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Introduction by the Organisers

The Arbeitsgemeinschaft Sofic Entropy was organized by Lewis Bowen (Austin)
and David Kerr (College Station) and held from October 6 to 11, 2013. There were
more than 40 participants, a large proportion of which were graduate students and
postdocs. Many participants came with expertise in closely related subjects like
infinite group theory, operator algebras, and graph theory, while others represented
areas such as number theory and coarse geometry, making for a lively mixture of
backgrounds and interests. There was a total of 18 lectures, each one hour in
length.

The meeting aimed to address the main concepts and results in the theory
of sofic entropy as it has developed starting from the seminal work of Bowen
five years ago. The concept of entropy was introduced into ergodic theory by
Kolmogorov in the late 1950s with motivation from Shannon’s information theory.
An analogous theory of topological entropy was initiated by Adler, Konheim, and
McAndrew in the early 1960s, and the two entropies, measure and topological, are
related by a variational principle. These classical approaches to dynamical entropy
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involve averaging across partial orbits and thus are ultimately suited to actions of
amenable groups, for which much of the basic theory was developed by Ornstein
and Weiss. Ornstein and Weiss showed in particular that entropy is a complete
invariant for Bernoulli actions of a countably infinite amenable group, extending
a celebrated result of Ornstein for single Bernoulli shifts.

In the broader realm of sofic acting groups, Bowen showed that one could pro-
duce an entropy invariant by externalizing the averaging in the classical amenable
definition of entropy to a finite set on which the group acts in an approximate
sense, according to the definition of soficity. This led to an entropy classification
for Bernoulli actions of all countably infinite nontorsion sofic groups. A more
general definition of measure entropy and a corresponding notion of sofic topolog-
ical entropy were subsequently introduced by Kerr and Li, who also established a
variational principle relating the two. Sofic entropy has been applied for example
to the study of algebraic actions and questions surrounding the Fuglede-Kadison
determinant in group von Neumann algebras, and it has also inspired the devel-
opment of sofic dimension for groups and equivalence relations. These topics were
all covered in the lectures, as well as Gottschalk’s surjunctivity problem, the f -
invariant, sofic mean dimension, the computation of sofic entropy for algebraic
actions, combinatorial independence, Li-Yorke chaos, and entropy in the frame-
work of groupoids.
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Abstracts

Introduction to sofic groups

Andreas Thom

In this talk I gave an overview about the class of sofic groups. Most of the results
and open problems that I mentioned are explained in great detail in the excellent
survey by Vladimir Pestov [1].

References

[1] V. Pestov, Hyperlinear and sofic groups: a brief guide, Bull. Symbolic Logic 14 (2008),
449–480.

Entropy for single automorphisms

Martha  La̧cka

The talk was a refresher on classical entropy theory for actions of a single map.
We followed mainly the material contained in [3] and [1].

Definition 1. Given a group action G on X , we say that a pseudometric d on
X is dynamically generating if for two distinct points x and y in X there is an
element s in G such that d(sx, sy) > 0.

Let X be a compact Hausdorff space and let T : X → X be a homeomorphism.
Let d be a dynamically generating pseudometric on X (we assume that Z acts on
X in a usual way). Let dn denote the n-th Bowen pseudometric defined in the
following way:

dn(x, y) = max
0≤s≤n−1

d(sx, sy).

Definition 2. A subset E of the space X is (n, ε)-separated with respect to d if
for any two distinct points x and y in E the following holds: dn(x, y) ≥ ε.

Let s(n, ε) denote the maximal cardinality of a (n, ε)-separated subset of X .

Definition 3. The topological entropy of f is defined as

hs(f) := lim
ε→0

lim sup
n→∞

1

n
log s(n, ε).

Definition 4. The subset F of the space X is (n, ε)-spanning if for any point x
in X there is a point y in F such that dn(x, y) < ε.

Let r(n, ε) denote the minimal cardinality of a (n, ε)-spanning set. Let us put:

hr(T ) := lim
ε→0

lim sup
n→∞

1

n
log r(n, ε).
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Now, let U be an open cover of X and let:

Un :=

{

n−1
⋂

i=0

T−iUi | Ui ∈ U

}

.

Let N(U , n) denote the minimal cardinality of a subcover of Un. Let us define:

hc(T,U) := lim
n→∞

1

n
logN(U , n) and hc(T ) := sup

U
hc(U).

Theorem 5. For any T the values of hr(T ), hs(T ) and hc(T ) are equal. In partic-
ular, the topological entropy h(T ) does not depend on the choice of the dynamically
generating pseudometric d.

Let us list some properties of topological entropy:

(1) h(T ) ≥ 0, h(I) = 0, where I is an identity map;
(2) in the definition of h(T ) one can take the supremum over finite open covers;
(3) if Y is a closed subset of X and TY = Y , then h(T|Y ) ≤ h(T );
(4) h(Tm) = mh(T ).

Let us consider two examples:

(1) Let d be a pseudometric on {1, . . . , k}Z defined in the following way:

d({an}, {bn}) =

{

0 if a0 = b0,
1 if a0 6= b0

This pseudometric is dynamically generating for the shift map σ. Fix
ε < 1

2 . Then, the maximal cardinality of the (n, ε)-separated set with
respect to d is equal to the number of n-th cylinders and so: h(σ) =
lim
ε→0

lim
n→∞

1
n log kn = log k.

(2) The entropy of the hyperbolic toral automorphism A is given by h(A) =
log |λ1|, where λ1 is the eigenvalue of A with modulus greater than 1.

Now, let ξ = {A1, . . . , Ak} and η = {B1, . . . , Bp} be two finite and measureable
partitions of a Borel probability space (X,B, µ).

Definition 6. The measure entropy of ξ (denoted by H(ξ)) is equal to

−
k
∑

i=1

µ(Ai) logµ(Ai).

If ξ = {A1, . . . , Ak} then H(ξ) ≤ log k and H(ξ) = log k only when µ(Ai) = 1
k

for all i = 1, . . . , k.

Definition 7. Conditional entropy of ξ given η is the following:

H(ξ, η) = −
∑

i,j

µ(Ai ∩ Cj) log
µ(Ai ∩ Cj)

µ(Cj)
.
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Definition 8. Suppose T : X → X is a measure-preserving transformation of the
probability space (X,B,m). If A is a finite sub-σ-algebra of B then

h(T, ξ(A)) = h(T,A) = lim
n→∞

1

n
H(∨n−1

i=0 T
−iA)

is called the entropy of T with respect to A .

Definition 9. If T : X → X is a measure-preserving transformation of the proba-
bility space (X,B,m) then h(T ) = suph(T, ξ), where the supremum is taken over
all finite partitions of (X,B,m), is called the entropy of T .

Theorem 10. Let (X,B,m) be a probability space. If A, C,D are finite subalgebras
of B then:

(1) H(A|C) ≥ 0,
(2) if A ⊜ D then H(A|C) = H(D|C),
(3) if C ⊜ D then H(A|C) = H(A|D),
(4) H(A∨ C|D) = H(A|D) +H(C|A ∨ D),
(5) H(A∨ C) = H(A) +H(C|A),
(6) A ⊂ C implies that H(A|D) ≤ H(C|D) and H(A) ≤ H(C),
(7) C ⊂ D implies that H(A|C) ≥ H(A|D),
(8) H(A) ≥ H(A|D),
(9) H(A∨ C|D) ≤ H(A|D) +H(C|D),

(10) if T is measure-preserving then H(T−1A|T−1C) = H(A|C) and H(T−1A) =
H(A).

(11) if µi ∈M(X), 1 ≤ i ≤ n, and pi ≥ 0,
∑n

i=1 pi = 1 then

H∑
n

i=1
piµi

(ξ) ≥
n
∑

i=1

piHµi
(ξ)

for any finite partition ξ of (X,B(X)).

Theorem 11. Suppose A, C are finite subalgebras of B and T is a measure-
preserving transformation of the probability space (X,B,m). Then:

(1) h(T,A) ≥ H(A),
(2) h(T,A∨ C) ≤ h(T,A) + h(T, C),
(3) A ⊂ C implies that h(T,A) ≤ h(T, C),
(4) h(T,A) ≤ h(T, C) +H(A|C),
(5) h(T, T−1A) = h(T,A),

(6) if k ≥ 1, then h(T,A) = h(T,∨k−1
i=0 T

−iA),
(7) if T is invertible and k ≥ 1 then h(T,A) = h(T,∨k

i=−kT
iA),

(8) h(T ) ≥ 0, h(T ) could be infinite.

Let µ be a Borel probability T -invariant ergodic measure. For ε > 0, δ ∈ (0, 1),
let us denote by NT (n, ε, δ) the minimal number of ε−balls in the dm-metric which
cover the set of measure more than or equal to 1 − δ. Katok proved the following
theorem:
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Theorem 12. For any δ ∈ (0, 1):

hµ(T ) = lim
ε→0

lim inf
n→∞

lnNT (n, ε, δ)

n
= lim

ε→0
lim sup
n→∞

lnNT (n, ε, δ)

n
.

The following theorem enables us to restrict our attention to generating parti-
tions.

Theorem 13 (Kolmogorov-Sinai). Let T be an invertible measure-preserving trans-
formation of the probability space (X,B, µ) and let A be a finite sub-algebra of B
such that ∨∞

n=−∞T
nA ⊜ B. Then h(T ) = h(T,A).

Using the above theorem we can prove that:

Theorem 14. The two-sided (p0, . . . , pk−1)-shift has entropy −
∑k−1

i=0 pi log pi.

The relation between topological entropy and measure-theoretic entropy is es-
tablished by the Variational Principle.

Theorem 15 (Variational Principle). Let T : X → X be a continuous map of a
compact metric space X. Then h(T ) = sup{hµ(T ) | µ ∈M(X,T )}.

References

[1] T. Downarowicz, Entropy in dynamical systems, Cambridge University Press (2011).
[2] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeo- morphisms, Publ.

Math. IHES 51 (1980), 137–173.
[3] P. Walters, An Introduction to Ergodic Theory, Springer Graduate Texts in Mathematics

(2000).

Factors of Bernoulli shifts

Brandon Seward

If G is a countable amenable group, then a well known property of entropy states
that if Gy (X,µ) factors onto G y (Y, ν), then G y (X,µ) has greater entropy
than Gy (Y, ν). In particular, since the Bernoulli shift Gy (nG, uGn ) has entropy
log(n), where un is the uniform probability measure on {1, 2, . . . , n}, it follows
that for a countable amenable group G the Bernoulli shift G y (nG, uGn ) cannot
factor onto Gy (kG, uGk ) if k > n. In 1987, Ornstein and Weiss [4] discovered the
seemingly bizarre fact that for the rank two free group F2, the Bernoulli shift F2 y

(2F2 , uF2

2 ) factors onto the larger Bernoulli shift F2 y (4F2 , uF2

4 ). This example
convinced many people that there could not exist an entropy theory for actions of
non-amenable groups. Many years later in 2005, Ball [1] greatly expanded upon
the Ornstein–Weiss example by proving that for every countable non-amenable
group G there is n ∈ N so that G y (nG, uGn ) factors onto G y ([0, 1]G, λG),
where λ is Lebesgue measure. In particular, it follows that G y (nG, uGn ) factors
onto all other Bernoulli shifts over G. Most recently, Bowen [2] improved upon the
Ornstein–Weiss example to prove that if G contains F2 as a subgroup then in fact
all Bernoulli shifts over G factor onto one-another. It is unknown whether this is
true for all countable non-amenable groups. Furthermore, from Bowen’s proof one
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can show that Ball’s theorem follows from the Gaboriau–Lyons theorem [3]. The
Gaboriau–Lyons theorem roughly says that for sufficiently large Bernoulli shifts
over a countable non-amenable group, it appears in a certain measurable sense
that the group contains F2 as a subgroup.

References
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Sofic topological entropy

Joav Orovitz

The goal of this lecture is to introduce a notion of topological entropy in the
setting of a sofic group acting on a compact metrizable space. We follow the
approach of [1] to define the numerical invariant

hΣ,p(ρ)

where Σ = {σi : G → Sni
}∞i=1 is a sofic approximation sequence of a sofic group

G, p ∈ {2,∞} and ρ is a dynamically generating, continuous pseudometric on
a compact, metrizable, topological X on which G acts by homeomorphisms. In
vague terms, this is done by fixing ε, δ > 0 and a finite set F ⊆ G and counting how
many ε-different (ρ, F, δ)-equivariant embeddings one can find of the sofic model
space {1, . . . , ni} into X . Then one takes the natural logarithm and normalizes by
the size of the model space and takes a suitable limit over the set of parameters.
A vastly oversimplified but effective way to think of this notion as a generalization
of classical topological entropy for actions of amenable groups is to think of each
such embedding of the model space as an approximate partial orbit of a single
point under a set coming from a Følner sequence.

To illustrate, consider the case where G = Z and σi is the natural action of
Z on Z/iZ which can be identified with the set {1, . . . , i}. Then an embedding
of {1, . . . , i} into X which is exactly equivariant with respect to group elements
coming from F = {0, . . . , i− 1} ⊆ G is precisely the partial orbit of a point x ∈ X
under the elements of F .

Of course sofic groups can be far more complicated, and even if G = Z the sofic
approximation sequence need not be so nice. It turns out however (as proved in
lecture 7) that if G is amenable then the sofic topological entropy coincides with
the classical topological entropy, regardless of the sofic approximation sequence
used. The main idea of the proof of this fact basically amounts to showing that
even though we can’t expect each (ρ, F, δ)-equivariant embedding to correspond
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to an approximate partial orbit of a point under a Følner set, it still admits an
approximate decomposition into such approximate partial orbits.

Next, it is shown that hΣ,p(ρ) does not depend on p or on ρ (though it can
apparently depend on Σ) and the common value is denoted hΣ(X,G). A new
phenomenon appears here that does not appear in the analogous proof in the
amenable case. This is that for two continuous pseudometrics ρ and ρ′ on X we
need both to be dynamically generating to show one inequality. This is because
we now have two (sets of) parameters instead of one. With (F, δ) we control to
what extent the embeddings of our model spaces resemble partial orbits and with
ε we control the scale at which we differentiate between these embeddings. We
need ρ′ to be dynamically generating if we want embeddings of a model space that
are increasingly ρ′-equivariant to eventually become approximately ρ-equivariant.
Whereas we need ρ to be dynamically generating if we want two embeddings that
are ρ-close to be ρ′-close. Both of these are needed in order to show the inequality

hΣ,2(ρ) ≤ hΣ,2(ρ′).

Suppose that a group G acts on a compact metrizable space X by homeomor-
phisms and that ρ, ρ′ are continuous pseudometrics onX such that ρ is dynamically
generating. Recall that if ρ′ is not dynamically generating then G acts naturally
on Y = X/ ∼ where ∼ is the equivalence relation on X defined by x ∼ y if
ρ′(gx, gy) = 0 for all g ∈ G. Since the action of G on Y is a factor of the action of
G on X , one might expect that h(ρ′) ≤ h(ρ) for any reasonable notion of entropy.
As the previous paragraph suggests, this is not the case for sofic entropy, and we
finish by demonstrating this fact.

In lecture 3 it is shown that for G = F2 the shift action of G on the space
{0, 1}G factors onto the shift on {0, 1, 2, 3}G. We show that for any k ∈ N , for
any sofic group G, and for any sofic approximation sequence Σ, the action of G on
X = {0, . . . , k − 1}G has entropy hΣ(X,G) = log k. This is done by considering
the generating pseudometric ρ defined by

ρ(x, y) =

{

0, x(e) = y(e)

1, x(e) 6= y(e)
.

References

[1] D. Kerr and H. Li, Combinatorial independence and sofic entropy, To appear in Comm.
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Gottschalk’s surjunctivity conjecture

Martino Lupini

Suppose that Γ is a countable discrete group and A is a finite set. Denote by
AΓ the set of Γ-sequences of elements of A. The (left) Bernoulli shift of Γ with
alphabet A is the action of Γ on the set AΓ defined by

γ · (aρ)ρ∈Γ =
(

aγ−1ρ

)

ρ∈Γ
.
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A function f : AΓ → AΓ is Γ-equivariant if

f(γ · x) = γ · f(x)

for every x ∈ AΓ and γ ∈ Γ. The following notion has been introduced by
Gottschalk in [3]: a countable discrete group Γ is surjunctive if for every finite
set A every continuous injective equivariant function f : AΓ → AΓ is surjective.
The class of surjunctive groups is closed with respect to taking subgroups and
direct unions, see [8, Lemma 1.1 and Lemma 1.2]. To this day no example of a
group which is not surjunctive is known. The problem of determining whether
every group is surjunctive was suggested by Gottschalk in [3], and it is commonly
known as Gottschalk’s surjunctivity problem.

Gromov showed in [4] that the groups that will be later named sofic in [8] are
surjunctive. The attempt to find a common generalization of the known proof of
surjunctivity for amenable and residually finite groups was in fact one of the main
motivations for the introduction of the notion of sofic group in [4, 8]. Later an
alternative proof of surjunctivity for sofic groups was provided by Kerr and Li in
[6] by means of the notion of topological entropy for actions of a sofic group on
a compact Hausdorff space. More precisely they show that the Bernoulli shift of
Γ with alphabet A has entropy log |A| (with respect to any sofic approximation),
while any proper subshift has strictly smaller entropy [6, Theorem 4.12]. By the
conjugation invariance of entropy, this is enough to conclude that Γ is surjunctive.
The details of the proof can be found in the original paper [6] as well as in Section
II.11 of the survey [2].

The importance of Gottschalk’s surjunctivity problem, beside its intrinsic inter-
est, is due to its relation with another long-standing open problem in group theory
known as Kaplansky’s direct finiteness conjecture. Suppose that Γ is a countable
discrete group and K is a field. The group algebra KΓ is the algebra over K
of formal finite linear combinations of elements of Γ with coefficients in K, with
pointwise sum and convolution product. The algebra KΓ is directly finite if every
left invertible element is also right invertible or, equivalently, ba = 1 whenever
a,b are elements of KΓ such that ab = 1. It is a well known fact that the com-
plex group algebra CΓ is directly finite (this can be proved using von Neumann
algebras techniques, see for example [1, Theorem 2.1]). It has been conjectured
by Kaplansky in [5] that the group algebra KΓ is directly finite for every field
K. This is in fact equivalent to the assertion that KΓ is directly finite for every
finite field K (this follows from the observation that every field embeds into an
ultraproduct of finite fields, cf. [7, Observation 2.1]). The latter reformulation in
turn allows one to deduce that every surjunctive group satisfies Kaplansky’s direct
finiteness conjecture. In fact if Γ is a finite field one can consider the Bernoulli
shift Γ y KΓ with alphabet K, where the Bernoulli space contains a canonical
copy of the group algebra KΓ. The right Bernoulli shift KΓ x Γ defined by

(aρ)ρ∈Γ · γ = (aργ)ρ∈Γ

lifts by linearity to an action of KΓ on KΓ extending the multiplication in KΓ
and commuting with the left Bernoulli shift. It is not hard to check now that if a
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a right invertible element of KΓ, then the continuous equivariant function

x 7→ x · a

is injective. By surjunctivity of Γ such a function must be surjective, which readily
implies that a is also left invertible, concluding the proof that KΓ is directly finite.
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Sofic measure entropy

Jianchao Wu

The main goal of the talk was to introduce sofic measure entropy. The concept,
a surprising generalization of the Kolmogorov-Sinai entropy for amenable groups,
was first invented by Bowen [1]. Later Kerr and Li [3] removed a generator as-
sumption in Bowen’s definition by reformulating it with the language of operator
algebras, and linked sofic measure entropy with sofic topological entropy by proving
the variational principal. Earlier this year, Kerr [2] gave an elementary definition
in the spirit of Kolmogorov-Sinai and Bowen. By working with two finite parti-
tions playing different roles, he was able to do without any choice of generators,
and as a byproduct, obtain an analogue of the Kolmogorov-Sinai theorem. It is
this third definition that we focused on for the talk.

The limitation of the Kolmogorov-Sinai entropy lies in its reliance on a Følner
sequence in order to compute the average rate at which the entropy increases as a
finite partition is refined by joining more and more of its shifts. The need for taking
the average is due to the “unequivariant” nature of the core of this definition,
namely the entropy formula for a finite partition. To go beyond amenable groups,
one needs to replace such a formula with something that has equivariance built
into it. For this purpose, we revisit how entropy arises in statistical mechanics.

Consider a large number d of independent finite-valued random variables with
the same distribution κ given by weights p1, · · · , pn (positive real numbers such
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that
∑n

i=1 pi = 1). Combined, they amount to a random variable with values in
Λ = {1, · · · , n}d. The law of large numbers tells us that, for any δ > 0,

Map(κ, δ, d) := {λ ∈ Λ |
n
∑

i=1

∣

∣

∣

∣

λ−1(i)

d
− pi

∣

∣

∣

∣

< δ},

the set of all outcomes that give δ-good numerical approximations of the proba-
bility distribution (p1, · · · , pn), has probability tending to 1 as d → ∞. On the
other hand, when one counts the cardinality of this set, one finds:

Proposition. Let Hκ denote the entropy for the probability distribution κ. Then

inf
δ>0

lim
d→∞

1

d
log |Map(κ, δ, d)| = Hκ.

The proof is a simple estimation argument that employs the multinomial expan-
sion formula and Stirling’s approximation formula.

Now let G be a discrete group acting on a probability measure space (X,B, µ)
by measure-preserving transformations. Since the last proposition relates the en-
tropy for a finite partition to counting the number of maps that satisfy a certain
approximation condition, a natural way to weave the group action into it is simply
to impose a certain kind of equivariance condition on the maps to be counted.
This idea was first applied by Bowen to the case where G is an (infinite) residually
finite group and (X,G) has a generating finite partition α, whereby fixing a de-
creasing sequence of finite-index subgroups Gi < G that tend to the trivial group,
one puts di = |G/Gi| and, for any finite F ⊂ G, αF := ∨g∈F g ·α, and then counts
the cardinality of Map(αF , δ, G/Gi)F , comprised of maps (λ : G/Gi → αF ) ∈
Map(αF , δ, di) that are equivariant in the sense that g · λ−1(A) = λ−1(g · A) for

all g ∈ F and A ∈ α. Then inf
δ>0

lim sup
i→∞

1

di
log |Map(αF , δ, G/Gi)F | gives a suitable

notion of “average rate of entropy” for αF , and taking the infimum over all finite
F ⊂ G yields the entropy of the dynamical system.

For sofic groups, one simply relaxes the equivariance condition to a condition
of almost equivariance. From this point on, G denotes a sofic group with a (fixed)
sofic approximation Σ = {σi : G → Sym(di)}∞i=1 such that di → ∞ as i → ∞.
For any finite partition α of X , any finite F ⊂ G and any δ > 0, we define the set
Mapµ(α, F, δ, σi) to be made up of maps λ : {1, · · · , di} → αF such that

(1)
∑

A∈αF

∣

∣

∣

∣

λ−1(A)

di
− µ(A)

∣

∣

∣

∣

< δ and

(2)
∑

A∈α

∣

∣

(

σi(g) · λ−1(A)
)

△
(

λ−1(g · A)
) ∣

∣

di
< δ for all g ∈ F.

Note that in [2], the set Homµ(α, F, δ, σi), made up of homomorphisms between
the Boolean algebras of αF and {1, · · · , di}, is used instead, which, by Stone
duality, is equivalent to our presentation.
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How does the size of Mapµ(α, F, δ, σi) change with the variables? It is immediate
from the definition that it decreases if one enlarges F or decreases δ. But it is
not clear how it changes if one refines α, because on the one hand, αF , the range
of the maps, enlarges, while on the other hand, the conditions for the maps are
more strict. Indeed it can go both ways, and this suggests we cannot simply take
supremum or infimum over all finite partitions to obtain the correct entropy.

The novel idea in [2] is that one should use two finite partitions, one controlling
the range of the maps, and the other implementing the approximation restrictions
(1) and (2). More precisely, one takes a pair of finite partitions (ξ, α), with α a
refinement of ξ, and then defines an equivalence relation ∼ξ on Mapµ(α, F, δ, σ)

by identifying λ, λ′ : {1, · · · , di} → αF iff λ−1(A) = λ′−1(A) for any A ∈ ξF ,
i.e. they are indistinguishable as maps {1, · · · , di} → ξF . Then the cardinality of
Mapµ(α, F, δ, σ)/ ∼ξ increases if one refines ξ but decreases if one refines α.

Definition. Given a dynamical system (X,B, µ,G), the sofic measure entropy
hΣ,µ(X,G) with respect to the sofic approximation Σ is defined as

(3) hΣ,µ(X,G) := sup
ξ

inf
α,F,δ

lim sup
i→∞

1

di
log
∣

∣Mapµ(α, F, δ, σ)/ ∼ξ

∣

∣

where ξ is taken over all finite partitions of X , α over all finite refinement of ξ, F
over all finite subsets of G, and δ over all positive numbers.

For a subalgebra S of the σ-algebra B, one may also define the entropy hΣ,µ(S, G)
by the same formula as above but with the extra requirement that ξ, α ⊂ S. This
allows us to formulate an analogue of Kolmogorov-Sinai theorem which is a pow-
erful tool for computations of entropy. Recall that S is generating for (X,B, µ,G)
if S together with all its shifts by elements of G generates B up to measure-zero
sets.

Theorem. If S is a generating subalgebra of B, then hΣ,µ(S, G) = hΣ,µ(X,G).

Please refer to [2] for a proof, which involves a back and forth argument, com-
mon when comparing two generating partitions. As an example, we consider the
computation of sofic entropy for a Bernoulli shift, where one can take S to consist
of all cylinder sets over e ∈ G, which is isomorphic to the σ-algebra of B, cf. the
succeeding talk “entropy of Bernoulli actions”.

Finally we remark that the use of two partitions ξ and α in the definition
accounts for and elucidates an important feature of the sofic entropy: it may in-
crease under taking factors of a dynamical system, unlike the case for Kolmogorov-
Sinai entropy. In the famous example given by Ornstein and Weiss [4], the
Bernoulli 2-shift (Z2

F2 ,P(Z2)⊗F2 , νF2 ,F2) factors onto the Bernoulli 4-shift ((Z2⊕
Z2)F2 ,P(Z2 ⊕ Z2)⊗F2 , (ν × ν)F2 ,F2) (cf. the preceding talk “factors of Bernoulli
shifts”). Thus the σ-algebra P(Z2 ⊕ Z2)⊗F2 embeds as a subalgebra of P(Z2)⊗F2

via taking preimages. Let ξ be a generating partition of P(Z2 ⊕ Z2)⊗F2 . If one
also requires α to be in this subalgebra, (3) yields the entropy of the 4-shift, log 4,
while if one allows α to run over all measurable finite partitions of the 2-shift,
the infimum in (3) makes the entropy decrease to log 2, the entropy of the 2-shift.
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Had we not distinguished ξ and α but naively tried to take a supremum (respec-

tively, infimum) of inf
F,δ

lim sup
i→∞

1

di
log
∣

∣Mapµ(α, F, δ, σ)
∣

∣ over all finite partitions α,

one would get, for this example, the unrevealing +∞ (respectively, 0), useless for
the classification of Bernoulli shifts.
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Comparing amenable and sofic entropy

Albrecht Brehm

Throughout, let G be a countable group endowed with the discrete topology and
X be a compact metrizable space. Assume that Gy X continuously.

In [2] Kerr and Li have proved that the sofic measure entropy and the sofic
topological entropy coincide with their classical counterparts. By applying both
variation principles, which we know to hold in the sofic and in the amenable
setting, we can transport the assertion from the world of measure entropies to the
world of topological entropies immediately. So it is enough to prove the assertion
in the measurable case. Nevertheless we direct our focus on the topological setup
because the technical part is less complicated than in the measurable setup and
the essential methods can be seen as well as in the measurable case.

Theorem ([2]). Let G be an amenable countable discrete group. Then the sofic
topological entropy of the group action above coincides with the amenable topolog-
ical entropy of this action. In particular in this case the sofic topological entropy
does not depend on the choice of the sofic approximation sequence.

The main tool in order to prove this theorem is the so-called Rokhlin lemma.

Theorem (Rokhlin lemma [2]). Let G be a countable discrete group. Let 0 ≤
τ < 1, and 0 < η < 1. Then there are an l ∈ N and η′, η′′, such that whenever
e ∈ F1 ⊆ F2 ⊆ . . . ⊆ Fl are finite subsets of G with |(F−1

k−1Fk) \ Fk| ≤ η′|Fk| for
k = 2, . . . , l, there exists a finite set F ⊆ G containing e such that for every d ∈ N,
every map σ : G → Sym(d) with a set B ⊆ {1, . . . , d} satisfying |B| ≥ (1 − η′′)d
and

σst(a) = σsσt(a), σs(a) 6= σs′(a)

for all a ∈ B and s, t, s′ ∈ F with s 6= s′, and any set V ⊆ {1, . . . , d} with
|V | ≥ (1 − τ)d, there exist C1, . . . , Cl ⊆ V such that
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(1) for every k = 1, . . . , l and c ∈ Ck the map s 7→ σs(c) from Fk to σ(Fk)c is
bijective,

(2) the sets σ(F1)C1, . . . , σ(Fl)Cl are pairwise disjoint and the family
⋃l

k=1{σ(Fk)c : c ∈ Ck} is η-disjoint and (1 − τ − η)-covers {1, . . . , d}.

For the definitions of the notions of δ-disjointness and δ-covering we refer to [2]
section 4. In the context above you can think of almost disjointness and almost
covering.

When G is amenable the Rokhlin lemma enables us to decompose the finite set
{1, . . . , d} for a good enough sofic approximation into partial orbits of Følner sets
of G in an approximate way. If we remember in the definitions of the pseudometrics

̺∞(ϕ, ψ) =
d

max
a=1

̺(ϕ(a), ψ(a))

and

̺F (x, y) = max
s∈F

(x, y) = max
s∈F

̺(sx, sy)

we can see that the restriction of an almost equivariant map on such an orbit of
{1, . . . , d} can be understood as an orbit of a Følner set in the topological space X .
By recalling the definitions of sofic topological entropy and the metric definition
of the classical topological entropy we obtain that the sofic topological entropy is
at most the amenable topological entropy.

For the converse direction it suffices to construct an ε′-separated subset of the
almost equivariant maps from a (̺F , ε)-separated subset of X for some Følner
set F . Therefore we want to construct almost equivariant maps with values in a
(̺F , ε)-separated subset of X . Let us remark that we have taken for simplification
only one set F but this is not precise. The construction is best done by taking
an almost decomposition of the set {1, . . . , d} into genuinely disjoint partial orbits
of Følner sets for a sufficiently good sofic approximation and defining a map on
the generators of these partial orbits. That the resulting map is well-defined is
guaranteed by the genuine disjointness of the partial orbits. This is the reason
why we have to use a slightly modified version of the Rokhlin lemma which holds
for an amenable group action and can be found in [2] Corollary 4.6. The map
which we obtain by this procedure can be arbitrarily continued on the remaining
part by adding a negligible error and we are done.
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Entropy of Bernoulli actions

Pavlo Mishchenko

Following [2], we present computations of the entropy of a Bernoulli action G y

(Y, ν)G, where G is a countable sofic group, (Y, ν) is a probability space. We show
that the sofic entropy of a Bernoulli action is equal to the Shannon entropy of the
base space (Y, ν). As a corollary we have that it does not depend on the sofic
approximation of G. The concept of sofic measure entropy was defined in Lecture
6, and we systematically use definitions from that lecture. Shannon entropy is
defined as follows: if there is a finite or countable set Y ′ ⊂ Y such that ν(Y ′) = 1
then

H(ν) = −
∑

y∈Y ′

ν({y}) log ν({y}),

otherwise, H(ν) = +∞. The proof of the statement follows the section 4 of the
paper [2]. We begin with establishing the following basic property of the sofic
entropy (Lemma 4.1. from [2]):

Let (X,µ) be a probability space and G y X a measure-preserving action. Let
ξ and α be finite measurable partitions of X satisfying α ≥ ξ. Then we have

(1) Hµ(ξ) ≥ hξΣ,µ(α) ≥ hαΣ,µ(α) −Hµ(α|ξ).

The proof of both inequalities is rather technical – roughly speaking, we apply
a combinatorial argument for counting the number of homomorphisms arising in
the definition of the sofic entropy. Then we use Stirling’s formula and continuity
property of H(·) to finish the proof. Next, the main result is established:

hΣ,νG(Y G, G) = H(ν).

We use the following property of the Shannon entropy: H(ν) is equal to the supre-
mum of Hν(α) over all measurable partitions α of Y . Define C to be the σ-algebra
consisting of those measurable subsets of Y G which are cylinder sets over e. Then
C is generating. In Lecture 6 it was shown that in this case sofic entropy of the
action is equal to hΣ,νG(C). The inequality hΣ,νG(C) ≤ H(ν) follows from (1).
Again, by (1) we see that it is sufficient to prove hαΣ,µ(α) ≥ HνG(α). The proof

of this result is essentially contained in [1]. We construct the family of homo-
morphisms ϕγ , parameterized by γ ∈ {1, ..., n}d, which automatically satisfies the
first condition on ϕ in the definition of sofic entropy (α = {A1, ..., An}, d stands
for the size of symmetric group to which G is mapped by some approximation
map). Then the measure κ on {1, ..., n} is defined by κ({i}) = νG(Ai), and we
view {1, ..., n}d as a probability space with the product measure κd. After this
definition we prove that the constructed homomorphisms satisfy the second con-
dition on ϕ with a high probability. We estimate their number using the law of
large numbers, establishing the desired inequality by definition of hΣ,νG(C).

One important corollary is: if H(ν) is infinite, then the action Gy (Y, ν)G has
no finite generating partition.
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Isomorphism of Bernoulli shifts

Ben Hayes

Let Γ be a countable discrete group. We know from [1] that if Γ is sofic, if
(X,µ), (Y, ν) are standard probability spaces, and the Bernoulli actions Γ y

(X,µ)Γ,Γ y (Y, ν)Γ are isomorphic, then the entropy of (X,µ) is the entropy
of (Y, ν). A natural question is if the converse is true: i.e. if (X,µ) and (Y, ν) have
equal entropy are the Bernoulli shifts Γ y (X,µ)Γ,Γ y (Y, ν)Γ isomorphic? We
do not need an invariant such as entropy to show that two actions are isomorphic,
so it is reasonable to ask whether the converse is true for any group Γ, or to what
extent it is true for arbitrary Γ. Therefore soficity will play no role in this talk.

Ornstein proved the converse for Γ = Z in 1970 in [3],[4]. Because of this we
shall make the following definition.

Definition. A countable discrete group Γ is said to be Ornstein if whenever
(X,µ), (Y, ν) are standard probability spaces with equal entropy, then the Bernoulli
shifts Γ y (X,µ)Γ,Γ y (Y, ν)Γ are isomorphic.

Ornstein’s Theorem was later generalized by Ornstein and Weiss in [5] to show
that every infinite amenable group is Ornstein. Essential to their proof is the
Rohklin Lemma. As the Rohklin Lemma is something very special to amenable
groups, it is not clear how to generalize their approach to larger classes of groups.

However, Stepin in [6] made the following observation: if Γ contains an Ornstein
subgroup, then Γ is Ornstein. This can be rephrased in modern language in terms
of coinduction.

If Λ ⊆ Γ are countable discrete groups, and Λ y (X,µ) is probability measure
preserving, we can define a new space

Y = {f : Γ → X : f(λg) = λ−1f(g), λ ∈ Λ, g ∈ Γ}.

Choosing coset representatives gives an isomorphism Y ∼= XΓ/Λ, and it is easy to
see that the pushforward of µΓ/Λ, denoted ν, does not depend on the choice of
coset representatives. Additionally Γ acts on (Y, ν) by measure-preserving trans-
formations by

(gf)(x) = f(g−1x).

We call Γ y (Y, ν) the coinduction of Λ y (X,µ). The coinduction of Λ y

(X,µ)Λ is Γ y (X,µ)Γ. However, it is important to realize that the proof of this
fact relies on two structures of a Bernoulli action: we use the subgroup structure of
Λ to construct such an isomorphism, but we need a system of coset representatives
in order to check that the isomorphism is actually measure preserving.
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Lewis Bowen in [2] showed that, ignoring two atom spaces, every group is
Ornstein. We state this precisely as follows.

Definition. A countable discrete group Γ is almost Ornstein if whenever (X,µ),
(Y, ν) are standard probability spaces neither of which is a two atom space, and
the entropy of (X,µ) is the entropy of (Y, ν) then Γ y (X,µ)Γ is isomorphic to
Γ y (Y, ν)Γ.

Then the theorem of Bowen is the following:

Theorem. Every countable discrete infinite group is almost Ornstein.

The proof follows the coinduction machinery as much as one can. First we
find a measure space (L, λ) which is a factor of both (X,µ), (Y, ν) and which does
not have zero entropy (for technical reasons, this is not always possible but it is
possible often enough to still prove the theorem). Using standard facts in orbit
equivalence, we can find an ergodic U in the full group of Γ y (L, λ)Γ this will be
our ersatz “subgroup” isomorphic to Z. Using the factor maps

(X,µ)Γ → (L, λ)Γ

(Y, ν)Γ → (L, λ)Γ

we will build actions of Z on (X,µ)Γ(Y, ν)Γ which are “Bernoulli relative to U”
(defined precisely in [2]). This will be the Bernoulli-type structure we need to copy
the proof of the coinduction of a Bernoulli shift is Bernoulli. We will apply a result
of Thouvenot in [7] to get an isomorphism of these spaces which respects the factor
U. From here, the proof gets more complicated as one needs to use disintegration
of measure and the fact that U is the full group of Γ to build an analogue of coset
representatives.
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The variational principle

Vadim Alekseev

The variational principle for continuous actions of a group Γ on a compact metriz-
able space X asserts that the topological entropy of such an action is equal to the
supremum of the measure entropies of invariant measures:

h(Γ y X) = sup
µ∈M(X)Γ

hµ(Γ y (X,µ)).

Intuitively, it means that some invariant measures might not quite detect topolog-
ical complexity of the dynamics, but if the measure is concentrated on the subsets
where the dynamics is sufficiently complicated, it can completely detect topological
complexity (measured in terms of entropy). The variational principle for actions
of Z was proved by Dinaburg [1, 2] and Goodman [3]. In the talk we presented
the variational principle for actions of sofic groups based on the exposition in [4],
but adapting the proof to the definitions of sofic entropy used in previous talks.
The inequality hµ(Γ y (X,µ)) 6 h(Γ y X) is quite straightforward, and the
strategy to prove equality is to construct measures with sufficiently large entropy.
In the case of integer actions this is done by starting with Dirac measures along a
piece of the orbit, moving them around and taking weak∗ limits, but in the sofic
case the technique is slightly different: one just picks measures which approxi-
mate equidistributed measures along models of the orbit used in the definition of
topological entropy out of an “almost dense” finite set in the space of probability
measures. The fact that counting these models gives topological entropy is used
to show that their measure entropy is large, and equidistribution along models
of the orbit yields that they are almost invariant. The weak∗ limit point of such
measures then necessarily approximates the topological entropy on a given scale.
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Entropy of principal algebraic actions

Bingbing Liang

The computation of entropy for principal algebraic actions in terms of periodic
points has been well-developed in the amenable case ([10], [9], [2], [3], [7], [8]),
and it is still true when passing to the sofic case ([1] [4]). Here one would use the
newest definition of sofic entropies in ([5], [6]) to compute the sofic entropy of a
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principal algebraic action by applying the variational principle for sofic actions in
[4] .

Let G be a countable residually finite group. Then G admits a sequence of finite
index normal subgroups {Gn}n∈N with lim supn→∞Gn = {e}. This sequence
induces a sofic approximation sequence by left translation:

∑

= {σn : G →
Sym(G/Gn)}n∈N. Denote by LG the left group von Neumann algebra of G. The
Fuglede-Kadison determinant of an invertible element f of LG is defined by

detLGf = exp trLGlog(f∗f)1/2,

where the canonical trace trLG on LG is given by trLGf =< fδe, δe >.
Given f ∈ ZG, the ZG module structure of ZG/ZGf induces an action of G

on the Pontryagin dual Xf := ̂ZG/ZGf = {x ∈ (R/Z)G : fx = 0}, which is
called a principal algebraic action. It admits a dynamically generating continuous
pseudometric ρ on Xf defined by

ρ(x, y) = θ(xe, ye), x, y ∈ (R/Z)G,

where θ(s+ Z, t+ Z) = minm∈Z|s− t−m|.
Denote by C∗(G) the full group C∗-algebra of G. Combining Theorem 7.3 in

[4] with Theorem 3.2 in [5], one has an approximation formula for the Fuglede-
Kadison determinant in terms of the fixed points of Gn in Xf .

Lemma. If f ∈ ZG is invertible in C∗(G), then

log detLGf = lim
n→∞

1

|G/Gn|
log|FixGn

(Xf )|.

Given a continuous sofic action of G on a compact metrizable space X , the sofic
version of the variational principle is as follows ([4], Theorem 6.1):

Theorem. Given a sofic action α : Gy X and a sofic approximation Σ = {σn :
G→ Sym(dn)}n∈N, then

hΣ(X,G) = sup
µ∈MG(X)

hΣ,µ(X,G).

With the help of the above two results, one can compute the sofic entropy of a
principal algebraic action ([4], Theorem 7.1).

Theorem. If f ∈ ZG is invertible in C∗(G), then

hΣ(Xf , G) = log detLGf.

Applying the above approximation formula and variational principle, it reduces
to showing the following two inequalities (using Definition 2.2 in [5] and Definition
3.2 in [6]):

1) hΣ,∞(Xf , G) ≥ limn→∞
1

|G/Gn|
log|FixGn

(Xf )|, where

hΣ,∞(X,G) = sup
ǫ>0

inf
F,δ

lim sup
n→∞

1

dn
Nǫ(Map(ρ, F, δ, σn), ρ∞),

Map(ρ, F, δ, σn) = {ϕ : {1, 2, . . . , dn} → X | ρ2(ϕσs, αsϕ) < δ, ∀s ∈ F};
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2) ∀ µ ∈MG(Xf ),

hΣ,µ,2(Xf , G) ≤ lim
n→∞

1

|G/Gn|
log|FixGn

(Xf )|,

where

hΣ,µ,2(X,G) = sup
ǫ>0

inf
F,L,δ

lim sup
n→∞

1

dn
Nǫ(Mapµ(ρ, F, L, δ, σn), ρ2),

Map
µ
(ρ,F, L, δ, σn) =

{ϕ : {1, 2, . . . , dn} → X| ρ2(ϕσs, αsϕ) < δ,∀s ∈ F and |ϕ∗ζ(g)− µ(g)| < δ,∀g ∈ L},

L ⊆ C(X) is a finite subset.
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Bernoulli shifts over free groups of finite rank and the f-invariant

Zoran Šunić

In the first section we present the definition, due to L. Bowen [1], of the f -invariant
of an action of a free group of finite rank on a probability space by measure
preserving transformations. In the second section we indicate how this invariant
was used by Bowen to provide a negative answer to the question of Ornstein and
Weiss [2], who asked if all Bernoulli shifts over a countable nonamenable group
are measurably conjugate. Implicit in Bowen’s work is a new characterization of
free groups of finite rank, which we bring to view in the last section.
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1. Definition of the f -invariant for free groups of finite rank

Let G = F (s1, . . . , sr) be a free group of rank r, r ≥ 1, acting on the probability
space (X,µ) by measure preserving transformations. A finite partition of X is
measurable if each member of the partition is measurable. Consider the space
Pg of all finite, measurable, generating partitions of X , up to measure 0 (two
partitions α and β are identified if for every A ∈ α there exists B ∈ β such that
µ(A△B) = 0, where A△B is the symmetric difference of A and B). A partition
α is generating if the smallest G-invariant σ-algebra containing α is, up to sets
of measure 0, the σ-algebra of measurable sets in X . The partition α refines the
partition β if for every A ∈ α there exists B ∈ β such that µ(A \ B) = 0. For
two partitions α and β let α∨ β be the smallest partition that refines both α and
β, i.e., α ∨ β = {A ∩ B | A ∈ α, B ∈ β} and, for any finite subset F ⊆ G, let
αF =

∨

f∈F fα. In particular, when F = Be(n) is the closed ball of radius n

centered at e in G, we write αn =
∨

g∈Be(n)
gα. For a partition α ∈ Pg, define

H(α) = −
∑

A∈α

µ(A) logµ(A),

F (α) = (1 − 2r)H(α) +

r
∑

i=1

H(α ∨ siα),

f(α) = inf
n≥0

F (αn).

Theorem 1.1 ([1]). If α and β are two finite, measurable, generating partitions
in Pg, then f(α) = f(β).

Therefore f(α) is a measure conjugacy invariant of the measure preserving
action G y (X,µ). We denote it by f(G,X, µ), and call it the f -invariant of the
triple (G,X, µ). Note that, when r = 1, f(G,X, µ) is the Kolmogorov entropy.

The proof of Theorem 1.1 is based on the following two statements

(1) f is constant on the subspace PEQ(α), and
(2) PEQ(α) is dense in Pg,

where PEQ(α) is the space of partitions that are combinatorially equivalent to α (β
is combinatorially equivalent to α if and only if there exists nonnegative integers m
and ℓ such that αm refines β and βℓ refines α), and the density is considered with
respect to the Rokhlin metric on Pg, given by d(α, β) = 2H(α∨β)−H(α)−H(β).

2. Bernoulli shifts over free groups of finite rank

Given an action of the free group G = F (s1, . . . , sr) of rank r, r ≥ 1, on
a standard probability space (Y, ν) by measure preserving transformations, an
action of G on the space (X,µ) = (Y G, νG) with product Borel structure by
measure preserving transformations is defined by g(xh) = xg−1h, for g, h ∈ G and

x ∈ Y G. The triple (G, Y G, νG) is called the Bernoulli shift over G with base
space (Y, ν).
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Theorem 2.1 ([1]). If the free group G of rank r acts on a finite probability space
(Y, ν) by measure preserving transformations, then the f -invariant of the Bernoulli
shift (G, Y G, νG) is equal to the entropy of the base space, i.e.

f(G, Y G, νG) = H(Y, ν) = −
∑

y∈Y

µ(y) logµ(y).

Sketch of the proof. Consider the finite, measurable, generating partition α =
{Ay | y ∈ Y } of X = Y G, where Ay = {x ∈ Y G | xe = y}, for y ∈ Y , is
the set of functions x : G → Y that have value y at the identity. Note that
H(α) = H(Y, ν). The Bernoulli independence condition implies that, for distinct
elements g1, . . . , gm ∈ G, H(

∨m
i=1 giα) =

∑m
i=1H(giα) = mH(α). Therefore, for

all n ≥ 0,

F (αn) = (1 − 2r)H(αn) +
1

2

∑

s∈S±

H(αk ∪ sαk) =

=

(

(1 − 2r)|Be(n)| +
1

2

∑

s∈S±

|Be(n) ∪Bs(n)|

)

H(α),

whereBe(n) and Bs(n) are the closed balls of radius n in G, centered at the identity
and at s, respectively, with respect to the generating set S = {s1, . . . , sr}. How-
ever, in the free groupG of rank r, the expression (1−2r)|Be(n)|+ 1

2

∑

s∈S± |Be(n)∪
Bs(n)| is equal to 1, for all n ≥ 0, and it follows that F (αn) = H(α) = H(Y, ν). �

As a corollary, Bowen obtains the following (negative) answer to the question of
Ornstein and Weiss [2] (note that the backward direction of this result was already
known and it is due to Stepin [3].)

Theorem 2.2 ([1]). Let (Y1, ν1) and (Y2, ν2) be standard probability spaces with
finite entropies and let the free group G of finite rank act on each by measure pre-
serving transformations. Then the Bernoulli shifts (G, Y G

1 , νG1 ) and (G, Y G
2 , νG2 )

are measurably conjugate if and only if the base entropies H(Y1, ν1) and H(Y2, ν2)
are equal.

3. Why not other groups?

Even though perfectly aware that the definition makes sense for actions of any
finitely generated group G = 〈s1, . . . , sr〉 with generating set of size r, Bowen was
careful to define the f -invariant only for actions of free groups. One reason is that
if G is infinite and not free over S = {s1, . . . , sr}, the f -invariant of the Bernoulli
shift (G, Y G, νG) is negative infinity, regardless of the action and, as long as ν is
not supported on a single point, regardless of the finite base space (Y, ν). This
claim follows immediately from the sketch of the proof of Theorem 2.1 and the
following observation (which characterizes free groups of rank r).
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Proposition 3.1. Let G be an infinite group, S = {s1, . . . , sr} ⊆ G and G =
〈s1, . . . , sr〉. The sequence {an}∞n=0, given by

an = (1 − 2r)|Be(n)| +
1

2

∑

s∈S±

|Be(n) ∪Bs(n)|

is bounded below if and only if G is free of rank r.

Proof. Assume that the sequence is bounded below by b. Then, for n ≥ 1,

b ≤ an = (1 − 2r)|Be(n)| +
1

2

∑

s∈S±

|Be(n) ∪Bs(n)| =

= |Be(n)| +
1

2

∑

s∈S±

(

|Be(n) ∪Bs(n)| − 2|Be(n)|
)

=

= γ(n) −
1

2

∑

s∈S±

|Be(n) ∩Bs(n)| =

= γ(n) −
1

2

∑

s∈S±

|Be(n− 1) ∪ (Se(n) ∩Bs(n))| =

= γ(n) − rγ(n− 1) −
1

2

∑

s∈S±

|Se(n) ∩Bs(n)| ≤

≤ γ(n) − rγ(n− 1) −
1

2
σ(n) =

=
1

2

(

γ(n) − (2r − 1)γ(n− 1)
)

,

where Se(n) is the sphere of radius n centered at the identity, γ(n) = |Be(n)| is
the size of the closed ball of radius n, and σ(n) = |Se(n)| is the size of the sphere
of radius n in G, with respect to the generating set S. Therefore, for n ≥ 1,

2b

γ(n− 1)
+ (2r − 1) ≤

γ(n)

γ(n− 1)
,

and by passing to the limit (note that γ(n− 1) is unbounded, since G is infinite)

lim
n→∞

γ(n)

γ(n− 1)
≥ 2r − 1.

This shows that the growth exponent of G is 2r−1 and, for a group with generating
set of size r, this is only possible for the free group of rank r. �
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Markov chains over free groups

Phu Chung

Let G = 〈s1, ..., sr〉 be the free group on r generators. Let α be an action of G on
a probability space (X,B, µ) by measure preserving transformations. For P ∈ B
and a sub-σ-algebra F ⊂ B, let E(P |F) be the conditional expectation of the
characteristic function χP of P with respect to F . For a measurable partition P
of X , the entropy of P conditioned on F is

H(P|F) :=

∫

X

− log(E(Px|F))dµ(x),

where Px is the atom of P containing x. We define

F (α,P|F) := (1 − 2r)Hµ(P|F) +

r
∑

i=1

Hµ(P ∨ s−1
i P|F ∨ s−1

i F),

f(α,P) := inf
n∈N

F (α,
∨

s∈B(e,n)

s−1P|
∨

s∈B(e,n)

s−1F),

where B(e, n) is the ball of radius n centered at the identity element.
A partition P is called a generating partition if the smallest G-invariant σ-

algebra containing P equals B up to sets of measure zero. Then

Theorem. [1] Let α be an action of G on a probability space (X,B, µ) by measure
preserving transformations. If P and Q are generating partitions with H(P) +
H(Q) < ∞ and F ⊂ B is any α-invariant σ-algebra then f(α,P|F) = f(α,Q|F)
and this common quantity is called the relative f -invariant with respect to F of
the action.

Definition. Let P and Q be partitions. We say that Q is a coarsening of P if for
every atom P ∈ P there exists an atom Q ∈ Q such that µ(P \Q) = 0.

Now we investigate Markov processes of systems. Put S = {s1, ..., sr, s
−1
1 , ..., s−1

r }.
The left Cayley graph GL is defined as follows. Its vertex set is G and for every
g ∈ G and s ∈ S there is a directed edge from g to sg, there are no other edges.

A G-process is a quadruple (G,X, µ,P), where P is a partition of X .

Definition. For all g1, g2 ∈ G we denote by Past(g1; g2) ⊂ G the set of all g ∈ G
such that every path in the left Cayley graph GL from g to g1 passes through g2.

Definition. A G-process (G,X, µ,P) is a Markov process if for every s ∈ S, g ∈ G
and every P ∈ P ,

E
(

(sg)−1P |
∨

f∈Past(sg;g)

f−1P
)

(x) = E
(

(sg)−1P |g−1P
)

(x),

for µ-almost every x ∈ X .

Then we can calculate explicitly the relative f -invariant if the process is Markov.
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Theorem. If (G,X, µ,P) is a Markov process and Q is a coarsening of P then
f(P|QG) = F (P|QG) where QG is the smallest G-invariant σ-algebra containing
Q.

The standard examples of Markov processes are from transition matrices and
symbolic dynamics.

Definition. Let K be a finite or countable infinite set. An invariant transition
system for (G,S) is a collection of K ×K matrices {P s}s∈S and a 1 ×K vector
π satisfying

(1) 0 ≤ P s
ij ≤ 1 for all i, j, s;

(2) For each i, s,
∑

j∈K P s
ij = 1;

(3) πP s = π for all s ∈ S;

(4) For all s ∈ S, i, j ∈ K,πiP
s−1

ij = πjP
s
ji.

Definition. For any measure µ and any Borel sets A,B ⊂ X with µ(B) > 0

define µ(A|B) = µ(A∩B)
µ(B) .

The canonical action α of G on KG is defined by αgx(f) = x(fg) for all x ∈
KG, f, g ∈ G. For each k ∈ K, let Ak = {y ∈ KG : y(e) = k} then P = {Ak|k ∈
K} is the canonical partition of KG.

Let ({P s}s∈S , π) be an invariant transition system and µ be the probability
measure on KG satisfying

(1) for all k ∈ K,µ(Ak) = πk;
(2) let g ∈ G and s ∈ S be such that |sg| = |g|+1. Let f1, ..., fn ∈ Past(sg; g)\

{g}. Then for any k, k0, ..., kn ∈ K,

µ
(

(sg)−1Ak|g
−1Ak0

∩
n
⋂

i=1

f−1
i Aki

)

= µ
(

(sg)−1Ak|g
−1Ak0

)

= P s
k0,k.

Then the process (α,KG, µ,P) induced by an invariant transition system
({P s}s∈S , π) is Markov and its f -invariant is

(2r − 1)
∑

i∈K

πi log(πi) −
∑

s∈S+

∑

i,j∈K

πiP
s
ij log(πiP

s
ij),

where S+ = {s1, ..., sr}.
Three examples of Markov chains over free groups, one related to Wired Span-

ning Forest, to perfect matchings, and the last one with negative f -invariant are
illustrated.
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Combinatorial independence and sofic entropy

Dominik Kwietniak

The main aim of this lecture was to explain how positive topological entropy can
be characterized in terms of combinatorial independence via a positive density
condition.

Inspired by results of the local theory of entropy (see [1]) Kerr and Li developed
in [2, 3] a general theory of independence in dynamics of actions of amenable
groups. Their study revealed a deep connection between independence, entropy
and weak mixing. Emerging theory of entropy of sofic group actions motivates the
question of the meaning of independence in this broader context. Kerr and Li in [4]
extended the notion of independence to the framework of actions of sofic groups.
They define Σ-IE-tuples for a continuous actionGy X of a countable discrete sofic
group G on a compact Hausdorff space X and a fixed sofic approximation net Σ =
{σi : G → Sym(di)}. To achieve this they externalize the positive independence
density condition, which is easy to define in the amenable case, to the finite sets
{1, . . . , di} which are targets of sofic approximation maps Σi. Such defined Σ-
IE-tuples have similar properties to IE-tuples for actions of discrete countable
amenable groups defined in [2]. In particular, the topological entropy hΣ(X,G) of
(X,G) with respect to Σ is positive if and only if there is a nondiagonal IE-pair.
Moreover, in the amenable case, Σ-IE-tuples are the same thing as IE-tuples.

Below we only sketch some results of Kerr and Li. Note also that we are not
able to introduce and explain all the notation we use. For the proofs and details
we refer the reader to [4].

1. Orbit IE-tuples

Let G be a discrete group. Assume that Gy X is a continuous G-action on a
compact Hausdorff space X . One can define a notion of independence in this very
general setting.

Definition 1.1. A set F ⊆ G is an independence set for a k-tuple A = (A1, . . . , Ak)
of subsets of X (that is, Aj ⊆ X for j = 1, . . . , k) if for every finite set J ⊆ F and
every function ω : J → {1, . . . , k} we have

⋂

s∈J

s−1Aω(s) 6= ∅.

We denote the family of all independence sets of a tuple A = (A1, . . . , Ak) by
Ind(A).

Definition 1.2. The independence density of A = (A1, . . . , Ak) (over G) is the
number

sup{q ≥ 0 : for any finite F ⊆ G there is J ⊆ F s.t. J ∈ Ind(A) and |J | ≥ q|F |}.

Definition 1.3. We say that a k-tuple x = (x1, . . . , xk) ∈ Xk is an orbit IE-tuple
(of length k) if for every basic open neighborhood U1 × . . . × Uk of x in Xk the
k-tuple U = (U1, . . . , Uk) has positive independence density. We write IEk(X,G)
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to denote the set of orbit IE-tuples of length k, and we call elements of IE2(X,G)
orbit IE-pairs.

Remark 1.4. Let X and Y be nonempty sets. Throughout this note we will
often identify ((x1, . . . , xk), (y1, . . . , yk)) ∈ Xk × Y k with ((x1, y1), . . . , (xk, yk)) ∈
(X × Y )k.

Theorem 1.5 (Theorem 3.3. of [4]). Let k ∈ N. If G acts continuously on
compact Hausdorff spaces X and Y , then IEk(X×Y,G) = IEk(X,G)× IEk(Y,G),
with the equality understood as in Remark 1.4.

2. Sofic IE-tuples

From now on G denotes a countable discrete sofic group and Σ = {σi : G →
Sym(di)} is a sofic approximation net indexed by some set I. Let G y X be a
continuous action on a compact Hausdorff space X equipped with a continuous
dynamically generating pseudometric ρ.

Definition 2.1. Let F ⊆ G be a nonempty finite set, δ > 0, d ∈ N, and let
σ : G→ {1, . . . , d} be a function. A set J ⊂ {1, . . . , d} is a (ρ, F, δ, σ)-independence
set for a tuple A = (A1, . . . , Ak) if every function ω : J → {1, . . . , k} there is
φ ∈ Map(ρ, F, δ, σ) such that φ(a) ∈ Aω(a) for every a ∈ J .

Definition 2.2. Let F be a free filter on I. We say that a k-tuple A = (A1, . . . , Ak)
has positive upper independence density over Σ (with respect to F) if there exists
a q > 0 such that for every nonempty finite set F ⊆ G and δ > 0 we can find a
cofinal set I ′ ⊆ I (a set I ′ ∈ F) for which the following holds: for every i ∈ I ′

there exists a set Ji ⊂ {1, . . . , di} which is a (ρ, F, δ, σ)-independence set for A

with |Ji| ≥ qdi.

Remark 2.3. The above definition does not depend on the choice of pseudometric.

Remark 2.4. Definition 2.2 has two variants: a weaker one in which we demand
that I ′ be a cofinal subset of I, and a stronger one in which cofinality is replaced by
a requirement that I ′ is a member of a fixed free ultrafilter F on I. These notions
have similar properties, but in order to have a product formula like in Theorem
1.5 we need the stronger one. Both variants may be used to define Σ-IE-tuples
below.

Definition 2.5. We say that a k-tuple x = (x1, . . . , xk) ∈ Xk is a Σ-IE-tuple
if for every basic open neighborhood U1 × . . . × Uk of x in Xk the k-tuple U =
(U1, . . . , Uk) has positive upper independence density over Σ. We write IEΣ

k (X,G)
to denote the set of Σ-IE-tuples in Xk, and we call elements of IE2(X,G) Σ-IE-
pairs.

One defines an approximation net Σu for G and calls Σu-IE-tuples the sofic
IE-tuples. It turns out that if x ∈ Xk is a Σ-IE-tuple for some Σ, then X is also
a sofic IE-tuple, and every sofic IE-tuple is also an orbit IE-tuple. Moreover, all
these notions coincide with IE-tuples provided G is amenable.
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Remark 2.6. We define Σ-IE-tuples, orbit IE-tuples and sofic IE-tuples of sets
in the same way as for points.

3. Basic properties of IE-tuples

Theorem 3.1. Let k ∈ N. Assume we are given continuous actions G y X and
Gy Y of a countable discrete sofic group G on compact Hausdorff spaces X and
Y . Let Σ be a sofic approximation net for G and k ∈ N. Then the following are
true:

(1) hΣ(X,G) ≥ 0 if and only if X as 1-tuple has positive upper independence
density over Σ.

(2) If A = (A1, . . . , Ak) is a tuple of closed subsets of X with positive upper
independence density over Σ, then there exists a Σ-IE-tuple (x1, . . . , xk)
with xj ∈ Aj for j = 1, . . . , k.

(3) IEΣ
1 (X,G) 6= ∅ if and only if hΣ(X,G) ≥ 0.

(4) IEΣ
2 (X,G)\∆2(X) 6= ∅ if and only if hΣ(X,G) > 0, where ∆2(X) denotes

the diagonal in X2.
(5) IEΣ

k (X,G) is a closed subset of Xk which is invariant under the product
action.

(6) If π : (X,G) → (Y,G) is a factor map, then (π × . . . × π)(IEΣ
k (X,G)) ⊂

IEΣ
k (Y,G).

(7) If Z is a closed G-invariant subset of X, then IEΣ
k (Z,G) ⊂ IEΣ

k (X,G).
(8) IEk(X × Y,G) ⊆ IEk(X,G) × IEk(Y,G), with the identification described

in Remark 1.4.
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Entropy, Li-Yorke chaos and distality

Jeremias Epperlein

In this talk we presented a proof by David Kerr and Hanfeng Li from [5], showing
that positive topological entropy implies Li-Yorke chaos for the action of a sofic
group on a compact metric space.

Let G be a discrete sofic group with sofic approximation sequence Σ acting con-
tinuously on a compact metric space (X, ρ). One way to investigate the dynamics
of this action is to look at pairs of orbits and their behaviour relative to each other.
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In order to do so, we partition the nondiagonal pairs of points (x, y) ∈ X×X, x 6= y
into three sets:

• asymptotic pairs with lim sup
G∋s→∞

ρ(sx, sy) = 0,

• distal pairs with lim inf
G∋s→∞

ρ(sx, sy) > 0,

• Li-Yorke pairs with lim inf
G∋s→∞

ρ(sx, sy) = 0 and lim sup
G∋s→∞

ρ(sx, sy) > 0.

A set Y ⊆ X is called scrambled if every nondiagonal pair in Y is Li-Yorke.
Finally the action (X,G) is called Li-Yorke chaotic if X contains an uncountable
scrambled set.

This definition goes back to the seminal paper of Li and Yorke [6] on interval
transformations. There is a rich relation between Li-Yorke chaos and other defi-
nitions of chaoticity, Blanchard et al. give a good overview in [2]. In that paper
the authors show in particular that positive topological entropy implies Li-Yorke
chaos for integer actions. Despite being a purely topological statement, their proof
heavily used ergodic theory and the structure theory of measurable dynamical sys-
tems.

The proof by Kerr and Li presented in this talk, however, only uses combina-
torial and topological methods. As was shown in the talk by Dominik Kwietniak
on combinatorial independence, positive topological entropy implies the existence
of a Σ − IE pair. Thus we are able to localize the complex behaviour of the
action implied by the positive entropy condition. Starting from a Σ-IE pair one
constructs, by combinatorial means, larger and larger families of sets in X with
positive upper independence density. Induction then proves the following lemma
[5, Lemma 8.3].

Lemma. Let k ≥ 2 and let A = (A1, . . . , Ak) be a tuple of closed subsets of X
with positive upper independence density over Σ. For each j = 1, . . . , k let Uj

be an open set containing Aj. Let E be a finite subset of G. Then there exist

s1, . . . , sm ∈ G \ E with s−1
i sj 6∈ E for distinct i, j = 1, . . . ,m such that the tuple

(Ai ∩
m
⋂

ℓ=1

s−1
ℓ Uω(ℓ))i=1,...,k,ω∈{1,...,k}m

has positive upper independence density over Σ.

With these preparations one constructs a sequence of nested sets, where one
has good control over the dynamics and whose intersection forms a Cantor space,
and gets the following theorem [5, Theorem 8.3].

Theorem. Let k ≥ 2 and A = (A1, . . . , Ak) be a tuple of closed subsets of X with
positive upper independence density over Σ. Then there exists for each j = 1, . . . , k

a Cantor set Zj ⊆ Aj such that their union Z =
⋃k

j=1 Zj fulfills

(1) every nonempty finite tuple of points in Z is a Σ-IE-tuple,
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(2) ∀m ∈ N, ∀y1, . . . , ym ∈ Z, y′1, . . . , y
′
m ∈ Z with yi 6= yj for distinct i, j =

1, . . . ,m we have

lim inf
G∋s→∞

max
i=1,...,m

ρ(syi, y
′
i) = 0.

In particular, every nondiagonal pair in Z2 is a Li-Yorke pair.

For integer actions Blanchard, Host and Ruette [3] also showed that positive
entropy implies the existence of an uncountable set of asymptotic pairs. This
seems to be open in the sofic case.

An important class of group actions having no Li-Yorke pairs, is given by distal
actions, i.e. actions for which each pair of distinct points is distal. Thus the
theorem above implies the following corollary [5, Corollary 8.5].

Corollary. Each distal action has sofic topological entropy 0 or −∞.

Distal systems play an important role in the structure theory of topological
dynamical systems (see [1] and [4]). Although we know that distal actions always
have an invariant Borel probability measure, it is open if there is a distal action
with sofic topological entropy −∞.
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Sofic dimension

Yongle Jiang

Sofic dimension for a probability measure preserving (pmp) equivalence relation
was introduced in [2] as an analogy of the free entropy dimension introduced by
Voiculescu [7][8]. Roughly speaking, it is defined by counting the number of sofic
models on finite sets to within a given precision.

Note that sofic dimension is also defined in [3] for measurable discrete groupoids,
which includes also (a) probability-measure-preserving actions of groups and (b)
countable discrete groups. To keep it simple, we focus on the pmp equivalence
relations.

Let Γ y (X,µ) be a probability measure preserving (pmp) action of a countable
discrete group, denote by R the equivalence relation generated by this action, and
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by [R], [[R]] the full group and pseudo full group of R respectively; especially,
when d is an integer, denote by [d], [[d]] the full group and pseudo full group for
the permutation action Sd y {1, · · · , d}. Note that [d] ∼= Sd.

Given F a finite subset of [[R]], n ∈ N, and δ > 0, we define SA(F, n, δ, d) to
be the set of all unital maps φ : [[R]] → [[d]] which are (F, n, δ)-multiplicative
and (F, n, δ)-trace-preserving. We write NSA(F, n, δ, d) for the number of distinct
restrictions of elements of SA(F, n, δ, d) to the set F .

Definition 1. (Definition of sofic dimension)

s(F, n, δ) = lim sup
d→∞

1

dlogd
logNSA(F, n, δ, d),

s(F, n) = inf
δ>0

s(F, n, δ),

s(F ) = inf
n∈N

s(F, n).

Then, after introducing the notion of dynamical generating set for R, the first
main theorem is the following ([2], Theorem 4.1).

Theorem 2. Let R be a pmp equivalence and let E and F be finite dynamical
generating sets. Then s(E) = s(F ).

So we have the following definition.

Definition 3. Let R be a pmp equivalence relation on (X,µ). Assume R is
dynamically finitely generated and let F be a finite dynamical generating set.
Then we set s(R) := s(F ) and call this value the sofic dimension of R.

Then, considering the computation of s(R) for a given pmp equivalence relation
R, the first and the most generic case is the following:

Proposition 4. s(R) = 1 − 1
d where R is the equivalence relation for the permu-

tation action of Sd on X = {1, · · · , d}.

In general, by using the Connes-Feldman-Weiss theorem [1], we have the fol-
lowing theorem ([2], Corollary 5.2).

Theorem 5. s(R) = 1−µ(D), where R is any amenable equivalence relation and
D is the fundamental domain of the finite components of R.

Then, under a mild technical assumption called “s-regularity”, the following
additivity formula for amalgamated free products holds ([2], Theorem 1.2).

Theorem 6. Assume that the pmp equivalence relation R is an amalgamated free
product of the form R = R1 ∗R3

R2, where the finitely generated relations R1 and
R2 are s-regular and R3 is amenable. Then R is s-regular and

s(R) = s(R1) + s(R2) − s(R3).

Finally, we mention the relation between s(R) and cost(R). ([2], Proposition
4.5, Corollary 7.5)
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Proposition 7. Let R be a finitely generated ergodic pmp equivalence relation on
(X,µ). Then s(R) ≤ cost(R).

Proposition 8. Let R be an ergodic finitely generated pmp equivalence relation.
If R is treeable, it is s-regular and s(R)=cost(R) (in particular, R is sofic).

For background on pmp equivalence relation theory and cost theory, see [4], [6].
For the application of free entropy to von Neumann algebras, see [5].
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Sofic mean dimension

Gábor Szabó

Introduction

Mean dimension was introduced by Gromov about a decade ago as an analogue
of dimension for dynamical systems (see [1]), and was studied systematically by
Lindenstrauss and Weiss for continuous actions of countable amenable groups on
compact metrizable spaces, see [3]. Among other beautiful results, Lindenstrauss
and Weiss used mean dimension to show that there exists a minimal action of Z
on some compact metrizable space which can not be equivariantly embedded into
[0, 1]Z equipped with the shift action.

The goal of this lecture is to extend mean dimension to continuous actions of
countable sofic groups on compact metrizable spaces following a paper of Hanfeng
Li, see [2]. We compute the sofic mean dimension for some examples, such as
certain Bernoulli actions and actions with the small boundary property.
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1. Sofic mean dimension

The definition of sofic mean dimension is designed as a dynamical analogue of
covering dimension. Every analogue of covering dimension reads roughly as follows:

‘ dim′(X) ≤ d iff every open cover has order D ≤ d.

Additionally, every appropriate notion of order has to respect the natural refine-
ment structure on open covers, i.e. U ≺ V implies D(U) ≤ D(V). Thus, the precise
notion of an order for an open cover is the key to such a definition. For ordinary
covering dimension, D denotes the minimal coloring number of any refinement.
That is, D is defined via

D(U) + 1 = min
U≺V

sup
x∈X

∑

V ∈V

χV (x).

Notation. • From now on, (X, ρ) denotes a compact metric space. G de-
notes a countable sofic group with a chosen sofic approximation Σ. Let
α : Gy X denote a continuous action.

• If U is an open cover of X and d ∈ N, denote by Ud the corresponding open
cover {U1 × · · · × Ud | Ui ∈ U} of Xd. Since Map(ρ, F, δ, σ) is identified
with a closed subset of Xd, we may define

D(U , ρ, F, δ, σ) = D(Ud|Map(ρ,F,δ,σ)).

Note that in case of Map(ρ, F, δ, σ) = ∅, we set this value to be −∞.
• Let F, F ′⊂⊂G and δ, δ′ > 0. Define

(F, δ) ≤ (F ′, δ′) : ⇐⇒ F ⊂ F ′ and δ ≥ δ′.

Then the set of all such pairs (F, δ) forms a directed set.

Definition 1.1. Let now ρ be a (compatible) metric on X . Let U be an open
cover of X , F⊂⊂G and δ > 0. Consider

DΣ(U , ρ, F, δ) = lim sup
i→∞

D(U , ρ, F, δ, σi)

di
,

DΣ(U , ρ) = lim
(F,δ)→∞

DΣ(U , ρ, F, δ).

Note that the limit does exist, since the net

(F, δ) 7−→ D(U , ρ, F, δ, σ) = D(Ud|Map(ρ,F,δ,σ))

is decreasing. Finally, set

mdimΣ(X,α) = mdimΣ(X,α, ρ) = sup
U

DΣ(U , ρ).

Proposition 1.2. Let α : G y X be an action and Y ⊂ X a nonempty, α-
invariant closed subset. Then mdimΣ(Y, α) ≤ mdimΣ(X,α).
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Proposition 1.3. Let Xn be a sequence of compact metric spaces with a sequence
of group actions αn : Gy Xn. Consider the product action

α : Gy X :=
∏

n∈N

Xn via α((xn)n) = (αn(xn))n.

Then we have mdimΣ(X,α) ≤
∞
∑

n=1

mdimΣ(Xn, αn).

2. Mean dimension of Bernoulli shifts

In contrast to entropy, mean dimension becomes particularly interesting for
higher-dimensional Bernoulli shifts. For a fixed group G, these are dynamical
systems of the form β : Gy ZG via βg((xh)h∈G) = (xg−1h)h∈G for some compact
metric space Z. Let G be sofic.

Theorem 2.1 (general case). For a dynamical system as above, we have

mdimΣ(ZG, β) ≤ dim(Z).

Theorem 2.2 (cubic case). In case that Z is some cube, we have

mdimΣ(([0, 1]n)G, β) = n for all n ∈ N.

3. The small boundary property

Following the definition of covering dimension, a zero-dimensional space is de-
fined as a space whose open covers admit a refining clopen partition. An alternative
definition (following the so-called inductive dimension) is that the space has a base
for the topology consisting of open sets with empty boundaries. The small bound-
ary property is meant to be a dynamical analogue of this definition, i.e. “empty”
is replaced by a dynamical version of smallness.

Definition 3.1. A dynamical system α : Gy X has the SBP if X has a base for
the topology consisting of open sets U such that

µ(∂U) = 0 for all µ ∈ Mα(X).

Example 3.2. • If a system has less than 2ℵ0 invariant ergodic measures,
it has the SBP.

• If G acts freely and dim(X) <∞, then (X,α,G) has the SBP.

Theorem 3.3. If (X,α,G) has the SBP, then mdimΣ(X,α) ≤ 0.
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Measured equivalence relations and entropy theory

Alessandro Carderi

A sequence of finite subsets Si of a countable group Γ spreads if any element
γ ∈ Γ that is not the identity belongs to at most finitely many subsets SiS

−1
i .

For instance, a sequence of subsets Si of the integer group Z spreads if the gaps
between consecutive elements in Si tend to infinity. An action of the countable
amenable group Γ on the probability space (X,µ) has completely positive entropy
if for every finite measurable partition of X the entropy h(Γ, P ) is positive.

Theorem (Rudolph and Weiss, [7]). Consider an action of the countable amenable
group Γ on the probability space (X,µ), let P be a finite measurable partition of X
and let Si be a sequence of finite subsets of Γ which spreads. Then

lim
i→∞

1

|Si|
H





∨

γ∈Si

γ−1P



 = H(P ).

This theorem shows that completely positive entropy actions have very strong
mixing properties.

The theorem was already known for actions of Z where the spread condition is
easier to understand. The proof of the theorem in the amenable case is done by
a reduction to the case of actions of Z, using the theory of orbit equivalence. We
recall that two actions of two groups on a probability space are said to be orbit
equivalent if the induced orbit equivalence relations are isomorphic as measured
equivalence relations, see for example [6]. A fundamental result [2] states that all
probability measure preserving actions of an amenable group are orbit equivalent
to an action of the integer group.

Entropy is, however, not an invariant of orbit equivalence, for instance Dye
proved in [4] that all actions of the integer group are orbit equivalent (and hence
by [2], all actions of all amenable groups are). What they used is the relative
entropy of the action with respect to a factor, or equivalently, a Γ-invariant sub-σ-
algebra. Given an action of the amenable group Γ on the probability space (X,µ)
and given a Γ-invariant sub-σ-algebra A of the measure algebra of (X,µ), for every
measurable finite partition P of X , we define

h(Γ, P |A) := inf {h(Γ, P ∨Q) − h(Γ, Q) : Q is A-measurable} .

The relative entropy is invariant under a special kind of orbit equivalence: the
orbit equivalence that preserves the sub-σ-algebra A. Using this invariance it
is possible to reduce the theorem to the case of Z-actions where the completely
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positive entropy condition is replaced by a relative one and the spread sequence is
replaced by a random spread sequence. Anyway, this problem can be solved using
standard techniques of entropy for actions of Z.

Shortly after, Danilenko in [3] realized that the definition of relative entropy is
equivalent to a definition of entropy for actions of equivalence relations. In this
way he was able to simplify the proof of Rudolph-Weiss’ theorem using methods
from the theory of orbit equivalence and measured equivalence relations. This
definition has been generalized by Bowen to sofic equivalence relations, [1].

Sofic equivalence relations were defined by Elek and Lippner in [5] using the idea
of labelled Benjamini-Schramm convergence: an equivalence relation generated by
the group Γ on the probability space (X,µ) is sofic if it is a limit of finite graphs
which have edges labelled by the acting group Γ and vertices labelled by the space
X . In a hand-written and unpublished note, Ozawa proposed a new equivalent
definition: an equivalence relation is sofic if its full pseudo-group is sofic as a
pseudo-group. That is, an equivalence relation is sofic if every finite collection
of partially defined measure preserving morphisms of the space whose graph is
contained in the equivalence relation is well-approximable by partially defined
bijections of finite sets. See for example [1] for the formal definition.

Bowen’s definition of sofic entropy of actions of sofic equivalence relations uses
Ozawa’s definition of soficity. Like the sofic entropy for groups, the sofic entropy
of an equivalence relation counts the exponential growth of finite approximation
where the finite subsets of the group are replaced by finite subsets of the full
pseudo-group and the sofic approximation is replaced by Ozawa’s sofic approxi-
mation of the full pseudo-group.
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A new approach to sofic entropy

Miklós Abért

Let κ = (p1, p2, . . .) be a distribution. The Shannon entropy of κ is defined as

H(κ) = −
∑

i

µ(pi) log pi.

The meaning of Shannon entropy is ‘the amount of randomness needed to generate
κ’.

Let Γ be a countably infinite group and consider an invariant random coloring
of Γ with k colors. Of course the entropy of the whole process is in general infinite,
so one would like to define the entropy per site for these processes in a meaningful
way. It is very much not clear how to do this for general countable groups.

However, in the case when Γ is a sofic group (that is, its Cayley diagrams can
be approximated by finite graphs) Lewis Bowen recently initiated a new entropy
theory, which was then further advanced by David Kerr, Hanfeng Li and others. In
short, Bowen suggested to mimic the infinite process by certain vertex colorings
of the finite graphs (called good configurations) and then count the normalized
logarithmic limit of the number of good configurations. This approach goes back
to statistical physics. Note that I am at least 3 quantors apart from an actual
definition here.

Together with Benjy Weiss, we are suggesting a somewhat different approach:
we suggest to mimic the infinite coloring process with a random coloring of the
finite graph and then instead of counting configurations, compute the normalized
maximal Shannon entropies of these finite processes.

This approach allows us to use some of the machinery that has been invented
to handle entropy of measure preserving actions of amenable groups. As an ap-
plication, I presented a simple and transparent proof for the following theorem of
Lewis Bowen [1].

Theorem (Bowen). Let Γ be a sofic group and let κ1 and κ2 be two finite distri-
butions. Assume that the Bernoulli actions κΓ1 and κΓ2 are isomorphic as measure
preserving Γ-actions. Then κ1 and κ2 have the same Shannon entropy.
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