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Introduction by the Organisers

Uniform distribution or discrepancy theory studies distribution irregularities of
point sets and sequences in Euclidean spaces and on manifolds. It relies on meth-
ods from number theory and analysis as well as on methods from geometry, prob-
ability theory and combinatorics. It has a wide range of applications as, e.g.,
in computational finance, computational geometry, numerical analysis, pseudo-
random number generation, and stochastic simulation. An important applica-
tion is the evaluation of multivariate or infinite-dimensional integrals. Integration
methods based on the theory of uniform distribution are known as quasi-Monte
Carlo (QMC) methods.

The workshop was organized by Michael Gnewuch (Kaiserslautern), Frances Y.
Kuo (Sydney), Harald Niederreiter (Linz/Dhahran), and Henryk Woźniakowski
(New York/Warszawa), and was attended by 51 participants from many different
areas of mathematics and computer science, many of them PhD students or young
postdocs. The program consisted of five survey lectures of 60 minutes and 30 talks
of 30 minutes. The main topics of the workshop were
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• Star discrepancy and small ball conjecture. The “great open problem of
discrepancy theory”, the asymptotic behavior of the star discrepancy (the
L∞-norm of the discrepancy function), is intimately related to the small
ball conjecture and the Kolmogorov entropy of mixed derivative Sobolev
spaces. Recent progress has been made in the understanding of the great
open problem by improved lower bounds and by new results on the be-
havior of different norms of the discrepancy function. The survey lecture
on this topic was delivered by Dmitriy Bilyk (Minneapolis).

• Construction of low-discrepancy points and sequences. Special construc-
tions of QMC points are very useful not only in numerical integration,
but, e.g., also for function approximation, for integral equations or for ex-
perimental design. Recently a lot of progress has been made in the (fast
and efficient) construction of lattice rules, polynomial lattice rules, nets
of higher order convergence, point sets on the sphere and other sets. The
survey lecture on this topic was delivered by Josef Dick (Sydney).

• Tractability of multivariate integration. High-dimensional approximation
problems are getting more and more important in mathematics and in
applications. Tractability studies high-dimensional problems and their ex-
plicit dependence on the dimension d. In this field many new developments
took place over the last few years and QMC methods were often used to
establish new results, especially in multivariate integration. The survey
lecture on this topic was delivered by Friedrich Pillichshammer (Linz).

• Discrepancy, minimal energy points, and integration on the sphere. Good
sample points on the sphere are important in several applications. In
the last two years important theoretical results were discovered (as, e.g.,
the solution of the conjecture of Korevaar and Meyers on spherical t-
designs) and several point constructions have been found to perform well
in numerical tests. The survey lecture on this topic was delivered by Peter
Grabner (Graz).

• Multilevel algorithms for infinite-dimensional integration and SDEs. In
the last few years multilevel algorithms turned out to be efficient tools for
multivariate and infinite-dimensional integration, and for the simulation
of stochastic differential equations. Nowadays there is a huge number of
research articles that employ multilevel algorithms, e.g., in option pricing,
engineering or information-based complexity. Recently it has been shown
that in many problem settings the combination of multilevel methods and
QMC point sets yields optimal algorithms. The survey lecture on this
topic was delivered by Klaus Ritter (Kaiserslautern).

The atmosphere of the workshop was lively and active. The excellent facili-
ties at Oberwolfach and the long afternoon breaks were extensively used by the
participants to discuss and work together. The organizers would like to use the
opportunity to thank the Mathematisches Forschungsinstitut Oberwolfach for the
hospitality and to acknowledge the support of several young researchers through
the Oberwolfach Leibniz Graduate Students Program.
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Abstracts

On measures of pseudorandomness for binary sequences

Christoph Aistleitner

In 1997 Mauduit and Sárközy [7] started a series of papers in which they in-
troduced three measures of pseudorandomness for finite binary sequences, which
have attracted large interest since then. These three measures of pseudorandom-
ness are the well-distribution measureW (EN ), the normality measureN (EN ), and
the correlation measure of order k, Ck(EN ). Let EN = (e1, . . . , eN) ∈ {−1, 1}N
denote a finite binary sequence. Then the definitions of the three measures of
pseudorandomness are given as follows.

For M ∈ N, a ∈ Z and b ∈ N set

U(EN ,M, a, b) =
∑

{ea+jb : 1 ≤ j ≤M, 1 + a+ jb ≤ N for all j} .
In words: U(EN ,M, a, b) is the discrepancy of EN with respect to a certain arith-
metic progression in {1, . . . , N}. Then the well-distribution measure W (EN )
is given by

WN (EN ) := max{|U(EN ,M, a, b)|, where 1 ≤ a+ b and a+Mb ≤ N}.
For k ∈ N, M ∈ N and X ∈ {−1, 1}k let

T (EN ,M,X) = # {n : 0 ≤ n < M, n+ k ≤ N, (en+1, . . . , en+k) = X} .
In words: T (EN ,M,X) counts the number of occurrences of a pattern X among
an initial part of EN . Then the normality measure N (EN ) is given by

N (EN ) := max
k

max
X

max
M

∣∣∣∣T (EN ,M,X)− M

2k

∣∣∣∣ ,

where the maxima are taken over k ≤ log2N, X ∈ {−1, 1}k and 0 < M ≤ N+1−k.

Furthermore, for k ∈ N, M ∈ N and D = (d1, . . . , dk) ∈ Nk with 0 ≤ d1 <
· · · < dk < N let

V (EN ,M,D) =
∑

{en+d1 . . . en+dk : 1 ≤ n ≤M, n+ dk ≤ N}.
In words: V (EN ,M,D) quantifies the correlation among k elements of EN , which
are relatively positioned according to D. Then the correlation measure of
order k, Ck(EN ), is given by

Ck(EN ) := max{|V (EN ,M,D)| : M,D satisfy M + dk ≤ N}.
The minimal and typical values of these measures of pseudorandomness have

been studied intensively by Alon, Kohayakawa, Mauduit, Moreira and Rödl [4, 5]
in two papers. Here “minimal” means the smallest possible value of the measure
of pseudorandomness for a given value of N , and “typical” means the behavior
of the measure of pseudorandomness for an i.i.d. random binary sequence EN .
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They proved many results concerning these problems, but left several others open.
The solutions of some of those are discussed in the present talk. In particular,
the existence of a limit distribution of the normalized measures W (EN )/

√
N and

N (EN )/
√
N for random EN and N → ∞ is proved, and it is shown that a strongly

improved upper bound for the minimal value of N (EN ) can be deduced from a
construction of a normal number with small discrepancy due to Levin [6].

The talk is based on the speaker’s papers [1, 2, 3].
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Small ball inequalities and discrepancy

Dmitriy Bilyk

We discuss the connections between the so-called “small ball inequality” in har-
monic analysis, uniform lower bounds for the star-discrepancy, and some problems
in probability theory and approximation. The small ball conjecture deals with hy-
perbolic sums of multiparameter Haar functions; it speculates that

n
d−2
2

∥∥∥∥
∑

|R|=2−n

αRhR

∥∥∥∥ & 2−n
∑

|R|=2−n

|αR|,

where hR are L∞-normalized d-dimensional Haar functions adapted to dyadic
rectangles R ⊂ [0, 1]d and αR are arbitrary real coefficients. While this problem is
solved in dimension d = 2, it is wide open in higher dimensions (the first progress
in this direction was achieved by the author with Lacey and Vagharshakyan). This
conjecture (which is known to be sharp) arises naturally in problems of probability
theory (small deviation asymptotics of the Brownian sheet) and approximation
(entropy numbers for classes of multivariate functions with mixed derivative in
L2). The connections of the small ball conjecture to discrepancy theory is less
direct. It comes from Roth’s idea that the behavior of the discrepancy function is
essentially defined by the part of its Haar expansion corresponding to rectangles
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of volume |R| ≈ 1
N , where N is the number of points. The signed version of the

small ball conjecture
∥∥∥∥
∑

|R|=2−n

αRhR

∥∥∥∥ & n
d
2 , αR = ±1

bears a very strong resemblance to the conjectured lower bound for the star-
discrepancy

‖DN‖∞ & (logN)
d
2 .

This inequality is also known in dimension d = 2 and most proof techniques work
equally well in both settings. The sharpness of the small ball conjecture suggests
that d/2 may perhaps be the correct exponent in the discrepancy bound.

Stolarsky’s invariance principle and discrepancy of point sets on the
sphere

Johann S. Brauchart

(joint work with Lou Fang, Josef Dick)

Let Sd be the unit sphere in the Euclidean space Rd+1 endowed with the normalized
surface area measure σd. Stolarsky’s invariance principle (cf. [11]) states that the
sum of all distances determined by N points on Sd plus their discrepancy does not
depend on the choice of the points. In fact, this principle encodes much more: (I)
In the form of

(1)
[
DC

L2
(XN )

]2
= Cd



∫

Sd

∫

Sd

|x− y| dσd(x) dσd(y) −
1

N2

N∑

j=1

N∑

k=1

|xj − xk|




it provides a convenient way of computing the spherical cap L2-discrepancy,

DC
L2
(XN ) :=

(∫ π

0

∫

Sd

∣∣∣∣
|XN ∩ C(z; θ)|

N
− σd(C(z; θ))

∣∣∣∣
2

dσd(z) sin θ d θ

)1/2

,

of an N -point set XN = {x1, . . . ,xN} ⊂ Sd. (Here, C(z; θ) is a spherical cap with
center z ∈ Sd that contains all points x ∈ Sd with inner product x ·z > cos θ.) (II)
Stolarsky’s invariance principle is deeply rooted in the theory of error estimates
for Quasi Monte Carlo numerical integration methods (QMC methods) that utilize
reproducing kernel Hilbert space (RKHS) techniques; namely, the right-hand side
of (1) can be interpreted as the worst-case numerical integration error of QMC
methods for functions from the unit ball in a certain Sobolev space Hs(Sd) with
smoothness index s = (d + 1)/2 (whereas H

0(Sd) = L2(S
d, σd)) that becomes a

RKHS when endowed with the distance kernel 1 − Cd |x − y|; see [5] and below.
(III.a) The study of the sum of distances is closely related to the potential-
theoretical regime of the discrete minimal Riesz-τ energy problem (cf. [10]) and,
in particular, to the investigation of the leading term(s) of the asymptotics of the
Riesz-τ energy for τ > −2 (cf. [6] and also [2]). Observe that the square-bracketed
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expression in (1) singles out the second term in the asymptotic expansion of the
maximum sum of distances when N → ∞. (III.b) The double integral in (1)
is a potential-theoretical quantity; that is, it is the maximum of the distance
integral I[µ] :=

∫
Sd

∫
Sd

|x−y| dµ(x) dµ(y), where µ is a Borel probability measure

supported on Sd. The surface area measure σd is its unique maximizer.
The power and elegance of the RKHS approach is demonstrated in [5], wherein

it is shown that Stolarsky’s invariance principle emerges in a natural way when
studying the error of numerical integration on the sphere. Indeed, the symmetric
and positive definite integral kernel

(2) K(x,y) :=

∫ π

0

∫

Sd

χC(z;θ)(x)χC(z;θ)(y) dσd(z) sin θ d θ,

integrating a product of indicator functions for the spherical cap C(z; θ), uniquely
defines a RKHS H consisting of functions f : Sd → R of the form

(3) f(x) =

∫ π

0

∫

Sd

g(z; θ)χC(x;θ)(z) dσd(z) sin θ d θ

for some potential function g ∈ L2(S
d× [0, π], σd), provided with the inner product

(4) (f1, f2)K :=

∫ π

0

∫

Sd

g1(z; θ) g2(z; θ) dσd(z) sin θ d θ.

The error of approximating the integral of a function f ∈ H using a QMC method
with node set XN = {x1, . . . ,xN} ⊂ Sd,

1

N

N∑

j=1

f(xj)−
∫

Sd

f(x) dσd(x) = (f,R(H, Q[XN ];x)K)K ,

is the inner product of f with the “representer”

R(H, Q[XN ];x)K :=

∫ π

0

∫

Sd

∆XN (z; θ)χC(x;θ)(z) dσd(z) sin θ d θ,

which is of the form (3) and has as potential function the local discrepancy function

∆XN (z; θ) :=
1

N

N∑

j=1

χC(xj ;θ)(z)− σd(C(z; θ)).

A standard argument involving the application of the Cauchy Schwarz inequality
yields that the worst-case error squared is the inner product of the representer
with itself. It gives the left-hand side of (1) when using (4) and, when expanded,
reduces to the worst-case error formula

[
wce(Q[XN ];Hs(Sd))

]2
=

1

N2

N∑

j=1

N∑

k=1

K(xj ,xk)−
∫

Sd

∫

Sd

K(x,y) dσd(x) dσd(y).

Direct computation of the integral (2) yields a closed form representation (dis-
tance kernel) and analysis of its Laplace-Fourier expansion allows to identify the
corresponding Sobolev space with appropriate norm. Substitution of the distance
kernel into the worst-case error formula gives the right-hand side of (1).
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In [4] this approach is extended by replacing the indicator function of an spher-

ical cap with the truncated power function x 7→ (x · z− cos θ)β−1
+ . The new kernel

(5) Kβ(x,y) :=
∫ π

0

∫

Sd

(x · z− cos θ)
β−1
+ (y · z− cos θ)

β−1
+ dσd(z) sin θ d θ

can be expressed as a sum of a constant multiple of a (signed) (2β−1)-power of the
Euclidean distance and a special case of a Kampé de Fériet function. The latter
reduces to a polynomial if β is an integer. The analysis of its Laplace-Fourier
expansion yields that the RKHS uniquely defined by Kβ coincides with Hs(Sd)
with s = β + (d − 1)/2. A generalized Stolarsky’s invariance principle allows one
to compute the L2-discrepancy of the following local discrepancy function

∆PN ,β(z, t) :=
1

N

N∑

j=1

(xj ·z− t)β−1
+ −

∫

Sd

(y ·z− t)β−1
+ dσd(y), z ∈ S

d, t ∈ [−1, 1].

A spatial extension of Stolarsky’s invariance principle into the Euclidean space
Rd+1 utilizes truncated spherical cones (anchored at infinity) as test sets. It arises
in the study of numerical integration of functions defined on R

d+1, d ≥ 2; that
is,
∫
Rd+1 f(x)ψ(x) d λd+1(x), where ψ is a probability density function (typically

a normal or related distribution) and λd+1 is the Lebesgue measure on Rd+1 ([8]).
A point set with small spherical cap L2-discrepancy will have large sum of dis-

tances and vice versa. It has been noted in [9] that despite extensive optimization
the putative minimizers of the spherical cap L2-discrepancy are in very good agree-
ment with the conjectured asymptotic behavior given in [6]. Numerical results for
constructed point sets on the sphere (spherical digital nets and Fibonacci points)
are conjectured to have optimal behavior ([1, 3]). It should be remarked that a
sequence of low-discrepancy point sets on Sd is “almost” a QMC design sequence
for Hs(Sd) with s ∈ (d/2, (d+ 1)/2); cf. [7].
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Approximation by empirical measures

Steffen Dereich

(joint work with Michael Scheutzow, Reik Schottstedt)

We analyse approximation of probability measures by empirical measures. Two
asymptotic estimates are provided for the Wasserstein Lp-distance: a Pierce-type
estimate and a high-resolution formula.

References

[1] S. Dereich, M. Scheutzow, R. Schottstedt, Constructive quantization: approximation by
empirical measures, arXiv:1108.5346, preprint 2011. (http://arxiv.org/abs/1108.5346).

Construction of low-discrepancy sequences

Josef Dick

(joint work with Fritz Pillichshammer)

We consider equidistribution properties of point sets and sequences in the s-
dimensional unit-cube [0, 1)s measured by their Lq discrepancy. For a finite set
PN,s = {x0, . . . ,xN−1} the local discrepancy function is defined as

∆PN,s(t) =
AN ([0, t), PN,s)

N
− t1t2 · · · ts,

where t = (t1, t2, . . . , ts) ∈ [0, 1]s and AN ([0, t), PN,s) denotes the number of in-
dices n with xn ∈ [0, t1) × · · · × [0, ts) =: [0, t). The local discrepancy function
measures the difference between the portion of points in an axis parallel box con-
taining the origin and the volume of this box. Hence it measures the irregularity
of distribution of a point set in [0, 1)s.

Let q ∈ [1,∞]. The Lq discrepancy of PN,s is defined as the Lq-norm of the
local discrepancy function

Lq,N (PN,s) = ‖∆PN,s‖Lq =

(∫

[0,1]s
|∆PN,s(t)|q dt

)1/q

(1)

with the obvious modifications for q = ∞. For an infinite sequence Ss in [0, 1)s

the Lq discrepancy Lq,N (Ss) is the Lq discrepancy of the first N points of Ss.
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A sequence is uniformly distributed modulo one if and only if its Lq discrepancy
tends to zero for growing N . Furthermore, the Lq discrepancy can also be linked
to the integration error of a quasi-Monte Carlo rule, see, e.g. [1, 5, 7].

One of the questions on irregularities of distribution is concerned with the pre-
cise order of convergence of the smallest possible values of the Lq discrepancy as
N goes to infinity. While this problem is completely solved for q ∈ (1,∞), the case
q ∈ {1,∞} appears to be much more difficult. In particular, for q = ∞ and s ≥ 3
the exact asymptotic order of the smallest possible value of the L∞ discrepancy is
still unknown (for s = 2 it is known to be (logN)/N). There are many people who
conjecture that the sharp order of magnitude for the smallest possible value of the
L∞ discrepancy of N -element point sets in [0, 1)s is (logN)s−1/N . But there are
also other opinions such as, for example, (logN)s/2/N , see [2]. Although there is
some recent remarkable progress, which is surveyed in [2], the exact determination
of the sharp order of magnitude for the smallest possible value of L∞ discrepancy
remains unknown.

We survey the development of the problem beginning with Roth’s seminal lower
bound on the L2 discrepancy from 1954 to the recent constructions of point sets
and sequences with optimal order of L2 discrepancy, on which we put our main
focus. In detail, we discuss Roth’s lower bound for the L2 discrepancy of finite
point sets and its extensions to Lq discrepancy and to infinite sequences. We dis-
cuss existence results for point sets and sequences whose orders of magnitude of
the L2 discrepancy match the lower bounds. To do so, we introduce digital nets
and sequences which provide the basic ideas for the explicit constructions. Walsh
functions provide the main analytical tool to obtain discrepancy bounds. The
ideas for the explicit constructions are motivated by the particular structure of
the Walsh coefficients of the local discrepancy function. We introduce the explicit
constructions of point sets with optimal L2 discrepancy by Chen and Skriganov [3]
and the explicit constructions of point sets and sequences with optimal L2 discrep-
ancy of [6]. We describe the extensions of the latter results to the Lq discrepancy
by [8] and [4]. We briefly discuss recent extensions of the Lq discrepancy results
to exponential Orlicz norms.

Finally, we conjecture that the constructions in [4] and [6] achieve the optimal
order of the L∞ discrepancy.

References

[1] J. Beck and W. W. L. Chen, Irregularities of Distribution, Cambridge University Press,
Cambridge, 1987.

[2] D. Bilyk and M. Lacey, The Supremum Norm of the Discrepancy Function: Recent Results
and Connections, In: Monte Carlo and Quasi-Monte Carlo Methods 2012, J. Dick, F. Y.
Kuo, G. W. Peters and I. H. Sloan (eds.), to appear, Springer, Berlin Heidelberg New York,
2014.

[3] W. W. L. Chen and M. M. Skriganov, Explicit constructions in the classical mean squares
problem in irregularity of point distribution, J. Reine Angew. Math. 545 (2002), 67–95.

[4] J. Dick, Discrepancy bounds for infinite-dimensional order two digital sequences over F2,
submitted for publication.



2850 Oberwolfach Report 49/2013

[5] J. Dick and F. Pillichshammer, Digital Nets and Sequences. Discrepancy Theory and Quasi-
Monte Carlo Integration, Cambridge University Press, Cambridge, 2010.

[6] J. Dick and F. Pillichshammer, Optimal L2 discrepancy bounds for higher order digital
sequences over the finite field F2, to appear in Acta Arith., 2014.

[7] M. Drmota and R. F. Tichy, Sequences, discrepancies and applications, Lecture Notes in
Mathematics 1651, Springer Verlag, Berlin, 1997.

[8] M. M. Skriganov, Harmonic analysis on totally disconnected groups and irregularities of
point distributions, J. Reine Angew. Math. 600 (2006), 25–49.

A lower bound for the star discrepancy of a random point set

Benjamin Doerr

The main objective of this talk is to show that the star discrepancy of N random
points in the s-dimensional unit cube is of order Ω(

√
s/N), matching the upper

bound given by Heinrich, Novak, Wasilkowski, and Woźniakowski [5].
Let N, s ∈ N. Let P ⊆ [0, 1]s with |P | = N . For x ∈ [0, 1]s, let us call the set

[0, x] :=
∏s
i=1[0, xi] a box, and denote by B := {[0, x] | x ∈ [0, 1]s} the set of all

these boxes. Denoting the Lebesgue measure of a measurable set B by λ(B), the
star discrepancy of P now is defined by

D∗(P ) := sup
B∈B

∣∣ 1
N |P ∩B| − λ(B)

∣∣.

While the classic view on low-discrepancy point sets is to regard the asymptotics
inN assuming the dimension s to be fixed (see, e.g., Niederreiter [6]), more recently
it was observed that taking the dimension s as a constant (and thus also treating
terms like 2s as constant in asymptotic statements) can give misleading results
in those practical applications where s is large. Heinrich, Novak, Wasilkowski,
and Woźniakowski [5] started the quest for bounds and construction that have
an explicit, and ideally polynomial, dependence on s. Among other results, they
show that the minimal star discrepancy of an N -point set in the s-dimensional
unit cube is O(

√
s/N). This bound is witnessed by a random point set already.

See [1] for an elementary proof of these results that also gives good values for the
implicit constants. See [3] for a recent survey on discrepancy results with explicit
dependence on the dimension s.

No matching lower bounds for the minimal star discrepancy are known, the
best one is Ω(s/N) by Hinrichs [4] (of course assuming s = O(N)). Closing this
gap is one of the big open problems in this field.

Surprisingly, not even a lower bound for the discrepancy of a random point set
is known. This is the objective of this talk, where we give a simple proof that the
upper bounds given in [1, 5] are asymptotically tight.

Theorem 1. There is an absolute constant K such that the following is true.
Let N, s ∈ N such that s ≤ N . Let P be a set of N points chosen independently
and uniformly at random from [0, 1]s. Then the expected star discrepancy satisfies

E[D∗(P )] ≥ K
√
s/N . The probability that D∗(P ) is less than K

√
s/N , is at most

exp(−Θ(s)).
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A proof of this result can be found in [2].
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Constructing low star discrepancy point sets with genetic algorithms

Carola Doerr

(joint work with François-Michel De Rainville)

Point sets of small star discrepancy are relevant in numerous applications. While
there has been substantial work on the development of low star discrepancy point
sequences with good asymptotic behavior, not much is known about the efficient
construction of low star discrepancy point sets for fixed parameter settings; i.e., we
do not know currently how to construct for fixed dimension d and a fixed maximal
number of points n a point set X ⊆ [0, 1)d of size |X | ≤ n such that disc∗∞(X) is
as small as possible. In this talk we present and discuss a new genetic algorithm
that addresses this discrepancy optimization problem.

The algorithm itself is fairly simple. Still—even without any parameter tuning—
it is able to compute point sets of much lower star discrepancy value than previous
approaches found in the literature. In fact, in 61 out of 62 test cases our algorithm
computes better point sets. They exhibit, on average, a star discrepancy value
that is 31 percent smaller.

The genetic algorithm can easily be adapted to optimize inverse star discrep-
ancies ; i.e., for a given dimension d and a given discrepancy threshold ε it tries
to find the smallest possible n such that there exists a point set X of size n and
discrepancy at most ε.

An extended abstract describing this work can be found in [1]. Our algorithm
is a recombination of the algorithms presented in [2] and [3]. The former was orig-
inally developed to optimize L2 discrepancies. It serves in our genetic algorithm
as a module for creating new solution candidates. The evaluation of the gener-
ated point sets is done either by the exact algorithm by Dobkin, Eppstein, and
Mitchel [4] or (when the exact method is infeasible) by the threshold accepting
algorithm from [3].
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On the evolution of upper bounds for low-discrepancy sequences

Henri Faure

The two well-known families of multi-dimensional low-discrepancy sequences for
which explicit upper bounds exist are the Halton sequences [7] and the so-called
(t, s)-sequences introduced by Sobol’ (in base 2) [14], Faure (in prime bases) [2]
and generalized by Niederreiter in arbitrary bases [10].

Upper bounds for general (t, s)-sequences have been established by Niederreiter
in 1987 [10] and remained unchanged for about twenty years, while in the meantime
many constructions have been proposed to improve their asymptotic behavior
involving the quality parameter t (see among others Niederreiter and Xing [11]

and Niederreiter and Özbudak [12]). The next improvement was provided by
Kritzer in 2006 [9], who was able to reduce by a factor of about two the leading
constant cs obtained in [10]. In the same paper, Kritzer also states a conjecture for
(t, s)-sequences in even bases that would substantially improve his own bounds.

Recently, there has been a renewed interest in Halton sequences due to an
important improvement discovered by Atanassov in 2004 [1]. His results provided
a drastic change in our understanding of how bounds on the discrepancy vary with
the dimension s for these sequences, obtaining a factor 1/s! in previous bounds by
Faure in 1982 [2]. Moreover, using linear digit scramblings, Atanassov has been
able to modify Halton sequences in such a way that their asymptotic behavior is
the same as Niederreiter–Xing sequences. A careful comparison of these improved
bounds through the leading constant cs, for both Halton sequences and (t, s)-
sequences, can be found in [4, Section 2.3].

Next, in 2010, Faure, Lemieux, and Wang [6] proposed extensions of the meth-
ods of Atanassov for Halton sequences to derive bounds for (t, s)-sequences by
an approach completely different from the classical way used by Sobol’, Faure,
Niederreiter and Kritzer, even though this approach could not reach the currently
best constants cs obtained by Kritzer in 2006.

From that time onwards, results have been appearing at an increasing pace:
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– First, using their extension of Atanassov’s method for (t, s)-sequences, Faure
and Lemieux [5] (2012) got very close to the conjecture of Kritzer for even bases,
improving for instance by a factor 3/2s−1 the constant cs in base 2.
– Then, going deeply in the classical method and thanks to two clever counting
lemmas of Kritzer, Faure and Kritzer (2013) [3] proved his conjecture for the
constant cs in even bases. Together with the bound for odd bases in 2006 from [9],
this result gives the currently best known constants cs for general (t, s)-sequences.
– Almost at the same time, Tezuka (2013) [15] proposed an extension of (t, s)-
sequences to a larger family he called (t, e, s)-sequences where e = (e1, . . . , es)
is a s-tuple of positive integers (in this framework, (t, s)-sequences are obtained
with the s-tuple e = (1, . . . , 1)). It is quite remarkable that an adaptation of
Atanassov’s method also applies to (t, e, s)-sequences and gives a new type of
upper bounds quite different from usual ones, see [15, Theorem 2 and Corollary
1]. This extension is also the starting point of new constructions of (t, s)-sequences
using global functions fields by Hofer and Niederreiter [8] and Niederreiter and Yeo
[13]. This way, the constants from [3] can be further improved with special (t, s)-
sequences, at least for sufficiently large s (see [8, 13, Section 5]).
– At present, using a new approach for the study of sequences in even bases, Faure
and Lemieux are able to improve the previous explicit upper bounds in any base
from [5], hence getting a better behavior in the non-asymptotic regime, still with
the same leading constant cs.
– And finally, thanks to an adaptation of this approach to (t, e, s)-sequences, we
are also able to improve Tezuka’s bound in [15, Theorem 2] in the case of an even
base. We will report on these latest developments in our proposed talk.
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Construction of interlaced scrambled polynomial lattice rules

Takashi Goda

(joint work with Josef Dick)

Higher order scrambled digital nets are randomized quasi-Monte Carlo (RQMC)
rules which have been introduced in [1] to approximate the integral of smooth
functions defined over the s-dimensional unite cube. It has been shown that higher
order scrambled digital nets achieve the optimal rate of convergence of the root
mean square error for numerical integration of smooth functions. In this talk, we
attempt to replace the randomly scrambled digital nets by randomly scrambled
polynomial lattice point sets, which allows us to obtain a better dependence on
the dimension while still achieving the optimal rate of convergence. We call our
RQMC rules interlaced scrambled polynomial lattice rules whose definition will be
introduced in the following. For a prime b, we denote by Fb the finite field with b
elements and by Fb[x] the set of polynomials over Fb.

Let p ∈ Fb[x] be irreducible with deg(p) = m ∈ N and let q = (q1, . . . , qds) ∈
(Fb[x])

ds. An interlaced scrambled polynomial lattice point set consisting of bm

points {xn : n ∈ Fb[x], 0 ≤ deg(n) < m} is constructed by

xn = Dd
(
Π1

(
vm

(
nq1
p

))
, . . . ,Πds

(
vm

(
nqds
p

)))
∈ [0, 1)s,

where vm, Π1, . . . ,Πds and Dd are defined as follows:

• vm denotes the mapping from the field of the formal Laurent series over
Fb to the interval [0, 1) by

vm

( ∞∑

l=t

κlx
−l
)

=
m∑

l=max(1,t)

κlb
−l,

where t is an arbitraty integer and κl ∈ Fb for all l.
• For 1 ≤ j ≤ ds, Πj denotes a randomly chosen set of permutations for
scrambling, that is,

Πj = {πj,ξj,1,...,ξj,k−1
: k ∈ N, ξj,1, . . . , ξj,k−1 ∈ Fb},
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where πj,ξj,1,...,ξj,k−1
is a random permutation of {0, . . . , b − 1}. Let xj ∈

[0, 1) with its b-adic expansion

xj =
ξj,1
b

+
ξj,2
b2

+ · · · .

Applying Πj to xj , we obtain yj ∈ [0, 1) such that

yj = Πj(xj) =
πj(ξj,1)

b
+
πj,ξj,1(ξj,2)

b2
+ · · · .

• Dd denotes the mapping from [0, 1)ds to [0, 1)s by digitally interlacing
every d components. Let x ∈ [0, 1)ds with x = (x1, . . . , xds) and consider
the b-adic expansion of each coordinate

xj =
ξj,1
b

+
ξj,2
b2

+ · · · .

Applying Dd to x, we obtain y = (y1, . . . , ys) ∈ [0, 1)s, where for 1 ≤ j ≤ s

yj =

∞∑

a=1

d∑

r=1

ξ(j−1)d+r,ab
−r−(a−1)d.

We consider weighted function spaces with general weights (γu)u⊆{1,...,s}, whose
elements have square integrable partial mixed derivatives of order up to α ∈ N

in each variable, and derive an upper bound on the variance of the estimator for
interlaced scrambled polynomial lattice rules, which is given as

Var[Î(f)] ≤ V 2
α,γ(f)Bα,d,γ(q, p),

where Vα,γ(f) is a weighted Hardy and Krause variation of f of order α (see [1, Sub-
section 3.2]), and Bα,d,γ(q, p) is a function which depends only on the interlaced
scrambled polynomial lattice point sets but does not depend on f . Moreover, we
can show that there is a concise formula for Bα,d,γ(q, p), so that Bα,d,γ(q, p) can be
used as a quality criterion for searching good sets of polynomials q = (q1, . . . , qds).

Employing Bα,d,γ(q, p) as a quality criterion, the component-by-component
(CBC) construction can be used to obtain explicit constructions of finding good
sets of polynomials. The CBC construction proceeds as follows:

(1) Choose an irreducible polynomial p ∈ Fb[x] with deg(p) = m.
(2) Set q1 = 1.
(3) For τ = 2, . . . , ds, find qτ by minimizing Bα,d,γ((q1, . . . , qτ−1, q̃τ ), p) as a

function of q̃τ ∈ Fb[x] such that deg(q̃τ ) < m and q̃τ 6= 0.

For p and q found by this algorithm, we obtain the bound on Bα,d,γ(q, p) as

Bα,d,γ(q, p) ≤
1

(bm − 1)1/λ




∑

∅6=u⊆{1,...,s}
γλuC

|u|
α,d,λ




1
λ

,

for any 1/(2min(α, d) + 1) < λ ≤ 1, where Cα,d,λ is a constant independent of m
and s. By choosing the interlacing factor d ≥ α, the bound implies a convergence
rate of the variance Var[Î(f)] of order N−2α−1+δ for any δ > 0.
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We finally discuss a dependence of the variance Var[Î(f)] on the dimension s
by adding one more notation

Tλ,a := lim sup
s→∞


 1

sa

∑

∅6=u⊆{1,...,s}
γλuC

|u|
α,d,λ


 .

From the above bound on Bα,d,γ(q, p), it is obvious to have the following facts:

(1) Assume that Tλ,0 < ∞ for some 1/(2min(α, d) + 1) < λ ≤ 1. Then

Var[Î(f)] is bounded independently of the dimension.
(2) Assume that Tλ,a < ∞ for some 1/(2min(α, d) + 1) < λ ≤ 1 and a >

0. Then the bound of Var[Î(f)] depends at most polynomially on the
dimension with its degree a/λ.

For more information on this work, we refer to [2].
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Discrepancy, minimal energy points, and integration on the sphere

Peter Grabner

Different types of constructions have been used to find “good” configurations
of N points XN = {x1, . . . , xN} on a manifold M , especially the sphere S

d. Of
course the construction depends on what quantitative measure is used for the
configuration. Several such measures have been used and shall be discussed in the
sequel:

Discrepancy. Discrepancy given by

(1) D(XN ) = sup
C∈C

∣∣∣∣∣
1

N

N∑

n=1

χC(xn)− σ(C)

∣∣∣∣∣ ,

is an easy to understand concept; D(XN ) just measures the maximal deviation
of the discrete distribution from the limiting distribution σ using a set C of “test
sets” (in statistics this is called the Kolmogorov-Smirnov statistics). On the other
hand, the precise value of the discrepancy of a point set is rather difficult to com-
pute. Thus discrepancy is usually estimated rather than computed directly. In
the simplest one-dimensional case there are two classical estimates for discrepancy,
namely the Erdős-Turán inequality and LeVeque’s inequality (cf. [10]). Both in-
equalities have been generalised to the spherical case and used for estimating the
discrepancy of point sets constructed by the various methods.
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The S
d version of the Erdős-Turán inequality has been given indepently by the

author [6] and Li and Vaaler [12] and reads as

(2) D(XN ) ≤ C1(d)

M
+

M∑

ℓ=1

C2(d)

ℓ

Z(d,ℓ)∑

m=1

1

N

∣∣∣∣∣

N∑

n=1

Yℓ,m(xn)

∣∣∣∣∣

valid for all positive integer values ofM . Here C1(d) and C2(d) denote (explicitely
known) constants, Yℓ,m (m = 1, . . . , Z(d, ℓ)) denote an orthonormal system of
spherical harmonics of order ℓ, and Z(d, ℓ) denotes the dimension of the space of
these spherical harmonics.

Only recently, a spherical version of the LeVeque inequality was found (cf. [13]):

(3) D(XN ) ≤ A(d)




∞∑

ℓ=0

ℓ−(d+1)

Z(d,ℓ)∑

m=1

(
1

N

N∑

n=1

Yℓ,m(xn)

)2



1
d+2

with an explicit constant A(d). Both inequalities (2) and (3) specialise to their
classical versions for d = 1.

Minimal energy point sets. Using mutually repelling forces on N particles to
distribute them on a surface M is a rather compelling idea. The motivation for
this could be taken from physical experiments, where electric charges distribute
themselves in a way that minimises the sum of the mutual energies

(4) Es(XN ) =

N∑

i,j=1
i6=j

‖xi − xj‖−s

for s = 1 (cf. [5, 14]). The study of the precise distribution of the charges is the
subject of classical potential theory (cf. [11]), which shows that the energy integral

(5) Is(µ) =

∫∫

M×M
‖x− y‖−s dµ(x) dµ(y).

has a unique minimiser amongst all Borel probability measures supported on M ,
the harmonic measure onM . This measure depends highly on the curvature of the
surface, and thus differs from the surface measure, except for surfaces with high
symmetry, like the sphere. For larger values of s there is no physical experiment,
which can be used to describe the charge distribution, nevertheless, the intuition
and the result remain the same – there exists a unique equilibrium measure de-
pending on s on M – if s < dim(M).

The minimisation of such discrete energy expressions is a problem attributed to
M. Fekete. Minimal energy point sets are thus called Fekete-points. The case s <
dim(M) can be investigated by methods from classical potential theory (cf. [11]).

In this case the unique minimiser µ
(s)
M of Is(µ) is the weak limit of the measures

νN (cf. [9]). For s ≥ dim(M) the situation changes completely. The corresponding
energy integral diverges for all probability measures. Techniques from geometric
measure theory could be applied in [2, 8] to show that the limiting distribution
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µ
(s)
M of the minimal energy distributions is the normalised dim(M)-dimensional

Hausdorff measure on M , if M is rectifiable.
Although the limiting distribution of minimal energy point sets X∗

N for s ≥ d on
the sphere has been determined in [8], almost nothing is known about quantitative
results. The only – and very weak – estimate for the discrepancy of minimal energy
point sets in the singular case is due to S. Damelin and the author [4] and gives

D(X∗
N ) = O

(√
log logN
logN

)
for s = d.

In [13] inequality (3) was applied to minimal energy point sets X∗
N for −2 <

s < 0. This gives bounds for the discrepancy D(X∗
N ) ≪ N− d−s

d(d+2) . For s = 0 in

[3] the bound D(X∗
N ) ≪ N− 1

d+2 was obtained.
It should be mentioned that from the theory of irregularities of distribution [1]

it is known that for all sets XN ⊂ Sd the inequality

(6) D(XN ) ≫ N− 1
2− 1

2d

holds for the spherical cap discrepancy.
It is also known that inequality (6) is best possible up to a factor

√
logN . The

existence of point sets XN with D(XN ) ≪ N− 1
2− 1

2d

√
logN uses a probabilistic

argument; up to now no explicit construction of such a point set is known. All the
known estimates for the discrepancy of point sets differ from the lower bound (6)
by a power of N .

Best packing. The problem of maximising the minimal distance

(7) δ(XN ) = min
1≤i<j≤N

‖xi − xj‖

of N distinct points on the sphere (cf. [7]) or more general manifolds occurs as
the limiting case s → ∞ in the energy minimisation. The problem of arranging
points maximising the minimal mutual distance is usually attributed to the Dutch
botanist P. M. L. Tammes, who used it to explain the distribution of pores on
pollen grains (cf. [15]).
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Embeddings of weighted tensor product spaces

Mario Hefter

(joint work with Klaus Ritter)

Embedding theorems deal with scales (Fαs )α of function spaces on a common do-
main of dimension s ∈ N, and one of the aims is to characterize those pairs of
spaces Fαs and F βs that permit a continuous embedding iα,βs : Fαs →֒ F βs . A major
application of embedding theorems in information-based complexity, approxima-
tion theory, and numerical mathematics is as follows: The existence of a continuous
embedding iα,βs with norm ‖iα,βs ‖ implies

(1) en(F
α
s ) ≤ ‖iα,βs ‖ · en(F βs )

for many quantities en of interest, like n-th minimal errors or n-widths.
In the classical approach one studies the asymptotic behavior of en(F

α
s ) as n

tends to infinity with α and s being fixed, and the mere existence of continuous
embeddings can already be exploited, since (1) yields en(F

α
s ) = O

(
en(F

β
s )
)
. In

particular, if Fαs = F βs as vector spaces with equivalent norms, then the sequences
(en(F

α
s ))n and (en(F

β
s ))n are weakly equivalent.

In contrast, tractability analysis studies the explicit dependence of en(F
α
s ) on n

and on the dimension s, which is crucial to fully understand the impact of a high
dimension on the computational or approximation problem at hand. We refer to
[3, 4, 5] for a comprehensive study and further references. Moreover, tractability
analysis enables the study of the limiting case s = ∞, i.e., of computational or
approximation problems for functions with infinitely many variables. Exploiting
the existence of continuous embeddings iα,βs or the equivalence of norms on Fαs =
F βs for all s ∈ N in tractability analysis requires a tight control of the dependence
of the norms of the respective embeddings on the dimension s.
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In this talk we consider scales of weighted tensor product Hilbert spaces, which
are most often studied in tractability analysis. The starting point for the construc-
tion of these spaces is a reproducing kernel k on a domain D ×D and a sequence
(γj)j∈N of positive weights. By assumption, the Hilbert space H(1+k) with repro-
ducing kernel 1 + k is the orthogonal sum of the space H(1) of constant functions
and the space H(k). The corresponding norm of f ∈ H(1+ γjk) is therefore given
by

‖f‖21+γjk = P (f)2 +
1

γj
· ‖f − P (f)‖2k,

where P denotes the orthogonal projection onto H(1). The second scale is derived
from an equivalent norm

‖f‖21+lγj = 〈f, f〉+ 1

γj
· ‖f − P (f)‖2k

on the same vector space H = H(1 + k) = H(1 + γjk). By assumption, 〈·, ·〉 is
a properly normalized symmetric bilinear form on H that is continuous on H(k),
and actually we get a new reproducing kernel Hilbert space H(1+ lγj) in this way.
As it turns out,

∀ f ∈ H : P (f) = 〈f, 1〉(2)

forms a particular instance, since (2) is equivalent to H(1) and H(k) being orthog-
onal in the spaces H(1 + lγj ), too.

The first result deals with embeddings iη,γs : H(Kη
s ) →֒ H(Lγ

s ) between the
tensor product spaces H(Kη

s ) =
⊗s

j=1H(1 + ηjk) and H(Lγ
s ) =

⊗s
j=1H(1 + lγj)

of functions on Ds, where η = (ηj)j∈N and γ = (γj)j∈N are arbitrary sequences of
positive weights. Hence the reproducing kernels Kη

s and Lγ
s are given by

Kη
s (x,y) =

s∏

j=1

(1 + ηjk(xj , yj)), x,y ∈ Ds,

and

Lγ
s (x,y) =

s∏

j=1

(1 + lγj (xj , yj)), x,y ∈ Ds.

Here we present a particular result for summable weights, i.e.,

(3)
∑

j∈N

γj <∞.

This condition often arises in the context of tractability analysis and was first
encountered in [6]. If (2) is satisfied, then (3) is equivalent to

sup
s∈N

max
(
‖ıγ,γs ‖, ‖(ıγ,γs )−1‖

)
<∞,

i.e., we have a uniform equivalence of the norms on the spaces H(Kγ
s ) and H(Lγ

s )
for s ∈ N. If (2) is not satisfied, then (3) is equivalent to the existence of 0 < c′ <

1 < c̃ such that sups∈N max
(
‖ıc′γ,γs ‖, ‖(ıc̃γ,γs )−1‖, ‖ıγ,c̃γs ‖, ‖(ıγ,c′γs )−1‖

)
< ∞, i.e.,
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multiplying the weights γj by suitable constant factors leads to uniformly bounded

norms of the embeddings corresponding to H(Kc′γ
s ) ⊆ H(Lγ

s ) ⊆ H(K c̃γ
s ) and

H(Lc
′γ
s ) ⊆ H(Kγ

s ) ⊆ H(Lc̃γs ).
For the second result we consider the limit s → ∞ of the reproducing kernels

Kη
s and Lγ

s , namely,

Kη(x,y) =

∞∏

j=1

(1 + ηjk(xj , yj)), x,y ∈ Xη,

where Xη = {x ∈ DN :
∏∞
j=1(1 + ηjk(xj , xj)) <∞}, and

Lγ(x,y) =

∞∏

j=1

(1 + lγj (xj , yj)), x,y ∈ Yγ ,

where Yγ = {y ∈ DN :
∏∞
j=1(1 + lγj (yj , yj)) < ∞}. Here we present a particular

result, which again deals with summable weights. If (2) is satisfied, then (3) is
equivalent to H(Kγ) = H(Lγ). If (2) is not satisfied, then (3) is equivalent to

the existence of 0 < c′ < 1 < c̃ such that H(Kc′γ) ⊆ H(Lγ) ⊆ H(K c̃γ) and

H(Lc
′γ) ⊆ H(Kγ) ⊆ H(Lc̃γ). Due to the closed graph theorem the respective

embeddings are continuous, and in the case (2) we have equivalence of the norms
on the spaces H(Kγ) and H(Lγ).

We refer to [2] for analytic properties of the spaces H(Kη) and H(Lγ) as well
as for more general weighted superpositions of tensor products of reproducing
kernel Hilbert spaces. Implications for tractability analysis and for computational
or approximation problems for functions with infinitely many variables will be
studied in the forthcoming paper [1].

Two prominent examples from tractability analysis are given by D = [0, 1] and
k(1)(x, y) = min(x, y) as well as k(2)(x, y) = 1/2 + (x2 + y2)/2 − max(x, y) for
x, y ∈ D. We have H(1 + γjk

(i)) =W 1
2 ([0, 1]) for i = 1, 2 and

‖f‖21+γjk(1) = f2(0) +
1

γj
·
∫ 1

0

(f ′)2(x) dx

as well as

‖f‖21+γjk(2) =
(∫ 1

0

f(x) dx

)2

+
1

γj
·
∫ 1

0

(f ′)2(x) dx

for f ∈ W 1
2 ([0, 1]), and these settings are called the anchored decomposition and

the ANOVA decomposition of the space W 1
2 ([0, 1]). An obvious choice of 〈·, ·〉

leads to

‖f‖21+lγj =

∫ 1

0

f2(x) dx +
1

γj
·
∫ 1

0

(f ′)2(x) dx,

which yields another decomposition of the space W 1
2 ([0, 1]). See [3, Sec. A.2].

Our results applied to this example reveals that uniform equivalence of the
norms on

⊗s
j=1H(1+γjk

(1)) and
⊗s

j=1H(1+γjk
(2)) holds iff

∑
j∈N

√
γj <∞, and

the latter is also equivalent to uniform equivalence of the norms on
⊗s

j=1H(1 +
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γjk
(1)) and

⊗s
j=1H(1 + lγj ). However, uniform equivalence of the norms on⊗s

j=1H(1 + γjk
(2)) and

⊗s
j=1H(1 + lγj) is equivalent to

∑
j∈N

γj <∞.
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Complexity of parametric integration in various smoothness classes

Stefan Heinrich

(joint work with Thomas Daun)

The complexity of definite parametric integration was studied in [6], [3], and [9],
while in [1] the complexity of both definite and indefinite parametric integration
was considered. Parametric definite integration is a problem intermediate between
integration and approximation. Parametric indefinite integration can be viewed
as a model for the solution of parametric initial value problems in the sense that
it is a partial, but typical case, and some of the methods developed here will be
used in the study of parametric initial value problems, see [2].

These results are a continuation of [1] and we study both definite and indefinite
integration. So far definite parametric integration was considered only for isotropic
classes and, in [3], for a specific anisotropic class (Sobolev case with no smoothness
in the integration variable). Indefinite parametric integration was only studied
for Cr. In [1] we gave a general (multilevel) scheme for Banach space valued
integration of functions belonging to

(1) Cr(X) ∩ Cr1(Y ),

where X and Y are Banach spaces such that Y is continuously embedded into
X , from which the upper bounds for parametric integration in the Cr-case were
derived.

Now we further explore the range given in (1) by considering classes of functions
with dominating mixed derivatives and other types of non-isotropic smoothness. In
contrast to the Cr case, these classes allow to treat different smoothnesses for the
parameter dependence and for the basic (nonparametric) integration problem. We
want to understand the typical behaviour of the complexity in these classes and the
relation between the deterministic and randomized setting, this way clarifying in



Uniform Distribution Theory and Applications 2863

which cases and to which extend randomized methods are superior to deterministic
ones.

We recall some notation from information-based complexity theory [8, 7], see
also [4] for the precise notions used here. Let F be a nonempty set, G a normed
linear space, S : F → G an arbitrary mapping, let K be a nonempty set, and
let Λ be a set of mappings from F to K. We interpret F as the set of inputs,
S as the solution operator, that is, the mapping that sends the input f ∈ F to
the exact solution Sf , and Λ is understood as the class of admissible information
functionals. Thus, the tuple

(2) P = (F,G, S,K,Λ)

describes the abstract numerical problem under consideration. Moreover, the de-
terministic n-th minimal error is denoted by edetn (S, F ) and the randomized n-th
minimal error is denoted by erann (S, F ). So edetn (S, F ), respectively erann (S, F ), is
the minimal possible error among all deterministic, respectively randomized algo-
rithms that use at most n information functionals.

For d0 ∈ N, Q0 = [0, 1]d0 we study definite and indefinite integration of functions
depending on a parameter s ∈ Q0. Let r0, r ∈ N0 and let Cr0,r(Q0, Q) be the space

of continuous functions f : Q0×Q→ K having for α = (α0, α1), α0 ∈ N
d0
0 , α1 ∈ Nd0

with |α0| ≤ r0, |α1| ≤ r continuous partial derivatives ∂|α|f(s,t)
∂sα0∂tα1

, endowed with the
norm

‖f‖Cr0,r(Q0,Q) = max
|α0|≤r0,|α1|≤r

sup
s∈Q0,t∈Q

∣∣∣∣
∂|α|f(s, t)
∂sα0∂tα1

∣∣∣∣ .

Let furthermore r1 ∈ N0 and put

F = BC0,r(Q0,Q) ∩BCr0,r1 (Q0,Q).

The definite parametric integration operator S0 : C(Q0 ×Q) → C(Q0) is given
by

(S0f)(s) =

∫

Q

f(s, t)dt (s ∈ Q0),

and the indefinite parametric integration operator S1 : C(Q0 ×Q) → C(Q0 ×Q)
by

(S1f)(s, t) =

∫

[0,t]

f(s, u)du (s ∈ Q0, t ∈ Q).

We consider standard information consisting of values of f , so the class of infor-
mation functionals is Λ = {δs,t : s ∈ Q0, t ∈ Q}, where δs,t(f) = f(s, t). In the
terminology of (2), the definite parametric integration problem is described by the
tupel

Π0 = (BC0,r(Q0,Q) ∩BCr0,r1(Q0,Q), C(Q0), S0,K,Λ)

and the indefinite parametric integration problem by

Π1 = (BC0,r(Q0,Q) ∩BCr0,r1(Q0,Q), C(Q0 ×Q), S1,K,Λ).
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The following theorem gives the complexity of definite and indefinite parametric
integration. Below ∧ and ∨ mean logical conjunction and disjunction, respectively.

Theorem. Let r0, r, r1 ∈ N0, r ≥ r1, d, d0 ∈ N, ι ∈ {0, 1} . Then the deterministic
minimal errors satisfy

edetn (Sι, F ) ≍ n−υ1 if r0
d0
> r1

d

n
− r0

d0 � edetn (Sι, F ) � n
− r0

d0 (log n)
r0
d0

+1
if r0

d0
= r1

d > 0

edetn (Sι, F ) ≍ n
− r0

d0 if r0
d0

= r1
d = 0 ∨ r0

d0
< r1

d ,

where

υ1 =
r0
d0

r0
d0

+ r
d − r1

d

r

d
.

Moreover, the randomized minimal errors fulfill

erann (Sι, F ) ≍ n− r
d− 1

2 if r0
d0
> r1

d + 1
2 ∧ r = r1

erann (Sι, F ) ≍ n−υ2(log n)
1
2 if r0

d0
> r1

d + 1
2 ∧ r > r1

n
− r0

d0 (logn)
1
2 � erann (Sι, F ) � n

− r0
d0 (log n)

r0
d0

+ 3
2 if r0

d0
= r1

d + 1
2

erann (Sι, F ) ≍ n
− r0

d0 (logn)
r0
d0

− r1
d if r1

d < r0
d0
< r1

d + 1
2

n
− r0

d0 � erann (Sι, F ) � n
− r0

d0 (log logn)
r0
d0

+1
if r0

d0
= r1

d > 0

erann (Sι, F ) ≍ n
− r0

d0 if r0
d0

= r1
d = 0 ∨ r0

d0
< r1

d ,

with

υ2 =
r0
d0

r0
d0

+ r
d − r1

d

(
r

d
+

1

2

)
.

Next we give an example of an particular class. If r1 = r, then F = BCr0,r(Q0,Q),
which is a class of dominating mixed smoothness, more precisely, the smoothness
with respect to the parameter variables s and the smoothness with respect to the
variables t are combined in such a way.

Corollary. Let r0, r ∈ N0, r1 = r, d, d0 ∈ N, ι ∈ {0, 1}. Then

edetn (Sι, F ) ≍log n
−min

(

r
d ,

r0
d0

)

erann (Sι, F ) ≍log n
−min

(

r
d+

1
2 ,

r0
d0

)

,

where ≍log denotes the asymptotic notation neglecting logarithmic factors.
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New ways for constructing generating matrices of digital sequences

Roswitha Hofer

(joint work with Harald Niederreiter)

Most of the well-known s-dimensional low-discrepancy sequences can be con-
structed via the digital method, which was introduced by Niederreiter [4] and
generalized earlier forms by Sobol [6] and Faure [1]. The digital methods con-
structs a sequence (xn)n≥0 in [0, 1]s as follows.:
Choose a finite field Fq with cardinality q, and put Zq = {0, 1, . . . , q − 1} ⊂ Z.
Choose

(i) bijections ψr : Zq → Fq for all integers r ≥ 0, satisfying ψr(0) = 0 for all
sufficiently large r;

(ii) generating matrices C(i) := (c
(i)
j,r)j≥1,r≥0 ∈ F

N×N0
q for 1 ≤ i ≤ s;

(iii) bijections λi,j : Fq → Zq for 1 ≤ i ≤ s and j ≥ 1.

The ith coordinate x
(i)
n of the nth point xn of the sequence is computed as follows.

Given an integer n ≥ 0, let n =
∑∞

r=0 zr(n)q
r be the digit expansion of n in base

q, with all zr(n) ∈ Zq and zr(n) = 0 for all sufficiently large r. Carry out the
matrix-vector product

C(i) ·



ψ0(z0(n))
ψ1(z1(n))

...


 =:




y
(i)
n,1

y
(i)
n,2
...


 and put x(i)n =

∞∑

j=1

λi,j(y
(i)
n,j)q

−j ∈ [0, 1].

Note that the distribution of the generated sequence mainly depends on the choice
of the generating matrices.

This talk considers different methods for constructing generating matrices that
are qualified to generate low-discrepancy sequences. More exactly it compares the
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famous classical Niederreiter construction [5] and the Xing-Niederreiter construc-
tion [7] — both build up the generating matrices row-by-row — with the recent
columnwise concepts in [2] and [3].
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Star discrepancy bounds for (t,m, s)-nets and (t, s)-sequences

Peter Kritzer

(joint work with Henri Faure)

The star discrepancy, which is one of most important measures of uniformity of
distribution, of a point set P with N points x0,x1, . . . ,xN−1 in the s-dimensional
unit cube [0, 1)s is defined as

D∗
N (P) := sup

∣∣|{n : 0 ≤ n < N,xn ∈ [0,a)}|N−1 − λs([0,a))
∣∣ ,

where the supremum is extended over all a ∈ [0, 1]s. For an infinite sequence S,
D∗
N (S) denotes the star discrepancy of the first N points of S.
We consider the star discrepancy of two classes of point sets that are heavily

used in quasi-Monte Carlo methods for numerical integration, namely (t,m, s)-
nets and (t, s)-sequences, as introduced by Sobol’, Faure, and Niederreiter. The
quality of distribution of a given point set is linked to its quality as the node
set in a quasi-Monte Carlo integration rule via the well-known Koksma-Hlawka
inequality.

The following definition of a (t,m, s)-net is due to Niederreiter [4].

Definition 1. Let b ≥ 2, s ≥ 1, and 0 ≤ t ≤ m be integers. A point set P
with N = bm points in [0, 1)s is a (t,m, s)-net in base b, if every subinterval

J =
∏s
j=1

[
aj

bdj
,
aj+1

bdj

)
of [0, 1)s, with integers dj ≥ 0 and 0 ≤ aj < bdj for

1 ≤ j ≤ s and of volume bt−m, contains exactly bt points of P.

Infinite analogues of (t,m, s)-nets are provided by (t, s)-sequences.
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Definition 2. Let b ≥ 2, s ≥ 1 and t ≥ 0 be integers. An infinite sequence S is a
(t, s)-sequence in base b, if for all m > t and all k ≥ 0 the points

xkbm ,xkbm+1, . . . ,x(k+1)bm−1

form a (t,m, s)-net in base b.

An obvious question is how small or large the star discrepancy of (t,m, s)-nets
and (t, s)-sequences is. While there are only few results on lower bounds for the
discrepancy of these point sets that make use of their structure, and one usually
has to resort to general lower bounds, there have been many results on upper star
discrepancy bounds for (t,m, s)-nets and (t, s)-sequences exploiting the particular
distribution properties of these.

An upper discrepancy bound for the star discrepancy of arbitrary (t,m, s)-nets
was first shown by Niederreiter in [4]. This bound can be formulated as follows.

Theorem 1 (Niederreiter). For the star discrepancy of any (t,m, s)-net P in base
b with m > 0 we have

ND∗
N(P) ≤ B(s, b)bt(logN)s−1 +O

(
bt(logN)s−2

)
,

where the constant in the O-notation does not depend on N , and where B(s, b) =(
b−1
2 log b

)s−1

if either s = 2 or b = 2, s = 3, 4; otherwise B(s, b) = 1
(s−1)!

(
⌊b/2⌋
log b

)s−1

.

A similar bound for the discrepancy of the first N terms of a (t, s)-sequence,
using slightly different terms C(s, b) (dependent on s and b) instead of B(s, b), and
involving an additional logN -factor have also been shown in [4]. Here, we present
the latest of a series of results that have been aimed at reducing the leading terms
B(s, b) and C(s, b) in Niederreiter’s discrepancy bounds. Indeed, in the paper
[1], we show discrepancy bounds of a similar flavor as the previous ones, where
we can replace the terms B(s, b) and C(s, b) by smaller expressions. Regarding
(t,m, s)-nets we have the following theorem.

Theorem 2 (Faure, Kritzer). Let P be a (t,m, s)-net in base b with N = bm

points, m > 0. Then it is true that

ND∗
N(P) ≤ E(s, b)bt(logN)s−1 +O(bt(logN)s−2) with

E(s, b) =





1
(s−1)!

b2

2(b2−1)

(
b−1
2 log b

)s−1

if b is even,

1
(s−1)!

1
2

(
b−1
2 log b

)s−1

if b is odd.

Again, the implied constant in the O-notation does not depend on N .

The proof of our result is different from earlier proofs of similar results in [4] and
later [3]. To be more precise, the proofs in [3, 4] are based on a double induction
method, whereas the proof of Theorem 2 is based on a single induction argument,
also using an adapted method from a different proof in [4].

A corresponding bound can be shown for the discrepancy of the firstN elements
of a (t, s)-sequence in base b, provided that N ≥ max{b, bt} (see [1] for details).
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We remark that our new bounds are the currently best known discrepancy
bounds for (t,m, s)-nets and (t, s)-sequences with respect to the leading coeffi-
cients.

From a numerical point of view, we compare, for exemplary instances, our new
leading coefficients to earlier findings by Faure and Lemieux [2]. These results
show that we could improve the leading factors in the discrepancy bound by a
factor of roughly 2/3. Furthermore, we consider another setting for numerical
comparisons, where we do not only concentrate on the leading term, but on the
global discrepancy bounds, including all terms of lower order. In this case, we see
that our new result is better than previous results for low dimensions, whereas the
discrepancy bounds of Faure and Lemieux are favorable in higher dimensions.
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Approximation numbers of Sobolev embeddings – Sharp constants
and tractability

Thomas Kühn

In the first part of this talk, optimal linear approximations (approximation num-
bers) in the context of periodic Sobolev spaces Hs(Td) of fractional smoothness
s > 0 on the d-dimensional torus are studied. The error is always measured in
L2(T

d). For several equivalent norms, including the classical one, we get the opti-
mal decay rate of the approximation numbers (which is of course well known) and
also the exact order of the constants in dependence on s and d. The approxima-
tion numbers of a bounded linear operator T : X → Y between Banach spaces are
defined as

an(T ) := inf{ ‖T −A‖ : rank(A) < n} , n ∈ N .

For compact operators between Hilberts spaces, these are just the singular num-
bers.

The following two-sided estimate can be found in many monographs, e.g. in [3],
Chapter 2, Theorems 4.1 and 4.2,

cs(d)n
−s/d ≤ an(Id : H

s(Td) → L2(T
d)) ≤ Cs(d)n

−s/d ,

where the constants cs(d) and Cs(d), only depending on s and d, were not explicitly
determined. We show that, for fixed s > 0, these constants decay polynomially in
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d as d→ ∞. The most complete results are obtained for the norm

‖f |Hs(Td)‖# =



∑

k∈Zd

|ck(f)|2

1 +

d∑

j=1

|kj |




2s



1/2

,

where

ck(f) = (2π)−d/2
∫

Td

f(x)e−ikx dx

are the Fourier coefficients of f ∈ L2(T
d). For this norm we show, for all s > 0

and every d ∈ N,

lim
n→∞

ns/dan(Id : H
s(Td) → L2(T

d)) =

(
2

d
√
d!

)s
≍
(
2e

d

)s
.

Moreover we give estimates with specific constants for moderately large n, for
instance for n ≥ 6d.

For small n in the so-called pre-asymptotic range 2 ≤ n ≤ 2d, we have
(

1

2 + log2 n

)s
≤ an(Id : Hs(Td) → L2(T

d)) ≤
(
log2(2d+ 1)

log2 n

)s
.

In the second part of the talk, we interpret these results in the context of information-
based complexity. More precisely, we show that the approximation problem

Id : H
s(Td) → L2(T

d) , d ∈ N,

with respect to the above norm is weakly tractable, if s > 1, and intractable, if
0 < s < 1. Here, as usual, weak tractabiliy means that the information complexity

n(ε, d) := min{n ∈ N : an(Id : Hs(Td) → L2(T
d) ≤ ε}

satisfies

lim
1/ε+d→∞

logn(ε, d)

1/ε+ d
= 0 .

In other words, n(ε, d) does not increase exponentially, neither in 1/ε as ε → 0,
nor in d as d→ ∞.

In a forthcoming paper [2] we investigate similar questions for Sobolev spaces
with dominating mixed smoothness.
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Discrepancy estimates for sequences: New results and open problems

Gerhard Larcher

In my talk I presented two of my recent results on discrepancy theory and two
open problems connected with these results. In the first part we reported about
questions concerning the discrepancy of Halton-Kronecker sequences.

A Halton-Kronecker sequence is a sequence zn = (xn, yn) ∈ [0, 1)s+t where
(xn)n≥0 is a Halton sequence in [0, 1)s and (yn)n≥0 = (({nα1}, . . . , {nαt}))n≥0 is
a Kronecker sequence in [0, 1)t .

It was shown by Niederreiter [5] that this sequence is uniformly distributed
in [0, 1)s+t if and only if the Kronecker part (yn)n≥0 is uniformly distributed in
[0, 1)t. Niederreiter also gave discrepancy estimates for the sequence (zn)n≥0 in
dependence on simultaneous approximation properties of α = (α1, . . . , αt).

In [3] the author of this report could show the following metric result for the
discrepancy of Halton-Kronecker sequences:

Theorem 1. For almost all α ∈ [0, 1)t the discrepancy DN of a Halton-Kronecker
sequence satisfies

DN = O

(
(logN)s+t+ǫ

N

)

for all ǫ > 0.

The method to prove this theorem is an adaption of techniques which were
developed by Beck [1] in probabilistic diophantine approximation.

Until now there is no explicite Halton-Kronecker sequence with s, t ≥ 1 known
which satisfies this discrepancy bound which is valid for almost all α.

So we rise the following open problem:

Open Problem 1. Does the discrepancy of the following simple 2-dimensional
Halton-Kronecker sequence

zn = (φ2(n), {n ·
√
2})n≥0

where (φ2(n))n≥2 is the van der Corput sequence in base 2 satisfy

DN = O

(
(logN)2+ǫ

N

)

or not?

In the second part of the talk we reported on new developments concerning the
best uniform distribution constant for sequences in the unit interval.

It is known from Schmidt [7] that for every sequence (xn)n≥0 in [0, 1) we have

(1) DN ≥ c · logN
N
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for infinitely many N . The order logN
N ist best possible. We ask now for c∗, the

supremum over all constants c, such that (1) holds. It is known from [2] and from
[6] that

0.06015 . . . ≤ c∗ ≤ 0.222 . . .

holds.
Using and refining a method of Liardet (see [4]) we give an easier and more

illustrative proof for this lower bound.
By further refining the method we can show that even c∗ ≥ 0.06458 . . . holds.
We give some hints, how a further analysis of the method can lead to further

improvements of the lower bound for c∗. Hence we state

Open Problem 2. Improve the above estimate for c∗ for example by the method
indicated in this talk.
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The poor lattice structure of certain long-period multiple recursive
generators

Pierre L’Ecuyer

(joint work with Richard Simard)

Random number generators based on linear recurrences modulo a prime number
m are widely used for simulation on computers, mainly because they are very fast
and their behavior is easy to characterize mathematically. In particular, they have
very long periods under simple conditions, the uniformity of the set of points they
produce from all possible seeds can be measured precisely in a mathematical sense,
and a good uniformity can be obtained via a proper choice of parameters.

In their quest for longer periods together with high speed, some authors have
proposed high-order recurrences with very special structure. In particular, in a
series of nearly a dozen articles, L.-Y. Deng and his co-authors proposed various
special cases of linear multiple recursive generators (MRGs) of large order k for
m near 231, with extremely long periods, where the coefficients aj satisfy certain
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conditions that can make the implementation faster; see [2, 1, 3] and other refer-
ences therein. In particular, to reduce the number of multiplications modulo m in
the implementation, either most coefficients of the recurrence are set to zero (just
a few are nonzero) or all nonzero coefficients take the same value, or at most two
values.

In this talk, we study the lattice structure of the point sets produced by these
special types of MRGs over their entire period. We show that this lattice structure
is always bad, regardless of the choice of parameters. More specifically, for each
proposed type of MRG, there is a small set of coordinates i1, . . . , is, where 0 =
i1 < · · · < is ≤ k + 1 and 3 ≤ s ≤ 5, for which the set of all points of the
form (un+i1 , . . . , un+is) taken from the sequence {un, n ≥ 0} of successive output
values produced by the MRG from all possible initial states, always has a lattice
structure with large spacings between the hyperplanes that contain all the points,
in s dimensions. We show that this can be easily detected by empirical statistical
tests. We also show that due to the particular structure of these MRGs, a poor
initialization of the state can have a very long-lasting impact, because of the limited
diffusion capacity of the recurrence. The details will be published in [3]. This type
of behavior strongly suggests that these MRGs should be avoided.
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On SDEs with discontinuous drift

Gunther Leobacher

We consider the following autonomous stochastic differential equation (SDE)

dX = b(X)dt+ σ(X)dW(1)

It is well-known that if b and σ are both Lipschitz, then there exists a unique
strong solution of the SDE.

We are interested in the case where b is not Lipschitz. For this case there exists
an existence and uniqueness theorem as well:

Theorem 1 (Zvonkin [4],Veretennikov [3]). Let b : Rd −→ Rd be bounded and
measurable, let σ : Rd −→ Rd×d be Lipschitz and uniformly elliptic, i.e.,

∃λ > 0 : ∀ξ, x ∈ R
d : ‖σ(x)ξ‖ ≥ λ‖ξ‖ .

Then there exists a unique strong solution to

dX = b(X)dt+ σ(X)dW .
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From some control/filtering problems arise SDEs of the general form (1) with
discontinuous drift b and and with a diffusion coefficient σ that violates the uniform
ellipticity condition. For example, the discontinuity could arise from a threshold
strategy for paying dividends. See, for example, [1].

The same authors provide an existence and uniqueness theorem under condi-
tions that conform to the control problem situation.

Theorem 2 (Leobacher, Szölgyenyi, Thonhauser). Let σ : Rd −→ Rd×d be Lips-
chitz and satisfy

∃λ > 0 : ∀x ∈ R
d : ‖σ11(x)2 + . . .+ σ1d(x)

2‖ ≥ λ .

Let b : Rd −→ Rd be continuous on Rd\{x ∈ Rd : x1 = 0} and such that there

exists Λ with ‖ ∂3

∂x3
j
b(x)‖∞ ≤ Λ for all x ∈ R and all j 6= 1.

Then there exists a unique strong solution to

dX = b(X)dt+ σ(X)dW .

The basic idea underlying both theorems is that the drift can be removed
through a transform Z = g(X), that is, g is invertible and Z is described by
a SDE without drift and with Lipschitz diffusion coefficient.

From the perspective of numerical approximation this transform is of special
interest since it theoretically allows the direct use of standard schemes, like Euler-
Maruyama or Milstein method.

In particular, when using quasi-Monte Carlo simulation, it is necessary to re-
move the discontinuities to have the regularity required by these methods. How-
ever, the transform g is characterized by a differential equation, which is a d-
dimensional elliptic PDE in the setup of Theorem 1 and an ODE in the setup of
Theorem 2. In the latter case, the ODE can be solved by computing a double
integral. But of course it is still expensive to compute the transform and even
more expensive to compute its inverse.

Suppose that the left and right limits

lim
h→0±

b(h, x2, . . . , xd)

σ11(h, x2, . . . , xd)2 + . . .+ σ1d(h, x2, . . . , xd)2
=: c±(x2, . . . , xd)

exists and is C3.
Define

g1(t) :=

{ ∫ t
0 exp(c+τ) dτ x ≥ 0∫ t

0 exp(−c−τ) dτ x ≤ 0

and consider the transform g(x1, . . . , xd) = (g1(x1), x2, . . . , xd). Formally apply-
ing Itô’s formula shows that Z = g(X) is described by a SDE with Lipschitz
drift. Thus there is a unique solution to this transformed SDE (which also can be
approximated numerically). g is locally invertible, and applying Itô’s formula to
compute

In the latter case, the use of Itô’s formula can be justified exactly as in [2].
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Of course, g and g−1 can be computed explicitly, thus providing us with a
practical method for solving the SDE also numerically. As an added value, the
use of quasi-Monte Carlo is facilitated in that the formerly discontinuous drift is
continuous in the transformed SDE.
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Tractability results for classes of ridge functions

Sebastian Mayer

(joint work with Tino Ullrich, Jan Vyb́ıral)

Approximating functions which depend on a large number of variables can be a
hard to solve problem. In many settings, it is known to suffer from the curse
of dimensionality even for very smooth functions. So, when smoothness is not
enough, what additional inner structure of functions could help to overcome the
curse. In this regard, we investigate ridge functions f(x) = g(a · x) in high di-
mensions d in our current work [3]. A ridge function is characterized by two
components: a d-dimensional vector a, called the ridge direction, and a univariate
function g, which is called the profile. Ridge functions provide a simple, coordinate-
independent model to describe inherently one-dimensional structures hidden in a
high-dimensional ambient space.

The setting. The problem we study is that of approximating ridge functions in
the uniform norm in the worst-case by means of deterministic, adaptive algorithms.
As information, the algorithms have only a limited amount of function values
available. The function classes F , where the ridge functions may be taken from,
are introduced below. For the remainder of this text, let us call this setup the
sampling problem. The key quantity, for which we find bounds from above and
below, is the n-th (adaptive) sampling number

gadan,d (F , L∞)

:= inf
{
sup
f∈F

‖f − S(f)‖∞ : S adaptive algorithm using n function values
}
.

So, let us finally introduce the ridge function classes. As domain Ω, we fix the
closed Euclidean unit ball Ω = B̄d2 . Then, we impose two constraints: firstly, we
restrict the norm of the feasible ridge directions, namely we require ‖a‖p ≤ 1 for
some 0 < p ≤ 2; secondly, we define the feasible profiles to be those which have a
certain order of Lipschitz -smoothness α > 0 . We denote the so obtained classes
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by Rα,p
d . In a sense, the case p = 2 can be understood as all directions being

possible. Letting p get smaller and smaller, then imposes a more and more strict
sparsity constraint on the feasible directions.

Bounds on sampling numbers. What could an algorithm that exploits the
ridge structure look like? At least for α > 1, there is an intuitive idea: find a
point where the first derivative of the profile g′ is sufficiently large, do first-order
Taylor around that point to recover the ridge direction a, and finally sample along
a to approximate g. Unfortunately, this cannot work for ridge functions on the
Euclidean unit ball as given by the class Rα,p

d . Let us just mention the crucial
point here: whatever algorithm we take, sampling the whole relevant domain of
the profile is only then possible if the algorithm samples exactly along the ridge
direction. Otherwise, there is always a range the algorithm cannot reach; there
is no guarantee to find a point where the first derivative g′ is sufficiently large.
It turns out that for functions from Rα,p

d , particularly in case p = 2, we cannot
really do better than for general multi-variate Lipschitz functions. In terms of
algorithms, this means that the best one can try is to spread the sampling points,
in a certain sense, as uniformly as possible over the domain.

Let us formulate in more detail what bounds we get by the above reasoning.
Both the lower and the upper bound on gadan,d (Rα,p

d , L∞) are determined to a large

extent by (dyadic) entropy numbers ek. For the lower bound, it is the entropy
numbers of the p-sphere in ℓd2; for the upper bound, it is the entropy numbers of the
domain B̄d2 in ℓdp′ , where p

′ is the dual index of p given by 1/max{1, p}+1/p′ = 1.

In formulas, if we let k be the smallest integer such that n ≤ 2k−1, then we have
bounds

ek(S
d−1
p , ℓd2)

2α . gadan,d (Rα,p
d , L∞) . glinn,d(Rα,p

d , L∞) . ek−∆(B̄
d
2 , ℓ

d
p′)

α,(1)

where ∆ is a positive integer depending logarithmically on the dimension d and the
smoothness parameter α. The behaviour of these entropy numbers is completely
understood; for details, see [3, Subsection 2.3] and references therein, and [4]. If
we just plug in these existing results on entropy numbers, then we obtain that
sampling of ridge functions from Rα,2

d is essentially as difficult as sampling of
general multi-variate Lipschitz functions. For p < 2, the situation gets better, but
still the bounds are far worse than those one would get for univariate Lipschitz
functions. (Actually, we prove a slightly better lower bound than that shown in
(1); this better bound is less easy to grasp, however.)

Tractability results. Translating the bounds on gadan,d (Rα,p
d , L∞) into bounds

on the information complexity

n(ε, d) := inf{n ∈ N : gadan,d (F , L∞) ≤ ε},
we see a surprisingly diverse picture in terms of degrees of tractability. Namely, we
see almost the entire spectrum of degrees of tractability as introduced in the recent
monographs by Novak and Woźniakowski. To be precise, the sampling problem

(1) suffers from the curse of dimensionality if p = 2 and α <∞,
(2) never suffers from the curse of dimensionality if p < 2,
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(3) is intractable if p < 2 and α ≤ 1
1/p−1/2 ,

(4) is weakly tractable if p < 2 and α > 1
1/max{1,p}−1/2 ,

(5) is quasi-polynomially tractable if α = ∞.

Let us emphasize the case 1. Not only do we understand here that the ridge
structure alone does not help to overcome the curse of dimensionality. It even tells
us that neither adaptivity nor non-linearity of algorithms leads to improvements.
In the remaining cases, it is less obvious what to learn from the results. Especially,
for p ≤ 1, the choice of the domain Ω = B̄d2 becomes somewhat artificial. The
natural choice then would be the cube Ω = [−1, 1]d.

Actually, in a recent work [1] it has been shown that, when Ω = [0, 1]d, α > 1,
and p ≤ 1, then the sampling problem is polynomially tractable, provided that
the feasible ridge directions are component-wise larger than zero. The results are
based on an adaptive algorithm which is basically constructed like the intuitive
step-wise scheme we have sketched above. This time, it works efficiently because
on Ω = [0, 1]d it is possible to reach the whole relevant range of the profile’s
domain without knowing the ridge direction a priori; one just has to sample along
the direction (1, . . . , 1).

We have already argued that a comparable algorithm cannot work whenever the
domain is the Euclidean unit ball. But, of course, there is one remedy: make it ex-
plicit knowledge about the problem that the profiles’ first derivatives are uniformly
bounded away from zero in some point, say the origin. In other words, for α > 1
and some 0 < κ < 1, we add the constraint |g′(0)| ≥ κ for all feasible profiles g to
the class Rα,p

d . In this we follow [2], where the approach has been worked out in
broader generality. Now, the sampling problem becomes polynomially tractable,
no matter what precise values the parameters α > 1 and p take.
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Construction of interlaced polynomial lattice rules with SPOD weights

Dirk Nuyens

(joint work with Josef Dick, Frances Y. Kuo, Quoc T. Le Gia, Christoph Schwab)

In this talk I start from a parametrised PDE to define an infinite dimensional inte-
gral which we want to approximate by a QMC rule. The integral is the expectation
over the parameter space of a linear functional of the solution of the PDE. It turns
out that the regularity of the solution in the parameter domain can be transferred
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to the integration problem in the form of SPOD weights. We construct interlaced
polynomial lattice rules for this setting using a fast CBC algorithm. This is a
report on joint work with J. Dick, F. Y. Kuo, Q. T. Le Gia and Ch. Schwab [1].

More specifically we consider a parametrized PDE

A(y(ω))u(x; y(ω)) = f,

whereA is a bounded linear operator parametrized by y(ω) ∈ RN.We are interested
in

E[G(u)] =

∫

Ω

G(u(·; y(ω))) dP(ω) =
∫

[0,1]N
F (y) dy,

using a uniform distribution for y and assume G is a bounded linear operator. We
further assume an affine parameter dependence

A(y) = A0 +
∑

j≥1

yj Aj ,

for which there is a p ∈ (0, 1] such that
∑

j≥1

‖Aj‖p <∞.

We solve for u using a QMC Galerkin method

u(x; y) ≈ uh(x; y) ≈ uhs (x; y),

with finite number of dimensions s, and approximate the expectation by a QMC
rule

E[G(u)] ≈ E[G(uh)] ≈ E[G(uhs )] ≈
1

N

N∑

k=1

G(uhs (yk)).

In [1] we show how to construct “interlaced polynomial lattice rules” of order
α = ⌊1/p⌋+1 with “SPOD weights”, using a fast component-by-component algo-
rithm, in O(αsN logN + α2s2N) operations, which achieve a convergence rate of
O(N−1/p) with the implied constant independent of s.

The SPOD weights, which stands for “smoothness-driven product and order
dependent weights”, take the form, for u ⊆ {1, . . . , s},

γu :=
∑

νu∈{1:α}|u|

|νu|!
∏

j∈u

(
2δ(νj ,α)β

νj
j

)
,

making use of a bound on the regularity of F in terms of the parameter y

|(∂νyF )(y)| ≤ c |ν|!βν for all ν ∈ N
N

0 with |ν| <∞,

with |ν| =∑j≥1 νj .
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Tractability of multivariate integration

Friedrich Pillichshammer

We study multivariate integration Is(f) =
∫
[0,1]s

f(x) dx of functions f from

some normed space (H, ‖ · ‖H) of functions defined on [0, 1]s by means of quasi-

Monte Carlo (QMC) rules QN,s(f) = (1/N)
∑N
n=1 f(tn) for f ∈ H and sample

nodes t1, . . . , tN ∈ [0, 1)s. We consider the worst-case error of a QMC rule.

Definition 1. The worst-case (QMC) error of QN,s based on the node set P
is

e(H,P) = sup
‖f‖H≤1

|Is(f)−QN,s(f)|.

The initial error (used as reference value) is e(H, ∅) = sup‖f‖H≤1 |Is(f)| = ‖Is‖.
Definition 2. • For N, s ∈ N the Nth minimal error is eH(N, s) =

inf P⊆[0,1]s

#P=N
e(H,P).

• For s ∈ N and ε ∈ (0, 1) the (QMC) information complexity is

NH(s, ε) = min{N ∈ N : eH(N, s) ≤ ε e(H, ∅)}.
In many cases one has excellent asymptotic bounds on the Nth minimal error.

For example, consider

F∗
s,q = {f ∈ W1

q : f(x) = 0 if xj = 1 for some j and ‖f‖∗s,q <∞},
where W1

q is the Sobolev space of functions defined on [0, 1]s that are once differ-
entiable in each variable and whose derivatives have finite Lq norm, with norm

‖f‖∗s,q =
∥∥∥∥
∂s

∂x
f

∥∥∥∥
Lq

, where
∂s

∂x
f =

∂s

∂x1∂x2 . . . ∂xs
f.

Then it is well-known that

e(F∗
s,q,P) = Lp(P) for 1/p+ 1/q = 1,

where Lp(P) is the Lp-discrepancy of the sample point set P . From asymptotic
results on the Lp discrepancy it follows that

eF∗
s,q
(N, s) ≍s,p

(logN)(s−1)/2

N
for q > 1

and

(logN)(s−1)/2+ηs

N
≪s eF∗

s,1
(N, s) ≪s

(logN)s−1

N
for some ηs ∈ (0, 1/2].

These results are excellent in an asymptotic sense for N → ∞. However, often
it is not clear how long one has to wait to see the good asymptotic behavior of the
Nth minimal error, especially if the dimension s is large. This is the subject of
tractability which means, roughly speaking, that the information complexity lacks
a certain disadvantageous dependence on ε−1 and s, the curse of dimensionality.

Definition 3. We have the curse of dimensionality if ∃c, τ > 0 and ε0 such
that NH(ε, s) ≥ c (1 + τ)s for all ε ≤ ε0 and infinitely many s.
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It is known that many multivariate problems defined over standard spaces of
functions suffer from the curse of dimensionality. Examples are integration of
Lipschitz functions, of smooth one-periodic functions, of functions from F∗

s,2, of
monotone or convex functions . . . . The reason for this may be in the fact that
for standard spaces all variables and groups of variables are equally important.
As a way out Sloan and Woźniakowski suggested to consider weighted spaces, in
which the importance of successive variables and groups of variables is monitored
by corresponding weights, to vanquish the curse of dimensionality.

Definition 4. We say that we have:

• Weak (QMC) Tractability (WT) if lims+ε−1→∞
log NH(ε,s)

s+ε−1 = 0.

• Polynomial (QMC) Tractability (PT) if ∃c, τ1, τ2 > 0 such that
NH(ε, s) ≤ c s τ1 (ε−1) τ2 for all s ∈ N, ε ∈ (0, 1).

• Strong Polynomial (QMC) Tractability (SPT) if ∃c, τ > 0 such that
NH(ε, s) ≤ c (ε−1) τ for all s ∈ N, ε ∈ (0, 1). The exponent τ∗ of SPT is
the infimum of τ for which SPT holds.

For example, consider weighted Korobov spaces H = H(Ks) of periodic and
smooth functions, defined via a reproducing kernel of the form

Ks(x,y) =
∑

h∈Zs

ρh exp(2πih · (x− y)) for all x,y ∈ [0, 1]s,

where ρh > 0 and
∑

h∈Zs ρh < ∞ in order that the kernel is well defined. The
smoothness of f ∈ H(Ks) is determined by the decay of the ρh’s.

A very well studied case are Korobov spaces of finite smoothness α > 1
and weights γ = {γj}j≥1. Here for h = (h1, . . . , hs) ∈ Zs one puts ρh =∏s
j=1 rα,γj (hj), where rα,γ(h) = γ|h|−α if h 6= 0 and rα,γ(0) = 1. The ρh’s

decay polynomially in the components of h. We write Ks = Ks,α,γ . The parame-
ter α guarantees the existence of some partial derivatives and the weights γ model
the influence of the different components on the variation of f ∈ H(Ks,α,γ).

Theorem 1 (Sloan &Woźniakowsk). For QMC integration in H(Ks,α,γ) we have:

• WT, iff lims→∞
∑s

j=1 γj

s = 0.

• PT, iff lim sups→∞

∑s
j=1 γj

log s <∞.

• SPT, iff
∑∞

j=1 γj <∞. If so, then the exponent of SPT satisfies

τ∗ ≤ 2 inf



λ ∈ (1/α, 1] :

∞∑

j=1

γλj <∞



 .

In 2011 Dick, Kritzer, Larcher, Woźniakowski and the author started a series of
papers where we study integration and approximation of functions from Korobov

spaces of infinite smoothness. Fix ω ∈ (0, 1) and put ρh = ω
∑s

j=1 aj |hj |bj for
h = (h1, h2, . . . , hs) ∈ Zs, with weight sequences a = {aj}j≥1 and b = {bj}j≥1

where 0 < a1 ≤ a2 ≤ . . . and inf bj > 0. Now the ρh’s decay exponentially fast
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in the components of h. We write Ks = Ks,a,b. Functions from H(Ks,a,b) are
analytic.

For infinite smoothness it is natural to demand more of the Nth minimal errors
and of the information complexity than for finite smoothness. We are interested
in obtaining uniform exponential convergence of eH(N, s).

Definition 5. Uniform exponential convergence (UEXP) means that ∃q ∈
(0, 1), p > 0 and a function C : N → (0,∞) such that

eH(N, s) ≤ C(s) qN
p

for all s,N ∈ N.

UEXP implies NH(ε, s) ≤
⌈(

logC(s)+log ε−1

log q−1

)1/p⌉
for all s ∈ N, ε ∈ (0, 1).

Hence we need O([log ε−1]1/p) function values to compute an ε-approximation to
multivariate integrals. This is excellent, but we do not know how long we have
to wait to see this asymptotic behavior, especially for large s. In this context we
study the following notions of tractability:

Definition 6. We say that we have:

• EC weak tractability (EC-WT) if limlog ε−1+s→∞
logNH(ε,s)
log ε−1 + s = 0.

• EC polynomial tractability (EC-PT) if ∃c, τ1, τ2 > 0 such that

NH(ε, s) ≤ c sτ1
(
1 + log ε−1

)τ2
for all s ∈ N, ε ∈ (0, 1).

• EC strong polynomial tractability (EC-SPT) if ∃c, τ > 0 such that
NH(ε, s) ≤ c (1 + log ε−1) τ for all s ∈ N, ε ∈ (0, 1). The exponent τ∗ of
EC-SPT is the infimum of τ for which EC-SPT holds.

Theorem 2 (Kritzer, Pillichshammer & Woźniakowski). For QMC integration in
H(Ks,a,b) we have:

• UEXP, iff B :=
∑∞

j=1
1
bj
<∞; if so then p = 1/B.

• EC-PT ⇒ UEXP
• EC-WT ⇒ limN→∞NαeH(Ks,a,b)(N, s) = 0 for all α > 0.
• We have EC-WT ⇔ limj→∞ aj = ∞ and EC-WT+UEXP ⇔ B < ∞
and limj→∞ aj = ∞.

• EC-PT, EC-PT+UEXP, EC-SPT and EC-SPT+UEXP are equivalent.

• EC-SPT+UEXP holds iff B :=
∑∞
j=1

1
bj
<∞ and α∗ := lim infj→∞

log aj
j >

0. The exponent of EC-SPT satisfies τ∗ ∈ [B,B +min(B, (log 3)/α∗)].

The current state of the art of tractability theory is summarized in [1, 2, 3].
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Automatic integration using asymptotically optimal subdivision
strategy

Leszek Plaskota

A common approach to the numerical approximation of the integral

I(f) =

∫ b

a

f(x) dx

of a function f : [a, b] → R relies on using composite quadrature rules. Ideally,
we would like to have an automatic routine that, for a given function f and error
tolerance ε, produces an approximation Q(f) to I(f) such that it uses as little
function evaluations as possible, and its error

|I(f)−Q(f)| ≤ ε.

This is usually realized with the help of adaption. For a given interval, two simple
quadrature rules are applied, one more accurate than the other. If the difference
between them is sufficiently small, the integral in this interval is approximated by
the more accurate quadrature. Otherwise, the interval is divided into two smaller
subintervals and the above rule is recursively applied for each of the subintervals.
This often results in a more efficient final subdivision of [a, b] than the uniform
subdivision of nonadaptive quadratures. See, e.g., [1] for an account on adaptive
numerical integration.

We have to admit that there are results saying that adaptive quadratures are
not better than nonadaptive quadratures. This holds, for instance, in the worst
case setting over convex and symmetric classes of functions. There are also corre-
sponding adaption-does-not-help results in other settings, see, e.g., [6, 7, 10, 11].
On the other hand, if the class is not convex and/or a different from the worst
case error criterion is used to compare algorithms, then adaption can significantly
help. A characteristic example is integration of piecewise smooth functions [9].
For those reasons, adaptive algorithms are frequent guests in computational prac-
tice. Adaptive Simpson quadratures or those based on four-point Gauss-Lobatto
rule and its seven-point Kronrod extension [2, 8] are now standard elements of
numerical packages such as QUADPACK or MATLAB.

Adaptive Simpson quadrature, first published in algorithm form in [5], is the
oldest and probably most known example of automatic integration. Some mod-
ifications of the standard algorithm, like those in [4], were proposed to make it
applicable for as many functions as possible. However, to the author’s knowledge,
there is no comprehensive analysis explaining the behavior of adaptive quadra-
tures in a quantitative way. A common knowledge is that “adaptive quadratures
do very well for rapidly varying functions”.

In this talk, we analyze the adaptive Simpson quadratures from the point of
view of computational complexity. Allowing all subdivision strategies, the goal
is to find optimal strategy, for which the corresponding algorithm returns an ε-
approximation to the integral using minimal number of integrand evaluations or,
equivalently, the minimal number of subintervals. The main analysis is asymptotic
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and done under the assumptions that f is four times continuously differentiable,
f (4) ∈ ([a, b]), and that its 4th derivative is positive.

To reach our goal, we first derive formulas for the asymptotic error of adaptive
Simpson quadratures which were first presented in the unpublished master thesis
[3]. We find that the optimal strategy produces the partition a = x∗0 < · · · < x∗m =
b such that

∫ x∗
i

a

(
f (4)(x)

)1/5
dx =

i

m

∫ b

a

(
f (4)(x)

)1/5
dx, i = 0, 1, . . . ,m.

This, up to a constant, is practically realized by the adaptive subdivision strategy
that keeps the error on successive subintervals on the same level. The optimal
error corresponding to the subdivision into m subintervals is then proportional to
Lopt(f)m−4 where

Lopt(f) =

(∫ b

a

(
f (4)(x)

)1/5
dx

)5

.

For comparison, the errors for the standard adaptive and for nonadaptive (using
uniform subdivision) quadratures are respectively proportional to Lstd(f)m−4 and
Lnon(f)m−4 where

Lstd(f) = (b − a)

(∫ b

a

(
f (4)(x)

)1/4
dx

)4

, Lnon(f) = (b− a)4

(∫ b

a

f (4)(x) dx

)
.

Obviously, Lopt(f) ≤ Lstd(f) ≤ Lnon(f). Hence the optimal Simpson quadra-
ture is especially effective when Lopt(f) ≪ Lstd(f). An example is provided by

the integral
∫ 1

δ
x−1/2 dx with ‘small’ δ. E.g., if δ = 10−8 then Lopt(f), Lstd(f),

and Lnon(f) are correspondingly of order 105, 108, and 1028.
We show that the optimal strategy can be harnessed to automatic integration.

The only serious problem of how to choose the acceptable error ε1 for subintervals
to obtain the final error ε with minimal cost is resolved by splitting the recursive
subdivision process into two phases. In the first phase, the process is run with the
acceptable error set to a ‘test’ level ε2 = ε. Then the acceptable error is updated
to

ε1 = εm
−5/4
2

where m2 is the number of subintervals obtained from the first phase. In the
second phase, the recursive subdivision is continued with the ‘target’ level ε1.

As we noticed earlier, the main analysis is provided under the assumption that
f ∈ C4([a, b]) and f (4) > 0. It turns out that, using additional arguments, the ob-
tained results can be extended to functions with f (4) ≥ 0 and/or possible endpoint
singularities, i.e., when f (4)(x) goes to +∞ as x approaches a or b. The latter ex-
tension is especially important as endpoint singularities regularly appear when one
approximates a weighted integral over an infinite interval by switching to a finite
interval. For instance, for the integral

∫∞
0
f(x)e−x dx one can apply the change

of variables u = e−x to transform it to
∫ 1

0 F (u) du with F (u) = −f(− lnu), which
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usually results in a singularity at u = 0. For such integrals, the optimal strategy
works perfectly well while the other two quadratures may lose the convergence
rate m−4.

The assumption f (4) ≥ 0 is of course restrictive. However, it allows us to exploit
the full power of adaptive Simpson quadratures without introducing any additional
safety measures to avoid possible premature algorithm terminations, which may
happen as a result of inaccurate estimations of local errors. Actually, the problem
of how to effectively deal with functions for which f (4) changes sign is known to
be non-trivial and should be studied separately.

We stress that our technique for deriving the optimal automatic integration is
by no means restricted to Simpson quadratures and can be also applied when other
quadratures are used as basic components of composite rules.
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Multivariate approximation with trigonometric polynomials

Daniel Potts

A straightforward discretisation of problems in d spatial dimensions with N =
2n grid points in each coordinate leads to an exponential growth Nd in the num-
ber of degrees of freedom. Even an efficient algorithm like the d-dimensional
fast Fourier transform (FFT) uses C dNd logN floating point operations. This
is labelled as the curse of dimensions and the use of sparsity has become a very
popular tool in such situations. For moderately high dimensional problems the use
of sparse grids and the approximation on hyperbolic crosses has led to problems
of total size CdN logd−1N . Moreover, the approximation rate hardly deteriorates
for functions in an appropriate scale of spaces of dominating mixed smoothness
[12].
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The FFT has been adapted to this thin discretisation as hyperbolic cross fast
Fourier transform (HCFFT), which uses CdN logdN floating point operations,
see [1, 4, 5]. However, these classical sparse grid discretisations are numerically
unstable as shown in [8]. On the other hand, lattice rules are well known for the
integration of functions of many variables [12, 3]. We discuss rank-1 lattice rules as
spatial discretisation for the hyperbolic cross FFT. For given M ∈ N and z ∈ Zd,
we consider the rank-1 lattice

X (z,M) := {xj = jz/M mod 1, j = 0, . . . ,M − 1} ⊂ T
d.

The evaluation of trigonometric polynomials supported on a hyperbolic cross, i.e.,
the mapping from the hyperbolic cross in frequency domain to the rank-1 lattice
in spatial domain reduces to a single one dimensional FFT and thus can be com-
puted very efficiently and stable. For the inverse transform, mapping the samples
of a trigonometric polynomial to its Fourier coefficients on the hyperbolic cross,
we discuss the recently presented necessary and sufficient conditions on rank-1 lat-
tices allowing a stable reconstruction of trigonometric polynomials supported on
hyperbolic crosses and the generalisation to arbitrary index sets in the frequency
domain. We suggest approaches for determining suitable rank-1 lattices using a
component-by-component algorithm [7, 2]. In conjunction with numerical found
lattices, we show that this new method outperforms the classical hyperbolic cross
FFT for realistic problem sizes [9].

The use of a generalisation of rank-1 lattices as spatial discretisations offers an
additional suitable possibility for sampling sparse trigonometric polynomials. To
this end, we define for given M ∈ N and r ∈ Rd the generated set

Λ(r,M) := {xj = jr mod 1, j = 0, . . . ,M − 1} ⊂ T
d.

The fast computation of trigonometric polynomials on generated sets, can be re-
alised by using the nonequispaced fast Fourier transform (NFFT), cf. [11]. A
simple sufficient condition on a generated set Λ(r,M) allows the fast, unique and
stable reconstruction of the frequencies of a d-dimensional trigonometric polyno-
mial from its samples along Λ(r,M). In contrast to searching for suitable rank-1
lattices, we can use continuous optimisation methods in order to determine gen-
erated sets that are suitable for reconstruction, see [6].

Finally we discuss the approximation with lattice rules of functions in periodic
Sobolev spaces of dominating mixed smoothness [10], similar as recently presented
in [5], where sampling on generalised sparse grids were used.

This contribution is joint work with Lutz Kämmerer and Toni Volkmer (Uni-
versität Chemnitz, Germany).
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Multi-level Monte Carlo algorithms

Klaus Ritter

In this talk we present a survey on multi-level Monte Carlo algorithms. In the first
part we outline the basic idea of the stochastic multi-level approach, which may be
considered as a generalization of control variates, a well-known variance reduction
technique. We also provide a comparision with the classical, single-level approach,
as well as pointers to the original work by Heinrich (1998), Kebaier (2005), and
Giles (2008).

The second, main part of the talk is devoted to quadrature problems on the
sequence spaceDN with respect to a product probability measure. The correspond-
ing function classes are unit balls in reproducing kernel Hilbert spaces, with kernel
being weighted superpositions of tensor products of kernels on D×D. We discuss
upper and lower bounds for minimal errors as well as the role of (randomized)
quasi-Monte Carlo rules as building blocks for the multi-level construction.

Discrepancy bounds of Markov chain quasi-Monte Carlo

Daniel Rudolf

(joint work with J. Dick)

Markov chain Monte Carlo sampling can be represented via Xi+1 = ϕ(Xi, Ui)
for i ≥ 2, with X1 = ψ(U1) and the Ui ∼ U(0, 1)s are i.i.d. The state Xi is an
element in G ⊆ Rd, the function ϕ : G× [0, 1]s → G is called update function and
ψ : [0, 1]s → G is called generator function. The update function gives a transition
kernel, say K. For f : G → R let Eπ(f) =

∫
G f(x)π(dx) be the desired mean and
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Pf(x) =
∫
G f(y)K(x, dy) be the Markov operator induced by the transition kernel

K. We assume that the transition kernel is reversible with respect to a distribution
π and that it is variance bounding, see [3]. Roughly, a Markov chain is variance
bounding if the asymptotic variances for functionals with unit stationary variance
are uniformly bounded. Equivalent to this is the assumption that Λ < 1 with

(1) Λ = sup{λ ∈ σ(P − Eπ | L2)}
where σ(P − Eπ | L2) denotes the spectrum of P − Eπ on L2. For example let
us consider the two state Markov chain which always jumps from one state to
the other one. It is periodic and satisfies Λ = −1, thus it is variance bounding.
With this toy example in mind let us point out that the Markov chain does not
need to be uniformly or geometrically ergodic, it might even be periodic, and the
distribution of Xi, for i arbitrarily large, is not necessarily close to π.

By a deterministic sequence (ui)i≥0 we generate the deterministic Markov chain
(xi)i≥1 with x1 = ψ(u0) and xi = ϕ(xi−1, ui−1) where i ≥ 2. The efficiency of
this procedure is measured by the star-discrepancy, a generalized Kolmogorov-
Smirnov test, between the stationary measure π and the empirical distribution
π̂n(A) = 1

n

∑n
i=1 1xi∈A, where 1xi∈A is the indicator function of a set A ⊆ G.

We define the star-discrepancy D∗
A,π of Sn = {x1, . . . , xn} as the supremum of

|π(A) − π̂(A)| over all A ∈ A, i.e.

D∗
A,π(Sn) = sup

A∈A
|π̂(A) − π(A)| ,

where A denotes a set of subsets of G. By inverting the iterates of the update
function we also define a push-back discrepancy of the driver sequence (the test
sets are pushed back). We show that for large n ∈ N both discrepancies are close
to each other.

The main result is an estimate of D∗
A,π(Sn) under the assumption that we have

an approximation of A, for δ > 0 given by a so-called δ-cover Γδ of A with respect
to π. This is based on a Hoeffding inequality for Markov chains. A sufficiently
good δ-cover exists if π is absolutely continuous with respect to the Lebesgue
measure and the set of test sets is the set of open axis-parallel boxes restricted to
G anchored at −∞, i.e. we consider

B = {(−∞, x) ∩G : x ∈ R
d},

with (−∞, x) = Πdi=1(−∞, xi). By a Koksma-Hlawka inequality we have
∣∣∣∣∣Eπ(f)−

1

n

n∑

i=1

f(xi)

∣∣∣∣∣ ≤ ‖f‖H1D
∗
B,π(Sn).

Thus a bound on the discrepancy leads to an error bound for the approximation
of Eπ(f). In particular, in [1] we show for all n ≥ 16 that there exists a driver
sequence u0, . . . , un−1 ∈ [0, 1]s such that Sn = {x1, . . . , xn} given by

x1 = ψ(u0)

xi+1 = ϕ(xi;ui), i = 1, . . . , n− 1,
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satisfies

D∗
B,π(Sn) ≤

√
1 + Λ0

1− Λ0
·
√
2 (log ‖ dνdπ‖2 + d logn+ 3d2 log(5d))1/2√

n
+

8

n3/4
,

with ν = Pψ, the probability measure induced by ψ, and Λ0 = max{Λ, 0} where
Λ is defined in (1). This improves the result of [2] to Markov chains which satisfy
a significantly weaker convergence condition than uniform ergodicity. Further by
the Koksma-Hlawka inequality we have that the sample average converges to the
mean with O(n−1/2(log n)1/2).
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Lower bounds and separation for spherical designs

Ian H. Sloan

(joint work with Peter Grabner)

Spherical t-designs, with t ∈ N, are point sets XN := {x1, x2, · · · , xN} ⊂ Sd such
that

1

N

N∑

j=1

p(xj) =
1

Ωd

∫

Sd

p(x)dωd(x) ∀ p ∈ Pt(S
d).

Here Sd ⊂ Rd+1 is the unit d-dimensional sphere, ωd is the measure on Sd and Ωd
the total measure of Sd, while Pt(S

d) is the set of polynomials on Sd of degree ≤ t,
or equivalently, the set of all polynomials in Rd+1 of total degree ≤ t restricted to
Sd. That is, XN is a spherical t-design if the cubature rule with these points and
with equal weights

wj =
1

N
∀j = 1, . . . , N

integrates exactly all polynomials of degree up to t. Spherical designs were first
introduced by [1] in 1977.

We first rederive the lower bounds on N proved by [1], namely

N ≥
(
d+t/2

d

)
+

(
d+t/2− 1

d

)
if t is even, N ≥ 2

(
d+⌊t/2⌋
d

)
if t is odd.

The proof in [1] proceeds by applying the spherical design property to a well
chosen (zonal) polynomial q(x ·y) with fixed y ∈ S, and with q = qt a non-negative
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polynomial of degree t on [−1, 1]. This gives

1

N

N∑

j=1

q(xj · y) =
1

Ωd

∫

Sd

q(x · y)dω(x)

=
Ωd−1

Ωd

∫ 1

−1

q(z)(1− z2)d/2−1dz := q,

thus q is the spherical average of q(x · y), which is independent of y. Now choose
y = x1, and rearrange to obtain

N =
1

q


q(1) +

N∑

j=2

q(xj · x1)


 ≥ q(1)

q
.

The polynomial that maximises the RHS (we prove the optimality) is

qDt (z) =





(
P

(d/2,d/2−1)
t/2 (z)

)2
for t even,

(1 + z)
(
P

(d/2−1,d/2−1)
t/2−1 (z)

)2
for t odd,

where Pα,βτ is the Jacobi polynomial with indices α, β of degree τ .
Denote the corresponding lower bound by ND

t . We extend the argument of [1]
to obtain the following separation result:

Theorem: Suppose that XN = {x1, · · · , xN} ⊂ Sd is a spherical t-design with
N ≍ td and ND

t ≤ N ≤ ρ2ND
t for some fixed ρ < 1. Then ∃ c = c(ρ) such that

cos−1(xi · xj) ≥
c(ρ)

N1/d
∀ 1 ≤ i 6= j ≤ N.

The condition N < 2ND
t is comfortably satisfied by the best spherical designs

for d = 2 and small t in the Hardin and Sloane collection [2], but restricts the
applicability of this separation result because the lower bounds of [1] were signif-
icantly improved by Yudin [3]. For d = 2 the relative improvement ranges from
nothing for small t, to ≈ 8% for large t. But for large d the Yudin bound has an
exponentially larger constant. Thus the separation result can be useful for at most
small d.

Yudin applied the spherical design property not to a polynomial, but to a spe-
cially designed zonal function V (x · y) with V = Vt ∈ C([−1, 1]) and V (z) ≥
0 ∀ z ∈ [−1, 1], and one more essential property, still to come. Yudin’s strat-
egy (actually, the strategy is already indicated in [1]) makes use of the Legendre
expansion of V ,

V (z) =

∞∑

n=0

V̂ (n)Z(d, n)Pn(z), V̂ (n) :=
Ωd−1

Ωd

∫ 1

−1

V (z)Pn(z)(1− z2)d/2−1dz.
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where Pn(z) := P
(d/2−1,d/2−1)
n (z)/P

(d/2−1,d/2−1)
n (1) is the Legendre polynomial

for dimension d and degree n, and Z(d, n) is the dimension of the space of homo-
geneous harmonic polynomials of degree n. The extra condition on V is

V̂ (n) ≤ 0 for all n > t.

Applying the spherical t-design property to V (x · y), we obtain

1

N

N∑

i=1

V (xi · y) = V +

∞∑

n=t+1

V̂ (n)Z(d, n)
1

N

N∑

i=1

Pn(xi · y),

where V is the spherical average of V (x · y). Now form a double sum:

1

N2

N∑

i,j=1

V (xi · xj) = V +

∞∑

n=t+1

V̂ (n)Z(d, n)
1

N2

N∑

i,j=1

Pn(xi · xj) ≤ V ,

where the inequality holds because V̂ (n) ≤ 0 for n > t, and because (using the

addition theorem for spherical harmonics)
∑N
i,j=1 Pn(xi · xj) ≥ 0 . Equivalently

N ≥ 1

NV

N∑

i,j=1

V (xi · xj) =
1

NV
[NV (1) +

N∑

i,j=1,i6=j
V (xi · xj)] ≥

V (1)

V
.

By choosing V so as to maximise the RHS we then obtain the Yudin bound:

N ≥ V Y
t (1)

V Y
t

=: NY
t .

So how did Yudin construct his function V Y
t ? He took V Y

t to be the convolution
v ∗ w of two positive functions v and w , i.e.

V (x · y) =
∫

Sd

v(x · u)w(u · y)dωd(u),

in this way immediately ensuring the positivity of V Y
t . And since

V̂ (n) = cv̂(n)ŵ(n),

the property V̂ (n) ≤ 0 for n > t follows if we can ensure that ŵ(n) has the opposite
sign to v̂(n) for n > t. For further details of Yudin’s construction see [3].

The two ingredients in the Yudin convolution are

vYt (z) =

{
0 if z < αt

Pt+1(z)− Pt+1(αt) if z ≥ αt

wY
t (z) =

{
0 if z < αt

c if z ≥ αt

where αt = cos θt is the largest zero of P ′
t+1. The support of V Y

t is easily seen to

be [2α2
t − 1, 1].
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We have shown that Yudin’s result is optimal among all constructions that
follow the above strategy, and have simplified the proof.

We also extended the argument above to obtain the following result on the
average separation of points of spherical designs: suppose that we have a sequence
of spherical designs XN with N ≍ td, and that βt ∈ supp(V Y

t ) with 1 − βt a
constant fraction τ of |supp(V Y

t )|. Then we show

#{(i, j) : i 6= j, xi · xj ≥ βt} ≤ cN.

Thus on the average, a spherical cap of radius cos−1(βt) centered at a point of the
design contains at most a constant number of other points. The constant is small
if τ is close to 1 and N is close to NY

t . (However, we don’t yet know whether N
close to NY

t is achievable).
Acknowledgements The support of the Australian Research Council is grate-

fully acknowledged.
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Three problems for discrepancy and QMC

Stefan Steinerberger

Our setting is [0, 1]2 or [0, 1]3 and we discuss problems on discrepancy with
different codimensions.

Points: QMC for harmonic functions. Let u : R2 → R be harmonic, i.e.
(
∂2

∂x2
+

∂2

∂y2

)
u(x, y) = 0.

Any harmonic function satisfies a mean-value property, i.e. the value at any point
coincides with the average function value on any circle centered at that point

u(x) =
1

|∂Br(x)|

∫

∂Br(x)

u(z)dσ(z).

We wish to find a set of points (xn) in [0, 1]2 such that

∫

[0,1]2
u dx dy dz ≈ 1

N

N∑

i=1

u(xi).

Is there any sequence of points exploiting the mean-value property efficiently such
that the integral can be quickly computed?



Uniform Distribution Theory and Applications 2891

Lines: just beyond Schmidt’s theorem? Let ℓ1, ℓ2, . . . , ℓN be a set of N
lines in R3. Let Hk denote the k−dimensional Hausdorff measure. We consider
the set

A =

N⋃

i=1

ℓi ∩ [0, 1]3

and a measure of discrepancy

DN (A) = sup
Q⊂[0,1]3

∣∣∣∣
H1(A ∩Q)

H1(A)
−H3(Q)

∣∣∣∣,

where the supremum is taken over all cubes Q. Is there an inequality of the form

DN (A) ≥ c
logH1(A)

H1(A)
?

Note that by taking all lines to be parallel to one of the axes, this would imply
Schmidt’s bound

DN ≥ c
logN

N
for sets in [0, 1]2.

Conversely, any set of points with small discrepancy in [0, 1]2 can be trivially ex-
tended to a set of lines in R3 such that our discrepancy notion does not increase.

As such, the problem seems to be strictly more complicated than Schmidt’s
result but maybe not quite as complicated as the same question for sets of point
in [0, 1]3.

Sets: a geometric uncertainty principle. It is trivially impossible to de-
compose [0, 1]2 into finitely many discs of equal radius. A quantitative version
was studied in [1]. In measuring how much a set deviates from a ball, Fraenkel
asymmetry has recently become an increasingly central notion: given a domain
Ω ⊂ Rn, its Fraenkel asymmetry is defined via

A(Ω) := inf
B

|Ω△B|
|Ω| ,

where the infimum ranges over all disks B ⊂ Rn with |B| = |Ω| and △ is the
symmetric difference

Ω△B = (Ω \B) ∪ (B \ Ω).
Fraenkel asymmetry is scale-invariant

0 ≤ A(Ω) ≤ 2.

As for deviation in size, we define the deviation from the smallest element in the
partition via

D(Ωi) :=
|Ωi| −min1≤j≤N |Ωj |

|Ωi|
,

which is scale invariant as well and satisfies

0 ≤ D(Ωi) ≤ 1.
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Theorem. Suppose we are given a partition

[0, 1]2 =
N⋃

i=1

Ωi.

For all N sufficiently large,
(

N∑

i=1

|Ωi|
|Ω| A(Ωi)

)
+

(
N∑

i=1

|Ωi|
|Ω| D(Ωi)

)
≥ 1

60000
.

This statement has applications in nodal domain estimates and spectral par-
tition problems. The constant is clearly not sharp and any serious improvement
seems to require drastically new insights. Is the extremal configuration given by a
decomposition into hexagons (with obvious modifications at the boundary)? This
would correspond to an optimal constant of c ∼ 0.07 . . .
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On covering in finite dimensional Banach spaces

Vladimir Temlyakov

We discuss construction of coverings of the unit ball of a finite dimensional
Banach space. The well known technique of comparing volumes gives upper and
lower bounds on covering numbers. This technique does not provide a construction
of good coverings. Here we apply incoherent dictionaries for construction of good
coverings. We use the following strategy. First, we build a good covering by balls
with a radius close to one. Second, we iterate this construction to obtain a good
covering for any radius. We mostly concentrate on the first step of this strategy.

Let X be a Banach space R
d with a norm ‖ · ‖ and let B := BX denote the

corresponding closed unit ball:

(1) B := BX := {x ∈ R
d : ‖x‖ ≤ 1}.

The open unit ball will be denoted by Bo := BoX :

(2) Bo := BoX := {x ∈ R
d : ‖x‖ < 1}.

Notation B(x, r) := BX(x, r) and Bo(x, r) := BoX(x, r) will be used respectively
for closed and open balls with the center x and radius r. In case r = 1 we drop it
from the notation: Bo(x) := Bo(x, 1). For a compact set A and a positive number
ǫ we define the covering number Nǫ(A) as follows

Nǫ(A) := Nǫ(A,X) := min{n | ∃x1, . . . , xn : A ⊆ ∪nj=1BX(xj , ǫ)}.
The following proposition is well known.

Proposition 1. For any d-dimensional Banach space X we have

ǫ−d ≤ Nǫ(BX , X) ≤ (1 + 2/ǫ)d.
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This proposition describes the behavior of Nǫ(BX , X) when ǫ→ 0. In the paper
[8] we concentrate on the case when ǫ is close to 1. In particular, we discuss the
following problem: How many balls Bo(xj) are needed for covering B? In other
words we are interested in the number

(3) N(d,X) := min{n | ∃x1, . . . , xn : BX ⊂ ∪nj=1B
o
X(xj)}.

This problem is related to Borsuk’s conjecture. Borsuk [3] raised the following
question.

Problem B. Is it true that every set of diameter one in Rd can be partitioned
into d+ 1 sets of diameter smaller than one?

Settings with diameter as in Problem B and with covering as in (3) are related
but different. It is clear that if A is covered by n balls B(xj , r), j = 1, . . . , n,
then A can be partitioned into n sets of diameter ≤ 2r. It is known (see, for
instance, [4]) that the fact that A is of diameter 2r does not imply that A can be
covered by a single B(x0, r). Kahn and Kalai [5] gave an example showing that
for all sufficiently large d the answer to Problem B is negative (see [1] for further
discussion and [2] for the latest results). Problem B is formulated in terms of
diameter of a set as a characteristic of its size. One can reformulate Problem B in
terms of radius of a set

r(A) := inf{r | ∃x : A ⊂ B(x, r)}.
Problem Br. Is it true that every set of radius one in Rd can be partitioned

into d+ 1 sets of radius smaller than one?
Problem Br is equivalent to the question: Does equality N(d,X) = d+1 hold?

In the case of the Hilbert space ℓd2 it is a classical problem of discrete geometry.
It is well known that in this case N(d,X) = d+ 1. This result is a sort of folklore
result in discrete geometry. The author learnt it from Misha Gromov in 1997 at
the conference Foundations of Computational Mathematics held in Brazil.

We proved in [8] that if X is a uniformly smooth Banach space then
N(d,X) = d + 1. Thus, contrary to Problem B its analog Problem Br has a
positive answer in a very general situation. With this result in hands we discuss
the problem: How small ǫ can be for the relation Nǫ(B) = d+1 to hold? The left

inequality in Proposition 1 gives the lower bound for such ǫ: ǫ ≥ 1 − ln(d+1)
d . It

is known in discrete geometry (see, for instance, [6]) that for the Hilbert space ℓd2
we have ǫ ≤ 1 − Cd−2. In [8] we give a very simple analytic construction of such
a cover.

Simple explicit analytic constructions of coverings are important in applications.
We explain in [8] how explicit constructions of coverings with radius close to 1 can
be used for building coverings with arbitrarily small radius. Keeping in mind
importance of simple analytic constructions we present in [8] a construction based
on Hadamard matrices. We discuss in detail Hadamard matrices because their
application provides a simple construction with a nice property of the vectors of
the corresponding ǫ-net: they have the same absolute values of all coordinates.
This construction also provides an upper bound ǫ ≤ 1 − Cd−2 for those d for
which the Hadamard matrices exist.
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Thus, we show in [8] that the best known upper bound ǫ ≤ 1−Cd−2 follows from

two different constructions. In both constructions we use a system D := {gj}d+1
j=1 of

vectors and build a covering of B2 in the form ∪d+1
j=1B

o
2(ag

j , r) with an appropriate

r. In [8] we apply this idea with D being an incoherent dictionary for covering in
the Hilbert space ℓd2. We prove the following bound in [8]. For r = (1 − µ2)1/2,
µ ∈ [(2d)−1/2, 1/2], we have

(4) Nr(B2) ≤ 2 exp(C1dµ
2 ln(2/µ)).

Bound (4) is based on known results on the maximal size of incoherent dictionaries
(see [7], section 5.7).

In [8] we use incoherent dictionaries in a smooth Banach spaceX to build a good
covering for BX . We prove in [8] a new result on the maximal size of incoherent
dictionaries in Banach spaces. Then we use it to obtain an upper bound onNr(BX)
(see (5) below). Let ρ(u) denote the modulus of smoothness of X and a(µ) be a
solution (actually, it is a unique solution) to the equation

aµ = 4ρ(2a).

We prove the following bound in [8]. For r = 1− 1
2µa(µ), µ ≤ 1/2, we have

(5) Nr(BX) ≤ 2max(C2d, exp(C2dµ
2 ln(2/µ))).

It is interesting to note that in the case X := ℓdp, p ∈ [2,∞), we have 1 − r =
1
2µa(µ) ≍ µ2 as in the case X = ℓd2.

In [8] we consider several specific examples of X and make a conclusion that
the technique based on extremal incoherent dictionaries works well and provides
either optimal or close to optimal bounds in the sense of order of lnNǫ(BX).
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Recent results on (t, e, s)-sequences

Shu Tezuka

Recently [1], a notion of (t, e, s)-sequences in base b was introduced, where
e = (e1, ..., es) is a positive integer vector, and their discrepancy bounds were
obtained based on the signed splitting method. In this extended abstract, we
present the latest results on (t, e, s)-sequences.

First, we introduce the definition of discrepancy. For a point set PN = {X0, X1,
. . . , XN−1} of N points in [0, 1]s and an interval J ⊆ [0, 1]s, we define AN (J) as
the number of n, 0 ≤ n ≤ N − 1, with Xn ∈ J and µ(J) is the volume of J . Then
the star discrepancy of PN is defined by

D∗
N = sup

J

∣∣∣∣
AN (J)

N
− µ(J)

∣∣∣∣ ,

where the supremum is taken over all intervals J of the form
∏s
i=1[0, αi) for 0 <

αi ≤ 1. The (unanchored) discrepancy DN is obtained when the supremum is
taken over all intervals J of the form

∏s
i=1[αi, βi) for 0 ≤ αi < βi ≤ 1.

Let b ≥ 2 be an integer. An elementary interval in base b, which is a key concept
of the net theory, is an interval of the form

E(l; a) =

s∏

i=1

[
ai
bli
,
ai + 1

bli

)
,

where ai and li are integers with 0 ≤ ai < bli and li ≥ 0 for i = 1, ..., s. Denote
a subset of nonnegative integer vectors by E ⊆ Ns0, where card(E) = ∞. Define a
set of elementary intervals as follows:

E(E) =
⋃

l∈E
E(l),

where
E(l) = {E(l; a)| 0 ≤ ai < bli , (1 ≤ i ≤ s)}.

Define |l| = l1 + · · ·+ ls for a nonnegative integer vector l = (l1, ..., ls). Denote
a set of nonnegative integers by N(E) = {|l| | l = (l1, ..., ls) ∈ E}. We first give the
definition of (t,m, E , s)-nets as follows:
Definition 1. Let t and m be integers with 0 ≤ t ≤ m such that m− t ∈ N(E). A
(t,m, E , s)-net in base b is a point set of bm points in [0, 1]s such that Abm(E) = bt

for every elementary interval E ∈ E(E) with µ(E) = bt−m.

Let TE be a mapping from N(E) to N0, where 0 ≤ TE(m) ≤ m for m ∈
N(E), such that there are infinitely many m satisfying m−TE (m) ∈ N(E). Then
(TE , E , s)-sequences are defined as follows:

Definition 2. A (TE , E , s)-sequence in base b is an infinite sequence, X = (Xn)n≥0,
of points in [0, 1]s such that for all integers k ≥ 0 and all m ≥ TE(m) sat-
isfying m − TE(m) ∈ N(E), the point set {[Xkbm ]b,m, ..., [X(k+1)bm−1]b,m} is a
(TE(m),m, E , s)-net, where [Xn]b,m means the coordinate-wise b-ary m-digit trun-
cation of a point Xn.



2896 Oberwolfach Report 49/2013

It is easy to obtain the following propositions.

Proposition 1. When E = Ns0, a (TE , E , s)-sequence in base b is identical to a
(T, s)-sequence in base b.

Proposition 2. Let e = (e1, ..., es) be a positive integer vector. When the mapping
TE is constant, i.e., TE ≡ t, and E = {l | ei divides li (1 ≤ i ≤ s)}, then a
(TE , E , s)-sequence in base b is identical to a (t, e, s)-sequence in base b.

The main result [2] is given as follows:

Theorem 1. Let b ≥ 2 be an arbitrary integer. The star discrepancy for the first
N > bt points of a (t, e, s)-sequence in base b is bounded as follows:

ND∗
N ≤ bt

s!

s∏

i=1

(
bei − 1

2ei
(logbN − t) + s

)

+
bt+es |e|

2

s−1∏

i=1

(⌊bei/2⌋
ei

(logbN − t) + ⌊bei/2⌋
)

+
s−1∑

k=0

bt+ek+1

k!

k∏

i=1

(⌊bei/2⌋
ei

(logbN − t) + k

)
.

Thus, we arrive at the leading constant for (t, e, s)-sequences in base b as follows:

c∗s(new) =
bt

s!

s∏

i=1

bei − 1

2ei log b
.

In comparison with the previous constant

c∗s =
bt

s!

s∏

i=1

⌊bei/2⌋
ei log b

,

the new constant yields improvement for the case of even bases.
The leading constant currently known as the best for (t, s)-sequences in base

b, which was recently obtained by Faure and Kritzer based on an improvement of
the double recursion method, is given as

c∗s(t, s) =





b2

2(b2 − 1)
bt

s!

(
b− 1
2 log b

)s
if b is even,

1
2
bt

s!

(
b − 1
2 log b

)s
otherwise.

Since (t, s)-sequences in base b are equivalent to (t, e, s)-sequences in base b with
e = (1, ..., 1), we can compare the above constants to conclude that the new
constant is slightly bigger than c∗s(t, s) by a factor smaller than 2. In the most
practical case of b = 2, the factor is 1.5 for the new constant, while it is 1.5× 2s

for the previous constant. Therefore, our improvement is significant in particular
for large dimensions s.



Uniform Distribution Theory and Applications 2897

References

[1] S. Tezuka, On the discrepancy of generalized Niederreiter sequences, Journal of Complexity,
29 (2013), 240-247.

[2] S. Tezuka, Improvement on the discrepancy of (t, e, s)-sequences, preprint, (2013).

Limit Theorems for Discrepancy Functions

Robert Tichy

We consider sequences (nkx) where x is a real number and (nk) a lacunary
sequences of positive integers, i.e. nk+1/nk ≥ q > 1. It is the aim of this lecture
to explore, how the distribution properties of such deterministic sequences differ
from the ones of ”true” random sequences. Let DN denote the usual discrepancy
function defined by

DN(x) = DN (nkx) = sup
J

∣∣∣∣
1

N
6= {k ≤ N : nkx mod 1 ∈ J}− | J |

∣∣∣∣ ,

where the sup is extended over all intervals of length | J | contained in the unit
interval [0, 1). By a general theorem of R. Baker, for arbitrary increasing (nk) the
bound (ε > 0)

DN (x) = O(
(logN)3/2+ε

N
)

holds for almost all x ∈ R (in the sense of usual Lebesgue measure). For
lacunary sequences (nk) a much sharper result due to W. Philipp (1975) is

(1) C2 ≤ lim sup
N→∞

NDN(x)√
N log logN

≤ C1

for almost all x. In the present lecture we report on recent developments in
metric discrepancy theory, most of the results are contained in joint papers of C.
Aistleitner, I. Berkes and R.F. Tichy.

We are mainly interested in computing the lim sup if possible and distinguish
three case where in each of the cases the results are quite different. If

lim
k→∞

nk+1

nk
= ∞

(”strong lacunarity”) the sequence of random variables DN(x) behaves like a sum
of i.i.d randomvariables, i.e. a ”strong” law of the iterated logarithm holds

(2) lim sup
N→∞

NDN (x)√
N log logN

=
1

2
a.e.

And even more holds in this case: the result is permutation invariant as in the
i.i.d. case, i.e. it is also true for sequences (nσ(k)x), where σ is a permutation
of the positive integers. In the case when the growth rate of (nk) is exponential
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(”proper lacunarity”) there is an old example of Erdős and Fortet, nk = 2k − 1
where no LIL (law of the iterated logarithm) holds. Recently, Fukuyama computed
the corresponding values

∑
a of the lim sup for sequences nk = ak (a an integer

≥ 2):

∑

a





√
42/9 for a = 2√
(a+1)a(a−2)

2
√

(a−3)3
for a ≥ 4 even

√
a+1

2
√
a−1

for a ≥ 3 odd

In the sublacunary case in general a LIL does not hold. However, in special
situations a LIL is still true. For instance, an Erdős gap condition

(3)
nk + 1

nk
≥ 1 + k−α, (0 > α < 1)

is sufficient for a non-permutation invariant LIL. For α = 1
2 it becomes false

as shown by Berkes and Philipp. The permutation, invariant law does not hold
even if (3) is satisfied: For any positive sequence εk → 0 there exists (nk) with
nk+1/nk ≥ 1 + εk and a permutation σ : N → N such that the LIL fails. In
the case of the sublacunary Hardy-Littlewood-Polya sequence a LIL of type (1)
remains true. These sequences nk are the numbers (in increasing oder) of the
multiplicative semigroup which is generated by coprime integers q1, . . . , qt (t ≥ 2).
It should be remarked that similar results also hold for weighted sums

(4)
1

A(N)

N∑

k=1

akf(nkx), A(N) =

N∑

k=1

ak

where f satisfies a Lipschitz condition. For trigonometric functions f(x) this is
classical work of Salem and Zygmund (1947) who showed a central limit theorem
and a LIL in this case. If (nk) satisfies

nk+1

nk
→ ∞ a permutation invariant central

limit theorem and a permutation invariant LIL hold.

The proofs of all mentioned results depend a combinations of probabilistic tools
(martingale inequalities) and methods from diophantine analysis such as the fol-
lowing result: For any fixed integers a 6= 0, b 6= 0, c the number of solutions of the
diophantine equation ank + bnl = c is bounded by a constant K(a, b) independent
of c, where for c = 0 also k 6= l is required. If this general bound for the number of
solutions is satisfied, permutation invariant limit laws hold for discrepancies and
Lipschitz functions (4).
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Well-separated spherical designs

Maryna Viazovska

(joint work with Andriy Bondarenko, Danylo Radchenko)

In this talk we will discuss the interrelation between several classical optimiza-
tion problems on spheres Sd such as minimal equal-weight quadratures (spherical
designs), best packing problems, and minimal energy problems. For d = 1, a reg-
ular polygon is an optimal configuration for all of these problems. However, for
d ≥ 2 exact solutions are known in very few cases. Even asymptotically optimal
configurations are sometimes very hard to obtain (see for example Smale’s 7th
Problem [13]).

In this talk we will prove the existence of certain configurations in Sd which are
spherical t-designs with asymptotically minimal number of points and that simul-
taneously have asymptotically the best separation property. These configurations
also provide approximate solutions for several other optimization problems.

Let Sd =
{
x ∈ Rd+1 : |x| = 1

}
be the unit sphere in Rd+1 equipped with the

Lebesgue measure µd normalized by µd(S
d) = 1. A set of points x1, . . . , xN ∈ Sd

is called a spherical t-design if

∫

Sd

P (x) dµd(x) =
1

N

N∑

i=1

P (xi)

for all polynomials in d + 1 variables, of total degree at most t. The concept of
a spherical design was introduced by Delsarte, Goethals, and Seidel [8]. For each
d, t ∈ N denote by N(d, t) the minimal number of points in a spherical t-design in
Sd. The following lower bound

(1) N(d, t) ≥





(
d+ k

d

)
+

(
d+ k − 1

d

)
if t = 2k,

2

(
d+ k

d

)
if t = 2k + 1,

is proved in [8] (see also the classical monograph [7]). On the other hand, it follows
from the general result by Seymour and Zaslavsky [12] that spherical designs exist
for all positive integers d and t. The method of proof used in [12] was not con-
structive and the authors did not indicate an upper bound for N(d, t) in terms of

d and t. First feasible upper bounds were given by Wagner [14] (N(d, t) ≤ Cdt
Cd4)

and Bajnok [2] (N(d, t) ≤ Cdt
Cd3). Korevaar and Meyers [10] have improved these

inequalities by showing that N(d, t) ≤ Cdt
(d2+d)/2. They have also conjectured

that N(d, t) ≤ Cdt
d. Note that (1) implies N(d, t) ≥ cdt

d. Here and in what
follows we use the notations Cd, Ld, etc. (cd, λd, etc.) for sufficiently large (small)
constants depending only on d.

Korevaar and Meyers were motivated by the following problem coming from
potential theory: How to choose N equally charged points x1, . . . , xN in S2 to
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minimize the value

Ur(x1, . . . , xN ) := sup
|x|=r

∣∣∣∣∣
1

N

N∑

i=1

1

|x− xi|
− 1

∣∣∣∣∣ , r ∈ (0, 1)?

The classical Faraday cage phenomenon states that any stable charge distribution
on the compact closed surface cancels the electric field inside the surface. Ac-
cording to this model the minimal value of Ur should rapidly decay to 0, when N
grows.

It was shown in [10] that if the set of points x1, . . . , xN is a spherical t-design
for some t > cN1/2 then

Ur(x1, . . . , xN ) ≤ rαN
1/2

.

The estimate is optimal up to the constant in the power.
Recently we have suggested a nonconstructive approach to obtain an optimal

asymptotic bound for N(d, t) based on the application of the topological degree
theory; see [4, 5]. We have proved the following

Theorem 1. For each N ≥ Cdt
d there exists a spherical t-design in Sd consisting

of N points.

This implies the Korevaar-Meyers conjecture.
Now we will give the definition of a well-separated sequence of configurations.

A sequence of N -point configurations XN = {x1N , . . . , xNN} in Sd is called well-
separated if

(2) min
1≤i<j≤N

|xiN − xjN | ≥ λdN
−1/d

for some constant λd and all N ≥ 2. The inequality (2) is optimal up to the
constant λd. That is, there exists a constant Ld such that for any N -point config-
uration {x1, . . . , xN}

min
1≤i<j≤N

|xi − xj | < LdN
−1/d.

Many authors have predicted the existence of well-separated spherical t-designs in
Sd of asymptotically minimal cardinality O(td) as t → ∞ (see, e.g. [1] and [9]).
Moreover, in [9] it was shown that if such spherical designs exist then they have
asymptotically minimal Riesz s-energy. In our recent paper [3] we prove the exis-
tence of above mentioned spherical designs. Namely, we show the following:

Theorem 2. For each d ≥ 2 there exist positive constants Cd and λd depending
only on d such that for each t ∈ N and each N > Cdt

d there exists a spherical
t-design in Sd consisting of N points {xi}Ni=1 with |xi − xj | ≥ λdN

−1/d for i 6= j.
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Tractability of approximation of ∞-variate functions with bounded
mixed partial derivatives

Grzegorz W. Wasilkowski

There are many practical problems dealing with ∞-variate functions. These in-
volve stochastic differential equations, partial differential equations with random
coefficients, and path integrals, see, e.g., [1, 2, 4, 5] and papers cited therein. This
is why the study of complexity and tractability of such problems has become a
popular field of study. In this talk, that is based on [7], we assume that the space
F of functions f to be approximated admits the unique representation

f(x) =
∑

u

fu(x),

where u enumerate the finite subsets of N+ listing the so-called active variables
upon which fu depends. More precisely, each fu belongs to a normed space Fu that
is a |u|-fold tensor product of a space F of univariate functions. Previous work
on this topic assumed that F is a Hilbert space, with Fu being Hilbert spaces
obtained via the usual tensor product. In this paper, we let Fu be Banach spaces
of functions with mixed partial derivatives of order r bounded in a ψ-weighted Lp
norm for some p ∈ [1,∞]. The space F is endowed with the norm

‖f‖F =

[∑

u

(‖fu‖Fu

γu

)q ]1/q
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for q ∈ [1,∞] and a given family γ = {γu}u of non-negative numbers, called
weights. The goal is to approximate f ∈ F with the error measured in a ω-
weighted Ls-norm for some s ∈ [1,∞]. Both ψ and ω are probability density
functions.

The role of weights γu has been explained in many papers; roughly speaking,
they quantify the importance of interactions among variables listed in u. Previous
work has only considered the case q = 2, resulting in F also being a Hilbert space.
In this talk, we consider arbitrary q to study the tradeoff between the size of q and
the rate of the decay of the weights γ. In particular, we show that with q = 1, we
have positive results even if γu converges to zero very slowly. On the other hand,
we need quickly-converging γu for q = ∞. For more, see a short discussion at the
end.

The role of ψ is to control the resulting space F , since the faster the decay of ψ
at ±∞ the larger the space F . More precisely, the spaces Fu are completions of |u|-
times (algebraic) tensor products of the following space F of univariate functions.
The domain of functions f from F is an arbitrary interval D ⊆ R and f (r−1) are
absolutely (locally) continuous with bounded

[ ∫

D

∣∣∣f (r)(x)
∣∣∣
p

ψ(x) dx

]1/p
< ∞.

We present the so-called multivariate decomposition methods (or MDM for
short). These are modifications of methods introduced in [5], changing dimen-
sion algorithms. Roughly speaking, these methods identify a set of important
variable interactions U(ε) with the following desirable properties:

(i): the cardinality of U(ε) is polynomial in 1/ε,
(ii): elements fu for u /∈ U(ε) can be neglected,
(iii): it is enough to approximate fu for u ∈ U(ε),
(iv): the number |u| of active variables is sub-logarithmic in 1/ε for all u ∈

U(ε).

In other words, an MDM replaces one problem with∞-many variables by a number
of problems, each with at most O(ln(1/ε)/ ln(ln(1/ε))) variables, which is very
small.

In general, the terms fu in f =
∑

u
fu are not available. Hence, to take ad-

vantage of (iii) and (iv), the space F has to be such that values of fu could be
obtained by evaluating f at certain points. Moreover, we need efficient algorithms
for multivariate problems with relatively small number |u| of variables. When the
Fu are Hilbert spaces, Smolyak’s construction provides such algorithms, see [6] for
the idea and [8] for specific results. Such algorithms are often called sparse grid
algorithms.

Fortunately, due to a very special nature of the spaces Fu and Gu = Ls(D
|u|),

it follows from [3] that Smolyak’s construction and the results of [8] can be applied
to the setting of this talk.

Among a number of results, we have the following one. Suppose that the uni-
variate functions f ∈ F have D = [0, 1] as the domain and vanish at 0, with the
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norm in F given by

‖f‖F =

[ r−1∑

ℓ=1

|f (ℓ)(0)|p + ‖f (r)‖pLp([0,1])

]1/p
.

Here the regularity degree r is a positive integer. We measure the errors by Ls-
norms for some s ∈ [1,∞]. Suppose that the weights have the special product
order-dependent form

γu = (|u|!)α ·
∏

j∈u

c

jβ
for β > max(0, α).

If β > 1 − 1/q = 1/q∗ then the minimal cost of approximating the ∞-variate
functions with errors not exceeding ε · ‖f‖F is bounded from above by

(1) O
(
ε−θ−δ

)
for all δ > 0,

where

θ = max

(
1

r +min(1/s− 1/p, 0)
,

1

β − 1/q∗

)
.

It is well-known that the complexity is proportional to ε−1/(r+min(1/s−1/p,0)) for
the univariate problem. Hence the result given above is optimal as far as the order
of convergence is concerned. Also the dependence of θ on β and q is sharp. Note
that if q = 1, then we only need β > max(0, α). Since 1− 1/q increases with q, we
require the stronger condition β > 1− 1/q for q > 1. In particular, we need β > 1
if q = ∞. Hence there is a tradeoff between β and q.

As it is well-known, algorithms for approximation in the Ls-norm with s = 1 can
be used to derive cubatures for approximating∞-variate integrals. The worst case
errors of such cubatures are bounded by the errors of the L1-norm approximation
problem. Hence, for the function spaces considered in this paper, these cubatures
provide ε approximation with the cost bounded as in (1), where now

θ = max

(
1

r
,

1

β − 1/q∗

)
.

Again, this is a nearly optimal result, since the complexity of the corresponding
univariate problem is O

(
ε−1/r

)
, and the dependence on 1/(β − 1/q∗) is sharp.
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On lower bounds for integration of multivariate permutation-invariant
functions

Markus Weimar

The talk is based on the recent paper [5]. We consider the integration problem

Intd : Ed,α → C, Intd(f) =

∫

[0,1]d
f(x) dx,

for periodic, complex-valued functions in the Korobov class

Ed,α :=

{
f ∈ L1([0, 1]

d) ‖f Ed,α‖ := sup
k∈Zd

∣∣∣f̂(k)
∣∣∣
(
k1 · . . . · kd

)α
<∞

}

where d ∈ N and α > 1. Here km := max {1, |km|} and f̂(k) denotes the kth
Fourier coefficient of f .

To approximate Intd(f), d ∈ N, without loss of generality, we consider algo-
rithms from the class of all linear cubature rules

AN,d(f) :=

N∑

n=1

wn f
(
t(n)
)
, N ∈ N0,

that use at most N values of the input function f at some points t(n) ∈ [0, 1]d,
n = 1 . . . , N . The weights wn can be arbitrary complex numbers.

In [3] Sloan and Woźniakowski showed that for every d ∈ N the N th minimal
worst case error,

e(N, d; Intd, Ed,α) := inf
AN,d

sup
‖f Ed,α‖≤1

|Intd(f)−AN,d(f)| ,

equals the initial error e(0, d; Intd, Ed,α) = 1 provided that N < 2d. In other
words, the integration problem on the full spaces (Ed,α)d∈N suffers from the curse
of dimensionality, since for every fixed ε ∈ (0, 1) its information complexity grows
exponentially with the dimension d:

n(ε, d) := n(ε, d; Intd, Ed,α) := min {N ∈ N0 e(N, d; Intd, Ed,α) ≤ ε} ≥ 2d.

We generalize this result to the case of permutation-invariant subspaces in the
sense of [4]. To this end, for d ∈ N let Id ⊆ {1, . . . , d} be some subset of coordinates
and consider the integration problem restricted to the subspace SId(Ed,α) of all
Id-permutation-invariant functions f ∈ Ed,α. That is, in dimension d we restrict
ourselves to functions f that satisfy

f(x) = f(σ(x)) for all x ∈ [0, 1]d
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and any permutation σ from
{
σ : {1, . . . , d} → {1, . . . , d} σ bijective and σ

∣∣
{1,...,d}\Id = id

}
.

Observe that in the case Id = ∅ we clearly have SId(Ed,α) = Ed,α.
We prove the following

Theorem 1. Let

N∗ := N∗(d, Id) := (#Id + 1) · 2d−#Id , d ∈ N.

Then, for every N < N∗,

e(N, d; Intd,SId(Ed,α)) = 1

and

e(N∗, d; Intd,SId(Ed,α)) ≤
(
1 +

ζ(α)

2α−1

)d
− 1

for all d ∈ N and α > 1. Consequently,

lim
α→∞

e(N∗, d; Intd,SId(Ed,α)) = 0

for all d ∈ N.

Remember that a problem is called polynomially tractable if its information
complexity n(ε, d) is bounded from above by some polynomial in d and ε−1, i.e.,

n(ε, d) ≤ C ε−p dq for some C, p > 0, q ≥ 0 and all ε ∈ (0, 1], d ∈ N.

If the last inequality remains valid even for q = 0 then we say that the problem is
strongly polynomially tractable.

Consequently Theorem 1 implies that the integration problem for permutation-
invariant functions in the above sense can never be strongly polynomially tractable,
independent of the size of the sets Id which describes the number of imposed
permutation-invariance conditions. The question under which conditions polyno-
mial tractability holds is posed as an open problem. Apart from that implica-
tions for other types of tractability (such as weak, (s, t)-weak, and uniform weak
tractability) are presented. For details and further information we refer to [1, 2, 5].
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A survey on recursive nonlinear pseudorandom number generators

Arne Winterhof

Let p be a prime, r a positive integer, q = pr and denote by Fq the finite field
of q elements. Given a polynomial f(X) ∈ Fq[X ] of degree d ≥ 2, we define the
recursive nonlinear pseudorandom number generator (µn) of elements of Fq by the
recurrence relation

(1) µn+1 = f(µn), n = 0, 1, . . . ,

with some initial value µ0 ∈ Fq. This sequence is eventually periodic with some
period T ≤ q. We assume that the sequence (µn) is purely periodic.

In this survey we mention recent results on different features of these sequences
in view of possible applications for Monte Carlo methods or cryptography.

In [15, 17, 20], a method has been presented to study the additive character
sums

Sa,N(f) =

N−1∑

n=0

χ



s−1∑

j=0

αjµn+j


 , 1 ≤ N ≤ T,

and thus the distribution of such sequences for arbitrary polynomials f(X) where
χ is a nontrivial additive character of Fq and a = (α0, . . . , αs−1) ∈ F

s
q \ 0, see also

the recent surveys [19, 20, 22]. More precisely, under some necessary restrictions,
say gcd(d, p) = 1, we can prove:

(2) Sa,N (f) ≪ N

(
log

2q

N

)1/2

(log d)1/2/(log q)1/2, 1 ≤ N ≤ T.

Unfortunately, the general bound (2) is only nontrivial if d = qo(1). In two
special cases, nonlinear generators with small p-weight degree [10] and inversive
generators, see [14] and references therein, the method in the proof of (2) leads
to stronger bounds. For other special classes of polynomials, namely for monomi-
als and Dickson polynomials, an alternative approach, producing much stronger
bounds has been proposed in [1, 5, 6, 7]. Related results for sequences produced
by Rédei functions are obtained in [9].

We derive from the sequence (µn) defined by (1) a nonlinear method for pseu-
dorandom number generation defined as follows. Let {β1, . . . , βr} be an ordered
basis of Fq over Fp and identify Fp with the set of integers {0, 1, . . . , p− 1}. If

µn = un,1β1 + . . .+ un,rβr, with un,i ∈ Fp,

then we derive digital nonlinear pseudorandom numbers in the unit interval [0, 1)

by putting yn =
r∑
j=1

un,jp
−j .

The discrepancy is a measure for the deviation from uniform distribution and
thus suitability for Monte Carlo methods. Suitable general discrepancy bounds
reduce the discrepancy of the points yn = (yn, yn+1, . . . , yn+s−1), n = 0, . . . , N−1,
of consecutive digital nonlinear pseudorandom numbers to the additive character
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sums mentioned above, see for example the bound of [12, Theorem 3.12] or for
r = 1 the Erdős-Turán-Koksma inequality, see [4, Theorem 1.21].

For N ≥ 1 and a sequence (µn) over Fq, its N th linear complexity L(µn, N)
over Fq is the smallest integer L such that there exist α0, . . . , αL−1 ∈ Fq such that

µn+L = αL−1µn+L−1 + . . .+ α0µn for 0 ≤ n < N − L,

with the conventions that L(µn, N) = 0 if µ0 = · · · = µN−1 = 0 and L(µn, N) =
N if µ0 = · · · = µN−2 = 0 but µN−1 6= 0. Its linear complexity is L(µn) =
supN≥1 L(µn, N). Note that for a T -periodic sequence we have L(µn) ≤ T . The
linear complexity is a measure for the unpredictability and thus suitability in
cryptography. For recent surveys on linear complexity and related measures see
[13, 21].

For the sequence (µn) defined in (1) we know the general lower bound

L(µn, N) ≥ min{log(N − logN/ log d), logT }
log d

, N ≥ 1,

of [8, Theorem 4]. Specially tailored results have been proved for the following gen-
erators, see [22] and references therein: the inversive generator, power generator,
Dickson generator and Rédei generator.

Whereas linear complexity comes from cryptography, a closely related concept
called lattice test has its origin in the area of Monte Carlo methods. The following
lattice test was introduced in [18]. Let (µn), n = 0, 1, . . ., be a T -periodic sequence
over Fq. For given integers s ≥ 1, 0 ≤ d0 < d1 < . . . < ds−1 < T , and N ≥ 2, we
say that (µn) passes the s-dimensional N -lattice test with lags d0, . . . , ds−1 if the
vectors {~un − ~u0 : 0 ≤ n ≤ N − 1} span Fsq, where

~un = (µn+d0 , µn+d1 , . . . , µn+ds−1), 0 ≤ n ≤ N − 1.

In the case di = i for 0 ≤ i < s, this test coincides essentially with the lattice test
introduced in [2]. The latter lattice test is closely related to the concept of the
linear complexity profile, see [2, 3, 16]. If additionally N ≥ T , this special lattice
test was proposed by Marsaglia [11].

If ds−1 is small, the same methods as for estimating the linear complexity
profile apply. However, for arbitrary lags little is known [18]. The only good
bounds known are for a modification of the inversive generator introduced in [14]
and further analyzed in [18].
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Well distributed points on the sphere – What do you want?

Robert S. Womersley

Consider the problem of generating a set XN = {x1, . . . ,xN} of N well dis-
tributed points on the unit sphere Sd ⊂ Rd+1 for numerical integration or approx-
imation. The geometric quality can be measured by the separation δ(XN ) (which
is twice the packing radius) and the mesh norm ρ(XN ) (or covering radius) defined
by

δ(XN ) = min
i6=j

d(xi,xj),

ρ(XN ) = max
x∈Sd

min
j=1,...,N

d(x,xj),

where d(x,y) can be either the geodesic distance cos−1(x · y) or the Euclidean
distance |x−y|. The separation affects aspects related to stability, while the mesh
norm affects the quality of the approximation or numerical integration rule. The
mesh ratio

γ(XN ) =
ρ(XN )

δ(XN )
≥ 1

2

combine these. Many applications and results assume that a sequence of point
sets is quasi-uniform, that is γ(XN ) is uniformly bounded, with good separation

δ(XN ) ≥ c
sep
d N−1/d and good covering ρ(XN ) ≤ ccovd N−1/d.

Spherical t-designs are equal weight numerical integration rules that are exact
for all spherical polynomials of degree at most t. Spherical designs were introduced
by Delsarte, Goethals and Seidel [10], who gave lower bounds N∗(t, d) on the
number of points N required for a spherical t-design. Yudin [21] improved these
lower bounds. The existence of spherical t-designs for N sufficiently large has
been known for some time (see, for example, the survey Bannai and Bannai [1]
and [8]). However only recently Bondarenko, Radchenko and Viazovska [3] have
shown that spherical t-designs exist for all N ≥ cdt

d. It is the spherical t-designs
with N = O(td) that are the most interesting and useful.

Yudin [20] has shown that spherical t-designs have a covering radius that is
bounded by c̄dt

−1. Thus spherical t-designs with N = O(td) have good covering.
On the other hand it is well known that two spherical t designs are still a spherical
t-design, so spherical t-designs with N = O(td) points can have arbitrarily bad
separation. Bondarenko, Radchenko and Viazovska [4] have recently also shown
that there exist spherical t-designs with N = O(td) points and good separation.

Grabner and Sloan in an earlier talk at this workshop have shown that if
N/N∗(t, d) < 2 then the design must have good separation. Examples of com-
puted spherical t-designs for S2 and t ≤ 180 and symmetric spherical t-designs for
t ≤ 250, both with γ(XN ) ≤ 1 and N/N∗(t, 2) < 2 (however the difference goes to
0 like 1/t) are available from the author.
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A standard measure of the uniformity of a point set XN on the unit sphere is
the spherical cap discrepancy

DC(XN ) = sup
C

∣∣∣∣
#(XN ∩ C)

N
− |C|

|Sd|

∣∣∣∣ ,

where the supremum is taken over all spherical caps. Grabner and Tichy [12]
give Erdös-Turan style upper bounds on the spherical cap discrepancy, and for
spherical t-designs with N = O(td) points show that DC(XN ) ≤ O(N−1/d). For
the computed spherical designs these bounds give DC(XN ) ≤ N−1/2, while the

lower bound on the spherical cap discrepancy is N
1
2− 1

2d , which for d = 2 is N−3/4.
If the L2 norm of the discrepancy is used, then the discrepancy can be related
to the (generalised) sum of distances using Stolarsky’s invariance principle, as
discussed in the talk by Brauchart at this workshop and [6, 7].

The Cui and Freeden discrepancy [9] has a simple closed form representation and

can be interpreted as the worst case error for the Sobolev space H
3
2 (S2) [19]. The

concept of QMC designs as sequences of point sets which have the optimal order
O(N−s/d) of convergence of the worst case error for the Sobolev space Hs(Sd),
was introduced in [7]. For a particular sequence of point sets, the supremum of
the values of s > d/2 for which it is a QMC design is referred to as the design
strength. This gives another criterion associated with the order of convergence of
the error for numerical integration for measuring the quality of sequences of point
sets. Spherical t-designs with N = O(td) provide QMC designs for all s > d/2.

Another desirable property is good (minimal) Riesz s-energy, which for s > 0
is defined by

Es(XN ) =

N∑

i=1

N∑

j=1

j 6=i

1

|xi − xj |s
.

For s > d, minimal energy points are asymptotically uniformly distributed [13]
and have good separation for quite general manifolds. The limit as s → ∞ gives
best packing. Moreover there exist quasi-uniform minimal energy point sets [14].
For 0 < s < d, the leading term in the asymptotic expansion of the Riesz energy is
determined by the continuous integral and the quality of the point set is determined
by the coefficient of the next term in the expansion.

Recently Erdélyi and Saff [11] considered the dual concept of polarisation where
point sets are chosen to maximize

M s(XN ) = min
x∈Sd

N∑

j=1

1

|x− xj |s
.

In the limit as s→ ∞ such point sets give the best covering.
All these criteria, and many others, can be use to choose well-distributed points

sets on the sphere Sd. The interesting aspect is that for d > 1 they give different
point sets (except for a few special cases [8]), while for d = 1 equally spaced points
on the circle are optimal for many criteria.



Uniform Distribution Theory and Applications 2911

In some cases combinations of characteristics may be satisfied, for example
quasi-uniform spherical designs or minimal energy points. For all these optimiza-
tion criteria, it is difficult to find global optimizers, as the problems typically have
many local optimum, often very close together. Ideally points which are fast to
generate, such as the generalized spiral points [17, 2, 15] or equal area points [17],
or transformations of low discrepancy point sets [5] could be used. However many
of these schemes are specific to S2, which is the primary area of interest for appli-
cations. Just which point set is best really depends on your particular application.

References

[1] E. Bannai, E. Bannai, A survey on spherical designs and algebraic combinatorics on spheres,
European J. Comb. 30 (2009) 1392–1425.

[2] R. Bauer, Distribution of points on a sphere with application to star catalogs, J. Guid.
Control 23, 1 (2000) 130–137.

[3] A. Bondarenko, D. Radchenko, M. Viazovska, Optimal asymptotic bounds for spherical
designs, Annal. Math. 178 (2013) 443–452.

[4] A. Bondarenko, D. Radchenko, M. Viazovska, Well separated spherical designs,
arXiv:1303.5991 [math.MG] July 2013.

[5] J.S. Brauchart, J. Dick, Quasi-Monte Carlo rules for numerical integration over the unit
sphere S2, Numer. Math. 121 (2012) 473–502.

[6] J.S. Brauchart, J. Dick, A characterization of Sobolev spaces on the sphere and an extension
of Stolarsky’s invariance principle to arbitrary smoothness, Constr. Approx. (to appear).

[7] J.S. Brauchart, E.B. Saff, I.H. Sloan, R.S. Womersley, QMC designs: optimal order Quasi
Monte Carlo integration schemes on the sphere, Math. Comp. (to appear).

[8] H. Cohn, A. Kumar, Universally optimal distribution of points on spheres, J. Amer. Math.
Soc. 20 (2007) 99–148.

[9] J. Cui, W. Freeden, Equidistribution on the sphere, SIAM J. Sci. Comput. 18, 2 (1997)
595–609.

[10] P. Delsarte, J.M. Goethals, J.J. Seidel, Spherical codes and designs, Geom. Dedicata 6
(1977), 363–388.
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