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Abstract. During recent years the focus of scientific interest has turned
from low dimensional stationary time series to nonstationary time series and
high dimensional time series. In addition new methodological challenges are
coming from high frequency finance where data are recorded and analyzed
on a millisecond basis. The three topics “nonstationarity”, “high dimension-
ality” and “high frequency” are on the forefront of present research in time
series analysis. The topics also have some overlap in that there already ex-
ists work on the intersection of these three topics, e.g. on locally stationary
diffusion models, on high dimensional covariance matrices for high frequency
data, or on multivariate dynamic factor models for nonstationary processes.
The aim of the workshop was to bring together researchers from time se-
ries analysis, nonparametric statistics, econometrics and empirical finance to
work on these topics. This aim was successfully achieved and the workshops
was very well attended.

Mathematics Subject Classification (2010): 62M10.

Introduction by the Organisers

The workshop Statistical Inference for Complex Time Series Data, organised by
Rainer Dahlhaus (Heidelberg), Oliver Linton (Cambridge), Wei-BiaoWu (Chicago)
and Qiwei Yao (London), was held in 22-28 September 2013. The workshop was
well attended with 51 participants with broad geographic representation from
Europe, Australia, Canada and USA. The participants formed a nice blend of
researchers with various backgrounds including statistics, probability, machine
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learning and econometrics. A considerably large proportion of the participants
were early career academics, post-doctoral researchers and some PhD.

29 talks of varying lengths were delivered during the five days. The talks were
given by both leading experts in the field as well as by up-coming young scien-
tists. In addition, there were seven 10 minute sessions with title “People and
Topics” which featured short presentations on ongoing research projects and brief
introductions on themselves of young researchers. Participants found those short
presentations informative and effective.

There were several major themes in the various sessions, including local station-
ary time series models, high-dimensional modeling, high-frequency data, volatility
estimation in finance, change-point detection for dependent data, and GARCH
models. Overall the meeting generated a great deal of discussion and often smaller
groups of people met in the evenings for additional spontaneous lectures and de-
tailed discussions. A number of important research contacts were made which we
expect to stimulate new collaborative research projects.

In addition to the excellent scientific exchanges, the traditional Wednesday
afternoon hike was blessed by excellent weather and delicious black-forest cake.
It is important to note that this social event also has a high impact on scientific
exchange and on stimulating new collaborative research. Those participants who
had never visited Oberwolfach before, left with a clear impression on the MFO and
its high valued contribution to the global mathematical community. There was
also a strong consensus that the theme “Complex Time Series” should appear more
regularly in the Oberwolfach workshop program to reflect the rapid development
in mathematics and statistics driven by this information age.
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The Marčenko–Pastur Law for Time Series . . . . . . . . . . . . . . . . . . . . . . . . . 2753

Richard A. Davis (joint with Thomas Mikosch, Oliver Pfaffel)
Largest eigenvalues of the sample covariance matrix for p-variate time
series with heavy-tails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2755

Herold Dehling (joint with Roland Fried, Aeneas Rooch, Murad Taqqu,
Martin Wendler)
Asymptotic distribution of some robust change-point tests for time series 2757

Paul Doukhan
Weak dependence, models limit theory and an application to DNA
modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2760

Michael Eichler
Graphical time series models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2763

Jianqing Fan (joint with Yuan Liao)
Incidental Endorgeneity in high-dimensional statisticse . . . . . . . . . . . . . . . 2765

Jürgen Franke (joint with Mark Fiecas, Rainer von Sachs, Joseph
Tadjuidje-Kamgaing)
Stable estimates for high-dimensional hidden Markov models . . . . . . . . . . 2766

Piotr Fryzlewicz
On multi-zoom autoregressive time series models . . . . . . . . . . . . . . . . . . . . 2769

Yulia R. Gel
Functional Ridge Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2772
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Abstracts

The Marčenko–Pastur Law for Time Series

Alexander Aue

(joint work with Haoyang Liu, Debashis Paul)

Spectra of high-dimensional covariance matrices appear in portfolio choice prob-
lems in finance, determining the channel capacity in wireless communications and
modeling the highly excited states in nuclear physics, among other applications.
In this talk, we consider high-dimensional zero mean linear time series of the form
Xt =

∑∞
ℓ=0 AℓZt−ℓ, where (Zt : t ∈ Z) is a sequence of p-dimensional real or

complex-valued random vectors with independent, zero mean, unit variance en-
tries, and (Aℓ : ℓ ∈ N0) are symmetric and simultaneously diagonalizable p × p
coefficient matrices. Assuming that X1, . . . , Xn are observed, we consider the as-
ymptotic framework where p → ∞, n → ∞ while p/n → c > 0. The sample
covariance matrix is defined as S = 1

n

∑n
t=1XtX

∗
t . We also study symmetrized

autocovariance matrices which, for lags τ ∈ N0, are defined as

Cτ =
1

2n

n−τ∑

t=1

(XtX
∗
t+τ +Xt+τX

∗
t ).

When τ = 0, Cτ reduces to S. The empirical spectral distribution (ESD) FS

of S is given by FS(λ) = 1
p

∑p
j=1 1{λj≤λ}, where λ1 ≥ λ2 ≥ · · · ≥ λp are the

eigenvalues of S. When p/n stays away from 0, as n→∞, the ESD of S is away
from the spectrum of the population covariance matrix even for large p. Deriving
the limiting ESD for S when p → ∞, n → ∞ while p/n → c > 0 is funda-
mental to understanding the correlation structure of a large number of variables
using finite samples. There have been works on the limiting ESD of the sample
covariance matrix for different models of Xt. The classical Marčenko–Pastur law
established in [2] is concerned with i.i.d. Xt without temporal or dimensional de-
pendence. [3], among others, considered random vectors of the form Xt = AZt

allowing for dependence across rows but not time. Recently, [1], [4] and [5] consid-
ered p-dimensional time series with independent and identically distributed rows.
Our work goes beyond the existing contributions and is the first one to derive
the limiting behavior of both sample covariance and symmetrized autocovariance
matrices. The large-sample results for the symmetrized autocovariance matrices
can be particularly useful for constructing high-dimensional diagnostic tests for
the presence of correlation, setting up high-dimensional prediction equations, de-
termining the order of a high-dimensional time series and estimating the spectrum
of the population autocovariance matrices. Indeed, a computational method is
developed to estimate the spectra of the coefficients of low order moving average
processes by using the results presented here.
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The main result (Theorem 1 below) involves the derivation of a system of non-
linear equations for the Stieltjes transform of the probability distribution represent-
ing the limiting ESD of the sample covariance matrix and the lag-τ symmetrized
sample autocovariance matrices. The Stieltjes transform of a probability distribu-
tion P on R is defined as

sP (z) =

∫
dP (λ)

λ− z , λ ∈ C
+ = {u+ iv : v > 0}.

Under mild technical conditions, pointwise convergence of the Stieltjes transforms
for a sequence of probability distributions ensures the weak convergence of the
sequence. For simplicity of the exposition, Theorem 1 is stated for MA(1) pro-
cesses. In order to state the result, define h(λ, ν) = 1 + 2 cos(ν)λ + λ2, where
ν ∈ [0, 2π], the spectrum (up to normalization) of the univariate MA(1) process
xt = zt + λzt−1, t ∈ Z, where λ ∈ R and (zt : t ∈ Z) a univariate white noise
process.

Theorem 1. Suppose that (Xt : t ∈ Z) satisfies the following assumptions:

(a) n is assumed to be a function of p, that is, cp = p/n(p)→ c > 0 as p→∞.
(b) Zt = [Z1t, . . . , Zpt]

′ ∈ Cp with i.i.d. Zjt. If the observations are complex-
valued, it is assumed that E[Z11] = 0, E[|ℜ(Z11)|2] = 1/2, E[|ℑ(Z11)|2] =
1/2 and E[|Z11|4] < ∞, and real and imaginary parts are assumed to be
independent. If the observations are real-valued, E[Z11] = 0, E[|Z11|2] = 1
and E[|Z11|4] <∞.

(c) A1 is a p× p Hermitian (symmetric) matrix, independent of the Zt, and
with uniformly bounded eigenvalues.

(d) Almost surely, the ESD of A1 converges weakly to a nonrandom probability
distribution function FA1 as p→∞.

Then, almost surely, the ESD of Cτ , F
Cτ , converges weakly to a probability dis-

tribution Fτ with Stieltjes transform sτ (z), determined by the equation

(1) sτ (z) =

∫ [
1

2π

∫ 2π

0

cos(τν)h(λ, ν)

1 + c cos(τν)Kτ (z, ν)
dν − z

]
dFA1(λ),

where Kτ (z, ν), for z ∈ C
+ and ν ∈ [0, 2π], is a Stieltjes kernel, i.e., for ev-

ery ν ∈ [0, 2π], Kτ (z, ν) is the Stieltjes transform of a measure with total mass∫
h(λ, ν)dFA1 (λ). Moreover, Kτ (z, ν) is the unique solution to

(2) Kτ (z, ν) =

∫ [
1

2π

∫ 2π

0

cos(τν′)h(λ, ν′)

j1 + c cos(τν′)Kτ (z, ν′)
dν′ − z

]−1

h(λ, ν)dFA1 (λ),

subject to the restriction that Kτ (z, ν) is a Stieltjes kernel.

Theorem 1 has been extended to MA(∞) processes for which the coefficient
matrices (Aℓ : ℓ ∈ N0) are simultaneously diagonalizable in a unitary or orthogonal
basis, and

∑∞
ℓ=0 ℓ‖Aℓ‖ <∞. For MA(∞) processes, the systems of equations are

still given by (1) and (2), but h(λ, ν) is now related to the spectrum of a univariate
MA(∞) process, namely, h(λ, ν) = |∑∞

ℓ=0 e
iℓνfℓ(λ)|, where it is further assumed

that the jth eigenvalue of Aℓ equals fℓ(λ
′
j), for continuous functions fℓ, where
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λ′j ∈ R
d for some d ≥ 1, for each j. In addition, FA1 is replaced by a distribution

on Rd that describes the limiting joint ESD of the coefficient matrices. It is to be
noted that this class contains the class of causal invertible ARMA(q, r) processes
whose coefficient matrices are simultaneously diagonalizable and the corresponding
linear process representations satisfy the requirement

∑∞
ℓ=0 ℓ‖Aℓ‖ <∞.
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Largest eigenvalues of the sample covariance matrix for p-variate time
series with heavy-tails

Richard A. Davis

(joint work with Thomas Mikosch, Oliver Pfaffel)

In the classical multivariate statistics or time series setting, the data consist of n
observations of p-dimensional random vectors, where p is relatively small compared
to the sample size n. With the recent advent of large data sets, the dimension p
can be large relative to the sample size and hence standard asymptotics, assuming
p is fixed relative to n may provide misleading results. Structure in multivariate
data is often summarized by the sample covariance matrix. For example, principal
component analysis, extracts principal component vectors corresponding to the
largest eigenvalues. Consequently, there is a need to study asymptotics of the
largest eigenvalues of the sample covariance matrix. In the case of p fixed and the
p×n data matrix consists of iid N(0,1) observations, Anderson [1] showed that the
largest eigenvalue is asymptotically normal. In a now seminal paper, Johnstone
[6] showed that if pn → ∞ at the rate pn/n → γ ∈ (0,∞), then the largest
eigenvalues, suitable normalized, converges to the Tracey-Widom distribution with
β = 1. Johnston’s result has been generalized by Tao and Vu [8] where only 4
moments are needed to determine the limit. The theory for the largest eigenvalues
of sample covariance and Wigner matrices based on heavy tails is not as well
developed as in the light tailed case. The largest eigenvalues of sample covariance
matrices with iid entries that are regularly varying with index −α were studied
by Soshnikov [7] for the α ∈ (0, 2) case and subsequently extended in Auffinger et
el. [2] to the α ∈ (2, 4) case. They showed that the point process of eigenvalues,
normalized by the square of the 1 − (np)−1 quantile converges in distribution to
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a Poisson point process with intensity (α/2)x−α/2−1, provided p/n → γ, where
γ ∈ (0, 1). These results were extended in Davis et al. [4] to the case where the
rows of the data matrix are iid linear heavy-tailed processes. They also had more
general growth conditions on pn in the case of iid entries and α ∈ (0, 2).

In this paper, we study the asymptotic behavior of the largest eigenvalues of the
sample covariance matrices of a multivariate time series. The time series is assumed
to be heavy-tailed and linearly dependent in time and between the components.
This generalizes and extends Davis et al. [4], who consider multivariate time series
with heavy tails, but the component time series were assumed to be iid copies
of a linear time series. We show that allowing dependence between the rows
can appreciable impact the limit behavior of the largest eigenvalues. Instead of
obtaining a Poisson point process as the limit of the extreme eigenvalues, we
now get a “cluster” Poisson point process. That is, the limit can be described
by a Poisson point process in which each point produces a “cluster” of points.
Interestingly, the limit point process is identical to the limit point process derived
by Davis and Resnick [3] for the extremes of a linear process.

To make the model precise, consider a double array of iid random variables
(Zit)i,t∈Z, a double array of real numbers (hkl)k,l∈Z and construct an infinite-
dimensional time series,

Xit =

∞∑

l=0

∞∑

k=0

hklZi−k,t−l , i, t ∈ Z .(1)

We also assume that a generic element Z of the Z-field satisfies the regularly
varying and tail balance condition

P (Z > x) ∼ p+
L(x)

xα
and P (Z ≤ −x) ∼ p−

L(x)

xα
, x→∞ ,

for some tail index α > 0, where p+, p− ≥ 0 with p+ + p− = 1 and L is a slowly
varying function . To ensure the a.s. absolute convergence of the series (1) we will
need further conditions on (hkl) to be discussed later.

Consider the p× n data matrix

Xn = (Xit)i=1,...,p,t=1,...,n , n ≥ 1 ,

where p = pn is an integer sequence such that pn →∞.
The main focus of study in this paper is the asymptotic behavior of the eigen-

values n times the sample covariance matrix XnX
′
n in the case α ∈ (0, 2) and its

centered version XnX
′
n − EXnX

′
n in the case α ∈ (2, 4). Our main result, yields

an approximation for the sequence of the order statistics of the sample covariance
matrices, showing that the largest eigenvalues of these matrices are to a large ex-
tent determined by the order statistics of the vector D1, . . . , Dp, where, for n ≥ 1,
we define the iid sequence

Ds = D(n)
s =

n∑

t=1

Z2
st , s ∈ Z, .
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A consequence of this approximation is the point process convergence of the nor-
malized eigenvalues of the sample covariance matrices. Based on the point process
convergence , the continuous mapping theorem yields a variety of asymptotic re-
sults for the largest eigenvalues of the sample covariance matrix as well as joint
limit theory for the trace and the largest eigenvalue. In particular, we show that
the ratio of the largest eigenvalue to their sum converges in distribution to the
ratio of a max-stable to a sum-stable random variable. In the special case when
the filter (hkl) is separable, hkl = θkcl, the limit ratio does not depend on the
filter weights (θk), (cl). As a further special case, if the time series consists of iid
vectors with linear dependence between the components the limit behavior of the
eigenvalues is the same as that for iid components.
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Asymptotic distribution of some robust change-point tests for time
series

Herold Dehling

(joint work with Roland Fried, Aeneas Rooch, Murad Taqqu, Martin Wendler)

1. Introduction. We study robust change-point tests for time series, and derive
their asymptotic distribution, both in the short range as well as in the long-range
dependent case. We study the model where the data are generated by Xi = µi+ǫi,
where µi is an unknown signal, and where ǫi is a stationary ergodic noise process
with E(ǫi) = 0. Given the data X1, . . . , Xn, we wish to test the hypothesis H :
µ1 = . . . = µn against the alternative

A : µ1 = . . . = µk 6= µk+1 = . . . = µn, for some 1 ≤ k ≤ n− 1.

In what follows, we will treat both the case of short range dependent (SRD) as
well as long range dependent (LRD) noise.
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Many change point tests can be derived from the two-sample problem that one
obtains when the change point k is known. In this case, we have two samples
X1, . . . , Xk and Xk+1, . . . , Xn, where we want to test for a difference in location.
We consider three tests, namely the Gauss test, the Wilcoxon test and the Hodges-
Lehmann test, which are associated with the (non-normalized) test statistics

1
n−k

∑n
i=k+1Xi − 1

k

∑k
i=1Xi

∑k
i=1

∑n
j=k+1 1{Xi≤Xj}

median{(Xj −Xi) : 1 ≤ i ≤ k, k + 1 ≤ j ≤ n}
After a proper normalization, the first two statistics are special cases of a two-
sample U-statistic

Uk,n−k =
1

k(n− k)

k∑

i=1

n∑

j=k+1

h(Xi, Xj).

The Hodges-Lehmann statistic is the median of the empirical distribution of the
pairwise differences Xj −Xi, 1 ≤ i ≤ k < j ≤ n. More generally, we can study the
empirical distribution and the quantiles of g(Xi, Xj), 1 ≤ i ≤ k < j ≤ n, defining

Uk,n−k(t) =
1

k(n− k)

k∑

i=1

n∑

j=k+1

1{g(Xi,Xj)≤t},

and the quantile function Qk,n−k(p) = U−1
k,n−k(p), where U

−1 denotes the gener-
alized inverse.

In the case of an unknown change point, one takes some summary statistics, e.g.
the maximum over all 1 ≤ k ≤ n. In order to derive the corresponding asymptotic
distribution, we study convergence of the processes obtained by replacing k by
[nλ], 0 ≤ λ ≤ 1. In this way, e.g., we obtain the two-sample U-statistic process
(U[nλ],n−[nλ])0≤λ≤1, and the two-sample quantile process (Q[nλ],n−[nλ](p))0≤λ≤1.

2. Short Range and Long Range Dependence. We have obtained results
under the assumption of Short Range Dependent (SRD) as well as of Long Range
Dependent (LRD) noise. In the SRD case, we assume that the noise has a represen-
tation as a functional of a β-mixing process (Zi)i∈Z, i.e. that ǫi = f(Zi, Zi−1, . . .),
where f is a Lipschitz continuous function. Specific results require further tech-
nical assumptions on the rate of decay of the β-mixing coefficient and on the
continuity of the function f . In the LRD case, we consider Gaussian subordi-
nated processes, i.e. we assume that ǫi = H(ξi), where (ξi)i≥1 is a stationary
Gaussian process with standard normal marginals and autocorrelation function
ρk = k−DL(k), 0 < D < 1, and where H is a measurable function.

3. Two-sample U-processes for SRD data. Consider the Hoeffding decom-
position of the kernel h(x, y) = θ + h1(x) + h2(y) + ψ(x, y), where θ = Eh(X,Y ),
h1(x) = Eh(x, Y )−θ, h2(y) = Eh(X, y)−θ and ψ(x, y) = h(x, y)−θ−h1(x)−h2(y),
and where X,Y are independent with the same distribution as X1.
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Theorem 1 (Dehling, Fried, Garcia, Wendler 2013) Under some tech-
nical conditions, concerning the β-mixing coefficients and the continuity of f and
h, and under the null hypothesis of no change,
√
nλ(1 − λ)(U[nλ],n−[nλ] − θ)0≤λ≤1

D→ ((1− λ)W1(λ) + λ(W2(1)−W2(λ)))0≤λ≤1,

where (W1,W2) is 2-dimensional Brownian motion with covariance structure

E(Wi(λ)Wj(λ)) = (λ ∧ µ)
∑

k∈Z

Cov(hi(X0), hj(Xk)),

for i, j ∈ {1, 2} and 0 ≤ λ, µ ≤ 1.

The proof of this theorem uses the Hoeffding decomposition. The crucial part of

the proof is to show that the remainder term
∑[nλ]

i=1

∑n
j=[nλ]+1 ψ(Xi, Xj) is small,

uniformly in λ. This is achieved by generalized correlation inequalities.

4. Two-sample U-processes for LRD data. Let ǫi = H(ξi), i ≥ 1, be a Gauss-
ian subordinated process, and define Jk(x) = E(1{H(ξ)≤x}Hk(ξ)), where Hk is the
k-th order Hermite polynomial. The smallest integer m such that Jm(x) 6≡ 0 is
called the Hermite rank. Define the normalizing constants dn = Var(

∑n
i=1 Hm(ξi)),

and recall that dn ∼ cn2HLm(n), where H := 1−mD/2 is the Hurst coefficient.

Theorem 2 (Dehling, Rooch, Taqqu 2013a) Let m < 1/D. Then, under
the null hypothesis of no change,

1

dn

[nλ]∑

i=1

n∑

j=[nλ]+1

(
1{Xi≤Xj} −

1

2

)
→
∫
Jm(x)dF (x)

m!
(Zm(λ) − λZm(1)),

where (Zm(λ))0≤λ≤1 denotes an m-th order Hermite process.

Dehling, Rooch and Taqqu (2013b) have investigated the asymptotic distribu-
tion of the Wilcoxon and the CUSUM change point test under local alternatives
and calculated their asymptotic relative efficiencies. In the case of Gaussian er-
rors, the ARE equals 1, while for heavy-tailed data, the Wilcoxon test has superior
power. For finite samples, these results are confirmed by simulations.

Rooch (2012) has studied the asymptotic behavior of the U-statistics process
of LRD data for arbitrary kernels h(x, y), using two different techniques, namely
an empirical process representation of the two-sample U-statistic, and a bivariate
Hermite expansion of the kernel.

5. Hodges-Lehmann change-point test for SRD data. We study the two-
sample U-statistic process with kernel h(x, y; t) = 1{g(x,y)≤t}, indexed by t ∈ R,
and the associated quantile process, and define U(t) = P (g(X,Y ) ≤ t), for X and
Y independent with the same distribution as X0. Moreover, we define the quantile
function Q(p) = U−1(p). We denote the terms of the Hoeffding decomposition of
h(x, y; t) by h1(x; t) and h2(y; t), and let u(t) = U ′(t).
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Theorem 3 (Dehling, Fried, Wendler 2013) Under some technical con-
ditions, concerning the β-mixing coefficients and the continuity of f and g, and
under the null hypothesis of no change, the two-sample quantile process

√
nλ(1− λ)

(
Q[nλ],n−[nλ](p)−Q(p)

)
0≤λ≤1

converges in distribution to the process ((1− λ)W1(x) + λ(W2(1)−W2(λ))0≤λ≤1,
where (W1(λ),W2(λ)) is 2-dimensional Brownian motion with covariance function

Cov(Wi(µ),Wj(λ)) =
µ ∧ λ

u2(Q(p))

∑

k∈Z

E(hi(X0,Q(p))hj(Xk,Q(p))).

The proof uses a Bahadur-Kiefer representation of the quantile process, together
with the above mentioned convergence results for the two-sample U-process.
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Weak dependence, models limit theory and an application to DNA
modeling

Paul Doukhan

1. Dependence

1.1. Independence. The question is: how to weaken stochastic independence ?
P(A ∩ B) = P(A)P(B) relating the events A ∈ σ(P ) of the past history with
those B ∈ σ(F ) in a (not so close) future. also written Cov(f(P ), g(F )) = 0,
∀f, g, ‖f‖∞, ‖g‖∞ ≤ 1. If X = (Xt)t∈Z this relation should be weakened with
P = (Xi1 , . . . , Xiu), F = (Xj1 , . . . , Xjv ), i1 ≤ · · · ≤ iu, j1 ≤ · · · ≤ jv and large
r = j1 − iu. For more general index sets, past and future are simply understood
as distant index subsets.
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1.2. Strong mixing (Rosenblatt, 1956). i.e. limr→∞ α(r) = 0 with
α(r) = supP,F α(σ(P ), σ(F )) and α(σ(P ), σ(F )) = supA,B |P(A ∩B)− P(A)P(B)|.
Bradley (2007) provides a complete and elementary presentation, Rio (2000) pro-
poses sharp technical results and Doukhan (1994) gives examples. It is usually
hard to prove mixing and it some cases one even may prove non-mixing:
A non mixing AR(1)-model, Andrews (1984) and Rosenblatt (1984)

Xt =
1

2
(Xt−1 + ξt) , (ξt ∼ b

(
1

2

)
iid), Xt−1 = frac(2Xt)

Exhibit sets Ir, with dyadic extremities and A = (X0 ∈ [0, 12 ]) ≡ B = (Xr ∈ Ir),
hence: α(r) ≥ |P(A ∩B)− P(A)P(B)| = P(A)− P2(A) = 1

4 .
A bilinear type non-mixing model, Doukhan, Mayo, Truquet (2009)

Xt = ξt(1+aXt−1), P (ξ0 = ±1) = 1/2 iid, a ∈
(3−

√
5

2
,
1

2

]
, Xt =

∑

j≥0

ajξt · · · ξt−j

here, a direct approach following that of Andrews leads to the result. Those simple
examples are by themselves a sufficient reason to exhibit other tools!

1.3. Covariance. Independence sometimes coincides with orthogonality as for the
cases of Gaussian an associated vectors. Recall that a vector V ∈ Rp is associated
if cov(f(V ), g(V )) ≥ 0 for coordinatewise non-decreasing functions f, g : Rp → R
such that this expression is well defined.

1.4. General formulation. (Xt)t∈Z (∈ E), f : Eu → R from a class of functions
F, g : Ev → R from G:

|Cov (f(Xi1 , . . . , Xiu), g(Xj1 , . . . , Xjv ))| ≤ Ψ(f, g)ǫ(r), ǫ(r) ↓ 0
and if Ψ(f, g) = vLipg, then we set ǫ(r) = θ(r);
if Ψ(f, g) = uLipf + vLipg, then ǫ(r) = η(r);
if Ψ(f, g) = uvLipf · Lipg then ǫ(r) = κ(r);
if Ψ(f, g) = uLipf + vLipg + uvLipf · Lipg then ǫ(r) = λ(r), with

Lipf = sup
y 6=x

|f(y)− f(x)|
|y1 − x1|+ · · ·+ |yu − xu|

.

The limit theory and many applications may be found in [3].

2. Models

2.1. Chaotic models. Vector valued models Xt = ξt
(
a +

∑∞
j=1 ajXt−j

)
if φ =

‖ξ0‖m
∑

j ‖aj‖ < 1 then a strictly stationary Lm-solution writes

Xt = ξt

(
a+

∞∑

k=1

∑

j1,...,jk≥1

aj1ξt−j1 · · · ajkξt−j1−···−jka
)

• GARCH(p, q) (Engle, Granger) rt = σtǫt, σ
2
t =

∑p
j=1 βjσ

2
t−j + γ0 +∑q

j=1 γjr
2
t−j .

• ARCH(∞) (Surgailis et al. 2001) rt = σtǫt, σ2
t = β0 +

∑∞
j=1 βjr

2
t−j .
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• Bilinear (Giraitis, Surgailis, 2003) Xt = ζt

(
a +

∑∞
j=1 ajXt−j

)
+ b +

∑∞
j=1 bjXt−j .

2.2. Memory models. Xt = F (Xt−1, Xt−2, Xt−3, . . . ; ξt) (Doukhan and Win-
tenberger, 2008) if (ξt)t∈Z iid, F : (Rd)N×RD → Rd,m ≥ 1, ‖F (0, 0, 0, . . . ; ξt)‖m <
∞ and ‖F (x1, x2, x3, . . . ; ξt)− F (y1, y2, y3, . . . ; ξt)‖m ≤

∑∞
j=1 aj‖xj − yj‖ with

a =
∑∞

j=1 aj < 1, then there exists a weakly dependent strictly stationary solu-

tion Xt = H(ξt, ξt−1, . . .) ∈ Lm.

2.3. Integer valued models. Thining (or Steutel & van Harn) operator is de-

fined as a◦X = sign(X)
∑|X|

i=1 Yi for a > 0, X ∈ Z, (Yi)i is iid, context-independent,
EY0 = a (e.g. Poisson or Bernoulli).

• Galton-Watson process with immigration, INAR Xt = a◦Xt−1+ξt. More
generally Random INAR models Xt = at ◦Xt−1 + ξt, are defined through
stationary (at) such E(at|lF t−1) < 1 (working paper).
• Integral bilinear models Xt = a ◦Xt−1 + b ◦ (εt−1Xt−1) + εt. Estimation
from moments (Doukhan, Latour and Oraichi, 2006).
• GLM integer models Xt|Ft−1 ∼ P (λt) with λt = g(λt−1, Xt−1, . . .) with
Fokianos & Tjostheim (2012) under Lipschitz, with Douc & Moulines for
loglinear and threshold models (2013).

3. Promotors in DNA analysis

The end of the presentation is a fast discussion on joint working papers with
Jean-Paul Feugeas, Xiaoyin Li, and Wei Biao Wu. A zone of DNA chains is
located before protein zones and nucleotids are distributed on {A,C,G, T } with
distributions depending smoothly on there location: P(Xk = A) = pA(k/n) for
k = 1, . . . , n and analogously for other values of the nucleotid.
Let (Uk)k be a stationary sequence with uniformly distributed margins the a simple
model is Xk = 11{Uk≤pA(k/n)}. One may rewrite this as a regression model with

L2−stationary innovations:

Xk = pA(k/n) +
√
pA(k/n)(1− pA(k/n))ξk

A first way to infer on this function pA is to work out a kernel regressor

p̂A(k/n) =
1

nh

n∑

k=1

XkK

(
t− k/n

h

)

Under standard smoothness arguments a CLT provides us with confidence bounds

Zn(t) =
√
nh(p̂A(t)− pA(t)− bn(t))→ N(m(t), σ2(t))

Now a non-stationary invariance principle by Wu and Shao (2007) allows to derive
uniform confidence bounds through asymptotics for ‖Zn‖∞ and allows qualitative
tests of hypothesis. Anyway rates as in Wu and Zhou (2011) need to be improved
in order to avoid bandwidth restrictions.
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Graphical time series models

Michael Eichler

Graphical models have become an important tool for the statistical analysis
of complex multivariate data sets. The key feature of these models is to merge
the probabilistic concept of conditional independence with graph theory by rep-
resenting possible dependences among the variables of a multivariate distribution
in a graph. This leads to simple graphical criteria for identifying conditional inde-
pendences that hold, for instance, in a submodel. Further important advantages
of the graphical modelling approach are statistical efficiency due to parsimonious
parameterizations of the joint distribution of the variables and the visualization
of complex dependence structures, which allows an intuitive understanding of the
interrelations among the variables and, thus, facilitates the communication of sta-
tistical results.

While graphical models originally have been developed for variables that are
sampled with independent replications, they have been applied more recently also
to the analysis of time dependent data (e.g. [1, 2, 3, 4, 5]). However, due to the
added serial dependence, time series exhibit even for a relatively small number of
variables quite complex dependence structures. This leads to theoretical as well
as practical problems with the traditional graphical modelling approaches, where
the variables at different time points are represented by separate nodes.

In this talk, we review new types of graphical models that have been developed
for modelling and analysing multivariate time series. These models are based on
graphs in which each node represents a full stochastic process. This leads to much
simpler graphs with as many nodes as there are variables. With time series as basic
stochastic entities, there are more possibilities to choose the type of conditional
independences encoded by the graph.

The first example for this approach are the partial correlation graphs introduced
by Dahlhaus [2]. These are undirected graphs with an edge i −→ j omitted
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whenever the corresponding two processes are uncorrelated after removing the
linear effects of all other time series. Thus, they are straightforward extension
of Markov random fields to the time series case. Eichler [6] describes graphical
vector autoregressive (VAR) models constrained by such undirected graphs. As the
constraints imposed by the graph on the standard autoregressive parameters are
non-linear, a new parameterization is proposed which yields simple zero constraints
and thus is better suited for model fitting.

One disadvantage of partial correlation graphs is that they do not provide infor-
mation about the dynamic dependences among the variables. As an alternative,
Eichler [7] introduced graphical representations that utilize the concept of Granger
causality [8]. In these Granger causality graphs, directed edges (−→) indicate pos-
sible Granger–causal relationships between variables while undirected edges (999)
are used to map the contemporaneous dependence structure. For Gaussian pro-
cesses, this leads to graphical VAR models with zero–constraints on the autore-
gressive parameters. More general graphical time series models with non-linear
dynamics have been discussed in Eichler [9].

In contrast to undirected graphical time series models, the class of Granger–
causal time series models is not closed under marginalization. This means that
it is possible that the Granger–causal relations of a subprocess in a graphical
VAR model cannot be completely endcoded by a Granger causality graph. The
problem is of importance for the identification of causal structures when part of
the variables are unobserved. The problem can be solved by allowing an additional
type of dashed directed edges (99K) representing Granger–causal relationships that
are induced by latent variables.

For modelling, we consider multivariate stationary Gaussian processes XV that
are given by

XV (t) =
p∑

u=1
Φ(u)XV (t− u) + εV (t),

where εV is a stationary Gaussian process with mean zero and covariances

(1) cov
(
εV (t), εV (t− u)

)
=

{
Ω(u) if |u| ≤ q
0 otherwise

for some q ∈ N. For a given mixed graph G, the parameters are constrained by

a) Φba(u) = 0 for all u > 0 if a −→ b is not in G;
b) Ωba(u) = 0 for all u > 0 if a 99K b is not in G;
c) Ωba(0) = Ωab(0) = 0 if a 999 b is not in G.

Since the process εV is a multivariate moving average process of order q, the
processes XV (t) form a graphical multivariate ARMA(p,q) model. The following
results hold (see [10]):

a) the model satisfies the global Granger–causal Markov property with re-
spect to G;

b) if G satisfies an ancestrality condition (i 99K j /∈ G whenever there exist a
directed path i −→ · · · −→ j in G) the model is identifiably.
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As in the case of graphical VAR(p) models with respect to undirected graphs, the
constraints on the parameters are best expressed in an alternative parameteriza-
tion. In contrast to the other graphical time series models discussed above, the
graph is not defined in terms of a pairwise Markov property. As a consequence
model identification in this more general framework requires new model search
strategies that will be topic of future research.
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Incidental Endorgeneity in high-dimensional statisticse

Jianqing Fan

(joint work with Yuan Liao)

Consider the sparse linear model

Y = XTβ + ε

where β is a high-dimensional sparse vector. Most papers on high-dimensional sta-
tistics are based on the assumption that none of the regressors are correlated with
the regression error, namely, they are exogenous. In other words, the fundamental
assumption

(1) EXjε = 0, j = 1, · · · , p
has been made. Yet, incidental endogeneity arises easily in a large pool of re-
gressors in a high-dimensional regression, namely some of the equations in (1) do
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not hold when p is large. This is demonstrated by various examples in scientific
studies and validated via statistical tests. Incidental endorgeneity causes the in-
consistency of the penalized least-squares method [1, 3], and possible false scientific
discoveries. A necessary condition for model selection consistency of a very general
class of penalized regression methods is given, which allows us to prove formally
the inconsistency claim [2]. To cope with the possible incidental endogeneity, we
[2] construct a novel penalized focused generalized method of moments (FGMM)
criterion function and offer a new optimization algorithm. The FGMM is an ex-
tra filter that excludes all incidental endogenous predictors and rely on the over
identification conditions. To establish its asymptotic properties, we first study the
variable selection consistency for a general class of penalized regression methods.
These results are then used to show that the FGMM possesses the oracle property
even in the presence of incidental endogenous predictors, and that the solution is
also near global minimum under the over-identification assumption. Finally, we
also show how the semi-parametric efficiency of estimation can be achieved via a
two-step approach.
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Stable estimates for high-dimensional hidden Markov models

Jürgen Franke

(joint work with Mark Fiecas, Rainer von Sachs, Joseph Tadjuidje-Kamgaing)

Hidden Markov models (HMM) or, more generally, Markov switching models have
found considerable interest as models for time series with sudden changes between
various regimes - compare [2] for a review. In particular, [4] showed that even the
simple HMMs are able to generate many of the so-called stylized facts of financial
time series. Here, we consider a sample X1, . . . , XN from a d-dimensional time
series which is controlled by a hidden Markov chain Qt assuming only finitely
many states. For this exposition, we assume that there are only two states 0 and
1, but our approach can be generalized to K ≥ 2 different states easily. Let εt ∈ Rd

be i.i.d. with mean vector 0 and unit covariance matrix Id. Then,

Xt = µk +Σ
1/2
k εt iff Qt = k, k = 0, 1, t = 1, . . . , N.

Together with the transition probabilities qkℓ = P(Qt = ℓ|Qt−1 = k), k = 0, 1, the
free model parameter is given by ϑ = (q00, q11, µ0, µ1,Σ0,Σ1). Given the data, we
would like to estimate ϑ as well as to reconstruct the hidden variables Q1, . . . , QN .
For low dimension d, there are various approaches giving satisfactory solutions
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of this estimation and filtering problem. We consider here the EM algorithm,
providing numerical approximations to the maximum Gaussian pseudo likelihood
estimate of ϑ and the Viterbi algorithm for reconstructing the most likely path
of the hidden process given the data. For large dimension d compared to sample
size N , however, this procedure breaks down in various respects. E.g., the lower
plot in Figure 1 shows the true path Qt (lower half) and the reconstructed path
(upper half), shifted by 1 for better visibility. The latter is quite erratic. The
sample of size N = 256 has been simulated from a d = 20-dimensional HMM with
q00 = q11 = 0.95, µ0 = µ1 = 0, a block diagonal Σ0 with four 5 × 5 blocks and a
tridiagonal Σ1 with Gaussian innovations εt.

We propose a remedy for those problems which can be traced back to the
instability of sample covariance matrices, and even more of their inverses, in higher
dimensions. The resulting stabilized algorithm is able to reproduce the hidden
Markov variables quite well - compare Figure 1 (upper plot). Let us first assume
that we know the Qt from an oracle. Then, we get immediately estimates for the
unknown parameters from their sample versions:

N1 =
N∑

t=1

Qt, N0 = N −N1, qokk =
1

Nk − 1

N∑

t=2

1{Qt=k,Qt−1=k}, k = 0, 1,

µo

1 =
1

N1

N∑

t=1

QtXt, µo

0 =
1

N0

N∑

t=1

(1−Qt)Xt,

Σo

1 =
1

N

N∑

t=1

Qt(Xt − µo

1)(Xt − µo

1)
′,

Σo

0 =
1

N

N∑

t=1

(1−Qt)(Xt − µo

0)(Xt − µo

0)
′,(1)

where we standardize the covariance estimates by the sample size N instead of
N0, N1 which enhances the numerical stability in cases where a state is rarely
visited, i.e. where N0 resp. N1 is small. Hence, Σo

k does not estimate Σk, but πkΣk

where πk = P(Qt = k) in the stationary state. In high dimension, Σo

k, k = 0, 1,
frequently have large condition numbers which is the main reason for the observed
problems. We, therefore, shrink the sample covariances towards a highly stable
matrix. In particular, we choose a multiple of the unit matrix Id and set for some
weights 0 ≤Wk ≤ 1:

Σs

k = (1−Wk)Σ
o

k +WkαkId with tr(αkId) = αkd = E tr(Σo

k), k = 0, 1.

Afterwards, the unknown αk is replaced by its estimate αo

k = 1
dtr(Σ

o

k). Based on
the work of [3] and [5], we can derive explicit formulas for the optimal weightsW o

k ,

minimizing the mean squared error E ‖Σs

k − πkΣk‖2, as well as feasible estimates

Ŵ o

k for them. We can prove under appropriate conditions that the difference
between the optimally shrinked covariance estimates with weights W o

k and the
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Figure 1. State sequence Qt and reconstruction using standard
EM (lower half) and EM with shrinkage (upper half).

realizable shrinkage estimates with weights Ŵ o

k is asymptotically negligible for

N →∞ even for increasing dimension d→∞, d
N → 0.

Without an oracle, we approximate the unknown Qt by their conditional ex-

pectations Q̂
(i)
t given the data X1, . . . , XN . This is done in the E step of the EM

algorithm pretending that the parameter ϑ coincides with an estimate ϑ̂(i−1) from

the previous iteration. In the M step, we get a new parameter estimate ϑ̂(i) by

replacing the unobservable Qt in (1) by their approximations Q̂
(i)
t . E.g., we have

Σ̂
(i)
1 =

1

N

N∑

t=1

Q̂
(i)
t (Xt − µ̂(i)

1 )(Xt − µ̂(i)
1 )′.

To get covariance matrix estimates with small condition numbers, we then apply

shrinkage to the sample covariance matrices Σ̂
(i)
1 , Σ̂

(i)
0 as the final part of the M

step before proceeding to the (i + 1)th iteration. This modification of the EM
algorithm works well for simulated and real data, compare [1] for the details.

Finally, let us remark that the shrinkage procedure used for stabilizing the EM
algorithm is related to another approach for improving the condition number of
covariance matrix estimates which adds a penalty term to the pseudo log likelihood.
To keep the notation simple, we depart for the moment from the HMM setting
and consider only an i.i.d. sample X1, . . . , XN of random vectors with mean µ
and covariance matrix Σ. We maximize the Gaussian pseudo log likelihood after
adding a penalty term λpen(Σ) with tuning parameter λ. Following [6], we use
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pen(Σ) = log |Σ| + tr(Σ−1Ω) as a penalty term for some fixed matrix Ω. Let Σ̂
denote the sample covariance matrix. [6] have shown that, for the special choice

Ω = αId, α = 1
dE tr(Σ̂), the penalized pseudo maximum likelihood estimate of Σ

coincides with the shrinkage estimate of [3] where the shrinkage weight W and the
penalty weight λ are related in a simple manner. The approach of [3], however,
goes beyond plain penalized maximum likelihood as it includes a data adaptive
choice of the weight W as well as an estimate of α. These considerations can be
extended straightforwardly to HMM, where in the M step the shrinkage estimates
Σo

k, k = 0, 1, can be interpreted as the results of adding corresponding penalty
terms to the approximations of the complete Gaussian pseudo log likelihood before
maximization.
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On multi-zoom autoregressive time series models

Piotr Fryzlewicz

In classic linear time series autoregression (AR), the univariate time series Xt

under consideration is modelled as a linear but otherwise unconstrained function
of its own past values Xt−1, Xt−2, . . ., plus white-noise-like innovation εt. That is,

(1) Xt = a1Xt−1 + . . .+ apXt−p + εt.

In some situations, it appears to be a good idea to modelXt as depending explicitly
on some other features of its own past, rather than on the individual variables
Xt−1, . . . , Xt−p.

As an example, consider the problem of modelling mid- and high-frequency
financial returns, where Xt represents a fine-scale, e.g. one-minute, return on a
financial instrument. In the hope of improving the predictive power, the analyst
may wish to model Xt as depending not only on the past few one-minute returns,
but also perhaps on past returns on lower frequencies, such as one hour or one
day. Representing this in an unconstrained way as in (1) with a large value of p
would lead to obvious over-parameterisation.
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Our proposed way to resolve this issue is to adopt what we call a “multi-zoom”
approach to time series analysis. The main idea of the approach is to include
as regressors for Xt features of the path X1, . . . , Xt−1 which “live” on multiple
time-scales, and hence correspond to considering the time series at different zoom
levels.

For example, in the financial time series context described above, we could
entertain a multi-zoom AR model of the form

(2) Xt = α1
1

τ1
(Xt−1 + . . .+Xt−τ1) + . . .+ αp

1

τp
(Xt−1 + . . .+Xt−τp) + εt,

where the time scales τk are such that 1 = τ1 < τ2 < . . . < τp. Note that
Xt−1 + . . .+Xt−τk represents the most recent τk-minute return. There is nothing
to stop τk, k > 1, from being large, e.g. of the order of tens or hundreds. The
number of scales p would typically be much smaller than the longest time scale
τp (note that the standard AR model (1) can always be rewritten in the form (2)
if we take τp = p). Including the regressors Xt−1 + . . . + Xt−τk , rather than the
individual variables Xt−s, corresponds to “zooming out” of the original time scale
on which the data were collected, and explicitly incorporating information from
coarser time scales. In this instance, the returns Xt−1 + . . .+Xt−τk represent the
multi-zoom “features” that we believe have some predictive power with respect to
Xt.

The following questions are of immediate methodological interest:

• Model identification and stationarity. We note that the multi-zoom AR
model in equation (2) is a particular, sparsely parameterised, instance of
the AR(τp) model. Therefore, stationarity (or otherwise) of multi-zoom
AR can be established via the usual route for AR processes.
• Estimation of p, τk and αk. In the simplest case, the values of p and
{τk}pk=1 are chosen by the analyst, and only the coefficients {αk}pk=1 need
to be estimated. This can be done e.g. via OLS, or by performing an
unconstrained estimation for AR(τp) and then grouping the estimated co-
efficients into sections of piecewise constancy. If {τk}pk=1 are unknown,
the grouping can be achieved via change-point detection techniques. If p
is also unknown, change-point detection needs to be coupled with devices
for model choice based e.g. on thresholding or on the use of information
criteria.
• Use of other multi-zoom features. It is of interest to generalise model
(2) to other multi-zoom features, for example the wavelet coefficients of
the original price process at different scales, or nonlinear breakout-type
statistics (the latter being of interest in e.g. algorithmic trading). The
introduction of non-linearity introduces particularly challenging method-
ological questions of model identifiability and estimation. Note that the
linear dependence on non-linear features that this induces goes in the op-
posite direction to the non-linear dependence on linear features seen, for
example, in Generalised Linear Models.
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• Applicability in financial statistics. Preliminary results suggest that multi-
zoom AR processes are good at explaining the apparent lack of serial
dependence in time series of financial returns, when measured via the
sample autocorrelation, which can be blind to multi-scale dependencies
such as those in (2) due to its single-scale nature. Moreover, empirically,
multi-zoom AR processes appear to have relatively good predictive power
for forecasting high- and mid-frequency financial returns.
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Figure 1. Left: sample path simulated from model (2) with
length n = 250, p = 2, τ1 = 1, τ2 = 10, α1 = 0.1, α2 = 0.5,
εt iid standard normal. Right: the sample autocorrelation of the
simulated sample path.

The fact that multi-zoom AR processes can “mask” as white noise from the
point of view of the sample autocorrelation (and hence be potentially be attractive
from the point of view of modelling financial returns, which tend to exhibit this
empirical feature) is illustrated in Figure 1. Despite the model being far from
white noise, the sample autocorrelation fails to detect the serial dependence in the
process, which is in part due to the fact that this measure takes no account of the
multi-zoom structure of the model.

We are grateful to the workshop participants for pointing us to some other
related literature, and in particular to the models described in [3], [1], [2]. We
emphasize again that in contrast to these, our approach enables, in particular,
automatic selection of the relevant time-scales τk. This also sets it apart from the
autoregressive index models in [4].
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Functional Ridge Regularization

Yulia R. Gel

Our main interest is in real-time estimation and prediction of the same realization
of a linear time series that does not degenerate to a finite dimensional autoregres-
sive (AR) form. To reduce bias, the order of AR approximation pt is to increase
with the sample size t (Gerencser, 1992; Ing and Wei, 2003). However, the clas-
sical model selection methods such as the Akaike Information Criterion (AIC)
are too conservative and typically choose too low pt to achieve strong asymptotic
efficiency (Ing and Wei, 2005; Ing, 2007). Thus, the desired estimation algo-
rithm should preferably account for as much previous history as possible, yield
a non-degenerative sample covariance matrix and be relatively computationally
inexpensive. The possible approaches in this direction is to use either banding or
thresholding algorithms for the sample autocovariance matrix (Wu and Pourah-
madi, 2009; McMurry and Politis, 2010; Bickel and Gel, 2011). However, neither
banding nor thresholding allow for direct recursive implementation. As an alter-
native, we can use functional ridge regularization of the sample covariance matrix
in such a way that the inverse of a functional ridge is a nuclear operator in ℓ2(N).
Such estimation procedure allow for an immediate implementation via the station-
ary recursive Kalman filter, which computational simplicity makes it particularly
attractive for real-time, or online estimation and forecasting. Here, we aim to
extend the results of Barabanov and Gel (2005) and Gel and Barabanov (2007)
on exponential and polynomial regularizers derived for a case of a short memory
linear process (i.e. with exponentially decaying autocorrelation functions) to a
more general case of a linear process with absolutely summable coefficients.

Suppose that y1, y2, . . . , yt come from

yt +
∞∑

i=1

aiyt−i = vt, t = . . . ,−1, 0, 1, . . .(1)

where

a(λ) = 1 + a1λ+ . . . 6= 0, ∀|λ| ≤ 1,(2)
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and
∞∑

i=1

|iαai| <∞, α ≥ 0.(3)

Here vt is the martingale difference (E(vt|Ft−1) ≡ 0) and E(v2t |Ft−1) = 1 a.s.,
Ft−1 is the σ-algebra generated by r. v. (v1, v2, . . . , vt−1), and supt Ev

4
t <∞.

Hence, {yt} can be also represented as MA(∞)

yt =

∞∑

j=0

bjvt−j , b0 = 1,(4)

where

b(λ) =
1

a(λ)
= 1 + b1λ+ . . . 6= 0, ∀|λ| ≤ 1, and

∞∑

i=1

|bi| <∞.

Hence, the spectral density of f(λ) of {yt} satisfies:
0 < F1 < f(λ) < F2, F1, F2 > 0(5)

The condition (3) also implies that
∑∞

j=1 |jαbj| <∞, α ≥ 0.

To estimate unknown AR(∞), we re-write it in a state-space form:

yt = Φ′
t−1τ + vt,(6)

where Φt−1 = (yt−1, yt−2, . . . , y1, 0, . . .) and τ = −(a1, a2, . . .) are in ℓ2(N). Here
we assume w.l.g. that yt = 0, t < 0.

We can form a Yule-Walker (YW) system of infinite order

Στ = r, r = (ρ1, ρ2, . . .),(7)

where Σ : ℓ2(N)→ ℓ2(N) and Σ > 0. Hence, τ = Σ−1r is a unique solution.
Let Pp be orthogonal projector in ℓ2(N). We can then consider a truncated

Yule-Walker system

PpΣPpτ = Ppr,(8)

which leads to

Σ̂p,tτ̂p,t = r̂p,t,(9)

where Σ̂p,t and r̂p,t are the sample estimates of Σp and rp,t, respectively.

Two main interrelated problems are selection of p and consistent estimation of
Σ, and the possible approaches are:

(1) select p from AIC, i.e.

AIC(p) = ln σ̂p
2 +

2p

n
,

where σ̂2
p is the sample variance of 1-step ahead forecast, and then es-

timate the truncated model. However, the order of truncation is typ-
ically very conservative, e.g. for {yt}Tt=1 with short memory, typically
pAIC = O(log(T )).
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(2) if p > pAIC , Σ̂p,t might be a deficient estimator. Hence, we can use a
thresholding operator Ts(Σ) = (ρi−j1|ρi−j |≥s),

Ts(Σ̂t)τ̂
th
t = r̂t,

(3) banding operator Bk(Σ) = (ρi−j1|i−j|≤k),

Bk(Σ̂t)τ̂
b
t = r̂t,

(4) functional ridge regularization.

Define a Functional Ridge (FR) estimator as

Σ̂f
t =

1

t

[ t∑

k=1

ΦkΦ
′
k + εR

]
, ε > 0,(10)

where R is a nuclear operator:

R = diag{fk}∞k=1, fk →∞, k→∞.
For example, fk = eµk for µ > 0 or fk = kp for p > 0.

The immediate benefit is the direct implementation via the recursive Kalman
filter:

τ̂ft+1 = τ̂ft + γεtΦt(yt+1 − Φ′
tτ̂

f
t )(11)

γft+1 = γft − γft Φt−1(1 + Φ′
tγ

f
t Φt)

−1
Φ′

tγ
f
t ,

where γf0 = (εR)−1 and τ̂f0 = 0.

Statement. Let
∑∞

i=1 |iai| <∞. Then, for δ > 0 with probability 1

lim
T→∞

T 1−δ|τ̂fT − τ |2 = 0.
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Composite Quantile Regression for the Single-Index Model

Wolfgang Karl Härdle

(joint work with Yan Fan, Weining Wang, and Lixing Zhu)

Regression between response Y and covariates X is a standard element of statis-
tical data analysis. When the regression function is supposed to be estimated in a
nonparametric context, the dimensionality of X plays a crucial role. Among the
many dimension reduction techniques the single index approach has a unique fea-
ture: the index that yields interpretability and low dimension simultaneously. In
the case of ultra high dimensional regressors X though it suffers, as any regression
method, from singularity issues. Efficient variable selection is here the strategy to
employ. Specifically we consider a composite regression with general weighted loss
and possibly ultra high dimensional variables. Our setup is general, and includes
quantile, expectile (and therefore mean) regression. We offer theoretical properties
and demonstrate our method with applications to firm risk analysis in a CoVaR
context.

Quantile regression(QR) is one of the major statistical tools and is “gradually
developing into a comprehensive strategy for completing the regression prediction”
[13]. In many fields of applications like quantitative finance, econometrics, mar-
keting and also in medical and biological sciences, QR is a fundamental element
for data analysis, modeling and inference. An application in finance is the anal-
ysis of conditional Value-at-Risk (VaR). [5] proposed the CaViaR framework to
model VaR dynamically. [12] used their QR techniques to test heteroscedasticity
in the field of labor market discrimination. Like expectile analysis it models the
conditional tail behavior.

The QR estimation implicitly assumes an asymmetric ALD (asymmetric Laplace
distribution) likelihood, and may not be efficient in the QMLE case. Therefore,
different types of flexible loss functions are considered in the literature to improve
the estimation efficiency, such as, composite quantile regression, [29], [9] and [10].
Moreover, [3] proposed a general loss function framework for linear models, with
a weighted sum of different kinds of loss functions, and the weights are selected
to be data driven. Another special type of loss considered in [17] corresponds to
expectile regression (ER) that is in spirit similar to QR but contains mean regres-
sion as its special case. Nonparametric expectile smoothing work with application
to demography could be found in [19]. The ER curves are alternatives to the QR
curves and give us an alternative picture of regression of Y on X .

The difficulty of characterizing an entire distribution partly arises from the
high dimensionality of covariates, which asks for striking a balance between model
flexibility and statistical precision. To crack this tough nut, dimension reduction
techniques of semiparametric type such as the single index model came into the
focus of statistical modeling. [23] considered quantile regression via a single index
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model. However, to our knowledge there are no further literatures on generalized
QR for the single-index model.

In addition to the dimension reduction, there is however the problem of choosing
the right variables for projection. This motivates our second goal of this research:
variable selection. [14], [22] and [27] focused on variable selection in mean regres-
sion for the single index model. Considering the uncertainty on the multi-index
model structure, we restrict ourselves to the single-index model at the moment.
An application of our research is presented in the relevant financial risk area: to
investigate how the revenue distribution of companies depends on financial ratios
describing risk factors for possible failure. Such kind of research has important
consequences for rating and credit scoring.

When the dimension ofX is high, severe nonlinear dependencies between X and
the expectile (quantile) curves are expected. This triggers the nonparametric ap-
proach, but in its full gear, it runs into the “curse of dimensionality” trap, meaning
that the convergence rate of the smoothing techniques is so slow that it is actually
impractical to use in such situations. A balanced dimension reduction space for
quantile regression is therefore needed. The MAVE technique, [24] provides us 1)
with a dimension reduction and 2) good numerical properties for semiparametric
function estimation. The set of ideas presented there, however, have never been
applied to composite quantile framework or an even more general composite quasi-
likelihood framework. The semiparametric multi-index approach that we consider
herein will provide practitioners with a tool that combines flexibility in modeling
with applicability for even very high dimensional data. Consequently the curse of
dimensionality is circumvented. The Lasso idea in combination with the minimum
average contrast estimate (MACE) technique will provide a set of relevant practi-
cal techniques for a wide range of disciplines. The algorithms used in this project
are published on the quantlet database www.quantlet.org.
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[4] Chao, S. K., Härdle, W. K. and Wang, W. (2012). Quantile regression in Risk Calibra-
tion. In Handbook for Financial Econometrics and Statistics (Cheng-Few Lee, ed.). Springer

Verlag, forthcoming, SFB 649 DP 2012-006.
[5] Engle, R. F. and Manganelli, S. (2004). CaViaR: Conditional autoregressive value at risk

by regression quantiles. J. Bus. Econ. Stat.. 22 367–381.
[6] Fan, J. and Li, R. (2001). Variable Selection via Nonconcave Penalized Likelihood and its

Oracle Properties. J. Amer. Statist. Assoc.. 96 1348–1360.
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Efficient estimation of integrated volatility in presence of jumps with
activity bigger than 1

Jean Jacod

(joint work with Viktor Todorov)

We consider the problem of estimating the continuous part of the quadratic vari-
ation (henceforth referred to as integrated volatility) of a discretely-observed one-
dimensional Itô semimartingale X over a finite time interval [0, T ]: the observa-
tions are regularly spaced, with mesh ∆n going to 0.

When the jump activity index (or Blumenthal-Getoor index) of X is smaller
than 1, there are so far two kinds of estimators for the integrated volatility CT ,
which both converge with the rate 1/

√
∆n: the truncated realized volatility (see

[5]), and the multipower variations (see [1], [2], and [6] when the degree of activity
is 1). On the other hand, when the jump activity is not bigger than some r ∈ [1, 2],
a general rate-minimax result (on suitably bounded classes of Itô semimartingales)

is
( log(1/∆n)

∆n

)(2−r)/r
, see [3].

Despite this rate-minimax result, we show that under some specific structural
assumptions on the jump part of X , it is possible to find estimators with rate
1/
√
∆n even when the activity index is bigger than 1. Namely we suppose that X

has the form

(1) Xt = X0 +

∫ t

0

bs ds+

∫ t

0

σs dWs + Ut + Vt,

where bt is locally bounded adapted, and σt is itself an Itô semimartingale with
“locally bounded” coefficients (it can jump), and Ut is a pure jump Itô semi-
martingale with degree of activity r < 1 (and some local boundedness of its Lévy
measure). So when Vt = 0 we are in the setting where truncated realized volatility
and multipower variations achieve the rate 1/

√
∆n.

The novelty here lies in the additional process Vt, which has the form

(2) Vt =

M∑

m=1

∫ t

0

γms− dY
m
t .

Here the Y m are independent pure jump symmetric Lévy processes, with Lévy
measures Fm satisfying

∣∣Fm((x,∞)) − 1/xβm
∣∣ ≤ K/xr for all x ∈ (0, 1] and r as

before and K a constant, and 1 ≤ βM < · · · < β1. Note that the βm’s, as well as
the γmt -s are unknown. We need basically the same assumption on the γn’s than
on σ, namely that they are Itô semimartingales with locally bounded coefficients.

The estimators for Ct are based on estimators for the (real part of the) em-
pirical characteristic function of the returns ∆n

i = Xi∆n −X(i−1)δn , evaluated on
successive time windows of size kn∆n for a suitable sequence kn of integer going
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to infinity, but such that kn∆n → 0. For any u > 0 we set

(3)
L(u)nj = 1

kn

kn−1∑
l=0

cos(u∆n
1+jkn+lX/

√
∆n )

ĉ(u)nj = − 2
u2 log

(
L(u)nj

∨ 1√
kn

)
,

so ĉ(u)nj serves as a local estimator of the average of ct = σ2
t over the interval

(jkn∆n, (j + 1)kn∆n], and our first estimator for Ct will be

(4) Ĉ(u)nt = kn∆n

[t/kn∆n]−1∑

j=0

(
ĉ(u)nj −

1

u2kn

(
sinh(u2ĉ(u)nj )/

)2)
.

For stating the asymptotic behavior we need some notation. We set

χ(β) =

∫ ∞

0

sin y

yβ
dy, Am

t = 2χ(βm)

∫ t

0

|2γm+
s |βm ds

(5) Z(u)nt = Ĉ(u)nt − Ct −
M∑

m=1

uβm−2∆1−βm/2
n Am

t .

The key Central Limit Theorem, proved in [4], is then as follows:

Theorem 1. Choose any θi > 0 and any Q × L matrix αij with
∑L

l=1 αi,l = 0.,
and also two sequences kn (of integers) and un (of positive reals) as follows:
• without prior knowledge on β1 and r, then

kn
√
∆n → 0, kn∆

1/2−ε
n →∞ ∀ε > 0, un → 0,

kn
√
∆n

u2n
→ 0;

• if we know that β1 ≤ β0 and r ≤ r0 for some given β0 ∈ [1, 2) and r0 < 1, then

kn ≍ 1
∆̟

n
, un ≍ ∆̟′

n , where 1
3

∨ 2−β0

2 < ̟ < 1
2

and 0 < ̟′ < 1−2̟
8

∧ 1−r0
8(1−r0+β0)

∧ (1−β0+2̟)∧(1−β0̟)
8−2β0

∧ 2−β0

(8β0)∨12

Then the (Q+ 1)-dimensional processes with components 1√
∆n

Z(un)
n and

1
u2
n

√
∆n

∑L
l=1 αq,l Z(θlun)

n converge (functionally) stably in law to a limit which

is defined on an extension (Ω̃, F̃ , P̃) of the space (Ω,F ,P) and is, conditionally on
F , a continuous Gaussian centered martingale, and the conditional variance of the
first component Z of the limit is

(6) Ẽ((Zt)
2 | F) = 2

∫ t

0

c2s ds.

When γm ≡ 0 for all m, that is (1) holds with Vt = 0, the de-biasing terms

in (5) disappear, and the estimators C̃(un)T converge with rate 1/
√
∆n and are

asymptotically efficient (as is the truncated realized volatility) , since (6) gives
the minimal estimating (conditional) variance for estimating CT . Moreover in this
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case and if we know that r ≤ r0, the conditions on ̟,̟′ become 1
3 < ̟ < 1

2 and

0 < ̟′ < 1−2̟
4

∧ 1−r0
8 .

Remark: If instead of taking un → 0 we take un = u > 0 a constant, the
same result holds when r ≤ 1 instead of r < 1, except that the variance in (6)

becomes 8
∫ t

0

( sinh(u2cs/2)
u2

)2
ds, so we keep the rate 1/

√
∆n but loose asymptotic

variance-efficiency.

Note that the bias in (5), once divided by
√
∆n, goes to infinity. However, it is

possible to de-bias, and for this we choose any number ζ > 1 and set (with T > 0
fixed)

(7) Ĉ(u, ζ)nT = Ĉu)nT −
(Ĉ(ζu)nT − Ĉn

T )
2

Ĉ(ζ2u)nT − 2Ĉ(ζu)nT + Ĉ(u)nT
.

This one-step procedure is enough when M = 1 in (2):

Theorem 2. If M = 1 and CT > 0 almost surely, and with kn, un as in Theorem

1, the variables 1√
∆n

(Ĉ(u, ζ)nT −CT ) converge stably in law to the variable ZT of

that theorem.

The additional assumption CT > 0 a.s. here, which is necessary to ensure that
the denominator in (7) is asymptotically “non-degenerate” in an appropriate sense.

WhenM ≥ 2 we need to “iterate” the previous de-biasing method, and this can
be done only under an additional assumption, which basically requires the βm’s
to be on a lattice. This is of course a very strong assumption, from a theoretical
viewpoint, but practically speaking it seems rather innocuous:

The numbers 2− βm all belong to the set {jρ : j = 1, 2, · · · }
for some (unknown) constant ρ ∈ (0, 1), so necessarily M ≤ [1/ρ]

Then the de-biasing procedure goes as follows, for some integer N :

(1) - initialization: Choose a real ζ > 1 and put Ĉ(u, ζ, 0)nT = Ĉ(u)nt .

(2) - iteration: Assuming Ĉn(u, ζ, j − 1) known for some integer j between 1

and N , define (similar with (7)): Ĉn(u, ζ, j) as

Ĉ(u, ζ, j)nT = Ĉn(u, ζ, j − 1)nT + (Ĉn(ζu,ζ,j−1)nT−Ĉ(u,ζ,j−1)nT )2

Ĉ(ζ2u,ζ,j−1)nT−2Ĉ(ζu,ζ,j−1)nT+Ĉ(u,ζ,j−1)nT
.

(3) - end: The final estimator is set to be Ĉ(un, ζ, N)nT .

The following is then a (relatively) simple consequence of Theorem 1:

Theorem 3. Assume (8) with ρ ≥ ρ0 for some ρ0 ∈ (0, 1), and let N be the biggest
integer such that Nρ0 ≤ 1. Assume also that CT > 0 almost surely, and choose
kn, un as in Theorem 1, with β0 = 2 − ρ0 in the second case. Then the variables

1√
∆n

(Ĉ(un, ζ, N)nT−CT ) converge stably in law to the variable ZT described above.

Finally, one can relax the symmetry assumption on the Y m’s: by this, we
mean that the Lévy measures Fm satisfy

∣∣Fm((x,∞)) − am+/x
β
m

∣∣ ≤ K/xr and
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∣∣Fm((−∞,−x)) − am−/xβm
∣∣ ≤ K/xr for all x ∈ (0, 1], with am+ and am− possibly

different (one of them can even vanish). Setting

(8) L(u)nj =
1

kn

kn−1∑

l=0

cos(u∆n
1+2jkn+2lX/

√
∆n − u∆n

2+2jkn+2lX/
√
∆n )

(a symmetrized version of (3)), we sum up from 1 to [t/2kn∆n] in (4). Then all
previous results hold, except that in (6) we need the multiplicative factor 2, so we
loose variance-efficiency.

If we still use the original version (3)-(4), the bias term in Theorem 1 is more
complicated. As it turns out, when M = 1 the result stated in Theorem 2 fails,
but one can iterate the procedure as above and get a result similar to Theorem 3,
see [4]. When M > 1, though, the iteration never ends: at each step there is still
(in general) a bias which, once divided by

√
∆n, goes to infinity.

From a practical viewpoint, the iteration procedure is probably quite unstable.
So if we know that M = 1, and in the non-symmetric case, it is advisable to use
the one step bias-correction with the version (8), despite the efficiency loss.
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Change-Points in High-Dimensional Settings

Claudia Kirch

(joint work with John A D Aston )

While there is considerable work on change-point analysis in univariate time series,
more and more data being collected comes from high dimensional multivariate set-
tings, where the number of components is of the same order or even larger than
the number of time points. An appropriate asymptotic framework to investigate
statistical procedures for such data assumes that the number of components in-
creases to infinity with the number of time points. In this setup we would like
to investigate the properties of univariate tests after the data has been projected
onto a vector pd. To this end, we consider the following model:

Xi,t = µi + δi,T 1{t>⌊ϑT⌋} + ei,t, 1 ≤ i ≤ d = dT , 1 ≤ t ≤ T,
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where (for simplicity) {(e1,t, . . . , ed,T )T , t = 1, . . . , T } is i.i.d. and 0 < ϑ < 1 is the
rescaled change-point. We call the vector ∆d = (δ1,T , . . . , δd,T )

T the change and
test

H0 : ∆d = 0, H1 : ∆d 6= 0.

In this setting, it is apparent that the change∆d is always a one-dimensional object
no matter the number of components d. This observation suggests that knowledge
about where the change-point is located in addition to the underlying covariance
structure can significantly increase the signal-to-noise ratio. In applications, cer-
tain changes are either expected or of particular interest e.g. an economist looking
at the performance of several companies expecting changes caused by a recession
will have a good idea which companies will profit or lose. This knowledge can then
be used to increase the power in directions close to the search direction pd while
decreasing it for changes that are close to orthogonal to it.

In order to understand this informal statement better and to compare the power
behavior of different statistics, we consider contiguous changes, where ‖∆d‖ → 0
but with such a rate that the power of the corresponding test is strictly between
the size and one. We can then compare these contiguous rates to understand
the power of the test. Concerning a fixed projection pd it turns out that the
contiguous rate is given by

T ‖Σ−1/2∆d‖2 cos2(αΣ−1/2∆d,Σ1/2pd
),

where Σ is the covariance of the vector (e1,t, . . . , ed,T )
T and αa,b is the smallest an-

gle between the vectors a and b. From this it is obvious that the oracle projection
o = Σ−1∆d maximizes the contiguous rate. This can be compared to a random
projection on the unit sphere after standardizing the data, which is equivalent to
projecting with the vector rd,Σ = Σ−1/2rd, where rd is a random projection on
the unit sphere. Furthermore, we can compare the procedure with a generalization
of multivariate change-point procedures for independent components in the above
asymptotic framework proposed by Horváth and Hušková [2].

The following table compares the contiguous rates in all three cases:

Contiguous Rate

Oracle projections T ‖Σ−1/2∆d‖2
HH statistic (Σ = Id) T ‖Σ−1/2∆d‖2/

√
d

Scaled random projection T ‖Σ−1/2∆d‖2/d
(stochastic order)

It becomes apparent that we lose an order
√
d between the oracle and the HH

statistic as well as another order
√
d between the HH statistic and the scaled

random projection. Figure 1 confirms these theoretical findings and gives an im-
pression on how wide the angle between Σ−1/2∆d and Σ1/2pd can be before the
HH procedure is better than the projection. Please note, however, that the space
covering these angles increases for increasing dimensions.
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Usually, in applications Σ is not known and needs to be estimated, which is
rather problematic particularly in high-dimensional settings without additional
parametric or sparsity assumptions. For change-point tests the inverse is needed
which results in additional numerical problems for large d. Consequently, it is of
importance to check the robustness of the procedures with respect to not knowing
Σ.

To this end, we first consider the size of the different procedures. For the pro-
jection procedures and a large class of dependency across components only the
variance of the projected sequence is needed, which is not difficult to estimate.
The HH procedure on the other hand strongly depends on the independence be-
tween components or after some possible extensions on the knowledge of Σ−1.
Consequently, it suffers sincere size problems if Σ is misspecified. In order to show
this effect we consider the situation where ei,t = siηi,t + Φξi, where ηi,t are in-
dependent and standardized and ξi is a common standardized disturbance factor
across all channels (independent of η). Figure 2 clearly shows that the projection
is much more robust with respect to size.

Considering contiguous rates again we can also investigate the robustness in
terms of the power of the different procedures. To this end, we consider the pre-
oracle po = ∆d as well as the quasi-oracle qo = (δ1/ var(e1,1), . . . , δd/ var(ed,1))

T .
If the Variances are all of the same order, i.e. 0 < c ≤ var(ei,1) ≤ C <∞, then in
the uncorrelated case quasi- and pre-oracle are of the same order, in the general
case both of them are always at least as good as the unscaled random projection
rd but can be better, while the HH procedure is always of the same order as the
random projection. This fact is confirmed by the simulations in Figure 3.

In summary, projections can greatly increase the power of corresponding change-
point tests in high-dimensional settings particularly if the covariance structure is
accessible and some information about the location of the change of interest is
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Figure 3. Empirical size-corrected power for increasing contam-
ination by a common factor, sj = 1

known. Additionally, such projections are much more robust with respect to both
size and power than competing fully multivariate procedures if the covariance
structure is misspecified.
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Estimation of spatial weight matrices in large spatial lag/error panels

Clifford Lam

(joint work with Pedro CL Souza)

Spatial lag/error models are used for incorporating spatial dependence explicitly
among the components of a panel. They are commonly used in fields such as eco-
nomics, social science, or biology, where observations are dependent on each other
on top of individual characteristics. An important element of these models is the
spatial weight matrix that describes how the components depend on each other.
Unfortunately, in most applications, it needs to be explicitly specified either by
expert knowledge, or by a proxy, which can give rise to estimation error if the spec-
ification is not good enough. Majority of papers assume these as known matrices,
and go on to estimate other parameters of the model. In [1], we argue that wrong
specification of the spatial weight matrix can lead to inaccurate estimation of the
regression parameters in the model, and quantify how serious this can be. Many
practitioners just use rough proxies for the spatial weight matrix, which can be
too rough for accurate estimation of the model overall. Since in many applications
the spatial weight matrix is sparse overall, we are motivated to estimate the sparse
spatial weight matrix using LASSO penalization.
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In more details, the model we consider for yt of length N is

yt = W∗
1yt +W∗

2Xtβ
∗ + ǫt, t = 1, . . . , T,

where W∗
1,W

∗
2 are spatial weight matrices with diagonal entries 0 and 1 respec-

tively. This model entails the spatial error model. Put W∗
2 = I −W∗

1 , and the
model becomes yt = Xtβ

∗ + (I−W∗
1)

−1ǫt, which is of the form of a spatial error
model. Using the compact “regression” form of the model

y = Mβ∗ξ∗ + ǫ,

where y = vec{(y1, . . . ,yT )
T}, ǫ = vec{(ǫ1, . . . , ǫT )T}, ξ∗ = (vec(W∗T

1 )T, vec(W∗T

2 )T)T,
Mβ∗ = (Z,Xβ∗) with Z = IN⊗(y1, . . . ,yT )

T,Xβ∗ = IN⊗{(IT⊗β∗T)(X1, . . . ,XT )
T},

we formulate the problem as a LASSO penalization,

(ξ̃, β̃) = argmin
ξ,β

1

2T
||y −Mβξ||2 + γT ||ξ||1,

subj. to
∑

j 6=i

|w1,ij |,
∑

j 6=i

|w2,ij | < 1.
(1)

The adaptive LASSO is also explored theoretically and it gives better sensitivity
and specificity results for estimating the spatial weight matrices in practice. A
block coordinate descent algorithm is developed for carrying out all computations.
We proved asymptotic sign consistency of the elements in the spatial weight ma-
trices, as well as giving error bounds for both the estimators of the spatial weight
matrices and the regression parameter.

We have also considered the problem of identifying block structure in a model
without covariates in [2], that is

yt = Wyt + ǫt.

This problem is closely related to graphical model estimation, but our aim is to find
blocks in the spatial weight matrix. This is motivated by a set of US voting data
where there are no obvious covariates, and block structure in the spatial weight
matrix is anticipated because of political affiliations. We have proved that even
when blocks are slightly overlapping in the spatial weight matrix, we can identify
these blocks with probability approaching 1 in the absence of covariates. Indeed,
our results show clearly that over the year 2012, the Republicans forms one block
and the Democrats forms another in the spatial weight matrix, even though they
overlap slightly.

Future directions include using instrumental variables with LASSO to relax the
assumptions in [1] and improve the estimators. We also explore the adaptation of
expert knowledge in specifying a spatial weight matrix, and make sparse adjust-
ment to this using the data available. This way the practitioners can see if their
knowledge on the spatial dependence structure and specification of the spatial
weight matrix align with the data.
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Testing for GARCH(1,1) model specification

Anne Leucht

(joint work with Michael H. Neumann and Jens-Peter Kreiß)

Conditionally heteroscedastic time series are frequently used in the finance liter-
ature to model the evaluation of stock prizes, exchange rates and interest rates.
The question of parameter estimation in these models has been studied intensively.
In contrast, we focus on a test for the GARCH(1,1) model.

There is already an overwhelming amount of model specification tests in the
econometric literature. However, these methods typically rely on the assumption
that the information variables as well as the response variables are observable. This
condition is violated in the case of GARCH models, where unobserved quantities
enter the information variable. Hence, standard tests cannot be applied and cer-
tain additional approximation procedures have to be invoked. It turns out that the
literature on specification tests for conditionally heteroscedastic time series is com-
paratively rare. [1] proposed a Portmanteau goodness-of-fit test for GARCH(1,1)
models. Their test statistic is a quadratic form of weighted autocorrelations of the
squared residuals of a GARCH(1,1) process fitted to the data, whose dimension
increases with the sample size. They showed that its limit distribution is an (infi-
nite) weighted sum of independent χ2

1-distributed random variables under the null
hypothesis but did not consider the behavior under alternatives.

We propose a specification test of Cramér-von Mises type for a GARCH(1,1)
hypothesis against general alternatives. Here, we face the particular problem that
some of the explanatory variables are not observed and have to be approximated. It
turns out that our test statistic can be approximated by a V -statistic and it follows
from results of [4] that the latter converges to a weighted sum of independent
χ2
1 variables. In contrast to [1], where the weights in the limit correspond to the

weights in the test statistic itself, here these quantities depend on the properties
of the underlying process in a complicated way. Therefore, the asymptotic result
cannot be used for determining an appropriate critical value.

We propose to apply a model-based bootstrap method to approximate the null
distribution of the test statistic which eventually yields an appropriate critical
value for the test. [4] prove consistency of model-based bootstrap for statistics
that can be approximated by a V -statistic. In contrast to the method of proof used
in [4], we present a different approach of proving bootstrap consistency: Rather
than imitating the derivation of the limit distribution of the test statistic also on
the bootstrap side, we use coupling arguments to show consistency. This approach
was successfully applied to U - and V -statistics of independent random variables
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by [2] and [3], however, it seems to be new in the context of dependent data.
Simulations indicate a desirable finite sample behavior of our test under the null
as well as under certain asymmetric alternatives.

Finally, we conjecture that our theory can be generalized to GARCH models of
higher order and to augmented GARCH processes. To present the main ideas in
a transparent manner, we restrict ourselves to the simple GARCH(1,1) case.
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Inference for Lévy driven continuous time moving average processes

Alexander Lindner

(joint work with Serge Cohen)

Let L = (Lt)t∈R be a two-sided Lévy process, i.e. a process with independent and
stationary increments, and such that L0 = 0 and that L has càdlàg paths almost
surely. Assume further that L has zero mean, finite variance σ2 ∈ (0,∞) and that
f : R → R is a kernel function which is in L2(R). Let µ ∈ R. Then the process
(Xt)t∈R, given by

Xt = µ+

∫

R

f(t− s) dLs, t ∈ R,

can be defined in an L2-sense and is called a continuous time moving average
process with mean µ and kernel function f , driven by L. The aim of this talk,
which was based on the paper [3], was to derive a central limit theorem for the
sample mean of X and the sample autocovariance functions of X when sampled
at a discrete grid size ∆, which for convenience we take as ∆ = 1. Denote the
autocovariance function of the process X by

γ(h) = Cov(Xh, X0) = σ2

∫ ∞

−∞
f(−s)f(h− s) ds, h ∈ R.

Regarding the sample mean, we have the following result:
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Theorem 1 [3, Thm. 2.1]
Let L have zero mean and variance σ2 ∈ (0,∞) and let µ ∈ R. Suppose that


F∆ : [0, 1]→ [0,∞], u 7→ F (u) :=

∞∑

j=−∞
|f(u+ j)|


 ∈ L2([0, 1]).

Then
∑∞

j=−∞ |γ(j)| <∞,

v :=

∞∑

j=−∞
γ(j) = σ2

∫ 1

0




∞∑

j=−∞
f(u+ j)




2

du,

and the sample mean Xn := n−1(X1 + . . . + Xn) is asymptotically normal with
mean µ and variance v/n as n→∞, i.e.

√
n(Xn − µ) d→ N(0, v), n→∞.

This is very similar to the discrete time setting of infinite moving average pro-
cesses driven by i.i.d. noise, cf. Brockwell and Davis [2, Thm. 7.1.2]. The situation
is however different for the asymptotic analyis of the sample autocovariance and
sample autocorrelation. Suppose that µ = 0, so that EXt = 0 for all t. Denote

γ∗n(h) := n−1
n∑

t=1

XtXt+h, h ∈ N0,

which is the (modified) sample autocovariance function of X based on observations
X1, . . . , Xn (and Xn+1, . . . , Xn+h). Denote the sample autocorrelation by

ρ∗n(h) :=
γ∗n(h)

γ∗n(0)
,

which is an estimator for the autocorrelation ρ(h) := γ(h)
γ(0) . Then we have the

following theorem:

Theorem 2 [3, Thm. 3.5]
Suppose the Lévy process L satisfies EL1 = 0, σ2 = EL2

1 ∈ (0,∞), and that
η := σ−4EL4

1 <∞. Suppose the kernel function f is in L2(R) ∩ L4(R) and that

G : [0, 1]→ [0,∞], u 7→

∞∑

j=−∞
f(u+ j)2


 ∈ L2([0, 1]).

Suppose further that

∞∑

j=−∞

(∫

R

|f(s)f(s+ j)| ds
)2

<∞.
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Then the function

gq : [0, 1]→ R, u 7→
∞∑

j=−∞
f(u+ j)f(u+ j + q)

is in L2([0, 1]) for each q ∈ Z,
∑∞

j=−∞ γ(j)2 <∞, and the sample autocorrelation

ρ∗n of the process Xt =
∫
R
f(t−s) dLs based on the observations X1, . . . , Xn satisfies

√
n(ρ∗n(1)− ρ(1), . . . , ρ∗n(h)− ρ(h))

d→ N(0,W ), n→∞,
where W = (wij)i,j=1,...,h is given by

wij = w̃ij +
(η − 3)

γ(0)2

∫ 1

0

(
gi(u)− ρ(i)g0(u)

)(
gj(u)− ρ(j)g0(u)

)
du,

and

w̃ij =

∞∑

k=−∞

[
ρ(k + i)ρ(k + j) + ρ(k − i)ρ(k + j)

+2ρ(i)ρ(j)ρ(k)2 − 2ρ(i)ρ(k)ρ(k + j)− 2ρ(j)ρ(k)ρ(k + i)
]

is given by Bartlett’s formula.

This theorem is quite in contrast to the corresponding discrete time result (cf.
Brockwell and Davis [2, Thm. 7.2.1]). While there the asymptotic variance of the
sample autocorrelation is given by Bartlett’s formula, here we need the correction
term

(η − 3)

γ(0)2

∫ 1

0

(
gi(u)− ρ(i)g0(u)

)(
gj(u)− ρ(j)g0(u)

)
du.

It is easy to see that, unless η = 3 which corresponds to a Brownian motion,
the correction term may be non-zero. For example, consider the function f =
1(0,1/2] + 1(1,2]. Then g1 = 1(0,1/2] and g0 = 2 · 1(0,1/2] + 1(1/2,1] and it is easy to
see that g1−ρ(1)g0 is not almost everywhere zero, so that w11 6= w̃11 if η 6= 3. This
is an interesting example, since it corresponds to a discrete time moving average
process on the grid 1

2Z with i.i.d. noise when sampled only at integer times. A more
detailed analysis of this phenomenon in discrete time can be found in Niebuhr and
Kreiß [5].

The case when f =
∑∞

j=−∞ ψj1(j,j+1] deserves special attention. This corre-
sponds to a discrete time moving average process on Z when sampled at integer
times, and indeed it is easy to show that wij = w̃ij so that the correction term is
equal to zero in that case.

An application to fractional Lévy noise. Theorem 2 can be applied to derive
an estimator of the Hurst index of fractional Lévy noise. Let L be a Lévy process
with mean zero and finite variance σ2 ∈ (0,∞), and define the fractional Lévy
process

Md
t :=

1

Γ(d+ 1)

∫ ∞

−∞

[
(t− s)d+ − (−s)d+

]
dLs, t ∈ R,
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where d ∈ (0, 1/2) and H := d + 1/2 is the fractional Hurst parameter (cf. Mar-
quardt [4]; different types of fractional Lévy processes can also be defined, cf.
Benassi et al. [1]). Then the fractional Lévy noise is given by

Xt :=Md
t −Md

t−1, t ∈ R.

Then Xt can be written as a continuous time moving average process

Xt =

∫

R

[
(t− s)d+ − (t− s− 1)d+

]
dLs, t ∈ R,

EXt = 0 and

E(XhX0) = γ(h) =
Cσ2

2

(
|h+ 1|2d+1 − 2|h|2d+1 + |h− 1|2d+1

)
,

for some constant C depending on d. In particular,

γ(0) = Cσ2, γ(1) =
Cσ2

2
(22d+1 − 2),

hence ρ(1) = 22d − 1 so that

d =
1

2

(
log(ρ(1) + 1)

log 2

)
.

Hence the sample autocorrelation ρ∗n(1) based on X1, . . . , Xn leads to a moment
estimator

d̂ :=
1

2

(
log(ρ∗n(1) + 1)

log 2

)
.

It can be shown that this estimator is strongly consistent for d ∈ (0, 1/2), and an
application of Theorem 2 shows that it is asymptotically normal if L has finite
fourth moment and d ∈ (0, 1/4). Observe that fractional Lévy noise is in general
not strongly mixing.

If d ∈ [1/4, 1/2), then Theorem 2 is not applicable to Xt, but it can be applied
to the differenced fractional noise

Yt = Xt −Xt−1 =Md
t − 2Md

t−1 +Md
t−2,

and an asymptotically normal estimator for Y can be derived. See [3] for details.
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Asymptotics for the Parametric GARCH-in-Mean Model

Enno Mammen

(joint work with Christian Conrad)

The aim of this talk is to develop asymptotic theory for the Quasi-Maximum
Likelihood Estimator in GARCH-in-Mean (GARCH-M) models for the special
case of GARCH(1,1)-innovations. We will explain why the proof of asymptotic
normality is so difficult in this simple classical parametric model. There is a
mathematical motivation to look at this model because difficulties in the study
of the model come from nonstationarities of derivatives of the likelihood function
which creates some nonstandard mathematical difficulties. There is also some
applied statistical motivation because the model is related to some recent proposals
in empirical finance.

The GARCH-in-Mean (GARCH-M) model was proposed in [2]. The parametric
GARCH(1,1)-M model is given by

Yt = mγ(ht(θ)) + εt

εt =
√
ht(θ)Zt

ht(θ) = ω + αε2t−1 + βht−1(θ),

with Zt
iid∼ (0, 1). Standard specifications for the mean functions are: mγ(ht) =

µ + λg(ht) with g(ht) = ht, =
√
ht or = ln(ht). The quasi-maximum likelihood

estimator θ̂ is defined as θ̂ =argmaxθ∈Θ L̂T (θ), where L̂T (θ) is the quasi-likelihood
function:

L̂T (θ) = −
1

2

T∑

t=1

log(ht(θ)) + ht(θ)
−1 (Yt −mγ(ht(θ)))

2

with ht(θ) = ω + α(Yt−1 −mγ(ht−1(θ)))
2 + βht−1(θ). For proving a theorem on

asymptotic normality of the quasi-maximum likelihood estimator θ̂ our proof has

the standard structure: in a first step we show a rate of convergence for θ̂. And in
a second step we use the localization of the problem to prove asymptotic normality

of θ̂.
The basic idea of the first step is to use an approach based on stochastic recur-

rence equations, compare [1, 3, 4]. The essential assumptions, needed in the first
step are:

(A) E[ln(α0 Z
2
t + β0)] < 0,

(B) E[ln(Ut)] < 0, D1 < +∞, D2 < +∞,
where Ut = supα,β 2α[D1Zt

√
ht +D1m0(ht)+D2] + β,D1 = supγ,u |m′

γ(u)|, D2 =
supγ,u |mγ(u)m

′
γ(u)|. Assumption (A) is rather standard. It implies that there

exists a stationary ergodic solution ht of the GARCH equation. We will now
explain why assumption (B) will be useful by similar reasons. Afterwards we will
discuss how restrictive the assumption is. We start with a short discussion of
stochastic recurrence equations.
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Consider first the iteration equation for ht = ht(θ0):

ht = ω0 + α0ε
2
t−1 + β0ht−1

= ω0 + ht−1(α0Z
2
t−1 + β0).

This equation has a stationary ergodic solution if E[ln(α0 Z
2
t +β0)] < 0. Why does

this hold? Consider two sequences ht and h
∗
t that fulfill the recurrence equation:

ht = ω0 + ht−1(α0Z
2
t−1 + β0),

h∗t = ω0 + h∗t−1(α0Z
2
t−1 + β0).

Then ht−h∗t = (ht−1−h∗t−1)(α0Z
2
t−1+β0) and our condition E[ln(α0 Z

2
t +β0)] < 0

implies that

ht − h∗t → 0 a.s.

The approach of stochastic recurrence equations has been generalized w.r.t. two
aspects:

• One can consider nonlinear recurrence equations. Then one needs condi-
tions of the type E[ln(Λ)] < 0 where Λ is the (random) Lipschitz constant
of the recurrence equation.
• Instead of real valued random variables one can consider random elements
of function spaces.

We use this approach with the random functions

ht(θ) = ω + α(Yt−1 −mγ(ht−1(θ)))
2 + βht−1(θ).

Consider two sequences ht(θ) and h
∗
t (θ)

ht(θ) = ω + α(Yt−1 −mγ(ht−1(θ)))
2 + βht−1(θ),

h∗t (θ) = ω + α(Yt−1 −mγ(h
∗
t−1(θ)))

2 + βh∗t−1(θ).

One can show the following Lipschitz inequality:

|ht(θ) − h∗t (θ)| ≤ Ut‖ht−1 − h∗t−1‖∞
with Ut defined above and ‖...‖∞ equal to the sup-norm. In our assumptions we
had assumed that E ln(Ut) < 0. This assumption implies that the recurrence
equation

ht(θ) = ω + α(Yt−1 −mγ(ht−1(θ)))
2 + βht−1(θ)

has a stationary ergodic solution ht(θ). In particular, these considerations show
that the quasi-likelihood function converges to its expectation. This can be used

to show consistency of the quasi-maximum likelihood estimator θ̂.
Unfortunately, the theory of recurrence equations cannot be used in the next

steps of the proof. In this respect, the model differs form other GARCH-models.
Our approach is based on first showing that for ‖θ − θ0‖ ≤ δ with δ > 0 small
enough ∣∣∣∣

ht(θ)− ht(θ0)
ht(θ0)

∣∣∣∣ ≤ ‖θ − θ0‖Wt
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for some not too ill-behaved process Wt. In a further step this result, consistency

of θ̂, the likelihood equation and empirical process theory is used to show that

‖θ̂ − θ0‖ = OP (log(T )T
−1/2)

for some ρ > 0 large enough. Then one uses that h′t(θ) and h
′′
t (θ) are well defined

and well behaved for ‖θ − θ0‖ ≤ C log(T )T−1/2.
Finally, we arrive at the following asymptotic result for the quasi-maximum

likelihood estimator:
√
n(θ̂ − θ0)→ N(0,Σ−1

1 Σ2Σ
−1
1 ), in distribution,

where

Σ1 = E

[
1

2

h′t(h
′
t)

⊤

h2t
+

1

ht
(ṁγ0

(ht) +m′
γ0
(ht)h

′
t)(ṁγ0

(ht) +m′
γ0
(ht)h

′
t)

⊤
]
,

Σ2 = E

[{
1

2

h′t
ht

(Z2
t − 1) + h

−1/2
t (ṁγ0

(ht) +m′
γ0
(ht)h

′
t)Zt

}

{
1

2

h′t
ht

(Z2
t − 1) + h

−1/2
t (ṁγ0

(ht) +m′
γ0
(ht)h

′
t)Zt

}⊤]
.

For Gaussian Zt we have Σ1 = Σ2 and we get that the asymptotic covariance is
equal to Σ−1

1 .
Assumption (B) is rather restrictive. It is always fulfilled if β < 1 and D1 and

D2 are small enough. The assumption D2 < +∞ states that our function m does
not grow faster than x → a

√
x. The treatment of functions with faster growth

would require another approach. Consider e.g. the recurrence equation for the
linear function mγ(x) = γ1 + γ2x. Here, we get that

ht(θ)− ht(θ0) = ω − ω0 + ...+ αγ22 [ht−1(θ) − ht−1(θ0)]
2 + ...

It needs a very careful check why the quadratic term in the recurrence equation
does not lead to an explosive behaviour during 0 ≤ t ≤ T . The process is not
stationary and explodes for t→∞!

Follow-up work includes discussions of what happens for mγ that do not ful-
fill Assumption (B). Furthermore, we apply the results in empirical work using
nonparametric testing and GARCH-M models with nonparametric mean specifi-
cations.
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Boundary Spot Volatility Estimation using the Laplace Transform

Maria Elvira Mancino

(joint work with Imma Curato, Maria Cristina Recchioni)

We show that the Laplace transform is an appropriate tool for building esti-
mators of the instantaneous volatility based on a long time series of prices by
smoothing past data and retaining recent price observations. Our estimation pro-
cedure is non-parametric and model-free, given that we assume the asset price
model to be a continuous Brownian semi-martingale.

The Laplace transform has the same advantages as the Fourier estimation pro-
cedure (see [6], [7]) with respect to the quadratic variation methods. In particular,
by its definition, it uses all the available observations and avoids any manipulation
of the original data, because it is based on the integration of the time series of
returns rather than on its differentiation. Moreover, it has other good features
which can be highlighted. In [6] it is shown that the Fourier estimator performs
better in the center of the time window. The use of the Laplace transform allows
us to obtain an estimator of instantaneous volatility which becomes less sensitive
to the boundary effects as it approaches to the present time.

From a conceptual point of view the introduction of the Laplace transform has
two advantages: firstly, it avoids the artificial ”periodization” subjacent to Fourier
series methodology, which is responsible for the low precision in the boundary es-
timation; secondly, it leads to an estimator which constitutes a bridge between the
two different methods of computation of the volatility: the method based on qua-
dratic variation and our approach using Fourier analysis. This link is confirmed
also by the fact that the Laplace and Fourier estimators of the spot volatility in-
clude some kernel-based estimators when the lead-and-lag terms are neglected. In
particular, due to the presence of a cross-product term with zero mean the Laplace
and Fourier estimators of the spot volatility generalize respectively the triangular
and the Fejer kernel based spot volatility estimators. The kernel-based estimators
have been recently studied, e.g. in [2] and [3], the asymptotic results for the trian-
gular estimator has been proven in [2] and the ability of the triangular kernels on
the boundary of the time horizon has been shown in [3]. On the other hand, the
relevance of the cross-product terms in the Fourier estimators for the integrated
variance and the quarticity (i.e. the fourth power of the diffusion coefficient) is
highlighted in [8], [9], where the robustness of the Fourier estimator in the presence
of microstructure noise is shown.

We prove the consistency of the Laplace estimator of spot volatility and study
its performance at the boundary of the observation interval, showing that it out-
performs most estimators even in the presence of microstructure noise. Extensive
numerical simulations carried out using high frequency data and stochastic volatil-
ity models (see [4], [5]) support this thesis. In fact, our estimator outperforms the
Fourier estimator at the boundary of the time horizon while showing the same
accuracy in terms of mean squared error and bias of its kernel-based component.
Furthermore, in the presence of microstructure noise it performs as well as the
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Fourier estimator for the spot volatility. Actually, the Laplace estimator is slightly
more robust than the Fourier one with respect to the choice of bandwidths. We
exploit the optimal bandwidths, in term of the smallest mean squared error, for
these four estimators. To this end we use 1-second sampled data and two stochas-
tic volatility models [4], [5] and we distort the data by introducing ever higher
intensities of noise. We observe that Laplace estimator optimal bandwidths re-
main unchanged while the Fourier optimal bandwidths must be modified for high
intensity noise; on the contrary, the triangular and the Fejer estimators deteriorate
when the noise-to-signal ratio increases. Finally, the values of the optimal band-
widths are coherent with the theoretical result on the consistency of the estimator
and with the results shown in [1], [2].
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The extremogram and the ex-periodogram

Thomas Mikosch

(joint work with Richard A. Davis, Yuwei Zhao)

This is joint work with Richard A. Davis (Columbia University) and Yuwei Zhao
(Copenhagen) (in Bernoulli Journal 2009 and 2013).

In this talk we consider the periodogram calculated from the indicators of ex-
treme events based on an underlying stationary sequence (ex-periodogram). The
ex-periodogram shares many properties with the classical periodogram of a sta-
tionary sequence such as asymptotic independence at distinct frequencies and
consistent estmation of the (ex-)spectral density from weighted averages of ex-
periodogram ordinates. We consider integrated versions of the ex-periodogram
and investigate whether these statistics can be used for testing the goodness of fit
of time series models based on their extremal behavior.
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Forecasting Volatility using Leverage Effect

Per A. Mykland

(joint work with Dan Christina Wang and Lan Zhang)

The research provides a theoretical foundation for our previous empirical finding
[3] that leverage effect has a role in forecasting volatility. This empirics is related
to earlier econometric studies of news impact curves [1, 2]. Our new theoretical
development is based on the concept of projection on stable subspaces of semi-
martingales. We show that this projection provides a framework for forecasting
(across time periods) that is internally consistent with the semi-martingale model
which is used for the intra-day high frequency asymptotics.
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Limit theorems for Lévy moving average processes

Mark Podolskij

(joint work with Andreas Basse-O’Connor, Raphael Lechieze-Rey)

We consider a Lévy moving average process of the form

Xt =

∫ t

−∞
g(t− s)dLs,

where L is a pure jump Lévy motion. The kernel function g : R≥0 → R is assumed
to be of the type

g(x) = xαf(x), α > 0,

where the function f : R≥0 → R is smooth, exponentially decaying at infinity and
f(0) 6= 0. Since g(0) = 0 the process X turns out to be continuous and stationary.

Our main class of statistics are power variations that are defined via

V (X, p)n :=
n∑

i=1

|X i
n
−X i−1

n
|p, p > 0.

In order to determine the first order asymptotics for V (X, p)n, we need to intro-
duce the Blumenthal-Getoor index of the Lévy process L. Let ν denote the Lévy
measure of L. Then the Blumenthal-Getoor index β of L is defined as

β := inf
r≥0

{
r :

∫ 1

−1

|x|rν(dx) <∞
}

= inf
r≥0



r :

∑

s∈[0,1]

|∆Ls|r <∞



 ∈ [0, 2],
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where ∆Ls = Ls − Ls− denotes the jumps size of L at time s. We remark that a
β-stable Lévy process with β ∈ (0, 2) has Blumenthal-Getoor index β. Our main
result is the following theorem.

Theorem: For the power variation V (X, p)n of a Lévy moving average process
X the following results hold.

(i) When α ∈ (0, 1− 1/p) and p > β, we obtain the stable convergence

nαpV (X, p)n
st−→ |f(0)|p

∑

m:Tm∈[0,1]

|∆LTm |p
( ∞∑

k=0

|(k + Um)α+ − (k − 1 + Um)α+|p
)
,

where (Tm)m≥1 denote the jump times of L, (Um)m≥1 is a sequence of i.i.d.
U([0, 1])-distributed random variables and x+ := max(0, x).

(ii) Assume that L is a symmetric β-stable Lévy process without drift. When
α ∈ (0, 1− 1/β) and p < β, we deduce the convergence in probability

np(α+1/β)−1V (X, p)n
P−→ E[|L̃1|p],

where L̃1 is a certain β-stable random variable.

(iii) When α > 1− 1/p, p > β or α > 1− 1/β, p < β, we obtain the convergence
in probability

np−1V (X, p)n
P−→
∫ 1

0

|Fs|pds with Fs :=

∫ s

−∞
g′(s− u)dLu.

We conjecture that one can prove weak limit theorems associated with the ergodic
case (ii). As in the Gaussian case, central and non-central limit theorems can be
expected. These probabilistic results might be applied to estimate the parameters
α and β.

The described limit theory can be extended in various directions. One of the
most important class of models are the so called ambit process, which are defined
as

Yt =

∫ t

−∞
g(t− s)σsdLs,

where σ is a stochastic process that describes the intermittency of a turbulent
flow. We think that our theoretical results are easily extended to this class of
processes by the standard blocking technique. Another direction of our research
lies in proving similar asymptotic results for a general class of statistics given via

n∑

i=1

h
(
X i

n
−X i−1

n

)
,

where h : R → R is a measurable function. This setting corresponds to the so
called Breuer-Major theorems in the Gaussian framework.
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Detection of multiple structural breaks in multivariate time series

Philip Preuß

(joint work with Ruprecht Puchstein, Holger Dette)

We propose a new nonparametric procedure for the detection and estimation of
multiple structural breaks in the autocovariance function of a multivariate (second-
order) piecewise stationary process, which also identifies the components of the
series where the breaks occur. The new method is based on a comparison of
the estimated spectral distribution on different segments of the observed time
series and consists of three steps: it starts with a consistent test, which allows to
prove the existence of structural breaks at a controlled type I error. Secondly, it
estimates sets containing possible break points and finally these sets are reduced
to identify the relevant structural breaks and corresponding components which
are responsible for the changes in the autocovariance structure. In contrast to
all other methods which have been proposed in the literature, our approach does
not make any parametric assumptions, is not especially designed for detecting one
single change point and addresses the problem of multiple structural breaks in the
autocovariance function directly with no use of the binary segmentation algorithm.

1. Testing for structural breaks

We assume to observe realizations of a centered Rd valued stochastic process
(Xt,T )t=1,...,T , where Xt,T = (Xt,T,1, ..., Xt,T,d)

T has a piecewise stationary rep-
resentation. This means that there exists an unknown number K ∈ N0 and points
0 = b0 < b1 < · · · < bk < bK+1 = 1 such that

Xt,T =

∞∑

l=0

Ψl(t/T )Zt−l t = 1, ..., T,(1)

where the functionsΨl : [0, 1]→ Rd×d, l ∈ Z, are defined asΨl(u) =
∑K

j=0 Ψ
(j)
l 1Sj (u)

and 1Sj denotes the indicator function of the set Sj = {u : bj < u ≤ bj+1}, {Zt}t∈Z

denotes a centered Gaussian White Noise process with covariance matrix Id and

the matrices Ψ
(j)
l ∈ Rd×d correspond to the piecewise constant coefficents of the

linear representations on the segment (⌊bjT ⌋, ⌊bj+1T ⌋]. We assume thatK is ’min-
imal’ in the sense that for every pair (i, i+1) with i ∈ {0, ...,K−1} there exists an
integer l ∈ N such that Ψ

(i)
l 6= Ψ

(i+1)
l . This ensures that, if K equals zero, there

is no change point in the dependency structure, while structural breaks exist for

K ≥ 1. We introduce f j(λ) =
1
2π

∑∞
l,m=0 Ψ

(j)
l

(
Ψ(j)

m

)T
exp(−iλ(l−m)) and obtain

for the Cd×d valued time-varying (piecewise constant) spectral density matrix

(2) f(u, λ) =
1

2π

∞∑

l,m=0

Ψl(u)
(
Ψm(u)

)T
exp(−iλ(l −m)) =

K∑

j=0

f j(λ)1Sj (u).

From this representation it follows that the spectral density has points of dis-
continuity in u direction at the break points bi (i = 1, ...,K) whenever K ≥ 1.
Therefore we propose to compare the spectral density λ 7→ 1

e

∫ v

v−e
f(u, λ)du with
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λ 7→ 1
e

∫ v+e

v f (u, λ)du for some ’small’ constant e. If there exist structural breaks,

the difference sup
ω∈[0,1]

1
e |
∫ ωπ

0

∫ v+e

v f (u, λ)dudλ−
∫ ωπ

0

∫ v

v−e f(u, λ)dudλ| will be pos-

itive for v ∈ {b1, ..., bK} while it vanishes for v ∈ [0, 1]\{b1, ..., bK} as e → 0. In
order to obtain a global measure for the presence of structural breaks we consider

(3) D := sup
v,ω∈[0,1]

||D(v, ω)||∞

[|| · ||∞ denotes the maximum norm of a matrix], where for v ∈ [e, 1 − e] and
ω ∈ [0, 1] the matrix D(v, ω) is defined by

(4) D(v, ω) :=
1

e

(∫ ωπ

0

∫ v+e

v

f(u, λ)dudλ−
∫ ωπ

0

∫ v

v−e

f(u, λ)dudλ

)
∈ R

d×d

and we set D(v, ω) = D(e, ω) and D(v, ω) = D(1 − e, ω) whenever v ≤ e and
v ≥ 1 − e respectively. Under the hypothesis of no structural break, i.e. K = 0,
we have D = 0, while D is strictly positive if structural breaks occur. In order to
obtain a test for the null hypothesis

H0 : K = 0,(5)

it is therefore natural to estimate D and to reject the null hypothesis for ’large’
values of the estimator. An empirical version of D is obtained by choosing some
even integer N ≤ T/2, taking the local periodogram

IN (u, λ) :=
1

2πN

N−1∑

r,s=0

X⌊uT⌋−N/2+1+s,TX
T
⌊uT⌋−N/2+1+r,T exp(−iλ(s− r)),(6)

[where we set Xj,T = 0 whenever j 6∈ {1, . . . , T }] as an estimator for f (u, λ) and
considering

(7) D̂T (v, ω) :=
1

N

⌊ωN/2⌋∑

k=1

(
IN

(
v +N/(2T ), λk

)
− IN

(
v −N/(2T ), λk

))
,

if v ∈ [NT , 1 − N
T ] where λk = 2πk/N denote the Fourier frequencies. On the

intervals [0, NT ) and (1 − N
T , 1] we define D̂T (v, ω) as D̂T (

N
T , ω) and D̂T (1 −

N
T , ω) respectively. So roughly speaking we construct an estimator of D(v, ω)
by replacing the integral by a Riemann sum, where the averaged time varying

spectral density matrices 1
e

∫ v+e

v
f (u, λ)du and 1

e

∫ v

v−e
f(u, λ)du on the intervals

[v, v + e] and [v − e, v] are replaced by the local periodograms IN (v +N/(2T ), λ)
and IN (v−N/(2T ), λ). The final estimate of the quantity D in (3) is then defined
by

(8) D̂T := sup
(v,ω)∈[0,1]2

||D̂T (v, ω)||∞ = max
v∈[N/T,1−N/T ]

sup
ω∈[0,1]

||D̂T (v, ω)||∞.

In [Preuß et al. (2013)] we derive crucial asymptotic results for D̂T and prove
that the corresponding quantiles under H0 can be approximated sufficiently well
by an extension of the AR(∞)-bootstrap of [Kreiß (1988)], resulting in a consistent
level-α test for the null hypothesis of no structural breaks.
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2. Detecting the number and location of break points

If structural breaks have been detected by the above described test it is of
futher interest to estimate the number and location of possible break points and
to identify the components responsible for these changes in the regime. In the
following discussion we will briefly describe a procedure which consists of two steps
and detects simultaneously the number, location and corresponding components
of multiple structural breaks [cf. [Preuß et al. (2013)] for all details]. In the first
step we estimate (shrinking if N/T → 0) sets, which may contain potential break
points. Roughly speaking these sets contain all points where the components of the
spectral density estimate indicate a structural break. In a second step these sets are
reduced to identify the relevant structural breaks and corresponding components
which are responsible for these breaks. For this purpose we recall the definition
(7), choose some constant 0 < γ < 1/2 [a recommendation for this choice is given
in [Preuß et al. (2013)]] and proceed as follows.

Step I (identification of sets containing break points) We consider a
point v ∈ {NT , N+1

T , ..., T−N
T } as a candidate for a structural break in the compo-

nent (a, b) if the inequality

(9) Nγ sup
ω∈[0,1]

| ˆ[DT (v, ω)]a,b| > εT,a,b(v)

holds, where εT,a,b(v) is a threshold satisfying lim inf
T→∞

εT,a,b(v) ≥ C > 0 for some

constant C and εT,a,b(v) = o(Nγ) uniformly in v ∈ [0, 1]. A data driven rule for
the choice of the threshold εT,a,b(v) with good finite sample properties is given in
[Preuß et al. (2013)].

The decision rule (9) identifies subsets R1, ..., RKT ⊂ {N/T, ...., 1−N/T }where
possible break points in the components of the spectral density matrix may occur.
The goal of the second step is to reduce this set significantly in order to end up
with the final estimators of the break points. This step (roughly speaking) works
as follows: For every set Rj of points in {N/T, ..., 1− N/T } satisfying (9) for at

least one pair (a, b) ∈ {1, ..., d}2 we identify a point b̃ ∈ Rj for which the local
deviation from stationarity is maximal and then remove all points of the interval
[b̃ − N

T , b̃+
N
T ] from the set Rj . We then say that there is a structural break at b̃

for all components which are above the corresponding threshold at this point.
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Adaptive online forecasting of a locally stationary time varying
autoregressive process

François Roueff

(joint work with Andrés Sánchez-Pérez, Christophe Giraud)

This report gathers some results of the ongoing Phd thesis of Andrés Sánchez-
Pérez that I have been supervising at the LTCI (Institut Mines-Télécom; CNRS;
Télécom ParisTech) with Christophe Giraud from Université Paris-Sud. In this
work, we study the problem of online adaptive forecasting for locally station-
ary Time Varying Autoregressive processes (TVAR). The Normalized Mean Least
Squares algorithm (NMLS) is an online stochastic gradient method which has been
shown to perform efficiently, provided that the gradient step size is well chosen.
This choice highly depends on the smoothness exponent of the evolving parame-
ters. In this contribution, we show that a sequential aggregation of several NLMS
estimators at various gradient step sizes is able to adapt to an unknown smooth-
ness, resulting in an online adaptive predictor.

1. Introduction

In many applications where high frequency data is collected, one wishes to pre-
dict the next values of an observed time series through an online predictor learning
algorithm, allowing one to process a large amount of data. However, as a counter-
part, the usual stationarity assumption has to be weakened to take into account
some smooth evolution of the environment. An interesting approach to cope with
this non-stationarity issue is to rely on a local stationarity assumption. We refer to
[2] and the references therein for a recent general view about statistical inference
for locally stationary processes. Here we focus on a particular model, which is
obtain by apply this approach to a time-varying autoregressive process.

Definition 1 (Time-varying autoregressive process (TVAR)) The T -
sample X1,T , . . . , XT,T of a TVAR process or order d satisfies

Xt,T =

d∑

j=1

θj

(
t− 1

T

)
Xt−j,T + σ

(
t

T

)
ξt ,(1)

where the ξt are i.i.d. with Eξt = 0 and θj are the time-varying autoregressive
coefficients rescaled on the interval [0, 1].

Initial conditions should be added but we omit the details here for brevity. Nev-
ertheless it is important to mention that they imply that ξt is independent of the
past of Xs,T up to s = t − 1. Hence the best predictor of Xt,T given its past

is θ′ ( t−1
T

)
Xt−1,T , where θ = (θ1, . . . , θd)

′
and Xt−1,T = (Xt−1,T , . . . , Xt−d,T )

′
.

Here and in the following, we let A′ denote the transpose of the matrix A.
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The local autoregressive polynomial of the TVAR at rescaled time u ∈ [0, 1] is

defined as θ(z;u) = 1−
d∑

j=1

θj(u)z
j.

For ζ > 0 we define by sd(ζ) =
{
θ : [0, 1]→ Rd, θ(z;u) 6= 0, ∀|z| < ζ−1, u ∈ [0, 1]

}
.

Following [3], a TVAR process is locally stationary if θ and σ satisfy some
smoothness conditions and θ ∈ sd (δ) for some δ ∈ (0, 1). These conditions with
adequate initial conditions imply that there exists a solution with representation

Xt,T =

∞∑

j=0

at,T (j)ξt−j ,(2)

and that there exist K̄ > 0 and ρ ∈ [0, 1) such that sup
t,T
|at,T (j)| ≤ K̄ρj .

In this contribution, we shall use β− Lipschitz smoothness conditions. For any
β ∈ (0, 1], the β− Lipschitz semi-norm of a function f : [0, 1] → R

d is defined as

|f |Λ,β = sup
s1 6=s2

f(s1)−f(s2)
|s1−s2|β . For L ∈ R

∗
+ and β > 0, let k ∈ N and α ∈ (0, 1] be such

that β = k + α. The β− Lipschitz ball of radius L is denoted by Λd(β, L).

2. NLMS estimators

In [4], the normalized least mean squares algorithm (NLMS) estimator of the
parameter θ = (θ1, . . . , θd)

′
is studied for locally stationary TVAR processes. We

will use basically the same estimators but with a slight modification (Eq. (4)
below). For a given gradient step size µ > 0, our modified NLMS estimator is
defined recursively by

θ̃t,T (µ) = θ̃t−1,T (µ) + µ
(
Xt,T − θ̃

′
t−1,T (µ)Xt−1,T

) Xt−1,T

1 + µ
∣∣Xt−1,T

∣∣2
2

,(3)

θ̂t,T (µ) =




θ̃t,T (µ) if

∣∣∣θ̃t,T (µ)
∣∣∣
2
≤ 2d − 1 ,

2d−1

|θ̃t,T (µ)|
2

θ̃t,T (µ) otherwise.
(4)

Here | · |2 stands for the Euclidean norm. The additional step (4) is a projection
on the ball of radius 2d − 1 which guaranties our estimators to be bounded. The

statistic θ̂t−1,T (µ) is our estimation for θ
(
t−1
T

)
, from which we obtain the predictor

θ̂
′
t−1,T (µ)Xt−1,T of Xt,T . The precision of the prediction is evaluated by the

cumulative loss

T∑

t=1

ℓ(θ̂
′
t−1,T (µ)Xt−1,T , Xt,T ) ,

for the loss function ℓ (x, y) = |x − y|q for some q = 1, 2, 3, . . . We shall focus on
the case q = 2 in the following.
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3. Aggregation of predictors

From a collection
{
θ̂
(j)

t−1,T

}
1≤j≤N

of N estimators of θ we obtain predictors

of Xt,T defined by fj,t = θ̂
(j)′
t−1,TXt−1,T , 1 ≤ j ≤ N . In particular, each index j

may correspond to a NLMS estimator obtained with a given µj . In aggregation
language, the fj,ts are called expert’s predictions or forecasts. The strategy used
in a different context (bounded observations) by [1] suggest to combine all possible
expert’s predictions as follows

θ̌t−1,T =

N∑

j=1

ᾱj,tθ̂
(j)

t−1,T with ᾱj,t =

exp

(
−η

t−1∑
s=1

ℓ̃j,s

)

N∑
i=1

exp

(
−η

t−1∑
s=1

ℓ̃i,s

) ,

where ℓ̃j,t = ∇xℓ

(
N∑
i=1

αi,tfi,t, Xt,T

)
·fj,t and with the convention that a sum over

no element is null, i.e. ᾱj,1 = 1
N for all j. The symbol ∇xℓ denotes the subgra-

dient of ℓ taken with respect to the first coordinate. The parameter η > 0 will
be specified below. Based on sequential aggregation techniques (see [1]), and [4,
Theorem 2], we obtain the following result.

Theorem 1 Suppose that E[|ξ0|r] < ∞ for some r > 8. For j = 1, . . . , N let

θ̂
(j)
t,T = θ̂t,T

(
T−2j/(2j+N)

)
. Define the aggregated estimator θ̌t,T as above with

η ∝ (logN/T )1/2. Suppose moreover that θ ∈ sd (δ) ∩ Λd(β, L) for L > 0 and
β ∈ (0, 1], and that σ is bounded between two positive values. Then we have

E

[
T∑

t=1

(∣∣∣θ̌′
t−1,TXt−1,T −Xt,T

∣∣∣
2

− σ2

(
t

T

)
E

[
|ξ0|2

])]

= O
(
T 1/(1+2β) +

√
T logN

)
,

provided that log(T )
N = O(1) as T →∞.

Observe that, for β < 1/2, the convergence rate is the same as the one in [4,
Theorem 2] when µ is optimized according to the value of β. Here, in contrast,
the estimator does not require the knowledge of β to achieve this rate.
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matiques de l’̂Ile de France (RDM-IdF) for the period 2012 - 2015 and by the Labex
LMH (ANR-11-IDEX-003-02).



2804 Oberwolfach Report 48/2013

References
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Structured wavelet estimation of time-varying spectra

Rainer von Sachs

(joint work with Jean-Marc Freyermuth)

In this work we revisit nonparametric estimation of the time-varying spectral den-
sity f(t/T, ω) of a (zero mean) locally stationary time series {Xt}t=1,...,T . Hereby
we want to avoid using any (prior) segmentation of the data over time but work
under the paradigm of the (non-linear) time-frequency smoothing method of [1].
This approach suggests to replace classical linear smoothing of the (empirical)
Wigner-Ville (WV) spectrum - or preperiodogram - by some more adaptive wavelet
denoising method which is akin non-linear (hard) thresholding of data observed
on an equidistant grid of a two-dimensional curve plus noise (see equation (2)
below). As such, it avoids the usually non-adaptive (though asymptotically con-
sistent) time-frequency smoothing of segmented periodograms of equal segment
length. In this alternative approach, the challenge lies in the finite sample be-
haviour of the preperiodogram which is basically the Fourier transform of a very
local autocovariance estimation:

(1) It,T (ω) =
∑

k:1≤t−k/2,t+k/2≤T

X[t−k/2],T X[t+k/2],T exp(−2πikω)

As such it is a highly around zero oscillating object, and unlike the classical peri-
odogram it is not non-negative and suffers from inherent cross-interference terms:
the preperiodogram is a bilinear function of the time series data and hence the
quadratic superposition principle applies. In particular time data which come
from non-overlapping regions of the time domain find themselves mingled in the
non-vanishing cross-terms, hence causing a potentially important bias due to non-
stationarity of the data. There is indeed a vast engineering literature which tries
to best reduce this interference terms by investigating the behaviour of linear
kernel smoothers. However, our approach builds on non-linearly thresholding the
2-dimensional projection coefficients of the preperiodogram onto a separable (or
hyperbolic) wavelet basis {ψj1k1

(t/T ) ψj2k2
(ω)}. Here, we recall the role of increas-

ing multiresolution scales j1 ≥ 0 in time and j2 ≥ 0 in frequency, providing, in a
separable way, finer and finer approximations of the local time-frequency structure.
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In this work we address, both from a theoretical and a practical point of view, a
series of questions that arise throughout this research agenda: i) as an alternative
to the plug-in thresholds suggested in [1], we investigate how to optimally cali-
brate the level-and-location dependent thresholds in our very noisy and highly het-
eroscedastic curve estimation context; ii) we study which combination of wavelet
functions forms the hyperbolic basis to best reduce the inherent cross-terms in
the preperiodogram; iii) we investigate ”Tree-structured” wavelet estimation ([3])
where we compare fully non-linear hard-thresholding (as in [1]) by ”hard-tree”
thresholding under a hereditary constraint: a ”children” coefficient in the empir-
ical wavelet tree can only survive our keep-or-kill rule if all its ancestors remain
activated; and finally iv) we study how the well-known ”Heisenberg constraint”
translates into another structural constraint of our thresholding scheme: given T 2

preperiodogram data (It,T (ωn))t,n=1,...,T the effective support of any (smoothing)
time-frequency window needs to have as minimal area 2πT (or 2π/T , respectively,
in rescaled time of equation (2) below). This leads us to work in a constrained
2-dimensional curve estimation (denoising) problem

(2) It,T (ωn) ≈ f(t/T, ωn) +
√
f(t/T, ωn) εt,n , t = 1, . . . , T, n = 1, . . . , T,

where we reduce the redundancy in this ”oversampled” problem of T 2 preperi-
odograms, resulting from only T time series values X1, . . . , XT , by the following
structural constraint on tree-structured hard thresholding of the coefficients

(3) θ̂I = < It,T (ωn), ψj1k1
(t/T ) ψj2k2

(ωn) > ,

given by

(4) 2j1+j2 < 2J = T (Heisenberg constraint).

This natural constraint balances time and frequency resolution being reciprocal to
each other as the temporal and frequential support of the 2-d wavelets have lengths
proportional to 2−j1 and to 2−j2 , respectively. The resulting threshold estimator
is supposed to provide the right time-frequency ”support”, i.e. to adapt to the
time-frequency structure of the true underlying spectrum, provided the thresholds
are correctly determined to suppress all those ”time-frequency windows” which
are not significant (i.e. not matching the local time-frequency spectral structure).

Tree-structured wavelet (hard) thresholding ([3], [4]) is motivated from two obser-
vations for denoising curves: a) the use of the Haar basis in time for {ψj1k1

(t/T )}
allows non-dyadic breaks in time to be better resolved than with classical hard
thresholding, which is ideal for our goal of achieving implicitly an optimal time-
segmentation; b) in a general multivariate context [4] showed that under certain
structural conditions the maxiset of Hard tree thresholding is larger than those of
Hard thresholding. Hereby, we understand by maxiset the largest set of functions
that can be estimated with a given rate of convergence, usually chosen to be the
(near-) optimal nonparametric rate of convergence of the associated L2−risk over
standard function spaces (here anisotropic Besov classes).
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Tansfering this maxiset result to spectral estimation under the model and condi-
tions of [1], we show that the control of the variance of the Hard tree estimator is
achieved via the Heisenberg constraint of (4), in that all coefficients on scales not
respecting this constraint need to be eliminated from the reconstruction.

For calibrating thresholding of the remaining empirical coefficients we propose
to borrow strength from the paradigm behind what [2] call ”wavelet-Fisz” noise
free thresholds: here the idea is to calculate ”Fisz-ratios” by studentizing each

empirical coefficient θ̂I by an estimator of its standard deviation, in order to

avoid plug-in estimation of the asymptotic variance of θ̂I (as proposed by [1]).
One possibility for the denominator of this Fisz-ratio is to project the prepe-
riodogram onto a time-frequency ”mod-wavelet”, essentially an L1−normalized
basis {|ψj1k1

(t/T )| |ψj2k2
(ω)|}. Subsequently, following the paradigm of wavelet

thresholding to suppress (asymptotically) all noise in the coefficient domain, we
perform Monte Carlo simulations to find appropriate quantiles in the tails of the
Fisz-ratio, under the null of a constant spectrum in time and frequency.

And finally, to address the problem of reducing the interference terms in preperi-
odogram smoothing, in work in progress we study which type of wavelets {ψj2k2

(ω)}
in frequency provide for the best finite-sample performance. Using as a benchmark
an ideal piecewise stationary approximation to the underlying locally stationary
time series, we investigate the amount of cross-interference contribution suppos-
edly minimal for frequency wavelets with the shortest possible support in the
Fourier domain, i.e. the domain of the autocovariance function of the time series.
Natural candidates are wavelets with a compact support in the Fourier domain,
such as Shannon wavelets and members of the family of Meyer wavelets (the latter
one having better decay properties in the physical, i.e. frequency domain). Under
the Heisenberg constraint (4), these frequency wavelets provide, locally for a given
time point within the support of the time domain wavelet of length Nj1 = T/2j1 ,
some kind of lag-window smoothing of the (local) autocovariances by using as few
observations as possible coming from outside the given time segment.

We conclude by repeating the essential steps of our proposed constrained Hard
tree estimator, combining the ingredients of our research agenda i)-iv):

• Project the preperiodogram onto a 2-dimensional hyperbolic wavelet basis,
suited for estimation of spectra of anisotropic smoothness over time (being
rather ”unsmooth”) and frequency (being typically more regular).
• Impose the Heisenberg constraint: 2j1+j2 < 2J = T . This reduces (statis-
tical) redundancy in the preperiodogram and is essential to regularise the
bivariate thresholding estimator.

• Apply tree-structured hard thresholding on θ̂I from (3), using a hereditary
structure for hard thresholding all wavelet coefficients on all constrained
scales, and using correctly calibrated thresholds, based on ”Fisz-ratios”.

The resulting estimator is supposed to provide the right time-frequency ”support”,
i.e. to adapt to the time-frequency structure of the true spectrum. Under some
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employed structural constraints, it achieves equally well the optimal rates of con-
vergence over anisotropic smoothness classes as the estimator of [1]. Moreover, its
maxisets can be shown to be larger than those of classical hard thresholding.
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Feature Matching in Time Series Modelling

Howell Tong

(joint work with Yingcun Xia)

This talk is based on joint work with Professor Yingcun Xia of the National
University of Singapore.

Using a time series model to mimic an observed time series has a long his-
tory. However, with regard to this objective, conventional estimation methods for
discrete-time dynamical models are frequently found to be wanting. In fact, they
are characteristically misguided in at least two respects: (i) assuming that there
is a true model; (ii) evaluating the efficacy of the estimation as if the postulated
model is true. There are numerous examples of models, when fitted by conven-
tional methods, that fail to capture some of the most basic global features of the
data, such as cycles with good matching periods, singularities of spectral density
functions (especially at the origin) and others. We argue that the shortcomings
need not always be due to the model formulation but the inadequacy of the conven-
tional fitting methods. After all, all models are wrong, but some are useful if they
are fitted properly. The practical issue becomes one of how to best fit the model to
data. Thus, in the absence of a true model, we prefer an alternative approach to
conventional model fitting that typically involves one-step-ahead prediction errors.
Our primary aim is to match the joint probability distribution of the observable
time series, including long-term features of the dynamics that underpin the data,
such as cycles, long memory and others, rather than short term prediction. For
want of a better name, we call this specific aim feature matching. The challenges
of model misspecification, measurement errors and the scarcity of data are for-
ever present in real time series modelling. In this paper, by synthesizing earlier
attempts into an extended-likelihood, we develop a systematic approach to empir-
ical time series analysis to address these challenges and to aim at achieving better
feature matching. Numerical results, based on both simulations and real data,



2808 Oberwolfach Report 48/2013

suggest that the proposed catch-all approach has several advantages over the con-
ventional methods, especially when the time series is short or with strong cyclical
fluctuations. We conclude with listing directions that require further development.

We shall use letters y and x to signify respectively the real time series under
study and the time series generated by the postulated model. The adjective ob-
servable is reserved for a stochastic process. An observed time series consisting
of observations constitutes (possibly part of) a realization of a stochastic process.
Consider the postulated model

x(t) = g(x(t− 1), ..., x(t− p); θ) + e(t),

where e(t) is the innovation and the function g(·; θ) is known up to parameters
θ. To indicate the dependence of x(t) on θ, we also write it as x(t; θ). In order
for the model to be able to approximate an observable {y(t) : t = 1, 2, ...} well,
it is natural to require that the state space of {x(t; θ) : t = 1, 2, ...} covers that
of the observable {y(t) : t = 1, 2, ...}. For simplicity of exposition, let p = 1.
Starting from x(0; θ) = y(0), the postulated model is said to match an observable
time series under study perfectly if their conditional distributions are the same,
namely,

P{x(1; θ0) < u(1), ..., x(n; θ0) < u(n)|x(0; θ0) = y(0)}
= P{y(1) < u(1), ..., y(n) < u(n)|y(0)}

almost surely for some θ0 and any n and any real values u(1), ..., u(n). We call
the approach based on the above model, including all its weaker versions, some
of which will be described in the full paper collectively by the name catch-all
approach.

In our paper, we adhere to Boxs dictum and abandon, right from the very
beginning, the assumption of either the postulated parametric model being true or
the observations being error-free. Instead, we focus on ways to improve the feature
matching of a postulated parametric model to the observable time series. We have
introduced the notion of an optimal parameter in the absence of a true model
and defined a new form of consistency. In particular, we have synthesized earlier
attempts into a systematic approach of estimation of the optimal parameter, by
reference to up-to-m-step-ahead predictions of the postulated model. We have also
developed some general results with proofs. Conventional methods of estimation
are typically based on just the one-step-ahead prediction. Our analysis, simulation
study and real applications have convinced us that they are often found wanting
in many situations, for example, the absence of a true model, short data sets,
observation errors, highly cyclical data and others. Our stated primary objective
is feature matching. Prediction is secondary here. However, we have evidence
to suggest that a model with good feature matching can stand a better chance of
enjoying good medium- to long-term prediction. Of course, if the aim is prediction
at a specified horizon, then our approach has almost nothing to offer.
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Discriminating between long-range dependence and non stationarity

Mathias Vetter

(joint work with Philip Preuß)

In this talk we give a partial answer to the problem of discrimination between
a stationary long-range dependent model and a non stationary process.

In (econometric) practice, there are various models accounting for deviations
from the expected behaviour of the autocorrelation function if the underlying
time series was a stationary short memory one. In earlier days, the lack of an
exponential decay of the ACF forced authors to advocate the use of long memory
models as in [2] and [3] instead, while nowadays people point in the direction of
using non-stationary models; see [1], [4] or [7]. Our task therefore is to give a
hint on how to decide whether the observed process comes from one or the other
model. In particular, we propose a nonparametric test for stationarity within a
general non stationary long memory framework.

The proposed procedure in the talk is based on [6]: Suppose the underlying
process is a locally stationary one, i.e. it is of the form

Xt,T =

∞∑

l=0

ψt,T,lZt−l, t = 1, . . . , T,

for certain coefficients ψt,T,l and standard normal variables Zt. We assume that
these coefficients can (in an appropriate sense) be approximated by smooth func-
tions ψl(t/T ) which satisfy

ψl(u) = a(u)I(l)d(u)−1 +O(I(l)D−2)

for twice differentiable functions a, d : [0, 1] → R+ and where D := supu |d(u)| <
1/2 is the maximal long range dependence parameter. The time varying spectral
density is given by

f(u, λ) :=
1

2π

∣∣∣
∞∑

l=0

ψl(u) exp(−iλl)
∣∣∣
2

.

In case Xt,T is actually stationary, the spectral density does not depend on the
time u. Therefore, our test is based on the intuition that

E(v, ω) :=
1

2π

(∫ v

0

∫ πω

0

f(u, λ)dλdu− v
∫ πω

0

∫ 1

0

f(u, λ)dudλ
)
, (v, ω) ∈ [0, 1]2,

is equal to zero for all choices of v and ω for stationary processes, while it deviates
from zero otherwise. Therefore,

E := sup
(v,ω)∈[0,1]2

|E(v, ω)|

serves as a Kolmogorov-Smirnov type distance between the time varying spectral
density and its best approximation through a stationary spectral density. We use
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estimates for the integrated spectral density via Riemann sums of periodograms.
Precisely, if

IN (u, λ) :=
1

2πN

∣∣∣
N−1∑

s=0

X⌊uT⌋−N/2+1+s,T exp(−iλs)
∣∣∣
2

denotes the periodogram computed from N observations around time uT , then
the empirical version of E(v, ω) is given by

ÊT (v, ω) :=
1

T

⌊vM⌋∑

j=1

⌊ωN
2
⌋∑

k=1

IN (uj , λk)−
⌊vM⌋
M

1

T

M∑

j=1

⌊ωN
2
⌋∑

k=1

IN (uj , λk),

where uj = (N(j − 1) +N/2)/T , λk := 2πk/N are the regular Fourier frequencies
and M = T/N .

Setting

ĜT (v, ω) = ÊT (v, ω)− E
(⌊vM⌋

M
,
⌊ωN/2⌋
N/2

)
,

we have weak convergence in a process sense under the null hypothesis, that is
√
T (ĜT (v, ω))(v,ω)∈[0,1]2 ⇒ (G(v, ω))(v,ω)∈[0,1]2 ,

where the limiting Gaussian process is the same one as in the short memory case
[see [5]], at least if the (possibly time varying) long memory parameter is smaller

than 1/4. As a consequence,
√
T sup(v,ω)∈[0,1]2 |ÊT (v, ω)| converges in distribution

to sup(v,ω)∈[0,1]2 |G(v, ω)|, if the underlying process is indeed stationary. Consis-
tency under the alternative is provided as well. If the long memory parameter D
exceeds the boundary 1/4, the limiting process is non-Gaussian and different from
(G(v, ω))(v,ω)∈[0,1]2 above.

In any case, it is difficult to assess the disctribution of sup(v,ω)∈[0,1]2 |G(v, ω)|
even if D < 1/4. For this reason, the novel FARI(∞) bootstrap is introduced
which provides a bootstrap-based test for stationarity which shows good empirical
properties if the long memory parameter is smaller than 1/2 which is the usual
restriction in the framework of long-range dependent time series. We investigate
the finite sample properties of our approach in a comprehensive simulation study
and employ the new test in an analysis of two data sets.
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Detecting Smooth Changes in Locally Stationary Processes

Michael Vogt

(joint work with Holger Dette)

In many applications, the stochastic properties of the observed time series change
over time. It is often realistic to assume that the properties are approximately the
same over short time periods and then gradually start to vary. This behaviour is
well modelled by locally stationary processes introduced in Dahlhaus [1]. Roughly
speaking, we call a process {Xt,T } locally stationary if it can be approximated by
a stationary process {Xt(u)} locally around each rescaled time point u ∈ [0, 1].
For a rigorous definition, see Vogt & Dette [5].

In what follows, we investigate the question how to estimate time spans where
the stochastic properties of a locally stationary time series {Xt,T } are (approx-
imately) the same. More specifically, let λt,T be a stochastic feature of Xt,T

such as the mean E[Xt,T ], the variance Var(Xt,T ) or the distribution function
Ft,T (·) = P(Xt,T ≤ · ). Suppose we are interested in the behaviour of λt,T around
the time point t∗, or equivalently, around the rescaled time point u∗ = t∗/T .
Moreover, let u0 < u∗ < u1 and assume that λt,T does not vary within the interval
[u0, u1] but gradually starts to vary outside it. Our goal is to estimate the time
span [u0, u1].

To handle this estimation problem, we slightly reformulate it: Let λu be the
stochastic feature of the approximating process {Xt(u)} which corresponds to λt,T .
Under mild conditions, time-variation in λt,T is asymptotically equivalent to time-
variation in λu. Our estimation problem can thus be formulated in terms of λu
rather than λt,T : Suppose that λu does not vary within the rescaled time interval
[u0, u1] but smoothly varies outside it. Our aim is to estimate the time points u0
and u1 where λu starts to change over time.

To keep the exposition as simple as possible, we restrict attention to the case
where the time point of interest u∗ is equal to 1, i.e., [u0, u1] = [u0, 1]. This case
occurs quite frequently in applications. When performing forecasts, for example,
we would ideally like to know the interval [u0, 1] where the stochastic properties
of the data are stable over time.

To estimate the time point u0, we proceed as follows:

Step 1: We first set up a function D : [0, 1]→ R≥0 which measures the amount of
time-variation in the feature of interest λw . It is constructed such that

(1) D(u)
{
= 0 if λw does not vary on [u, 1]

> 0 if λw varies on [u, 1]

and is called a measure of time-variation. (1) immediately implies that D(u) = 0
for u ≥ u0 and D(u) > 0 for u < u0. Hence, u0 is characterized as the time point
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where the measure of time-variation D starts to deviate from zero. Importantly,
D does not have a jump at u0 in general, but smoothly deviates from zero at this
point. In particular, its degree of smoothness depends on how smoothly λw varies
over time.

Before we describe how to constructD, we specify the class of stochastic features
we work with. We allow for any feature λw which has the following property:

(P) λw is uniquely determined by the set of moments {E[f(Xt(w))] : f ∈ F},
where F is a family of real-valued measurable functions f .

(P) is a fairly weak property satisfied by a wide range of features. If λw = E[Xt(w)]
for instance, then simply F = {id}. As another example, suppose that λw is the
distribution function of Xt(w), i.e., λw = F (w, ·) = E[1(Xt(w) ≤ ·)]. Here, F is
the class of indicator functions {1( · ≤ x) : x ∈ R}, where for vectors the inequality
sign is understood componentwise.

Our construction of D is based on the following idea: By (P), the feature λw is
fully characterized by the values E[f(Xt(w))] with f running over all functions in
the family F . This implies that time-variation in λw is equivalent to time-variation
in the moments E[f(Xt(w))] for some f ∈ F . To detect changes in λw over time,
we may thus set up a function which captures time-variations in the quantities
E[f(Xt(w))] for any f ∈ F . This idea underlies the following definition:

D(u) = sup
f∈F ,v∈[u,1]

∣∣D(u, v, f)
∣∣,

where

D(u, v, f) =

∫ 1

v

E[f(Xt(w))]dw −
(1− v
1− u

)∫ 1

u

E[f(Xt(w))]dw.

Since D depends on the unobserved feature λw, we replace it by an estimator
D̂T . In particular, we set

D̂T (u) = sup
f∈F ,v∈[u,1]

∣∣D̂T (u, v, f)
∣∣

along with

D̂T (u, v, f) =
1

T

T∑

t=⌈vT+1⌉
f(Xt,T )−

(1− v
1− u

) 1

T

T∑

t=⌈uT+1⌉
f(Xt,T ).

Step 2: Our estimator of u0 is based on the observation that

√
TD(u)

{
= 0 for u ≥ u0
→∞ for u < u0

as T →∞. As the statistic D̂T estimates the measure D, its scaled version
√
T D̂T

should exhibit a similar behaviour. Indeed, one can show that

√
T D̂T (u)

{
= Op(1) for u ≥ u0
p−→ ∞ for u < u0.
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We now exploit this dichotomous behaviour of
√
T D̂T .

To do so, we first transform the statistic
√
T D̂T to behave approximately like

a function that has a jump at u0. Define Φ : R≥0 → R≥0 to be a strictly in-
creasing function which is normalized to satisfy Φ(0) = 0 and limx→∞ Φ(x) = 1.
Moreover, let {ρT} be a sequence of positive constants which slowly converges to

zero, in particular much slower than O(T−1/2). Premultiplying
√
T D̂T (u) with

the shrinkage factor ρT and then applying the function Φ yields the quantity
q̂T (u) = Φ(ρT

√
T D̂T (u)) which has the property that

q̂T (u)
p−→
{
0 for u ≥ u0
1 for u < u0.

Hence, q̂T (·) behaves approximately like the step function 1(· < u0) which has a
jump at the point u0.

We next use the quantity q̂T to construct a criterion function which is minimized
approximately at u0. In particular, we define

Q̂T (u) = u+ (1 − u)q̂T (u).

Since q̂T (·) roughly behaves like the indicator 1(· < u0), the function Q̂T (u) should
be minimized at a point close to u0. Indeed, the asymptotic counterpart Q(u) =

u + (1 − u)1(u < u0) of Q̂T (u) is easily seen to take its minimum exactly at u0.
These considerations suggest to estimate u0 by

û0 := argmin
u∈[0,1]

Q̂T (u).

The estimator û0 implicitly depends on the choice of the transformation function
Φ and the shrinkage factor ρT . A natural choice of Φ and ρT is suggested by our
asymptotic results on û0 which show that û0 consistently estimates u0 and provide
its convergence rate. The details can be found in Vogt & Dette [5].

Our estimation method is very general in nature and allows to deal with a wide
variety of stochastic features including the mean, covariances, higher moments
and the distribution function of the process under consideration. For some special
cases, in particular for the case that λt,T = E[Xt,T ], the literature provides some
alternative approaches to estimate u0. To start with, it is possible to use change
point techniques; cp. Müller [4] among others. Moreover, Mallik et al. [2, 3] propose
a p-value based procedure in this special case which relies on a similar idea as our
method. Finally, it is also possible to apply sequential testing ideas.
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Large Volatility Matrix Estimation for High-Frequency Financial Data

Yazhen Wang

(joint work with Donggyu Kim)

High-frequency financial data on assets’ prices are often modeled by diffusion pro-
cesses with micro-structure noise, and multi-scale realized volatility, realized kernel
estimator and pre-averaging estimator are common estimators of the integrated
volatility matrix. For problems involving a large number of assets, we want to
estimate volatility matrices of large size. These existing volatility estimators work
well for a small number of assets but are inconsistent when both the number, p,
of the assets and the average sample size, n, of the price data on the p assets
go to infinity. We propose a new type of estimators for the integrated volatility
matrix by thresholding multi-scale realized volatility, realized kernel estimator and
pre-averaging estimator. We establishes asymptotic theory for the proposed large
matrix estimators in the framework that allows both n and p to approach to in-
finity. The established theory demonstrates that the proposed estimators achieve
high convergence rates under a sparsity assumption on the integrated volatility
matrix. The numerical studies illustrate that the proposed estimators perform
well for large p and complex price and volatility models.
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Simultaneous Inferences on Sample Covariances

Han Xiao

(joint work with Wei Biao Wu)

Testing for serial correlation has been extensively studied in both statistics and
econometrics, and it is a standard diagnostic procedure after a model is fitted to
a time series. A natural omnibus choice is to use the maximum sample autocor-
relation as the test statistic. We consider a more general problem: the limiting
distribution of the maximum deviation

max
1≤k≤n

√
n|γ̂k − γk|,

where γk is the autocovariance at lag k, γ̂k is the sample version, n is the length
of the time series, and sn satisfies sn → ∞ and sn/n→= 0. The problem is also
related to the uniform convergence rate of the sample autocovariances, which is
useful in determining the order of a linear system [1] and bandwidth selection for
spectral density estimation [2, 3]. Recently, [4] obtained the limiting distribution
for linear processes, with sn growing with a logarithmic speed. Under the general
framework of causal representation and the associated physical dependence mea-
sures [5], we show that the asymptotic distribution is Gumbel for general nonlinear
processes, allowing sn to grow as a power of n.

Theorem 1 [6] Under suitable conditions, if sn satisfies sn → ∞ and
sn = O(nη), where η depends on the moment condition and the dependence of
the underlying process, then for all x ∈ R,

lim
n→∞

P

(
max

1≤k≤sn
|
√
n[γ̂k − (1− k/n)γk]| ≤

√
σ0(a2sn x+ b2sn)

)
= exp{−e−x},

where σ0 =
∑

k γ
2
k, and

an = (2 logn)−1/2 bn = (2 logn)1/2 − (8 logn)−1/2(log logn+ log 4π).

The main techniques for proving this theorem are three approximations: m-
dependence approximation, Poisson approximation and Gaussian approximation.
It turns out the later two approximations can be used to study the maximum
deviation of sample covariances, under the setting of high dimensional statistics.

Let Xn = (Xij) be a n × m data matrix whose n rows are independent and
identically distributed as some population distribution with mean vector µn and
covariance matrix Σ = (σij). We consider the high dimensional paradigm where
m = mn grows to infinity as n does. Motivated by testing high dimensional covari-
ance structure, we study the asymptotic distribution of the following maximum
deviation

Mn = max
1≤i<j≤m

|σ̂ij − σij |√
τ̂ij

,
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where τ̂ij is the sample estimate of Var[(X1i − µi)(X1j − µj)]. The problem was
first studied by [7], and followed by many other authors, see [8] and references
therein. Most of these works assumed that entries of X are i.i.d. [8] also consid-
ered the maximum sample covariance outside a band around the main diagonal,
assuming the population distribution is Gaussian, and Σ has a banded structure.
We allow Σ to have a more general dependence structure, and do not require the
population distribution to be Gaussian.

Theorem 2 [9] Under suitable moment conditions and weak dependence con-
ditions, if mn grows to infinity with a suitable speed, we have for any y ∈ R,

lim
n→∞

P
(
nM2

n − 4 logm+ log(logm) + log(8π) ≤ y
)
= exp

(
−e−y/2

)
.

The growth speed of m = mn depends on the moment condition on the entries
of X. If they have uniform finite moments, then mn can grow as a power of n,
and if the elements of X have uniform exponential moments, mn is allowed to
grow exponentially. The weak dependence condition requires that the dependence
of the true population distribution, as reflected by Σ, cannot be too strong. For
example, an important application of our result is on testing for stationarity. If
the population distribution is given by stationary process, we only require the
autocovariance γk = o(1/ log k). So in fact, our “weak dependence” condition is
very mild.

This result can be used to test whether the population distribution is indepen-
dent, whether Σ is banded, and whether Σ is Toeplitz. It is also related to the
problem of testing whether two covariance matrices are equal.
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Heteroscedasticity and autocorrelation robust structural change
detection

Zhou Zhou

Structural stability over time is important in many scientific endeavors. For most
of the frequently used statistical tests of structural change, the assumption of
(weak) stationarity under the null hypothesis is crucial for their validity. How-
ever, the stationarity assumption has become restrictive for many contemporary
structural change analysis. To simplify discussion, let us consider the test of struc-
tural change in mean where we observe time series {Xi}ni=1 with E[Xi] = µi and
we are interested in testing whether µi remains constant over time; namely testing

H0 : µ1 = µ2 = · · · = µn = µ, ←→ Ha : µi 6= µj(1)

for some 1 ≤ i < j ≤ n. For most of conventional tests of H0, the covariance
structure of {Xi} should remain unchanged over time. In other words, the latter
tests are applicable to time series of the form Xi = µi + ei, where {ei} is a zero-
mean weakly stationary sequence. Nevertheless, the stationarity assumption is
unrealistic in many important current applications.

When the covariance structure of the time series is varying, it is shown in this
talk that most of conventional tests of H0 are inconsistent and can lead to biased
testing results. To understand this, think of the classic cumulative sum (CUSUM)
test

Tn = max
1≤i≤n

|Si − tiSn|, where Si =

i∑

j=1

Xj and ti = i/n.(2)

The classic idea to perform this test as well as most other tests of structural
change is normalization. More specifically, one normalizes Tn by a consistent
or inconsistent estimator of Cov(Sn)/n to make the test asymptotically pivotal.
Critical values of the test can then be obtained accordingly. Nevertheless, when
{Xi} is second order non-stationary, it is found in this paper that the behavior
of Tn under H0 is determined by a centered Gaussian process with very complex
covariance structure. As a consequence it is generally impossible to make Tn
pivotal by normalizing it with one or even a sequence of covariance estimators. The
complicated non-stationary dynamics in the second order structure in time series
has posted new challenges to the classic problem of structural change detection.
To date, little progress has been made toward structural change tests that are
robust to heteroscedasticity and autocorrelation of general forms.

The contents of the talk are mostly based on the results of Zhou (2013). We
propose a simple bootstrap procedure that is shown to be consistent under gen-
eral forms of abrupt and smooth changes in the temporal dynamics of the time
series. More specifically, we discover and utilize a somewhat surprising observation
that, for a wide class of non-stationary times series, progressive convolutions of
their block sums and i.i.d. standard normal random variables consistently mimic
the complex joint probabilistic behavior of their partial sum processes. Hence
structural change tests for non-stationary time series can be easily performed by
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generating large samples of the latter convolutions. While remaining consistent
for a much larger class of time series, the proposed bootstrap procedure is shown
to have the same rate of accuracy (in terms of estimating the true covariance
structure) and can detect local alternatives with the same

√
n parametric rate as

the conventional tests. The above theoretical findings are supported by our finite
sample Monte Carlo experiments in which it is found that our bootstrap enjoys
similar accuracy and power to the conventional tests when the time series is sec-
ond order stationary. However, for second order non-stationary time series, our
Monte Carlo simulations show that the robust bootstrap remains accurate while
the conventional tests are invalid, as indicated by our theoretical findings.

References

[1] Z. Zhou, Heteroscedasticity and Autocorrelation Robust Structural Change Detection, Jour-
nal of the American Statistical Association 108 (2013), 726-740.

Reporter: Rainer Dahlhaus



Statistical Inference for Complex Time Series Data 2819

Participants

Prof. Dr. Alexander Aue

Department of Statistics
University of California, Davis
One Shields Avenue
Davis CA 95616
UNITED STATES

Prof. Dr. Peter J. Brockwell

Department of Statistics
Colorado State University
Fort Collins CO 80523-1877
UNITED STATES

Prof. Dr. Rong Chen

Department of Statistics
Rutgers University
110 Frelinghuysen Road
Piscataway, NJ 08854-8019
UNITED STATES

Prof. Dr. Rainer Dahlhaus

Institut für Angewandte Mathematik
Universität Heidelberg
Im Neuenheimer Feld 294
69120 Heidelberg
GERMANY

Prof. Dr. Richard A. Davis

Department of Statistics
Columbia University
1255 Amsterdam Ave., MC 4690
New York, NY 10027
UNITED STATES

Prof. Dr. Herold Dehling

Fakultät für Mathematik
Ruhr-Universität Bochum
Universitätsstr. 150
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