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Introduction by the Organisers

Analytic number theory is on the roll for quite some time now, with spectacular
discoveries year after year. To mention just two examples, our understanding of
differences between consecutive primes is now radically different from what we
knew a decade ago, thanks to a cascade of important contributions initiated by
Goldston-Yıldırım-Pintz. The subject was taken to yet another level by Zhang,
only very recently. The work of Wooley, still ongoing, on Vinogradov’s mean
value theorem also changed the landscape in the areas where it is applied. Thus,
timing was perfect for an exciting week, but the overload of talent and the vast
activities in various subbranches of the field made it challenging to select an an
appropriate mix of participants. However, we feel that we could not have done
better: during the workshop, we experienced a typical Oberwolfach atmosphere,
open, collaborative and productive.

We tried to keep the schedule moderate, with ample time for work and discussion
after lunch and in the evening. The programme included a round table discussion
on recent advances with the circle method on Wednesday evening, and a problem
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session on Thursday evening. The problems posed are included at the end of this
report.

Many important results have been announced during the week. Rather than
making an attempt to highlight the truely outstanding contributions, we let the
collection of abstracts speak for itself.

Finally, it is our great pleasure to record the warm-hearted hospitality and
excellent support by the local staff during a great event.
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Abstracts

An attempt to prove an effective Siegel theorem

Jozsef Beck

We outlined a plan how to prove an effective Siegel theorem about the ex-
ceptional Dirichlet character. It is presented in full detail in the following two
references:

1. J. Beck. An attempt to prove an effective Siegel theorem–Part One, 71 pages,
arXiv:1311.1478 [math.NA] (http://arxiv.org/abs/1311.1478),

which gives a nutshell summary in Section 0 (5 pages), and gives a very detailed
explanation in Sections 1-5, and

2. Part Two of the paper, which is basically long elementary estimations (280
pages). I am happy to send the pdf-file of Part Two to anybody who requests it
by email.

Open questions: (1) Is the (ridiculously long) full version correct? (2) Even if
the full version has mistakes, is the basic idea (i.e. Part One) still good?

Integral points on modular curves

Yu Bilu

(joint work with A. Bajolet, Sha Min)

Let XG be the modular curve of level N corresponding to a subgroup G of
GL2(Z/NZ) with detG = (Z/NZ)×. Then XG has a standard geometrically irre-
ducible model over Q. We are interested in the following problem:

Problem 1. Describe the set of rational points XG(Q).

This statement is somewhat vague: what does “describe” mean?
First of all, we restrict to the three cases that we deem most interesting for

applications, and which accumulate all the principal difficulties presented by the
problem. These are the cases when N = p is a prime number and G is one of the
following maximal subgroups of GL2(Fp):

• a Borel subgroup of GL2(Fp);
• the normalizer of a split Cartan subgroup;
• the normalizer of a non-split Cartan subgroup.

The corresponding modular curves are denoted X0(p), X+
sp(p) and X+

ns(p), respec-
tively.

Next, recall that if E/Q is an elliptic curve with complex multiplication and
O = End(E) then E gives rise to a rational point on one of the curves X0(p),
X+

sp(p) or X+
ns(p), depending on whether the prime p is ramified, split or inert in

the order O. Rational points obtained this way are called CM-points.
We can now state a more precise problem:
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Problem 2 (Serre’s uniformity problem). Show that for p > 37 there is no rational
points on the curves X0(p), X+

sp(p) and X+
ns(p) other than the cusps and the CM-

points.

For X0(p) the problem was solved in the classical work of Mazur [9]. Recently
it was solved [5, 7] for the curves X+

sp(p) as well.

Theorem 1 (B., Parent, Rebolledo). For p ≥ 17 and p = 11, the set X+
sp(p)(Q)

consists of the cusps and the CM-points.

The methods of [9, 5, 7] fail completely for X+
ns(p). However, some results can

be obtained for integral points, that is, rational points P with j(P ) ∈ Z, where j is
the j-invariant. More generally, let XG be a modular curve defined over a number
field K. For a finite set of places S ⊂MK we define the set of S-integral points
XG(OS) as the set of K-rational points P such that j(P ) ∈ OS . (Here, as usual,
OS denotes the ring of S-integers.)

In [3, 4] I made the following observation: if XG is a modular curve of level N
with at least 3 cusps, then heights of S-integral points on XG can be effectively
bounded in terms of K, S and N . Bajolet and Sha [2] made this explicit for the
curve X+

ns(p) and OS = Z

Theorem 2 (Bajolet, Sha). Let p ≥ 7 be a prime number and d ≥ 3 a divisor of
(p− 1)/2. Then or P ∈ X+

ns(p)(Z) we have

(1) log |j(P )| ≤ 1010p7d.

Sha [11] extended this to an arbitrary XG, K and S, making my observation
mentioned above totally explicit.

Bound (1) is too huge to allow one to determine all integral points on X+
ns(p).

Until recently, this was done only for p = 7 by Kenku [8] and by p = 11 by Schoof
and Tzanakis [10]. The methods of these references do not extend to p ≥ 13.

With Bajolet we developed [1] a general method for computing integral points
on Xns(p). Using our method, we proved that for 11 ≤ p ≤ 67 the set Xns(p)(Z)
consists only of CM-points.
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Moments of twisted L-functions

Valentin Blomer

(joint work with D. Milićević)

A landmark result in the theory of the Riemann zeta-function is the asymptotic
formula for the fourth moment [Za, Mot]

(1)

∫ T

0

|ζ(1/2 + it)|4dt = TP4(logT ) +O(T 2/3+ε)

for a certain polynomial P4; this is one of the prime applications of the Kuznetsov
formula. Good [Go] proved the cuspidal version

(2)

∫ T

0

|L(1/2 + it, f)|2dt = TP1(logT ) +O(T 2/3+ε)

for a certain polynomial P1 depending on the holomorphic cusp form f .
A non-archimedean analogue of (1) and (2) would replace the archimedean twist

by | det |it with a twist by a Dirichlet character χ:

(A)
∑

χ (q)

∗
|L(1/2, χ)|4 and (B)

∑

χ (q)

∗
|L(1/2, f ⊗ χ)|2

where the sum runs over all primitive Dirichlet characters χ modulo q and f is
a fixed Hecke cusp form in the second sum. We are interested in asymptotic for-
mulas for these moments with a power saving error term. It turns out that these
problems are much harder compared to (1) and (2), because fixing the special
point 1/2 (as opposed to an average over t of length 1, say) captures some genuine
arithmetic information. It was a major breakthrough when M. Young [Y] recently
solved (A) for prime moduli q. The (harder) case (B) has remained unsolved for
any infinite sequence of moduli q.

In joint work with D. Milićević [BM] we solve (B) for 99.9% of all moduli,
excluding only little more than primes and products of two equal or almost equal
primes.

Theorem 1. Let 0 < η < 1/5, and let q run through positive integers such that

• there is no prime p ≥ q1−η dividing q;
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• there are no two (possibly equal) primes p1, p2 ≥ q(1−η)/2 such that p1p2 | q.
Let f be a fixed holomorphic cusp form of (even) weight κ for the group SL2(Z)
with Hecke eigenvalues λ(n). Let

P (s) =
∏

p|q

(

1 − λ(p2)

ps
+
λ(p2)

p2s
− 1

p3s

)(

1 − 1

p2s

)−1

.

Then, as q → ∞ as specified above, we have

∑

χ (q)

∗
|L(1/2, f ⊗ χ)|2 = 2ψ(q)

P (1)L(1, sym2f)

ζ(2)

(

log q + c+
P ′(1)

P (1)

)

+Of,η(q1−δ)

for some explicit δ = δ(η) > 0, where the sum is over primitive characters modulo
q, ψ(q) is the number of such characters, and

c = γ − 1

2
log(2π) +

Γ′(κ/2)

Γ(κ/2)
+
L′(1, sym2f)

L(1, sym2f)
− 2ζ′(2)

ζ(2)

is a constant depending only on f .

The proof is based on a variety of methods. On the one hand we employ the
full power of spectral theory of GL2-automorphic forms to prove cancellation in a
possibly unbalanced (average of a) shifted convolution problem:

∑

r≍N/q

∑

n≍N,m≍M
n−m=rq

λ(m)λ(n)

where NM ≈ q2 and N ≥M ; in particular N and M may be of very different size.

On the other hand, in the crucial rage N = q3/2+o(1), M = q1/2+o(1) we need
power saving cancellation in sums of the type

(3)
∑

m≍q1/2

S(m,n1, q)S(m,n2, q)

for given integers n1, n2 (such that n1 − n2 is sufficiently coprime to q). Here
the short range of the m-summation prevents the use of standard Fourier analytic
techniques. It is only at this point where the special shape of q enters. We
show how a general form of Weyl differencing followed by detecting square-root
cancellation in multiple exponential sums (based on independence of Kloosterman
sheafs and p-adic analytic techniques) eventually yields a power saving in (3) for
the relevant moduli in Theorem 1.
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Linear growth for certain elliptic fibrations

Pierre Le Boudec

This report is primarily concerned with quantitative aspects of rational points
on del Pezzo surfaces of degree 1 defined over Q. In their anticanonical embedding,
these surfaces are defined by sextic forms in P(3, 2, 1, 1). More precisely, they are
isomorphic to a surface V given by an equation of the shape

y2 = x3 + F4(u, v)x+ F6(u, v),

where the coordinates in P(3, 2, 1, 1) are denoted by (y : x : u : v) to highlight the
elliptic fibration and where F4, F6 ∈ Z[u, v] are respectively a quartic and a sextic
form such that 4F 3

4 + 27F 2
6 is not identically 0.

For x = (y : x : u : v) ∈ P(3, 2, 1, 1)(Q), we can choose coordinates y, x, u, v ∈ Z
such that for every prime p, either p ∤ u or p ∤ v or p2 ∤ x or p3 ∤ y. Then we can
define an exponential height function H : P(3, 2, 1, 1)(Q) → R>0 by setting

H(x) = max{|y|1/3, |x|1/2, |u|, |v|}.
For any Zariski open subset U of V , we can introduce the number of rational
points of bounded height on U , that is

NU,H(B) = #{x ∈ U(Q), H(x) ≤ B}.
A weak version of a conjecture due to Manin and his collaborators (see [3]) states
that there should exist an open subset U of V such that, for any fixed ε > 0,

(1) NU,H(B) ≪ B1+ε.

This conjecture was previously not known for any single example of surface.
The best result in this direction was the work of Munshi [4] in which he exhibited
surfaces satisfying an upper bound similar to (1) but with the weaker exponent
5/4 + ε.

In the recent work [2], the author has studied the case of the following family of
surfaces. Let e1, e2, e3 ∈ Z be three distinct integers and set e = (e1, e2, e3). Let
also Q ∈ Z[u, v] be a non-degenerate quadratic form and let Ve,Q ⊂ P(3, 2, 1, 1) be
the surface defined by the equation

y2 = (x− e1Q(u, v))(x− e2Q(u, v))(x− e3Q(u, v)).

Finally, let Ue,Q be the open subset defined by removing from Ve,Q the two subsets
given by y = 0 and Q(u, v) = 0.

We have the following theorem.
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Theorem 1. Let ε > 0 be fixed. We have the upper bound

NUe,Q,H(B) ≪ B1+ε.

It is worth noting that the constant involved in the notation ≪ may depend on
ε, e and Q.

To establish this result, we start by making use of the natural elliptic fibration
and we use the fact that the fibers have full rational 2-torsion to achieve complete
2-descents on the fibers.

At this step, it turns out that in order to prove Theorem 1, it is sufficient to
prove that the smooth bihomogeneous threefold V3 ⊂ P2 × P2 defined over Q by
the equation

x0y
2
0 + x1y

2
1 + x2y

2
2 = 0,

has linear growth, by which we mean that the number of rational points of bounded
anticanonical height on this threefold grows linearly. This is a very interesting
problem in itself.

The author has investigated this problem in [1] and has been able to prove a
much sharper result. Indeed, he has established upper and lower bounds of the
exact order of magnitude for the number of rational points of bounded anticanon-
ical height on V3. The proof of this result makes use of both geometry of numbers
and analytic number theory tools.
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A multidimensional Birch’s Theorem

Julia Brandes

Among the problems of the most lasting importance in number theory is Waring’s
problem, which concerns the question of integral solutions to the equation

xk1 + · · · + xks = n.

While this has been studied extensively by itself (see e.g. [12] for the history), some
modifications have also been considered, among which perhaps the most straight-
forward one replaces the sum of powers by a general homogeneous polynomial F
of degree d. In this case, a classical theorem of Birch [2] establishes an asymptotic
formula subject to local solubility, provided the number s of variables suffices

s− dim Sing(F ) > 2d(d− 1).
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Another, less well-known generalisation of Waring’s problem, which goes back
to Arkhipov and Karatsuba [1] and has later been studied in great depth by
Parsell and others (see e.g. [8, 9, 10]), arises if the variables xi are replaced by
linear forms Li ∈ Z[t1, . . . , tm] and the integer n by a homogeneous polynomial
ψ ∈ Z[t1, . . . , tm] of degree k. Notice that for m = 1 this reduces to the traditional
version of Waring’s problem.

Our goal is now to combine these two questions and derive a multidimensional
version of Birch’s theorem describing the number of solutions to equations of the
shape

F (x1t1 + · · · + xmtm) = ψ(t1, . . . , tm).(1)

This generalised problem has so far been studied only in the quadratic case, where
matrix algebra and dynamical systems provide a different set of methods, and the
only attempt to tackle this question by the circle method is a very recent paper
by Dietmann and Harvey [7]. We show how, by expanding the left hand side of
(1) and equating coefficients of t1, . . . , tm, every linear form solving the equation
translates bijectively to a point solution x1, . . . ,xm ∈ [−P, P ]ms of a system of
r equations, where r ∼ md is the number of monomials in ψ. This allows us to
apply the methods for systems of forms developed by Birch [2] and Schmidt [11],
and we obtain a Hasse Principle with the expected number of solutions, provided

s− dim Sing(F ) > 3 · 2d−1(d− 1)(r + 1).

This is essentially Theorem 1.1 in [3]. The number of variables required here is
smaller by a factor r ∼ md than comparable results implicit in work by Dietmann
[5, 6] and Dietmann and Harvey [7]. This is achieved by exploiting certain sym-
metries of the system associated to (1).

In the special case when F is definite, the number of representations is finite and
one has natural size restrictions for the variables. These will, however, not typically
be all of the same size, so it is desirable to have a more general version of the
multidimensional Birch theorem that allows for more flexibility in the constraints
of the variables. Such a result may also be of interest for some applications in
algebraic geometry. It turns out that, provided the constraints are not too distinct,
the same methods continue to be applicable (see Chapter 3 in [4] for details), and
again one obtains a Hasse Principle with asymptotic formula under the condition

s− dim Sing(F ) > 2d−1 max

{

3(d− 1)(r + 1), rd

(

logPmax

logPmin

)}

.

A similar result for the case d = 2 is implicit in Dietmann and Harvey’s work on
representing quadratic forms by quadratic forms [7], and again we save a factor r
over their result.
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Power-free polynomials on affine quadrics

Tim Browning

(joint work with Alex Gorodnik, University of Bristol)

Given a polynomial with integer coefficients, the problem of determining whether
or not it takes infinitely many square-free values has long been a central concern
in analytic number theory. More generally one can ask for r-free values, for any
r ≥ 2, where an integer is said to be r-free if it is not divisible by pr for any prime
p. In this paper we initiate an investigation of r-free values for polynomials whose
arguments run over thin sets.

Let Y ⊂ An be an affine variety defined by a system of polynomial equations
with integer coefficients and let f ∈ Z[X1, . . . , Xn] be a polynomial. Nevo and
Sarnak [5] define the saturation number r(Y, f) to be the least positive integer r
such that the set of x ∈ V (Z), for which f(x) has at most r prime factors, is
Zariski-dense in Y . They show that r(Y, f) is finite whenever Y is a principal
homogeneous space and f is “weakly primitive”. In a similar spirit we can define
a number r�(Y, f) to be the least integer r ≥ 2 such that the set of x ∈ V (Z), for
which f(x) is r-free, is Zariski-dense in Y . It is then natural to try and determine
conditions on Y and f under which one can show that r�(Y, f) is finite. For
example, Erdős [3] showed that r�(A1, f(x)) ≤ d− 1, provided that f has degree
d and contains no “fixed dth power divisors”.
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Our main result establishes that r�(Y, f) is finite when Y ⊂ An is a suitable
affine quadric and f is a homogeneous polynomial satisfying certain genericity
conditions.

For n ≥ 3, let Q ∈ Z[X1, . . . , Xn] be a non-singular indefinite quadratic form
and let m be a non-zero integer. We assume that −m det(Q) is not the square of
an integer when n = 3. Let Y ⊂ An denote the affine quadric

Q = m.

We cannot expect r�(Y, f) to exist without some conditions on Y and f . The
following result provides some sufficient conditions.

Theorem 1. Let n ≥ 3 and assume that Y (Z) 6= ∅. Assume that f is a non-
singular homogeneous polynomial of degree d ≥ 2 such that the projective variety
f = Q = 0 is also non-singular and such that there is no prime p such that
p2 | f(x) for every x ∈ Y (Z). Then r�(Y, f) <∞.

In fact one can take r�(Y, f) ≤ 2dn when n ≥ 4. When f is linear one can do
better, as follows.

Theorem 2. Let n ≥ 3 and assume that Y (Z) 6= ∅. Assume that f is a linear
polynomial such that there is no prime p such that p2 | f(x) for every x ∈ Y (Z).
Then r�(Y, f) = 2.

When n ≥ 4, work of Baker [1] could easily be modified to establish Theorem 2.
Baker’s approach uses the Hardy–Littlewood circle method, whereas our work
requires tools from dynamical systems relating to uniform lattice point counting
(see Gorodnik and Nevo [4])

One ingredient in the proof involves counting integral points in a box on affine
quadrics. Suppose we are given a non-zero quadratic polynomial q ∈ Z[T1, . . . , Tν ],
with quadratic part q0, for ν ≥ 2. Consider the counting function

M(q;B) = #{t ∈ Zν : q(t) = 0, |t| ≤ B},
for any B ≥ 1. We will require an upper bound for M(q;B) which is uniform in
the coefficients of q and which is essentially as sharp and as general as possible.
A trivial estimate is M(q;B) = Oν(Bν−1), which is as good as can be hoped for
when q is reducible over Q. Assuming that q is irreducible over Q, a result of Pila
[6] reveals that M(q;B) = Oε,ν(Bν−3/2+ε), for any ε > 0. Again this is essentially
best possible when rank(q0) = 1, as consideration of the polynomial T1−T 2

2 shows.
For the remaining cases we establish the following improvement, which is based
on arguments from [2].

Theorem 3. Assume that q is irreducible over Q and that rank(q0) ≥ 2. Then
we have M(q;B) = Oε,ν(Bν−2+ε), for any ε > 0.

The most important feature of Theorem 3 is its uniformity in the coefficients of
the quadratic polynomial q. It reflects the rough order of magnitude of M(q;B)
when q = q0. The result is proved by induction on ν, the case ν = 2 essentially
going back to work of Estermann.
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The average asymptotic behaviour of the Frobenius fields of an elliptic
curve

Alina Carmen Cojocaru

(joint work with Henryk Iwaniec, and Nathan Jones)

Let E/Q be an elliptic curve, of discriminant ∆(E). For every prime p ∤ ∆(E),
we have #E(Fp) = p + 1 − ap, where ap = ap(E) ∈ Z satisfies |ap| < 2

√
p.

Equivalently, ap has the property that the polynomial X2 − apX + p = (X −
πp)(X − πp) has two complex conjugate non-real roots πp = πp(E), πp = πp(E),
which satisfy πp + πp = ap and πpπp = p. Moreover, any of these roots, say πp,

identifies with the pth power Frobenius endomorphism of E. As such, we shall call
Q(πp) the Frobenius field of E at p.

If E is with CM, that is, if End
Q

(E) is an order in an imaginary quadratic field

K, then Q(πp) ≃ K for any prime p of good ordinary reduction for E. To see this,
recall that

Q ⊆ EndQ(E) ⊗Z Q ⊆ EndFp
(E) ⊗Z Q

and

Z[πp] ⊆ EndFp(E) ⊆ Q(πp) ⊆ End
Fp

(E) ⊗Z Q.

By definition, p is ordinary if EndFp
(E) is an imaginary quadratic order. By the

CM assumption, End
Q

(E) ⊗Z Q ≃ K. Hence, as p varies over ordinary primes,

there is only one Frobenius field Q(πp). Even more can be said in this setting. By
results of M. Deuring, p is ordinary if and only if it ramifies or splits completely
in the CM field K. Combined with the Chebotarev density theorem, this implies
that, for any arbitrary imaginary quadratic field K, the function

ΠE(K;x) := # {p ≤ x : p of ordinary good reduction,Q(πp) ≃ K}
equals 0 if K 6≃ K, and satisfies the asymptotic

(1) ΠE(K;x) ∼ 1

2
· x

log x

if K ≃ K.
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If E is without CM, that is, if EndQ(E) ≃ Z, there are infinitely many non-

isomorphic Frobenius fields Q(πp) as p varies over primes p of ordinary reduction

for E. The proof was given for the first time by A.C. Cojocaru, É. Fouvry and
M.R. Murty in 2005, using sieve methods. We also have:

Conjecture (S. Lang and H. Trotter, 1976)
Let K be an imaginary quadratic field. Let E/Q be an elliptic curve such that

EndQ(E) ≃ Z. Then there exists a constant c(E,K) > 0 such that, as x→ ∞,

(2) ΠE(K;x) ∼ c(E,K)

√
x

log x
.

In 1981, Serre wrote that one could show, under the assumption of a Gen-
eralized Riemann Hypothesis (GRH for short) and using Selberg’s sieve, that
ΠE(K;x) ≪ xθ for some unspecified θ < 1. Later on, Serre added the remark
that one could show this without the Selberg’s sieve, but instead by applying the
effective Chebotarev density theorem of J. Lagarias and A. Odlyzko directly to
a mixed Galois representation associated to both E and K. Such a proof was
given much later by Cojocaru, Fouvry and Murty in 2005, via the square sieve
and the effective Chebotarev density theorem; under GRH, they showed that

ΠE(K;x) ≪ x17/18 log x, and, unconditionally, that ΠE(K;x) ≪ x(log log x)13/12

(log x)25/24
.

These results were followed up with detailed explanations by Serre, who outlined
the construction of his aforementioned mixed Galois representation and the proof
of the bound ΠE(K;x) ≪ x7/8, under GRH. In 2008, Cojocaru and David refined
Serre’s method and proved, under GRH, that

ΠE(K;x) ≪ x4/5

(log x)1/5
.

At the time of this writing, this upper bound is the best and no lower bound is
known.

We prove an average version of the Lang-Trotter Conjecture. For simplicity,
set

(3) ψE,K(x) :=
∑

p≤x
p∤∆(E)

Q(πp(E))≃K

√
p log p.

and focus on the asymptotic formula

(4) ψE,K(x) ∼ 2c(E,K)x,

equivalent to (2) by partial summation. Note also that in (3) we may assume that
p ≥ 5 and p is ordinary.

Setting and notation:
• Let −D < 0 be a fixed fundamental discriminant. Consider: K := Q(

√
−D)

the imaginary quadratic field of discriminant −D; HK the Hilbert class field of
K; H(−D) the Kronecker class number of −D; and χK the Kronecker symbol



2980 Oberwolfach Report 51/2013

of K. Note that a prime p splits completely in HK if and only if there exist
r = r(p,D) ∈ Z and c = c(p,D) ∈ N\{0} such that 4p = r2 +Dc2. For such p, we
define

(5) cp := c
∑

d|c

1

d

∏

ℓ|d
ℓ prime

(1 − χK(ℓ)).

We denote by
∑

p≤x
p splits compl. in HK

the summation over primes p ≤ x which split

completely in HK and define

(6) ψK(x) :=
∑

p≤x
p splits compl. in HK

cp log p√
p

.

• Let A,B ∈ N\{0} and let E = E(A,B) be the family of elliptic curves Eab/Q
given by Eab : y2 = x3 + ax+ b, with coefficients a, b ∈ Z, 1 ≤ a ≤ A, 1 ≤ b ≤ B.

• To ensure no bias towards intrinsic features of the elements of E , we let
A = (αa)1≤a≤A, B = (βb)1≤b≤B be arbitrary sequences in C. We associate to
each Eab ∈ E the weight αaβb. We set

|A| :=
∑

1≤a≤A

αa, ||A|| :=





∑

1≤a≤A

|αa|2τ(a)





1
2

,

|B| :=
∑

1≤b≤B

βb, ||B|| :=





∑

1≤b≤B

|βb|2τ(b)





1
2

,

where τ(·) denotes the divisor function.
Main Theorem

(a)
∑

1≤a≤A

∑

1≤b≤B
∆(Eab)6=0

αaβbψEab
(x) = |A||B| ·H(−D) · ψK(x)

+O
(

||A|| ||B||
(

x
7
4 + (A+B)

1
2 x

5
4 + (AB)

1
2x

7
8

)

(log x)3
)

.

(b) ψK(x) ∼ 8ζ(2)
DL(1,χK) ·

∏

ℓ∤D
ℓ prime

(

1 − χK(ℓ)

ℓ2
− 1 − χK(ℓ)

ℓ2(ℓ+ 1)

)

· x.

(c) Let

c(K) :=
2π

3
√
D

∏

ℓ∤D
ℓ prime

(

1 − χK(ℓ)

ℓ2
− 1 − χK(ℓ)

ℓ2(ℓ+ 1)

)

.
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Then there exist constants γ1 > 0 and γ2 > 0 such that, for any real
number d ≥ 1, we have

1

AB

∑

1≤a≤A

∑

1≤b≤B
∆(Eab) 6=0

|c(Eab,K) − c(K)|d

≪K,d log(max{A,B})dγ2

(

(log min{A,B})γ1

√

min{A,B}|
+

logB(logA)7

B

)

.

Zeros of Dirichlet L-functions

Brian Conrey

(joint work with H. Iwaniec, K. Soundararajan)

Let Q > 0 be a large number and let B(Q) be the rectangle in the s-plane with
vertices 0, 1, 1 + iQ, iQ. Let F(Q) denote the family of L-functions L(s, χ) such
that χ is a primitive character modulo q where Q < q ≤ 2Q. Let Z(Q) denote
the set of all zeros of any L(s, χ) which are in B(Q); the zeros are counted with
multiplicity.

Theorem 1. At least 60% of the zeros in B(Q) have real parts equal to 1/2.

We remark that for any fixed L(s, χ) it can be proven that at least 40% of its
zeros have real part equal to 1/2. But by averaging over χ and q we can improve
the average percentage.

The proof uses the asymptotic large sieve which is a technique developed by
the three authors which allow in certain situations for the asymptotic evaluation
of averages

∑

q

W (q/Q)
∑∗

χ mod q

∣

∣

∣

∣

∣

N
∑

n=1

anχ(n)

∣

∣

∣

∣

∣

2

,

where 0 ≤W (x) ≤ 1 is supported on [1, 2]. The large sieve inequality asserts that

the above is ≪ (Q2 + N)
∑N

n=1 |an|2 for arbitrary sequences {an}. Actually, we
use a version of the large sieve in which the weights |L(1/2, χ)|2 appear, that is
we estimate

∑

q

W (q/Q)
∑∗

χ mod q

|L(1/2, χ)|2
∣

∣

∣

∣

∣

N
∑

n=1

anχ(n)

∣

∣

∣

∣

∣

2

.

We prove that the above is

=
∑

q≤Q

φ∗(q)
∑

m,n≤N
(mn,q)=1

bmbn(m,n)

mn

(

log
q(m,n)2

8πmn
+ γ + o(1)

)

.
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provided N ≪ Q1−ǫ, bn ≪ nǫ. Here φ∗(q) is the number of primitive charac-
ters modulo q. This is the analogue for Dirichlet characters of a conjecture of
Balasubramanian, Conrey, and Heath-Brown.

The 60% improves upon a previously announced slightly weaker result of 58%
which was achieved by an easier argument. The flexibility of this method allows
us to use new mollifier weights introduced by Shaoji Feng, thus allowing for the
extra 2%.

To describe Feng’s mollifier, recall that in the Levinson method, the function
we are trying to mollify is basically

ζ(s) +
ζ′(s)

logT
= ζ +

ζ′

L
= ζ

(

1 +
1

L

ζ′

ζ

)

.

Motivated by

1

ζ + ζ′

log T

=
1

ζ

(

1 − 1

L

ζ′

ζ
+

1

L2

(

ζ′

ζ

)2

− 1

L3

(

ζ′

ζ

)3

+ . . .

)

which has Dirichlet series coefficients

µ+
µ ∗ Λ

L
+
µ ∗ Λ ∗ Λ

L2
+
µ ∗ Λ ∗ Λ ∗ Λ

L3
+ . . .

Feng introduced a mollifier of the form

∑

h≤y

bh
bs

where

bh = µ(h)P1

(

log y/h

log y

)

+ λ2(h)P2

(

log y/h

log y

)

L−2

+λ3(h)P3

(

log y/h

log y

)

L−3 + . . .

+λI(h)PI

(

log y/h

log y

)

L−R

where

λR(d) = (µ ∗ Λ∗R)(d).

The choices I = 3, y = Q1−ǫ,

P1(x) = x+ 0.1560x(1 − x) − 1.4045x(1 − x)2 − 0.0662x(1 − x)3

P2(x) = 2.0409x+ 0.2661x2

P3(x) = −0.0734x

are what are used in the proof that a proportion of at least 0.6085 of zeros of
Dirichlet L-functions are on the critical line.
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Quantitative versions of Hilbert’s Irreducibility Theorem, and
Probabilistic Galois Theory

Rainer Dietmann

One of the classical results in Diophantine geometry is Hilbert’s Irreducibility The-
orem (HIT): ([6], [7] §9): If f(X1, . . . , Xr, t1, . . . , tn) ∈ Q[X,T] is irreducible, then
there are infinitely many specialisations for t ∈ Qn such that the specialised poly-
nomial f(X1, . . . , Xr) still is irreducible over Q. For r = 1, which will be our main
focus, more can be said, as we can consider f(X, t) as a separable polynomial in
X over the function field Q(T): let G be the Galois group of the splitting field of

f in Q(T). Then a more general form of HIT states that there are infinitely many
specialisations t ∈ Qn such that the specialised rational polynomial f(X) still has
Galois group G over Q, which for r = 1 generalises the formulation of HIT from
above.
A well known example for this forms the setting of Probabilistic Galois Theory
([9], [5]): the polynomial

Xn + t1X
n−1 + . . .+ tn

has Galois group Sn over Q(T), whence by applying HIT and specialising t1, . . . , tn
we conclude that there are infinitely many rational monic degree n polynomials
having Galois group Sn over Q.
In our work we are interested in quantifying such statements. To this end we first
observe that if one specialises t ∈ Qn, and f(X) is still separable, then its Galois
group will be a subgroup K of its original subgroup G over Q(T). Let us now
without loss of generality assume that f has integer coefficients, and let

Nf(H ;K) = #{t ∈ Zn : |t| ≤ H and Gal(f/Q) ⊂ K}.
Our goal is a good upper bound for Nf (H ;K). Cohen [2], using the large sieve,
proved that if K is a proper subgroup of G, then

(1) Nf(H ;K) ≪f,ε H
n−1/2+ε.

This shows that for r = 1 in HIT one can replace ‘infinitely many’ by ‘almost all’.
Zywina [10], using the larger sieve, could should that if K is a normal subgroup
of G (or more generally, a subset of G stable under conjugation), then

(2) Nf (H ;K) ≪f,ε H
n−1+|K|/|G|+ε,

which is a bound sensitive to the size of |K|. Generalising our previous work [3]
on the special case f = Xn + t1X

n−1 + . . . + tn, we can show that (2) holds
true for all subgroups K of G, not just normal ones. This does not improve on
Cohen’s result (1) for subgroups of index 2, but in the important special case
f = Xn + t1X

n−1 + . . .+ tn and K = An, we can show (see [4]) that

(3) NXn+t1Xn−1+...+tn(H ;An) ≪n,ε H
n−2+

√
2+ε.

Using (2) and (3) we obtain that all of the monic integer polynomials Xn +
t1X

n−1 + . . . + tn with coefficients ti of absolute value at most H have Galois
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group Sn, with at most

On,ε(H
n−2+

√
2+ε)

exceptions. This improves the previous 1973 world record On(Hn−1/2 logH) by
Gallagher [5].
Our new approach, rather than using reductions modulo primes and applying sieve
methods, reduces the problem on getting an upper bound for Nf (H ;K) to the
problem of bounding the number of integer points on certain auxiliary varieties,
so called Galois resolvents. To this end recent results about bounding the number
of integer points on curves and surfaces ([1], [8]) can be brought into play.
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A probabilistic study of the Explicit Formula

Daniel Fiorilli

Riemann’s Explicit Formula gives an exact expression for ψ(x), the weighted
prime-counting function, in terms of the zeros of ζ(s). Under the Riemann Hy-

pothesis, the remainder term x−
1
2 (ψ(x) − x) is a Besicovitch B2 almost-periodic

function, and thus has a limiting distribution [W]. The study of this error term
and its generalizations involves a nice blend of probability and of analytic and
algebraic number theory, and applies to many number theoretical questions.

Rubinstein and Sarnak [RS] studied the set of x for which π(x; q, a) > π(x; q, b),
where a and b are coprime to q. They determined under GRH and LI1 that the
logarithmic proportion of x for which Li(x) > π(x) is approximately 0.99999973, a
very surprising number. Among many other things, they investigated the inequal-
ity π(x; q, a) > π(x; q, b) for large values of q, in order to find extreme behavior
similar to that of the race between π(x) and Li(x). Their conclusion was that
δ(q; a, b) tends to 1

2 as q tends to infinity, and it turns out that 0.99999973 . . . is

1This states that the multiset of nonnegative imaginary parts of the nontrivial zeros of all
primitive Dirichlet L-functions is linearly independent over Q.
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the highest possible density in this problem. This is related to the fact that ζ(s) is
extreme in the family of Dirichlet L-functions, in that its first zero is the highest.
In recent work [F2], the author uncovered the existence of arbitrarily biased prime
number races. More precisely, for any ǫ > 0, there exists a modulus q and subsets
A and B of the invertible residues modulo q such that the logarithmic density of
the set of x for which 1

|A|
∑

a∈A π(x; q, a) > 1
|B|
∑

b∈B π(x; q, b) exceeds 1− ǫ. This

result is conditional on GRH and an assumption on the multiplicity of the zeros
of L(s, χ), but does not depend on the LI assumption.

The author also used similar tools to tackle a phenomenon raised by Mazur
[M] and studied by Sarnak [S], on the summatory function of ap(E), the trace of
the Frobenius of a fixed elliptic curve E. It turns out that a similar bias as that
observed by Chebyshev appears in this function. Interestingly, this bias depends
directly on the analytic rank of E. Building on the work of Sarnak, the author
raised the question of whether it was possible to find highly biased prime number
races in this context. The author [F1] was able to prove a conditional equivalence
between this statement and the well-believed conjecture that the analytic rank of
elliptic curves is unbounded, in a precise quantitative way. Interestingly, the two
existing conjectures on the growth of the analytic rank both imply the existence
of highly biased elliptic curve prime number races.

The variance of primes in arithmetic progressions. This concerns V (x; q),
the variance of primes in the residue classes modulo q:

V (x; q) :=
∑

a mod q
(a,q)=1

∣

∣

∣

∣

ψ(x; q, a) − ψ(x;χ0)

φ(q)

∣

∣

∣

∣

2

.

One of the major applications of the large sieve is the Barban-Davenport-Halberstam
Theorem which gives an upper bound on the average of V (x; q) over q ≤ Q, in the
range Q > x/(log x)A. Hooley conjectured that V (x; q) ∼ x log q in an unspecified
range of q, and the goal of this project is to make a conjecture for the exact range
in which this asymptotic should hold. Friedlander and Goldston [FG] conjectured

that the range x
1
2+ǫ < q ≤ x is admissible and might be best possible, however

Keating and Rudnick [KR] studied a function field analogue which suggests that
this range can be extended to xǫ < q ≤ x. Using the theory of large deviations
and conditional estimates on the higher moments of the distribution of V (x; q)/x,
we prove a probabilistic result which suggests that Hooley’s Conjecture holds in
the extended range (log log x)1+ǫ < q ≤ x, and that the exponent 1 + ǫ is best
possible.

The nonvanishing of L-functions at the central point. This work in progress
studies the implications of variants of Montgomery’s Conjecture on the vanishing
of L-functions at the central point. In the context of Dirichlet L-functions, we
show that among the characters χ mod q with q ≤ Q, the proportion of those

characters for which L(12 , χ) = 0 is O(Q− 1
2+ǫ). This in conditional on GRH and
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on a refined Montgomery Conjecture, which does not involve real zeros of L(s, χ).
In the context of elliptic curves, we show that an adaptation of Montgomery’s
Conjecture implies that the average rank of certain families of elliptic curve L-
functions is exactly 1

2 , in a precise quantitative manner.
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Strongly diagonal behavior in Vinogradov’s mean value theorem

Kevin Ford

(joint work with Trevor Wooley)

When k and s are natural numbers, denote by Js,k(X) the number of integral
solutions of the system of Diophantine equations

(1)

s
∑

i=1

(xji − yji ) = 0 (1 ≤ j ≤ k),

with 1 ≤ xi, yi ≤ X (1 ≤ i ≤ s). Equivalently, Js,k(X) may be expressed analyti-
cally as

(2) Js,k(X) =

∫

[0,1)k

∣

∣

∣

∑

n≤X

e2πi(α1n+α2n
2+···+αkn

k)
∣

∣

∣

2s

dα1 · · · dαk.

In this latter form it is know as Vinogradov’s mean value or Vinogradov’s integral,
after I. M. Vinogradov, who began the study of Js,k(X) in the 1930s. Bounds
on Js,k(X) find application throughout analytic number theory, such as Waring’s
problem, Diophantine approximation, character sums, equations over finite fields
and the theory of the Riemann zeta function.

The lower bound

Js,k(X) ≫ Xs +X2s− 1
2 k(k+1),

arises by considering the diagonal solutions of the system (1) with xi = yi (1 ≤
i ≤ s), together with a lower bound over that portion of the integral (2) from
|αi| ≤ (10kX i)−1 (1 ≤ i ≤ k). The main conjecture in Vinogradov’s mean value



Analytic Number Theory 2987

theorem asserts that these lower bounds are reasonably sharp, i.e. for each ε > 0,
one has

Js,k(X) ≪ Xε(Xs +X2s− 1
2k(k+1)) = Xε

{

Xs (s ≤ k(k+1)
2 )

X2s− 1
2 k(k+1)) (s ≥ k(k+1)

2 ).

Since the 1940s, the main conjecture was known to hold for s ≫ k2 log k [5]. A
recent breakthrough of Wooley ([6, 7]) has resulted in the main conjecture being
proven in the much larger range s ≥ k2 − 1. The vehicle for this advance is the
so-called “efficient congruencing” method. Our main goal is to establish the main
conjecture in the complementary variable regime, showing that diagonal behavior
dominates for half of the range conjectured.

Theorem 1. Suppose that k ≥ 4 and 1 ≤ s ≤ 1
4 (k + 1)2. Then for each ε > 0,

one has

(3) Js,k(X) ≪ Xs+ε.

In the range 1 ≤ s ≤ k, the upper bound Js,k(X) ≪ Xs follows directly from
the Viéte-Girard-Newton formulae concerning the roots of polynomials. Hitherto,
the only other case in which the bound (3) had been established was that in which
s = k + 1 (see [3, Lemma 5.4]). Our proof extends the efficient congruencing
method established in [6] and [7], incorporating ideas from the works of Arkhipov
and Karatsuba [1] and Tyrina [4].

Our methods also improve the bounds on Js,k(X) for 1
4 (k + 1)2 < s < k2; in

particular, we show that

Js,k(X) ≪ Xs+(3/2−
√
2)k2+O(k), s =

k(k + 1)

2
,

for the central critical value of s, improving the bound Js,k(X) ≪ Xs+(1/8)k2+O(k)

established in [7].
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Gaussian law and distribution of the divisor function in arithmetic
progressions

Étienne Fouvry

(joint work with Satadal Ganguly, Emmanuel Kowalski and Philippe Michel)

Let f be a Hecke holomorphic cusp form, with even weight k for the full modular
group. Let ρf (n) be its normalized Fourier coefficient, hence we have the expansion
formula

f(z) =
∑

n≥1

ρf (n)n
k−1
2 e(nz) (ℜz > 0).

By Deligne’s Theorem, we know that the real number ρf (n) is, in absolute value,
less than d(n), the usual divisor function. To study the behavior of the function
n 7→ ρf (n) in an arithmetic progression, we are naturally led to consider the
function

Ef (X ; p, a) :=

∑

n≡a mod p

ρf (n)w(n/X)

(X/p)
1
2

,

whereX is some real number tending to infinity, p is a prime number, a is an integer
coprime with p, and w is a fixed smooth function, with compact support included
in [1, 2]. Heuristical considerations lead to the conclusion that the function a 7→
Ef (X ; p, a) should roughly behave as a constant.

We also consider the same question for the divisor function, but here we have
to substract a main term, since the function d(n) does not oscillate. So let

Ed(X ; p, a) :=

∑

n≡a mod p

d(n)w(n/X) − 1

p− 1

∑

(n,p)=1

d(n)w(n/X)

(X/p)
1
2

.

To state our central result, we introduce the following notations

‖w‖ =

∫ ∞

0

|w(t)|2 dt and ‖f‖ =
3

π2

∫ ∫

SL(2,Z)\H
|f(z)|2 dx dy

y2
.

We now state

Theorem 1. ([1]). Let Φ : R+ → R+, a function tending to infinity at infinity,
such that Φ(x) = Oε(x

ε), for every ε > 0. Let X := p2/Φ(p). Then, as p tends to
infinity, the distribution of the functions

a ∈ F∗
p 7→ Ef (X ; p, a)

‖w‖‖f‖
√

4π/Γ(k)
and a ∈ F∗

p 7→ Ed(X ; p, a)

‖w‖
√

π−2 log3 Φ(p)
,

tends to the normal law N (0, 1).
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The proof is based on the computation of the following κ–moment, where κ is
an integer ≥ 1

Mg(X ; p, κ) :=

p−1
∑

a=1

Eκ
g (X ; p, a),

where g = f or d. In both situations, we appeal to additive characters (to detect
the congruence condition) and to the Voronoi summation formula. The cornerstone
of the proof of the asymptotic expansion of Mg(X ; p, κ) is the following proposition
concerning the normalized Kloosterman sum

Kl2(a; p) :=
1√
p

p−1
∑

h=1

e
(ah+ h

p

)

.

Proposition 1. Let p a prime number, let ℓ ≥ 1 be an integer, ni (1 ≤ i ≤ ℓ) be
integers, such that 1 ≤ ni < n2 < · · · < nℓ < p, and let ki(1 ≤ i ≤ ℓ) be ℓ positive
integers. We then have the equality

∑

1≤a<p

(

Kl2(an1; p)
)k1 · · ·

(

Kl2(anℓ; p)
)kℓ = A(k1, . . . , kℓ) p+O(p

1
2 ),

where the O–constant only depends on (k1, . . . , kℓ), and where

A(k1, . . . , kℓ) :=
( 2

π

∫ π

0

(2 cos θ)k1 sin2 θ dθ
)

· · ·
( 2

π

∫ π

0

(2 cos θ)kℓ sin2 θ dθ
)

.

In particular, we have A(2, . . . , 2) = 1.
The proof of this proposition consists in proving that some Kloosterman sheaves

are independent. It is highly inspired by the work of Katz [2] concerning the
vertical Sato–Tate law of the angles of Kl2(a; p).

Proposition 1 can be generalised in several directions. For instance, we can
answer to the following question: let

γ :=

(

γ1 γ2
γ3 γ4

)

,

be a matrix with integer coefficients and non–zero determinant. For p sufficiently
large, γ acts on P1(Fp) by the linear transformation a 7→ (γ1a + γ2)/(γ3a + γ4).
When are the random variables

a 7→ Eg(X ; p, a) and a 7→ Eg(X ; p, γ · a),

independent? For g = f or d, we find necessary and sufficient conditions for the
required independency in terms of γ, w and g.

Finally, the authors conjecture that Theorem 1 should be true if Φ satisfies the
weaker condition: Φ(x) = Oε(x

1−ε) for some ε > 0.
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Finite Euler product approximations of the Riemann zeta-function

Steven M. Gonek

Let F (s) = ζ(s)+χ(s)ζ(s̄), where ζ(s) is the Riemann zeta-function and χ(s) is the
factor from the functional equation ζ(s) = χ(s)ζ(1− s). Although F (s) is not an-
alytic, “knowing” it is essentially the same as “knowing” ζ(s). For instance, F (s)
has the same zeros as ζ(s) in the strip 1/2 ≤ ℜs ≤ 1, except for finitely many ex-
ceptions. We construct a family of approximations {FX(s)}, X = 2, 3, . . . , of F (s)
using finite Euler products, the pole of the zeta-function at s = 1, and any zeros
the zeta-function might have in the right half of the critical strip. This construc-
tion is based on a hybrid Euler-Hadamard product formula for the zeta-function
and the functional equation. We are then able to show that FX(s) converges to
F (s) as X → ∞ provided that s is not a zero of the zeta-function. We also show
how large X must be, in terms of s and the distance from s to the nearest zero,
to guarantee a close approximation. By construction F and FX have essentially
the same zeros to the right of the critical line, FX has at least as many zeros as
F on the critical line, and these zeros converge to the zeros of F as X → ∞. The
analysis is unconditional and suggests that the zeta-function’s zeros on and off the
critical line “arise” in two ways. It is likely that FX has about the same number
of zeros as F on the critical line rather than more, but this seems quite difficult
to prove when X is large.
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Sharp bounds for moments of zeta

Adam Harper

The moments of the Riemann zeta function (on the critical line) are the integrals
∫ 2T

T

|ζ(1/2 + it)|2kdt,

where we usually think of k ≥ 0 as fixed whilst T → ∞. Random matrix theory
supplies precise conjectures about the asymptotic behaviour of the moments, but
the only known rigorous asymptotics are the classical results that

∫ 2T

T

|ζ(1/2 + it)|2dt ∼ T logT and

∫ 2T

T

|ζ(1/2 + it)|4dt ∼ 1

2π2
T log4 T,

due to Hardy and Littlewood and to Ingham, respectively. If one could obtain
good upper bounds for the moments with k large, one could deduce pointwise
upper bounds for |ζ(1/2+ it)|, and potentially prove the Lindelöf Hypothesis. But
until quite recently, even assuming the truth of the Riemann Hypothesis did not
supply very good upper bounds1 for the moments when k > 2.

In my talk I discussed the following result, taken from my preprint [1].

Theorem 1. Assume the Riemann Hypothesis is true, and let k ≥ 0 be fixed.
Then for all large T we have

∫ 2T

T

|ζ(1/2 + it)|2kdt ≪k T logk2

T,

where the implicit constant depends on k only.

This is sharp, except for the value of the implicit constant. Previously a sharp
bound was only known (even conditionally on the Riemann Hypothesis) when
k < 2 + 2/11, due to work of Ramachandra and of Heath-Brown [2] for k ≤ 2,
and work of Radziwi l l [3] for 2 < k < 2 + 2/11. It was also known, assuming

the Riemann Hypothesis, that
∫ 2T

T
|ζ(1/2 + it)|2kdt ≪k,ǫ T logk

2+ǫ T for any fixed
k ≥ 0 and ǫ > 0, thanks to important recent work of Soundararajan [4].

The proof of Theorem 1 is a reworking of the proof of Soundararajan’s bound

≪k,ǫ T logk
2+ǫ T , and in my talk I began by discussing that argument. Whereas

classical work on moments proceeds by approximating ζ(1/2 + it) by partial sums
∑

n≤x
1

n1/2+it of its Dirichlet series, Soundararajan’s argument proceeds by upper

bounding |ζ(1/2 + it)| by truncations of its Euler product. Thus Soundararajan
showed, roughly speaking, that if the Riemann Hypothesis is true then

log |ζ(1/2 + it)| = ℜ log ζ(1/2 + it) . ℜ
∑

p≤x

1

p1/2+it
+

logT

log x
,

where T ≤ t ≤ 2T , 2 ≤ x ≤ T 2 is a free parameter, and p denotes primes.

1Prior to Soundararajan’s work [4], by assuming the Riemann Hypothesis one could prove

upper bounds of the form T 1+ok(1). These do imply the Lindelöf Hypothesis, but having assumed
the Riemann Hypothesis one might hope to obtain much more precise information.
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Formulae similar to the preceding one appear in classical work of Selberg and
others. But the right hand side of Soundararajan’s formula does not involve the
zeta function or its zeros, whose behaviour is obscure, but only a sum over primes
whose distribution may be studied as T ≤ t ≤ 2T varies. In fact, integration by

parts shows
∫ 2T

T |ζ(1/2 + it)|2kdt equals

∫ 2T

T

e2k log |ζ(1/2+it)|dt = 2k

∫ ∞

−∞
e2kV meas{T ≤ t ≤ 2T : log |ζ(1/2 + it)| ≥ V }dV.

Then Soundararajan’s formula implies that, for any choice of 2 ≤ x = x(k, T, V ) ≤
T 2, and writing U = V − (log T )/ logx,

meas{T ≤ t ≤ 2T : log |ζ(1/2+it)| ≥ V } . meas{T ≤ t ≤ 2T : ℜ
∑

p≤x

1

p1/2+it
≥ U}.

Finally, to bound the measure of the latter set one notes that, for any U ≥ 0 and
any A = A(k, T, V, x) ≥ 0,

(1) meas{T ≤ t ≤ 2T : ℜ
∑

p≤x

1

p1/2+it
≥ U} ≤ 1

UA

∫ 2T

T

∣

∣

∣

∣

∣

∣

∑

p≤x

1

p1/2+it

∣

∣

∣

∣

∣

∣

A

dt.

In practice, one needs to choose A to be an even integer, and such that xA/2 ≤ T
(say), in order to obtain reasonable bounds for the integral. But nevertheless one
has enormous flexibility in choosing x and A, separately for each V , and this is why
Soundararajan’s argument comes close to providing sharp bounds for moments.

There are two sources of loss in Soundararajan’s argument. One of these, which
I will not discuss here (see [1] for details), is a small intrinsic loss when bounding
the measures of sets using “Markov’s inequality”, as in (1). A reader familiar with
large deviation results in probability theory might be aware of this phenomenon in

that context: one obtains bounds of the shape e−z2/2 for tail probabilities, rather

than bounds (1/z)e−z2/2 which would generally (e.g. in the Gaussian case) be
sharp. Here this phenomenon produces a loss of size about

√
log logT .

The other source of loss produces most of the logǫ T factor. The crucial range of
V in the argument is V ≈ k log logT , and then one needs to choose A rather large,
and certainly such that A→ ∞ as T → ∞, in order to obtain reasonable bounds
in (1). But since we must have xA/2 ≤ T , this necessitates choosing x = T o(1).
Then the term (logT )/ logx in Soundararajan’s upper bound for log |ζ(1/2 + it)|,
which for most purposes should be thought of as an error term, tends to infinity
with T and produces a loss. In order to obtain sharp bounds for moments, one
needs to find a way to work with x = T c(k), where c(k) > 0 is small but fixed.

To see how to do this, it is useful to think heuristically about the behaviour
of ℜ∑p≤x

1
p1/2+it . As T ≤ t ≤ 2T varies, the (pit)p≤x “ought to behave” rather

like independent random variables (Up)p≤x, each distributed uniformly on the unit
circle {|z| = 1}. Thus by the Central Limit Theorem, and a simple computation
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of the mean and variance of the sum, one expects that

ℜ
∑

p≤x

1

p1/2+it
will behave like N(0,

1

2

∑

p≤x

1

p
).

Now the crucial point is that
∑

p≤x 1/p ∼ log log x grows very slowly with x, and
in particular later terms in the sum contribute very little. Thus we would expect
that, usually, ℜ∑p≤T

1
p1/2+it ≍ √

log logT (which is its “standard deviation”), but

that usually ℜ∑T 1/1000≤p≤T
1

p1/2+it ≍
√

∑

T 1/1000≤p≤T
1
p ≍ 1. So, presumably, it

is usually true that if ℜ∑p≤T c(k)
1

p1/2+it is very large, it is because the “first part”

of the sum is very large.
The course of action suggested by the above is that, instead of investigating

meas{T ≤ t ≤ 2T : ℜ∑p≤x
1

p1/2+it ≥ U}, one should try to bound

meas{T ≤ t ≤ 2T : ℜ
∑

p≤x1

1

p1/2+it
≥ U1,

and ℜ
∑

x1<p≤x2

1

p1/2+it
≥ U2, and ... ℜ

∑

xl−1<p≤xl

1

p1/2+it
≥ Ul},

where 2 ≤ x1 < x2 < ... < xl = T c(k) are suitably chosen break points. Then in
place of (1) one considers integrals of the form

1

UA1
1 ...UAl

l

∫ 2T

T

∣

∣

∣

∣

∣

∣

∑

p≤x1

1

p1/2+it

∣

∣

∣

∣

∣

∣

A1

...

∣

∣

∣

∣

∣

∣

∑

xl−1<p≤xl

1

p1/2+it

∣

∣

∣

∣

∣

∣

Al

dt.

In particular, there is obviously no requirement for all the Aj to be the same, so
one can choose Aj → ∞ for small j (where it needs to be large to detect large
values of

∑

xj−1<p≤xj

1
p1/2+it , but this is permissible because xj is small), whilst

choosing Aj = O(1) for larger j. One actually needs a multi-stage argument that
lets one assume that all the sums are “about the right size”, but essentially this
kind of splitting procedure is what is needed to obtain sharp moment bounds.

Needless to say, it would be of great interest to upgrade Theorem 1 to give
an asymptotic formula in any case when k 6= 0, 1, 2, but at present there is no
apparent way to do so.
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Zeros of systems of forms

Roger Heath-Brown

(joint work with Tim Browning)

This talk concerns work in progress. We are concerned with integral solutions
to general systems of homogeneous equations

(1) F1(x1, . . . , xn) = · · · = FR(x1, . . . , xn) = 0

where each form Fi has coefficients in Z. Our strategy is to build on the methods
developed by Birch [1] and Schmidt [2], using the circle method.

Birch’s method applies only when all the forms have the same degree D, say.
His result is described in terms of the dimension (B say) of the “singular locus”,
and shows that the expected Hardy-Littlewood asymptotic formula holds when

(2) n > B +R(R+ 1)(D − 1)2D−1.

We shall say that the system (1) is nonsingular if the gradient vectors

∇F1(x), . . . ,∇FR(x)

are linearly dependent for all non-zero x ∈ Q
n

satisfying (1). Under this condition
one can show that B ≤ R − 1, and it appears to be an open question whether or
not one always has B = R − 1. In any event one may conclude that, when R = 1
and F1 = 0 defines a smooth hypersurface in Pn−1 it suffices to have

(3) n > (D − 1)2D.

In Schmidt’s analysis one is allowed forms of differing degrees. For most of his
results the work is based on certain “h-invariants”. These give results involving
lower bounds for n which are not directly comparable with Birch’s because the
number B does not appear. However for nonsingular systems of forms of equal
degrees the Birch bound is sharper.

Our goal is to apply Birch’s approach to systems of differing degrees. Schmidt
provides a result in this direction [2, Corollary, page 262], but there are some losses
in his method.

We prove two particularly succinct results, which generalize (3).

Theorem 1. Let V ⊆ Pn be a smooth, non-degenerate, absolutely irreducible vari-
ety defined over Q. Then V satisfies the Hasse principle and weak approximation
provided only that

n ≥ (deg(V ) − 1)2deg(V ).

Moreover there is an asymptotic formula of Hardy–Littlewood type for the counting
function for rational points of bounded height on V .

When V is a hypersurface this theorem reduces to (1). However we are able
to handle varieties of arbitrary codimension. We would like to emphasize indeed
that our lower bound on n makes no reference to the codimension of V , nor to the
shape of the defining equations for V . In particular we have not required V to be
a complete intersection.
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For our second result we suppose that our system consists of rd forms of degree
d, for each positive integer d ≤ D. We assume that rD ≥ 1, but do not require
that rd 6= 0 for smaller d. We then write D = r1 + 2r2 + . . .+DrD.

Theorem 2. Suppose we have a nonsingular system of forms for which

n > (D − 1)2D.

Then the corresponding projective variety satisfies the Hasse principle and weak
approximation. Moreover there is an asymptotic formula of Hardy–Littlewood type
for the counting function for integral zeros of the system.

In fact the bounds required for n in these two results are very wasteful as soon
as R ≥ 2.

To state our most general result we define

Dj = r1 + 2r2 + . . .+ jrj , (0 ≤ j ≤ D),

td =

D
∑

k=d

2k−1(k − 1)rk, (1 ≤ d ≤ D + 1),

and

n0(d) = R− 1 + Dd

(

2d−1 + td+1

)

+ td+1 +

D
∑

j=d+1

tjrj .

We then have the following.

Theorem 3. Suppose we have a nonsingular system of forms such that n is strictly
greater than n0(d) for every degree d for which rd ≥ 1, and assume also that
n > n0(0). Then the corresponding projective variety satisfies the Hasse principle
and weak approximation. Moreover there is an asymptotic formula of Hardy–
Littlewood type for the counting function for integral zeros of the system.

As an application one may consider a system consisting of just two forms, of
degrees D > E ≥ 2. One then finds that one requires

n > 1 + (2 + E)(D − 1)2D−1 + E2E−1.

One may compare this with the corresponding result for systems consisting of two
forms of degreeD, for which the corresponding condition is that n > 1+3(D−1)2D.
Thus the bound for degrees E and D is larger than the bound for degrees D and
D, as soon as E ≥ 4. This is a little disappointing since one expects that the
former case should be “easier”.
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The ternary Goldbach problem

Harald Helfgott

The ternary Goldbach conjecture (or three-prime problem) states that every
odd number n greater than 5 can be written as the sum of three primes. Both
the ternary Goldbach conjecture and the (stronger) binary Goldbach conjecture
(stating that every even number greater than 2 can be written as the sum of
two primes) have their origin in the correspondence between Euler and Goldbach
(1742). See [1, Ch. XVIII] for the early history of the problem.

I. M. Vinogradov [7] showed in 1937 that the ternary Goldbach conjecture is
true for all n above a large constant C. Unfortunately, while the value of C has
been improved several times since then, it has always remained much too large
(C = e3100, [5]) for a mechanical verification up to C to be even remotely feasible.
The situation was paradoxical: the conjecture was known above an explicit C,
but, even after seventy years of improvements, this C was so large that it could
not be said that the problem could be attacked by any conceivable computational
means within our physical universe. (The number of subatomic particles in the
known universe is currently estimated at ∼ 1080.) Thus, the only way forward was
a series of drastic improvements in the mathematical, rather than computational,
side.

In two recent papers ([2] and [3]), I prove the ternary Goldbach conjecture.

Every odd integer n greater than 5 can be expressed as the sum of three primes.

The proof given in [2] and [3] works for all n ≥ C = 1029. The main theorem
has been checked deterministically by computer for all n < 1029 (and indeed for
all n ≤ 8.875 · 1030) [4].

(An analytic proof, in general, gives not only the existence of a way to express a
number n in a certain form (say, as the sum of three primes), but also an estimate
on the (weighted) number of ways to do so. Such an estimate is of the form

main term + error term,

where the main term is a precise function f(n) and the error term is shown to be
bounded from above by a function g(n); the proof works if g(n) < f(n) asymptot-
ically as n→ ∞. Of course, this means that such a proof works only for n greater
than some constant C, leaving small n to be verified by direct computation. The
task of verifying the main theorem for n < 1029 is really a minor computational
task. The main computation involved in the proof is by far a verification of GRH
up to bounded conductor and bounded height (due to D. Platt [6]).)

The approach is based on the circle method, and, more particularly, on a study
of exponential sums

∑

p e(αp)η(p/x), where η is a weight of our choice (a “smooth-

ing function”, or simply a “smoothing”). Such exponential sums are estimated in
[2] and [3] for α lying in the major and minor arcs, respectively.

I am able to set major arcs to be few and narrow because the minor-arc estimates
in [3] are very strong; I am forced to take them to be few and narrow because of
the kind of L-function bounds we will rely upon.
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One of the main lessons of the proof – also present in [3] – is the close relation
between the circle method and the large sieve; rather than see large-sieve methods
as a black box, it is best, in this context, to see them as a source for ideas. The
large sieve for primes – nearly optimized here, following Ramaré – is a case in
point.
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Twists and resonance of L-functions

Jerzy Kaczorowski

(joint work with Alberto Perelli)

For an L-function F from the extended Selberg class S♯ and a real valued function
f defined on positive integers, the twist is defined as follows

F (s, f) =

∞
∑

n=1

aF (n)

ns
e(f(n)) (σ > 1)

where, as usual, e(θ) = exp(2πiθ). We refer to [1] for the basic information on the
Selberg class theory. We say that there is a resonance between coefficients aF (n)
and the exponent f(n) if F (s, f) has meromorphic continuation to C and has at
least one singularity. For a given F ∈ S♯ of positive degree dF and f : N → R of
the form

f(n, α) = nκ0

N
∑

ν=0

ανn
−ων ,

where α = (α0, . . . , αN ) ∈ RN+1, 0 = ω0 < ω1 < . . . < ωN < κ0, κ0 > 1/dF we
define the conjugated exponent f∗(n, α) which is of the form

f∗(n, α) = nκ∗
0

∑

ω∈Df
ω<κ0

Aω(α)n−ω∗

,

where κ∗0 = κ0/(κ0dF − 1), ω∗ = ω/(κ0dF − 1), and Df is the additive semigroup
generated by the ω-exponents of f . We skip here details of this construction.
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Twists F (s, f) and F (s, f∗) are related by a general transformation formula of the
following form

(1) F (s, f) =
∑

j

Wj(s)F (s∗ + ηj , f
∗) +G(s),

where Wj ’s and G are ‘nice’ functions of s, and ηj ’s are real shifts. For a ‘normal-
ized’ F we have

s∗ =
s+ dFκ0

2 − 1

dFκ0 − 1
.

We consider the group GF generated by the following transformations of ex-
ponents: T : f 7→ f∗ and Sm : f 7→ f + nm for every m = 1, 2, . . . For X ∈ GF

we define X(f) in an obvious way whenever possible. By (1) it is evident that
analytic properties of F (s,X(f)) can be read from these of F (s, f) and vice versa.
Let

A(F ) = {f = X(f0) : X ∈ GF and f0 has the leading exponent κ0 ≤ 1/dF},

A0(F ) = {f ∈ A(F ) : f0(n) = αn1/dF , aF (qF |α|dF d−dF

F ) 6= 0},
where qF denotes the conductor of F and we put aF (ξ) = 0 if ξ 6∈ N.

Theorem. For an L-function F ∈ S♯ of a positive degree the following state-
ments hold true.

(1) If f ∈ A(F ) then the twist F (s, f) is meromorphic on C and for every
fixed real A < B and ε > 0 we have F (σ + it, f) ≪ exp(ε|t|) as |t| → ∞
uniformly for A < σ < B.

(2) If f ∈ A(F )\A0(F ) then F (s, f) is entire.
(3) If f ∈ A0(F ) then F (s, f) has simple poles on the half-line s = σ + iθF ,

σ ≤ 1
2 + 1

2dFD(f) , where θF is a constant depending only on F , and D(f)

is a constant explicitly defined in terms of X ∈ GF such that f = X(f0).

Example. Consider the following elliptic curve defined over Q

E : y2 − y = x3 − x.

The corresponding (normalized) L-function F (s) = L(s + 1
2 , E) belongs to the

Selberg class, has degree 2 and conductor 37. Take f0(n) = 2√
37
n1/2 and X =

TS2 ∈ GF . Then

X(f0)(n) = α0n
2/3 + β0n

1/6,

where

α0 = 3 · 2−4/337−2/3 and β0 = 37−2/3.

We have X(f0) ∈ A0(F ). Hence the twist

∞
∑

n=1

aE(n)

ns
e(α0n

2/3 + β0n
1/6)
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defined initially for σ > 1 has meromorphic continuation to C with a simple pole
at s = 7/12. In particular

∑

n

aE(n)e(α0n
2/3 + β0n

1/6)e−n/x ∼ c0x
7
12 (x→ ∞)

for certain c0 6= 0. We see that the resonance is present in this case. It can
disappear when we change β0. For instance if |β| < β0 then the new exponent
α0n

2/3 + βn1/6 belongs to A(F )\A0(F ) and the corresponding twist is entire.
There is no resonance here and we have

∑

n

aE(n)e(α0n
2/3 + βn1/6)e−n/x ≪ 1 (x→ ∞).

The same happens when we keep α0 and β0 but introduce a new term with a lower
exponent:

f(n) = α0n
2/3 + β0n

1/6 + γnλ,

γ 6= 0, 0 < λ < 1/6.
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On sums of cubes of primes and almost primes.

Koichi Kawada

In 1938, Hua showed amongst others that every sufficiently large odd integer is
the sum of nine cubes of primes, by applying technique on estimating exponential
sums over primes that Vinogradov had published in the preceding year. In this
direction, one may next wish to prove that every large even integer can be written
as the sum of eight cubes of primes.

The parity constraints contained in these statements are often called “neces-
sary” congruence conditions. If an odd integer is the sum of eight cubes of primes,
for instance, then at least one of the eight primes must be even, that is, 2. Thus
searching for a representation of an odd integer n as the sum of eight cubes of
primes is reduced to seeking for a representation of n − 23 as the sum of seven
cubes of primes, so the question turns into a problem involving only seven vari-
ables. In this sense, it is natural to concentrate on even integers when we consider
representations by sums of eight cubes of primes. But needless to say, there are
many odd integers that are sums of eight cubes of primes, and indeed this year,
2013, is such an example.

Theorem 1. Although 2013 is odd, it is the sum of eight cubes of primes.
Proof. 2013 = 23 + 33 + 33 + 33 + 53 + 53 + 73 + 113.
Seriously, no one hitherto has succeeded in proving that every large even integer

is the sum of eight cubes of primes, but several results that somewhat approach
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this end have been obtained. In particular, Brüdern [1] proved that every large
even n can be written as

(1) n = p31 + · · · + p37 + x3,

where pj ’s are primes and x is a P4. (We call an integer x Pr, when x is the product
of at most r primes.) Following this work, the author [3] showed that P4 can be
replaced by P3 in the latter statement, and also in a collaboration with Brüdern
[2] that every large even n may be written as n = p31 + · · · + p36 + x3 + y3, with
primes pj and P2-numbers x and y. The result I report in my talk is a refinement
of the latter assertions.

Theorem 2. Every large even integer n admits the expression (1) with primes
pj and a P2-number x.

The proof is relies on a couple of important methods. One is the diminishing
range method restricted minor arcs only due to Vaughan [4]. Another is the new
method on handling minor arc integrals that recently invented by Zhao [5], who
gave a fine lecture on this very method in this workshop. The strategy of the proof
of Theorem 2 fails very narrowly, in a certain sense, to establish that every large
even integer is the sum of eight cubes of primes.

It is known that this kind of work is closely related to conclusions concerning
sums of four cubes, and indeed we may also show that almost all integers n sat-
isfying the necessary congruence condition (n ± 1 are both coprime to 14, and
n 6≡ ±1, ±3 (mod 9)) can be written as n = p31 + p32 + p33 + x3, where pj ’s are
primes and x is a P2.
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On congruences and equations with products of variables from short
intervals and applications

Sergei Konyagin

(joint work with Jean Bourgain, Moubariz Garaev, Igor Shparlinski)

We obtain upper bounds on the number of solutions to congruences of the type

(x1 + s) . . . (xν + s) ≡ (y1 + s) . . . (yν + s) 6≡ 0 (mod p)

modulo a prime p with variables from some short intervals. We give some applica-
tions of our results and in particular improve several recent estimates of J. Cilleru-
elo and M. Z. Garaev on exponential congruences and on cardinalities of products
of short intervals, some double character sum estimates of J. Friedlander and
H. Iwaniec and some results of M.-C. Chang and A. A. Karatsuba on character
sums twisted with the divisor function. For almost all p and all s and also for a
fixed p and almost all s, we derive stronger bounds. Next, we estimate the number
of nontrivial solutions to the equation

(x1 + s) . . . (xν + s) = (y1 + s) . . . (yν + s) 6≡ 0

for algebraic s. We also use similar ideas to show that for almost all primes, one
can always find an element of a large order in any rather short interval.

Our results are published in [1] and [2].
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The distribution of the maximum of character sums

Dimitris Koukoulopoulos

(joint work with Jonathan Bober, Leo Goldmakher and Andrew Granville)

Given a Dirichlet character χ (mod q), we define

M(χ) = max
1≤x≤q

∣

∣

∣

∣

∣

∣

∑

n≤x

χ(n)

∣

∣

∣

∣

∣

∣

,

the maximum modulus of its partial sums. If χ is non-principal, then Pólya and
Vinogradov [Da00, Ch. 23] showed in 1918 that

M(χ) ≪ √
q log q.

This result was improved by Montgomery and Vaughan [MV77] under the assump-
tion of the Generalized Riemann Hypothesis to

M(χ) ≪ √
q log log q.
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The latter result is best possible, as Paley [Pa] had already shown in 1932 that
there is a sequence of moduli qn → ∞ such that

M
((qn

·
))

≫ √
qn log log qn.

However, such extremal examples are believed to be rare. To this end, given τ ≥ 0,
we set

Pq(τ) =
1

φ(q)
# {χ (mod q) : M(χ) > (eγ/π) · τ√q} ,

the probability that M(χ) > eγ

π τ
√
q. (Here the constant eγ/π is inserted to make

the statements of our results simpler.) Montgomery and Vaughan [MV79] showed
that Pq(τ) ≪A 1/τA, uniformly for τ ≥ 1 and q ∈ N, where A is an arbitrary
fixed number. This result was improved in some aspects recently by Bober and
Goldmakher [BG13], who showed that, for fixed τ ≥ 1 and q → ∞ over primes,

exp

{

−c0e
τ

τ
(1 + oτ→∞(1))

}

≤ Pq(τ) ≤ exp
{

−eB
√
τ/(log τ)1/4

}

,

where B is some constant and c0 = 1.09258 . . . is an explicit constant given in
terms of Bessel functions. It should be noted that the same constant c0 appears
also in the work of Granville-Soundararajan [GS07] on the distribution of L(1, χ).
This is by no means a coincidence: both the aforementioned result as well as
Theorem 1 below pass through results about the distribution of L(1, χ).

In our work we improve on the above results. More precisely, we show the
following theorem:

Theorem 1. If q is prime and 1 ≤ τ ≤ log log q −M , for some M ≥ 1, then

exp

{

−c0e
τ

τ
(1 + oτ,M→∞(1))

}

≤ Pq(τ) ≤ exp
{

−eτ+Oǫ(τ
1/2+ǫ)

}

.

The proof of the above result incorporates a combination of various techniques.
We use some probabilistic methods, such as the estimation of certain high mo-
ments of objects related to M(χ). Moreover, as mentioned above, we use ideas
from the study of the distribution of L(1, χ). Finally, we employ some techniques
arising from the theory of pretentious multiplicative functions. This theory played
a central role in the work of Granville and Soundararajan [GS07], who realized
that characters for which M(χ) is abnormally large have a multiplicative struc-
ture which resembles a lot the structure of another character of smaller conductor.
Goldmakher [Gol12] subsequently built further on these ideas to obtain sharper
results. This idea, of a character pretending to be another character, features
prominently in the proof of Theorem 1. In fact, our arguments imply that most of
the contribution to Pq(τ) comes from odd characters χ (mod q) such that χ(p) ≈ 1
for most primes p ≤ eτ .
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Diophantine equations in the primes

Ákos Magyar

(joint work with Brian Cook)

We studied prime solutions of general systems of diophantine equations. Our
main result was to obtain an asymptotic formula for the number of prime solutions
for systems whose Schmidt rank is sufficiently large with respect to the the number
and degree of the polynomials.

The primary technique used in the proof is the circle method, and our approach
is based on a partition of the variables to apply mean value type estimates on the
minor arcs. A crucial novel feature of the argument is a ”regularity lemma” ex-
ploiting the reductive properties of the Schmidt rank. It essentially means that one
can partition the level sets of a system of forms by the level sets of a new systems of
forms which have high Schmidt rank in each degree. This new system is regular in
the sense that the lattice points are distributed uniformly on its level sets. Passing
to the joint level of sets of this regular system forms provides a place to carry out a
simple Cauchy-Schwartz argument providing suitable mean value estimates on the
minor arcs. The derivation of the asymptotic formula from the contribution of the
major arcs is standard and is in agreement with general local-global type heuristics.

Our method have a certain flexibility and might be modified to study further
related problems.

1. One may study not just the number but the large scale distribution of prime
points (points with prime coordinates) on varieties defined by a system of integral
polynomials of large rank. The crucial point is to understand the Fourier trans-
form of the prime points on such varieties. This might be feasible as the minor
arcs estimates seem to be uniform in the phase variable.
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2. The results may also be strengthened in various ways. An immediate ques-
tion is to prove our asymptotic formula under the more natural condition of the
largeness of the rational Schmidt rank, instead of the complex Schmidt rank. Here
one needs to refine the elementary algebraic geometric arguments used to obtain
a suitable partition of the system to sub-systems of large ranks.

3. An interesting, and challenging problem is to bring the rank conditions in
agreement with those of Schmidt and Birch for the case of integer solutions. For
example for a single quadratic form our method needs the rank to be at least 22
as opposed to 5 needed for the existence of integer solutions. It might be that one
can approach this problem through an appropriate transference principle, such
transfer principle played a crucial role for systems of linear forms.

Generalizations of a cotangent sum associated to the zeros of the
Estermann zeta function

Helmut Maier

(joint work with Michael Th. Rassias)

The Estermann zeta function E
(

s, hk , α
)

is defined by the Dirichlet series

E

(

s,
h

k
, α

)

=
∑

n≥1

σα(n) exp (2πihn/k)

ns
,

where Re s > Re α+ 1, k ≥ 1, (h, k) = 1 and σα(n) =
∑

d|n d
α .

In 1985, R. Balasubramanian, J. B. Conrey and D. R. Heath-Brown [2], used
properties of E

(

0, hk , 0
)

to prove an asymptotic formula for

I =

∫ T

0

∣

∣

∣

∣

ζ

(

1

2
+ it

)∣

∣

∣

∣

2 ∣
∣

∣

∣

A

(

1

2
+ it

)∣

∣

∣

∣

2

dt ,

where A(s) is a Dirichlet polynomial.
Period functions and families of cotangent sums appear in recent work of S. Bettin
and J. B. Conrey (see [3]). They generalize the Dedekind sum and share with it
the property of satisfying a reciprocity formula. They have proved a reciprocity
formula for the V. I. Vasyunin’s sum (see [9]), which appears in the Nyman-
Beurling criterion (see [1]) for the Riemann Hypothesis.
In 1995, M. Ishibashi (see [5]) among other results proved that for k ≥ 2, 1 ≤ h ≤ k,
(h, k) = 1, it holds

E

(

0,
h

k
, 0

)

=
1

4
+
i

2
c0

(

h

k

)

,

where

c0

(

h

k

)

= −
k−1
∑

m=1

m

k
cot

(

πmh

k

)

.
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In the present talk, an improvement as well as a further generalization of Vasyunin’s
asymptotic formula regarding the relevant cotangent sums are presented. Further-
more, we discuss asymptotic formulas for the moments of the cotangent sums under
consideration. We present the following results:

Theorem 1. Let b, n ∈ N, b ≥ 6N , with N = ⌊n/2⌋+ 1.There exist absolute real
constants A1, A2 ≥ 1 and absolute real constants El, l ∈ N with |El| ≤ (A1l)

2l,
such that for each n ∈ N we have

c0

(

1

b

)

=
1

π
b log b− b

π
(log 2π − γ) − 1 +

n
∑

l=1

Elb
−l +R∗

n(b)

where |R∗
n(b)| ≤ (A2n)4n b−(n+1).

Proposition 1. For r, b ∈ N with (r, b) = 1, it holds

c0

(r

b

)

=
1

r
c0

(

1

b

)

− 1

r
Q
(r

b

)

,

where

Q
(r

b

)

=
b−1
∑

m=1

cot
(πmr

b

) ⌊rm

b

⌋

.

Theorem 2. Let r, b0 ∈ N be fixed, with (b0, r) = 1. Let b denote a positive
integer with b ≡ b0 (mod r). Then, there exists a constant C1 = C1(r, b0), with
C1(1, b0) = 0, such that

c0

(r

b

)

=
1

πr
b log b− b

πr
(log 2π − γ) + C1 b+O(1), (b→ +∞).

Theorem 3. Let k ∈ N be fixed. Let also A0, A1 be fixed constants such that
1/2 < A0 < A1 < 1. Then there exists a constant Hk > 0, depending only on k,
such that

∑

r:(r,b)=1
A0b≤r≤A1b

c0

(r

b

)2k

= Hk · (A1 −A0)b2kφ(b)(1 + o(1)), (b→ +∞).

Theorem 4. Let k ∈ N be fixed. Let also A0, A1 be fixed constants such that
1/2 < A0 < A1 < 1. Then we have

∑

r:(r,b)=1
A0b≤r≤A1b

c0

(r

b

)2k−1

= o
(

b2k−1φ(b)
)

, (b→ +∞).
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The density of twins of k-free numbers

Oscar Marmon

(joint work with Rainer Dietmann)

For k ≥ 2, let Ak(Z) be the number of positive integers n ≤ Z such that both n
and n+ 1 are k-free. It has been known since the 1930:s that

(1) Ak(Z) = ckZ +Ok,ε

(

Z
2

k+1+ε
)

for any ε > 0, where

ck =
∏

p

(

1 − 2

pk

)

.

In the case k = 2, Heath-Brown [2] has improved the exponent 2/3 + ε to
7/11 + ε, using the so-called square sieve. Brandes [1] adapted this method to
arbitrary k, obtaining the exponent 14/(7k + 8) + ε. In a recent preprint, Reuss
[5] gives substantial improvements for small values of k, proving the asymptotic
formula (1) with error term O(Zω(k)+ε), where in particular ω(2) ≈ 0.578 and
ω(3) ≈ 0.391. However, so far all results have involved exponents that approach
the trivial exponent 2/k as k → ∞. Our main result remedies this situation.

Theorem. We have

Ak(Z) = ckZ +Ok,ε

(

Z
14
9k+ε

)

for any ε > 0.

The main feature of the proof is a good upper bound for the density of solutions
to the Diophantine equation axk − byk = 1. More precisely, if N(X,Y, Z) denotes
the number of solutions (a, b, x, y) ∈ N4 satisfying X < x ≤ 2X , Y < y ≤ 2Y
and Z < byk ≤ 2Z, then we prove that N(X,Y, Z) ≪k,ε Z

14/(9k)+ε as soon

as XY ≫ Z14/(9k). For this, we use ideas from Heath-Brown’s paper [4], where
he introduced a bihomogeneous version of the approximate determinant method
developed in [3].
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On signs of Hecke eigenvalues

Kaisa Matomäki

Let f be a holomorphic Hecke cusp form of even weight, write λf (n) for the
corresponding Hecke eigenvalues, and write

N±
f (x) := |{n ≤ x : λf (n) ≷ 0}|.

Lau and Wu [1] have shown that N±
f (x) ≫ x, but their proof does not yield

for instance that N±
f (2x) − N±

f (x) ≫ x. Halász’s theorem on mean values of
multiplicative functions together with some properties of the eigenvalues imply
that one has even more, namely

Theorem 1. There exists a positive constant c = c(f) such that, for σ ∈ {+,−},
one has

N σ
f (x) = (12 + o(1)) · |{n ≤ x : λf (n) 6= 0}| = (c+ o(1))x.

My main interest has been in studying sign changes in short intervals; in par-
ticular I have shown the following two theorems.

Theorem 2. Let ε > 0 and σ ∈ {+,−}. Then

N σ
f (x+ xε) −N σ

f (x) ≫f,ε
xε

log5 x

for almost all x ∼ X.

Theorem 3. The number of sign changes in the sequence (λf (n))n≤x is at least

cx/ log2 x for some positive constant c.

Before these results it was only known that the sequence (λf (n))n≤x changes

sign at least cx1/2 times for some positive constant c, as a consequence of a short
interval result of Lau and Wu [1].

In the proofs of Theorems 2 and 3 I show, for appropriate h and amount of
x ∼ X , incompatible upper and lower bounds for

∑

x≤n≤x+h

λf (n) and
∑

x≤n≤x+h

|λf (n)|.
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An upper bound for the first sum follows from the well-known analogue of additive
divisor problem for cusp form coefficients and for the lower bound for the first sum
we use some results from sieve theory.

Similar methods can be used to prove some related results for λf (nk) with k ≥ 2
and for Dirichlet series coefficients of symmetric power L-functions.

I am currently interested in improving the lower bound in Theorem 3 further
and in studying similar questions for more general multiplicative functions. In
particular, after my talk at Oberwolfach, Brian Conrey and Maksym Radziwill
pointed out that it might be possible to improve on Theorem 3 by introducing a
mollifier, and I am currently investigating this possibility together with Radziwill.
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Norm forms as products of linear polynomials

Lilian Matthiesen

(joint work with Tim Browning)

Let K/Q be a field extension of finite degree n and let {ω1, . . . , ωn} denote a
Z-basis of oK . Then the form

NK(x1, . . . , xn) = NK/Q(ω1x1 + · · · + ωnxn)

is called a norm form.
Let P ∈ Q[t] be a polynomial. It was conjectured by Colliot-Thélène that

smooth and projective models for the affine variety X ⊂ An+1
Q defined by

NK(x) = P (t)

have the property that the Brauer–Manin obstruction is the only obstruction to
the Hasse principle and weak approximation. (This conjecture was in fact phrased
for a general ground field in place of Q.)

We establish the conjecture for arbitrary finite extensions K/Q and polynomials
P that split into linear factors over Q. Our proof uses the descent theory of Colliot-
Thélène and Sansuc in order to turn the problem into one that is more tractable
by analytic methods. For the analysis of the descent varieties we invoke methods
from additive combinatorics, developed by Green and Tao, and an application of
the Green–Tao–Ziegler inverse result for Gowers uniformity norms.
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Small gaps between primes

James Maynard

We introduce work in progress on a refinement of the ‘GPY method’ for studying
small gaps between primes. This refinement allows us to prove that

(1) lim inf
n

(pn+1 − pn) ≤ 700.

Moreover, under the Elliott-Halberstam conjecture, we can show

(2) lim inf
n

(pn+1 − pn) ≤ 12, lim inf
n

(pn+2 − pn) ≤ 700.

This is the first such conditional result to show that lim inf(pn+2 − pn) <∞, and
this is possible because our variation allows us to avoid some key limitations of
the original GPY method.

The basic idea of the GPY sieve method is to compare the sums

S1 = log 3N
∑

N≤n≤2N

wn,(3)

S2 =
∑

N≤n≤2N

(

k
∑

i=1

Λ(n+ hi)
)

wn,(4)

for some weights wn ≥ 0 and for a fixed ‘admissible’ set H = {h1, . . . , hk}. (We

say {h1, . . . , hk} is admissible if the polynomial P (n) =
∏k

i=1(n+ hi) has no fixed
prime divisor.) If we can choose wn such that S2 > mS1 > 0 for all large N , then
it follows that lim infn(pn+m − pn) ≤ supi6=j(hi − hj).

The standard form of the GPY method takes the weights wn to be approxi-
mately of the form

(5) wn ≈
(

∑

d|∏k
i=1(n+hi)

µ(d)f(d)
)2

,

for a suitable smooth function f : R → R.
The key idea in our method is to take instead

(6) wn ≈
(

∑

di|n+hi∀i

(

k
∏

j=1

µ(dj)
)

f(d1, . . . , dk)
)2

,

for a suitable smooth function f : Rk → R. It is the extra flexibility gained by
allowing our weights wn to depend on the divisors of each factor n+hi individually
which gives our improvement over the original GPY method.

To get asymptotic estimates for the sums S1 and S2, the GPY method relies
on results on the distribution of primes in arithmetic progressions. Given θ > 0,
we say the primes have ‘level of distribution θ’ if, for any A > 0, we have

(7)
∑

q≤xθ

max
(a,q)=1

∣

∣

∣π(x; q, a) − π(x)

φ(q)

∣

∣

∣≪A
x

(log x)A
.
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The Bombieri-Vinogradov theorem shows that the primes have level of distribution
θ for any θ < 1/2, and the Elliot-Halberstam conjecture is the claim that this can
be extended to any θ < 1.

The original work of Goldston, Pintz and Yıldırım [1] on small gaps between
primes showed that if (7) holds for some θ > 1/2 then lim inf(pn+1−pn) <∞. This
just fails to show the existence of bounded gaps between primes unconditionally.
The key breakthrough of Zhang’s recent work was in showing a weakened form of
(7) holds for some θ > 1/2, which is enough to establish the existence of bounded
gaps between primes.

If the primes have level of distribution θ > 0, then we can choose our weights
wn in terms of θ and a suitable smooth function F : Rk → R, and we can obtain
asymptotic estimates for the sums S1 and S2 as N → ∞. We find that this gives

(8)
S2

S1
∼ θJk(F )

2Ik(F )
,

where Jk and Ik are given by

Ik(F ) =

∫ 1

0

· · ·
∫ 1

0

F (t1, . . . , tk)2dt1 . . . dtk,

Jk(F ) =

k
∑

m=1

∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

F (t1, . . . , tk)dtm

)2

dt1 . . . dtm−1dtm+1 . . . dtk.

The only important restriction of F is that it has its support limited to the set

Rk = {(x1, . . . , xk) ∈ [0, 1]k :
∑k

i=1 xi ≤ 1}.
By taking F to be a suitable symmetric polynomial on Rk (and zero elsewhere),

we can calculate Jk(F ) and Ik(F ) exactly. In particular, we find by computation
that we can choose F such that

(9)
J110(F )

I110(F )
> 4.018.

By the Bombieri-Vinogradov theorem, we can take θ = 0.498 unconditionally, and
so with this choice of F we have S2 > S1 > 0 with k = 110. By choosng H suitably
this gives lim inf(pn+1 − pn) ≤ 700.

Under the Elliott-Halberstam conjecture we can take θ = 0.996, and so we see
that S2 > 2S1 > 0 with k = 110. This gives lim inf(pn+2 − pn) ≤ 700.

Finally, we find that when k = 5 we can choose F suitably such that

(10)
J5(F )

I5(F )
> 2.004.

Thus, we see that under the Elliott-Halberstam conjecture we have S2 > S1 > 0. If
we take H = {0, 2, 6, 8, 12} (which is admissible), this gives lim inf(pn+1−pn) ≤ 12.
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Counting rational points on intersection of two quadrics

Ritabrata Munshi

Let Q1(x1, . . . , xn) and Q2(x1, . . . , xn) be two quadratic forms in n variables with
integral coefficients. One is interested in the asymptotic behaviour of the counting
function

N(B) = #{m ∈ Zn : max
1≤i≤n

|mi| ≤ B, Q1(m) = Q2(m) = 0}.

From the general result of Birch [1], it follows that an asymptotic of the Hardy-
Littlewood type holds for N(B) if the number of variables n is large enough. More
precisely,

N(B) = SJ0B
n−4 +O

(

Bn−4−δ
)

for some δ > 0 if n ≥ 13 + ∆, where ∆ is the dimension of the singular locus, in
the sense of Birch, i.e.

∆ = dim {x ∈ Cn : rank(M1x,M2x) ≤ 1} .
If we assume that the variety V : Q1 = Q2 = 0 is non-singular then ∆ = 1 or 2.
In the generic case one expects ∆ = 1. In the rest of this note we assume that the
variety V is smooth and ∆ = 1.

One seeks to reduce the required number of variables in Birch’s result (at least)
to n ≥ 9. Indeed for n ≥ 9 one knows that the local solutions exist for any finite
prime from the work of Demyanov [8] (also see [2]). On the other hand from the
work of Colliot-Thélène, Sansuc and Swinnerton-Dyer [6], [7], we know that the
Hasse principle holds for n ≥ 9. (This has been improved for non-singular inter-
sections in a recent pre-print of Heath-Brown [9], where he shows that the Hasse
principle holds for n ≥ 8.)

LetW be a non-negative smooth function compactly supported in Rn, satisfying
W (j) ≪j 1, and such that 0 6∈ Supp(W ). Then we prove that

∑

· · ·
∑

m=(m1,...,mn)∈Zn

Q1(m)=Q2(m)=0

W
(m

B

)

= SJ0(W )Bn−4 +O
(

Bn−5+ε +B3n/4−41/32+ε
)

,

where the singular integral J0(W ) depends on W , and the implied constant de-
pends on Qi and ε. The error term is smaller than the main term if n − 4 >
3n/4 − 41/32, which holds if n ≥ 11. Note that for ∆ = 1, Birch [1] required
n ≥ 14. A result of similar strength can be obtained for the counting function
N(B) (without smoothing).

In certain special cases one can prove stronger results. For example, in the case
of pairs of diagonal quadratic forms, Cook [5] established the asymptotic for N(B)
if n ≥ 9. Recently in two joint works with T.D. Browning [3], [4], we established
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an asymptotic for the counting functions when the pair of forms has a different
special structure, namely

Q1(x) = q1(x1, . . . , xn−2) − x2n−1 − x2n, and Q2(x) = q2(x1, . . . , xn−2),

with q1 and q2 being quadratic forms (not necessarily diagonal). Such pairs of
quadrics appear naturally in many other important counting problems, e.g. the
Batyrev-Manin conjecture for Châtelet surfaces (see [3]). In [3] we treat the case
where n ≥ 9, and in [4] we further specialize the forms qi and prove an asymptotic
for n = 8.

We conclude this note by giving a brief sketch of the proof. The strategy builds
on [3], where we used multiplicative characters to deal with the first equation and
additive characters (the circle method) to detect the second equation. A vital
‘trick’ was to use the modulus of the multiplicative character to reduce the size
of the modulus in the circle method. This idea can also be used while applying
the circle method to detect both the equations. Say we use modulus 1 ≤ q1 ≤ B
to detect the first equation Q1(m) = 0, which has ‘size’ B2. Then we split the
second equationQ2(m) = 0 into a congruenceQ2(m) ≡ 0 mod q1 and an (integral)
equation Q2(m)/q1 = 0. Now to detect the last equation by the circle method we
need modulus of size B/

√
q1. Hence the total modulus q1q2 has size B3/2, instead

of B2 which should be the size if one used the circle method independently for both
the equations. Since the size of the modulus is much smaller than the square of the
length of the variables mi, we save by applying Poisson summation formula to each
variable. This is already sufficient to give us an asymptotic for sufficiently many
variables n ≥ 15. But the method allows us to have a Kloosterman refinement
in the first application of the circle method and a double Kloosterman refinement
in the second application. This together with the subconvexity for the Dirichlet
L-function reduces the number of required variables to n ≥ 11.
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Burgess bounds for short mixed character sums

Lillian Pierce

(joint work with Roger Heath-Brown)

Let χ(n) be a non-principal character of modulus q, and consider the character
sum

S(N,H) =
∑

N<n≤N+H

χ(n).

The Pólya-Vinogradov inequality provides the bound

|S(N,H)| ≪ q1/2 log q,

which is nontrivial only if the length H of the character sum is longer than q1/2+ǫ.
In a classic series of papers (see for example [1]), Burgess introduced a method
for bounding short character sums that results in the following well-known bound:
for any r ≥ 1 and q cube-free, or for any r ≤ 3 and q a general modulus,

S(N,H) ≪ H1− 1
r q

r+1

4r2
+ǫ,

for any ǫ > 0, uniformly in N . This provides a nontrivial estimate for S(N,H) as
soon as H > q1/4+ǫ. Burgess bounds have found valuable applications in a range
of settings, and it would be highly desirable to develop variations of the Burgess
method for mixed character sums of the form

∑

N<n≤N+H

eq(f1(n)f2(n))χ(f3(n)f4(n)),

for appropriate polynomials f1, . . . , f4. However, it has proved difficult to handle
sums involving χ evaluated at anything other than a linear function of n.

This talk presents new work in progress on sums of the form
∑

N<n≤N+H

e(f(n))χ(n),

where χ is a non-principal character to a prime modulus q and f is a real-valued
polynomial of degree d ≥ 1. The main novelty of our approach, which is inspired
by Chang [2], is that we are able to apply recent work on Vinogradov’s mean
value theorem. Define Jr,d(X) to be the number of solutions to the system of
Diophantine equations given by

xm1 + · · · + xmr = xmr+1 + · · · + xm2r, 1 ≤ m ≤ d,

where 1 ≤ x1, . . . , x2r ≤ X , for some bounded range X . The main conjecture in
the setting of Vinogradov’s mean value theorem states that for every r ≥ 1, d ≥ 1
and ǫ > 0,

(1) Jr,d(X) ≪ Xǫ(Xr +X2r− 1
2d(d+1)).
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Conditional on this bound for Jr,d(X), we prove that for all r > 1
2d(d + 1) and

H < q
1
2+

1

4(r− 1
2
d(d+1)) ,

∑

N<n≤N+H

e(f(n))χ(n) ≪ H1− 1
r q

r+1− 1
2
d(d+1)

4r(r− 1
2
d(d+1))

+ǫ
.

For d = 1, 2, the bound (1) holds true trivially, for all r ≥ 1 and thus our result
is unconditional when f is of degree 1 or 2. For d ≥ 3, due to the work of Wooley
[4], the bound (1) is now known for r ≥ d2 − 1, and as a consequence our result
is unconditional in this range as well. In the intermediate range 1

2d(d + 1) < r <
1
4 (d2 + 1) and d ≥ 3, partial results may be derived from the work of Ford and
Wooley [3].

References

[1] D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika 4

(1957) 106-112.
[2] M.-C. Chang, An estimate of incomplete mixed character sums, in “An Irregular Mind,”

Bolyai Soc. Math. Stud., 21 (2010) 243-250.
[3] K. B. Ford and T. D. Wooley, On Vinogradov’s mean value theorem: strongly diagonal

behaviour via efficient congruencing, (2013) preprint.
[4] T. Wooley Vinogradov’s mean value theorem via efficient congruencing II, Duke Math. J.

162 (2013) 673-730.

On Polignac numbers and the difference of consecutive primes

Janos Pintz

The recent theorem of Zhang showed the existence of infinitely many bounded
gaps between consecutive primes, namely, gaps not exceeding 7 · 107. This bound
was reduced to approximately five thousand by the recent Polymath project of T.
Tao.

Zhang’s result is based on the following three main pillars. First we introduce
a few definitions.

Definition. A k-tuple H = {hi}ki=1 of distinct non-negative integers is called
admissible if it does not cover all residue classes modulo any prime p.

Definition. A number ϑ is called a level of distribution of primes if for any
A, ε > 0

(1)
∑

q≤Xϑ−ε

max
a

(a,q)=1

∣

∣

∣

∣

∑

p=a(q)
p≤X

log p− X

ϕ(q)

∣

∣

∣

∣

≪A,ε
X

logAX
.

Bombieri and Vinogradov proved that ϑ = 1/2 is a level of distribution of
primes. Elliott and Halberstam (1966) conjectured that this is true for ϑ = 1 too.

Definition. Conjecture EH(ϑ) asserts that ϑ is a level of distribution of primes.

Definition. m is a Polignac number if dn = pn+1 − pn = m infinitely often.
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Polignac’s conjecture (1849). Every positive integer is a Polignac number.

The first pillar of Zhang’s theorem is the result of Goldston, Yıldırım and the
author (dn = pn+1 − pn, {pi}∞i=1 = P the set of primes).

Theorem 1 (GPY, 2005/2009). Suppose EH(ϑ) with some ϑ > 1
2 . Then we have

for any admissible k-tuple H at least two primes in n + H for infinitely many
values n. Consequently we have lim inf

n→∞
dn ≤ C(ϑ) and, equivalently, there is at

least one Polignac number.

The condition EH(ϑ) can be weakened as shown in a joint work of Y. Motohashi
and the author in 2006/2008 (A smoothed GPY sieve, Bull. London Math. Soc.
40 (2008), no. 2, 298–310, arXiv:math/0602599, Feb. 27, 2006). (Let P+(n)
denote the largest prime factor of n.)

Theorem 2 (MP 2006/2008). In Theorem 1 it is sufficient to assume EH(ϑ),
that is (1), for smooth moduli q ≤ Xϑ−ε for which P+(q) ≤ Xδ, and for any q for

residue classes a satisfying I(a) :=
k
∏

i=1

(a+ hi) ≡ 0 (mod q) if k ≥ k0(δ).

Remark. This result is attributed by Y. Zhang to himself and its proof appears in
his manuscript (Ann. Math., to appear).

Theorem 3 (Zhang). The condition of Theorem 2 is true for ϑ = 1/2 + 1/584
and δ = 1/292. Consequently we have lim inf

n→∞
dn ≤ 7 · 107, and there is at least

one Polignac number not exceeding 7 · 107. Further there are at least two primes
in translates n+ H of any admissible k-tuple H for infinitely many values of n in
case of k > 3.5 · 106.

Using an argument of the author (Lemma 4 in his article in “An irregular mind.
Szemerédi is 70”, Springer, 2010, p. 537) together with a more general form of the
arguments of Theorem 3 of Zhang and its improvement by Tao’s project, the
following strengthening of Theorem 3 can be shown. (Let P−(n) be the smallest
prime factor of n.)

Theorem 4 (J. Pintz, arXiv:1305.6289). Let k ≥ 720, H an admissible k-tuple,
hi ≪ logN , N > N0(k). Then there are at least

c1(k,H)
N

logkN

numbers n ∈ [N, 2N) such that n + H contains at least two primes and almost
primes in all other components satisfying P−(n+ hi) > N c2(k) for i = 1, 2, . . . , k.

Remark. A similar version to the above-mentioned crucial Lemma 4 of the author
appears in the book Opera de Cribo of Friedlander–Iwaniec published also in 2010.

Whereas the original Theorem 3 of Zhang yields only one Polignac number, by
the aid of Theorem 4 we can show

Theorem 5 (J. Pintz, arXiv:1305.6289). There are infinitely many Polignac num-
bers. In fact, they have a positive lower density > 10−7.
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Theorem 6 (J. Pintz, arXiv:1305.6289). There exists an ineffective C such that
we have always at least one Polignac number between X and X + C for any X.
(All gaps between consecutive Polignac numbers are uniformly bounded.)

Erdős proved in 1948 the inequality

(2) lim inf
n→∞

dn+1

dn
≤ 1 − c0 < 1 + c0 ≤ lim sup

dn+1

dn

with a very small positive value c0 and conjectured that the lim inf = 0 and the
lim sup = ∞.

Theorem 7 (J. Pintz, arXiv:1305.6289). lim inf
n→∞

dn+1

dn
= 0, lim sup

dn+1

dn
= ∞.

Further, we have even

(3) lim inf
n→∞

dn+1 logn

dn
<∞, lim sup

n→∞

dn+1

dn logn
> 0.

In general it is difficult to show anything for three consecutive differences. How-
ever, we can show

Theorem 8 (J. Pintz, arXiv:1305.6289). lim sup
n→∞

min(dn−1, dn+1)

dn(logn)c
= ∞ with c =

1/720.

Since the Prime Number Theorem implies

(4)
1

N

N
∑

n=1

dn
log n

= 1,

it is interesting to investigate the normalized distribution of dn, dn/ logn. Erdős
conjectured more than 50 years ago that the set of limit points,

(5) J =

{

dn
logn

}′
= [0,∞],

but no finite limit point was known until 2005, when we showed 0 ∈ J with
Goldston and Yıldırım. This was rather strange since Erdős (1955) and Ricci
(1954) proved that J has positive Lebesgue measure. A partial answer to the
conjecture of Erdős is

Theorem 9 (J. Pintz, arXiv:1305.6289). There is an (ineffective) constant c∗

such that

(6) [0, c∗] ⊂ J.

The above result raises the question whether considering a finer distribution
dn/f(n) with a monotonically increasing function f(n) ≤ logn, f(n) → ∞ the
same phenomenon is still true. The answer is yes.
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Theorem 10 (J. Pintz, arXiv:1305.6289). Let f(n) ≤ logn, f(n) → ∞ be an
increasing function,

(7) Jf =

{

dn
f(n)

}′
.

Then there is an (ineffective) constant c∗f such that

(8) [0, c∗f ] ⊂ J.

Zhang’s theorem shows the existence of infinitely many generalized twin prime
pairs with a difference at most 7 · 107, while the theorem of Green and Tao shows
the existence of arbitrarily long (finite) arithmetic progressions in the sequence
of primes. A common generalization of these two results is given below. (Let p′

denote the prime following p.)

Theorem 11 (J. Pintz, arXiv:1305.6289). There exists an even d ≤ 5500 with the
following property. For any k there is a k-term arithmetic progression of primes
such that p′ = p+ d for all elements of the progression.

The density of ζ(1

2
+ it) and other applications

Maksym Radziwill

We describe a general method to understand, unconditionally, the value distri-
bution of long Dirichlet polynomials in the complex plane. There are two applica-
tions of the method, both on the assumption of the Riemann Hypothesis.

• First application: There exists a constant C > 0 such that the curve drawn
by t 7→ log ζ(12 + it) in C intersects every circle {z : |z−α| = C} of radius
C, with α ∈ C. In fact we obtain the following quantitative statement:
Given a rectangle R with both sides greater than C,

meas
{

T ≤ t ≤ 2T : log ζ(12 + it) ∈ R
}

≍ Tmeas{R}
log logT

provided that the vertices of R are o(
√

log logT ).
• Second application: Let X(T ) be the number of sign changes of S(T ) :=

1
πℑ log ζ(12 + it) in an interval of length T . Then,

X(T ) ≍ T logT√
log logT

This improves on earlier work of Selberg, where the lower bound was
weaker by a factor of (log logT )−A, with A > 0 a large constant, and the
upper bound was weaker by a factor of log log logT .

The method is inspired by a recent method to deal with moments of L-functions
discovered in joint work of the author with Soundararajan, and independently by
Harper (we refer the reader to the abstracts of Soundararajan and Harper’s talks).
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The distribution of nuclear numbers

Olivier Robert

(joint work with G. Tenenbaum and C. Stewart)

For each positive integer n, we denote by k(n) its kernel (or radical), e.g. its largest
squarefree divisor. The notion of kernel of an integer appears in various problems
and conjectures, and in particular plays a central role in the abc conjecture, stated
by Masser and Oesterlé in 1985.

Our aim is to present here recent results about the distribution function N(x, y)
counting the number of the integers less than x whose kernel does not exceed y.

This study motivates the terminology introduced in the title : we shall call
nuclear number an integer with a small kernel, and more precisely y-nuclear to
specify that the kernel does not exceed y.

1) The study of N(x, y) is a joint work with G. Tenenbaum, see [1].

We give an asymptotic formula for N(x, y) in the domain

Hε := {(x, y) ∈ R : exp
(

(log log x)ε ≤ y ≤ x
)

}
as x tends to +∞. The methods essentially uses the saddle-point method in two
variables.

For large values of y, the result extends an explicit estimate obtained by Squalli
in 1985 [3], where N(x, y)/y is essentially a function of log(x/y) related to the
distribution of log(n/k(n)). With that respect, we also produce the exact domain
of validity of this estimate.

For small values of y, the estimate gives the expected term in the saddle-point
method, involving the saddle-point in two variables, the Dirichlet series associated
to the problem of N(x, y), and the Hessian. This part involves the saddle-point
method in its direct version.

For intermediate values, we use the indirect saddle-point method, and we de-
scribe precisely the transition factor.

Finally, we produce a global result in the whole considered domain, and we
explain how the general estimate, even in the non-explicit form yields local es-
timates : namely we may explicitely compare N(2x, y) and N(x, 2y) to N(x, y),
which produces a non trivial intrinsic result.

It is also of interest to mention a weaker result, but in the global domain : by
similar methods, we give an asymptotic formula for log

(

N(x, y)/y
)

as x → +∞,
uniformly for 2 ≤ y ≤ x.

However, it should be mentionned that except for small values of y, the asymp-
totic behaviour of N(x, y) outside of the domain Hε is still an open problem.

2) As an illustration of the methods and some of the results involving N(x, y),
we present a refinement of the abc conjecture. Our argument is based on the
Borel-Cantelli theorem, and only uses the following heuristic : we assume that for
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a, b coprime, the kernels k(a), k(b) and k(a+b) are independent random variables.
We then introduce the estimates for N(x, y) by deriving from our assumption that
k(a + b) behaves like the kernel of a generic integers of size a + b. The classical
abc conjecture involves a term kε where k = k(ab(a + b)). Our refinement of
this conjecture replaces the term kε by a function F (k) for which essentially ε is

replaced by 1/
√

(log k)(log log k).

This last part is a joint works with C. Stewart and G. Tenenbaum, see [2].

References

[1] O. Robert & G. Tenenbaum, ”Sur la répartition du noyau d’un entier”, to appear in Indag.
Math.

[2] O. Robert, C. L. Stewart & G. Tenenbaum, ”A refinement of the abc conjecture”, preprint
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Connections between analytic number theory and the arithmetic of
polynomials over function fields

Zeev Rudnick

The polynomial ring Fq[t] over a finite field Fq with q elements shares several
properties with the ring of integers Z, for instance a qualitative aspect is that it
has unique factorization into irreducibles. A quantitative aspect is an analogue
of the Prime Number Theorem (PNT), namely the Prime Polynomial Theorem.
Recall that the PNT states that the number π(x) of primes p ≤ x is asymptotically
equal to Li(x) :=

∫ x

2 dt/ log t ∼ x/ log x, and the Riemann Hypothesis is equivalent

to the assertion that the remainder term π(x) − Li(x) is smaller than x1/2+o(1).
The Prime Polynomial Theorem asserts that the number of monic irreducible
polynomials of degree n is qn/n + O(qn/2/n). This corresponds to the PNT if
we map x ↔ qn, recalling that x is the number of integers up to x and qn is the
number of monic polynomials of degree n.

Our lecture concerns further quantitative analogues, such as:

1. An old conjecture of Chowla on the autocorrelation of the Möbius function
has attracted a lot of attention recently [10]. A simple case (which is considered
completely out of reach) is the statement that µ(n) and µ(n+ 1) are uncorrelated,
that is

lim
N→∞

1

N

∑

n≤N

µ(n)µ(n+ 1) = 0.

In a recent paper with Dan Carmon [2], we prove a function field version of
Chowla’s conjecture in the limit of a large finite field: Fix r > 1, n > 1. Then for
any choice of distinct polynomials α1, . . . , αr ∈ Fq[t] (q odd), with max degαj < n,
and ǫi ∈ {1, 2}, not all even

lim
q→∞

1

qn

∑

F∈Mn

µ(F + α1)ǫ1 . . . µ(F + αr)ǫr = 0,
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where we denote by Mn the set of monic polynomials in Fq[t] of degree n (note
that #Mn = qn). The rate of convergence is uniform in α1, . . . , αr.

2. Together with Julio Andrade and Lior Bary Soroker [1], we study a function-
field analogue of a classical problem in analytic number theory, currently wide
open, concerning the auto-correlations of divisor functions. Let dr(n) be the num-
ber of representations of n as a product of r positive integers (d2 = d is the
standard divisor function). Several authors have studied the ”additive divisor
problem”, which is to get bounds, or asymptotics, for the sum (where h 6= 0 is
fixed for this discussion)

Dr(X ;h) :=
∑

n≤X

dr(n)dr(n+ h).

This is of importance in several problems of analytic number theory, in particular
in relation to computing the moments of the Riemann ζ-function on the critical
line, see [3].

The case r = 2, which is the only one solved so far, has a long history: Ingham
[6] computed the leading term, and Estermann [4] gave an asymptotic expansion

(1) D2(X ;h) ∼ XP2(logX ;h) +O(X11/12(logX)3) ,

where

P2(u;h) =
1

ζ(2)
σ−1(h)u2 + a1(h)u+ a2(h) ,

σ−1(h) =
∑

d|h d
−1, and a1(h), a2(h) are very complicated coefficients.

For r ≥ 3 it is conjectured that

(2) Dr(X ;h) ∼ XP2(r−1)(logX ;h) ,

where P2(r−1)(u;h) is a polynomial in u of degree 2(r − 1), whose coefficients
depend on h (and r). However to date one is very far from being able to even get
good upper bounds for individual h. Moreover, even a conjectural description of
the polynomials P2(r−1)(u;h) is difficult to obtain, see [7, 3].

We study the mean values of dr(f)dr(f + h) over Mn in the limit q → ∞,
showing that for 0 6= h ∈ Fq[t], and n > deg h,

1

qn

∑

f∈Mn

dr(f)dr(f + h) =

(

n+ r − 1

r − 1

)2

+O(q−1/2).

Note that
(

n+r−1
r−1

)2
is a polynomial in n of degree 2(r−1) with leading coefficient

1/[(r−1)!]2. For r = 2 we obtain agreement with Estermann’s result (1) under the
correspondence logX ↔ n, in the sense that we also get a quadratic polynomial
(

n+1
1

)2
= n2 + 2n + 1, whose leading coefficient agrees with the limit as q → ∞

of the function field interpretation of the leading coefficient σ−1(h)/ζ(2) of (1).
Likewise, at least the leading coefficient of the polynomial P2(r−1)(u, h) can be

interpreted in a way that allows to compare with the polynomial
(

n+r−1
r−1

)2
and

thus confirm the conjecture (2).
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3. Together with J. Keating, we established [8] a function field analogue of a
conjecture of Goldston and Montgomery [5] on the variance of the number of
prime polynomials in short intervals. The conjecture, as refined by Montgomery
and Soundararajan [9], is that the variance of primes in short intervals (in the
range Xǫ < H < X1−ǫ) is

(3)
1

X

∫ X

1

∣

∣

∣

∣

∣

∣

∑

n∈[x,x+H]

Λ(m) −H

∣

∣

∣

∣

∣

∣

2

dx ∼ H(logX − logH − C0)

where C0 = γ + log 2, with γ being Euler’s constant. Assuming the Riemann
Hypothesis and the (”strong”) pair correlation conjecture, Goldston and Mont-
gomery proved (3) without the secondary term −C0H , that is with the RHS of
(3) replaced by H(logX − logH).

We prove a function field analogue [8]: Let ||f || := qdeg f be the norm of a
polynomial. The analogue of a short interval around a polynomial A ∈ Fq[t] of
degree n, is the set of polynomials {f : ||f − A|| ≤ qh}, where 0 ≤ h < n, whose
cardinality is H := qh+1. We show that for h < n− 3,

(4)
1

qn

∑

A∈Mn

∣

∣

∣

∣

∣

∣

∑

||f−A||≤qh

Λ(f) − qh+1

∣

∣

∣

∣

∣

∣

2

∼ H(n− h− 2) + o(1))

as q → ∞.
We may compare (4) with (3) if we make the dictionary

X ↔ qn, H ↔ qh+1, logX ↔ n,

the conclusion being that (4) is precisely the analogue of the conditional result of
Goldston and Montgomery.
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Integral points of cubic hypersurfaces

Per Salberger

The following conjecture is due to Heath-Brown [1].

Conjecture. Let f(x1, ..., xn) ∈ Z[x1, ..., xn], n ≥ 3 be a polynomial such that
its homogeneous part F of maximal degree d is absolutely irreducible over Q. Let
n(f ;B) be the number of integral n-tuples x = (x1, ..., xn) ∈ [−B,B]n with f(x) =
0. Suppose that d ≥ 2. Then, n(f ;B) = Od,n,ε(B

n−2+ε).

One needs some hypothesis on F as n(f ;B) >> Bn−2+1/d for f(x1, ..., xn) =
x1 − xdn. The conjecture is then in some sense best possible as f may be of the
form xn−1g + xnh and n(f ;B) ≫ Bn−2 for such f .

The conjecture was proved for d ≥ 6 in [1] and for d ≥ 4 in [5]. One reduces in
both papers to the case n = 3 by a hyperplane section argument. One may then
apply Heath-Brown’s p-adic determinant method [3] for d ≥ 6. The case when
d = 4, 5 is harder and requires the global determinant method in [5]. For d = 2,
the conjecture follows easily from [1, lemma 13]. It thus only remains to prove the
conjecture for cubic polynomials.

If n is large and the leading form F is not too singular, then it is better
to apply versions of the circle method. It was shown by Heath-Brown [2] that
n(f ;B) = OF (Bn−3+15/(n+5)) and n(f ;B) = Od,n(Bn−3+15/(n+5) + Bn−2) pro-
vided that F is nonsingular of degree d ≥ 3. I then obtained the sharper bounds
OF (Bn−3+9/(n+2(logB)n/2) and Od,n(Bn−3+9/(n+2(logB)n/2 + Bn−2) for such f
in an unpublished preprint [4] from 2006. This proves the conjecture for n ≥ 7,
thereby saving three variables for polynomials with leading non-singular form.

I have recently obtained an even sharper bound.

Theorem. Let f(x1, ..., xn) ∈ Z[x1, ..., xn] , n ≥ 5 be a polynomial of degree d ≥ 3
such that F = fd defines a non-singular hypersurface in Pn−1. Then,

n(f ;B) = OF,ε(B
n−3+9/(n+3)+ε)

and

n(f ;B) = Od,n,ε(B
n−3+9/(n+3)+ε +Bn−2).

In particular n(f ;B) = Od,n,ε(B
n−2+ε) if n ≥ 6.
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To prove this, I use Heath-Brown’s q-analog of van der Corput’s AB-process in
[2]. This discrete circle method is used to give uniform upper estimates for the
number of congruences f = 0 (mod q) in boxes [−B,B]n for two carefully chosen
primes p and q. One needs thereby a precise knowledge of the distribution of
Fq-points in boxes on the complete intersections defined by f = 0 (mod q) and
fh = 0 (mod q)) , where

fh(x1, ..., xn) = (f(x1 + ph1, ..., xn + phn) − f(x1, ..., xn))/p

for n-tuples h = (h1, ..., hn) ∈ Zn with |hi| ≪ B/p.
The main new ingredient in the proof of the theorem (compared to [4]) is that

we average over all q in a dyadic interval [Q, 2Q] with Q of order B2n/(n+3). The
prime p is fixed and of order Bn/(n+3).

Corollary. Let f(x1, ..., xn) ∈ Z[x1, ..., xn], n ≥ 6 be a polynomial of degree d ≥ 3
such that F = fd defines a hypersurface in Pn-1 with singular locus of codimension
at least 5. Then n(f ;B) = Od,n,ε(B

n−2+ε).

This follows from the theorem by means of a hyperplane section argument.
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Unlikely intersections

Igor E. Shparlinski

(joint work with J. Bourgain, M.-C. Chang, J. Cilleruelo, D. Gómez-Pérez,
M. Z. Garaev J. Hernández, S. V. Konyagin. A. Ostafe, A. Zumalacárregui)

An amazingly large number of problems in number theory and its application
to cryptography and computer science can be formulated as the following generic
question: given two sets A and B defined by two seemingly unrelated conditions,
prove that the intersection A ∩ B is sparse. The term “unlikely intersections” for
problems of this type has been introduced by Bombieri, Masser and Zannier [3],
see also [4]. The most commonly occurring in number theory and its application
are the following examples of the sets A and B:

• an interval of h consecutive integers I = {u+ i : i = 1, . . . , h},
• a multiplicative subgroup G,
• an algebraic variety V .
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Higher dimensional analogues of these sets, and also value sets f(S) of a given
polynomial f on one the above sets S have also been considered. Here we are
mostly interested in the case when these sets are taken in a prime finite field Fp.

Typically, for any “reasonable” sets A,B ⊆ Fp, the Weil bound implies

#(A ∩ B) =
#A#B

p
+O(p1/2+o(1))

which provides a nontrivial information on #(A∩B) if #A#B ≥ p3/2+ε for some
fixed ε > 0. Here we are mostly interested in much thinner sets, in particular
when #A#B < p, so one expects A ∩ B = ∅.

So far, most of the attention has been directed to estimating #(I ∩ G) for an
interval I and a multiplicative subgroup G ⊆ F∗

p and also intersections of several
closely related sets, see [2, 6, 7, 8, 10, 11, 16, 23, 26] and references therein. Their
applications include a series of results on fixed points of the discrete logarithm [10,
11], non-vanishing Fermat quotients [5, 12, 25, 29, 30], pseudopowers [9] and the
distribution of digits in g-ary expansions of rational fractions [31]. Note that recent
results of Shkredov [26, 27, 28] immediately lead to improvements of the estimates
from [5, 9, 12, 25, 29, 30] and probably have many other applications (the results
of [31] are already based on [26]). The size of the intersection #(f(I) ∩ G) for
f ∈ Fp[X ] with deg f ≥ 2, an interval I and a multiplicative subgroup G ⊆ F∗

p has
been considered in [21].

In a series of works [14, 18, 19, 22] various bounds on the size of the intersection
#(f(I) ∩ g(J )) are given for two polynomials f, g ∈ Fp[X ] and intervals I,J .
Even the case of deg g is already nontrivial and has numerous applications, for
example, to the diameters of trajectories of polynomial dynamical systems and
to the distribution of visible points (sometimes also called primitive points) on
curves. The case of deg f = 3, deg g = 2 has interesting applications in studying
the distribution of isomorphic elliptic curves in some families over Fp.

Studying intersections of zero sets of varieties with Cartesian products of inter-
vals and multiplicative subgroups is also a very challenging and important direc-
tion, see [13, 15, 17, 18, 19], for some results and further references.

Question 1. Estimate the size of the intersection of polynomials images of two
subgroups #(f(G) ∩ g(H)) for f, g ∈ Fp[X ] and G,H ⊆ F∗

p.

Question 1 is still open even in the simplest case g(X) = X , G = H (for
f(X) = aX + b, g(X) = X , G = H, see [26]).

An interesting feature of this area is the methods it uses. It certainly relies on
well expected methods like additive combinatorics in finite fields bounds of sums
of additive and multiplicative characters. However, it also employs such “unlikely”
tools as the Bombieri-Pila bound [1], the version of Wooley [32, 33] of Vinogradov’s
Mean Value Theorem and effective Hilbert’s Nullstellensatz [20, 24].

These questions are also of interest in arbitrary finite fields Fq and infinite fields
(such as Fq[X ], R and C), in residue rings Z/mZ and in matrix rings. However
many of the above tools do not have adequate analogues in these settings. For
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example, it is important to establish a function field analogue of the Bombieri-Pila
bound [1, Theorem 4] for the number of integral points on plane algebraic curves.

Question 2. Let K = Fq(T ) and let F (X,Y ) ∈ K[X,Y ] be absolutely irreducible
with degF = d. Obtain an upper bound on the number of solutions to the equations
F (x, y) = 0 in polynomials x(T ), y(T ) ∈ Fq[T ] of degree at most n (as n→ ∞).
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Moments of zeta and L-functions

Kannan Soundararajan

A classical problem in number theory asks for an understanding of the moments,
∫ T

0 |ζ(1/2 + it)|2kdt, of the Riemann zeta-function, where k is any real positive
number. Asymptotics are known here only when k = 1 and k = 2, and until the
work of Keating and Snaith in 1998 it was difficult even to conjecture an answer.
With the work of Keating and Snaith [8], and refinements by Conrey, Farmer,
Keating, Rubinstein and Snaith [3], there are now well developed conjectures for
what the right asymptotics should be. Furthermore there are important analogs of
this conjecture for central values of L-functions in many families. The last ten years
have seen a lot of progress on these classical questions, and in my talk I surveyed
some of these recent results. The progress has been in three directions: getting
asymptotics for small moments in families of L-functions, general techniques to
produce lower bounds in many families, and general upper bounds (conditional on
the Riemann hypothesis) for many families.

Regarding asymptotics for moments, in work with Conrey and Iwaniec, I [4]
showed that the sixth moment of all Dirichlet L-functions with conductor up to Q
(with a mild averaging in t-aspect) may be computed. This result is in accordance
with the conjectures of Keating and Snaith for the sixth moment of ζ(s): in par-
ticular, the constant 42 in the leading order asymptotics was observed. Recently,
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Chandee and Li [2] have carried out an analogous calculation for the eighth mo-
ment of Dirichlet L-functions (now assuming GRH) and confirmed the conjectured
constant of 24024 here. In work with Matt Young, I [13] give another result of
this flavor, computing the second moment of quadratic twists of a modular form
on GRH; it is a tantalizing open problem to achieve this unconditionally.

Now we turn to the problem of obtaining lower bounds for moments. For the
Riemann zeta-function this is classical, going back to Titchmarsh, Ramachandra
and Heath-Brown. More recently Rudnick and I [11] developed a method that
gave lower bounds of the right order of magnitude for any family of L-functions
where a little more than the first moment can be evaluated. Our method worked
for all rational k, and the bounds depended on the height of the rational k. With
Maksym Radziwill, I [9] recently extended this method so as to obtain bounds that
vary continuously with k, and in particular obtaining lower bounds for irrational k
as well. Even for ζ(s), these continuous lower bounds are new. Our understanding
of lower bounds may be summarized as follows: Whenever some moment of L-
functions in a family is known (with a little room to spare), one may obtain the
correct lower bounds for all larger moments. This leaves open only the problem
of obtaining lower bounds for small moments, and this problem is of interest as it
is related to the problem of non-vanishing of L-functions. In some special cases,
the problem of small moments has also been handled satisfactorily; for example,
in work of Chandee and Li [2].

Finally, we consider the problem of obtaining upper bounds for moments. Some
years back, I [12] developed a method that gave, on GRH, an upper bound for
moments in families of L-functions that was sharp except for a factor of (log)ǫ.
Recent beautiful work by Harper [6] has refined this, and now one has sharp upper
bounds for moments of L-functions conditional on GRH. Independently of Harper,
Radziwill and I [10] had been developing a closely related technique which showed
that whenever some moment in a family of L-functions was known (with a little
to spare) then one obtains upper bounds of the correct order of magnitude for
all smaller moments. Already for ζ(s) this is new, and gives unconditional upper
bounds for all moments below the fourth of the Riemann zeta-function; previously
this was known on RH due to Heath-Brown [7]. Furthermore, our work gives upper
bounds of the right order of magnitude for moments (below the first) of quadratic
twists of a modular form (or elliptic curve). This provides some new information
about the size of Shafarevich-Tate groups of quadratic twists of an elliptic curve,
confirming the upper bounds in some conjectures of Delaunay [5].
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On the Waring-Goldbach problem for fourth powers

Lilu Zhao

The general philosophy underlying applications of the Hardy-Littlewood circle
method suggests that whenever s and k are positive integers with s ≥ k+1, and n
is a large natural number satisfying the necessary local conditions, then n should
be represented as the sum of s kth powers of prime numbers. It is established in
[2] that every sufficiently large positive integer congruent to 13 modulo 240 can
be represented as the sum of 13 fourth powers of prime numbers. This improves
upon the earlier result of Kawada and Wooley [1] with 14 variables.

Suppose that k ≥ 3. Let g(α) =
∑

P<p≤2P e(p
kα) and h(α) =

∑

U<p≤2U e(p
kα).

We consider
∫

m
g(α)G(α)h(α)dα, where m ⊂ [0, 1) and G(α) is an integrable func-

tion of period one. The conventional method may treat the integration as follows.
One has

∣

∣

∣

∫

m

g(α)G(α)h(α)dα
∣

∣

∣ ≤
(

sup
α∈m

|g(α)|
)

J ,(1)

where

J := J (m) =

∫

m

∣

∣G(α)h(α)
∣

∣dα.

Subject to the condition P k21−k ≤ U ≤ P , we establish a new estimate
∫

m

g(α)G(α)h(α)dα ≪ (P 4−k+εU2)
1
4

(

∫

m

∣

∣G(α)
∣

∣

2
dα
)

1
4J 1

2 + P 1−2−k+εJ .(2)

On ignoring the contribution from (P 4−k+εU2)
1
4

(

∫

m

∣

∣G(α)
∣

∣

2
dα
)

1
4J 1

2 , our con-

clusion is as strong as (1) by assuming that

sup
α∈m

|g(α)| ≪ P 1−2−k+ε.(3)
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One may also compare our conclusion to
∫

m

g(α)G(α)h(α)dα ≪
(

∫

m

∣

∣g(α)4h(α)2
∣

∣dα
)1/4(

∫

m

∣

∣G(α)
∣

∣

2
dα
)1/4

J 1/2.(4)

On ignoring the second term P 1−2−k+εJ , our conclusion is as strong as (4) pro-
vided that

∫

m

∣

∣g(α)4h(α)2
∣

∣dα ≪ P 4−k+εU2.(5)

It is worth to pointing out that both (3) and (5) are still open for k = 4 if m is
the type of minor arcs.

For suitable minor arcs m, Kawada and Wooley [1] established that

sup
α∈m

|g(α)| ≪ P 1−2−k−1+ε.

In fact, the following type of estimate was employed by Kawada and Wooley [1]
∣

∣

∣

∫

m

g(α)2G(α)h(α)dα
∣

∣

∣ ≤
(

sup
α∈m

|g(α)2|
)

J ≪ P 2−2−k+ε J .

By verifying that the contribution from first term on the right hand side of (2) is
acceptable, we obtain a desired estimate for

∫

m
g(α)G(α)h(α)dα. Therefore, we

are able to save one variable.

References

[1] K. Kawada and T. D. Wooley, On the Waring-Goldbach problem for fourth and fifth powers,
Proc. Lond. Math. Soc. (3) 83 (2001), 1–50.

[2] L. Zhao, On the Waring-Goldbach problem for fourth and sixth powers, Proc. Lond. Math.
Soc., accepted.

Problem session

1. Hugh Montgomery Let c(0) = 1, c(2n) = c(n), and c(2n+ 1) = (−1)nc(n).
Thus the c(n) are the Rudin–Shapiro coefficients, and Pk(z) =

∑

0≤n<2k c(n)zn

is the kth Rudin–Shapiro polynomial. It is classical that |Pk(z)| ≤ 2(k+1)/2 when
|z| = 1. Thus the maximum modulus of the trigonometric polynomial Pk(e(θ))

is not more than
√

2 times its root-mean-square. Saffari has conjectured that
|Pk(e(θ))|2 is asymptotically uniformly distributed in the interval [0, 2k+1]. He
further noted that his conjecture would follow if it could be shown that

∫ 1

0

|Pk(e(θ))|2m dθ ∼ 2m(k+1)

m+ 1

as k → ∞, for each positive integer m. For 1 ≤ m ≤ 26 this has been achieved
by Doche and Habsieger (Moments of the Rudin–Shapiro polynomials, J. Fourier
Anal. Appl. 10 (2004), 497–505). We now propose a stronger conjecture, that the
curve Pk(e(θ)) is asymptotically uniformly distributed in the disc |z| ≤ 2(k+1)/2.
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We further note that this conjecture would follow if in addition to the above it
could be shown that

Mm,n(k) :=

∫ 1

0

Pk(e(θ))mPk(e(−θ))n dθ = o
(

2(m+n)k/2
)

as k → ∞ for all pairsm,n of distinct positive integers. In this direction it has been
shown that M2,1(k) satisfies a linear recurrence of order all of whose eigenvalues
have absolute value 2, so that M2,1(k) ≪ 2k.

2. Roger Heath–Brown The quantitative form of the Twin Prime Conjecture
proposes that

π2(x) := #{p ≤ x : p+ 2 prime} ∼ C2

∫ x

2

dt

log2 t
.

A stronger quantitative form of the conjecture states that

π2(x) = C2

∫ x

2

dt

log2 t
+O(1) .

Prove or disprove this.

3. Heath–Brown Let S = {n : q|n =⇒ q 6≡ 3 (mod 4)}. This set contains
infinitely many pairs of consecutive integers, say x2, x2 + 1. Now let T = {n :
p|n =⇒ p 6≡ 1 (mod 4)}. Can one show that the set T also contains infinitely
many pairs of consecutive integers?

4. Brian Conrey Call this an abc conjecture, also known as the sum-product
conjecture. Let SP (n) denote the number of solutions of the equation abc + a +
b + c = n in positive integers. Show that for every ε > 0 there is a C(ε) such
that SP (n) < C(ε)nε. Bob Vaughan says that this would imply the solution of a
problem concerning Egyptian fractions. It is easy to show that if SP (n) = 0, then
n is prime.

5. Brian Conrey Show that a primitive degree 3 L-function must have infinitely
many zeros on the critical line, or give an example of such a function with this
property.

6. Greg Martin Consider the assertion that if σ > 0 and ζ(σ + it) = 0, then t
is rational. Show that this is false.

7. Igor Shparlinski Let f(q) denote the number of representations of q in the
form q = a2 + b where b is a positive integer composed entirely of primes ≡ 1
(mod 3). We know that f(q) < q1/2+o(1). For prime q, q ≡ 11 (mod 12), we know
that f(q) > q1/2+o(1). Give an asymptotic formula for f(q), or for the mean value
of f(q).

8. Zeev Rudnick Let A be an arc of length Rθ of a circle of radius R and center
0. We conjecture that if θ < 1, then there is a C(θ) such that A contains at most
C(θ) lattice points. For θ = 1/3 this was known to Jarnik. J. Cilleruelo and A.
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Córdoba (Trigonometric polynomials and lattice points, Proc. Amer. Math. Soc.
115 (1992), 899–905) proved the conjecture for θ < 1/2. D. S. Ramana (Arcs
with no more than two integer points on conics, Acta Arith. 143 (2010), 197–210)
showed that C(θ) < 2002/(1/2 − θ) for θ < 1/2. SG $100 is offered for a proof
when θ = 1/2, and US $100 is offered for a proof for all θ < 1. Miguel Walsh’s
recent improvement of the work of Bombieri and Pila may give θ = 1/2.

9. Trevor Wooley Let

S(q, a) =

q
∑

r=1

e(ark/q) .

We know that if (a, q) = 1, then S(q, a) ≪ q1−1/k. Vaughan and Wooley define

T (q, a) =

q
∑

r=1

(1/2 − r/q)e(ark/q) .

It is easy to show that if k is even, then T (q, a) = −1/2. When k is odd and
(a, q) = 1, we know that T (q, a) ≪ε q

1−1/k+ε. The problem is to determine the
true order of T (q, a). In this connection it may be helpful to note that

T (q, a) =
1

2
S(q, a) − 1

q
T ∗(q, a)

where

T ∗(q, a) =

q
∑

r=1

re(ark/q) =
1

2
(q + 1)S(q, a) +

q
∑

b=1

S(q, a, b)

1 − e(b/q)

and

S(q, a, b) =

q
∑

r=1

e((ark + br)/q) .

10. Tim Browning Estimate
∑

|x|≤N, |y|≤N, |z|≤N

y2z=x3+axz2+bz3, (x,y,z)=1

d(x) .

11. Per Salberger Let F0, . . . , Fm bem+1 polynomials of degree d in (x0, . . . , xn)
with no common zero. Then (F0, . . . , Fm) defines a morphism f : Pn → Pm. On
Pm we define a natural height H : Pm(Q) → Z, by sending an integral primitive
m+ 1-tuple (x0, . . . , xm) to max |xi|. Let B ≥ 1 and

nf (B) = #{x ∈ Pn(Q) : H(f(x)) ≤ B} .
It is then an immediate consequence of the theory of heights that

nf(B) = Of

(

B(n+1)/d
)

.

We conjecture that if f is a closed immersion, then

nf (B) = Od,n,ε

(

B(n+1)/d+ε
)

.
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This is easy to prove if d = 1, and is also known if n = 1. A proof of this would
contribute to give better uniform bounds for the number of rational points of
bounded height on general projective varieties.

12. Kevin Ford Prove that there exist infinitely many solutions in primes of

k
∏

j=1

(pj + 1) =

ℓ
∏

i=1

(qi − 1) .

Here k and ℓ may vary, but the pj are distinct and the qi are distinct. The point
here is that we would have squarefree m and n such that σ(m) = φ(n).

13. Dan Goldston Prove that
∑

n≤x

Λ(n)Λ(n+ 2) = c2x+ 2(ψ(x) − x) + Ω(log2 x) .

On the subject of the Goldbach problem, we let

r(n) =
∑

n1+n2=n

Λ(n1)Λ(n2) .

Following work of Fujii, Bhownik, Schlage–Puchta, Languosio, and Zaccagnini we
know (on RH) that

∑

n≤x

(

r(n) − n− 2(ψ(n) − n)
)

= O
(

x(log x)3
)

,

even though the individual terms in the sum are not small.

14. Chowla conjectured that if χ is a Dirichlet character, then L(σ, χ) 6= 0 for
σ > 0. The case σ = 1/2 is of particular interest. On GRH, Murty has shown
that the proportion of χ (mod q) such that L(1/2, χ) 6= 0 is at least 1/2. Improve
on this.

Reporter: Jörg Brüdern
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Dept. of Mathematics & Statistics
University of Turku
Room 117
20014 Turku
FINLAND

Dr. Lilian Matthiesen
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