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Abstract. Partial differential equations constrained by involutions provide
the highest fidelity mathematical models for a large number of complex phys-
ical systems of fundamental interest in critical scientific and technological
disciplines. The applications described by these models include electromag-
netics, continuum dynamics of solid media, and general relativity. This work-
shop brought together pure and applied mathematicians to discuss current
research that cuts across these various disciplines’ boundaries. The presented
material illuminated fundamental issues as well as evolving theoretical and
algorithmic approaches for PDEs with involutions. The scope of the material
covered was broad, and the discussions conducted during the workshop were
lively and far-reaching.
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Introduction by the Organisers

The workshopHigh-Resolution Mathematical and Numerical Analysis of Involution-
Constrained PDEs, organised by Bruno Després (Paris), Michael Dumbser (Trento),
James Kamm (Los Alamos), and Manuel Torrilhon (Aachen), brought together 25
participants from institutes in France, Germany, Italy, the Netherlands, Norway,
Russia, Switzerland, and the United States. The topics discussed by these re-
searchers spanned an unusually broad spectrum of mathematics, including the-
oretical analysis, numerical analysis, and computational studies of involution-
constrained PDEs. These topics can be characterized as a subset of the field
of mimetic methods for PDEs, with specific focus on the algorithms that satisfy
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the involutions constraining the allowable solutions. The workshop began with an
overview talk by Jim Kamm, discussing the genesis of the workshop, the scope of
its topics, and a brief discussion of numerical approaches to intrinsically satisfy
the involution of Eulerian hyperelasticity.

Underpinning any computational approach to the solution of PDEs are the-
oretical examinations of numerical methods and the underlying structure of the
equations. Snorre Christiansen presented the former, while the latter were dis-
cussed by Marc Gerritsma, Holger Heumann, and Allen Robinson, each of whom
gave specific examples highlighting the relevance of exterior calculus, differential
geometry, and algebraic topology in this field.

The Maxwell equations of electromagnetics provide the archetypal physics-
based example of involution-constrained PDEs. Here, the involution is the con-
straint ∇ · B = 0 (where B is the magnetic induction), which is a necessary
condition for physically admissible solutions. A closer examination of the nature
of the equations of electromagnetics reveals a deep mathematical structure of the
continuous PDEs. Careful algorithmic construction and numerical analysis is re-
quired to ensure that this structure is preserved in the corresponding numerical
approximations. Topics in to this field were the basis of two presentations given by
Alain Bossavit. One important application of electromagnetics is in the modeling
of magnetohydrodynamic (MHD) phenomena, which was the focus of the presen-
tations of Dinshaw Balsara, Bruno Després, and James Rossmanith. The MHD
equations combine a particular limiting case of the Maxwell equations, combined
with the conservation equations for material flow (fluid or solid). The proper
formulation of the governing equations here remains an open issue, which has
deep implications for both the continuous and discrete mathematics. Solutions
of the MHD equations can display extremely complicated structures, the accu-
rate computational approximation of which depends exquisitely on the numerical
methods and, in particular, observation of the crucial involution constraint. Such
accurate simulation is essential when considering flow instabilities, which not only
provide a sensitive indicator of numerical solution quality but also represent a
high-consequence physical phenomenon in experimental and industrial facilities,
such as the proposed ITER reactor. For the latter application, closely related to
MHD is the set of equations used to model the plasma physics relevant to near-
wall regions in tokamaks. Aspects of the mathematical and numerical modeling
associated with such edge plasma phenomena were addressed in the presentations
of Emmanuel Franck, Boniface Nkonga, Ahmed Ratnani, and Eric Sonnendrücker.

The other primary component of the MHD model is given by the balance equa-
tions governing material motion. These conservation laws, generically referred
to as the equations of hydrodynamics, govern not only fluid behavior but also
condensed matter phenomena such as elasticity. Research of the last 30+ years
has convincingly demonstrated the important role that high-resolution numerical
methods play in the computational solution of these equations, even in the presence
of flow discontinuities such as shock waves. The relation of high-resolution methods
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to involution-constrained problems of compressible flow was discussed in the pre-
sentations of Christiane Helzel and Phil Roe. François Bouchut discussed the par-
ticular case of conservation laws applied to shallow water flow on a sphere, Roger
Kaeppeli talked about the application of specific involution-conserving schemes to
PDEs modeling astrophysical phenomena, and Michael Dumbser presented a new
class of high order numerical schemes applicable to general systems of conservation
laws. Likewise, the equations for hyperelastic material response are constrained by
an involution, which is readily shown, in the Eulerian frame, to be the constraint
curlG = 0 (where G is the inverse deformation gradient). Related topics were dis-
cussed by Sergey Gavrilyuk, Gilles Kluth, Ilya Peshkov, and Evgeniy Romenskii.

Preservation of involution constraints is also required during the so-called data
transfer process, in which the numerical solution to a set of PDEs is mapped
from one computational mesh to another. This aspect is of broad-ranging interest
in computational mathematics and was discussed in the presentations of Pavel
Bochev and Misha Shashkov.

Summary of Topics Discussed
After the formal presentation program of the workshop, Bruno Després chaired

a session in which the week’s topics were summarized. Here, we provide groups of
presenters, grouped according to the primary perspective or initial motivation of
their presented work.
Differential geometry / exterior calculus / algebraic topology - inspired
approaches: A. Bossavit, S. Christiansen, M. Gerritsma, H. Heumann, A. Robin-
son, E. Sonnendrücker.
Regular numerical methods for nonlinear elasticity: B. Desprès, S. Gavri-
lyuk, G. Kluth, I. Peshkov, E. Romenskii
High-order numerical methods: M. Dumbser, C. Helzel, J. Rossmanith
New nonlinear solvers: D. Balsara, F. Bouchut, R. Kaeppeli, P. Roe
Large nonlinear systems with preconditioners: E. Franck, B. Nkonga, A. Rat-
nani
Conservative data-transfer (remapping): P. Bochev, M. Shashkov

Main Results and Important New Developments
There were several discussions during the workshop, each of which engendered

energetic exchanges. The following themes were distilled from the discussions.

(1) A key concept is that involutions help one understand the meaning of the
equation vis-à-vis the physics.

(2) Workshop participants were interested in constructive approaches to the
solution of involution-constrained PDEs, i.e., in how to turn theoretical
ideas into numerical methods.

(3) An open question in several fields is, “How are we sure that we have the
proper involutions?” Examples of this issue are seen in both MHD and
nonlinear elasticity.

(4) What is the relation between satisfying involutions and higher order meth-
ods? Should one or the other be foremost? Are lower order methods with
involution constraints sufficient?
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We give below a brief list of a few of the “hot topics” as drawn from the workshop
discussions.

The role of exterior calculus: in the numerical methods was subject to
spirited debate. Whereas the merit of this formulation for electromagnet-
ics (where it is both physically and mathematically illuminating) is not
questioned, the promise of this approach remains elusive for, e.g., hydro-
dynamics simulations. A key virtue of this approach is that it necessarily
involves the separation of topology from geometry in problems, and there
was speculation that this formalism might yet prove helpful for nonlinear
problems where the numerics necessary to preserve solution structure is
not yet known. This hopeful view was counterbalanced by the pragmatic
concerns that exterior calculus methods for other equations (1) must be
shown to exist and, if so, (2) should be evaluated as to their usefulness.

The role of Riemann solvers: in compressible flow and MHD was a topic
of vigorous dialogue. The role of Riemann solvers as a sub-grid model
providing “just the right amount” of dissipation was discussed, and the
place for approximate multidimensional Riemann solvers was debated.

Appropriate discretization schemes: was a theme that spanned both of
the above topics. The concept of the topology of the discretization was a
recurring theme, tempered by the notion that one should not overburden
a computational mesh into satisfying ipso facto certain constraints.

Bruno Després, Michael Dumbser, James Kamm, Manuel Torrilhon
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Abstracts

Multidimensional Riemann Solvers for Divergence-Free MHD

Dinshaw S. Balsara

With easy access to supercomputers, MHD studies have become computation-
ally dominated. Magnetohydrodynamics (MHD) is the most popular and most
important approximation for astrophysical, space physics and several terrestrial
plasmas. However, there has always been a fundamental inconsistency in the way
divergence-free magnetic fields have been evolved on computational meshes, as
will be shown below. The only way to patch things up had been to continuously
double the dissipation, thereby degrading the quality of the results. Overcom-
ing this inconsistency required a fundamental new invention - multidimensional
Riemann solvers (RS) (Balsara 2010, 2012, Balsaraet al. 2013). Below I briefly
describe this recent research. I have also started developing a public website,
with downloadable codes, that teaches methods in computational astrophysics
(http://www.nd.edu/ dbalsara/Numerical-PDE-Course). Several researchers have
contributed to the development of numerical MHD (Evans & Hawley 1989, Dai
& Woodward 1998, Ryuet al. 1998, Balsara 1998, Falleet al. 1998, Balsara 2004,
2009, Crockett et al. 2005, Ustyugovet al. 2009). Any such listing would be incom-
plete and I apologize for any incompletions. However, the biggest debate in this
field has raged around the treatment of the induction equation (Faraday’s law),
∂B/∂t−∇× (v ×B) = 0 . Physically, it says that if we have ∇ ·B = 0 to begin
with, the constraint on the magnetic field, B, is preserved for all time. Faraday’s
law can be satisfied in discrete form on a computational mesh if the magnetic field
components are located at face centers and electric fields at edge centers, please
see Fig. 1. The problems are easily apparent if one focuses on the z-component
of the electric field in Fig. 1. When the MHD system is written in flux form
(∂tU+ ∂xF+ ∂yG+ ∂zH = 0), the z-component of the electric field corresponds
to the seventh component of the x-flux, F7, and also to the sixth component of the
y-flux, G6, please see Balsara (2004). Since the x-flux picks up contributions of the
waves propagating in the x-direction while the y-flux picks up contributions from
the waves propagating in the y-direction, we see that neither of the one-directional
fluxes provides an accurate representation of the wave propagation. In a numerical
code, this arbitration of the waves is done via a Riemann solver, because the waves
can consist of strong shocks which need to be stabilized via appropriate dissipation
on a mesh. Furthermore, this dissipation has to be minimized when it is inappro-
priate. Dai & Woodward (1998), Ryuet al. (1998), Balsara and Spicer (1999)
suggested using some combination of the x- and y-directional fluxes that come out
of a one-dimensional RS. Londrillo & DelZanna(2004), Gardiner and Stone (2005)
suggested doubling the dissipation that comes from each of the one-dimensional
RS. Both choices are ill for a simple physical reason - the wave propagation is in-
herently multidimensional and the RSalso has to be inherently multidimensional.
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A major innovation was clearly needed! One-dimensional Riemann solvers for nu-
merical MHD had been designed aplenty (Brio & Wu 1988, Roe & Balsara 1996,
Cargo & Gallice 1997, Balsara 1998, Gurski 2004, Li 2005, Miyoshi & Kusano
2006). But what was needed was a multidimensional RS. The glaring problem was
that an easily-implementable multidimensional Riemann solver was needed.There
were some initial studies (Abgrall 1994, Fey 1998), but none of them were suited
for implementation in a production code. In Balsara (2010, 2012) and Balsaraet al.
(2013) we presented the first truly multidimensional Riemann solvers for hydrody-
namics and MHD. Such a RS resides at the vertices of a mesh. It accepts as input
all the four states that surround that vertex, see Fig. 2. Fig. 2 shows a space-time
diagram for the waves that emanate from that vertex in a multidimensional RS.
The multidimensional RS produces two multidimensionallyupwinded fluxes. Note
that the RS is approximate with the result that it approximates the best possible
evolution of a Monge cone in multiple dimensions. The wave-model is self-similar
in space-time, consistent with our physical expectation. It is also consistent with
the conservation law and the principle of entropy generation at shocks. The multi-
d RS is cost-competitive with one-dimensional RS.The article by Balsara (2012)
includes video clips introducing the multidimensional HLLC RS, which makes the
topic much more accessible. Fig. 3 shows a comparison of the older method of
Gardiner & Stone (2005) vis a vis the methods in Balsara (2010,2012) on a test
problem that was proposed by the former authors. From Fig. 3b we see that use of
the multidimensional RS enables larger timesteps, more isotropic propagation of
the flow features and a reduction of the dissipation that causes smeared solutions
in Fig. 3a.
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Perspectives on preservation of physical properties through
optimization

Pavel Bochev

(joint work with D. Ridzal, K. Peterson, M. Shashkov)

Discretization reduces an infinite-dimensional problem to a finite algebraic model
that can be solved on a computer. This results in structural and qualitative in-
formation losses in the algebraic model. The former lead to unstable, ill-posed
discrete equations, whereas the latter cause violations of physical properties such
as maximum principles, local bounds, symmetries, and involutions.

For the past 20 years research in compatible discretizations has focused on the
preservation of the formal structures of mathematical models. Using ideas and
tools from vector calculus, algebraic topology and differential forms, researchers
were able to develop compatible discretizations that excel in managing structural
information losses and lead to stable numerical methods for partial differential
equations (PDEs); see [1, 2, 3, 13, 22] and the references therein.

In contrast, development of numerical methods, which preserve qualitative so-
lution properties lags behind despite the importance of this task. Qualitative
information losses can be tolerated in single physics codes but not in coupled mul-
tiphysics simulations where the outputs from one component provide the inputs
for the other components. A standard ad hoc approach that is still widely prac-
ticed is to brute force discrete solutions into physically meaningful ranges, thereby
reducing solution accuracy in ways that cannot be rigorously quantified.

Direct methods for the preservation of physical properties require special grids
and reconstruction operators, or nonlinear modifications of the discrete equations.
Typically, such methods tie together the preservation of the desired properties with
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geometric conditions on the mesh and/or restrictions on the accuracy. A classic
example is the discrete maximum principle (DMP) for the Poison equation, which
requires a monotone, or M -stiffness matrix. To ensure this property on triangular
elements the sum of the two angles opposing each interior edge should be less than
π, and the polynomial degree should be 1 [12, 14, 24]. Extension of DMP to more
general triangular or quadrilateral grids requires nonlinear schemes [16] such as
the nonlinear stabilized finite element method for the Poisson equation [11, 10],
the nonlinear extension of the diamond scheme [5], and the nonlinear finite volume
scheme in [19]. High-order maximum-principle satisfying and positivity preserving
schemes for conservation laws exist in one dimension [27], or on rectangular grids
[25, 26]. Their extension even to triangular elements are highly nontrivial [23].

A similar interdependence between mesh, accuracy and preservation of a phys-
ical property exists in many of the slope and flux limiters in use today. As a
result, many of them do not preserve linear functions on irregular grids [4], which
impacts accuracy and robustness. This interdependence is propagated to any al-
gorithm that employs limiters such as advection-based remappers. Because ALE
grids are highly unstructured, the alternative to limiters is to rely on sophisti-
cated “repair” procedures [17] or error compensation algorithms [21], which fix
the out-of-bound values and maintain positivity, but obscure the sources of the
discretization errors.

This talk summarizes our recent efforts to develop an alternative, optimization-
based divide-and-conquer strategy [7, 6, 9, 8] for the formulation of stable, accurate
and physically consistent discretizations. Our main focus is on the application of
optimization and control ideas to separate stability and accuracy considerations
from the enforcement of the physical properties. Given a mathematical model
and a list of desirable physical properties, our approach seeks the corresponding
discrete model in the form of a constrained optimization problem in which

• the objective is to minimize the distance, measured in some suitable norm,
between the discrete solution and a given target solution;

• a discrete model that is stable and accurate but is not expected to possess
all desired physical properties defines the target solution;

• the optimization constraints enforce any desired physical properties that
are not already present in the target solution.

This strategy offers a number of important theoretical and computational ad-
vantages in the formulation of feature-preserving numerical methods:

• the numerical solution is a global optimal solution from a feasible set de-
fined by the desired physical properties, i.e., it is always the best possible,
with respect to the target, approximate solution that also possesses these
physical properties;

• the decoupling of the target definition from the preservation of the physical
properties allows one to adapt the numerical solution to different problems
by choosing the most appropriate target definition and objective function
for these problems;
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• the enforcement of the desired properties as optimization constraints is
impervious to the mesh structure and/or field representations, thereby
enabling feature-preserving methods on arbitrary unstructured meshes,
including polygonal and polyhedral meshes.

In tis talk we apply the optimization-based strategy to the high-order accurate and
feature-preserving remap (constrained interpolation) and transport (advection) of
a single scalar conserved quantity (”mass”). The features that we aim to preserve
through the use of optimization are (a) the conservation of total mass and (b)
physically motivated local bounds on the primitive variable (the density).

The remap task arises in Arbitrary Lagrangian-Eulerian (ALE) methods, where
high-order remapping between meshes is critical for the accuracy of the simula-
tion, especially in conjunction with a continuous rezone approach, which requires
remapping at every time step [21, 17]. The second task, i.e., the stable, accu-
rate and feature-preserving solution of transport equations on general unstruc-
tured meshes, remains one of the most challenging numerical problems. This talk
exploits the intrinsic connection between transport and incremental remapping
[15, 20, 18] to extend the optimization-based remap to conservative, linearity and
local bounds preserving transport algorithms.
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Geometric structures underlying mimetic approaches: Towards an
extension of the latter to magnetoelasticity

Alain Bossavit

Mimetic methods, in Electromagnetics, replace 3D-space by a finite element mesh
and classical differential operators such as grad, rot, div, by matrices that describe
the topology of the mesh, in a consistent way (mobilizing some notions of cohomol-
ogy and differential geometry). They neatly separate “pre-metric” features of the
theory from constitutive laws (expressed as Hodge operators, which encapsulate
metric properties). The end-result of this process is a system of two interlocked
networks, one electric, one magnetic, talking to each other, respectively based on
the primal mesh and on its dual.

“Consistent” is the keyword in this brief description. When discretizing, say,
rot A = B for a magnetostatics application, simply representing the fields A and B
by arrays of node-based vectors, and using the equation to derive relations between
components of these vectors, will not do. This would ignore the different physical
natures ofA and B, meant to be integrated, respectively, along lines (to provide the
time-integral of an electromotive forces) and over surfaces (to deliver an induction
flux). A differential-geometric approach helps realize that vector fields A and B,
there, are just proxies for more fundamental objects, namely differential forms,
of degrees 1 and 2 respectively, whose degrees of freedom should be assigned to
appropriate integral domains, that is, edges and faces of the finite-element mesh
– not nodes. It also reveals the real nature of constitutive coefficients such as ǫ,
µ, and σ (conductivity): They are in fact operators, of the kind known as “Hodge
star operator” in differential geometry.

The systematic development of such ideas leads to the discretization as a whole
of the framework of geometric objects in which Maxwell equations live. Hence
a discrete, computer-compatible framework, in which discrete equations can be
formulated. These (as implied by the word “mimetic”) automatically share with
the Maxwell equations such essential properties as electric charge conservation,
flux conservation, etc., expressed in terms of discrete entities. All “premetric”
features of electrodynamics thus find their discrete equivalents, in a natural way.

Discretizing the constitutive relations (the “metric” aspects of the theory), on
the other hand, is less systematic. From the present point of view, this amounts
to replacing the Hodge operator by a discrete analogue. This problem is solved
in different ways by various mimetic methods (“cell method”, “finite integration
technique”, Galerkin discretization via edge elements, volume elements, etc.). But
they all require a convergence proof, which in turn requires a way to compare the
solution of the discrete model with the exact solution. In all methods, therefore,
one must be able to pass from an array of degrees of freedom to a field: Whitney
forms, familiarly known as “edge elements” and “face elements”, do this. They
are to differential forms what ordinary nodal finite elements are to functions. The
discrete framework, once established, can be used as a discretization toolkit thanks
to which various, equivalent discretized systems can be built.
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Can this methodology be applied to other equations, often coupled with Maxwell’s,
such as elastodynamics? Analogies help, there. One can present elastodynamics
in a way much similar to electromagnetics if strain and stress are considered (with
minor departures from the tradition of Mechanics) as, respectively, a vector-valued
1-form ǫ and a twisted covector-valued 2-form σ. Strain ǫ describes the difference
between the actual placement and the reference placement of a given material
vector (without compatibility conditions being necessarily enforced). Stress σ
gives the flux of momentum across a material bivector (and hence, by integra-
tion, through any surface). This way, coupled equations for electrodynamics and
elastodynamics are (with d for the exterior derivative):

−∂td+ dh = j, ∂tb+ de = 0, ∂tp− dσ = f, −∂tǫ+ dv = 0,

where p (a twisted covector-valued 3-form) is the momentum density and v (a
vector field, but here considered as a vector-valued 0-form) is the material velocity.
The current density j and the applied force f are given source terms.

These equations being formally similar, the mimetic machinery can be activated,
to produce a finite-dimensional dynamical system that mimics the coupled elasto-
electro-dynamic one. But going this way makes one reconsider some basic issues
about coupled problems.

In more traditional approaches, a central role is assigned to the concept of
“magnetic force” (let’s neglect electrostatic forces in this abstract). One is sup-
posed to solve the Maxwell equations first (possibly, at each timestep), then to
compute the forces, and finally, adding these forces to the given ones (the f in
the above display), to proceed with the evolution of the elastic compartment of
the system. But there is an embarrassing variety of non-equivalent force formulas
in the literature: “Helmholtz force”, “Kelvin force”, “Maxwell force”, etc., to say
nothing of the Maxwell tensor: Which is right?

The talk addressed this issue and, by using the virtual power principle, derived
the right formula in a few basic cases (isotropic or anisotropic reluctivity, depen-
dent or not on local strain, hard magnets), to conclude as follows: Local force
is not a void concept, and the search for the force field in magnetized matter is
legitimate. But the idea that it could be derived from a knowledge of the electro-
magnetic field alone is wrong. Full knowledge of the coupled constitutive laws is
needed.
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Coordinate free finite volume method for the shallow water system
over the sphere with arbitrary grid

François Bouchut

(joint work with Robert Eymard, Hassan Fahs)

The shallow water system over the sphere is deduced from the incompressible Euler
equations in a shallow three dimensional domain around the sphere. It describes
atmospheric or oceanic flows over the earth. For these applications one has to
include the topography as a small perturbation of the spherical geometry, and the
Coriolis force. The position on the sphere is denoted by x ∈ R

3, |x| = R, and the
system is

(1)

{

∂th+∇x · (hu) = 0,

∂tu+ u · ∇xu+ |u|2 x
R2 + g∇x(h+B) = −2

(

x
R · ~Ω

)

x
R × u,

where h(t, x) ≥ 0 is the width of the layer, u(t, x) is the velocity, g > 0 is the

gravity, B(x) is the topography, and ~Ω is the constant angular velocity. The
differential operators are the intrinsic ones related to the differential structure of
the two-dimensional sphere, they are described for example in [10]. The classical
simplified form of the Coriolis force is considered here, while in [10] the full Coriolis
force is taken into account.

The special feature of (1) is that the velocity field u(t, x) has to remain tangent

to the sphere at each point, i.e. u(t, x) · x = 0. This involution constraint of
geometric nature induces several difficulties at the numerical level:

• For ”planar” nonlinear hyperbolic systems, constant initial data give rise
to constant (and steady) solutions. It is not the case in spherical geometry.
In particular, eventual discontinuities split the solution in pieces of smooth

solutions that are never constant.
• The notion of constant or piecewise constant value has no meaning for the
field u, since u must be tangent at each point.

• For u tangent to the sphere at each point, the integral
∫

Ω
u dx is tangent

at no point (warning: here we consider the integral of the vector u valued
in R

3, and not the integral of its components in a rotating frame).

What is usually done in this context is to use a special coordinate system, that
enables to write a quasilinear system with space variable coefficients. This is done
in [9, 7, 4, 5, 3, 2, 1]. However, this induces some fundamentel limitations:

• Singularities (at the poles), matching of different coordinate systems, which
lead to particular treatments (complexity, eventual loss of accuracy, even-
tual instabilities, increase of computational cost)

• Limitation to a particular grid (and hence difficulty to adapt the grid to
data with particular geometry)

In this work I explain how it is possible to formulate intrinsic finite volume meth-
ods for the shallow water system over the sphere over arbitrary grid, taking into
account the curvature, and the source terms.
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The method uses the ideas developed by the ”well-balanced” community, and
all the source terms are distributed at the interfaces between cells. There a one
dimensional solver resolves the waves, taking into account the sources, in a well-
balanced and consistent manner. The interest of the approach is that it is possible
to prove an entropy inequality satisfied by the scheme, for arbitrary meshes. Nu-
merical tests are performed, including the extension to second-order, using analytic
solutions provided in [11, 6, 8].
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Constraint preservation in Maxwell-Klein-Gordon and related
equations

Snorre H. Christiansen

(joint work with Tore G. Halvorsen)

The Maxwell-Klein-Gordon equation is a nonlinear PDE which couples an elec-
tromagnetic field to a scalar (complex valued) one. The scalar field gives a current
which the electromagnetic field can see through Maxwell’s equations. The elec-
tromagnetic field is described by scalar and vector potentials, and these enter the
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coefficients of the wave equation that the scalar field should satisfy. The Maxwell-
Klein-Gordon equation are Euler-Lagrange equations coming from a variational
principle for a certain Lagrangian. This (coupled) evolution equation preserves
two constraints on the Cauchy data: at any time, the magnetic field is divergence
free, and the divergence of the electric field is the charge density defined by the
scalar field (Gauss law). Though similar in appearance, these constraints have
quite different interpretations. The first constraint is a Bianchi identity for the
vector potential. The second constraint is one of the Euler Lagrange equations.
That it is preserved by the flow of the other Euler-Lagrange equations (which are
evolution equations) can be deduced from Noether’s theorems. These assert that
to any group action leaving the Lagrangian unchanged correponds a conservation
law, expressing a differential relation between the Euler-Lagrange equations. The
MKG Lagrangian is invariant under gauge transformations and the corresponding
conservation law gives preservation of Gauss law.

Lattice Gauge Theory is a discretization developed by Kenneth Wilson for the
purposes of quantum field theory, which mimicks these structures. In [4] we gave a
first analysis from the point of view of numerical analysis. The underlying space of
fields is tensorproduct Whitney forms for the vector and scalar potentials, which
guarantees that a Bianchi identity holds. A discrete Lagrangian (or at least an
action) is constructed, which is invariant under certain discrete gauge transforma-
tions. A discrete Noether theorem then guarantees that a discrete Gauss law also
holds.

These results can be compared with a pure finite element method, in which
the continuous action is restricted to the finite element space. As it turns out
the finite element space is not invariant under nontrivial gauge transformations,
and simulations show a considerable drift in Gauss law, so that in effect electric
charge is not conserved. Nevertheless we could achieve both constraint and energy
conservation in a fairly explicit scheme by a non-standard application of Lagrange
multipliers [1]. This technique could be generalized [2] to a large class of wave-like
equations coming from a variational principle, with an action invariant under some
group. Constraint and energy preservation (combined with, in particular, Kato’s
inequality) gave enough a priori estimates to be able to conclude convergence [3].
In LGT one redefines both the discrete gauge transformations and the discrete
action. The latter is then a variational crime compared with the the finite element
method.

The LGT formalism was initially developed for cubical grids, for the full Yang-
Mills-Higgs equations. In [5] we generalized it to unstructured simplicial grids,
interpreting the method as a variational crime on Lie-algebra valued Whitney
forms. Also, a discrete Noether’s theorem could be developed in this setting,
which is sufficiently general to prove discrete charge conservation.
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On of some multidimensional formulations of ideal MHD

Bruno Després

The system of ideal magnetohydrodynamics is






















∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ ·
(

ρu⊗ u+ pI+ |B|2

2µ0

I− B⊗B
µ0

)

= 0, µ0 = 4π,

∂t(ρe+
|B|2

2µ0

) +∇ ·
(

ρue+ pu+ (u∧B)∧B

µ0

)

= 0,

∂tB−∇∧ (u ∧B) = 0.

The entropy law can be used to check the non linear structure

∂t(ρS) +∇ · (ρSu) = − (B,u)

ρT
∇ ·B,

where the physical entropy per unit mass is S TdS = dε+pdτ, ε = e− 1
2 |u|

2
, τ = 1

ρ .

For perfect gas S = log
(

ετγ−1)
)

and p = (γ − 1)ρε . The system is ”only”
weakly hyperbolic (Powell). But ”of course” the involutive constraint must be
added: ∇ ·B = 0. All this has impact on the stability of numerical methods: see
[2, 3] and many other contributions in the literature. These issues show that the
interaction of the entropy with the free divergence of the magnetic fields is key
tool to analyze the structure of this system. It also questions the possibility of
having a re-formulation of ideal MHD such that the entropy law is independent of
the divergence of the fields.

We first describe a first formal modification of this system that was proposed
in [1]. The magnetic is decoupled in two parts: B and C



















∂tρ+∇.ρu = 0,
∂tB+∇(u⊗B−C⊗ u) = 0,
∂tρu+∇.(ρu⊗ u) +∇P −∇.C⊗B

µ = 0,

∂ρe+∇.
(

ρue+ Pu− 1
µC(B,u)

)

= 0,

where C is any free-div vector field. This system is endowed with the entropy law
∂t(ρS) +∇ · (ρSu) = 0 for all free-div C. The discretization of C can performed
with a specific discretization ∂tC−∇ ∧ (u ∧C) = 0.

A second possibility [4] to rewrite the system in a form with an interesting
structure is as follows. The Euler-Lagrange mapping writes x′(t) = u, x(0) =
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X . The deformation gradient is F = ∇Xx ⇒ DtF = ∇Xu where Dt = ∂t+u ·∇ =
∂t|X is the material (Lagrangian) derivative. For all vector fields G, one has the
formula

J∇x ·Gt = ∇X ·
(

Gtcof (F)
)

where: J = det (F) = ρ0

ρ ; and cof (F) is the comatrix, that is the matrix of the

cofactors; cof (F) = Ft

det(F)
. This Piola formula is true in the weak sense in nD.

So ∇X · (Bt cof (F)) = 0. It is an additional free-divergence constraint in the
variable X . After inspection of the equation one can find the involution relation

Dt

(

cof (F)t B
)

= 0, which corresponds to the frozen in law; the magnetic flux

across a Lagrangian surface is constant. Define a new vector C = cof (F)
t
B such

that DtC = 0. The magnetic field is function of C and of the deformation gradient
F

B = cof (F)−t C =
FC

det (F)
.

In view of the hyperelastic formulation of material strength it is natural to intro-
duce the potential

ϕM (F, S, ρ0,C) = εg

(

det (F)

ρ0
, S

)

+
|FC|2

2ρ0µ0det (F)
.

At the end of the analysis ϕM is the internal energy e = 1
2 |u|2+ϕM (F, S, ρ0,C). It

is also natural to define the magnetic Piola-Kirchhoff stress tensor σM = ρ0∇Fϕ
M .

One can prove the identity

σM = −
(

pI+
|B|2
2µ0

I− B⊗B

µ0

)

cof (F) .

All this analysis allows to write the lagrangian formulation of ideal MHD under
the form























Dtρ0 = 0,
DtC = 0,
DtF = ∇Xu,
Dt (ρ0u) = ∇X ·

(

ρ0∇Fϕ
M
)

,
Dt (ρ0e) = ∇X ·

(

ρ0u
t∇Fϕ

M
)

.

This structure is exactly the one of a lagrangian hyperelastic model in non linear
elasticity with the correspondence

{

Magnetic: ϕM = εg(ρ, S) +
|FC|2

2ρ0µ0det(F) ,

Hyperelastic: ϕ = ψ(i1, i2, i3, S, ρ0)

where i1 = λ1+λ2+λ3, i2 = λ1λ2+λ2λ3+λ3λ2 and i3 = λ1λ2λ3 and λj eigenvalue
of the Finger Cauchy-Green tensor C = FtF.

Proposition: Assume ∂Sϕg 6= 0 and ρ0 > 0. One has the entropy property
DtS = 0 for smooth solutions, without any free divergence constraint. The
proof is more or less elementary.
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It is an open problem to understand the role of this structure in numerical
calculations, and to determine wether it could have an influence on the stability
of Riemann solvers for ideal MHD.

References
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High Order One-Step AMR and ALE Methods for Hyperbolic PDE

Michael Dumbser

(joint work with W. Boscheri, A. Hidalgo, O. Zanotti)

In this talk we present two recent extensions of the high order accurate one-step
PNPM approach first introduced in [13, 14]: one extension concerns the use of
space-time adaptive Cartesian meshes (AMR) together with high order time accu-
rate local time stepping (LTS), see [18] and [19]; the other extension concerns high
order one-step schemes on moving unstructured meshes using the direct Arbitrary-
Lagrangian-Eulerian (ALE) framework, see [20, 5, 21].

The nonlinear system of time-dependent governing PDE is considered to be of
the form

(1)
∂Q

∂t
+∇ · F(Q,∇Q) +B(Q) · ∇Q = S(Q),

where Q is the state vector, F is the nonlinear flux tensor, B(Q) · ∇Q is a non-
conservative term and S(Q) is an algebraic source term, that is also allowed to be
stiff.

The common building blocks in both numerical approaches (AMR and ALE) are
i) a high order non-oscillatory WENO reconstruction operator; ii) a local space-
time Galerkin predictor method that evolves the spatial reconstruction polynomi-
als in time within each element by solving local Cauchy problems in the small. For
this purpose, the PDE is written in a weak variational form in space-time, which
also allows a proper high order accurate discretization of stiff source terms, see
[16, 17]; iii) the final one-step schemes are derived by integration over space-time
control volumes. In the case of ALE the space-time control volumes are moving
and the local mesh velocity can be chosen independently of the fluid velocity.

Furthermore, in the context of cell-centered ALE methods, the computation of
the mesh velocity requires the solution of multi-dimensional Riemann problems,
or something equivalent [4]. Several approaches are possible: i) either a simple
arithmetic average of the vertex-extrapolated velocities in all elements adjacent to
that vertex, see [8, 24]; ii) or the use of a node-solver as suggested by Després and
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Mazeran [11, 12] and Maire et al. [26, 25]; iii) or the use of a multi-dimensional
HLL-type Riemann solver, as recently proposed by Balsara in [2, 3].

The non-conservative products are discretized by a path-conservative approach
[6, 27, 15, 22, 23] that defines the jump terms on the element boundaries following
the theory of Dal Maso, Le Floch and Murat [9]. For a further discussion of the
topic see [1] and [7].

In the talk we present applications to the Newtonian equations of viscous and
resistive magnetohydrodynamics (MHD) as well as to the ideal and resistive rela-
tivistic MHD equations (RMHD). In both numerical approaches presented in this
talk, the involution associated with the PDE, namely the divergence constraint
on the magnetic field, is taken into account on the discrete level using the hyper-
bolic generalized Lagrangian multiplied (GLM) approach proposed by Dedner et
al. [10].
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Time implicit schemes for the JOREK MHD code: Newton
procedure, continuation and preconditioning

Emmanuel Franck

(joint work with M. Hölzl, E. Sonnendrücker)

In the context of the ITER magnetic fusion project it is important to simulate the
behavior of edge instabilities in the Tokamak. Indeed these disruptive instabilities
can damage wall components due to their extremely high energy transfer rate.
Consequently, it is essential to estimate the amplitude of these instabilities and
understand how control these.

To simulate this phenomena, we use a 3D reduced MHD code in cylindrical
geometry named Jorek. The full model is the resistive MHD equations:

(1)























































∂tρ+∇.(ρv) = ∇.(D||∇||ρ+D⊥∇⊥ρ)

ρ∂tv + ρv.∇v +∇(ρT ) = J×B+ ν△v

ρ∂tT + ρv.∇T + (γ − 1)ρT∇v = ∇.(K||∇||T +K⊥∇⊥T )

∂tB = ∇× (v ×B)−∇× ηJ

∇.B = 0

with ρ the density, v the velocity, T the temperature, B the magnetic field, J =
∇×B the current and D||, D⊥, K||, K⊥ are anisotropic diffusion tensors.

To obtain the reduced MHD models ([10]-[11]) discretized in the code, we define
the fields with a formulation of v and B based on potentials (useful to preserve
the involution constraint ∇ ·B = 0). It is defined by B = F0

R eφ + 1
R∇Ψ× eφ and

v = −R∇u × eφ + v||B with u the electrical potential, Ψ the poloidal magnetic
flux and the parallel velocity v||. Plugging these formulations of the fields in the
equations and projecting the momentum equation in the toroidal direction and in
the poloidal plane we obtain the reduced models.

The poloidal plane is discretized using cubic Bezier finite elements and the
toroidal plane is discretized using Fourier expansion. For the time discretization
we use an implicit method based on an inexact Newton procedure [5]-[6] coupled
with a Crank Nicholson scheme. The linear system is preconditioned with a left
preconditioning. The preconditioning operator P corresponds to the approxima-
tion of the Jacobian where the coupling terms between the Fourier modes are ne-
glected. In the nonlinear phase where the modes are strongly coupled this method
is not very efficient. We propose different ways to obtain better preconditioning.

The first way is to use a continuation method to compute an adapted initial
guess for the Newton procedure. We consider the nonlinear system R(U) = 0
hard to solve. The idea is to replace this system by the system F (U, α) = 0 more
easy to solve with F (U, α = 0) = R(U). To obtain a well-conditioned system
we propose to use F (U, d) = R(U) + αD(U) with D a diffusion operator. The
algorithm is
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• Algorithm

• Set α0 = αmax and R0 = R(U0)
• For i = 1, 2, 3.... do

– Set F0 = F (Ui, αi)
– For n = 1, 2, 3..nmax do

∗ Compute residual R(U)
∗ if ||R(U)|| ≤ ǫ1||R0|| then done
∗ Compute homotopy map F (U, αi)
∗ if ||F (U)|| ≤ ǫ2||F0|| then exit loop
∗ Inexact Newton step: find δU such as ||AδU + F || ≤ ηF .
∗ U = U+ δU and end for

– set αi+1 < αi

The second is to use a preconditioning method based on a splitting + paraboliza-
tion procedure [1]-[2]-[3]-[4]. Indeed the hyperbolic coupling terms unlike parabolic
equations cannot be efficiently solved with multigrid methods. The idea is to use a
right preconditioning where operator P is obtained by splitting the diffusion terms
and the hyperbolic coupling terms which are parabolized. For example we study
the implicit scheme for wave equation:

{

∂tu = ∂xv
∂tv = ∂xu

−→
{

un+1 = un +∆t∂xv
n+1

vn+1 = vn +∆t∂xu
n+1

Assuming that the matrix associated to the previous linear system is
(

D1 U
L D2

)

=

(

I −∆t∂x
−∆t∂x I

)

Using a Schur decomposition we obtain
(

D1 U
L D2

)

=

(

I −∆t∂x
0 I

)(

Pschur 0
0 I

)(

I 0
−∆t∂x I

)

The first and third matrices are triangular so easily to invert and Pschur = D1 −
UD−1

2 L = (1−∆t2∂xx) is well-conditioned. To finish we can solve PδU = −R(U)
with P the preconditioning operator using the operators Pschur and D1 precon-
ditioned with multigrid methods. This method will be applied to the reduced
MHD introducing in Jorek using some algebraic manipulations on the equations
and some approximation to compute the Schur complement.

References

[1] B. Philip, L. Chacón and M. Pernice. Implicit adaptive mesh refinement for 2D reduced
resistive magnetohydrodynamics. Journal of Computational Physics, 227:8855–8874, 2008.

[2] L. Chacón. An optimal, parallel, fully implicit Newton-Krylov solver for three-dimensional
visco-resistive magnetohydroynamics . Phys. Plasmas, 15 (2008) 056103.

[3] L. Chacón. Scalable parallel implicit solvers for 3D magnetohydrodynamics. Journal of
Physics: Conference Series, 125 (1), 012041

[4] L. Chacón, D. A Knoll and J. M Finn. An implicit, nonlinear reduced resistive MHD solver.
Journal of Computational Physics, 178 (2002) 15-36.



2716 Oberwolfach Report 47/2013

[5] S. C Eisenstat, H. F Walker. Globally convergent inexact Newton methods. SIAM J. Optim,
4 (1994) 394-422.

[6] D. A Knoll and D. E Keyes. Jacobian free Newton Krylov methods: a survey of approaches
and applications. Journal of Computational Physics, 193 (2004), 357-397.

[7] G. Huysmans, O. Czarny. MHD stability in X-point Geometry: simulation of ELMs. Nuclear
fusion, 2007

[8] Hölzl M., Günter S., Wenninger R.P., Mueller W.-C., Huysmans G.T.A., Lackner K., Krebs
I Reduced magnetohydrodynamic simulation of toroidally and poloidally localized edge lo-
calized modes. Physics of Plasmas, 19, 082505 (08/2012)

[9] J. Hicken, H. Buckley, M. Osusky, D. Zingg. Dissipation-based continuation: a globalization
for inexact-Newton solvers 20th AIAA computational fluid dynamics conference, 2011.

[10] B. Despés and R. Sart Reduced resistive MHD in Tokamaks with general density ESAIM:
Mathematical Modelling and Numerical Analysis (2012) Volume: 46, Issue: 5, page 1081–
1106

[11] E. Deriaz, B. Després, G. Faccanoni, K. Pichon Gostaf, L. M. Imbert-Gérard, G. Sadaka
and R. Sart Magnetic equations with FreeFem++ : The Grad-Shafranov equation and the
current hole ESAIM: Proceedings Vol. 32 (October 2011)

Hyperbolicity in hyperelasticity and applications to high velocity
impact problems

Sergey Gavrilyuk

(joint work with Nicolas Favrie, Serge Ndanou)

The equations of motion for hyperelastic materials are hyperbolic, if the specific
energy e is a rank-one convex function of the deformation gradient F (see, for
example, [1]). In statics, the condition of rank-one convexity is also called “strong
ellipticity” condition [2], [3]. This condition is not easy (almost impossible) to
check even in the case of isotropic elastic materials, where the specific energy
depends only on the invariants of the right Cauchy-Green deformation tensor C =
FTF or the left Cauchy-Green deformation tensor B = FFT .

An alternative approach to the hyperbolicity study was proposed in [4], [5]. It
consists in rewriting the equations of isotropic elastic materials into a symmetric
t-hyperbolic in the sense of Friedrichs system. Such a transformation allows us to
assure hyperbolicity of the governing equations and to calculate the eigenvalues in
terms of symmetric matrices. This approach is also not direct. Indeed, to perform
such a transformation, we need to present the internal energy as a function of
F, the cofactor matrix cofF, the solid density ρ and the specific entropy η. We
obtain then additional compatible equations for cofF and ρ, and symmetrize this
augmented system. The convexity of the energy with respect to the augmented
variables will guarantee the hyperbolicity of the governing equations. This ap-
proach is quite opaque. Indeed, in practice, we have the energy obtained from
experimental data. It is given in terms of the singular values of F and the entropy
η. However, there is no rational way to “play” with this energy by transforming
it to a convex function of augmented arguments.

In the numerical treatment of mathematical models of elastic-plastic solids one
usually uses a splitting procedure : the ”elastic” step is followed by the ”plastic”
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relaxation step [6], [7], [8], [9]. It is necessary to assure the hyperbolicity condition
at each ”elastic” step. Indeed, the hyperbolicity is necessary for the wellposdness
of the Cauchy problem and the corresponding numerical Godunov-type methods.

We will consider the Eulerian formulation of the hyperelasticity for isotropic
solids. These equations are invariant under rotation group SO (3). The conse-
quence of that are immediate : for hyperbolicity it is sufficient to consider only
1D case. Indeed, the normal characteristic direction can always be transformed
by rotation to the one of Cartesian basis vectors (we have to use three composed
rotations defined by the Euler angles between the Cartesian basis and a natural
local basis on characteristic surface). So, the problem to assure the hyperbolicity
of the one-dimensional system for arbitrary strains and shears becomes the basic
one. This 1D problem stays complex because the number of unknowns involved
in such a formulation is large (14 scalar partial differential equations for F, ρ, η
and the velocity field v ).

We will concentrate on a particular class of elastic materials described by a
stored energy e in separable form :

e = eh (|G| , η) + ee (g) .

Here G = B−1 is the Finger tensor, g = G |G|−1/3
, and |G| is the determinant

of G. The choice of the Finger tensor is more natural for the Eulerian description
of isotropic solids. The energy eh (|G| , η) is the hydrodynamic part of the energy,
depending only on the determinant of G and the entropy η, and ee (g) is the shear
elastic energy. The shear part of the energy is unaffected by the volume change.
Such a decomposition into purely volumetric and isochoric deformation is, in par-
ticular, useful for description of nearly incompressible isotropic hyperelasticity.
This implies that the Cauchy stress tensor is also in separable form :

σ = −pI+ S,

where p is the pressure calculated only by the hydrodynamic part of the energy,
I is the identity tensor, and the deviatoric part S is calculated only by the shear
energy. Under a classical hypothesis about the pressure behavior (the hydrody-
namic sound speed should be positive), we reduce the problem of hyperbolicity to
a simpler one : show that a symmetric 3x3 matrix (determined in terms of ee) is
positive definite on a one-parameter family of unit-determinant deformation gra-
dient compact surfaces. Some explicit forms of the stored energy are formulated
which guarantee the hyperbolicity of equations for the motion of hyperelastic ma-
terials. This talk is partially based on the paper [10]. Numerical applications to
the high velocity impact problems are also discussed.
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Discrete representation of momentum as a covector-valued volume
form

Marc Gerritsma

The use of differential forms in which to write physical models and the use of k-
cochains to represent such physical models at the discrete level has led to a whole
new class of mimetic or structure-preserving scheme in which the connection with
the underlying geometry is explicitly employed, [1, 2, 3, 4, 6, 8, 9, 10, 12, 13, 16,
17, 18, 19]. This approach leads to methods in which fundamental properties of
the continuous equations are retained at the discrete level. Despite the success of
this approach, the use of differential forms is not sufficient for continuum models
such as elasticity and fluid mechanics. In [15] incompressible fluids were simulated
with differential forms and conservation of mass could be satisfied up to machine
precision. But conservation of momentum, i.e. force balance over volumes, could
not be guaranteed.

Momentum – or better still – momentum density should be represented by a
covector-valued twisted volume form, see [5, 11]. In this description momentum
µ is given by µ = m(1) ⊗ vol, where m(1) is a straight 1-form which remains
unchanged if the orientation of ambient space is reversed and vol is the twisted
volume form which changes sign if the orientation of ambient space is changed.

Differential k-forms can be integrated over k-dimensional point sets and these
integrals can be interpreted as k-cochains, but bundle-valued forms such as mo-
mentum do not admit integration. These covector-valued volume forms form the
dual space of vector fields on the domain Ω, X(Ω). Let µ ∈ Λ1(Ω) ⊗ Λ3(Ω) and
v ∈ X(Ω), then this duality pairing is given by, [11]

〈µ,v〉 =
〈

m(1) ⊗ vol,v
〉

:=

∫

Ω

〈

m(1),v
〉

vol ,

where in the integral
〈

m(1),v
〉

denotes the point-wise duality pairing between a

covector, m(1) and a vector v.
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This nodal duality pairing suggests that we treat the vector field v as a vector-
valued 0-form, i.e. as vectors defined in the nodes of the primal mesh. Likewise, the
1-formm(1) should be associated to nodes on the primal mesh. The precise way in
which these geometric concepts are represented on a cell-complex is an active area
of research. The time rate of change of momentum should equal the divergence of
the stress tensor. A geometric description of the stress tensor can be found in an
appendix in the book by Frankel, [7] and in [14]. A discrete representation of the
stress tensor in elasticity is given in Yavari, [21]. For an initial attempt for fluid
dynamics, see Toshniwal et al., [20].
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High-Order Constrained Transport Methods for the 3D Ideal
Magnetohydrodynamic Equations

Christiane Helzel

(joint work with James A. Rossmanith, Bertram Taetz)

In my talk, I presented our recent work [1, 2] on the construction of high-order
unstaggered constrained transport methods for the ideal magnetohydrodynamics
equations (MHD).

The ideal MHD equations can be written in the form

∂

∂t









ρ
ρu
E
B









+∇ ·









ρu
ρuu+

(

p+ 1
2‖B‖2

)

I−BB
u
(

E + p+ 1
2‖B‖2

)

−B (u ·B)
uB−Bu









= 0,

∇ ·B = 0,

(1)

where ρ, ρu and E are the total mass, momentum and energy densities, and B is
the magnetic field. The thermal pressure, p, is related to the conserved quantities
through the ideal gas law

(2) p = (γ − 1)

(

E − 1

2
‖B‖2 − 1

2
ρ‖u‖2

)

,

where γ = 5/3 is the ideal gas constant.
Our goal is to construct finite volume methods for the MHD equations, which

satisfy the divergence free condition for the magnetic field in some appropriate
discrete sense. In our approach, this is done by solving, in addition to the MHD
equations, an evolution equation for the magnetic potential. Starting with the last
line of the MHD equations (1), which can be rewritten in the form

(3) ∂tB+∇× (B× u) = 0,

we set B = ∇×A, with the magnetic potential A ∈ R
3, and obtain

∇× {∂tA+ (∇×A)× u} = 0.

From this, we obtain an evolution equation for the magnetic potential, which has
the form

(4) ∂tA+ (∇×A)× u = −∇φ,
where φ is an arbitrary scalar function. In our constrained transport method, we
solve the MHD equations (1) as well as the system (4) during each time step. At
the end of each time step, the magnetic field is updated by taking the curl of the
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magnetic potential. In a method of line approach, we solve both systems during
each stage of the Runge-Kutta method and also update B during each stage.

Such an approach to discretize the MHD equations was first introduced by
Rossmanith [4]. There, he first restricted his considerations to the spatially two-
dimensional case, where the evolution equation for A reduces to a scalar transport
equation of the form

∂tA
3 + u1∂xA

3 + u2∂yA
3 = 0.

Thus, in the two-dimensional case, standard methods for hyperbolic problems
(not in divergence form) can be used to discretize the evolution equation for the
magnetic potential. In [4], a version of the wave propagation algorithm of LeVeque
[3] was used. Note that limiting is more subtile in this context. Rossmanith
developed a limiting strategy, which suppresses spurious oscillations in derivatives
of the magnetic potential and thus in approximations of the magnetic field.

More recently, Rossmanith, Taetz and myself developed related constrained
transport methods for the three-dimensional MHD equations, see [1, 2]. In order
to get a closed set of evolution equations for the magnetic potential A, one needs
to consider (4) together with an additional constrained, i.e., the gauge condition.
A discussion of different gauge conditions can be found in [1]. Our numerical
methods are based on discretizations of (4) with the Weyl gauge, which means we
set ∇φ = 0. In this case the resulting evolution equation for the magnetic vector
potential is weakly hyperbolic, which requires a special numerical treatment. In [1],
we used different operator splitting methods to discretize the weakly hyperbolic
system for the magnetic potential on Cartesian grids. In [2], we developed an
unsplit method for the weakly hyperbolic system. This unsplit method was used
on Cartesian grids as well as on logically rectangular mapped grids.
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Differential Involutions, Discrete Differential Forms and Constraint
Preserving Discretizations on Unstructured Meshes

Holger Heumann

A stationary, linear, first order differential equation with homogeneous righthand
side is an involution of some given hyperbolic conservation law if the solution of
the conservation law is also a solution of that involution equation for all times
[5, p. 375]. Very often, these involutions are considered to be a very important
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structural feature of the conservation law, e.g. the vanishing divergence of the
magnetic field for Maxwell equations. As a consequence much effort has been
devoted to devising finite volume schemes that compute numerical solutions that
are, at least approximately, solution of some discrete version of the involution as
well.

An important model problem for the numerical treatment of conservation laws
with involutions, that has attracted considerable attention in the literature [9, 14,
2, 23, 6, 19, 22, 16, 21, 7], is the magnetic advection problem for the magnetic field
B

(1) ∂tB+ curl(u×B) = 0 ,

with its involution divB = 0. For many existing methods for rectangular meshes
it can be shown [10, Section 2.2.3] that they build on finite difference flavored
techniques. They combine central finite difference stencils in one coordinate direc-
tion with averaging stencils [19] in the other directions to approximate the partial
derivatives in (1). The obvious commuting property of such stencils ensures that
a discrete divergence vanishes for all times. It remains to specify the concrete
choice of the so-called numerical flux or potential, and we refer to [16, 17, 18] for
extensive numerical studies of such methods.

The magnetic advection problem (1) is also a transport equation in the following
sense: If X(t,x) := Xt(x) denotes the flux induced by the velocity u and M
denotes an arbitrary 2-dimensional manifold then (1) is equivalent to:

∫

M

B dS =

∫

Xt(M)

B dS

(

:=

∫

M

X∗
tB dS

)

.

The magnetic flux through an advected surface remains constant. This, a standard
result in differential geometry [15, p. 142] (see also [12, Section 2]), was exploited
first in [3] and then later in [11, 20] to derive numerical methods that ensure that
the continuous involution holds exactly for the numerical solution. The reason of
this astonishing feature, is the insight that curl and div are dual to the boundary
operator on manifolds and we would like to refer to [1, 4, 24, 13, 8] and the many
references therein for a detailed introduction into numerical methods inspired by
the geometric language of differential forms. The beneficial ingredient that this
theory provides for our problem are polynomial spaces Vh of piecewise smooth
vector fields on structured and unstructured meshes that have a well defined curl
or div. Further, there exist so-called canonical interpolation operators that map
smooth vector fields onto the vector fields in Vh and that commute with the deriva-
tives curl or div. The Lagrangian methods in [11] exploit additionally, that the
canonical interpolation operators commute with the pullback. The staggered, fi-
nite difference approach in [9] falls also in this class of methods.

In this talk we will show, that the schemes of this second class of methods, not
only preserve the divergence exactly but are also conservative. Further we will
present a new approach for the derivation of finite volume methods, which yield
numerical solutions to (1) that fulfill a certain discretization of the involution. The
derivation will apply both for structured and unstructured meshes [10, p. 30-35].
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Structure preserving schemes

Roger Käppeli

(joint work with S. Mishra)

Standard numerical schemes for solving conservation laws are in a mature stage of
development. These schemes permit the robust and accurate simulation of complex
physical phenomena modeled by nonlinear systems of time-dependent PDEs

∂u

∂t
+∇ · f = 0,

where u is the vector of conserved variables and f the flux tensor.
However, beside the conserved quantities these equations also possess certain

associated structures that are analytically preserved in the form of so-called involu-
tions. A prominent example of such a structure is the divergence free constraint of
the magnetic field. This a reflection of the physical fact that magnetic monopoles
are not observed in nature. A second example is the conservation of angular
momentum in (magneto-) hydrodynamics, which is a direct consequence of the
symmetry of the momentum flux tensor. The conservation of angular momentum
plays crucial role in e.g. climate modeling and astrophysics. Thirdly, the conser-
vation of (pseudo-) vorticity is of great importance in e.g. weather forecast and
aerodynamics.

Standard numerical schemes fail in maintaining these structures at the discrete
level. The degree of failure is proportional to the scheme’s truncation error for
smooth solutions, but it may become O(1) for discontinuous ones. Hence, the
fidelity with respect to the physics may be spoiled in numerical simulations.

We will focus on two non-standard extensions aiming at preserving a discrete
version of certain structures in the context of hydrodynamics. The first exten-
sion deals with the conservation of angular momentum and the second with the
conservation of (pseudo-) vorticity. We discuss the requirements on a numerical
scheme to maintain these structures discretely. It turns out that realizing certain
symmetry properties of the flux tensor and the differential operators discretely is
crucial.

We then derive explicit finite volume schemes, which preserve the named struc-
tures. To achieve this we start from the recent work by Mishra and Tadmor
[1, 2, 3], where a framework for designing genuinely multi-dimensional constraint
preserving finite volume schemes was developed. The schemes are based on re-
formulating standard edge centered numerical fluxes in terms of vertex centered
potentials. The vertex centered potentials are then exploited to preserve the struc-
tures in a discrete manner. We obtain high-resolution shock-capturing schemes,
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which conserve mass, linear momentum and total energy, and, at the same time,
also angular momentum. Within the potential based framework we also derive
a predictor-corrector scheme, which conserves angular momentum and pseudo-
vorticity. The later scheme can be identified as the rotated Richtmyer scheme [4].
We conclude, that the potential based framework can be used to formulate schemes
that preserve a variety of structures of the underlying continuum equations at the
discrete level.
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Perspectives on the Workshop on High-Resolution Mathematical and
Numerical Analysis of Involution-Constrained PDEs

James Kamm

This workshop is focused on involution-constrained PDEs, which are pervasive
in many areas of computational physics. Involutions provide a critical constraint
for physically admissible solutions, yet satisfying these constraints in numerical
methods presents an ongoing mathematical challenge. A primary motivation for
this workshop is captured in the statement of Gawlik et al. [11]:

Naive discretizations of physical theories can, in general, fail to
respect the physical and geometric structure of the system at hand.

Indeed, some sophisticated discretizations fail in this regard, as well. An additional
motivation is that ongoing demand for accurate physical simulations of increas-
ingly complicated phenomena and continuing advances in theory and numerics
(and computing platforms) make this an opportune time to review mathematical
achievements, to discuss current efforts, and to pursue new research objectives.

The archetype here is given by Maxwell’s equations of electromagnetism, with
the involution that the divergence of the magnetic inductance must remain zero
at all time if it vanishes initially. The equations for dynamic hyperelasticity in
the Eulerian frame have the involution that the curl of the inverse deformation
gradient must vanish for all time. A conceptually similar, although more intricate,
situation obtains in general relativity (see, e.g., [21] and references therein).

Four important threads are woven through the fabric of this workshop.
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1. Analytical and numerical developments in PDE theory. Theoretical work gives
the foundational justification of and insight into modern numerical methods, as
discussed, e.g., in the monograph of Dafermos [9], the analysis of Christiansen
et al. [8], the work of Mishra & Tadmor ([19] and its precursors), and others.

2. Advances in mimetic differencing methods and algorithms. Mimetic methods
have had a profound influence on numerical algorithms. Applied mathemati-
cians, starting in the 1970s and continuing through the 1990s in, e.g., the work
of Hyman, Shashkov, and Steinberg (e.g., [16]), among others, have embraced
these concepts. The 2004 IMA workshop produced a notable manuscript [2].

3. The topological vs. the geometric in continuum and discrete theories. Tonti’s
seminal work [22] emphasized the distinction between topology (intrinsic struc-
ture, independent metric) and geometry (qualities dependent on the underlying
metric) in physics. These ideas led to the application of exterior calculus, differ-
ential geometry, and algebraic topology to involution-constrained PDEs. Salient
reviews of these concepts are given, e.g., by Bochev [6] and Gerritsma [12].

4. The development of discrete differential geometry/exterior calculus. Recent
work extending continuum concepts of exterior calculus, differential geometry,
and algebraic topology to the discrete context is both important and promising;
see, e.g., the works of Arnold et al. [3] and Hirani [15]. These ideas have been
applied extensively by the electromagnetics community, e.g., in the significant
works of Bossavit (e.g., [7] and many others), Hiptmair [14], and Gross &
Kotiuga [13]. They are less well developed but evolving for solid dynamics; see,
e.g., the work by Arnold et al. [4], Eastwood [10], and Angoshtari & Yavari [1].

One application invoking the first two of these issues is the numerical approach
proposed by Kamm & Walter [18] for Eulerian-frame hyperelastic flow. These
authors suggested the application of the Flux Distribution method of Torrilhon
& Fey [23] (see also [24, 5]) as a means by which to ensure that the involution
constraint is preserved numerically. Plohr & Plohr [20] show that the governing
mass, momentum, and energy conservation equations for this case can be written

ρt + (ρuj)j = 0 ,(1)

(ρui)t + (ρuiuj − S
ij)j = 0 ,(2)

(ρE)t + (ρEuj − uiS
ij)j = 0 ,(3)

where ρ is the mass density, ui is the ith velocity component, E ..= (1/2)uku
k + ε

is the specific total energy with ε the specific internal energy, and S
ij is the (i, j)-

element of the Cauchy stress tensor. Cartesian coordinates are assumed, and
repeated indices are summed. Compatibility conditions augment these equations:

(4) (Gα
i )t + (Gα

j u
j)i = 0 and ǫijk Gα

j,k = 0 ,

where G
α
i

..= ∂Xα/∂xi is the (α, i)-element of the inverse deformation gradient
(IDG), with X the (undeformed) material coordinate and x the (deformed) current
coordinate.1 This set of equations is closed by the hyperelastic relation, which, for

1Wagner [25] provides an insightful discussion of these equations.
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a homogeneous and isotropic material, can be written as:

(5) S
ij = ρFi

α (∂ψ/∂Eαβ)|ε F
j
β ,

where F ..= ∂x/∂X = G
−1 is the deformation gradient and ψ(ε,E) is the free

energy, with E ..= (1/2)(G−T
G
−1 − I) the Lagrangian strain tensor.

The involution constraining this motion is given by the curl constraint in (4): if
the curl of the IDG vanishes at the initial time, then it remains zero for the entire
motion. The Flux Distribution approach applies naturally to the satisfaction of
the involution. At the core of this method is the use of fluxes in the entire neigh-
borhood of a computational cell to obtain discrete spatial differencing operators
that enforce the constraint locally, exactly, and independent of how the fluxes are
computed. Jeltsch & Torrilhon [17] give a detailed description for the 2D shal-
low water equations. Although the application of this approach to conservation
laws for hyperelasticity has not been implemented, it presents a clear example of
high-resolution method for the solution of involution-constrained PDEs.

The workshop provided an open forum in which research related to each of these
subjects was presented and vigorous discussions among mathematicians were held.

Acknowledgement. This work was performed under the auspices of the United
States Department of Energy by Los Alamos National Security, LLC, at Los
Alamos National Laboratory under contract DE-AC52-06NA25396. This paper
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Discretization of compressible hyperelasticity on unstructured mesh.

Gilles Kluth

(joint work with Bruno Després)

In this talk, we summarize mathematical properties of the system of hyperelas-
ticity and we present its discretization : we extend hydrodynamic cell-centered
lagrangian finite volume schemes by using a multiplicative discretization of the
deformation gradient [1]. Finally, we discuss about the introduction of plasticity
in this system.

The mathematical structure of the system of hyperelasticity is very rich [2].
Firstly, PDEs are involution-constrained. In the Lagrangian coordinates, PDEs
on the deformation gradient F give the involutions

∀i, j, k ∂Fij

∂Xk
=
∂Fik

∂Xj

which are compatibility conditions for existence of the motion. In the Eulerian
coordinates, PDEs on the inverse deformation gradient [3] give

∀i, j, k
∂F−1

ij

∂xk
=
∂F−1

ik

∂xj
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which are the compatibilty conditions for existence of the inverse motion, and
PDEs on the cofactor [4] of the inverse deformation gradient give

∑

k

∂

∂xk

(

Fki

det(F )

)

= 0

which is known as the Piola identity. Secondly, the hyperelastic system is ther-
modynamically compatible : its potential structure is constructed so as that the
entropy production is null for smooth thermomechanical process. Thirdly, the
hyperelastic system satifies the frame-indifference principle. For instance, it is
naturally invariant by applying rotation. Finally, the hyperbolicity is given by the
positivity of the accoustic tensor, or the rank-one convexity of the internal energy.
A proof is given in [1].

Numerically, we extend hydrodynamic cell-centered Lagrangian finite volume
schemes [5, 6, 7]. By construction of the approximate Riemann solver, these
schemes satisfy the thermodynamic principle. Thus the extension consist in gener-
alizing scalar solver (pressure) with tensorial one (stress tensor). Moreover, we use
a multiplicative discretization of the deformation gradient, and show that doing
this we obtain exactly the true deformation on meshes with simplices , and obtain
a difference of order 2 in the timestep on general mesh.

The aim of this work was to pave the way for finite plasticity. Modern works
[9, 10] have extended these Lagrangian schemes to plasticity based on hypoelastic-
ity. Other modern Eulerian works [12, 11] introduced plastic models of Maxwell
relaxation type in the hyperelastic system [13]. In [8], we introduced a nonlinear
elastic model with threshold (Hencky type model) to simulate plasticity during
loads. Here we present a sketch model that we would like to study in the case of
shock waves.
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Numerical Strategies for MHD and Reduced MHD: Toroidal
geometries

Boniface Nkonga

(joint work with G. Huysmans, M. Becoulet and J. Costa)

One of the major difficulties in the numerical simulations of MHD instabilities
in tokamak plasmas is the multiple time scales the system. Typical values of
the linear growth of ELM (Edge Localazed Modes) instability is of the order of
0.05ms and non-linear stage of ELM crash about 0.2ms [14]. However the typical
time scale of RMP(Resonant Magnetic Perturbations) penetration into pedestal
plasma is related to the resistive time scale, which is usually largest time scale in
tokamaks. For low ITER relevant resistivity ( η ≃ 10−9, corresponding to S ≃ 109)
characteristic time could reach 106 Alfven times (≃ 0.1s) [15]. Vertical kicks used
for ELM triggering are also possibly linked to the edge currents generation and,
hence, again local pedestal resistive time scales should be resolved together with
shorter ELM instability scale. Multi ELM cycles will also involve confinement time
scale (≃ 1s) needed for re-heating after the ELM crash. Additional complications
in the simulations of MHD instabilities in tokamaks result from the very high
magnetic Reynolds numbers (S ≃ 106−109) leading to the very thin current layers
and structures and the large anisotropy of the directions parallel and perpendicular
to the magnetic field. For example the typical ratio of parallel and perpendicular
energy conductivities

κ‖

κ⊥
≃ 108 to 1010.

The finite element method is the often used technique for the computer-based
MHD simulations when applied to fusion devices and hinges [12, 9, 10, 11, 13]
on the assumption that the discretized domain and the field of the model are
represented both by the mean of piecewise polynomials functions. Eventually, this
representation can also insure the continuity of derivatives with Bell, Powell-Sabin
or B-splines elements. However, as target flows can be dominated by advection,
we need numerically dissipation to enforce stability and robustness. Moreover,
this dissipation should be design to preserve the background equilibrium (non-
constant in space) and also to be consistent with the inherent anisotropy of the flow
structure. The strategy considered is design in the Taylor-Galerkin framework.
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According to Lax-Wendroff technique [1, 2] the solution is expanded in time using
higher order (2 or 3) Taylor formula. Then, using the partial differential equation
under concern, space derivatives are substituted to time derivatives. The current
strategy is based on TG2/TG3 semi-implicit Taylor-Galerkin methods proposed
in [4]. After linearization and simplifications, the stabilized semi-discrete (in time)
approximation may be written in the following compact form

(1)
δω

δt
+ θ

(

L(∂x, ω
n+1)− L(∂x, ω

n)
)

− δtξ

2
∂2A∗ωn+1 = −L(∂x, ωn) +

δtβ

2
∂2A∗ωn

where the state vector ω contains the density, the velocity, the pressure, the
temperature and the magnetic field formulated with the potential vector in or-
der to achieve divergence free constraint. This potential formulation introduces
higher order derivatives and can need, for well posedness of the weak formulation,
smooth trial functions that are at least C1. Numerical dissipations are second
order derivatives in the characteristic lines associated to the linearized matrix A∗ :
∂2A∗ω = ∇· (A∗ ⊗A∗∂xω) . The linearized Jacobian A∗ is derived from L and par-
ticularly the ideal MHD component such as to insure that ∂2A∗ω is a self-adjoint
operator inducing stabilization, ξ and β are free parameter of the stabilization.
This strategy turn out to be a generalization of the “Harned and Kerner” method
[8]. When applied to Reduce MHD equations, significant stability improvement is
obtained with with almost the same numerical accuracy. Work is underway to im-
plement and assess the performance of the full MHD equations in vector potential
formulation.
Acknowledgment : This work is funded by the French National Agency of Re-
search: ANR-11-MONU-12.
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Non-Stationary Multiscale Irreversible Deformation and Involution
Constraints

Ilya Peshkov

(joint work with Evgeny Romenski)

We would like to present our recent results on formulation of the equations gov-
erning motion of a generalized (i.e. fluid or solid) continua and discuss the role
of involution constraints like ∇×A = B in the multiscale continual modelling of
irreversible deformation.

The base of our research is the elastoplastic model of hyperelastic type with
relaxation terms describing plastic deformation derived by Godunov and Romenski
in [1]. Our current understanding of irreversible deformation is saying that this
model can be used in order to describe elastoplastic deformation of solids as well
as flows of viscous fluids (whether Newtonian or non-Newtonian). In the Eulerian
framework, the model is:

(1)

∂ρvi
∂t

+
∂(ρvivk + ρamiEamk

)

∂xk
= 0,

∂aik
∂t

+
∂aimvm
∂xk

= −vj
(

∂aik
∂xj

− ∂aij
∂xk

)

− φik
τ
,

∂ρs

∂t
+
∂ρsvk
∂xk

= η.

Here, v = (v1, v2, v3)
T is the velocity, A = [aij ] is the inverse of the elastic de-

formation gradient E = A−1 (i.e. we use the multiplicative decomposition of the
overall deformation gradient F = EP onto the elastic E and plastic part P), s
is the entropy, ρ = ρ0 detA is the mass density, ρ0 is the reference mass density,
E = E(I1, I2, I3, s) is the internal energy, where Ii are the invariants of the tensor
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G = ATA, i.e. I1 = tr
√
G, I2 = trG, I3 = det

√
G = ρ/ρ0, τ is the strain dis-

sipation (due to microstructure rearrangement) characteristic time, the tensorial
function φik sets the “direction” of the strain dissipation, η = Eaik

φik/τ is the
entropy production source term due to the strain dissipation φik/τ .

The most critical constitutive function here is τ . It has a clear physical meaning
in case a material is in the condensed state (solid or liquid) – it is the time that
particles live in a certain place in the microstructure (e.g. in elastic solids, particles
live infinite time in a certain place in the microstructure and τ = ∞). In turn, in
the definition of τ we use another critical function σY that is the yield limit. It
also plays a role of the switcher between solid-like and fluid-like motion. Namely,
σY is a function of the temperature T = Es and σY > 0 in case of a solid, and
σY = 0 in case of a fluid. At the first sight, it may seem that the equality σY = 0
results in the absence of tangential stresses in fluids at all. It is really so if τ = 0
(i.e. instantaneous microstructure rearrangement), but if τ > 0 then, in a relaxed
media, the actual (current) yield limit σAY depends on the deformation rate and it
is always greater then σY . As the deformation rate tends to zero then σAY → σY
and the tangential stresses eventually disappear.

It also may seem that the plan to describe fluid flows in terms of strains will
fail, but the fact is that the inverse elastic strain tensor A (or E), used as a state
variable, is always remains small and thus it is an appropriate state variable for
fluid-like motions. Remark that the overall deformation gradient F and the plastic
strain tensor P potentially can grow unlimitedly in fluid flow applications.

Therefore, model (1) is a pure hyperbolic alternative to the Navier-Stokes model
for viscous fluids. Though, the application range of (1) is wider, e.g. it also can be
applied to flows of non-Newtonian liquids if the strain dissipation time τ is chosen
in an appropriate way.

According to our approach, the internal energy for a viscous fluid should have
the following form:

E = Eclass(ρ, s) + Evisc(ρ, I2, I3, s),

where Eclass is a classical internal energy for fluids and Evisc is the term that is
responsible for the generation of viscous stresses (see the momentum Eq. in (1)).

Then, we extend the model in order to take into account more microscopic
details. The true source of irreversible deformation of a real material (whether solid
or fluid) are the microscopic slips. We shall rather use the notion of defects. In
case of fluids, slips produce microscopic vortices and thus defects can be associated
directly with these eddies. We believe that such microscopic events as generation,
migration, interaction and self organizing behaviour of defects is quit important
in case of highly unsteady non-equilibrium processes as turbulence in fluids or
damage/fracture of solids. Therefore, model (1) should be extended in order to
take dynamics of defects into account.

The extension is closely connected with involution constraints of system (1).
The non-conservative term on the r.h.s. of the second Eq. in (1) is (∇ × A)v.
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Since the tensor ∇×A satisfies to an extra conservation law:

(2)
∂bij
∂t

+
∂

∂xk
(vkbij − vjbik + εjmkφim) = 0,

where we denote B = [bij ] = ∇ × A, then the introduction of B as a new state
variable allows to treat the non-conservative term as a classical (with no spatial
derivatives) source term Bv. Therefore, system (1) jointly with Eq. (2) forms a
system of non-homogeneous conservation laws. Though, the extended model have
an involution constraint, i.e. the two state variables A and B have a differential
connection B = ∇ ×A. The numerical method capable to solve system (1), (2)
and preserving the connection B = ∇×A is unknown.

Recall that the tensor B has a physical meaning of density of defects (e.g. see
[1]). Thus, the resulting defect based model is presented by system (3) below. We
use the notations B and D = [dij ] for the defect density and rate of defect density,
f = (f1, f2, f3)

T = ∇·B and g = (g1, g2, g3)
T = ∇·D. Also, the strain dissipation

tensor φik/τ and the energy E should be chosen in a consistent way with the rate
of defect density so that φik/τ = Edik

.
An internal energy function E(A,B,D, s) for the extended model may be con-

(3)

∂ρvi
∂t

+
∂(ρvivk − ρbmkEbmi

− ρdmkEdmi
+ ρamkEami

)

∂xk
= 0,

∂aik
∂t

+
∂aimvm
∂xk

= −εkmlvmbil − Edik
,

∂bij
∂t

+
∂

∂xk
(vkbij − vjbik + εjmkEdim

) = −vjfi,

∂dij
∂t

+
∂

∂xk
(vkdij − vjdik − εjmkEbim) = −vjgi − Jij ,

∂fi
∂t

+
∂fivk
∂xk

= 0,
∂gi
∂t

+
∂(givk + Jik)

∂xk
= 0.

structed in the following way

E = Eclass(ρ, s) + Evisc(ρ, I1, I2, s) + Edefect(ρ,B,D, s),

where the last term is responsible for the generation of stresses due to nucleation,
migration and interaction of defects. As can be seen from the momentum equation
in system (3), the overall stress tensor T is given by the formula

T = ρBTEB + ρDTED − ρATEA.

Conclusion. The quest for the ultimate turbulence model has been ongoing
for nearly a century now. But at the moment, there are at least 30 models of
turbulence, meaning that the quest is still in progress. In turn, this means that
there is still no sufficient understanding of turbulent flows amongst the modeling
community. One of the reasons for that is a strong belief that the Navier-Stokes
model (NSm) is a genuine model for viscous flows. However, it is clear that the
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NSm is just an approximation to real flows. Moreover, it has crucial drawbacks.
Namely, (i) the viscous stress tensor is a phenomenological one and was derived
from observations on steady flows, while the turbulence is a highly unsteady phe-
nomena; (ii) the NSm is a parabolic type model (i.e. it admits infinite velocity of
disturbance propagation), while, by its nature, a flow of a fluid is a pure hyper-
bolic process (all disturbances propagate at finite velocities); (iii) in addition, the
mathematical regularity of the NSm is not clear (it is still one of the six unsolved
Millennium Prize Problems that were stated by the Clay Mathematics Institute).

We hope that our results on formulation of defect based pure hyperbolic and
pure non-stationarymodel will help to progress in modelling of such complex highly
unsteady phenomena as turbulent flows of viscous fluids and damage/fracture of
elastoplastic solids.
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Lagrangian/Eulerian Multiphysics Modeling and deRham Complex
Based Algorithms

Allen C. Robinson

Multiphysics hydrodynamic modeling in an arbitrary Lagrangian/Eulerian (ALE)
framework leads naturally to numerical algorithms which match the geometric
meaning of the operators in the deRham complex. We discuss our experience with
exploring and utilizing these concepts in tracking solid kinematics and magnetohy-
drodynamics (MHD). We are also interested in exploring whether these concepts
may be effectively utilized for the coupled non-reduced versions of Maxwell’s elec-
trodynamics equations and the equations of continuum mechanics and we describe
some thoughts in this regard.

In modeling of solid mechanics, general material response depends on the de-
formation of material with respect to its initial configuration. The inverse de-
formation gradient is curl free. We have explored an algorithm of constrained
transport type connecting H(grad) and H(curl) spaces for remapping the inverse
deformation gradient and compared this with another algorithm which depends
on remapping the stretch and rotation individually [1]. The primary difficulties
encountered included the speed of the algorithm implementation and the fact that
no algorithmic solution was achieved for maintaining both deformation positivity
and the discrete curl free property. An algorithm utilizing optimization based
remap concepts is currently being explored to overcome this obstacle [2].

Moving down the deRham complex diagram we arrive at the connection between
H(curl) and H(div). In our approach for 3D resistive MHD modeling we keep the
magnetic flux on faces as the fundamental variable, require that all algorithmic
components including the initial magnetic field definition, the magnetic diffusion
equations and the remap operators all maintain consistency with a zero discrete
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flux divergence on every element. We use an extended version of the constrained
transport algorithm first introduced for MHD on Cartesian grids by Evans and
Hawley [3]. Our algorithm utilizes the properties of low and extended order face
elements on hexes [4].

Moving to more speculative future algorithms, it is interesting to consider if a
capability can be developed which continues to maintain the deep natural connec-
tion to the physics operators in Maxwell’s equations but yet does not remove the
displacement current term. Desirables for such an algorithm would be that it could
effectively bridge between electro-quasistatic and magneto-quasistatic regimes by
reducing to these approximations for time steps that are large relative to ∆x/c and
usefully retain a relevant concept of charge. Such a formulation would give addi-
tional insight as well as greater flexibility in defining physically relevant boundary
value problems. We discuss a possible formulation and show how a deRham com-
plex based remapping of the electric displacement is achievable by combining ideas
from divergence free remap and standard volume based remap algorithms which
operate in the H(div) to L2 transition in the deRham complex. Thus we complete
a full algorithmic tour of the deRham complex.

Sandia National Laboratories is a multi-program laboratory managed and op-
erated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.
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Lagrangian Origin of Involution-Constrained Hyperbolic Systems of
Conservation Laws and Equivalent Eulerian Formulation

Evgeniy Romenski

The goal of this talk is to demonstrate that the presence of time independent
constraints is an essential feature of the continuum physics equations. It is known
that some equations of mathematical physics can be derived as the Euler-Lagrange
equations by the minimization of Lagrangian. As an example one can consider
nonlinear elasticity equations in Lagrangian coordinates and Maxwell’s equations
of electrodynamics [1]. If we formulate governing equations as the first order
hyperbolic system in both these examples, then the solution must satisfy time
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independent constraints such as zero curl of the deformation gradient for elas-
ticity equations and zero divergences of electric and magnetic field for Maxwell’s
equations.

We consider Lagrangian of the general form, the density of which is represented
as the difference between the kinetic and potential energies:

(1) L =

∫ (

1

2

∂xi

∂t

∂xi

∂t
− U

(

∂xi

∂ξj
,
∂θ

∂t
,
∂θ

∂ξk
,−∂Am

∂t
+

∂θ

∂ξm
, εmpq

∂Ap

∂ξq

))

dξdt.

Here ξi are Lagrangian coordinates of the particle with Eulerian coordinates xi,
θ is the scalar potential for the fluid flow through element of the medium, Am

is the vector magnetic potential for electromagnetic field, θ is the scalar electric
potential for electromagnetic field, εmpq is the Levi-Civita symbol.

The minimization of the above Lagrangian gives us the Euler-Lagrange equa-
tions of continuous media in the presence of electromagnetic field. Introducing

new variables ui = ∂xi

∂t - velocity of the particle, F i
j = ∂xi

∂ξj - deformation gradient,

n = ∂θ
∂t - fluid density, ηk = ∂θ

∂ξk
- flux of fluid flow, dm = −∂Am

∂t + ∂θ
∂ξm - electric

field, hm = εmpq
∂Ap

∂ξq - magnetic field, then rewriting Euler-Lagrange equations in

terms of these variables and adding compatibilty conditions one can obtain the
system of first order equations:

∂ui

∂t
− ∂

∂ξj

(

∂U

∂F i
j

)

= 0,
∂F i

j

∂t
− ∂ui

∂ξj
= 0,

∂

∂t

(

∂U

∂n

)

+
∂

∂ξm

(

∂U

∂ηm

)

= 0,
∂ηm
∂t

− ∂n

∂ξm
= 0,

∂

∂t

(

∂U

∂dm

)

− εmpq
∂

∂ξp

(

∂U

∂hq

)

= 0,
∂hm
∂t

+ εmpq
∂dq
∂ξp

= 0.

The solution to the above system must satisfy to the set of steady constraints
which is a consequence of the definition of the parameters of state:

∂F i
j

∂ξk
− ∂F i

k

∂ξj
= 0,

∂ηm
∂ξk

− ∂ηk
∂ξm

= 0,
∂hm
∂ξm

.

An additional steady equation ∂
∂ξp

(

∂U
∂hp

)

= 0 follows from the minimization pro-

cedure.
Thus, we see that the solution of the Euler-Lagrange equations obtained from

the minimization of Lagrangian (1) must satisfy time independent constraints
which appear intrinsically as a result of formulation of the equations as the first
order system. Note, that an arbitrary number of variables (parameters of state)
qi can be included to the potential energy, evolution in time of which described by
the equation ∂qi

∂t = 0. The most important variable of such a type is S - specific

entropy and corresponding equation is ∂S
∂t = 0 (we consider processes without

dissipation in which there is no entropy production).
The system of Euler-Lagrange equation together with the compatibility equa-

tions can be formulated as a thermodynamically compatible system of hyperbolic
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conservation laws in Lagrangian coordinates described in [2]. To do this it is nec-
essary to define generating variables and generating potential L connected with
the parameters of state ui, F i

j , n, ηk, dm, hm and potential energy U . Finally we
come to the system formulated in [2]

∂Lui

∂t
− ∂pij
∂ξj

= 0,

∂Lpij

∂t
− ∂ui
∂ξj

= 0,

∂Ln

∂t
+
∂Jm
∂ξm

= 0,

∂LJm

∂t
+

∂n

∂ξm
= 0,

∂Ldm

∂t
− εmpq

∂bq
∂ξp

= 0,

∂Lbm

∂t
+ εmpq

∂dq
∂ξp

= 0,

∂Lsi

∂t
= 0.

Solution to this system satisfies an additional energy conservation law

∂

∂t

(

L− uiLui
− pijLpij

− nLn − JmLJm
− dmLdm

− bmLbm − siLsi

)

− ∂

∂ξk
(uipik + nJk − εkqmdqbm) = 0.

It is easy to see that the latter system can be rewritten in the symmetric form and
if L(ui, pij , n, Jm, dm, bm, si) is a convex function, then it is a hyperbolic system
in the sense of Friedrichs. We emphasize that steady constraints remain the same
and in terms of generated potential and variables read as

∂Lpij

∂ξk
− ∂Lpik

∂ξj
= 0,

∂LJm

∂ξk
− ∂LJk

∂ξm
= 0,

∂Ldm

∂ξm
= 0,

∂Lbm

∂ξm
= 0.

Note that equations written in terms of generating potential L have a coupled
structure of equations and each couple is responsible for the description of different
processes. The first pair represents nonlinear elasticity, the first and the second
pairs can be taken for the description of fluid flow through element of the medium
and the third one takes into account electromagnetic field. Thus one or the other
model of continuous medium in Lagrangian coordinates can be constructed with
the use of this system (see for example Lagrangian equations of magnetohydrody-
namics presented in [3]).

In fact if we want to study real processes, then in many cases the Eulerean
version of equations is preferable. The Eulerean reformulation of Lagrangian ther-
modynamically compatible system described above is presented in [2],[4],[5]. Ap-
plication of this Eulerian master system to design conservative models for different
media is presented in [5, 6]. In some cases dissipation leads to the violence of steady
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constraints in Eulerian formulation of equations and additional artificial variables
should be introduced in order to save the conservative form of equations. In recent
years this approach has been successfully applied to the development of two-phase
compressible flow models [7].

Summarizing all above we emphasize again that the presence of time indepen-
dent constraints is an essential feature of hyperbolic conservation laws in contin-
uum physics and advanced numerical methods should take this fact into account.
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Correction Schemes to Satisfy Involutions in Hyperbolic PDEs: MHD
and Vlasov Equations

James Rossmanith

(joint work with A. Christlieb, C. Helzel, B. Taetz, Q. Tang)

Partial differential equations (PDEs) with involutions and/or additional conserva-
tion properties are ubiquitous in plasma physics applications. Mimetic approaches
strive to satisfy these properties through careful numerical constructions that
mimic important properties on the continuous level. However, in many systems
that model physically interesting problems, it is generally not well understood how
to generate appropriate mimetic schemes that satisfy all of the desired properties.
Therefore, the philosophy espoused in this work can be summarized as follows:
(1) produce a numerical prediction to the PDE of interest that in general does not
satisfy the desired involution or additional conservation properties; then (2) gen-
erate a correction that when combined with the prediction produces a numerical
approximation that does satisfy the desired involution and/or additional conser-
vation property. The two examples considered here are (1) the divergence-free
constraint of the magnetic field in the ideal magnetohydrodynamic (MHD) system
and (2) energy conservation in the Vlasov-Poisson system.
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The ideal MHD equations are a first order hyperbolic system of conservation
laws that can be written in the form

∂

∂t









ρ
ρu
E
B









= −∇ ·









ρu
ρuu+

(

p+ 1
2‖B‖2

)

I−BB
u
(

E + p+ 1
2‖B‖2

)

−B (u ·B)
uB−Bu









,(1)

∇ ·B = 0,(2)

where ρ, ρu and E are the total mass, momentum and energy densities, and B is
the magnetic field. The termal pressure, p, is related to the conserved quantities
through the ideal gas law

(3) p = (γ − 1)

(

E − 1

2
‖B‖2 − 1

2
ρ‖u‖2

)

,

where γ = 5/3 is the ideal gas constant. Here ‖ · ‖ denotes the Euclidean vector
norm.

Since the magnetic field is divergence-free, it can be written as the curl of a
magnetic vector potential:

(4) B = ∇×A.

Plugging the above relationship into the evolution equation for B and invoking
the Weyl gauge conditions (see Helzel et al. [4]), we obtain the following evolution
equation for the magnetic vector potential:

(5) A,t = −N1(u)A,x −N2(u)A,y −N3(u)A,z,

with

(6) N1 =





0 −u2 −u3
0 u1 0
0 0 u1



 , N2 =





u2 0 0
−u1 0 −u3
0 0 u2



 , N3 =





u3 0 0
0 u3 0

−u1 −u2 0



 .

It can be shown that this system is only weakly hyperbolic [4].
The basic predictor-corrector framework described in this work is based on the

following algorithm:

(0) Start with Qn
MHD = (ρn, ρun, En,Bn)) and Qn

A = An (the solution at tn).
(1) Independently update the MHD system (1) and the magnetic vector po-

tential equation (6):

Q∗
MHD = Qn

MHD +∆tL(Qn
MHD),

Qn+1
A = Qn

A +∆tH(Qn
A,u

n),

where L is a discrete version of the right-hand side of (1), H is a discrete
version of the right-hand side of (6), andQ∗

MHD = (ρn+1, ρun+1, En+1,B∗).
B∗ is the predicted magnetic field that in general does not satisfy a discrete
divergence-free constraint.
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(2) Replace B∗ by a discrete of the magnetic potential Qn+1
A :

Bn+1 = ∇×Qn+1
A .

This discrete curl will be defined appropriately so that ∇ · Bn+1 = 0 for
some appropriate definition of the discrete divergence operator.

We describe in this talk recent work on weighted essentially non-oscillatory
(WENO) schemes. A finite volume WENO method was developed in Helzel et
al. [5]. This method uses a modified version of the non-conservative finite volume
method of Castro et al. [1] to solve the weakly hyperbolic system (6). A finite
difference WENO version of this approach was developed in Christlieb et al. [3].
This method uses a version of the WENO scheme for Hamilton-Jacobi equations
[6] to solve (6). For both the FV-WENO and the FD-WENO schemes, special
limiters were designed to control unphysical oscillations in the corrected magnetic
field.

In the second part of the talk we describe a high-order semi-Lagrangian discon-
tinuous Galerkin scheme for solving the Vlasov-Poisson system [7]:

f,t + v · ∇xf −E · ∇vf = 0,(7)

E = −∇xφ, −∇2
xφ = ρ0 − ρ(t,x).(8)

There are several challenges in solving the Vlasov-Poisson system, including (1) f is
a function of as many as 7 independent variables: (t,x,v), (2) there is a potentially
severe time-step restriction due to the possibility of particles with large velocities,
v, (3) the distribution function should remain positive f > 0 in order to remain
physically meaningful, and (4) Vlasov-Poisson is a Hamiltonian system and thus
there are an infinite number of quantities that are conserved; in many applications
the most important of these are the charge density and the total energy.

In this talk we describe a semi-Lagrangian scheme using the standard operator
splitting approach of Cheng and Knorr [2]. Using a high-order discontinuous
Galerkin discretization in phase space, we develop positivity-preserving limiters
using a modification of the ideas developed by Zhang and Shu [8]. This basic
scheme allows for large time-steps, keeps the distribution function positive, and
conserves the charge density. The missing ingredient is the conservation of total
energy. In this talk we describe some potential strategies for achieving conservation
of energy.
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Constrained Data Transfer

Mikhail Shashkov

In this presentation we consider two examples of constrained data transfer.
First example, is conservative interpolation of divergence-free vector field from

one mesh to another, [1] The algorithm is based discrete vector calculus and consist
of an explicit recovery, postprocessing and interpolation of a potential for the
original vector field and a subsequent application of a curl operator to obtain the
desired divergence-free discrete vector field on the new mesh. Old and new meshes
are neither required to have the same connectivity, nor to be close to each other.

Second example, is the interpolation of the fluid velocity field from the old to
new mesh (which has the same connectivity), [2] . Standard interpolation generate
a discrepancy between the remapped kinetic energy, and the kinetic energy that
is obtained from the remapped nodal velocities which conserves momentum. In
most hydro codes, this discrepancy is redistributed to the internal energy of ad-
jacent computational cells which allows for the conservation of total energy. This
approach can introduce oscillations in the internal energy field, which may not
be acceptable. We describe approach, which eliminates (when it is possible) or
reduces the energy discrepancy.
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Handling the divergence constraints in the Vlasov-Maxwell system

Eric Sonnendrücker

(joint work with M. Campos Pinto, N. Crouseilles, S. Salmon)

The evolution of a plasma, which is a gas of charged particles, can be described
by the Vlasov-Maxwell equations. The Vlasov equation for a species of particle
indexed by s reads

∂fs
∂t

+ v · ∂fs
∂x

+
q

m
(E+ v ×B) · ∂fs

∂v
= 0,

wherem is the mass of the particles, q their charge and f ≡ f(x,v, t) represents the
particle density in phase space at point (x,v) and at time t. It has the structure
of a transport equation in phase space which includes the three dimensions of
physical space and the three dimensions of velocity space (or momentum in the
relativistic case). The self-consistent electromagnetic field can be calculated by
coupling with Maxwell’s equation with sources that are the charge densities and
current calculated from the particles:

− 1

c2
∂E

∂t
+ curl B = µ0 J,

∂B

∂t
+ curl E = 0,

div E =
ρ

ǫ0
,

div B = 0,

with

ρ(x, t) = q

∫

f(x,v, t) dv, J(x, t) = q

∫

f(x,v, t)v dv.

It is well known, that the constraints div E = ρ
ǫ0

and div B = 0 are satisfied at
all times, provided they are satisfied at time t = 0 and the continuity equation
∂ρ
∂t + div J = 0 is satisfied and when the electromagnetic field is a solution of
the two first of Maxwell’s equations. Moreover, if this continuity equation is not
satisfied, Maxwell’s equations are ill-posed.

The same is true at the discrete level, and care has to be taken so that the
particle distribution f remains consistent with all of Maxwell’s equation. One
possibility, which was introduced in [4, 5] is to modify Maxwell’s equations so that
they remain well posed in all case and that a correcting potential p can absorb the
error in the continuity equation at each time step.

− 1

c2
∂E

∂t
+ curl B−∇p = µ0J,

∂B

∂t
+ curlE = 0,

g(p) + div E =
ρ

ǫ0
,

div B = 0.
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This implies
∂g(p)

∂t
− c2∆p =

1

ǫ0
(
∂ρ

∂t
+ div J),

with g = 0, Id, ∂t.
In this talk we are interested in methods that conserve at the discrete level the

properties of the continuous equations. In particular denoting curlh and divh the
discrete curl and div operators. We are looking for methods such that divhcurlh =
0 and that also satisfy a discrete continuity equation. All this on the one hand
for Particle In Cell (PIC) method [3] and on the other hand for semi-Lagrangian
methods [6].

For this we need first a solver that verifies a discrete exact sequence.

H1 grad−→ H(curl)
curl−→ H(div)

div−→ L2.

This is provided by many solvers in the framework of discrete exterior calculus
introduced recently by Arnold, Falk and Winther [1].

In practice for the PIC method, we use a Maxwell solver based on the following
conforming high order discrete spaces: Lagrange, Nedelec, Raviart-Thomas, Dis-
ccontinuous Galerkin. The first of the spaces chosen dictates the order of all of
them. The it remains to compute the current and charge density from the particles
so that a discrete continuity equation is satisfied. This is done in weak form by
using a weak form of Ampère’s equation and Gauss’ law. The discrete continuity
then follows naturally by taking care of integrating the source terms exactly by
using a Gauss integration of sufficiently high order to be exact for the polynomials
considered on each cell.

For the Semi-Lagrangian method, we use a split procedure as in [7] and note
that the continuity equation only follows from the advection in x part as long
as the advection in v is conservative. The algorithm then consists in a careful
computation of the fluxes in relation with the Maxwell solver as in [2].
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