singular hypersurface W = 0, as well as to the homotopy
category of complete resolutions or to the stable category of maximal Cohen–
Macaulay modules, with the last three equivalences holding true more generally
for Gorenstein rings (Buchweitz). Also, it was shown that the categories of matrix
factorizations of W and of W + xy are equivalent (Knörrer periodicity).

In the early 2000’s, the relevance of matrix factorizations to String Theory was
recognized — supersymmetric boundary conditions (D-branes) in the topological
Landau-Ginzburg model with superpotentialW are described as matrix factoriza-
tions of W (Kontsevich, Orlov). Independently, Orlov also generalized the affine
results for Gorenstein rings to a large class of schemes.

There were 18 contributed talks to the workshop, of a length of 60 minutes
each. 7 of these talks were selected by the organizers before the workshop. On
Monday evening, 36 participants gave short presentations of five minutes each
from which the remaining 11 full talks were selected. The session comprising the
short presentations was generally perceived as stimulating and instructive by the
participants of the workshop. Ten talks were given by young participants; for some
of them, the talk was their first contribution to a workshop in Oberwolfach.

In the remaining part of the introduction, we briefly describe the mathematical
interrelations of the full talks.

A series of contributions was strongly rooted in singularity theory: H. Lenzing
discussed categories of matrix factorizations for Brieskorn singularities. K. Ueda’s
talk was devoted to the relation between non-commutative matrix factorizations
and dimer models, while A. Takahashi reported on algebraic and geometric aspects
of mirror symmetry for Landau-Ginzburg orbifolds for invertible polynomials in
three variables. M. Kalck discussed relative singularity categories that measure
the “difference” between a non-commutative resolutation and the smooth part of
a Gorenstein singularity. In this context, also O. Iyama’s short contribution on
higher-dimensional Geigle-Lenzing spaces should be mentioned. Walker demon-
strated in his talk how ideas in singularity theory, in particular results by Buch-
weitz and van Straten on the Milnor fibre, can be usefully applied to arithmetic
questions.

Triangulated categories have featured prominently in the contributions of T. Dy-
ckerhoff and M. Kapranov. Using intrinsic combinatorial structure in triangulated



Matrix Factorizations in Algebra, Geometry, and Physics 2503

categories, they have used standard constructions from topological field theory
to associate a dg-enrichted triangulated category to triangulated surfaces with
marked points which is a combinatorial version of a Fukaya category. Kapranov in
particular explained the role of a particular 2-Segal cyclic object. F. Haiden intro-
duced a notion of a dynamical entropy for endofunctors on triangulated categories.
A. Polishchuck has used matrix factorizations to provide an algebraic construction,
analogous to an analytic construction of Fan-Jarvis-Ruan, of cohomology classes
on the moduli space of stable pointed curves.

In this talk, the bicategorical structure (with dualities) on matrix factoriza-
tions was important. Based on general ideas in two-dimensional field theories,
this structure was introduced in N. Carqueville’s contribution. In fact, structures
inspired by low-dimensional quantum field theories played an important role also
in other talks with various directions of mathematical impact, in particular in the
contributions of Dyckerhoff-Kapranov and of Pantev. Murfet showed how to use
the structure of a cut system to implement linear logic. Hanno Becker discussed
the relation of two categorified knot invariants: Khovanov-Rozansky homology
that is defined via matrix factorizations and Mazorchuk-Stroppel-Sussan homol-
ogy based on the Bernstein-Gelfand-Gelfand category O. O. Schnürer presented
a construction of motivic measure from matrix factorizations.

The interrelation of questions arising in string theory and in mathematics was
reflected in the contribution of E. Sharpe and U. Isik who discussed aspects of
Kuznetsov’s homological projective duality from the point of view of string theory
and projective geometry. GIT-quotients and their variations were discussed using
gauge-theoretic methods by J. Knapp; I. Shipman has constructed autoequiva-
lences for them.

Numerous discussions among the participants, in particular among participants
belonging to different mathematical communities, have contributed to the work-
shop in an essential way. Thus the workshop provided an ideal atmosphere for
fruitful interaction and exchange of ideas. It is a pleasure to thank the adminis-
tration and the staff of the Oberwolfach Institute for their efficient support and
hospitality.
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Abstracts

Khovanov-Rozansky homology via stable Hochschild homology of
Soergel bimodules

Hanno Becker

Since the discovery of Khovanov homology [4] the study of categorified link in-
variants has become a very active field of research that has been approached by
an amazing variety of different perspectives and techniques. Given an n-variable
polynomial link invariant P like the Reshetikhin-Turaev invariant Pg,V associated
with a complex simple Lie algebra g and a finite-dimensional simple representation
V of its quantum group Uq(g), see [10], a categorification of P is an (n+1)-variable
polynomial link invariant from which P is obtained by taking Euler characteristic,
i.e. by specializing the new variable to −1. In this sense, Khovanov homology is a
categorification of the Jones polynomial, and by now categorifications have been
found for all Pg,V as well as for the HOMFLYPT polynomial defined in [3] (sub-
suming all Psl(k),nat). Still, there are quite a few open questions, some concerning
the existence of categorifications (e.g. is there a categorification of the Kauffman
polynomial?), some concerning the enhancement of categorified link invariants by
additional structure like differentials or algebra actions, and finally those concern-
ing the uniqueness of categorifications of a given link invariant. This last question
of uniqueness is already very interesting in the case of Psl(k),nat for which many
categorifications are known, coming from representation theory, algebraic geome-
try, algebraic topology and commutative algebra. The author’s talk was concerned
with the comparison of two particular such: on the one hand, Mazorchuk-Stroppel-
Sussan’s categorifications [13, 8, 14] based on Bernstein-Gelfand-Gelfand category
O, and on the other hand, Khovanov-Rozansky’s categorification KRk [5] con-
structed using matrix factorizations.

The construction of Khovanov-Rozansky homology KRk goes as follows: Given
an oriented link L, one chooses firstly a triple-point free projection of L onto the
plane. Secondly, one cuts the projection into pieces each of which looks like an
unknotted single strand or one of the two crossings or , and assigns a variable
to any point where a cut was made. Thirdly, to each of the pieces just obtained one
associates a certain fixed complex of Z-graded matrix factorizations, the ground
ring being the polynomial ring over Q over the variables attached to the open ends
of the piece. Finally, one takes the tensor product of all these complexes to obtain
a complex of matrix factorizations of potential 0. Taking total cohomology in
each of its matrix factorization components, one gets a complex of graded vector
spaces; KRk(L) ∈ Z[a±1, q±1] is then defined as the graded Poincaré series of the
cohomology of this complex.

Given any ring S and a central element w ∈ Z(S), the homotopy category
MF(S,w) of matrix factorizations of type (S,w) arises as the derived category
Dctr LF(S,w) of a suitable model structure on the abelian category LF(S,w) of all
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linear factorizations of type (S,w), i.e. diagrams M0 δ
→ M1 δ

→ M0 of not neces-
sarily free S-modules M0,M1 satisfying δ2 = w · id. This category Dctr LF(S,w)
is called the contraderived category of linear factorizations; it was introduced by
Positselski in [9] and further studied in [1]. The important point is that even
though δ2 6= 0 there exists a reasonable notion of weak equivalence of linear fac-
torizations which upon localization turns LF(S,w) into HMF(S,w). The canonical
functor S/(w) -Mod → LF(S,w) → Dctr(S,w) ∼= HMF(S,w) is called the stabi-
lization functor and denoted (−){w}; if S is regular local and w ∈ mS \ {0}, it
coincides with the classical stabilization functor from commutative algebra. Fur-
ther, there is a derived tensor product on the Dctr LF(S,−) giving rise to the
following definition of “stable” Hochschild homology:

Definition. Let K be a field and A be a commutative K-algebra with enveloping
algebra Aen = A ⊗K A. Further, let w ∈ A and M be an A-bimodule such that
w.m = m.w for all m ∈ M . Then the stabilization M{wen} of M with respect to
wen := w ⊗ 1− 1⊗ w ∈ Aen is defined, and we call

sHH∗
w(M) := H∗[∆{−wen} L

⊗Aen M{wen}]

the w-stable Hochschild homology of M .

Khovanov-Rozansky homology now admits the following description:

Theorem. Let β be a braid with labels xi resp. yi on the upper resp. lower
ends of its strands. Then the complex of matrix factorizations KRk(β) is termwise

contraderived equivalent to the stabilization, with respect to
∑
xk+1
i − yk+1

i , of
the Rouquier complex of Soergel bimodules RC(β) associated to β, [11, 12].

In particular, one recovers the following Theorem of Webster [15]:

Corollary. Given an oriented link L presented as the closure of an n-strand braid
word β with writhe w(β), its Khovanov-Rozansky homology KRk(L) equals

(a−1qk+1)w(β)
∑

i,j∈Z

dimQ Hi [sHH∗
k RC(β)j ] a

iqj ∈ Z[a±1, q±1],(1)

where sHHk denotes stable Hochschild homology with respect to
∑
xk+1
i − yk+1

i .

This theorem is analogous to the description [7] of triply graded Khovanov-
Rozansky homology [6] (categorifying the HOMFLYPT-polynomial) as ordinary
Hochschild homology of Rouquier complexes of Soergel bimodules.

It turns out that the expression (1) defines an invariant of oriented links for
any base field K with char K ∤ k + 1, and that its invariance under the Markov
moves can be checked rather quickly working in the contraderived category. More
generally, we have the following:

Theorem. Let R be a Noetherian Z[ 1
k+1 ]-algebra. Then, for an n-strand braid

word β with writhe w(β), the complex

Σ−w(β)ρn [sHH
∗
k RCR(β)] 〈(k + 1)w(β)〉
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has finitely generated cohomology over R. Moreover, its isomorphism class in
D(R[x1, x2, ...] -Mod) is invariant under the Markov moves, hence an invariant
of oriented links. Here, ρn denotes the functor induced by the homomorphism
R[x1, x2, ...]→ R[x1, x2, ..., xn], given by xi 7→ xi for i ≤ n and xi 7→ xn for i ≥ n,
and RCR denotes the Rouquier complex defined over R.

If k+1 = 0 in R, it turns out that (1) still defines an invariant of oriented links
after a suitable renormalization, and that it agrees with Khovanov-Rozansky’s
triply graded categorification of the HOMFLYPT-polynomial after some special-
ization; this is because the canonical spectral sequence from ordinary to k-stable
Hochschild homology degenerates on the E1-page in this case.

The above results can be considered a first step in a comparison of Khovanov-
Rozansky homology with the categorifications defined by Mazorchuk, Stroppel and
Sussan. The latter is based on shuffling functors restricted to certain parabolic
versions of Bernstein-Gelfand-Gelfand category O, and it is known that these
shuffling functors can be described in terms of Rouquier complexes of Soergel
bimodules before restriction to parabolic category O. It therefore remains to be
studied whether and in what sense restriction of shuffling functors to parabolic
subcategories of O is equivalent to stabilization of the corresponding Rouquier
complexes.

The results described in this abstract will appear in [2].

References

[1] H. Becker, Models for singularity categories, Preprint, arXiv:1205.4473.
[2] H. Becker, Khovanov-Rozansky homology via stable Hochschild homology of Soergel bimod-

ules, in preparation.
[3] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu, A new polynomial

invariant of knots and links, Bulletin of the American Mathematical Society 12 (1985), 239–
246.

[4] M. Khovanov, A categorification of the Jones polynomial, Duke Mathematical Journal 101
(2000), 359–426.

[5] M. Khovanov, L. Rozansky, Matrix factorizations and link homology, Fundamenta Mathe-
maticae 199 (2008), 1–91.

[6] M. Khovanov, L. Rozansky, Matrix factorizations and link homology. II, Geometry & Topol-
ogy 12 (2008), 1387–1425.

[7] M. Khovanov, Triply-graded link homology and Hochschild homology of Soergel bimodules,
International Journal of Mathematics 18 (2007), 869–885.

[8] W. Mazorchuk, C. Stroppel, A combinatorial approach to functorial quantum slk knot in-
variants, American Journal of Mathematics 131 (2009), 1679–1713.

[9] L. Positselski, Two kinds of derived categories, Koszul duality, and comodule-contramodule
correspondence, Memoirs of the American Mathematical Society 212 (2011).

[10] N. Reshetikhin, V. Turaev, Ribbon graphs and their invariants derived from quantum groups,
Communications in Mathematical Physics 127 (1990), 1–26.

[11] R. Rouquier, Categorification of sl2 and braid groups, Trends in representation theory of
algebras and related topics, Contemp. Math. 406 (2006), 137–167.

[12] W. Soergel, Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen,
Journal of the Institute of Mathematics of Jussieu 6 (2007), 501–525.



2510 Oberwolfach Report 44/2013

[13] C. Stroppel, Categorification of the Temperley-Lieb category, tangles, and cobordisms via
projective functors, Duke Mathematical Journal 126 (2005), 547–596.

[14] J. Sussan, Category O and sl(k) link invariants, PhD Thesis at Yale University (2007).
[15] B. Webster, Khovanov-Rozansky homology via a canopolis formalism, Algebraic & Geomet-

ric Topology 7 (2007), 673–699.

Equivariant completion

Nils Carqueville

(joint work with Ingo Runkel)

Recall the basic setting of a bicategory B, which one may think of as a ‘monoidal
category with labels.’ We denote objects of B by a, b, . . ., generic 1-morphisms by
X,Y, . . ., units by Ia, and 2-morphisms by φ, ψ, . . .. Composition of 1-morphisms
is written as ⊗, and we have two (Poincaré dual) graphical depictions at our
disposal:

a φ ⇑ b c

Y

X

A
Z

Ic

=̂

X

b a a

Y

φ

Z

c

A

A

For our purposes the latter is more convenient, where every such string diagram
is read from bottom to top and from right to left.

We assume that in our bicategory B for each X ∈ B(a, b) there is X† ∈ B(b, a)
together with 2-morphisms : X⊗X† → Ib and : Ia → X†⊗X exhibiting X†

as the right adjoint of X . Furthermore we ask that B be pivotal in the sense that
there are natural monoidal 2-isomorphisms between the units and the double-
adjoint (−)††. It follows that every 1-morphism also has a left adjoint, and we can
define the left and right quantum dimensions as

diml(X) =
X

∈ End(Ia) , dimr(X) =
X

∈ End(Ib) .

Our main example is the bicategory of Landau-Ginzburg models LGk, with po-
tentialsW ∈ k[x] as objects and 1- and 2-morphisms given by matrix factorisation
categories LG(W,V ) = hmf(V −W ). We mostly adopt the notation of [4] where it
was shown that LGk is ‘graded’ pivotal and that for a matrix factorisation (X, dX)
of V (z1, . . . , zm)−W (x1, . . . , xn) we have

dimr(X) = (−1)(
m+1

2 ) Res

[
str(∂x1

dX . . . ∂xn
dX ∂z1dX . . . ∂zmdX) dx

∂x1
W, . . . , ∂xn

W

]
.

Returning to the general setting, recall that A ∈ B(a, a) is an algebra if it

comes with maps : A⊗A→ A and : Ia → A which are associative and unital.
Similarly A is a coalgebra if there are appropriate maps and . A 1-morphism
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which is both an algebra and a coalgebra is Frobenius if = = , separable if

= , and symmetric if = . A is symmetric iff its Nakayama automorphism

γA = : A −→ A equals 1A .

Note that it is no accident that the defining relations for a separable Frobenius
algebra are reminiscent of the moves ↔ and ↔ which allow to pass

between any two given triangulations of a surface, see [5, Sect. 3.3].
A right A-module is a 1-morphism X ∈ B(a, b) together with a map X ⊗ A→

X that is compatible with the multiplication and unit of A. There are also no
surprises as to how left modules, bimodules, and (bi)module maps are defined.

Our first use of algebras is the following characterisation of equivariant matrix
factorisations (for which there is a version for each element of H2(G,U(1)), cf. [2]):

Proposition 1 ([5, 1]). Let W ∈ LGk and G ⊂ {g ∈ Aut(k[x]) | g(W ) =W} be a
finite group acting diagonally on the variables xi. Then (i) AG :=

⊕
g∈G gI natu-

rally has the structure of a separable Frobenius algebra, (ii) γAG
=
∑

g∈G det(g)−1 ·

1
gI , and (iii) hmf(W )G ∼= mod(AG).

Inspired by orbifolds of two-dimensional quantum field theories with defects and
building on the foundational work summarised in [7] the following construction
generalises the equivariantisation procedure:

Definition 2 ([5]). The equivariant completion of a pivotal, idempotent complete
bicategory B is the bicategory Beq whose objects are pairs (a,A) with a ∈ B and
A ∈ B(a, a) separable Frobenius; 1-morphisms (a,A)→ (b, B) are B-A-bimodules
X ∈ B(a, b) and 2-morphisms are bimodule maps; horizontal composition is the
tensor product over the intermediate algebra, and for the units we have I(a,A) = A.

The justification of the name ‘completion’ lies in the fact that B embeds into
Beq via a 7→ (a, Ia) and that there is an equivalence (Beq)eq ∼= Beq. Furthermore,
everyX ∈ Beq((a,A), (b, B)) has left and right adjoints (X†)γ−1

B
and γA

(X†), which

differ from X† only by their bimodule structure which is twisted by precomposing
with the (inverse of the) Nakayama automorphism. As a corollary one finds that
the category of A-modules has a Serre functor given by γA

(−).
Every symmetry group G as in Proposition 1 leads to an AG and thus to an

object in (LGk)eq. We wish to construct separable Frobenius algebras that are
not of the form AG. For this the following variant of the monadicity theorem is
central.

Theorem 3 ([5]). Let B be pivotal and X ∈ B(a, b) have invertible right quantum
dimension. Then A := X† ⊗ X ∈ B(a, a) is a separable symmetric Frobenius
algebra, and X ⊗A X

† ∼= Ib in B.
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In this situation it follows immediately that (a,A) ∼= (b, Ib) in Beq, which we
call a (generalised) orbifold equivalence. Furthermore, if B has a trivial object 0
(such as the monoidal unit W = 0 of B = LGk), then we have

B(0, b) ≡ Beq
(
(0, I0), (b, Ib)

)
∼= Beq

(
(0, I0), (a,A)

)
= mod(A) .

Using our explicit residue expression for the quantum dimension in LGk it is easy
to check the invertibility condition of Theorem 3 in practice. In particular, with
sufficient stamina one can construct three matrix factorisations X in hmf(W (E6)−
u12), hmf(W (E7) − u18) and hmf(W (E8) − u30) where

W (E6) = x3 + y4 + z2 , W (E7) = x3 + xy3 + z2 , W (E8) = x3 + y5 + z2

and most importantly dimr(X) ∈ C∗. Hence the simple singularities E6, E7, E8 are
orbifolds of A11, A17, A29, respectively, complementing the more classical result of
[9, 8, 5] that there is a Z2-orbifold between Dd+1 and A2d−1. Computing X† ⊗X
explicitly with the method of [3] and invoking Theorem 3 one arrives at:

Theorem 4 ([6]). For d ∈ Z>2 let ηd = e2πi/d, D = {0, 1, . . . , d− 1}, S ⊂ D, and

define P
(d)
S to be the matrix factorisation of ud − vd with twisted differential

(
0

∏
j∈S(u − η

j
dv)∏

j∈D\S(u− η
j
dv) 0

)
.

Then we have

hmf
(
W (E6)

)
∼= mod

(
Iu12 ⊕ P

(12)
{−3,−2,...,3}

)
,

hmf
(
W (E7)

)
∼= mod

(
Iu18 ⊕ P

(18)
{−4,−3,...,4} ⊕ P

(18)
{−8,−7,...,8}

)
,

hmf
(
W (E8)

)
∼= mod

(
Iu30 ⊕ P

(30)
{−5,−4,...,5} ⊕ P

(30)
{−9,−8,...,9} ⊕ P

(30)
{−14,−13,...,14}

)

where the separable Frobenius algebras on the right are not of the form AG.
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Triangulated surfaces in triangulated categories

Tobias Dyckerhoff

(joint work with Mikhail Kapranov)

0.1. State sums in algebras. Let k be a field, and let A be an associative finite
dimensional k-algebra with chosen basis E = {e1, e2, . . . , er}. The multiplication
law of A is numerically encoded in the structure constants λkij ∈ k defined via

eiej =
∑

k λ
k
ijek. Associativity is then expressed by the equations

(1)
∑

t
λtijλ

l
tk = λlijk =

∑
t
λlitλ

t
jk

where the generalized structure constants {λlijk} are given by eiejek =
∑

l λ
l
ijkel.

We can think of the numbers {λkij} and {λlijk} as numerical invariants attached
to triangles and squares, respectively, where the set of vertices is ordered and the
edges are labeled by E as illustrated in

i j

k
0

1

2

7→ λkij , i

j

k

l
0

1 2

3

7→ λlijk .

Equation (1) is then geometrically reflected by the fact that {λlijk} can be com-

puted in terms of {λkij} via two different formulas corresponding to the two possible
triangulations of the square. Similarly, this observation extends to yield numerical
invariants of planar convex polygons with ordered vertices and E-labeled edges
which can be computed in terms of {λkij} via any chosen triangulation.

Assume now that A carries a Frobenius structure, i.e., a non-degenerate trace
map tr : A → k such that, for every a, b ∈ A, we have tr(ab) = tr(ba). Then
we can introduce a dual basis E∗ = {e∗1, e

∗
2, . . . , e

∗
r} of A such that tr(eie

∗
j ) equals

1 if i = j and 0 otherwise. This allows us to enlarge the range of definition of
the above system of invariants to include planar polygons with oriented E-labeled
edges such as

i

j

k

l

m

� 7→ tr(eme
∗
i eje

∗
kel)

where, due to the cyclic invariance of the trace expression, no linear ordering of
the vertices is needed as long as we remember the orientation of the polygon.
Again, these invariants can be computed by choosing any triangulation involving
the vertices of the polygon. This suggests that, given an oriented closed surface
S with a finite set of marked points M , we can define a generalized structure
constant λ(S,M) which is a numerical invariant of the marked surface and can be
computed by choosing any triangulation of S involving the vertices M . These
invariants exist and originate in physics where they are called partition functions
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which we have computed via state sums. The collection of all partition functions
associated to a given Frobenius algebra form a so-called topological field theory
[5, 6].

0.2. State sums in triangulated categories. The central observation of [2] is
that certain symmetries in 2-periodic triangulated categories can be exploited to
define invariants of oriented surfaces via a state sum formalism similar to §1. We
start with an informal discussion. Let T be a triangulated category with set of
objects E = {A,B, . . . , A′, B′, . . . }. We associate to an E-labeled triangle the
collection

A A′

B
0

1

2

7→
{ A A′

B

}

+1

of all distinguished triangles in T involving the objects determined by the edge
labels. To a triangulated square with E-labeled edges, we attach the following
collections of diagrams

A

A′

A′′

C
0

1 2

3

7→
{

A

A′

A′′

C

B
∗

∗

}

,

+1 +1

+1
A

A′

A′′

C
0

1 2

3

7→
{

A

A′

A′′

C

B′

∗

∗

}

+1 +1

+1

where the ∗-marked triangles are distinguished, the unmarked triangles commute,
and the objects B and B′ are allowed to vary. The two types of diagrams corre-
spond to the upper and lower cap of an octahedron. On a heuristic level, the role
of the associativity in Equation (1) will now be played by the octahedral axiom
which allows us to pass from one triangulation of the square to the other. More
generally, to an E-labeled polygon with a chosen triangulation we associate the
collection of certain Postnikov systems [4] such as

A′′

A′′′

D

A

A′

0

1

2

3

4

7→
{

A

A′

B

A′′

C

A′′′

D
∗ ∗ ∗

}

.+1 +1 +1

+1 +1

The analog of the Frobenius structure in §1 turns out to be a 2-periodic structure
on T , i.e., an isomorphism of functors Σ2 ≃ id. This structure allows us to rewrite
any distinguished triangle as

A A′

B

+1

∼
A A′

ΣB

+1

+1+1
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where the right-hand form exhibits a cyclic symmetry similar to the symmetry of
the trace expression tr(eieje

∗
k) from §1.

These heuristics suggest the existence of invariants of marked oriented surfaces
associated with any 2-periodic triangulated category T . Further, state sum for-
mulas should lead to a description of these invariants in terms of surface Postnikov
systems: collections of distinguished triangles in T parametrized by a chosen tri-
angulation of the surface. The following results of [2] give a precise account of the
above informal discussion and show the existence of the expected invariants.

Theorem 1. Let T be a triangulated category equipped with a differential Z/2Z-
graded enhancement A. Denote by S(A) the simplicial space given by Wald-
hausen’s S-construction. Then

(1) S(A) is a 2-Segal space in the sense of [3],
(2) S(A) admits a canonical cyclic structure in the sense of Connes [1].

In other words, for each n-gon, we can define a classifying space of Postnikov
systems in T . Letting n vary, we obtain a simplicial space well-known in algebraic
topology: Waldhausen’s S-construction. The 2-Segal property then reflects the
fact that these classifying spaces do not depend on a chosen triangulation while
the cyclic structure formalizes the symmetries heuristically observed above. In the
proof, a key role is played by a certain cocyclic 2-Segal object in the Morita model
category of differential Z/2Z-graded categories given as

E : Λ −→ dgcat(2), 〈n〉 7→ MF(k[z], zn+1)

where the right-hand side denotes the dg category of Z/(n + 1)-graded matrix
factorizations of the polynomial zn+1 in one variable.

The following result of [2] shows that the expected surface invariants can indeed
be defined and computed in terms of a homotopy limit formula which should be
regarded as the analog of a state sum.

Theorem 2. Let C be a combinatorial model category and let X be a cyclic 2-
Segal object in C. Let (S,M) be a closed oriented surface with a non-empty finite
set of marked points M where, in the case when S is a sphere, |M | ≥ 3. Then
there exists an object X(S,M) in Ho(C) which, for every triangulation ∆(S,M) of
(S,M), comes equipped with canonical isomorphism

X(S,M)

∼=
−→ holim

Λn→∆(S,M)
Xn.

Further, the mapping class group of (S,M) acts on X(S,M) via automorphisms in
Ho(C).

As an application of our theory, we can use the cocyclic 2-Segal object E to as-
sociate to any marked oriented surface (S,M) a differential Z/2Z-graded category
which can be interpreted as a purely topological variant of the Fukaya category of
the surface. The state sum formula given by the homotopy limit in Theorem 2 can
then be regarded as implementing a 2-dimensional instance of Kontsevich’s pro-
gram on localizing the Fukaya category along a singular Lagrangian spine (given
in our context as the dual graph of the chosen triangulation).



2516 Oberwolfach Report 44/2013

References

[1] A. Connes, Noncommutative Geometry, Academic Press, San Diego, New York, London
(1994).

[2] T. Dyckerhoff, M. Kapranov, Triangulated surfaces in triangulated categories, Arxiv-
Preprint 1306.2545 (2013).

[3] T. Dyckerhoff, M. Kapranov, Higher Segal spaces, Arxiv-Preprint 1212.3563 (2012).
[4] S. I. Gelfand, Y. I. Manin. Methods of Homological Algebra, Springer-Verlag, Berlin (2003).

[5] C. I. Lazaroiu, On the structure of open closed topological field theory in two dimensions,
Nuclear Physics B 603, Issue 3 (2001), 497–530.

[6] G. W. Moore, Some comments on branes, G-flux and K-theory, Int.J.Mod.Phys. A16
(2001), 936–944.

Entropy of endofunctors

Fabian Haiden

(joint work with George Dimitrov, Ludmil Katzarkov, Maxim Kontsevich)

A fundamental notion in the theory of dynamical systems is entropy. The pre-
cise definition of this quantity depends on the types of spaces one is considering:
measure spaces, metric spaces, algebraic sets, . . . . In [5] we consider the context of
triangulated categories, possibly enhanced by a dg-/A∞-structure, thought of as
formal non-commutative spaces. Thus the entropy, which is in fact a function
ht(F ) : R → [−∞,+∞), is assigned to an exact endofunctor F . The definition is
naturally invariant under conjugation by autoequivalences.

The above set-up is quite general, and it is beneficial to give special attention to
the more well-behaved case when T is the homotopy category of a smooth and
proper dg-/A∞-category (and the exact functor is induced by a dg-/A∞-functor).
This includes categories of the form Db(X) where X is a smooth projective variety,
and MF (X, f) where X is smooth and quasi-projective and f is proper with
compact critical locus. We show that

(1) ht(F ) = lim
N→∞

1

N
log
∑

n∈Z

dimExtn(G,FNG)e−nt

where G is any generator of T . Another feature of the smooth and proper case is
a lower bound

(2) log ρ(HH∗(F )) ≤ h0(F )

which holds under a generic technical condition on HH∗(F ). Here we assume that
T is defined over C and ρ(HH∗(F )) denotes the spectral radius of the induced
map on Hochschild homology. The proof makes use of the Lefschetz fixed point
theorem for Hochschild homology [7].

The quantity h0(F ) is shown to be related to topological entropy [1] in the
following contexts. First, if X is a smooth projective variety over C, f : X → X
a regular map, and f∗ the pullback functor on Db(X), then

(3) ht(f
∗) = const. = log ρ(H∗(f ;Q))
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under the generic assumption that (2) can be applied. The RHS is known to
coincide with the topological entropy of f . Second, if X is a closed oriented
surface and f : X → X a pseudo-Anosov map with stretch factor λ > 1 (see [6]),
then f induces an autoequivalence f∗ of the Z/2-graded Fukaya category of X .
Using (1) we show

(4) h0(f
∗) = logλ

and logλ is the topological entropy of f by results of [6].
Recall that a Serre functor S (see [3]) on a triangulated category T is, if it

exists, unique up to natural isomorphism, and thus its entropy an invariant of
T . If X is a smooth projective variety and T = Db(X), then ht(S) = dim(X)t.
In general, ht(S) does not have to be of the form nt for some integer n though.
For example, if T = Db(kQ) where Q is a quiver of Dynkin type, then ht(S) =
(h−2)t/h where h is the Coxeter number of Q. In this example, the category T is
also a category of graded matrix factorizations over an ADE singularity. A natural
question is to find a geometric interpretation of ht(S) for more general categories
of graded matrix factorizations.

Another question concerns the algebraicity of exp(h0(F )), which holds in fact
in all examples we consider. Is this a general phenomenon, and if so, under what
conditions does it hold? Furthermore, one can study the set

(5) {h0(F )|F ∈ Aut(T )}

of entropies of all autoequivalences, c.f. [2] in the context of birational geometry.
In which cases is it discrete, and if it is, what is its smallest positive element?

As a final remark, let us discuss a possible connection with Bridgeland’s theory
of stability conditions on triangulated categories [4]. Fixing such a stability con-
dition σ on T , every object E ∈ T has a mass m(E) =

∑
|Z(Gi)|, where Gi are

the semistable components of E. For an endofunctor F consider

(6) hσ = sup
06=E∈T

{
lim sup
n→∞

1

n
logm(Fn(E))

}

which measures the exponential increase in mass under the action of F . One
verifies that hσ is invariant under deformations of σ and that

(7) hσ(F ) ≤ h0(F )

holds. In many cases, the above inequality is actually an equality, but identifying
natural conditions under which this should be true is still an open problem.
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Homological Projective Duality for GIT quotients

M. Umut Isik

(joint work with Matthew Ballard, Dragos Deliu, David Favero, Ludmil
Katzarkov)

Homological Projective Duality (HPD), introduced by Kuznetsov [Kuz07], is a
homological phenomenon involving semi-orthogonal decompositions of the derived
category Db(X) of a smooth scheme X together with a morphism X → P(V )
and the derived category of a homological projective dual Y → P(V ∗). The basic

assumption is that Db(X) has a special kind of semi-orthogonal decomposition,
called a Lefschetz decomposition, of the form:

Db(X) = 〈A0,A1(1), . . . ,Ai(i)〉,

where A0 ⊃ A1 ⊃ . . . ⊃ Ai is a filtered sequence of subcategories and Ak(k)
denotes the tensor product of Ak by the pullback of OP(V )(k) to X . The main
virtue of a Lefschetz decomposition is that it behaves well with respect to taking
hyperplane sections of X . That is, for every hyperplane H ⊂ P(V ), there is a
semi-orthogonal decomposition

Db(X ×P(V ) H) = 〈CH ,A1(1), . . . ,Ai(i)〉.

The same holds for the family X ⊂ X ×P(V ) P(V ∗) of all hyperplane sections of
X . So, there is a semi-orthogonal decomposition

(1) Db(X ) = 〈C,A1(1)⊠Db(P(V ∗)), . . . ,Ai(i)⊠Db(P(V ∗))〉.

If Y → P(V ∗) is such that the subcategory C is the image of Db(Y ) under a

P(V ∗)-linear Fourier-Mukai functor Db(Y )→ Db(X ), then Y is called a homolog-
ical projective dual (HPD) to X . Note that this relationship also depends on the
morphisms and the Lefschetz decomposition.

HPD for 2-Veronese embeddings have been studied in [Kuz05].
Once such a relationship is established between two possibly non-commutative

varieties then not only do we have that Y is smooth and has a dual Lefschetz de-
composition which makes X HPD to Y but also we have semi-orthogonal decom-
position relationships between the derived categories of any generic linear sections
of X and the corresponding dual linear sections of Y . We call this Kuznetsov’s
Fundamental Theorem of HPD. This enables one to prove the existence of many
interesting semi-orthogonal decompositions in algebraic geometry, including some
previously mysterious ones arising in physics.
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The first observation of the work [BDFIK13] is that, whenX = P(W ) considered
with the d-Veronese embedding X → P(SdW ) with d ≤ dimW and the Lefschetz
decomposition is the one obtained natually from the Beilinson decomposition of
Db(P(W )), the decomposition (1) would be the relative version of a well-known
theorem of Orlov [Orl09], which would give a semi-orthogonal decomposition

Db(X ) = 〈MFC×

(W × P(SdW ∗), w),A1(1)⊠Db(P(SdW ∗)), . . .

. . . ,Ai(i)⊠Db(P(SdW ∗))〉

We prove this by using the Calabi-Yau-Landau-Ginzburg (CY-LG) correspondence
from [Isi12, Shi12] and the recent developments in considering the behaviour of
derived categories under variations of GIT quotients [BFK12, H-L12]. We also
prove the decompositions of the Fundamental Theorem of HPD in this case. So, in
this sense, the C×-equivariant Landau-Ginzburg pair (W×P(SdW ∗), w), where the
C× action is by dilation along the fibers and w is the universal degree-d polynomial,
is HPD to the Veronese embedding.

The previous observation is not a coincidence. It stems directly from the fact
that the Beilinson decomposition itself is obtained from considering a variation of
GIT quotients and the variation of GIT quotients of the space obtained from the
CY-LG correspondence used when proving the relative Orlov theorem is induced
by the variation used to obtain the Beilinson decomposition in the first place.
This leads to the following: starting with a variety X given as a quotient X =
[Qss(M)/G], where Q is a smooth variety with an action of G and M is a G-
equivariant invertible sheaf, and an elementary wall-crossing, i.e. a simple kind
of variation of the GIT quotient X//MG, we can consider X with the morphism
to projective space induced by the bundleM. Then, under mild assumptions on
the elementary wall crossing, we prove that X has a Lefschetz decomposition. We
then construct a Landau-Ginzburg pair (Y,w) which is a homological projective
dual to X with respect to this Lefschetz decomposition.

Going back to the d-Veronese case, we consider a ’local generator’ of the ma-
trix factorization category of the pair (W × P(SdW ∗), w). Calculating its graded
sheaf-endomorphism algebra over P(SdW ∗) and using homological perturbation
techniques, we obtain a sheaf A of A∞-algebras over P(SdW ∗). When d > 2, we
have

A = Sym(uOP(SdW∗)(1), u
−1OP(SdW∗)(−1))⊗ Λ•W ∗,

where

µd(1⊗ vi1 , . . . , 1⊗ vid) =
u

d!

∂dw

∂xi1 . . . ∂xid

and µi = 0 for 2 < i < d. All the higher products are determined by this dth
product. This gives a different description of the HPD. When d = 2, we recover
the HPD obtained in [Kuz05].
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Relative singularity categories

Martin Kalck

(joint work with Osamu Iyama, Michael Wemyss and Dong Yang)

1. Relative singularity categories (with D. Yang)

Setup. Let k be an algebraically closed field and let (R,m) be a commutative
complete local Gorenstein k-algebra with an isolated singularity in m and residue
field R/m ∼= k. We assume that R admits a noncommutative resolution (NCR)
A = EndR(R⊕M), i.e. A has finite global dimension and M is a maximal Cohen–
Macaulay R-module (MCM). We remark that Van den Bergh’s noncommutative
crepant resolutions (NCCR) are examples of NCRs in many cases.

We consider the following well-known inclusions of triangulated categories

Db(R) ←֓ Perf(R)
−⊗R(R⊕M)
−−−−−−−−→ Db(A)(1)

The triangulated quotient category Dsg(R) := D
b(R)/Perf(R) associated with the

left inclusion is the singularity category of Buchweitz and Orlov. It may be viewed
as a measure for the complexity of the singularities of Spec(R). For hypersurface
singularities R = S/(f) the singularity category of R is equivalent to the homotopy
category of matrix factorizations of f by work of Buchweitz and Eisenbud.

Motivated by this construction, we study the relative singularity category

∆R(A) := D
b(A)/Perf(R)
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associated with the right inclusion in (1) in joint work with Igor Burban [2]. It
may be seen as a measure for the size of the categorical resolution Db(A).

The following theorem provides relations between the notions of singularity
categories and relative singularity categories, see [5, Theorem 5.19.].

Theorem. Let R and R′ be complete Gorenstein k-algebras with only finitely
many isomorphism classes of indecomposable MCMs. Let A = Aus(MCM(R)) and
A′ = Aus(MCM(R′)) be the corresponding Auslander algebras - they are known to
be NCRs by work of Auslander. Then the following statements are equivalent.

(i) There is an equivalence Dsg(R) ∼= Dsg(R
′) of triangulated categories.

(ii) There is an equivalence ∆R(A) ∼= ∆R′(A′) of triangulated categories.

The implication (ii) ⇒ (i) holds more generally for NCRs A and A′ of arbitrary
isolated Gorenstein singularities R and R′, respectively (see also [6]).

Remark. (a) Knörrer’s periodicity yields a wealth of non-trivial examples for (i).
(b) The implication (i) ⇒ (ii) follows from an equivalence ∆R(Aus(MCM(R))) ∼=
per(B(R)), where the dg algebra B(R) is determined by the Auslander–Reiten
quiver of Dsg(R). B(R) was also determined for NCCRs of certain Gorenstein
quotient singularities R by Thanhoffer de Völcsey & Van den Bergh [6], in order
to express singularity categories as generalized cluster categories (see also [1]).

2. Rational surface singularities
(with O. Iyama, M. Wemyss & D. Yang)

This part of my talk was inspired by some of the techniques developed in the
context of relative singularity categories.

Setup. Let R be a complete local rational surface singularity over C
(i.e. H1(X,OX) = 0 for a resolution of singularities X → Spec(R)) and let E

be the exceptional fibre of the minimal resolution Y
π
−→ Spec(R). It is well-known

that E =
⋃
Ei is a tree of rational (−n)-curves with n ≤ 2.

Definition. A special Cohen–Macaulay (SCM) R-moduleM is a reflexive module
satisfying Ext1R(M,R) = 0. (Note that R Gorenstein ⇒ SCM(R) = MCM(R)).

The following results indicate that SCMs over arbitrary rational surface singu-
larities play a role analogous to MCMs over rational double points:

(a) There is a natural bijection between the irreducible exceptional curves Ei

and the indecomposable non-free SCMs, restricting to the classical McKay
correspondence in the case of rational double points (see Wunram [7],...).

(b) The natural exact structure on SCM(R) ⊆ MCM(R) is Frobenius with
indecomposable projective-injective objects R and all Mi corresponding
to exceptional (−n)-curves Ei with n < 2, see Iyama & Wemyss [4].

(c) In particular, the stable category SCM(R) := SCM(R)/proj SCM(R) is

triangulated by work of Happel. Iyama & Wemyss [4] observed that the
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Auslander–Reiten quiver of SCM(R) is a finite union of doubles of ADE-
Dynkin quivers and that in many cases there are additive equivalences

SCM(R) ∼= MCM(R′),(2)

where R′ is a rational Gorenstein surface singularity.

The following result may be seen as an explanation for the observations in (c). In
particular, we show that there is always a triangle equivalence (2).

Theorem. Let R be a rational surface singularity with minimal resolution Y . Let
X be obtained from Y by contracting the exceptional (−2)-curves. It is well-known
that Sing(X) consists of isolated singularities, which are rational double points.

Then there are equivalences of triangulated categories

SCM(R) ∼= Dsg(X) ∼=
⊕

x∈Sing(X)

MCM
(
Ôx

)
.

In particular, SCM(R) is 1-CY and there is a natural isomorphism [2] ∼= id.

Remark. (a) The second equivalence follows from work of Orlov, see also [2]. The
first equivalence combines an algebraic result (a Morita-type Theorem for Frobenius
categories admitting a noncommutative resolution, which was inspired by our tech-
niques for relative singularity categories) with a geometric statement (X admits a
tilting bundle).
(b) Our result shows that the Auslander–Reiten quiver of SCM(R) is the double
quiver of the dual intersection graph of the exceptional fibre of the contraction
Y → X. This may be viewed as a generalization of Auslander’s algebraic McKay
correspondence to all rational surface singularities.
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Cyclic 2-Segal spaces and matrix factorizations

Mikhail Kapranov

(joint work with Tobias Dycherhoff)

The construction of Connes’ cyclic category Λ given by Drinfeld uses the concept of
a Z+-category, a setting in which one can speak about matrix factorizations. The
2-Segal property, expressing independence of data on a triangulation of a polygon,
can also be traced to the properties of cyclic orders. In the talk, I explain how
using this approach leads to a construction of a particular 2-Segal cyclic object ǫ in
the category of dg-categories. This leads to a construction of a dg-category ǫS,M

for every marked surface (S,M), which is a combinatorial version of the Fukaya
category of S −M .

Exotic Calabi-Yaus from non-abelian gauge theories

Johanna Knapp

(joint work with Kentaro Hori)

We construct new compact Calabi-Yau (CY) threefolds with one Kähler parameter
by making use of a supersymmetric non-abelian gauge theory - the linear sigma
model (LSM). Using physics methods we analyze different regions of the Kähler
moduli space. This leads to equivalences between Pfaffian or determinantal CY
varieties and hybrid models which are Landau-Ginzburg fibrations over Fano man-
ifolds. We conjecture that their corresponding D-brane categories are equivalent.
A surprising result is that two CY threefolds which do not have the same Hodge
numbers have the same Kähler moduli space. This is a summary of [1].

1. The non-abelian LSM

We consider an LSM [2] with gauge group G = U(1)×H , where we will focus
on H = SU(2) or H = O(2). The matter content consists of M chiral fields pi

(i = 1, . . . ,M) with U(1)-charge qpi which do not transform under H , and N
chiral fields xaj (j = 1, . . . , N , a = 1, 2) with U(1)-charges qxi

which transform
in the fundamental representation of H . Furthermore there are twisted chirals
{σU(1), σH}. Interactions are encoded in the classical potential

V =
1

2e2
Tr[σH , σ

†
H ]2 +

e2

2
|D|2 +

1

2

N∑

j=1

x†j{σ
†
H , σH}xj + |F |

2

+

M∑

i=1

q2pi |σU(1)|
2|pi|2 +

N∑

i=j

q2xj
|σU(1)|

2||xj ||
2,(1)

where e is the gauge coupling, ()† denotes hermitean conjugation, ||()|| implies
summation over the group indices, and D and F depend on p, x. The classical
vacuum of the theory is determined by V = 0. We distinguish two kinds of
solutions: on the Higgs branch σ = 0, D = 0, F = 0, whereas on the Coulomb
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branch x = 0, p = 0 and σH has to take values in the maximal torus of H . The
D-term equation D = 0 associated to the U(1)-factor is

(2)

M∑

i=1

qpi |pi|2 +

N∑

j=1

qxj
||xj ||

2 = rU(1),

where r ∈ R is the Fayet-Illiopoulos (FI) parameter of the supersymmetric gauge
theory, which can be combined with a further 2π-periodic parameter – the theta
angle – to t = r + iθ. This will be identified with the Kähler modulus of the CY.
In the cases of interest we can always choose qpi < 0 and qxi

≥ 0. Depending on
the sign of the FI-parameter all the x- or p-fields will not be allowed to vanish
simultaneously in order for (2) to be satisfied. There D-terms associated to H are

(3) SU(2) : xx† −
1

2
||x||212 = 0 O(2) : xx† − (xx†)T = 0.

For the vacuum space to be compact, there must be a non-zero superpotential in
the LSM. In our case, this has the following structure

(4) SU(2) : W =
∑

ij

Aij(p)[xixj ] O(2) : W =
∑

ij

Sij(p)(xixj).

Here [xixj ] and (xixj) are bilinear invariants of SU(2) andO(2), respectively. A(p)
and S(p) are (skew-)symmetric N × N matrices whose entries are homogeneous
polynomials in the p-fields. Their degrees are determined by the condition that
W is invariant under G. The F-term equations F = 0 are

(5)
∂W

∂pi
= 0

∂W

∂xai
= 0.

In order for the classical vacuum to be CY, the following condition has to be
satisfied

(6)

M∑

i=1

qpi + 2

N∑

j=1

qxj
= 0.

For a three-dimensional CY one requires

(7) M − 1−
2(2± 1)

2
= 3 + /− . . . SU(2)/O(2).

Given this data, the vacuum space, i.e. the solutions of the D-term and F-term
equations, will be a CY threefold. Unless there is a duality, different field content
and gauge groups will lead to different CYs. By tuning the FI parameter r we can
probe the Kähler moduli space of the CY. Different regions, which lead to different
solutions of (2), (3), and (5), are called phases of the LSM. Going from one phase
to another typically changes the topology of the CY. The corresponding D-brane
categories are conjectured to be equivalent.
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An estimate for the Hodge numbers of the CY is given by counting degrees of
freedom of the theory:

h1,1 ↔ number of FI parameters(8)

h2,1 ↔ number of monomials in W modulo reparametrizations(9)

The singular loci in the Kähler moduli space can be determined from the Coulomb
branch. The classical potential (1) is zero, which would leave us with non-compact
directions for σ. These are however lifted by quantum corrections except at certain
points which are determined by the critical locus of the effective potential

(10) W̃eff = −
∑

χ

χ(σ)(log(χ(σ)) − 1) + . . . ,

where χ denotes the characters of the representation the fields transform in with
respect to the maximal torus and . . . denote further terms linear in σ and the FI
parameter [1]. A further important datum is the sphere partition function of the
LSM which has recently been related to the quantum corrected Kähler potential
of the CY moduli space [3]: ZS2 ∼ e−K(t,t̄). In geometric phases of the LSM,
this provides a way to extract the periods and Gromov-Witten invariants without
having to rely on mirror symmetry. Furthermore, the sphere partition function
can be used to determine the leading behavior of the Kähler metric on the moduli
space in a given phase. A further helpful tool in the analysis is a duality discovered
in [4] which shows that the same vacuum structure, i.e. CY, can be obtained by
pairs of LSMs with different field content and different gauge groups.

2. New examples and correspondences

In [1] we have constructed five new one-parameter LSMs. We use the shorthand
notation (Ak

q ) or (S
k,•
q ), where A and S indicate whether the symmetry behavior

of the p-dependent matrix in (4), k is the rank of H , q denotes the U(1)-charges
of the matter fields and • can be 0,±, where 0 is for SO(2) and ± denotes the two
possible sign choices for O(2) ≃ SO(2)⋊ Z2. The models we found are

(A2
(−1)4,(−2)3,15), (A

2
(−1)6,(−2),14,0), (A

2
(−2)7,3,14), (A

2
(−2)5,(−4)2,32,13), (S

2,+
(−1)2,(−2)3,14)

For all these models we have performed the program outlined above. The r ≪ 0
phases of the first four models can be identified with the Pfaffian CYs discussed
in [5]. The r ≫ 0 phases are of the first three models are hybrids which are Z2

Landau-Ginzburg orbifolds over a Fano base, where the limiting point is a cusp
singularity at infinite distance and the periods are those of a geometric CY in the
large radius limit. The r ≫ 0 phase of the fourth model is a “pseudo-hybrid”
model, where the limiting point is at finite distance in the moduli space. The last
model has not been discussed in the literature before, as far as we can tell. The
Hodge numbers are h1,1 = 1 and h2,1 = 23. The r ≪ 0 phase is a symmetric
determinantal variety, the r ≫ 0 phase is again a Z2 Landau-Ginzburg orbifold
over a Fano base. We conjecture that the categories associated to the respective
phases are equivalent. Furthermore we have encountered an unexpected surprise:
the Kähler moduli spaces of the second and the last model are the same, even
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though h2,1 is different. Using the duality of [4] we could show that the sphere
partition functions of the two models are the same. In particular, the partition
function in the r ≫ 0 phase of one model is the same as for the r ≪ 0 phase of
the other and vice versa. We could further show that also the singular points in
the moduli space match.
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Categories of matrix factorizations for Brieskorn (and triangle)
singularities

Helmut Lenzing

(joint work with Dirk Kussin, Hagen Meltzer)

Let k be an algebraically closed field. We consider the (universally graded)
Brieskorn singularity f = xa1

1 + xa2

2 + · · · + xat

t , t ≥ 3, for a t-tupel of integers
a1, . . . , at which are greater or equal 2. The integer d := t−2 will be referred to as
dimension. The algebras T = k[x1, . . . , xt] and S = k[x1, . . . , xt]/(f) are equipped
with the grading by the rank-one abelian group L with generators ~x1, . . . , ~xt, sat-
isfying a1~x1 = · · · = at~xt =: ~c, where the generators xi of T and S are given degree
~xi, such that f gets degree ~c. We call ~c the canonical and ~ω = ~c−

∑t
i=1 ~xi the du-

alizing element of L. By sheafification, or Serre construction, we obtain a category
cohX = modL(S)/modL0 (S) of coherent sheaves on some (non-commutative) space

X. Here modL(S) (resp. modL0 (S)) refers to the category of finitely generated
L-graded S-modules (resp. those of finite length). By a result of Buchweitz [2] the
(graded) singularity category od S is equivalent to the stable category of graded

matrix factorizations MFL(T, f). Moreover, by a graded variant of a theorem of

Orlov [8], the bounded derived categoryDb(cohX) and the category MFL(T, f) are
related by Orlov correspondence through semi-orthogonal decompositions which
depend on the value of the Gorenstein parameter γ = (

∏t
i=1 ai)(

∑t
i=1

1
ai
− 1) of

S. We are going to clarify the following aspects.

(A1) Understand the geometry of X.
(A2) To what extent is the geometry of X visible in the category MFL(T, f)?
(A3) Develop an explicit understanding of the relationship between Db(cohX)

and MFL(T, f).
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Concerning (A1) it turns out that X is a weighted projective space Pd〈a1, . . . , at〉,
obtained from the underlying projective d-space Pd by weight insertion in t = d+2
hyperplanes Hi (i = 1, . . . , t) in general position. In more detail, we have the fol-
lowing properties, that can be derived in analogy to [1]. Independently, these re-
sults were obtained by [HIMO] (=Herschend-Iyama-Minamoto-Oppermann), com-
pare [5], [7]. For t = 3 the theory reduces to the study of triangle singularities
where X is a weighted projective line with three weights, see [6].

Theorem 1. With the above assumptions, the following holds.

(1) By means of the map ~x 7→ OX(~x), the grading group L is isomorphic to
the Picard group of X.

(2) The space X is smooth of dimension d, that is, the category cohX has
global dimension d. Moreover, the category has Serre duality in the form
DExtj(X,Y ) = Extd−j(Y,X(~ω)) for any integer j.

(3) The category cohX has a tilting object T =
⊕

0≤~x≤d~cOX(~x) consisting

of line bundles. (The endomorphism ring of T is called d-canonical by
[HIMO]).

Concerning (A2), we define a restriction functor ρ from cohX to cohPd which
sends vector bundles to vector bundles. We say that a vector bundle E on X is
Pd-split if ρE is a direct sum of line bundles on Pd. By vectsp X we denote the full
subcategory of Pd-split vector bundles on X. (For t = 3 this is the category of all
vector bundles on X). We obtain the following results:

Theorem 2. Keeping the above notations, the following assertions hold.

(1) By sheafification the category CML S of L-graded Cohen-Macaulay mod-
ules over S is equivalent to the category vectsp X.

(2) The exact Frobenius structure on CML S, induced from the ambient mod-
ule category, translates under this equivalence to a Frobenius structure on
vectsp X.

(3) The stable category of Pd − split vector bundles on X is equivalent to

the stable category CMLS, hence to the stable category of graded matrix
factorizations MFL(T, F ).

(4) The category MFL(T, F ) is equivalent to the derived category Db(modA),
where A is the tensor product over k of the path algebras of equioriented

Dynkin quivers ~Aai−1, i = 1, . . . , t, of type A.

For t = 3 property (4) is due to [6]. For t ≥ 3 and k the field of complex numbers
it is due to [3]. Including the complete intersection case, the general assertion is due

to [HIMO, unpublished]. As an immediate consequence, the categories MFL(T, F )
are fractional Calabi-Yau. Moreover, using [4], the weights > 2, however not the

dimension D, can be recovered from the category MFL(T, F ).
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Computation and geometry

Daniel Murfet

The work which is the subject of this abstract has as its aim the construction
of interpretations of Girard’s linear logic [4] in bicategories of geometric origin, in
order to provide a bridge between computation and geometry. The main example
of such a bridge is the connection between cut-elimination in linear logic and what
we call cut systems on bicategories. We give a sketch of the general theory of cut
systems and the motivating example involving matrix factorisations.

In a bicategory B there are objects, 1-morphisms and 2-morphisms, where for
every pair of objects a, b the 1-morphisms from a to b and the 2-morphisms between
them form a category B(a, b). Bicategories arise naturally in geometry: the objects
a, b, c, . . . are spaces, the 1-morphisms between a and b are integral kernels of some
kind on a × b, and the 2-morphisms are transformations between kernels. The
composition rule for 1-morphisms is given by the convolution of kernels.

Our main example is the bicategory LGk of Landau-Ginzburg models [2], which
is roughly speaking a bicategory of isolated hypersurface singularities and integral
kernels. Objects are pairs (k[x],W ) consisting of a polynomial ring and a potential
W (x) ∈ k[x], 1-morphisms from W (x) −→ V (z) are finite rank matrix factorisa-
tions of V −W over k[x, z], and 2-morphisms are homotopy equivalences classes
of homomorphisms of matrix factorisations. Composition of a pair

(1) X : W (x) −→ V (z), Y : V (z) −→ U(y)

is given by the tensor product

Y ◦X = Y ⊗k[z] X .

This composition rule is “denotational” in the sense that Y ◦X is defined to be the
unique (up to isomorphism) finite rank matrix factorisation homotopy equivalent
to Y ⊗k[z]X (the differential on which is given by an infinite matrix over k[x, y]) but
this unique finite model is not prescribed as part of the data of the bicategory. The
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cut system on LGk presented below gives a coherent algorithm for constructing
these finite models, refining earlier work with Toby Dyckerhoff [3].

The bicategory LGk has various applications, for example in the setting of topo-
logical field theory with defects, but mathematically its existence is amply justified
by the work on generalised orbifolding between ADE-type singularities presented
at this workshop by Nils Carqueville and Ingo Runkel.

The rest of this report is structured as follows: we first define cut systems, then
construct the natural cut system related to LGk, and finally sketch how this relates
to cut-elimination. Throughout k is a Q-algebra.

0.1. Cut systems. Let CL denote the category of Clifford algebras over k which
are Morita trivial, or in other words, the associative algebras C(n) for n ≥ 0 gen-
erated by symbols θ1, . . . , θn, θ

∗
1 , . . . , θ

∗
n subject to the anti-commutation relations

{θi, θj} = 0, {θ∗i , θ
∗
j } = 0, {θi, θ

∗
j } = δij .

A morphism C(n) −→ C(m) is an isomorphism class of C(m)-C(n)-bimodules and
composition is given by the tensor product of bimodules. This category is a very
simple one: the structure is determined by the morphisms

Λn =
∧

(kθ1 ⊕ · · · ⊕ kθn) : k = C(0) −→ C(n)

where C(n) acts on the exterior algebra Λn by wedge products and contraction.
The bimodule Λn is an isomorphism with inverse Λ∗

n = Homk(Λn, k).
A category fibered over CLop is a special kind of functor F : T −→ CLop. For

the moment it is enough to recall that if F is such a fibered category, we get from
Λn and its dual a pair of mutually inverse maps

FΛn
: T0 −→ Tn, FΛ∗

n
: Tn −→ T0

where Tn denotes the set of objects X ∈ T with F (X) = C(n).
Let B be a bicategory, in which the composition of Y with X is denoted Y |X .

Definition 1. A cut system on B consists of the following data:

(a) a fibered category π : B(a, b) −→ CLop for each pair of objects a, b ∈ B.
(b) an object π(a) of CL for each object a ∈ B
(c) for each pair of composable 1-morphisms X : a −→ b, Y : b −→ c a natural

isomorphism of Clifford algebras

π(Y |X) ∼= π(Y )⊗k π(b)⊗k π(X) .

subject to various conditions which we omit.

If π(X) = k we sayX is cut free or normal. The family of fibrations π associates
to X with π(X) = C(n) a normal 1-morphism FΛ∗

n
(X), called the normalisation.

The bicategory LGcutk with its cut system π is defined as follows. The objects are
the same as LGk while 1-morphisms are pairs (X, ρ) consisting of a 1-morphism X
in LGk together with the action ρ of a Clifford algebra on X . We define π(X, ρ) to
be this Clifford algebra and to the object (k[x1, . . . , xn],W ) we associateC(n). The
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maps FΛn
and FΛ∗

n
of the fibration are defined respectively by splitting idempotents

and by tensoring with a graded vector space.
The composition is the interesting part: in the simplest case where X,Y as in

(1) are viewed as cut free morphisms by equipping them with the trivial action of
k = C(0), the composition in LGcutk is given by the pair

Y |X := (Y ⊗k[z] k[z]/(∂z1V, . . . , ∂zmV )⊗k[z] X, ρ)

where the action ρ of C(m) is defined by explicit formulas written in terms of the
matrices giving the differentials on X and Y . The main result is:

Theorem 2. The normalisation of Y |X is a finite rank matrix factorisation nat-
urally homotopy equivalent to the 1-morphism Y ◦X composed in LG.

That is, the normalisation of Y |X is the desired finite model for composition
of 1-morphisms in LG. It is important to note that the normalisation itself is not
prescribed, only the larger object Y |X together with a Clifford action. Nonetheless
the cut system gives important structural information about LG, and it is explicit
enough to implement in the computer algebra package Singular [1].

0.2. Interpretation of linear logic. Linear logic is an extension of classical logic
[4, 5] and the standard mathematical frameworks for computation like the lambda
calculus. A central part of linear logic is an equivalence relation on proofs called
cut-elimination, introduced in the sequent calculus by Gentzen. This corresponds
to the process of normalisation or β-reduction of terms in the lambda calculus,
and given the central importance of these concepts in computation it has, since
the seminal work of Girard, been an important problem to find nontrivial mathe-
matical models of cut-elimination.

There is an interpretation in LGcutk of the multiplicative fragment of linear logic
annotated with cuts: the bare sequents ⊢ Γ are mapped to objects 〈Γ〉, possible
cut annotations ∆ are mapped to Clifford algebras 〈∆〉, and a proof of the anno-
tated sequent ⊢ [∆]Γ is mapped to a 1-morphism X with π(X) = 〈∆〉. The cut
rule in linear logic is interpreted as composition of 1-morphisms, and so the axiom
(c) of a cut system reflects the introduction of annotations by instances of the cut
rule. The novelty of this interpretation of linear logic is that cut-elimination is
modelled by the process of normalising 1-morphisms, in the sense described above.

The embedding of computation into LG has various applications: for example,
once the interpretation is extended to include the exponential connectives of linear
logic, every computable function on the integers will determine a functor between
categories of matrix factorisations.
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The complex moduli of a Landau-Ginzburg model

Tony Pantev

(joint work with L.Katzarkov and M.Kontsevich)

The talk aims to understand the local structure of the moduli space of complex
Landau-Ginzburg models. Such a Landau-Ginzburg model is determined by a pair
(Y,w), where Y is a complex quasi-projective variety, and w : Y → A1 is a holomor-
phic function on Y . When Y has a trivial canonincal class KY

∼= OY , the category
of matrix factorization MF(Y,w) of the potential w can be viewed [KKP08] as the
category of coherent sheaves on a smooth compact non-commutative Calabi-Yau
variety.

The main result of the talk is that the versal deformation space of such a non-
commutative Calabi Yau, that is the versal deformation space of the category
MF(Y,w), is unobstructed. This result extends the classical Tian-Todorov theo-
rem [Tia87, Tod89] to the non-commutative context. This result is natural from
the point of view of mirror symmetry. Indeed, a Landau-Ginzburg pair (Y,w)
as above will typically arise as the mirror of a symplective manifold (X,ωX) un-
derlying a projective Fano variety. The homological mirror symmetry conjecture
[Kon95] predicts that the Fukaya category Fuk(X,ωX) of (X,ωX) will be equiva-
lent to the categoryMF(Y,w). In particular the deformation theories of the Fukaya
category and of the category of matrix factorizations will be identified, and versal
deformation space of the Fukaya category is manifestly smooth since it is an open
cone in the space of harmonic 2-forms on X .

By the work of Orlov [Orl04, Orl05, Orl12] the categoryMF(Y,w) is the coprod-
uct of the categories of singularities of the singular fibers of w. This interpretation
indicates that flat deformations of the geometric data (Y,w) will not necessar-
ily give rise to flat deformations of MF(Y,w). Indeed, when we deform (Y,w)
geometrically, the singularities of fibers of w can coalesce and more importantly
can run away to infinity. This suggests that we should only consider geometric
deformations of (Y,w) that are anchored at infinity. Indeed, if ((Z, f), DZ) is a com-
pactification of (Y,w) with a normal crossings boundary, then the deformations of
the pair (Z, f) that fix the boundary divisor DZ will give deformations of (Y,w) for
which the associated categories MF(Y,w) vary flatly. This allows us to study the
moduli of MF(Y,w) by studying the deformations of the compactification (Z, f).

The main geometric result of the talk is the following

Theorem A Let Z be a smooth projective variety, f : Z → P1 a flat morphism,
and DZ ⊂ Z a reduced anti-canonical divisor with strict normal crossings. Assume
moreover that crit(f) does not intersect the horizontal part of DZ, that the vertical
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part of DZ coincides with the scheme theoretic fiber f−1(∞) of f over ∞ ∈ P1. Let
M be the versal space parametrizing deformations of (Z, f) keeping DZ fixed. Then
M is smooth.

To prove Theorem A we identify the L∞-algebra that controls the relevant
deformation theory and show that this L∞-algebra is homotopy abelian. We argue
that, as in the case of compact Calabi-Yau manifolds, the latter statement can be
reduced to a Hodge theoretic property: the double degeneration property for the
Hodge-to-De Rham spectral sequence associated with the complex of f-adapted
logarithmic forms. By definition a meromorphic a-form α on Z with poles at most
on DZ is called an f-adapted logarithmic form if both α and α∧df have logarithmic
poles along DZ. If Ω

a
Z (logDZ, f) denotes the sheaf of f-adapted logarithmic forms,

then the double degeneration property is given by

Theorem B Let a ≥ 0. Under the assumptions of Theorem A, the dimesion

dimC Ha (Z, [Ω•
Z (logDZ, f) , c1 · dDR + c2 · df ∧ (•)])

is independent of the choice of (c1, c2) ∈ C2.

Our proof of this statement relies on the method of Deligne-Illusie [DI87] and on
a topological argument for limits of logarithmic complexes. A different proof of a
stronger version of the double degeneration theorem was recently given by Esnault,
Sabbah, Yu, and Saito [ESY13].

The double degeneration property together with an analysis of the homological
mirror correspondence predict the following

Conjecture Let (Y,w) be an n-dimensional Landau-Ginzburg mirror of a sym-
plectic Fano variety (X,ωX) of complex dimension n. Suppose (Z, f) is a compact-
ification of (Y,w). Then

hp,n−q(X) = dimC Hp (Z,Ωa
Z (logDZ, f)) ,

for all p, q.
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Matrix factorizations and cohomological field theories

Alexander Polishchuk

(joint work with Arkady Vaintrob)

In this talk I discussed the approach to the Fan-Jarvis-Ruan-Witten (FJRW) the-
ory via categories of matrix factorizations developed in [3]. Recall that the FJRW
theory is an analog of the Gromov-Witten theory where the role of the target
space is played by a quasihomogeneous polynomial with isolated singularity. It
is an example of Cohomological Field Theory, which consists of a state space H
together with a collection of operations

(1) Λg,n : H⊗n → H∗(Mg,n,C),

whereMg,n is the moduli space of stable pointed curves. These operations should
satisfy some gluing axioms that make use of a nondegenerate pairing on H . In the
case of the Gromov-Witten theory with target X the state space is H∗(X,C). For
the FJRW theory the state space is related to the Hochschild homology space of
the category of matrix factorizations.

More precisely, the FJRW theory depends on a pair (W,G), whereW (x1, . . . , xN )
is a quasihomogeneous polynomial with isolated singularity and G is a finite group
of diagonal symmetries of W (so G is a subgroup of (C∗)N ). For each γ ∈ G we
consider the subspace of γ-invariants Aγ ⊂ AN and set Wγ =W |Aγ . The polyno-
mial Wγ still has an isolated singularity and our state space is given by

H =
⊕

γ∈G

Hγ , where

Hγ = HH∗(MF(Wγ)).

Here MF(Wγ) denotes the dg-category of matrix factorizations of Wγ , and HH∗
denotes Hochschild homology.

F?r each collection of elements of G, γ1, . . . , γn, we consider a certain finite
covering Sg(γ1, . . . , γn)→Mg,n and construct a canonical object P of the derived
category of matrix factorizations on Sg(γ1, . . . , γn)×Aγ1 × . . .Aγn of the potential
−Wγ1

⊕ . . .⊕Wγn
. Then we use P to construct a functor

MF(Wγ1
)⊗ . . .⊗MF(Wγ1

)→ D(Sg(γ1, . . . , γn)).
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The map (1) is defined by passing to the Hochschild homology map induced by
this functor (the original definition of [1] used a different analytic approach).

Up until recently the explicit computations of the FJRW classes were only done
in the so called concave case, i.e., when certain line bundles on the universal curve
over Sg(γ1, . . . , γn) have no global sections when restricted to each particular curve.
In the talk I discussed the recent work of Guéré [2] where the FJRW classes were
calculated in many nonconcave cases with W being invertible (i.e., such that the
number of monomials in W is equal to the number of variables).
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Matrix factorizations, semiorthogonal decompositions, and motivic
measures

Olaf M. Schnürer

(joint work with Valery A. Lunts)

Let k be an algebraically closed field of characteristic zero. The Grothendieck
groupK0(Vark) of varieties over k is the free abelian group on isomorphism classes
[X ] of varieties X over k modulo the subgroup generated by the “scissor relations”
[X ] − [X \ Y ] − [Y ] whenever Y is a closed subvariety of a variety X over k. It
becomes a commutative unital ring by defining [X ] · [Y ] = [X × Y ]. In order to
understand this Grothendieck ring of k-varieties better one may constructmotivic
measures, i. e. morphisms of rings from K0(Vark) to some other ring.

Consider the map that sends a smooth projective k-varietyX to its bounded de-
rived category Db(Coh(X)) of coherent sheaves. A beautiful result due to A. Bon-
dal, M. Larsen and V. Lunts says that this map can be turned (uniquely) into a
motivic measure K0(Vark) → K0(sat) if one replaces Db(Coh(X)) by its ”injec-
tive” enhancement (see [2]). Here K0(sat) denotes the Grothendieck group of sat-
urated (= proper, smooth, and triangulated) differential Z-graded (k-)categories
with relations coming from semiorthogonal decompositions. Its ring structure is
induced by the tensor product of differential Z-graded categories (and by passing
to the triangulated envelope).

Our aim is to establish a similar motivic measure using categories of matrix
factorizations. Let X be a smooth quasi-projective variety over k together with a
morphism W : X → A1 = A1

k. We define the category of singularities of W as

MF(W ) =
∏

a∈k

MF(X,W − a).

Here MF(X,W − a) is the category of (global) matrix factorizations of W − a on
X. We have MF(W ) = 0 if and only if W is smooth. We denote by MF(W )dg
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a suitable enhancement (in the differential Z2-graded setting) of MF(W ) (for
example defined using injective quasi-coherent sheaves), and by MF(W )dg,♮ the
triangulated envelope of MF(W )dg.

Consider the Grothendieck group K0(VarA1) of varieties over A1 defined simi-
larly as the group K0(Vark) above. It is turned into a commutative unital ring by
defining

[X
W
−→ A1] · [Y

V
−→ A1] := [X × Y

W∗V
−−−→ A1]

where (W∗V )(x, y) =W (x)+V (y).On the other hand we consider the Grothendieck
ring K0(sat2) of saturated differential Z2-graded categories defined similarly as
K0(sat) above. Now we can state our main theorem.

Theorem 1 (see [4]). There is a unique morphism

K0(VarA1)→ K0(sat2)

of rings (= a Landau-Ginzburg motivic measure) that maps [X
W
−→ A1] to the

class of MF(W )dg,♮ whenever X is a smooth variety and W : X → A1 is a proper
morphism.

We prove first that MF(W )dg,♮ is indeed saturated if X is a smooth variety and
W : X → A1 is a proper morpism. Additivity is based on an alternative descrip-
tion of K0(VarA1) in terms of “blow-up relations” (see [1]) and on semiorthogonal
decompositions for categories of matrix factorizations on blowing-ups and projec-
tive space bundles (see [3] and below). Multiplicativity needs a Thom-Sebastiani
result for such categories of singularities and some compactification argument.

Let us explain the semiorthogonal decompositions obtained from blowing-ups

in more detail. Let π : X̃ → X be the blowing-up of a smooth quasi-projective
variety X along a smooth connected closed subvariety Y of codimension r. Let

j : E →֒ X̃ be the inclusion of the exceptional divisor, and let p : E → Y be the

obvious morphism. The usual construction of the blowing-up endows X̃ with a
line bundle OX̃(1). We denote its restriction to E by OE(1). Let W : X → A1

be a morphism. Denote its pullback functions to Y and X̃ by the same symbol.
The following theorem is the main result of the article [3] and the analog of a
well-known result for bounded derived categories of coherent sheaves.

Theorem 2 (see [3]). The category MF(X̃,W ) has the following semiorthogonal
decomposition into admissible subcategories,

MF(X̃,W ) =
〈
j∗(OE(−r + 1)⊗ p∗(MF(Y,W ))), . . . ,

j∗(OE(−1)⊗ p
∗(MF(Y,W ))), π∗(MF(X,W ))

〉
.

In our talk we also discussed the relation between the motivic measure from [2]
and the Landau-Ginzburg motivic measure from Theorem 1. For more details and
our future plans we refer the reader to the articles [3, 4].
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Matrix factorizations and homological projective duality in physics

Eric Sharpe

(joint work with Tony Pantev, others)

‘Gauged linear sigma models’ (GLSM’s) are one of the central tools used by
physicists to describe strings propagating on spaces. They were originally devel-
oped about twenty years ago by E. Witten [1], but have recently undergone a
revolution. For example, prior to around 2007, it was believed that gauged linear
sigma models

• could only describe geometries presented as global complete intersections,
• in which those geometries were realized as the critical locus of a ‘superpo-
tential,’
• and any two geometries related by a GLSM were necessarily birational.

Over the last few years, counterexamples to all of these claims have been found
(see e.g. [2, 3, 4] for some early work), and the more subtle ideas replacing them
revolve around aspects of Kuznetsov’s homological projective duality [5, 6, 7].

In this talk we will give a basic introduction to some of these phenomena and
their consequences, largely following [4]. Instead of working with GLSM’s, we
will instead translate to ‘Landau-Ginzburg (LG) models,’ which are defined by a
complex Kähler manifold X together with a holomorphic function W : X → C
known as the superpotential. Another set of theories, known as ‘nonlinear sigma
models’ (NLSM’s), are defined just by specifying just a complex Kähler manifold,
without a superpotential. String propagation on a space is described by a nonlinear
sigma model. Given a Landau-Ginzburg model, we can sometimes (though not
always) construct a nonlinear sigma model by an operation called ‘renormalization
group flow,’ which generates an effective theory describing just the low-energy
fluctuations of the Landau-Ginzburg model.

As a warm-up, let us describe a Landau-Ginzburg model associated to a quintic
Calabi-Yau hypersurface in P4. The Landau-Ginzburg model is defined on

Tot
(
O(−5)

π
−→ P4

)
,

with superpotential W = pπ∗s, s ∈ Γ(O(5)), p a fiber coordinate. This theory
contains a potential V of the form

V = |dW |2 = |s|2 + |pds|2,
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and for a smooth hypersurface, the zero-energy locus (V = 0) is {p = 0}∩{s = 0}.
We say that this theory “renormalization-group flows” to a nonlinear sigma model
on {s = 0} ⊂ P4, that describes its low energy behavior. This (“perturbative”)
analysis has been the standard technique for two decades.

If instead we perform a birational transformation on the space underlying the
Landau-Ginzburg model, we get a Landau-Ginzburg model on

Tot
(
O(−1)5 −→ BZ5

)
= [C5/Z5],

with the same superpotential. The ‘Landau-Ginzburg/Calabi-Yau’ relationship
often cited in the literature relates this Landau-Ginzburg model, on [C5/Z5], to
the previously-described nonlinear sigma model on {s = 0} ⊂ P4.

Schematically, we can outline the relations between these theories in the follow-
ing diagram:

LG model on Tot
(
O(−5)

π
−→ P4

)
//❴❴❴

RG

��

LG model on [C5/Z5]

NLSM on {s = 0} ⊂ P4 //❴❴❴❴❴❴ LG model on [C5/Z5].

Now, let us consider a different case, another warm-up. Consider a Landau-
Ginzburg model on

Tot
(
O(−2)2

π
−→ P3

)
,

with superpotentialW = p1π
∗Q1+p2π

∗Q2, where the pa are fiber coordinates and
Qa ∈ Γ(O(2)). The same perturbative analysis as above yields that this theory at
low energies is described by a nonlinear sigma model on a complete intersection
of two quadrics in P3, which is to say, an elliptic curve.

Now, consider the Landau-Ginzburg model on the birational space

Tot
(
O(−1)4 −→ P1

[2,2]

)
,

with the same superpotential, which is now usefully rewritten in the form

W =
∑

i,j

φiφjA
ij(pa),

where φi are fiber coordinates and pa homogeneous coordinates on P1
[2,2].

The superpotential above appears to define a ‘mass’ term for the φi, which
to a physicist means naively that the renormalization group would remove them,
leading to a nonlinear sigma model on P1, which cannot be correct, because (for
more subtle physics reasons) the result needs to be a Calabi-Yau.

Instead, we utilize the fact that P1
[2,2] has a Z2 gerbe structure, so everywhere

that the φi’s are massive, i.e. {detA 6= 0}, physics sees a double cover, applying
the ‘decomposition conjecture’ described in [8] for strings on gerbes. Putting this
together, we have a branched double cover of P1, branched over the degree four
locus {detA = 0}, which is another elliptic curve.
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If we start with a complete intersection of three quadrics in P5, then proceed-
ing in the same fashion, we are led to a pair of K3 surfaces, one the complete
intersection of quadrics, the other a branched double cover of P2.

Proceeding to a complete intersection of four quadrics in P7, we find something
more interesting. Naively the same analysis would, in the birational model, lead to
a branched double cover of P3, branched over a degree 8 locus given as {detA = 0}
for a symmetric 8×8 matrix A. However, there is a subtlety involving mismatched
singularities. Mathematically, the branched double cover above has singularities
at solutions of

detA = 0, d detA = 0,

whereas the physical theory can be shown to have singularities at points where
there exists a vector v which is simultaneously a null eigenvector of both A and
dA. A singularity in the physics implies a singularity in the mathematics, but not
conversely.

The fix in the physical interpretation involves understanding matrix factoriza-
tions in the Landau-Ginzburg model. Working locally on P3, the superpotential
over any point is quadratic, hence matrix factorizations form a module over a sheaf
of Clifford algebras [9], in fact a sheaf of even parts of Clifford algebras, defined
by the symmetric matrix A. Briefly, this is the defining property of the noncom-
mutative resolution of the branched double cover described in [6], so we interpret
this physical theory as describing a string on a noncommutative resolution.

The examples outlined here are the prototypes for a number of examples, both
Calabi-Yau and non-Calabi-Yau, appearing in GLSM’s. All such examples, relat-
ing various complete intersections of quadrics to (noncommutative resolutions of)
branched double covers, are examples of homological projective duality.
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Autoequivalences arising from variation of GIT quotient

Ian Shipman

(joint work with Daniel Halpern-Leistner)

Homological mirror symmetry predicts, in certain cases, that the bounded derived
category of coherent sheaves on an algebraic variety should admit twist autoequiv-
alences corresponding to a spherical object [8]. The autoequivalences predicted by
mirror symmetry have been widely studied, and the notion of a spherical object
has been generalized to the notion of a spherical functor [1]. We apply recently
developed techniques for studying the derived category of a geometric invariant
theory (GIT) quotient [2, 3, 4, 5, 7] to the construction of autoequivalences, and our
investigation leads to general connections between the theory of spherical functors
and the theory of semiorthogonal decompositions and mutations.

We consider an algebraic stack which arises as a GIT quotient of a smooth
quasiprojective variety X by a reductive group G. By varying the G-ample line
bundle used to define the semistable locus, one gets a birational transformation
Xss

− /G 99K Xss
+ /G called a variation of GIT quotient (VGIT). We study a simple

type of VGIT, which we call a balanced wall crossing.
Under a hypothesis on ωX , a balanced wall crossing gives rise to an equivalance

ψw : Db(Xss
− /G) → Db(Xss

+ /G) which depends on a choice of w ∈ Z, and the

composition Φw := ψ−1
w+1ψw defines an autoequivalence of Db(Xss

− /G). Autoe-
quivalences of this kind have been studied recently under the name window-shifts
[3, 7]. We generalize the observations of those papers in showing that Φw is always
a spherical twist.

Recall that if B is an object in a dg-category, then we can define the twist
functor

TB : F 7→ Cone(Hom•(B,F )⊗C B → F )

If B is a spherical object, then TB is by definition the spherical twist autoequiv-
alence defined by B. More generally, if S : A → B is a spherical functor, then
one can define a twist autoequivalence TS := Cone(S ◦ SR → idB) of B, where SR

denotes the right adjoint. We refer to a twist autoequivalence corresponding to a
spherical functor simply as a “spherical twist.” A spherical object corresponds to
the case where A = Db(k − vect).

It was noticed immediately [8] that if B were instead an exceptional object,
then TB is the formula for the left mutation equivalence ⊥B → B⊥ coming from
a pair of semiorthogonal decompositions 〈B⊥, B〉 = 〈B,⊥B〉. In fact, we will
show that there is more than a formal relationship between spherical functors
and mutations. If C is a pre-triangulated dg category, then the braid group on
n-strands acts by left and right mutation on the set of length n semiorthogonal
decompositions C = 〈A1, . . . ,An〉 with each Ai admissible. Mutating by a braid
gives equivalences Ai → A

′
σ(i), where σ is the permutation that the braid induces

on end points. In particular if one of the semiorthogonal factors is the same
subcategory before and after the mutation, one gets an autoequivalence Ai → Ai.
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Theorem 1 (spherical twist=mutation=window shifts). If C is a pre-triangulated
dg category admitting a semiorthogonal decomposition C = 〈A,G〉 which is fixed
by the 4-twist braid (acting by mutations):

〈A,G〉 = 〈G,A′〉 = 〈A′,G′〉 = 〈G′,A〉

then the autoequivalence of G induced by mutation is the twist TS corresponding
to a spherical functor S : A → G. Conversely, if S : A → B is a spherical functor,
then there is a larger category C admitting a semiorthogonal decomposition fixed
by this braid which recovers S and TS .

In the context of a balanced GIT wall crossing, the category C arises naturally
as a subcategory of the equivariant category Db(X/G), defined in terms of “grade
restriction rules”. The resulting autoequivalence agrees with the window shift Φw

and corresponds to a spherical functor fw : Db(Z/L)w → Db(Xss
− /G), where Z/L

is the “critical locus” of the VGIT, which is unstable in both quotients.

Next, we revisit the prediction of derived autoequivalences from mirror sym-
metry. Spherical twist autoequivalences of Db(V ) for a Calabi-Yau V correspond
to loops in the moduli space of complex structures on the mirror Calabi-Yau V ∨,
and flops correspond, under the mirror map, to certain paths in that complex
moduli space. We review these predictions, first studied in [6] for toric varieties,
and formulate corresponding predictions for flops coming from VGIT in which an
explicit mirror may not be known.

By studying toric flops between toric Calabi-Yau varieties of Picard rank 2,
we find that mirror symmetry predicts more autoequivalences than constructed in
Theorem 1. The expected number of autoequivalences agrees with the length of
a full exceptional collection on the critical locus Z/L of the VGIT. Motivated by
this observation, we introduce a notion of “fractional grade restriction windows”
given the data of a semiorthogonal decomposition on the critical locus. This leads
to

Theorem 2 (Factoring spherical twists). Given a full exceptional collection

Db(Z/L)w = 〈E0, . . . , EN 〉,

the objects Si := fw(Ei) ∈ Db(Xss
− /G) are spherical, and

Φw = TS0
◦ · · ·TSn

.

This is a general phenomenon as well. Let S = E → G be a spherical functor
of dg-categories and let E = 〈A,B〉 be a semiorthogonal decomposition such that
there is also a semiorthogonal decomposition E = 〈FS(B),A〉, where FS is the
cotwist autoequivalence of E induced by S. Then the restrictions SA : A → G and
SB : B → G are spherical as well, and TS ≃ TSA

◦ TSB
.
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Algebra and Geometry of LG Orbifolds for Invertible Polynomials in
Three Variables

Atsushi Takahashi

We report our recent study on the mirror symmetry of Landau–Ginzburg orbifolds
for invertible polynomials in three variables. In this abstract, after recalling some
notations and terminologies, we shall list some of our results.

Let f(x1, . . . , xn) be a weighted homogeneous complex polynomial. This means
that there are positive integers w1, . . . , wn and d such that f(λw1x1, . . . , λ

wnxn) =
λdf(x1, . . . , xn) for λ ∈ C∗. We call (w1, . . . , wn; d) a system of weights.

Definition 1. A weighted homogeneous polynomial f = f(x1, . . . xn) which
defines an isolated singularity at the origin in Cn is called invertible if the number
of variables coincides with the number of monomials in the polynomial f , namely,

f(x1, . . . , xn) =

n∑

i=1

ai

n∏

j=1

x
Eij

j , ai ∈ C∗, Eij ∈ Z≥0, i, j = 1, . . . , n,

and if the matrix E := (Eij) is invertible over Q.
It is useful to consider the canonical system of weights, which is the unique

system of weights such that d = det(E). Set cf := gcd(w1, . . . , wn, d) and ǫf :=
((
∑n

i=1 wi)− d) /cf .
Definition 2. The maximal grading Lf of the invertible polynomial f is the

abelian group generated by the symbols ~xi for the variables xi for i = 1, . . . , n and

the symbol ~f for the polynomial f defined by the quotient

Lf :=

(
n⊕

i=1

Z~xi ⊕ Z~f

)/
~f −

n∑

j=1

Eij ~xj ; 1 ≤ i ≤ n


 .

The maximal abelian symmetry group Gf of f is a finite abelian group defined by

Gf :=



(λ1, . . . , λn) ∈ (C∗)n

∣∣∣∣∣∣

n∏

j=1

λ
E1j

j = · · · =

n∏

j=1

λ
Enj

j = 1



 .
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Note that the polynomial f is invariant under the natural action of Gf on the
variables. Namely, we have

f(λ1x1, . . . , λnxn) = f(x1, . . . , xn), (λ1, . . . , λn) ∈ Gf .

and the short exact sequence

{1} −→ Gf −→ Spec(CLf )(C) −→ C∗ −→ {1}.

It is important that Gf always contains the exponential grading operator

g0 := (e[q1], . . . , e[qn]), e[−] := e2π
√
−1·−, qi :=

wi

d
, i = 1, . . . , n.

Denote by G0 the subgroup of Gf generated by g0.
Definition 3. The Berglund–Hübsch transpose fT is an invertible polynomial

defined by the transpose ET of the matrix E, namely,

fT (x1, . . . , xn) =

n∑

i=1

ai

n∏

j=1

x
Eji

j .

For a subgroup G ⊂ Gf , the Berglund–Henningson dual group GT is defined by

GT := Hom(Gf/G,C∗).

From now on, set n = 3 and assume that G contains G0, which is equivalent to
that GT is a subgroup of SL3(C) ∩GfT .

Aim: Understand the Mirror Symmetry of pairs (f,G).

• Compare algebraic objects associated to (f,G) with geometric objects as-
sociated to (fT , GT ).
• Describe these objects combinatorially in terms of E and G.

First we consider the algebraic aspects. Under the assumption G ⊃ G0, we
have an abelian group L which is a quotient of Lf . Set S := C[x1, x2, x3] and
Rf := S/(f). Note that S and Rf are naturally L-graded.

Consider the stack C(f,G) := [(Spec(Rf )\{0}) /Spec(CL) ] whose underlying
curve is smooth since f has an isolated singularity only at the origin. The genus
of the curve is denoted by g(f,G). The orders A(f,G) := (a1, . . . , ar) of the isotropy
groups of the orbifold points of C(f,G) is called the Dolgachev numbers.

We have the following results on C(f,G) and the Dolgachev numbers A(f,G):
Theorem 4 ([1]). There exists a triple A′ = (a′1, a

′
2, a

′
3) of positive integers

and an isomorphism of stacks C(f,Gf )
∼= P1

A′ where P1
A′ denotes the Geigle–Lenzing

weighted projective line of type A′. In particular, we have A(f,Gf ) = A′. �

Theorem 5 ([2]). Let Hi ⊂ Gf be the minimal subgroup containing G and the
isotropy group of the point pi, i = 1, 2, 3 on C(f,Gf ). Then we have the following
formula for the Dolgachev numbers:

A(f,G) =

(
a′i

|Hi/G|
∗ |Gf/Hi|, i = 1, 2, 3

)
.

�

We also consider L-graded matrix factorizations. Denote by HMFL
S(f) the

category of L-graded matrix factorizations of f . We have the following results:
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Theorem 6 ([6]). HMF
Lf

S (f) admits a full strongly exceptional collection. �

Theorem 7 ([7, 10, 4]). If εf > 0, then HMFL
S(f) admits a full strongly

exceptional collection. �

Theorem 8 ([5, 9]). Suppose that εf = 0 and g(f,G) = 0. We have an

isomorphism of stacks C(f,G)
∼= P1

A,Λ for some A and Λ where P1
A,Λ denotes the

Geigle–Lenzing weighted projective line of type (A,Λ). �

By the L-graded version of Orlov’s theorem, Theorem 8 implies the following
corollary, which is also proven by [8] without using Orlov’s theorem.

Corollary 9. Suppose that εf = 0 and g(f,G) = 0. Then HMFL
S(f) admits a

full strongly exceptional collection. �

Next we consider the geometric aspects. Consider fT as a holomorphic map.
Since GT is a subgroup of SL3(C) under which fT is invariant, we obtain the

holomorphic map f̃T : C̃3/G −→ C, where C̃3/G is a crepant resolution of C3/G
(e.g. G-Hilb(C3)). What we really want to study is the relative homology group

Hi(C̃3/G, (f̃T )−1(1);Q), however, it is so difficult in general. Instead, we take the

holomorphic map f̂ := f̃T − cx1x2x3 : C̃3/G −→ C, c >> 0, and study the relative

homology group Hi := Hi(C̃3/GT , f̂−1(1);Q). We have the following results. We
omit important details due to lack of space. See references for precise statements.

Theorem 10 ([1]). By a “suitable” change of coordinates z1, z2, z3, we have

f̂ = z
γ′

1

1 + z
γ′

2

2 + z
γ′

3

2 − c
′z1z2z3, c

′ >> 0,

for positive integers γ′1, γ
′
2, γ

′
3 given explicitly in terms of ET . �

Theorem 11 ([3]). By the McKay correspondence, we have

dimQH2 = dimQH4 = jGT ,

where jGT := #{g ∈ GT | age(g) = 1, Fix(g) = {0}}. �

Since the map H3 −→ H2(f̂
−1(1);Q) is injective, H3 has an intersection form.

Theorem 12 ([3]). There is a subset B of H3 consisting of vanishing classes
which represents a Q-basis of H3/〈δ0〉 whose intersection numbers are given by
the “star Coxeter-Dynkin diagram” where δ0 is a cycle in the radical. �

The lengths of arms of the star Coxeter-Dynkin diagram for (fT , GT ) is called
the Gabrielov numbers for (fT , GT ) and is denoted by Γ(fT ,GT ). It is given by

Γ(fT ,GT ) :=

(
γ′i

|GT /Ki|
∗ |Ki|, i = 1, 2, 3

)
,

where Ki denotes the maximal subgroup of GT fixing the i-th coordinate zi. The
duality between Hi and Ki yields a generalization of Arnold’s strange duality:

Theorem 13 ([2]). We have g(f,G) = jGT and A(f,G) = Γ(fT ,GT ). �
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Dimer models and matrix factorizations

Kazushi Ueda

(joint work with Akira Ishii)

A dimer model is a bicolored graph on a real 2-torus which encodes the information
of a quiver with relations. One can show that for any smooth quasi-projective toric
Calabi-Yau 3-fold Y , there is a dimer model G such that

• the moduli space Mθ of θ-stable representations of the quiver Γ with
relations associated with G of dimension vector (1, . . . , 1) is isomorphic to
Y for a suitable choice of a stability parameter θ, and
• the direct sum E =

⊕
v Ev of the tautological bundles is a tilting object

whose endomorphism algebra is isomorphic to the path algebra CΓ of the
quiver Γ with relations.

This gives a combinatorial description of the derived category of toric Calabi-Yau
3-fold;

Db cohY ∼= Db modCΓ.

See e.g. [1] and references therein for the proof of these facts.
Let Y0 be the union of all the toric divisors of Y , andW ∈ H0(OM) be the defin-

ing function of Y0, which can also be considered as a central element of End E ∼= CΓ.
The restriction E|Y0

is a tilting object in Db cohY0, and one has an isomorphism
End (E|Y0

) ∼= CΓ/(W ) of algebras [2]. This gives an equivalence

Db cohY0 ∼= Db modCΓ/(W ),

of derived categories, which in turn induces an equivalence

(1) Db
sing(cohY0)

∼= Db
sing(modCΓ/(W )).

of singularity categories. The left hand side of (1) is equivalent to the the trian-
gulated category of non-affine matrix factorizations of W on Y , whereas the right
hand side is equivalent to the triangulated category of non-commutative matrix
factorizations of W over CΓ.
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On the vanishing of Hochster’s theta invariant

Mark E. Walker

Let R be an isolated hyper-surface singularity. That is, R = (R,m) is a local
ring that can be written as R = Q/f , where Q is a regular local ring and f is a
non-zero-divisor, and Rp is regular for all p 6= m. These assumptions ensure that
given finitely generated R-modules M and N , we have

TorRi (M,N) ∼= TorRi+2(M,N), for i≫ 0

and TorRi (M,N) has finite length, for i≫ 0. We define Hochster’s theta invariant
of M and N to be

θR(M,N) = lengthR TorR2i(M,N)− lengthR TorR2i+1(M,N), for i≫ 0.

The theta invariant is closely related to the Euler characteristic χ(−,−) for the

category of matrix factorizations for (Q, f). Namely, if E = (E1
α
−→ E0

β
−→ E1) is

a matrix factorization for (Q, f), then coker(E) := coker(E1
α
−→ E0) is a maximum

Cohen-Macaulay (MCM) R-module, and we have

χ(E∗,E′) = θR(coker(E), coker(E′)).

(Here E∗ denotes the dual matrix factorization.)
In recent work, Buchweitz and van Straten [1] relate Hochster’s theta invari-

ant for isolated hyper-surface singularities of the form C{x0, . . . , xn}/f , where
C{x0, . . . , xn} denotes the ring of convergent power series, to the linking form on
the link of the singularity. In particular, they prove θR is identically 0 if n is even.
Part of their proof relies on the fact that the Milnor fiber of the singularity has the
homotopy type of a bouquet of n-spheres and hence, if n is even, its odd degree
cohomology vanishes.

In this talk, I present a purely algebraic version of some of the results of Buch-
weitz and van Straten. In particular, I prove θR is identically 0 for a large class of
hypersurfaces of even dimension, confirming a conjecture of Hailong Dao [2]. My
proof relies on the following algebraic analogues of some of the standard notions
used in the analytic study of singularities in characteristic 0:

Assumptions 1. For the rest of this document, we adopt the following notations
and assumptions:

• V is a Henselian dvr with algebraically closed residue field k, field of
fractions F and uniformizing parameter t — this is the analogue of a
small disk D in the complex plane.
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• Spec(Q̃)→ Spec(V ) is a flat morphism of finite type of relative dimension

n that is smooth away from a specified closed point m of Spec(Q̃). We
also assume this map is a local complete intersection near m.

• Q = Q̃hen
m is the Henselization of Q̃ at m. The map Spec(Q)→ Spec(V ) is

the algebraic analogue of a good representation f : X → D of an isolated
singularity. We let f ∈ Q be the image of the uniformizing parameter
t ∈ V under this map.

• The generic fiber Spec(Q[ 1
f
]) = Spec(Q⊗V F )→ Spec(F ) is the algebraic

analogue of the Milnor fibration.
• The geometric generic fiber of this map, namely Spec(Q ⊗V F ), is the

algebraic analogue of the Milnor fiber.
• Let R = Q/f , so that Spec(R) is the closed fiber. Its punctured spectrum

Spec(R) \m is the algebriac analogue of the link of the singularity.

We associated to an MCM R-module M a pair of classes in K-theory. The first
is easy to describe: the coherent sheaf on Spec(R) \ m determined by such an M
is locally free and hence determines a class [M ]K0

∈ K0(Spec(R) \ m). Since Q
and R are local, an MCM R-module is the cokernel of a matrix factorization of

the form Qr A
−→ Qr B

−→ Qr. The matrix A becomes invertible in Q[ 1
f
] and hence

determines a class in K1(Q[ 1
f
]). Let [M ]K1

= [A] ∈ K1(Q[ 1
f
]).

Let ℓ be a prime distinct from char(k) and assume ℓ ≥ 5 (to avoid complications
in the multiplication rules for K-theory with coefficients). The classes [M ]K0

and
[M ]K1

also determine classes in K-theory with Z/ℓ coefficients, and we use the
same notation for them:

[M ]K0
∈ K0(Spec(R) \m,Z/ℓ) and [M ]K1

∈ K1(Spec(Q[ 1
f
]),Z/ℓ).

Since the map Spec(Q) \ m → Spec(V ) is smooth with generic fiber Spec(Q[ 1
f
])

and closed fiber Spec(R) \m, we have a specialization map in K-theory with finite
coefficients

σ : K1(Spec(Q[ 1
f
]),Z/ℓ)→ K1(Spec(R) \m,Z/ℓ).

Explicitly, σ is given by

σ(γ) = ∂(γ ∪ [f ]),

where [f ] ∈ K1(Q[ 1
f
]) is the class determined by the unit f , ∪ is the product rule

for the ring K∗(Q[ 1
f
],Z/ℓ), and ∂ : K2(Spec(Q[ 1

f
]),Z/ℓ) → K1(Spec(R) \ m,Z/ℓ)

is a boundary map in the evident K-theory localization long exact sequence.
Our vanishing result is based on the following two theorems:

Theorem 2. Under Assumptions 1, the specialization map factors throughK1(Spec(Q⊗V

F ),Z/ℓ), the K-theory of the algebraic analogue of the Milnor fiber.

Define

χ : K1(Spec(R) \m,Z/ℓ)→ Z/ℓ

to be the composition of the boundary mapK1(Spec(R)\m,Z/ℓ)→ K0(R/m,Z/ℓ)
in the evident long exact localization sequence and the canonical isomorphism
K0(R/m,Z/ℓ) ∼= Z/ℓ.
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Theorem 3. Under Assumptions 1, we have

θR(M,N) = χ ((σ ([M ]K1
) ∪ [N ]K0

) (mod ℓ)

where ∪ is the multiplication rule for the ring K∗(Spec(R) \m,Z/ℓ).

All of the precious constructions and results, in particular the previous two
theorems, remain valid if we replace algebraic K-theory with finite coefficients,
K∗(−,Z/ℓ), with étale K-theory with Z/ℓ coefficients, K ét

∗ (−,Z/ℓ).
To deduce the vanishing of θR when dim(R) is even from these results, we

use also the following two theorems. The first, due to Illusie [3], is the algebraic
analogue of Milnor’s theorem, that the Milnor fiber has the homotopy type of a
bouquet of n-dimensional spheres:

Theorem 4 (Illusie). Under Assumptions 1, Hp
ét(Spec(Q ⊗V F ),Z/ℓ) = 0 unless

p = 0 or p = n.

The second theorem was proved originally by Thomason [5] under more restric-
tive assumptions, and it was extended by Rosenschon-Østvær [4] to the case we
need:

Theorem 5 (Thomason/Rosenschon-Ostvaer). There is a strongly convergent
spectral sequence

Ep,q
2 =⇒ K ét

q−p(Spec(Q⊗V F ),Z/ℓ)
where

Ep,q
2 =

{
Hp

ét(X,µ
⊗i
ℓ ) if q = 2i and

0 if q is odd.

Combining these two theorems gives immediately thatK ét
1 (Spec(Q⊗V F ),Z/ℓ) =

0 if n = dim(R) is even. Theorems 2 and 3 then yield:

Corollary 6. With R as in Assumptions 1, θR(M,N) = 0 for all pairs of finitely
generated R-modules, provided n = dim(R) is even.
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(4) 18 (1985), no. 3, 437–552.

Reporter: Louis-Philippe Thibault



2548 Oberwolfach Report 44/2013

Participants

Prof. Dr. Matthew R. Ballard

Department of Mathematics
University of South Carolina
1523 Greene St.
Columbia, SC 29208
UNITED STATES

Hanno Becker

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Dr. Nathan Broomhead

Institut für Algebraische Geometrie
Leibniz Universität Hannover
Welfengarten 1
30167 Hannover
GERMANY

Prof. Dr. Ragnar-Olaf Buchweitz

Computer & Mathematical Sciences
Dept.
University of Toronto Scarborough
1265 Military Trail
Toronto Ont. M1C 1A4
CANADA

Prof. Dr. Igor Burban

Mathematisches Institut
Universität zu Köln
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Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY



Matrix Factorizations in Algebra, Geometry, and Physics 2551

Prof. Dr. Christoph Schweigert

Fachbereich Mathematik
Universität Hamburg
Bundesstr. 55
20146 Hamburg
GERMANY

Prof. Dr. Eric Sharpe

Virginia Polytechnic Institute and
State University
Department of Physics
910 Drillfield Drive
Blacksburg, VA 24061
UNITED STATES

Dr. Ian Shipman

Department of Mathematics
University of Michigan
530 Church Street
Ann Arbor, MI 48109-1043
UNITED STATES

Dr. Greg Stevenson

Fakultät für Mathematik
Universität Bielefeld
Universitätsstr. 25
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