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Introduction by the Organisers

“Large Scale Stochastic Dynamics” is at the crossroad of probability theory and
statistical physics, the central theme being the stochastic evolution of a system
with many interacting components. A prototypical example is the stochastic Ising
model: at the sites of a regular lattice one has spins which take values ±1. A spec-
ified spin flips at random times with a rate depending on the current neighboring
spin configuration. Such a seemingly simple model has a very rich phenomenol-
ogy. For example, let us impose that at the initial time the spin values are random
according to a Bernoulli measure, whereas the dynamics runs at low temperatures
forcing spins to align. Which laws govern the resulting spatial coarsening process?
One may modify the dynamics by requiring the number of up spins (= particles) to
be conserved, which is implemented by exchanging the spin values for a neighbor-
ing pair of spins. This model leads to a system of interacting symmetric random
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walks. One can drive the system by a uniform force field making the random
walks asymmetric. The variations are without bound. Mathematically one has to
focus on a few central issues. In fact, at the conference interesting advance was
reported on zero temperature dynamics of lozenges and on cuve shortening for
zero temperature Glauber dynamics.

Our workshop is a snap-shot of the current activities. A partial list of topics
reads

• random walks in random environments, including tree graphs

• low temperature Ising dynamics

• stochastic conservation laws with several components

• transport processes, mixing times, spectral gaps

• metastable systems

• condensation and coarsening phenomena

• hydrodynamic limits

We had 46 participants from 13 countries, mostly probabilists, but also ex-
perts from partial differential equations, numerical analysis, and statistical physics.
They all enjoyed tremendously the unique and stimulating atmosphere at the
Mathematische Forschungsinstitut Oberwolfach and hope to return some day.

Claudio Landim,
Stefano Olla,
Herbert Spohn
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Abstracts

Dynamical Gibbs-non-Gibbs transitions for interacting particle

systems

Frank den Hollander

(joint work with Roberto Fernández and Julian Mart́ınez)

In [2] the following phenomenon was discovered. A spin system is started from
a Gibbs state µ0 and is subjected to a high-temperature spin-flip dynamics. Let
µt be the state of the system evolved at time t > 0. Then µt need not be Gibbs.
Three scenarios were found:

(1) µt is Gibbs for all t.
(2) µt is Gibbs for small t and non-Gibbs for large t.
(3) µt is Gibbs for small t and for large t, but non-Gibbs for intermediate t.

For the Ising model on Z
d, d ≥ 2, with a ferromagnetic pair potential J > 0 and

an external magnetic field h ∈ R, and subjected to a high-temperature Glauber
dynamics, it was found that (1) occurs for J small and h arbitrary, (2) occurs for
J large and h = 0, while (3) occurs for J large and h 6= 0.

The fact that Gibbsianness may be lost over time did not come as a surprise. In
the late 1980’s and early 1990’s many examples of systems were found where Gibb-
sianness is lost under renormalisation transformations (like decimation, clumping
or projection). Stochastic dynamics may be seen as some sort of time-dependent
renormalisation transformation, which places it in the same context. What did
come as a surprise, however, was that loss of Gibbsianness under stochastic dy-
namics is the rule rather than the exception. In the past 10 years many examples
have been discovered, and it was found that the Gibbs-non-Gibbs phenomenon is
not at all restricted to particular choices of the interaction parameters. For an
overview, see [1].

Lack of Gibbsianness can be detected by finding bad configurations, i.e. configu-
rations that are the discontinuity points of the conditional probability distribution
for the spin at the origin given the spins outside the origin. For a bad configu-
ration this conditional probability varies by some fixed ǫ > 0 in total variation
norm when the configuration is altered outside a large box Λ containing the ori-
gin irrespectively of how large Λ is. The presence of bad configurations indicates
that the system is not quasi-local, i.e., the system cannot be described by a locally
summable interaction Hamiltonian. Thus, lack of Gibssianness is equivalent to the
existence of bad configurations, signaling the presence of a hidden phase transition
in the behavior of the spin at the origin as the spins “infinitely far away” are varied
(these spins play the role of a boundary condition). For the Ising model with J
large and h = 0, it was found in [2] that no bad configuration exists for µt for
small t, while the alternating configuration is bad for µt for large t (scenario (2)).

The above way of detecting lack of Gibbsianness is static: for fixed t, bad
configurations at time t are identified that correspond to a phase transition of the
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system at time 0. In [3] a new view on the Gibbs-non-Gibbs phenomenon was put
forward, namely, a dynamic rather than a static point of view. It was conjectured
that lack of Gibbsianness of the state µt at time t is equivalent to a certain large
deviation rate function having more than one global minimizer. More precisely,
consider the trajectory of the empirical distribution (πs)s∈[0,t] of the system during
the time interval [0, t]. Look at the conditional probability distribution for this
trajectory given that at time t it ends in a certain value, say πt = ν for some ν in
the space of probability measures on the set of spin configurations. Let It,ν denote
the large deviation rate function for this conditional probability distribution (in
the infinite-volume limit). The conjecture says: the state µt at time t is not Gibbs
if and only if there is some ν for which It,ν has more than one global minimizer.
We may think of ν as a bad empirical distribution, taking over the role of the bad
configuration in the static point of view.

The above conjecture remains open in general. For one, it is generally very
hard to compute It,ν explicitly for a given interacting particle systems. However,
progress has been made by looking at mean-field models. For mean-field models
the Hamiltonian depends on the size n of the system and therefore the single state
µt at time t for lattice systems must be replaced by a sequence (µt,n)n∈N of states
at time t labelled by the system size n. The notion of what Gibbs means needs to
be modified accordingly. As was suggested in [6], the sequence (µt,n)n∈N is to be
called Gibbs if for all α ∈ R the conditional probability distribution under µt,n of
the first spin given that the magnetization of the n − 1 other spins equals αn−1

converges as n → ∞ to a limiting distribution whenever limn→∞ αn−1 = α, and
this limiting distribution is continuous in α.

In [4] the Curie-Weiss model subject to an independent spin-flip dynamics was
analyzed, and in [5] a Kac-type version of this model. It was shown that the
conjecture raised in [3] is true for all values of the interaction parameters. More-
over, a complete classification of the optimal trajectories was obtained, and it
was found that the optimal trajectories may exhibit interesting properties, like
avoiding certain forbidden regions and being non-monotone in time.

Future work will focus on mean-field and Kac-type models of R-valued spins
subject to a dynamics of weakly interacting diffusions. In the continuum-spin
setting the powerful machinery of stochastic analysis can be brought into play. An
additional scenario shows up: (4) µt is non-Gibbs for all t > 0.
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Macroscopic diffusion for some energy models with mechanical origin

Makiko Sasada

We report recent studies on the derivation of heat transport from mechanical
dynamics via a so-called two-step approach. In the context of the derivation of
heat transport, the two-step approach is the strategy consists of (i) a derivation
of a mesoscopic stochastic dynamics for energies from a microscopic mechanical
dynamics via a rare (or weak) interaction limit and (ii) a derivation of a time
evolution equation describing the macroscopic energy transport for the mesoscopic
stochastic dynamics via a proper space-time scaling limit (more precisely, the
hydrodynamic limit). There are two typical examples of the dynamics studied
by this approach: these are “localized hard balls with elastic collisions” studied
by Gaspard and Gilbert [2, 3] and “energy transfer in a fast-slow Hamiltonian
system” studied by Dolgopyat and Liverani [1]. From these dynamics, they derived
respective stochastic dynamics for energies.

In this talk, we consider the generalized stochastic processes of these examples,
called stochastic energy exchange models (SEE) introduced by Grigo et al. [4] and
energy conserving stochastic Ginzburg-Landau models (ECGL) which has been
studied by Varadhan [8]. We remark that a two-particle model in the class of
ECGL was also obtained from a microscopic dynamics in [5].

SSE and ECGL are both Markov processes on the state space RN
+ := (0,∞)N =

{(xi)Ni=1;xi > 0} where N represents the number of particles and xi represents
the energy of i-the particle.

SSE is a pure jump process with model parameters (Λ, P ) where a continu-
ous function Λ : R2

+ → R+ represents the collision rate between particles and a

probability measure-valued continuous function P : R2
+ → P((0, 1)) represents the

collision kernel. The infinitesimal generator L of SSE acting on bounded functions
f : RN

+ → R is

Lf(x) =

N−1∑

i=1

Λ(xi, xi+1)

∫
P (xi, xi+1, dα)

(
f(Ti,i+1,αx)− f(x)

)

where

(Ti,i+1,αx)k =





α(xi + xi+1), if k = i,

(1− α)(xi + xi+1), if k = i+ 1,

xk, if k 6= i, i+ 1.

ECGL is a multi-dimensional diffusion process with model parameters (κ, σ) where
κ : R2

+ → R and σ : R2
+ → R+ are smooth functions satisfying a condition to
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guarantee the process remains in the state space R
N
+ forever. The infinitesimal

generator L of ECGL acting on smooth bounded functions f : RN
+ → R is

Lf(x) =

N−1∑

i=1

κ(xi, xi+1)
(
∂xi+1

− ∂xi

)
f +

1

2
σ2(xi, xi+1)

(
∂xi+1

− ∂xi

)2
f.

The process is also defined by the following SDEs:
{

dxi = dJi−1,i − dJi,i+1

dJi,i+1 = κ(xi, xi+1) dt+ σ(xi, xi+1 dBi,i+1.

Our goal is to derive the hydrodynamic limit for SSE or ECGL under “good”
condition on model parameters (Λ, P ) or (κ, σ). Here, “good” means the class
satisfying the condition is general enough as it includes all the examples mentioned
above, but not so general as we can show the hydrodynamic limit rigorously for
the models in the class. Unfortunately, we do not achieve the goal so far since
both of the models are of non-gradient type, but we have some results on the keys
of the proof of hydrodynamic limit for non-gradient systems. Precisely, they are
the characterization of reversible measures and the spectral gap estimate.

To study a sufficient condition for SSE or ECGL to be reversible with respect
to some product measure, we introduce the notion of mechanical form. Actually,
the notion of mechanical form for SSE was already introduced in [4]. Note that it
might be a natural condition for models with mechanical origin.

Definition 1. A pair (Λ, P ) is said to be of mechanical form if

• Λ(E1, E2) = Λsum(E1 + E2) Λratio(
E1

E1+E2
),

• P (E1, E2, dα) = Pratio(
E1

E1+E2
, dα).

Definition 2. A pair (κ, σ) is said to be of mechanical form if

• κ(E1, E2) = κsum(E1 + E2)κratio(
E1

E1+E2
),

• σ(E1, E2) = σsum(E1 + E2)σratio(
E1

E1+E2
).

With these notions, a sufficient condition for SSE or ECGL to be reversible
with respect to an identical product measure is obtained.

Proposition 1 ([4]). Assume (Λ, P ) is of mechanical form and Pratio(β, dα) has
a unique invariant distribution p(dβ) as a transition probability kernel on (0, 1).
Then, SSE with (Λ, P ) is reversible with respect to the product Gamma-distribution
with parameter γ if and only if p(dβ) = 1

Z (β(1 − β))γ−1Λratio(β) dβ. Moreover,
if SSE with (Λ, P ) is reversible with respect to some identical product probability
measure, then it must be a Dirac measure or a product Gamma-distribution.

Proposition 2 ([7]). Assume (κ, σ) is of mechanical form and the process has
a unique invariant distribution with positive density. Then, ECGL with (κ, σ) is
reversible with respect to some identical product probability measure if and only if
κ(a, b) = 1

2pγ(a)
−1pγ(b)

−1(∂b − ∂a)pγ(a)pγ(b)σ
2(a, b) for some γ > 0 where pγ is

the density of the Gamma-distribution with parameter γ, and if it holds then the
measure must be the product Gamma-distribution with parameter γ.
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We remark that the models obtained in [2, 3, 1] are all of mechanical form and
reversible with respect to a product Gamma-distribution.

For the processes reversible with respect to a product Gamma-distribution, we
consider the spectral gap for SSE or ECGL on the canonical state space Se,N :=

{x ∈ R
N
+ ; 1

N

∑N
i=1 xi = e} denoted by λ(e,N). We have the following spectral

gap estimate.

Theorem 1 ([6]). Assume (Λ, P ) is of mechanical form and SSE with (Λ, P ) is
reversible with respect to a product Gamma-distribution with parameter γ. We also
assume that Λsum(s) ≥ Asm for some m ≥ 0 and A > 0. Then, ∃C = C(m, γ) > 0
s.t. ∀N ≥ 2 and ∀e > 0,

λ(e,N) ≥ Cλ(1, 2)
em

N2
.

Theorem 2 ([7]). Assume (κ, σ) is of mechanical form and ECGL with (κ, σ)
is reversible with respect to a product Gamma-distribution with parameter γ. We
also assume that σsum(s) ≥ Asm+1 for some m ≥ 0 and A > 0. Then, ∃C =
C(m, γ) > 0 s.t. ∀N ≥ 2 and ∀e > 0,

λ(e,N) ≥ Cλ(1, 2)
em

N2
.

We remark that the models obtained in [2, 3] satisfy the assumption in Theorem
1 as Λsum(s) =

√
s, but the model obtained in [1] does not satisfy the assumption

in Theorem 2 as σsum(s) = s
1
4 .

In this talk, we also discuss a formal description of the macroscopic diffusion
coefficient for the hydrodynamics equation. With this description, we can show
that under the assumptions in Theorems 1,2 and also assuming Λsum(s) = sm or
σsum(s) = sm+1 for somem, the diffusion coefficient D(E) should be D(E) = cEm

for some constant c. Surprisingly, it is true even if the process is of non-gradient
type. But note that the constant c is not explicit for the non-gradient models
though it is explicit for the gradient models.
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Expansion of the Green-Kubo formula in the weak coupling limit

Cédric Bernardin

(joint work with François Huveneers, Joel L. Lebowitz, Carlangelo Liverani and
Stefano Olla)

Energy transport in nonequilibrium macroscopic systems is described phenomeno-
logically by Fourier’s law. This relates the energy flux J , at the position r in the
system, to the temperature gradient at r, via J = −κ∇T . The computation of
the thermal conductivity κ, which depends on the temperature and the constitu-
tion of the system, from the underlying microscopic dynamics is one of the central
mathematical problems in nonequilibrium statistical mechanics (see [4, 12, 7] and
references therein).

The Green-Kubo (GK) formula gives a linear response expression for the ther-
mal conductivity. It is defined as the asymptotic space-time variance for the energy
currents in an infinite system in equilibrium at temperature T = β−1, evolving
according to the appropriate dynamics. For purely Hamiltonian (or quantum) dy-
namics, there is no proof of convergence of the GK formula (and consequently no
proof of Fourier law). One way to overcome this problem is to add a dash of ran-
domness (noise) to the dynamics [3]. In the present work we explore the resulting
GK formula and start an investigation of what happens when the strength of the
noise, ς , goes to zero.

Our basic setup is a chain of coupled systems. Each uncoupled system (to
which we will refer as a cell) evolves according to Hamiltonian dynamics (like a
billiard, a geodesic flow on a manifold of negative curvature, or an anharmonic
oscillator...) perturbed by a dynamical energy preserving noise, with intensity ς .
We will consider cases where the only conserved quantity for the dynamics with
ς > 0, is the energy. The cells are coupled by a smooth nearest neighbor potential
εV . We assume that the resulting infinite volume Gibbs measure has a convergent
expansion in ε for small ε. We are interested in the behaviour of the resulting
GK formula for κ(ε, ς) for small ς and ε keeping the temperature β−1 and other
parameters fixed.

We start by noting that for ς > 0, the GK formula is well defined and has a
finite upper bound [3]. We do not however have a strictly positive lower bound
on κ(ε, ς) except in some special cases [3]. We believe however that κ(ε, ς) > 0
whenever ε > 0, ς > 0, i.e. there are no (stable) heat insulators. The fact that
κ(ε, ς) ≥ 0 follows from the definition of the GK formula. The situation is different
when we let ς → 0. In that case we have examples where κ(ε, ς) → 0 (disordered
harmonic chains [2]), and where κ(ε, ς) → ∞ (periodic harmonic systems).

To make progress in elucidating the properties of κ(ε, ς), when ς → 0, we carry
out a purely formal expansion of κ(ε, ς) in powers of ε: κ(ε, ς) =

∑
n≥2 κn(ς)ε

n.
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This is formal because space-time correlations entering in the GK formula are
non-local function and depends themselves on ε.

We then investigate the structure of the term κ2(ς), which we believe, but
do not prove, coincides with the limε→0 κ(ε, ς)/ε

2. We show that κ2(ς) is finite
and strictly positive for ς > 0 by proving that it is equal to the conductivity
obtained from a weak coupling limit in which there is a rescaling of time as ε−2t
(cf. [13, 14]). We argue further that the limς→0 κ2(ς) exists and is closely related to
the weak coupling macroscopic conductivity obtained for the purely Hamiltonian
dynamics ς = 0 from the beginning. The latter is computed for a geodesic flow on
a surface of negative curvature, and is strictly positive [10]. A proof would require
the extension to random perturbations for the theory developed for deterministic
perturbations in [6, 5]. This should be possible by arguing as in the discrete time
case [11].

Nevertheless the identification of κ2(ς) with the weak coupling limit conduc-
tivity (suggested by H. Spohn [16]) gives some hope that the higher order terms,
can also be shown to be well defined and studied in the limit ς → 0. This could
then lead (if nature and mathematics are kind) to a proof of the convergence and
positivity of the GK formula for a Hamiltonian system.

We next show that we obtain the same κ2(ς) for the thermal conductivity of
an open system: N coupled cells in which cell 1 and cell N are in contact with
Langevin reservoirs at different temperatures, when we let N → ∞ and the two
reservoir temperatures approach to β−1.

We then study in details κ2(ς) for 3 examples: the isolated cell hamiltonian
is (1) a pinned anharmonic oscillator, (2) a rotor; (3) the system at ς = 0 is
a random (positively) pinned harmonic chain. In all cases we can prove that,
generically, lim supς→0 κ2(ς) < +∞, as contrasted with the regular harmonic chain
when κ2(ς) → ∞ when ς → 0 [1, 8]. In case (1) and (2) we have no lower bound for
this limit, but we believe that it will be strictly positive. In case (3) we prove that
the limit is 0, as in the harmonic chain for ς → 0, with random pinning springs.
Phase mixing, due to lack of resonances between frequencies of different cells at
different energies, is the relevant ingredient for the finiteness of κ2(ς) when ς → 0.
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Error estimates in the numerical computation of transport coefficients

Gabriel Stoltz

(joint work with Ben Leimkuhler and Charles Matthews)

Computational statistical physics aims at approximating the average properties of
a physical system of interest. The microstate of the system of N particles is de-
scribed by a configuration (q, p) = (q1, . . . , qN , p1, . . . , pN ) ∈ E and a Hamiltonian
energy function

H(q, p) = V (q) +
1

2
pT M−1 p,

where the symmetric, definite, positive matrix M is the mass matrix. In most
practical cases, the configuration part M of the phase space E = M × R

3N is
a periodic box (LT)3N . Static properties can be written as the average of an
appropriate observable A(q, p) with respect to some probability measure defining
the thermodynamic ensemble, typically the canonical measure

µ(dq dp) = Z−1
NVT e−βH(q,p) dq dp, β =

1

kBT
.

The corresponding very high-dimensional integral is approximated in practice by
time-averages of ergodic dynamics such as the Langevin dynamics

{
dqt = M−1pt dt,

dpt = −∇V (qt) dt− γM−1pt dt+
√

2γ
β dWt,

where γ > 0 is the friction parameter, and Wt is a standard 3N -dimensional
Brownian motion. More precisely, the following Law of Large Number holds:

lim
t→+∞

1

t

∫ t

0

A(qs, ps) ds =

∫

E
A(q, p)µ(dq dp) a.s.(1)
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Additional convergence results on the law of the process can also be stated, see for
instance [1, 2, 7] for convergence results in the H1(µ) norm, and [5] for Lyapunov
techniques leading to a convergence in weighted L∞ spaces. In fact, an important
element for the proofs of our results are fine pointwise estimates on the resolvent
of the generator L of the Langevin dynamics, which ensure that functions with
derivatives growing at most polynomially are still at most of polynomial growth
under the action of the resolvent (see [6] as well as the recent account [3]).

One aim of numerical analysis in the domain of computational statistical physics
is to propose numerical methods to approximate (1) by numerically integrating the
Langevin dynamics with a time step ∆t, and to give error bounds as a function of
the time step. More precisely, we look for a Markov chain (qn, pn), where (qn, pn)
is an approximation of (qn∆t, pn∆t). For instance, it is possible to consider splitting
schemes where the various parts of the dynamics are analytically integrated one
after the other. To this end, we decompose the generator as L = A+B +C with

A = M−1p · ∇q, B = −∇V (q) · ∇p, C = −M−1p · ∇p +
1

β
∆p.

A possible scheme consists for instance in first integrating the elementary dynamics
associated with A, then B, then C, leading to the scheme





p̃n+1 = pn −∆t∇V (qn),

qn+1 = qn +∆tM−1p̃n+1,

pn+1 = α∆tp̃
n+1 +

√
1−α2

∆t

β M Gn

where Gn are i.i.d. Gaussian and α∆t = exp(−γM−1∆t). A numerical scheme is
characterized by its evolution operator

P∆t ψ(q, p) = E

[
ψ
(
qn+1, pn+1

) ∣∣∣ (qn, pn) = (q, p)
]
.

The idea is that P∆t ≃ e∆tL in a sense to be made precise.
We prove in [4] the ergodicity of splitting schemes similar to the one above, in

the sense that a Law of Large Number holds for a modified measure µγ,∆t(dq dp)

1

Niter

Niter∑

n=1

A(qn, pn) −−−−−−−→
Niter→+∞

∫
A(q, p)µγ,∆t(dq dp),

and a uniform-in-∆t convergence rate holds in some weighted L∞ space:
∥∥∥∥P

n
∆tf −

∫

E
f dµγ,∆t

∥∥∥∥
L∞

W

≤ K e−λn∆t ‖f‖L∞

W
.

Error estimates on the computation of average properties are obtained as
∫

E
ψ(q, p)µγ,∆t(dq dp) =

∫

E
ψ(q, p)µ(dq dp)

+ ∆tα
∫

E
ψ(q, p)fα,γ(q, p)µ(dq dp) + O(∆tα+1),
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where the correction function fα,γ satisfies some Poisson equation L∗fα,γ = gγ
(with adjoints taken on L2(µ) and gγ depends on the scheme). It is then possible to
rewrite the correction term as an integrated correlation function, and approximate
it on-the-fly to reduce the bias on the invariant measure (see [4]). Uniform error
estimates in the overdamped limit γ → +∞ can also be stated.

The numerical analysis quantifying the errors on the invariant measure can be
extended to obtain error estimates on transport properties such as the mobility.
In general, transport coefficients are expressed as integrated correlation functions
(Green-Kubo formulas), or can be obtained as the linear response of some observ-
able for an appropriately forced dynamics. We present in [4] error estimates on (i)
integrated autocorrelation functions based on a modification of the observables ap-
pearing in the correlation product to increase the precision of the method; as well
as on (ii) the linear response of nonequilibrium dynamics, by a double expansion
with respect to the time step and the magnitude of the forcing parameter.
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Exit distributions for a class of anisotropic random walks in random

environment

Erwin Bolthausen

(joint work with Erich Baur)

We consider the standard random walk in random environment (RWRE for short)
on Z

d: This is a Markov chain with “disordered ” transition probabilities. The

disorder is given by ω = {px}x∈Zd ∈ Ω
def
= PZ

d

, where

P def
=

{
p : prob. distr. on {e : |e| = 1}

}
.

We exclusively use e to denote a lattice point in Z
d which is nearest to the origin.
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For a fixed “environment ”ω, and starting point x ∈ Z
d the Markov chain

{Xn}n≥0 has the “quenched ”law

Px,ω

[
X0 = x

]
= 1 and Px,ω

[
Xn+1 = y + e

∣∣Xn = y
]
= py(e).

The basic assumptions we make are:

(I) The disorder is random and i.i.d.: P on Ω is a product measure P = µZ
d

,
where µ is a probability distribution on P

(II) Small disorder assumption: For some (small) ε > 0 thefollowing holds:

µ

[{
p :

∣∣∣p(e)− 1

2d

∣∣∣ ≤ ε
}]

= 1.

Example 1. Choose a preferred ê with probability 1
2d , and then take p(ê) = 1

2d+ε,

p(e) = 1
2d − ε

2d−1 , e 6= ê.

In contrast to the quenched law, there is the marginal measure on the paths
contracted from the joint law P⊗Px,·. Under this so called averaged law, {Xn} is
not Markovian.

Remark 1.

(1) Px,ω is not reversible for d ≥ 2 (and not for d = 1 if one steps away from
the nearest neighbor case)

(2) A lot is known under ballisticity conditions, as Sznitman’s condition (T ′).
In that case

lim
n→∞

Xn

n
6= 0.

The one-dimensional case is well studied in works of Solomon [7], [4], [6], and
many others. In the higher-dimensional case, a lot is known under ballisticity
conditions, like Sznitman’s condition (T’), see e.g. [8]. The non-ballistic case in
more than one dimension proved to be very delicate. For d = 2, nothing is known
rigorously, except in special cases, like the balanced case investigated by Lawler [5].
For d ≥ 3, under the assumption that the µ is invariant under lattice isometries,
there is the celebrated work by Bricmont and Kupiainen [3], and more recently,
for the continuous space setting, the work by Sznitman and Zeitouni [9], and in
the lattice case, concentrating on exit distributions [2].

An important open problem is to achieve a complete perturbative picture at
least for dimension d ≥ 3:

Conjecture 1. Given d ≥ 3 there exists ε(d) > 0 such that whenever the above
conditions (I) and (II) are satisfied, there exists a(µ) ∈ R

d, and a positive definite
matrix Σ(µ) such that

L
(
Xn − na(µ)√

n

)
−→ N

(
0,Σ(µ)

)
, P-a.s.

This appears to be beyond present days techniques. If true, it would prove
the open 0-1-law in the perturbative regime. There is in fact no hope to have
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an explicit computation of a(µ), Σ(µ), or an explicit characterization of non-
ballisticity

{
µ : a(µ) = 0

}
.

The main new result we have is about exit distributions from Euclidean balls,
under the assumption that µ is symmetric under reflections only, and not neces-
sarily under rotations.

Consider Euclidean balls in Z
d: VL

def
= {x ∈ Z

d : |x| ≤ L}, and define

ΠL,ω(x, z)
def
= Px,ω

[
XτL = z

]
, x ∈ VL, z ∈ ∂VL,

where τL is the first exit time from VL(x)
def
= x+ VL.

Theorem 1 (E. Baur and E. Bolthausen, 2013). [1] Assume that µ is invariant
under reflections only. (This rules out the possibility of a(µ) 6= 0). If ε > 0 is
small enough and the conditions (I) and (II) are satisfied, there is a sequence pL
of nearest neighbor (non-random, but L-dependent) transition probabilities with
pL(e) = pL(−e), |e| = 1, such that

a)

p∞(e) = lim
L→∞

pL(e) and p∞(e) > 0, for |e| = 1.

b) If πL is the exit distributions from VL by a random walk with transition
probabilities pL, one has that ΠL ≈ πL on large scales as L → infty.
Precisely,

lim
L→∞

∑

y

∣∣∣∣
∑

x

(
ΠL(0, x)− πL(0, x)

)
φL(x, y)

∣∣∣∣ = 0,

where φL is a (rather arbitrary) smoothing operation on a scale ≫ 1 but
possibly ≪ L.

Remark 2. (1) A smoothing operation is necessary because there are effects
of the random environment close to the boundary.

(2) An alternative phrasing is that ΠL is asymptotically the same as the exit
distributions of a Brownian motion with covariance matrix

Σ∞ =




σ2
1 · · · 0
...

. . .
...

0 · · · σ2
d


 ,

with σ2
i > 0.

The main tool is the perturbation expansion for exit distributions as in [2].
Assume first invariance under all lattice isometries, and put define gORW

L to be the
Green’s function of ordinary random walk on VL, killed at exiting the set. Put

∆y(e) = ωy(e)−
1

2d
.
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Then one has the expansion

ΠL,ω(x, z) = πL(x, z) +
∑

y∈VL,e

gORW
L (x, y)∆y(e)

(
πL(y + e, z)− πL(y, z)

)

+
∑

y,y′∈VL

e,e′

gORW
L (x, y)∆y(e)

(
gORW
L (y + e, y′)− gORW

L (y, y′)
)

× ∆y′(e′)
(
πL(y

′ + e′, z)− πL(y
′, z)

)
+ · · ·

First the question: Why is d ≥ 3 “easy ”?

If we set ξ(x)
def
= Ex,ω[X − x], ξL

def
= L−1E0,ω[XτL ], then

ξL =
1

L

∑

x

gL(0, x) ξ(x)

+
1

L

∑

x,y

gL(0, x)∆x(e)
(
gL(x+ e, y)− gL(x, y)

)
ξ(y) + · · ·

For fixed L, ε→ 0 this leads to a valid expansion of L(ξL). If we set covP[ξ] def= δ Id,

covP[ξL]
def
= δL Id, and taking into account only the first term gives

δL ≈
(
L−2

∑
x∈VL

gL(0, x)
2

)
δ.

For d = 1, one has gL(0, x) ≈ L, and therefore δL ≈ const×L δ. So, in one
dimension, the disorder is enlarged, even taking into account only the leading term
in the expansion. The two-dimensional case is the borderline: Here gL(0, x) ≈ 1,
and in fact, a simple computation gives

lim
L→∞

lim
δ→0

δL
δ

=
2

π
.

The factor 2/π is irrelevant. One has to take into account that on scale L one
has dependencies between ξL(x) and ξL(0) for |x| < 2L. Taking that properly
into account leads to 1 instead of 2/π. Therefore, in the two-dimensional case, the
disorder is not contracting in leading order. This is the case for d ≥ 3 where one
gets

δL ≈





δ L−1, for d = 3,

δ L−2 logL, for d = 4,

δ L−2, for d ≥ 5.

There are however clearly problems with this simple computation. In fact, we
want to investigate the case with δ > 0 (or ε > 0) fixed (small), and L → ∞ and
not L fixed (large), δ → 0. The computation above investigates only the latter,
and it is clear that for δ fixed and L→ ∞, the behavior is not properly described
by the first terms in the expansion. The way out is to use a multiscale procedure:
Take a sequence of scales 1 = L1 < L2 < · · · such that from scale Lk to Lk+1 one
can work with the expansion.
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There is also the problem that ΠL,ω(0, ·) − πL(0, ·) cannot go to 0 in total
variation if L → ∞: If z ∈ ∂VL, ΠL,ω(0, z) “feels ”the disorder near z. The way
to handle this problem is to use some smoothing after exit.

The key recursion is to represent ΠLk+1
through centered exits distributions

from VLk
+ x, x ∈ VLk+1

.
Here is a summary of the main problems and steps.

(1) For the induction step, one uses the (schematic) expansion

ΠLk+1
= πLk+1

+ g
(Lk)
Lk+1

∆(Lk) πLk+1

+ g
(Lk)
Lk+1

∆(Lk) g
(Lk)
Lk+1

∆(Lk) πLk+1
+ · · · ,

where

∆(Lk)(x, ·) def
= ΠVLk

+x(x, ·)− πVLk
+x(x, ·),

g
(Lk)
Lk+1

the Green’s function of Lk-coarse grained ORW, killed when exiting

VLk+1
. The choice of the sequence is made in such a way that one uses

sophisticated estimates only for the first term, and can estimates the others
very crudely.

(2) One needs g(Lk) or πLk+1
as smoothing operations. There is the problem

that g is not a very good smoother. The way to handle that is to split
g into a part which has good smoothing properties, and another kernel
which is “small ”, and which needs some additional care.

(3) We propagated two properties: Estimates for the globally smoothed dif-
ferences, and for the non-smoothed differences. The latter is needed for
the part of g(Lk) which is not properly smoothing.

(4) Presence of bad Lk-balls inside VLk+1
: The induction of course should

tell us that the probability that a box is bad is decaying. “Badness ”is
measured in terms of total variations of (smoothed) exit distribution dif-
ferences.

(5) A substantial technical improvement in [1] over [2] is that we prove that
the RWRE-Green’s functions is dominated with large probability by a
deterministic kernel which behaves well under convolutions, and which
itself is comparable with the RW-Green’s function.

The key difficulty with dropping the rotational symmetry is that one does not
know to what exit distribution one has to compare. Technically, the rotational
symmetry is used for a crucial cancellation property using that the averaged exit
distributions are automatically rotational invariant. It is therefore natural that for
level L, one adapts pL such that the exit distributions under RW have covariance
which matches the covariance for the averaged RWRE. There are many problems,
the main ones are:

• On every level, one has to work with different one step distributions. This
creates problems with the induction step.

• One finally has to prove that the pL form a Cauchy sequence.
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Anomalous shock fluctuations in TASEP

Patrik L. Ferrari

(joint work with Peter Nejjar)

We considers the simplest non-reversible interacting stochastic particle system,
namely the totally asymmetric simple exclusion process (TASEP) on Z. Despite its
simplicity, this model is full of interesting features. In TASEP, particles indepen-
dently try to jump to their right neighbor site at a constant rate and jumps occur
if the exclusion constraint is satisfied: no site can be occupied by more than one
particle. Under hydrodynamic scaling, the particle density solves the deterministic
Burgers equation (see e.g. [18, 1]). This model belongs to the Kardar-Parisi-Zhang
(KPZ) universality class [16] (see [5] for a recent review).

We are interested in the fluctuations around the macroscopic behavior given in
terms of the solution of the Burgers equation and we focus on the fluctuations of
particles’ positions. Depending on the initial condition, the deterministic solution
may have parts of constant and decreasing density, as well as a discontinuity, also
referred to as shock. The fluctuations of the shock location have attracted a lot
of attention.

For TASEP product Bernoulli measures are the only translation invariant sta-
tionary measures [17]. In the first works one considered initial configurations to
have a shock at the origin, with Bernoulli measures with density ρ (resp. λ) at its
left (resp. right), with ρ < λ. The shock location is often identified by the posi-
tion of a second class particle. In this case, the shock fluctuations are Gaussian
in the scale t1/2 [9, 10, 14]. Microscopic information on the shock are available
too [7, 11, 8, 3]. The origin of the t1/2 fluctuations lies in the randomness of the
initial conditions, since fluctuations coming from the dynamics grow only as t1/3.
If the initial randomness is only at one side of the shock, a similar picture still
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x

tE

Eℓ Er

Figure 1. Illustration of the characteristics for TASEP. E is the
shock location, where two characteristics merges (the thick lines).
The gray region is of order tν for some 2/3 < ν < 1. Due to
the slow decorrelation along characteritics, at large time t the
fluctuations at E originates from the ones at Eℓ and Er.

holds. For example, in [4] one considers the initial condition is Bernoulli-ρ to the
right and periodic with density 1/2 to the left of the origin. When ρ > 1/2 there is
a shock with Gaussian fluctuations in the scale t1/2. In that work, the fluctuations
of the shock position are derived from the ones of the particle positions. The result
fits in with the heuristic argument in [19] (Section 5). The Gaussian form of the
distribution function is not robust (see for instance Remark 17 in [4]).

In the paper [12] we study the fluctuation laws around a shock occurring without
initial randomness are analyzed. In that case, one heuristically expects that the
shock fluctuations, but also tagged particles fluctuations, live only on a scale of
order t1/3, see [2] for a physical argument. We find that the distribution function
of a particle position (and also of tagged particles) is a product of two other
distribution functions. The reason of the product form of the distribution function
is that (1) at the shock two characteristics merge and (2) along the characteristics
decorrelation is slow [13, 6].

More precisely, if we look at the history of a particle close to the shock at
time t, it has non-trivial correlations with a region of width O(t2/3) around the
characteristics, see Figure . At the shock the two characteristics come together
with a positive angle so that at time t − tν , 2/3 < ν < 1, their distance will be
farther away than O(t2/3) (as proven for the step-initial condition situation by
Johansson in [15]). This implies that the fluctuations built up along the two
characteristics before time t− tν will be (asymptotically) independent. But if we
stay on a characteristic, then the dynamical fluctuations created between time
t − tν and time t are only o(t1/3), which are irrelevant with respect to the total
fluctuations present at time t− tν that are of order t1/3 (this is also known as the
slow-decorrelation phenomenon [13, 6]).

To generate a shock between two regions of constant density, we consider the
initial condition where 2Z is fully occupied and where the jump rates of particles
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starting to the left (resp. right) of the origin is equal to 1 (resp. α < 1). We prove
in Corollary 1.5 of [12] the following result.

Theorem 1. Let xn(0) = −2n for n ∈ Z. For α < 1 let µ = 4
2−α and v = − 1−α

2 .
Then it holds

lim
t→∞

P

[
xt/µ+ξt1/3 (t) ≥ vt− st1/3

]
= F1

(
s− 2ξ

σ1

)
F1

(
s− 2ξ/(2− α)

σ2

)
,(1)

with σ1 = 1
2 and σ2 = α1/3(2−2α+α2)1/3

2(2−α)2/3
. F1 is the GOE Tracy-Widom distribution

function [20].

As one can see from (1) the shock moves with speed v. When ξ is very large we
are in the region before the shock, where the density of particle is 1/2. Indeed, by
replacing s→ s+2ξ and taking the ξ → ∞ limit, then (1) converges to F1(s/σ1).
Similarly, when −ξ is very large we are already in the shock, where the density of
particles in (2−α)/2. Indeed, by replacing s→ s+2ξ/(2−α) and taking ξ → −∞,
then (1) converges to F1(s/σ2). This is the reason why we call this situation a
F1–F1 shock.

Actually, in [12] we describe also other shock situations (see Corollaries 1.6
and 1.7 therein). Further, for the proof it is convenient (not strictly necessary) to
look at the problem from a last passage percolation point of view. In [12] we first
determine the analogue results for that model and in a second time relate this to
the TASEP picture.
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[14] J. Gärtner and E. Presutti, Shock fluctuations in a particle system, Ann. Inst. H. Poincaré
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Mixing time and cutoff for the adjacent transposition shuffle and the

simple exclusion

Hubert Lacoin

Let us consider the following way of shuffling a deck of N cards. At each step,
with probability 1/2 we interchange the position of a pair of adjacent cards chosen
uniformly at random (among the N − 1 possible choices) and with probability 1/2
we do nothing. How many steps do we need to perform until the deck has been
shuffled?

Even though this shuffling method may be of very little practical use for card
players (indeed the usual rifle-shuffles allow a much faster mixing of the deck
if executed properly, see [2]), this question has raised a considerable interest in
the domain of Markov chain for a number of years since Aldous in [1, Section 4]
proved that O(N3 logN) steps where sufficient to mix the deck and that Ω(N3)
steps where necessary. It appears in [6, Chapter 23] in a short list of open problem
concerning Markov chains mixing times.

A first reason that can be given for this interest is that it is that allowing only lo-
cal moves (i.e adjacent transpositions) adds a constraint which makes the problem
more challenging than the usual transposition shuffle (see [5] for a computation of
the mixing time and [3] for a recent more probabilistic proof and some additional
related results).

A second one is that shuffling with a geometrical constraint is a reasonable toy-
model to describe relaxation of a low density gas. Consider N (labeled) particles in
a box with erratic moves and local interactions, we can ask ourselves the difficult
question: how much time is needed for the system to forget all the information
about its initial configuration? Of course the adjacent-transposition is an over-
simplification of the problem because it is one dimensional and the only motion
that particles (or card) can make is exchanging the position with a neighbor, but
a solution to the toy-problem might gives an idea of the qualitative behavior of
the system. This connection with particle system becomes more obvious when the



Large Scale Stochastic Dynamics 3063

Simple Exclusion process (which corresponds to the case of unlabeled particles) is
introduced in the next Section.

The last substantial progress toward a solution before the writing of this paper
was by Wilson [10], who proved that 1

π2N
3 logN steps where necessary and that

2
π2N

3 logN where sufficient, and conjectured that the first was the correct answer.
In our talk we explain how we solved this conjecture by showing that the pack is
mixed after 1

π2N
3 logN(1 + o(1)) steps.

The exclusion process. A part of our work as also been devoted to the
study of the mixing of the exclusion process, which is a projection of the adjacent
transposition shuffle. The simplest way to describe it is the following: consider a
segment with N sites, and place k ∈ {1, . . . , N − 1} particle on this segment, with
at most one particle per site.

We consider the following dynamics: When a particle is situated next to an
empty site, it jumps on it with rate one, and in the case of two empty site in the
neighborhood it jumps on each one with rate one. A more formal description is
given in the next section. We want to know how long we must wait to reach the
equilibrium state of the particle system, for which all configurations are equally
likely.

This model too has a long history and can be considered in a more general
setup, with an N × N grid instead of a segment (or an higher dimensional cube,
or a more general graph), we refer to [7, Section VIII] for a classical introduction.
The problem of computing the mixing time of the exclusion process has also been
well developed both in the case of Zd grid or torus and of general graphs (see [8]
and [9] and reference therein).

We show that for the mixing time is of the exclusion process with k particles is
asymptotically equivalent to

1

2π2
N2 log k(1 + o(1))
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Random Walks in Divergence-Free Random Drift Field: H
−1 suffices

Balint Tóth

(joint work with Illés Horváth, Bálint Vető and Gady Kozma)

I prove central limit theorem under diffusive scaling for the displacement of a
random walk on Z

d in stationary divergence-free random drift field, under the
H−1-condition imposed on the drift field. The condition is equivalent to assuming
that the stream tensor be stationary and square integrable. This improves the best
existing result in Komorowski, Landim, Olla (2012), see [2], where it is assumed
that the stream tensor is in Lmax{2+δ,d}, with δ > 0. The proof relies on the Re-
laxed Sector Condition of Horváth, Tóth, Vető [1] and is technically considerably
simpler than the proofs in Komorowski, Landim, Olla [2], or Oelschläger [3] (where
a similar result is proved for diffusion in divergence-free random drift field).
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Biased random walks on Galton-Watson trees

Alexander Fribergh

(joint work with Gérard Ben Arous and Vladas Sidoravicius)

We will present different results related to the speed of biased random walks in
random environments. Our main focus will be on a recent paper (by Ben Arous,
Fribergh and Sidoravicius, see [1]) proving that the speed of the biased random
walk on a Galton-Watson tree without leaves is increasing for high biases. This
partially addresses a question asked by Lyons, Pemantle and Peres.
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Local limit theorem for the random conductance model in a

degenerate ergodic environment

Martin Slowik

(joint work with Sebastian Andres and Jean-Dominique Deuschel)

One of the fundamental theorems in probability theory is the central limit theorem.
Its functional version, first proven by Donsker [9], describes how to rescale a simple
random walk in space and time in order to obtain a Brownian motion in the limit.
Local limit theorems however provide much finer results. The classical local limit
theorem (see e.g. [10, 15, 12]) states that the transition probabilities of a simple
random walk properly rescaled converge to the Gaussian transition densities of the
limiting Brownian motion on.

We are interested in establishing a local limit theorem for the random conduc-
tance model on the d-dimensional Euclidean lattice (Zd, Ed). The conductance
model is a reversible Markov process {Xt : t ≥ 0} on Z

d in continuous time with
generator, Lω , which acts on bounded functions f : Zd → R as

(
Lωf

)
(x) =

∑

y∼x

ω({x, y})
µω(x)

(
f(y)− f(x)

)
,

where ω = {ω(e) ∈ [0,∞] : e ∈ Ed} is a family of non-negative weights (also called
conductances) and µω(x) =

∑
y∼x ω({x, y}). We denote by qω(t, x, y) for x, y ∈ Z

d

and t ≥ 0 the transition density (or heat kernel associated with Lω) of the Markov
process {Xt} with respect to the reversible measure µω , i.e.

qω(t, x, y) :=
Pω
x

[
Xt = y

]

µω(y)
.

Of particular interest is the case when the conductances are itself random variables
with law P. For the random conductances model, a local limit theorem has been
proven by Barlow and Hambly under the assumption that the conductances are
i.i.d. random variables, i.e. P is a product measure. In addition, they assumed
that either ω(e) ∈ {0, 1} with P[ω(e) > 0] > pc for all e ∈ Ed [4, Theorem 5.2]
or that the conductances are uniformly elliptic [4, Theorem 5.7], that is there
exists c1, c2 ∈ (0,∞) such that c1 ≤ ω(e) ≤ c2 for all e ∈ Ed. The former model
describes a random walk on a supercritical percolation cluster. In the later the
additional assumption has been relaxed for i.i.d. conductances in [3, Theorem 5.14]
by assuming that the conductances are only uniformly bounded away from zero.

Our main objective is to study this model under the following assumption on
the law of the conductances.

Assumption 1. Assume that the law P of the conductances satisfies:

(i) P
[
0 < ω(e) <∞

]
= 1 for all e ∈ Ed and E[µω(0)] <∞.

(ii) P is ergodic with respect to translations of Zd.

As a first result, we proved in [1] a quenched functional central limit theorem
(QFCLT)
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Theorem 1. Suppose that d ≥ 2 and the Assumptions 1 holds. Further, assume
that that there exists p, q ∈ (1,∞] satisfying 1/p+ 1/q < 2/d such that

E
[
ω(e)p

]
< ∞ and E

[
1/ω(e)q

]
< ∞.

Then, P-a.s., the rescaled process
{

1
n Xn2t

}
converges under Pω

0 in law to a Brow-

nian motion on R
d with a deterministic non-degenerate covariance matrix Σ2.

Let us stress the fact that in dimensions d = 1, 2, it was shown in [5] that the
QFCLT holds provided that E[ω(e)] < ∞ and E[1/ω(s)] < ∞. Therefore, the
moment conditions we assumed are obviously not optimal. It is believed that the
following conjecture should be true.

Conjecture 1. Suppose that d ≥ 1 and the Assumption 1 holds. If for all e ∈ Ed

E
[
ω(e)

]
< ∞ and E

[
1/ω(e)

]
< ∞.

the the quenched functional central limit theorem holds with a deterministic and
non-degenerate covariance matrix Σ2.

It is well known, see e.g. [2], that in situations where the conductances are
i.i.d. but the law P has a fat tail at zero, trapping phenomena may occur. As
a consequence, the heat kernel decays only sub-diffusive so that the transition
density does not have enough regularity for a local limit theorem to hold true, [2,
Theorem 2.2]. Hence, it is clear that some sufficiently large moment conditions
are needed.

Theorem 2. Suppose that d ≥ 2 and the conductances satisfy the conditions as
specified in the Theorem above. Then, for T1, T2 ∈ (0,∞) with T1 < T2 and
K ∈ (0,∞)

lim
n→∞

sup
|x|≤K

sup
t∈[T1,T2]

∣∣∣nd qω
(
n2t, 0, ⌊nx⌋

)
− a kt(0, x)

∣∣∣ = 0, P-a.s.

with a := 1/E[µω(0)] and k is the heat kernel of the limiting Brownian motion.

Fontes and Mathieu studied in [11] the random conductance model with a par-
ticular choice of an ergodic law P which admits a sub-Gaussian heat kernel decay.
More precisely, in their example the conductances are uniformly bounded from
above, i.e. p = ∞, and have a polynomial tail at zero ensuring that E[1/ω(e)q] <∞
for some q. They proved that the Gaussian heat kernel behaviour fails once
q < d/2. This makes us believe that in contrast to the QFCLT at least the
moment condition on 1/ω(e) is optimal.

The Method. The proof of the local limit theorem is based on the approach
in [4] and [6]. The two main ingredients are

1. a quenched functional central limit theorem (QFCLT) and
2. a Hölder-continuity estimate on the heat kernel,

which enables us to replace the weak convergence given by the QFCLT by the
pointwise convergence in Theorem 2. As discussed above, the QFCLT has been
established in [1]. In order to derive the Hölder-continuity estimate, we prove
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a parabolic Harnack principle (PHI). Since the pioneering works [13, 14] Moser’s
iteration technique is by far the best-established tool in order to prove both elliptic
and parabolic Harnack inequalities. Moser’s iteration is based on two main ideas:
a Sobolev-type inequality which allows to control the ℓr norm with r = r(d) =
d/(d−2) > 1 in terms of the Dirichlet form, and a control of the Dirichlet form for
a given harmonic and caloric function u, respectively. In the uniformly elliptic case
this is rather standard [7, 8]. In our case where the conductances are unbounded
from above and below, we need to work with a dimension dependent weighted
Sobolev inequality, which we obtain from Hölder’s inequality.
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Stochastic Ising model at zero temperature and curve-shortening flow

François Simenhaus

(joint work with Hubert Lacoin and Fabio L.Toninelli)

This talk is based on main results of [2, 3].

Short abstract. Let D be a bounded, smooth enough domain of R2. For L > 0
consider the continuous time, zero-temperature heat bath stochastic dynamics for
the nearest-neighbor Ising model on (Z/L)2 (the square lattice with lattice spacing
1/L) with initial condition such that σx = −1 if x ∈ D and σx = +1 otherwise.
We prove the following classical conjecture due to H. Spohn [1]: In the diffusive
limit where time is rescaled by L2 and L → ∞, the boundary of the droplet of
”−” spins follows a deterministic anisotropic curve-shortening flow, such that the
normal velocity is given by the local curvature times an explicit function of the
local slope (see (1)). Locally, in a suitable reference frame, the evolution of the
droplet boundary follows the one-dimensional heat equation.

Given L ∈ N we consider the zero-temperature stochastic Ising model on
(Z/L)2 (the square lattice with lattice spacing 1/L). The state space is the set

Ω = {−1,+1}(Z/L)2 of spin configurations σ = (σx)x∈(Z/L)2 with σx = ±1. The
dynamics is a Markov process (σ(t))t≥0, with σ(t) = (σx(t))x∈(Z/L)2 ∈ Ω. Each
spin σx is updated with unit rate: when the update occurs, σx takes the value of
the majority of its four neighbors, or takes values ±1 with equal probabilities if
exactly two neighbors are +1 and two neighbors are −1.

We consider a compact, simply connected subset D ⊂ [−1, 1]2 whose boundary
∂D is a ”nice” Jordan curve. The initial condition of the stochastic dynamics will
be set to be “−” inside D and “+” outside:

σx(0) =

{
−1 if x ∈ (Z/L)2 ∩D,
+1 otherwise.

We want to compute the scaling limit of the set ML(t) of “−” spins (considered
as a subset of R2 by adding a square of size 1/L centered at each “−” spin) at
positive times, when L→ ∞.

Our goal is to prove that, as L → ∞, ML(L
2t) converges to the compact set

Dt whose boundary γ(t) = ∂Dt is the solution of the anisotropic curve shortening
flow described by the following p.d.e.

∂tγ = a(θ) kN(1)

with initial condition γ(0) := ∂D. This equation has to be read as follows. The
normal velocity at a point p ∈ γ(t) is given by the curvature k at point p times
a(θ(p)), with

a(θ) =
1

2
(
| cos(θ)| + | sin(θ)|

)2 , 0 ≤ θ ≤ 2π

and θ(p) the tangent angle to γ(t) at p. The normal vector N at point p points
inward and the curvature is positive (resp. negative) at points of local convexity
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(resp. concavity) of γ(t). The anisotropy function a is inherited from the geometry
of the square lattice.

Since a(·) is not differentiable for θ multiple of π/2, the existence of a solution
for (1) does not follow from the standard literature so that our first result concerns
existence, uniqueness and regularity theorem for the solution of (1).

Theorem 1. There exists a unique regular solution (γ(t))t≤T of (1) that is a
Jordan curve for t < T (where T denotes the time where (γ(t))t≥0 shrinks to a
point).

The corresponding theorem given in [3] is more precise. In particular it precises
in what sense the solution is regular.

Now that we have defined the limit flow we can state the main result that gives
convergence of the stochastic droplet ML(L

2t) to the deterministic flow Dt, that
is the compact domain enclosed by γ(t).

For η > 0 let B(x, η) denote the ball of radius η centered at x ∈ R
2 and for any

compact set C ⊂ R
2 we define

C(η) :=
⋃

x∈C
B(x, η), C(−η) :=

( ⋃

x/∈C
B(x, η)

)c

.

Theorem 2. For any η > 0 the following holds:

lim
L→+∞

P

[
D(−η)

t ⊂ ML(L
2t) ⊂ D(η)

t , ∀t ≥ 0
]

= 1.
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Lozenge tilings, Glauber dynamics and macroscopic shape

Fabio Toninelli

(joint work with Benoit Laslier)

We consider uniform random tilings of a finite domain UL of the plane, with
lozenges of side 1/L. There is a canonical way to associate a discrete height
function to a lozenge tiling. It is known [5] that, if UL tends when L → ∞ to
a smooth domain U and the height function on the boundary of UL tends to a
limit height function ϕ on ∂U , then under the uniform measure πL the height
function concentrates (for L → ∞) around a non-random deterministic height
function φ̄, called the macroscopic shape. The function φ̄ minimizes a certain
surface tension functional. It is known also that, according to the boundary height
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ϕ, the macroscopic shape can be either C∞ smooth, or it can contain facets (frozen
regions): this is the so-called arctic circle phenomenon [4].

In [1] we studied the Glauber dynamics of lozenge tilings: with rate one, triplets
of lozenges with a common vertex are rotated by an angle π. The law at time t of
the associated Markov process tends to the uniform measure πL when time goes to
infinity. We are interested in studying how long (as a function of L) the dynamics
takes to approach equilibrium.

Let us note that the lozenge Glauber dynamics is equivalent to the Glauber
dynamics of +/− interfaces for the zero temperature, three dimensional Ising
model.

Our main theorem is:

Theorem 1 ([1]). Assume that the boundary height ϕ is such that the macroscopic
shape φ̄ has no frozen region in U . Then, there exist sequences TL = L2+o(1) and
ǫL = o(1) such that at times t > TL, and uniformly in the initial condition, with
high probability the height function is within distance ǫL from the macroscopic
shape.

The scaling L2+o(1) is expected on general grounds [11] and actually one expects
that, in the diffusive scaling, the height function evolution tends to a deterministic
evolution described by a parabolic PDE.

Let us mention a couple of previous results on this question: (i) in [7], a non-local
version of the Glauber dynamics was introduced, and it was shown that its mixing
time is polynomial in L; (ii) in [6], the mixing time of the non-local dynamics was
shown to be of order L2 logL; (iii) in [10], from [6] and comparison theorems for
Markov chains it was deduced that the mixing time of the usual (local) Glauber
dynamics (the one we are considering here) is O(L6 logL); (iv) finally, in [3] it was
proven that the mixing time of the local dynamics is O(L2(logL)C), provided that
the macroscopic shape is flat (an affine function).

A detailed proof of the above Theorem is given in [1]. An important point
is to study equilibrium height fluctuations in mesoscopic domains of diameter
≈ L−1/2+o(1), with rather arbitrary boundary conditions. In this respect, a central
role in our work is played by the recent works [8, 9] by L. Petrov, who gives sharp
asymptotics for the law of uniform lozenge tilings in special polygonal domains of
the plane.
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Exponential extinction time for the contact process on finite graphs

Daniel Valesin

(joint work with Thomas Mountford, Jean-Christophe Mourrat, Qiang Yao)

The Contact Process (ξt)t≥0 with infection rate λ > 0 on a locally finite graph
G = (V,E) is a Markov process with state space {0, 1}V . In the usual interpre-
tation, vertices of the graph are individuals in a population, which can be either
healthy (state 0) or infected (state 1). Infected individuals recover with rate 1,
and healthy individuals become infected with rate λ times the number of infected
neighbours. The configuration 0 in which all individuals are healthy is absorb-
ing for the dynamics. A well-known fact about the Contact Process is that if
the underlying graph is Z

d, a phase transition occurs. Specifically, there exists
λc = λc(Z

d) ∈ (0,∞) such that, if λ ≤ λc, then the process started with finitely
many infections reaches 0 with probability one; if λ > λc, then this probability is
less than one.

The Contact Process on finite graphs and large enough infection rate is known
to exhibit metastable behaviour. This means that the process persists for a very
long time in an equilibrium-like state with a positive density of infected sites, and
eventually makes a quick passage to the real equilibrium 0. The most direct way
to capture this behaviour is proving that the extinction time τG of the infection
grows rapidly with the size of the graph. For the process defined on the finite
graph G and started with all vertices infected, τG is simply the random time at
which 0 is reached.

In [6], we obtain such results for the Contact Process on very general sequences
of graphs. In order to state our main theorem, let us introduce some notation:

Λ(n, d) = {connected trees with n vertices and degree bounded by d};
G(n, d) = {graphs with n vertices containing a spanning tree in Λ(n, d)}.

We prove:
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Theorem 1. Assume that λ > λc(Z) and d > 0. Let (Gn) be a sequence of graphs
so that, for each n, Gn ∈ G(n, d). Then, lim inf

n→∞
logE[τGn ]/n > 0. Additionally,

τGn/E[τGn ] converges in distribution to the exponential distribution with parameter
1.

For the case of finite boxes of Zd, to which the above theorem is applicable, it
is not difficult to replace the restriction λ > λc(Z) by λ > λc(Z

d) and re-obtain
previously existing results ([1], [8], [3], [4], [5]).

In addition, Theorem 1 can serve as the basic ingredient for establishing that, for
the Contact Process on very general families of graphs, the extinction time grows
exponentially with the number of vertices. Even when the condition λ > λc(Z) is
not satisfied, it is often possible to consider coarse grained versions of the process
which have higher λ, and for which Theorem 1 can thus be applicable. One
instance in which this program has been successfully carried out, also in [6], is
now explained.

We take Gn as a random graph given as follows. The set of vertices is just a set
with n points, Vn = {x1, . . . , xn}. Let p be a probability measure on N satisfying
p({0, 1, 2}) = 0 and, for some a > 2,

0 < lim inf
m→∞

map({m}) ≤ lim sup
m→∞

map({m}) < ∞

(in other words, p is supported on integers larger than 3 and is a power law with
exponent larger than 2). We then take d1, . . . , dn independent, all with law p
and conditioned on {∑n

i=1 di is even}. For i = 1, . . . , n, we endow vertex xi with
di half-edges. We then pair up the half edges at random, uniformly among all
possibilities. This produces the random graph Gn, which is often referred to as
the configuration model. The Contact Process is then considered on this graph,
typically for fixed λ and n→ ∞.

In [2], Chatterjee and Durrett obtained the surprising result that, no matter
how small λ is, the extinction time τGn grows quickly with n, and the process is in
this sense “always supercritical”. More precisely, they proved that for any λ > 0
and any β > 0, with probability that the extinction time for the Contact Process

with parameter λ on Gn is larger than en
β

tends to 1 as n → ∞. We improved
this result and showed

Theorem 2. For any λ > 0, there exists c > 0 such that, as n → ∞, τGn > ecn

with probability tending to 1.

As explained earlier, since Theorem 2 holds for any positive λ > 0, and not only
λ > λc(Z), it does not follow directly from Theorem 1; rather, one has to obtained
a coarse-grained version of the Contact Process on Gn for which the infection rate
is larger than the original one. The building blocks in our coarse-grained process
are vertices of very high degree that exist on Gn due to the fact that the degree
distribution is a power law, and that have the property of sustaining the infection
for a long time.
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Current symmetries for particle systems with several conservation

laws

Gunter M. Schütz

(joint work with Rafael M. Grisi)

Valkó and Tóth have proved a symmetry relation for stationary currents of a
specific family of lattice gas models with several conservation laws [1]. This relation
is reminiscent of the Onsager reciprocity relations, but is, unlike the Onsager
relations, valid arbitrarily far from equilibrium and it guarantees hyperbolicity of
the associated system of conservation laws in the hydrodynamic limit. Following a
different approach [2] we relax here for a more general class of models the restrictive
assumption of [1] that the invariant measure of the process is a product measure.
The central ingredients in our derivation are time-reversal and a requirement on
the decay of correlations which is reminiscent of the absence of a phase transition.
Thus our approach suggests that for very general Markovian stochastic dynamics
only a fairly mild assumption on the correlations in the stationary distribution are
required for these symmetry relations to be valid.

We restrict ourselves to one-dimensional conservative particle systems with fi-
nite local state space S on a finite torus TN := Z/NZ with N sites. Microscopic
configurations will be denoted by ω = (ωk)k∈TN ∈ Ω := STN where ωk denotes the
state of lattice site k. A natural setting is a lattice gas of several conserved species
of particles. All particles could be in some non-conserved internal state with a
finite number of internal degrees of freedom such as a spin. The very general
Markovian stochastic dynamics, defined below, then allows for jumps of particles
to other lattice sites and possibly changes of the internal particle states, either
independently of the jumps or simultaneously with the jumps.
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More precisely, we introduce the switch function Θω′,ω′′

k,m : Ω → Ω by

(
Θω′,ω′′

k,m ω
)
n

=





ωn; if n 6= k, k +m

ω′; if n = k

ω′′; if n = k +m.

The process evolves from ω to Θω′,ω′′

j,m ω with translation invariant transition rate

rm
(
σjω;ω′, ω′′) where m = 1, . . . ,M and σ : Ω → Ω is the shift on Ω given by

(σω)k = ωk+1, ω ∈ Ω. Then the infinitesimal generator of the process is given by

(
Lf

)
(ω) =

M∑

m=1

N−1∑

k=0

∑

ω′,ω′′∈S

rm
(
σkω;ω′, ω′′) (f

(
Θω′,ω′′

k,m ω
)
− f(ω)

)
.

We make the following assumtions on the rates: (i) Only jumps between two
different sites that are at a distance of at most M sites are allowed. (ii) The jump
rate may not depend on the local configuration beyond a distance ofM sites. (iii)
One has locally conserved quantities, i.e. functions ξα : S → R such that

ξα(ω′)− ξα(ωk) = ξα(ωk+m)− ξα(ω′′).

(Thus
∑

k ξ
α
k (ω), where ξ

α
k (ω) := ξα(ωk), is invariant under the dynamics.) (iv)

For any fixed value of all the conserved quantities the dynamics is ergodic.
By a lattice version of the Noether theorem one has Lξαk (ω) = −jαk (ω)+jαk−1(ω)

where a lengthy, but straightforward computation yields the current

jαk (ω) := −
M−1∑

n=0

M∑

m=n+1

∑

ω′,ω′′∈S

rm
(
σk−nω;ω′, ω′′) (ξαk−n(Θ

ω′,ω′′

k−n,mω) − ξαk−n(ω)
)
,

of the conserved quantity ξα through the bond (k, k+1). For the generator L∗ of
the time-reversed dynamics we denote the currents by jα∗k (ω).

Now let µ be an invariant measure for the dynamics. Denote by ξ := (ξα)α∈I

the vector of conserved particle numbers, and also ξk := (ξαk )α∈I for the vector of
particle numbers at site k. For φ := (φα)α∈I we define the measure

µφ(ω) = µ(ω) exp
(∑

k∈TN

φ · ξk(ω) − G(φ)
)
,(1)

where the normalization

G(φ) = log
∑

ω∈Ω

exp
(∑

k∈TN

φ · ξk(ω)
)
µ(ω)

has the interpretation of the grand-canonical free energy. Since ξα are conserved
quantities, also µφ is an invariant measure for every φ. By translation invariance
and ergodicity of the process it follows that µφ is also translation invariant. We
denote by 〈·〉φ the expectation according to the measure µφ. In particular, we
define ρα := 〈ξαk 〉φ, which in our interpretation corresponds to the density of the
particle species α, and the stationary currents jα := 〈jαk 〉φ. The main result is
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Theorem 1 ([2]). For the process constructed above one has for any finite N

∂jα

∂φβ
− ∂jβ

∂φα
= N

(〈
jαN

2

(ξβ1 − ρβ)
〉
φ
−

〈
jβN

2

(ξα0 − ρα)
〉
φ

)
.(2)

Proof. From the construction (1) of the invariant measure it follows

∂µφ(ω)

∂φα
= µφ(ω)

∑

k∈TN

(
ξαk (ω) − ρα

)
,

and therefore

∂jβ

∂φα
=

∑

k∈TN

〈
(ξαk − ρα)jβ0

〉
φ
.

On the other hand, we use the conservation law and time reversal to find that
〈
(ξβk − ρβ)(jα−1 − jα0 )

〉
φ

=
〈
(ξβk − ρβ)L(ξα0 − ρα)

〉
φ

=
〈
(ξα0 − ρα)L∗(ξβk − ρβ)

〉
φ

=
〈
(ξα0 − ρα)(jβ∗k−1 − jβ∗k )

〉
φ
.

In the second and third equality we have also used translation invariance. With
the telescopic property of the discrete lattice difference, a partial summation yields

N
2∑

k=−N
2
+1

k
〈
(ξβk − ρβ)(jα−1 − jα0 )

〉
φ

=

N
2∑

k=−N
2
+1

k
〈
(ξβ0 − ρβ)(jα−k−1 − jα−k)

〉
φ

= − ∂jα

∂φβ
+ N

〈
(ξβ1 − ρβ)jαN

2

〉
φ
.

and similarly

N
2∑

k=−N
2
+1

k
〈
(ξα0 − ρα)(jβ∗k−1 − jβ∗k )

〉
φ

= − ∂jβ

∂φα
+ N

〈
(ξα0 − ρα)jβN

2

〉
φ
.

Finally one observes that for every α, β ∈ I and N > 2M one has jα∗ = −jα and

〈(ξαN
2

− ρα)jβ∗0 〉φ = −〈(ξαN
2

− ρα)jβ0 〉φ, which is ensured by ξαN
2

(Θω′,ω′′

−n,mω) = ξαN
2

(ω)

for every 0 ≤ n < m ≤ M when N > 2M . The restriction N > 2M comes from
the requirement that the microscopic currents must not be a function a of the
conserved quantities at site N/2. This change is possible if site N/2 is out of this
range, meaning N > 2M . These are the main ideas of the proof given in [2]. �

For special forms of the invariant measure we point out the corollary

Corollary 1. For sufficiently fast decaying correlations where for all distinct pairs

of indices α, β, 〈(ξβ1 − ρβ)jαN
2

〉φ = o(1/N) one has the current symmetry

∂jα

∂φβ
=

∂jβ

∂φα
(3)

in the thermodynamic limit N → ∞.
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Remark 1. The assumptions of finite local state space and finite interaction range
N > 2M are basically technical. However, the presence of the finite-size term in
(2) should be emphasized as it can lead to a breakdown of the infinite volume
current symmetry (3) if correlations do not decay fast enough.

The current symmetry has interesting consequences for the hydrodynamic limit
behavior of the particle systems under Eulerian scaling. (i) One expects the con-
served macroscopic densities ρα(x, t) to satisfy the system of conservation laws

∂tρ
α + ∂xj

α = 0(4)

where the macroscopic fluxes jα as functions of the ρα are given by the expectations
defined above in the thermodynamic limit N → ∞. The current symmetry (3)
then guarantees that the system is hyperbolic [1]. Thus we prove a result which
one has long expected on general physical grounds. (ii) The quantity

S(ρ) = sup
φα:α∈I

(
ρ · φ−G(φ)

)
(5)

with the vector ρ = (ρα)α∈I is the usual thermodynamic entropy conjugate to the
free energy G(φ). This quantity is a globally convex Lax entropy of the system
(4) [3]. Indeed, defining the entropy flux F (ρ) explicitly through the relation

∂αρ F =
∑

β

φβ
∂jβ

∂ρα

and observing that the construction (5) of the thermodynamic entropy implies
that φα = ∂ραS(ρ) one obtains from (4) the scalar conservation law

∂tS(ρ) + ∂xF (ρ) = 0.

The conservation of S is required for a proper estimate of the relative entropy
of the time-evolved measure of the process with respect to the local equilibrium
measure [1, 4].
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KPZ-behavior of hydrodynamics in one dimension

Henk van Beijeren

The dynamics of generic one-dimensional hamiltonian systems with translation
invariant short-ranged interaction potentials are shown to be in the Kardar-Parisi-
Zhang universality class. Scaling functions obtained by Prähofer and Spohn by
solving the polynuclear growth model [1] can be used to obtain exact expressions
for the long time behavior of the Green-Kubo integrands for heat diffusion and
sound attenuation, as well as for system size dependent coefficients of heat conduc-
tion and sound damping. The Green-Kubo integrands decay with time as t−2/3

respectively t−3/5; the sound mode damping constant diverges with system size
as L1/2 and the heat conduction coefficient as L1/3. Coefficients can be obtained
exactly from the Prähofer-Spohn scaling functions combined with mode-coupling
amplitudes as obtained by Ernst, Hauge and Van Leeuwen [2]. Due to the presence
of three conserved densities (mass, momentum and energy), giving rise to three
hydrodynamic modes with different propagation velocities (+ or −c0, the adiabatic
sound velocity for the sound modes and zero for the heat mode), there are impor-
tant and still superdiffusive corrections to the asymptotic long time respectively
large size behaviors. By using mode coupling techniques one can estimate these
corrections as well. Simulations by Posch [3] on a square-shoulder model appar-
ently confirm the predictions for the sound mode-sound mode correlation function.
However, predictions for the wave number dependence of the decay rate of the heat
mode correlation function are off by about a factor of 3. Correspondingly, for the
tagged particle velocity autocorrelation function the simulation values are about
a factor 2 smaller than the theoretical prediction. At present it is unclear what is
causing these discrepancies.

More details can be found in [4].
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Anomalous diffusion in non-equilibrium, one-dimensional conservative

systems

Milton Jara

(joint work with Cédric Bernardin and Patŕıcia Gonçalves)

Let us consider the following dynamics. Let {ut(x); t ≥ 0, x ∈ Z} be the solution
of the system of ODE’s given by

d
dtut(x) = ut(x+ 1)− ut(x− 1); t ≥ 0, x ∈ Z.

Following [3], we call ut(x) the volume of site x at time t. Let us add a stochastic
component to this dynamics. At each bond {x, x+1}, x ∈ Z we place a Poissonian
clock of rate 1. Each time a Poissonian clock attached to a bond {x, x + 1}, we
switch the values of the volume at sites x and x+ 1. We call {ηt(x); t ≥ 0, x ∈ Z}
the Markov process obtained in this way. The generator of this process can be
written as L = S +A, where

Af(η) =
∑

x∈Z

(
η(x+ 1)− η(x− 1)

) ∂f

∂η(x)
,

Sf(η) =
∑

x∈Z

(
f(ηx,x+1)− f(η)

)
.

Here η = (η(x))x∈Z represents a volume configuration and ηx,x+1 represents the
volume configuration obtained by switching the volume numbers at x and x+1. It
turns out that the only conserved quantities on this model are the volume

∑
x η(x)

and the energy
∑

x η(x)
2. The extremal invariant measures are the product Gauss-

ian measures

µβ,ρ =
∏

x∈Z

√
β

2π
e−

1
2
β(η(x)−ρ)2 dη(x).

It is well-known that for diffusive systems the Green-Kubo formula relates the
time evolution of stationary space-time correlations of conserved quantities to the
current on stationary systems attached to heat reservoirs with different tempera-
tures. In the case of one-dimensional Hamiltonian systems conserving both energy
and momentum, violation of Fourier’s law is expected. This has been theoretically
confirmed for stochastically perturbed Hamiltonian systems [1], and also for the
Bernardin-Stoltz model described above [3], [2]. This leaves open the question
about what a good substitute for the Fourier’s law (and consequently for the heat
equation) is.

Our proposal is to study the time evolutions of the energy fluctuations of the
Bernardin-Stoltz model in the harmonic case. Take ρ = 0 and let β > 0 be fixed.
Consider the process {ηt; t ≥ 0} with initial distribution µ0,β . Let n ∈ N be a
scaling parameter. For each test function f ∈ C∞

c (R) and for t ≥ 0, define

En
t (f) =

1√
n

∑

x∈Z

(
ηtn3/2(x)− 1

β

)
f
(
x
n

)
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In this way, we have defined a distribution-valued process {En
t ; t ≥ 0} which we

call the energy fluctuation field. Define L = −(−∆)3/4 +∇(−∆)1/4. We have the
following result:

Theorem 1. The process {En
t ; t ≥ 0} converges in distribution with respect to

the J1-Skorohod topology to the stationary solution of the infinite-dimensional
Ornstein-Uhlenbeck equation

dEt = LEtdt+ dMt,

where Mt is a Gaussian martingale in L2(R) with correlation matrix

− 2

β

∫
f(x) (−∆)3/4g(x) dx.

Let us explain what can we conclude out of this theorem. A first interesting fea-
ture is that the process Et is space-time self-similar with self-similarity exponents
1 : 2 : 3. This is a simple consequence of the n3/2 time-scaling and of the 1

n space-
scaling of the discrete model. Those exponents are exactly the same appearing in
the KPZ universality class. Therefore, the process Et provides an example of a
Gaussian universality class with the same exponents of the KPZ universality class,
and in particular different from the KPZ universality class. Another important
feature of this model is the appearance of a fractional heat equation with driving
operator L. In fact, if we look at the space-time correlation functions

S(t, x) = E

[(
ηt(x)

2 − 1
β

) (
η0(0)

2 − 1
β

)]
,

from Theorem 1 we conclude that

lim
n→∞

S
(
n3/2t, nx

)
= Pt(x),

where {Pt(x); t ≥ 0, x ∈ R} is the fundamental solution of the fractional heat
equation ut = Lu. Finally, since energy is conserved in a local sense, the model
has a fractional pressure p(u) =

(
− (−∆)−1/4 −∇(−∆)−3/4

)
u.
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KPZ equation, its renormalization and invariant measures

Tadahisa Funaki

(joint work with Jeremy Quastel)

The Kardar-Parisi-Zhang (KPZ) equation is a stochastic partial differential equa-
tion (SPDE), which describes the motion of growing interface with a random
fluctuation. Denoting the height of the interface at time t and position x ∈ R by
h = h(t, x), it has the form

∂th =
1

2
∂2xh +

1

2

(
∂xh

)2
+ Ẇ (t, x),(1)

where Ẇ (t, x) is the space-time Gaussian white noise, whose covariance structure
is given by

E
[
Ẇ (t, x)Ẇ (s, y)

]
= δ(x− y)δ(t− s).(2)

We consider the equation (1) in one dimension. This equation is actually ill-posed
because of inconsistency between the nonlinearity and the roughness of the noise.
It is known that the solution h(t, x) of the linear SPDE obtained from (1) by
dropping the nonlinear term is (12 − ε)-Hölder continuous in the space variable x

for every ε > 0, so that the nonlinear term
(
∂xh

)2
would diverge. In fact, instead

of (1), the renormalized equation

∂th =
1

2
∂2xh +

1

2

((
∂xh

)2 − δx(x)
)
+ Ẇ (t, x),(3)

have the meaning in the following sense: Its Cole-Hopf solution defined as the
logarithm of the solution of the linear stochastic heat equation (SHE) with a
multiplicative noise:

∂tZ =
1

2
∂2xZ + ZẆ (t, x),(4)

i.e., h(t, x) := logZ(t, x) is a mathematically well-defined object and, by applying
Itô’s formula for this h(t, x), we obtain (3) from (4) at least at a heuristic level.

Note that, since
(
dW (t, x)

)2
= δx(x)dt from (2), the term − 1

2δx(x) appears in (3)
as an Itô correction term.

To give a meaning to (3) more precisely, we consider a simple approximation
scheme for (3):

∂th =
1

2
∂2xh +

1

2

(
(∂xh)

2 − ξε
)
+ Ẇ ε(t, x),(5)

where Ẇ ε(t, x) = Ẇ ∗ ηε(t, x) is a smeared noise defined by applying a usual
convolution kernel ηε which tends to δ0 as ε ↓ 0, and ξε = ηε2(0) with η

ε
2 = ηε ∗ ηε.

Then, by Itô’s formula, we easily see that the solution h = hε of (5) is given by
the Cole-Hopf transform hε = logZε of the solution Z = Zε of the following SHE
with the smeared noise:

∂tZ =
1

2
∂2xZ + ZẆ ε(t, x).
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It is also easy to see that Zε converges to the solution Z of (4) as ε ↓ 0. Thus,
we can show that the solution hε of (5) converges to the Cole-Hopf solution of
the KPZ equation. M. Hairer [1] has recently succeeded to give a meaning to
(3), without bypassing the Cole-Hopf transform, and proved that the Cole-Hopf
solution is the right solution of (3) under the periodic boundary condition.

In my talk, a different type of approximation scheme for the KPZ equation:

∂th =
1

2
∂2xh +

1

2

(
(∂xh)

2 − ξε
)
∗ ηε2 + Ẇ ε(t, x),

was discussed. This type of approximation is appropriate from the view point to
identify the invariant measures, since the applications of a certain operator A (in
our case, the convolution operator) to the noise term and the same operatorA twice
to the drift term usually do not change the structure of the invariant measures;
note that the second derivative ∂2x and the convolution operator commute. The
Cole-Hopf transform applied to this equation leads to an SHE with a smeared
noise having an extra complex nonlinear term involving a certain renormalization
structure:

∂tZ =
1

2
∂2xZ +

1

2
Z

{(
∂xZ

Z

)2

∗ ηε2 −
(
∂xZ

Z

)2
}

+ ZẆ ε(t, x).(6)

It is shown that, under the situation that the corresponding tilt process is station-
ary, this complex term (the middle term in the RHS of (6)) can be replaced by
a simple linear term divided by 24 in the limit, so that the limit equation is the
linear SHE:

∂tZ =
1

2
∂2xZ +

1

24
Z + ZẆ (t, x).(7)

The constant 1
24 is specific in KPZ world and frequently appears in related papers.

The Wiener-Itô expansion and a similar method for establishing the so-called
Boltzmann-Gibbs principle are effectively used to derive (7) from (6). As a result,
it is shown that the distribution of a two-sided geometric Brownian motion with a
height shift given by Lebesgue measure is invariant under the evolution determined
by the SHE (4) on R.

Multi-component KPZ equation for h(t, x) = (hα(t, x))dα=1 ∈ R
d:

∂th
α =

1

2
∂2xh

α +
1

2
Γα
βγ∂xh

β∂xh
γ + Ẇα(t, x),

was also discussed at approximating level:

∂th
α =

1

2
∂2xh

α +
1

2
Γα
βγ

(
∂xh

β∂xh
γ − ξεδβγ

)
∗ ηε2 + Ẇ ε,α(t, x),

and we gave its invariant measures, where Γα
βγ are constants which satisfy certain

conditions.
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Scaling Limit for Brownian Motions with One-sided Collisions

Thomas Weiss

(joint work with Patrick L. Ferrari and Herbert Spohn)

We consider Brownian motions with one-sided collisions, meaning that each parti-
cle is reflected at its right neighbour. For a finite number of particles a Schütz-type
formula is derived for the transition probability. We investigate an infinite system
with periodic initial configuration, i.e. particles are located at the integer lattice at
time zero. As a first main result, we provide an expression for the joint distribution
at fixed time t.

Theorem 1. The infinite system of interacting Brownian motions, xn(t), n ∈ Z,
starting at xn(0) = −n has a joint distribution function given by a Fredholm
determinant with kernel

Kflat
t (x1, n1;x2, n2) = − (x1 − x2)

n2−n1−1

(n2 − n1 − 1)!
1{x1 ≥ x2}1{n2 > n1}

+
1

2πi

∫

Γ−

dz
etz

2/2 e−zx1 (−z)n1

etϕ(z)2/2 e−ϕ(z)x2 (−ϕ(z))n2
.

Here Γ− is any path going from ∞e−θi to ∞eθi with θ ∈ [π/2, 3π/4), crossing the
real axis to the left of −1, and

ϕ(z) = L0

(
zez

)

with L0 being the Lambert-W function, i.e. the principal solution for w in z = wew.

Interesting and quite unexpected is the appearance of the Lambert function. It
has a branch structure similar to the logarithm, but slightly more complicated.

The second main result of our contribution is a characterization of the law for
the positions of the interacting Brownian motions in the large time limit. Due to
the asymmetric reflections, the particles have an average velocity −1. For large
time t the KPZ scaling theory suggests the positional fluctuations relative to the
characteristic to be of order t1/3. Nontrivial correlations between particles occur if
the particle indices are of order t2/3 apart from each other. Therefore, to describe
the Brownian particles close to the origin at time t, we consider the scaling of the
labels as

n(r, t) =
⌊
− t + 25/3t2/3r

⌋

and we define the rescaled process as

r 7−→ Xt(r) = −xn(r,t)(t) + 25/3 t2/3 r

(2t)1/3
.
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Theorem 2. In the large time limit, Xt converges to the Airy1 process,

lim
t→∞

Xt(r) = A1(r),

in the sense of finite-dimensional distributions.

In particular for a single Brownian particle the limit is GOE Tracy-Widom
distributed:

lim
t→∞

x0(t) + t

t1/3
= ξGOE.
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Hydrodynamic limit for a certain class of two-species zero-range

processes

Kenkichi Tsunoda

Großkinsky and Spohn [1] studied several-species zero-range processes and gave
a necessary and sufficient condition for translation invariant product measures to
be invariant under such processes. Based on this result, they investigated the
hydrodynamic limit. In this talk, we consider a certain class of two-species zero-
range processes which are outside of the family treated by Großkinsky and Spohn.
We prove a homogenization property for a tagged particle and apply it to derive
the hydrodynamic limit under the diffusive scaling.
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Hydrodynamic limits for the velocity-flip model

Marielle Simon

I am interested in microscopic models of atoms whose time evolution is governed
by a hybrid dynamics, namely a combination of deterministic and stochastic dy-
namics. A stochastic noise is added to the classical Newton’s equations of motion,
in such a way that the main features of the underlying Hamiltonian system are
not destroyed. This stochastic noise provides good ergodic properties, and allows
to derive the so-called hydrodynamic equations, which describe the macroscopic
behavior of the system.

More precisely, in [5], I study the diffusive scaling limit for a chain ofN harmonic
coupled oscillators for which the Hamiltonian dynamics is perturbed with random
flips of velocities. As a result, the total energy of the system is still conserved
along the evolution. I look at the macroscopic behavior of this system as N goes
to infinity, after rescaling space and time withN in the same way, with the diffusive
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scaling. The system is considered under periodic boundary conditions. Let px ∈ R

and qx ∈ R denote the velocity and the position of the oscillator at site x. We
define the deformations (rx) by rx = qx+1 − qx. The Hamiltonian of the system is
given by

H =

N−1∑

x=0

p2x
2

+
r2x
2
.

The stochastic noise can be easily described: each particle independently waits
an exponentially distributed time interval and then flips the sign of its velocity.
I derive the hydrodynamic equations by using the relative entropy method intro-
duced for the first time by H. T. Yau [7] for a gradient1 diffusive Ginzburg-Landau
dynamics. In the context of diffusive systems, one need to establish the so-called
fluctuation-dissipation equations in the mathematics literature (for example, in
[3]). Moreover, since we observe the system on a diffusive scale and the system
is non-gradient, second order approximations are needed. The good entropy esti-
mate is obtained if the Gibbs local equilibrium state is corrected with a small term.
This idea was first introduced in [2] and then used in [6] for interacting Ornstein-
Uhlenbeck processes, and in [4] for the asymmetric exclusion process. However, it
is the first time that this is applied for a system with several conservation laws in
the diffusive scale.

Up to present, the derivation of hydrodynamic equations for the harmonic os-
cillators perturbed by the velocity-flip noise was not rigorously achieved (see e.g.
[1]), because of the control of large energies. Indeed, all the energy moments need
to be controlled uniformly in time and with respect to the size of the system, and
in [5], we get this uniform control. Let us notice that the harmonicity of the chain
is crucial to prove the result (roughly speaking, it ensures that the Gaussian type
of measures preserved along the dynamics).
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On the evolution of the ABC model in a strongly asymmetric regime

Ricardo Misturini

The ABC model, introduced by Evans et al. [4], is a stochastic conservative
dynamics consisting of three species of particles, labeled A, B, C, on a discrete
ring ΛN = {−N, . . . , N} (one particle per site). The system evolves by nearest
neighbor transpositions: AB → BA, BC → CB, CA → AC with rate q and
BA→ AB, CB → BC, AC → CA with rate 1.

The asymptotic behavior of the process (and of some variations) has been widely
studied in the weakly asymmetric regime q = e−β/N , introduced by Clincy et al. [3],
when the system size N goes to infinity and β is a control parameter that plays
the role of an inverse temperature. In this regime interesting phase transition
phenomena arise as β is varied.

Our work goes in a different direction. We deal with a strongly asymmetric
regime where q = e−β, β ↑ ∞. We consider two types of asymptotics involving the
process. As a first step, we examine the behavior of the process in the case where
the number of particles of each species, NA, NB, and NC , is fixed while β ↑ ∞.
And after that, we consider the large volume case, where NA, NB, and NC depend
on β.

We show that the particles almost always form three pure domains, one of each
species, located clockwise in the cyclic-order ABC. For fixed volume, we show
that, in the time scale emin{NA,NB,NC}β , the process evolves as a Markov process
among these 2N + 1 segregated configurations, which jumps from anywhere to
anywhere at positive rates, expressible in terms of some absorption probabilities
of a very simpler dynamics.

Analyzing the case where the system size N grows with β, with some restric-
tions on the speed of this growth, we prove that, if each type of particle preserves
a positive proportion of the total mass, then this segregated shape evolves, in the
time scale N2emin{NA,NB,NC}β , as a Brownian motion on the circle. Removing the
assumption that each type of particle has positive density, we have also found sit-
uations where the limit process is ballistic or, as an intermediate case, a Brownian
motion with drift.

Results of the same nature (the finite volume and the Brownian motion cases)
were obtained for the Kawasaki dynamics at low temperature in two dimensions
by Beltrán, Gois and Landim [2, 5]. Many techniques used in our analysis of the
ABC model come from these papers. In comparison with the Kawasaki dynamics,
an important difference is that, with the exception of the case NA = NB = NC ,
the ABC process is not reversible and its invariant measure is not even explicitly
known.
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Convergence in higher mean of a random Schrödinger equation

Maximilian Butz

We consider the discrete random Schrödinger equation

i
d

dt
φ = Hωφ

on ℓ2
(
Z
3
)
with Schrödinger operator

Hω = −∆

2
+ λVω ,

with ∆ the next-neighbor lattice laplacian and (Vω(x))x∈Z3 being independent

centered Gaussian variables with E
[
Vω(x)

2
]
= 1. The small positive parameter λ

controls the strength of disorder. Due to this scaling of the potential, one expects
to observe an effect of scattering only if one runs the dynamics up to space and
time scales of order η−1, with η = λ2, so we use the macroscopic variables for
position, momentum, time (X,V, T ) = (ηx, v, ηt). When taking λ → 0 to obtain
the weak-coupling, long-time kinetic limit, the η-scaled Wigner transform W η of

the (η-dependent, and, due to the dynamics, random) state φ
(η)
t has proven useful.

W η is a distribution acting on J ∈ S
(
R

3 × T
3
)
(T3 the three-dimensional torus)

by
〈
J,W η

[
φ
(η)
t

]〉
=

∑

X∈(ηZ/2)3

∫

T3

dV J(X,V )W η
[
φ
(η)
t

]
(X,V )

= η−3

∫

R3×T3

dξ dv Ĵ(ξ/η, v) φ̂
(η)
t (v − ξ/2) φ̂

(η)
t (v + ξ/2).

Assuming that the initial states φ
(η)
0 are bounded in ℓ2

(
Z
3
)
, W η

[
φ
(η)
0

]
weakly

converges to a measure µ0 on a subsequence of η → 0, and we have for this
subsequence by [2] (using the methods of [1]), a convergence result for the disorder-
averaged Wigner transform.

Theorem 1. For all macroscopic times T > 0, and all J ∈ S
(
R

3 × T
3
)
,

lim
η→0

E

[ 〈
J,W η

[
φ
(η)
T/η

]〉 ]
=

〈
J, µT

〉
,
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the measure µT given as the weak solution of the linear Boltzmann equation

∂

∂T
µT (X,V )

= − sin (2πV ) · ∇Xµ(X,V ) +

∫

T3

dU σ(U, V )
(
µT (X,U)− µT (X,V )

)
.(1)

In (1), sin(2πV ) is a vector with components sin(2πVj), j = 1, 2, 3 and the collision
kernel σ equals

σ(U, V ) = 2π δ
(
e(U)− e(V )

)
.

It would be very desirable to not only understand how the disorder-averaged
Wigner transform behaves in the kinetic limit, but to also have a control on how
large the typical deviations from this average are. [3] shows that the random

quantity
〈
J,W η

[
φ
(η)
T/η

]〉
converges to

〈
J, µT

〉
in r-th mean for all r > 0, (intuitively

speaking, the variance of the Wigner transform goes to zero as η → 0). Thus, the
dynamics of the scaled Wigner transform approaches a deterministic behavior in
the kinetic limit. However, concentration of singularity assumptions regarding the

initial condition φ
(η)
0 had to be made, and convergence in higher mean could only

be established for φ
(η)
0 allowing for a decomposition

φ̂
(η)
0 (k) = f (η)

∞ (k) + f
(η)
sing(k)(2)

such that
∥∥f (η)

∞
∥∥
L∞(T3)

≤ c(3)

and ∥∥∥
∣∣f (η)

sing

∣∣ ∗
∣∣f (η)

sing

∣∣
∥∥∥
L2(T3)

≤ c′η4/5(4)

for c, c′ constants independent of η. This result is somewhat unsatisfactory as the
physical intuition or justification behind (2)–(4) is not immediately clear, and the
”fate” of all other initial states remains open.

The main result I want to present is a result on convergence in higher mean
that only uses the ℓ2-boundedness of the initial states.

Theorem 2. Let
(
φ
(η)
0

)
η>0

be a sequence of initial states bounded in ℓ2
(
Z
3
)
.

Then there is a constant c < ∞ such that for all macroscopic times T > 0, and
all test functions J ∈ S

(
R

3 × T
3
)
and r ≥ 1

(
E

[∣∣∣
〈
J,W η

[
φ
(η)
T/η

]〉
− E

[〈
J,W η

[
φ
(η)
T/η

]〉]∣∣∣
r
])1/r

≤ C(J, T ) E0 λ
1
cr

for sufficiently small λ > 0 and C(J, T ) < ∞ only depending on J, T . Together
with Theorem 1 this yields

lim
λ→0

E

[∣∣∣
〈
J,W η

[
φ
(η)
T/η

]〉
− E

[〈
J, µT

〉]∣∣∣
r
]

= 0

for all r, T > 0.
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The proof starts just as in [3] with a Duhamel series, a subsequent graph expan-
sion, and an expression of the unitary via resolvents, but provides a more refined
classification of graphs and estimates for the resolvent integrals suitable for each
class of graphs. This way we can avoid making ad-hoc assumptions like (2-4).
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Electric network for irreversible walks - but is it useful?

Márton Balázs

(joint work with Áron Folly)

There is a well-known analogy between reversible Markov chains and electric net-
works (see e.g. [1]): the probability of reaching a state a before another one b agrees
with voltages in a corresponding network of resistances, and the electric current
also has a probabilistic interpretation. Such analogies can be used to prove a
variety of theorems regarding transience-recurrence, commute times, cover times.
The electric counterpart is very simple, consists of resistors only. These simple
components behave in a symmetric fashion, that’s why the analogy only works for
reversible chains.

We found the electric component using which together with resistances we can
build a network that extends the above analogies from reversible Markov chains
to the case of irreversible ones. The new part we use is a voltage amplifier with a
rather simple characteristic: the ratio of the potentials on its left end and on its
right end is a fixed constant, while inflowing current on the left agrees with the
outgoing current on its right. (Of course realizing such an amplifier would require
complicated engineering and external power source, but we just consider it a black
box with the above characteristic.)

We explored some nice and less nice properties of this electric network as fol-
lows. First, not all networks correspond to Markov chains, only those which have
arbitrary constant potential - no outer current source solutions. These networks
have meaningful effective resistance between any two vertices, in connection to
escape probabilities as in the reversible case. We have the transformations that
correspond to the classical serial and parallel equivalences, but star-delta connec-
tions are only valid for special parameter cases. And, what is the most worrisome,
monotonicity does not hold in the classical sense: we have an example where
increasing some resistances decreases the effective resistance. In fact, we already
could not find Dirichlet’s or Thomson’s energy minimum principles in our network.
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As many of the known results in the field use the monotonicity property, we
now wonder if our electric analogy can be used to prove some theorems analogous
to the reversible case. This is very much work in progress, and any remarks in
this direction are welcome!
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Metastability for condensing zero-range processes in the

hydrodynamic limit

Stefan Grosskinsky

(joint work with Inés Armendáriz and Michail Loulakis)

The zero-range process (ZRP) is an interacting particle system where the jump
rates of particles depend only on the occupation number of the departure site
and are independent of the configuration at the target site. We consider a ZRP
(ηt : t ≥ 0) on the one-dimensional discrete torus ΛL = Z/LZ with N particles

and state space XL,N =
{
η ∈ N

ΛL
0 :

∑
x∈ΛL

ηx = N
}
. The dynamics is defined by

the generator

Lf(η) =
∑

x∈ΛL

p(x, y) g(ηx)
(
f(ηx,y)− f(η)

)
(1)

for suitable test functions f : XL,N → R. We focus on symmetric, irreducible,
translation invariant jump probabilities p(x, y) ∈ [0, 1] of finite range, and jump
rates are of the form

g(n) = 1 + b/nγ with parameters b, γ > 0.

The stationary measures of this process µL,N are

µL,N = νL
[
·
∣∣SL = N

]
where SL =

∑

x∈ΛL

ηx,

and can be written as conditional product measures with marginals ν1(n) =
1/g(n)! [1, 2]. Denote by

ML = max
x∈ΛL

ηx

the maximum occupation number. For γ = 1, b > 2 or γ ∈ (0, 1), b > 0 there exists
a finite critical density ρc = ν1(ηx) ∈ (0,∞), such that in the thermodynamic limit
L,N → ∞, N/L→ ρ

ML/L
P−→

{
0 , ρ ≤ ρc

ρ− ρc , ρ > ρc
,

which has been shown in [2, 3]. The fluctuations are known to be Gaussian and

of order
√
L for γ ∈ (0, 1) or γ = 1 and b > 3, and to be of order L1/(b−1) with
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a stable law for γ = 1 and 2 < b ≤ 3 [4]. Moreover, the distribution of the
configuration outside the maximum is known to converge to the product measure
ν with density ρc, so for supercritical densities configurations exhibit a unique
extensive maximum with high probability, called the condensate.

Therefore, the location of the maximum ψL(η) =
{
x : ηx =ML(η)

}
is with high

probability given by a single site in Λ, and by translation invariance, for ρ > ρc,
1
LψL → U

(
T
)
converges to a uniform random variable on the unit torus T = R/Z,

the scaling limit of ΛL. Due to ergodicity, the location ψL(ηt) of the maximum is
changing in time, but on a slow time scale. Our main result is that the zero-range
process (ηt : t ≥ 0) exhibits metastability with respect to the observable ψL on
the time scale θL in the following sense.

Theorem 1. Assume γ ∈ (0, 1) or γ = 1 and b > 8. In the thermodynamic limit
N,L→ ∞, N/L→ ρ > ρc we have for the zero-range process (1) for typical initial
conditions η0 and scale θL = L1+b

( 1

L
ψL(ηtθL) : t ≥ 0

)
→ (Yt : t ≥ 0).

(Yt : t ≥ 0) is a Lévy-type process with stationary, independent increments, state
space T and generator

LTf(u) =

∫

T\{0}
Kb,ρ r(v)

(
f(u+ v)− f(u)

)
dv .

The constant Kb,ρ can be computed explicitly and

r(v) = lim
L→∞

L2capΛ
(
0, [vL]

)

is the scaling limit of the capacities of a single particle on Λ, which is non-
degenerate under our assumptions.

For example, for nearest-neighbour probabilities p(x, y) = 1/2(δy,x+1 + δy,x−1)
we have

r(v) =
1

|v|
(
1− |v|

) .

Since under our assumptions on p(x, y) the single particle motion scales to Brow-
nian motion, the capacities will have the same scaling in L and our result applies,
whereas for long-range dynamics different scalings are possible.

The analogue of our result has been shown previously on a fixed lattice of size
L in the limit N → ∞ und more general symmetric rates [5], and has recently also
been extended to asymmetric, non-reversible dynamics [6]. To prove our result
in the thermodynamic limit we follow the same martingale approach adopted in
this work, which has recently been summarized in [7]. As a first step, this in-
cludes the classical partition of the state space in metastable sets (called valleys),
which have high stationary probability and are characterized by the location of
the condensate. On finite lattices the number of valleys is fixed, and they contain
attractors. These are particular configurations that are visited with high probabil-
ity before the system exits a valley, which leads to a relatively simple renewal-type
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argument to derive the exponential law for jumps between valleys, leading to a
Markovian process in the limit. Matching upper and lower bounds for the rates
between valleys can be computed using a potential theoretic approach that has
been developed in [8], see also [9] and references therein. Recently, this has been
used to obtain bounds on the capacities between individual valleys for the ZRP in
the thermodynamic limit with diverging density, i.e. L→ ∞ and N/L→ ∞ [10].

Since we rescale and embed our lattice in the torus in the scaling limit, we can
use a coarse-graining approach to get matching bounds between sets of valleys
at macroscopic distances also for finite supercritical densities ρ > ρc. The main
challenge in the thermodynamic limit is not the increasing number of metastable
valleys, but the fact that the size of each valley grows exponentially with the system
size L and there are no attractor configurations to prove an exponential exit law.
Instead we show that the mixing time for the process restricted to a valley is much
smaller than the typical time until the next jump to another valley under suitable,
non-optimal conditions on the parameter b. A bound on the relaxation and mixing
time is achieved by comparison of the ZRP in a valley with independent birth-
death chains for which the spectral gap can be estimated. To control the system
until mixing, we construct a coupling of the ZRP with L − 1 copies of a two-site
ZRP, which provides an upper bound for exit rate from any configuration in a
valley.
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Random Walk in a one-dimensional Lévy random environment

Alessandra Bianchi

(joint work with Giampaolo Cristadoro, Marco Lenci and Marilena Ligabò)

Anomalous diffusions are stochastic processes X(t), t ∈ R
+, having an asymptotic

variance which does not grow linearly in time, that is E
[
X2(t)

]
∼ tδ with δ 6= 1.

This phenomenon is quite common in applications and it is especially related to
the transport in inhomogeneous material, e.g., the motion of a light particle in an
optical lattice [5, 6]. The basic mathematical models for anomalous diffusions are
Lévy flights, which are random walks with step length provided by an i.i.d. se-
quence of Lévy α-stable random variables with α ∈ (0, 2) (see [9, 4]). In this simple
case, the motion is indeed provided by an asymptotic super-diffusive behavior with
δ = 2, for α ∈ (0, 1], and δ = 3 − α, for α ∈ (1, 2) ( Lévy scheme). To model the
motion in inhomogeneous material, one would like to take also into account that
steps are mutually correlated by their positions, which we may identify with the
presence of scatterers in the media. To this aim, in [3] the so-called Lévy-Lorentz
gas were introduced. This is a one-dimensional random walk in a Lévy-type ran-
dom environment, where scatterers are placed as a renewal point process with
inter-distances having a Lévy-type distribution, and jump probabilities depend on
whether the position of the walker is on a scatterer or not.

We are then interested in providing a characterization of this walk under the
quenched and annealed laws (recurrence/transience, LLN, scaling limits, large
deviation of the empirical speed), and in determining whether (and under which
law) the asymptotic behavior is super-diffusive. The theory of random walks in
random environments have been intensively studied in the last forty years and
many important results have been achieved, especially for one-dimensional systems
that are generally quite well understood. Even so, classical results do not apply
to this setting, mainly because of the non-ellipticity of the environment, and a
different analysis is required. In [3] a first lower bound on the annealed second
moment was derived, showing that for α ∈ (0, 1] the Lévy-Lorentz gas is super-
diffusive. More recently, in [1, 7], some related annealed quantities were estimated
and numerically simulated, also providing indications of the super-diffusivity of
the annealed process for α ∈ (0, 1]. The range of α ∈ (1, 2) is instead still under
debate, as the results in [1, 7] are not completely in agreement and may lead to
different conclusions.

In a work in progress with Cristadoro, Lenci and Ligabò, we studied the model
for α ∈ (1, 2) and proved that the quenched law of the random walk satisfies a
classical CLT and has moments converging to the moments of a diffusion.

We are now working to extend this result to the annealed law, showing that in
spite of Lévy flights, the Lévy-Lorentz gas for α ∈ (1, 2) has a diffusive behavior.

The problems we are interested in are the following:

1. Analysis of the annealed law: CLT and moments convergence.
2. Study of the regime of α ∈ (0, 1): LLN, CLT and moments convergence

w.r.t. the quenched and annealed law.
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3. Construction and characterization of an analogous two-dimensional model,
also following the physical analysis of Lévy glasses given in [5, 2, 8].
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Well distributed points in a generic graph

Alexandre Gaudillière

(joint work with Luca Avena)

For a given continuous time Markov process X on a finite state space X with
generator L defined by

Lf(x) =
∑

y 6=x

w(x, y)
(
f(y)− f(x)

)
, f : X → R,

we look for a law P for some random subset R of X with a given size |R| = m ≤
|X | = n and such that

E
[
Ex[TR]

]
does not depend on x in X ,

with Ex[TR] the mean hitting time of the random set R for the process started
from x in X . To this end we consider for any positive parameter q the probability
measure νq on rooted spanning forests φ of X that is defined by

νq(φ) =
1

Z(q)

∏

(x,y)∈φ

w(x, y),
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where “(x, y) ∈ φ” means that (x, y) is an edge of the spanning forest φ with the
convention that each branch of each tree is oriented towards the tree root, and
where Z(q) is the normalizing partition function.

Such a measure νq can be sampled through Wilson algorithm [2] and we prove
the following results.

(1) Z(q) is the characteristic polynomial of the generator L:

Z(q) = det(q − L) = (q + λ0) · · · (q + λn−1) = a1q + · · ·+ anq
n,

where λ0, λ1, . . . , λn−1 are the eigenvalues of (−L) ordered by non-decreas-
ing real part.

(2) The number of trees in a forest sampled from νq is a sum of n independent
Bernoulli variables with parameters (or mean values) q/(q+λi) when L has
only real eigenvalues. If L has some complex eigenvalues then, while we are
not able to make sense of such Bernoulli variables, the same result holds
by defining the law of such a sum through the same algebraic formula as in
the real case. Such a formula with complex λi’s does define a probability
measure on integers between 1 and n.

(3) When Φ is a random forest with law νq the root set ρ(Φ) forms a deter-
minantal process with kernel

K(x, y) = Px

[
X(Tq) = y

]
,

where Tq stands for an exponential time with parameter q (or expected
value 1/q) that is independent of the process X . This means that for any
A ⊂ X

P
[
A ⊂ ρ(Φ)

]
= detAK = det

((
K(x, y)

)
x,y∈A

)
.

(4) This root set ρ(Φ) is a solution to our problem. Indeed, for all x in X ,

E
[
Ex[Tρ(Φ)]

]
=

1

q

(
1−

n−1∏

i=1

λi
q + λi

)

is a quantity that does not depends on x, and so does the same quantity
conditioned on having a given root number m ≤ n:

E

[
Ex

[
Tρ(Φ)

] ∣∣∣
∣∣ρ(Φ)

∣∣ = m
]

=
am+1

am
,

where each ai refers to the coefficient of degree i in Z(q), characteristic
polynomial of the generator L.

References

[1] L. Avena and A. Gaudillière, On some random forests with determinantal roots, preprint
arXiv:1310.1723 (2013).

[2] D. Wilson, Generating random spanning trees more quickly than the cover time, Proceedings
of the twenty-eighth annual acm symposium on the theory of computing (1996), 296–303.



Large Scale Stochastic Dynamics 3095

Random walks on quasi one dimensional lattices and applications to

molecular motors

Alessandra Faggionato

(joint work with Vittoria Silvestri)

Molecular motors have been and still are object of intensive study in biology
and biophysics. Two fundamental paradigms have been proposed for their mod-
elization. In the so called Brownian ratchet model [11, 19] the dynamics of the
molecular motor is given by a one–dimensional diffusion on a periodic but typically
asymmetric potential, which can switch to a different potential at random times
(switching diffusion). The other paradigm, on which we concentrate here, is given
by continuous time random walks (also with non exponential waiting times) on
quasi linear graphs having a periodic structure [8, 9, 13, 14, 15, 16]. We call these
graphs quasi 1D lattices, they are obtained by gluing together several copies of a
fundamental cell in a linear fashion. The geometric complexity of the fundamental
cell reflects the possible conformational transformations of the molecular motor in
its mechanochemical cycle. The simplest example is given by a random walk on Z

with periodic jump rates, while random walks on other classes of quasi 1D lattices
(parallel–chain models and divided–chains models) have been studied motivated
by experimental evidence of a richer structure [1, 2, 12].

Let us point out some selected results in the biophysical literature concerning
random walks on quasi 1D lattices. Still before the study of molecular motors, both
the asymptotic velocity and gaussian fluctuations for the random walk on Z with
periodic jump rates have been obtained in [4] under a suitable Ansatz. Generalizing
the same Ansatz, formulas have been given in [1, 2, 12] for the asymptotic velocity
and gaussian fluctuations of parallel–chains models and divided–chains models. In
[21] the authors consider a generic random walk on a quasi 1D lattice and, by
first–passage time arguments, show that the asymptotic velocity can be computed
by solving a suitable linear system. Results concerning the large deviations of
the molecular motor position are rather limited. In [17] the authors have derived
such a LDP for the random walk on Z with periodic jump rates with periodicity
2, showing in addition the presence of a Gallavotti–Cohen type symmetry. This
kind of symmetry relations, often called fluctuation theorems, have received in
the last decade much attention inside the non–equilibrium statistical physics of
small systems and in particular for molecular motors (cf. [7, 17, 20] and references
therein).

We now describe our contribution (cf. [5, 6]) and compare it with the previous
results. We treat random walks on quasi 1d lattices in full generality and show
their analysis reduces to the study of random time changes of sums of i.i.d. random
variables. As a first consequence we prove a law of large number and a central
limit theorem, giving explicit formulas for the asymptotic velocity and diffusion
coefficient. We also show that for random walks in quasi 1d lattices the asymptotic
velocity can be computed by means of suitable linear systems, in the same spirit
of [21]. Although the techniques involved in this part are rather standard, we
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arrive to some remarkable results. While applying our formulas to the period case
we confirm Derrida’s result [4], for the class of divided–chains and parallel–chains
model we show that the formulas derived in [1, 2, 12] by extending Derrida’s Ansatz
are not correct and we give different formulas. Moreover, we discuss computability
issues for computing the asymptotic velocity and the diffusion coefficient in the
general case.

We explain our results concerning large deviations. The present results for
random time changes of cumulative process do not cover completely our class of
models. We therefore follow a different route since in our case all relevant infor-
mation concerning the position of the random walk are encoded in an associated
random walk on Z with nearest neighbor jumps and typically non–exponential
holding time, that we called reduced random walk. Adapting to the latter the
techniques developed in [3] we derive the LDP for the first–passage times as well
for the position of the molecular motor. The tools developed in this part are
fundamental to investigate the Gallavotti–Cohen type symmetry pointed out in
[17]. We show indeed that it is not universal: it is satisfied for any choice of jump
rates only by a suitable class of quasi 1d lattices, while it is unsatisfied for almost
any choice of jump rates in the other quasi 1d lattices. Finally, we show that the
validity of the Gallavotti–Cohen type symmetry for the above class of quasi 1d
lattices is indeed a consequence of a universal symmetry for algebraic currents [7].
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Large deviations for degenerate jump processes

Giada Basile

(joint work with Lorenzo Bertini)

We consider a class of continuous time Markov chains on a compact metric space
that admit an invariant measure strictly positive on open sets together with an
absorbing state. We prove the joint large deviation principle for the empirical
measure and flow. Due to the lack of uniform ergodicity, the zero level set of the
rate function is not a singleton. As a corollary, we deduce the Donsker-Varadhan
large deviation principle for the empirical measure.
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Phase transitions on the scaling limits of the symmetric slowed

exclusion

Patŕıcia Gonçalves

(joint work with Tertuliano Franco and Adriana Neumann)

The exclusion process is an interacting particle system widely studied in Prob-
ability and Statistical Mechanics. Roughly speaking, according to this model,
particles perform continuous time random walks in a lattice, under the constraint
that whenever a particle tries to jump to an already occupied site, the jump is
suppressed. If that is the case, the particle has to wait a new random time, in
order to move.
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There is an intensive research on the behavior of exclusion processes, from
many different aspects and varied view points. In this work, we consider the one-
dimensional symmetric simple exclusion in the presence of a slow bond. To be
precise, the dynamics of this model is defined as follows. The model is consider
evolving on Z and at each bond {x, x+1} we place a clock Tx which has exponential
distribution with parameter ξnx,x+1, where, for α > 0 and β ∈ [0,∞], ξnx,x+1 = α

nβ ,
if x = −1, otherwise, ξnx,x+1 = 1. We notice that for α = 1 and β = 0, all the
clocks have parameter equal to 1 and the process corresponds to the well known
symmetric simple exclusion process. By increasing the vale of α and β, we are
creating a microscopic barrier at the bond {−1, 0}, since all the bonds are crossed,
by particles, at rate 1 except the slow bond whose rate of passage of particles is
given by α/nβ . The questions we address here are: what is the macroscopic effect
of increasing the value of these parameters, at the level of hydrodynamics and
equilibrium fluctuations? Is there a phase transition? What is its dependence on
α at the macroscopic level? Is there a critical β? Does the phase transition at
the hydrodynamics and fluctuations level, have the same critical β and the same
dependence on α? Here we give a precise answer to these questions. In order to
state properly our results we need to introduce some notation.

The microscopic dynamics. The symmetric slowed exclusion process is the
Markov process {ηt : t ≥ 0} with state space Ω := {0, 1}Z and with infinitesimal
generator acting on local functions f : Ω → R as

(Lnf)(η) =
∑

x∈Z

ξnx,x+1

(
f(ηx,x+1)− f(η)

)
,

where ηx,x+1 is the configuration obtained from η by exchanging the occupation
variables η(x) and η(x + 1) and ξnx,x+1 is given as above. The dynamics of the
process can be informally described as follows. At each bond {x, x + 1} of Z,
there is an exponential clock of parameter ξnx,x+1, all of them being independent.
Suppose the configuration at the present is η. After a ring of the clock at the
bond {x, x + 1}, the occupation variables η(x) and η(x + 1) are exchanged. It is
well known that the Bernoulli product measures on Ωn with parameter ρ ∈ [0, 1],
denoted by {νρ : 0 ≤ ρ ≤ 1}, are invariant and reversible for the dynamics
introduced above.

Hydrodynamic Limit. For each configuration η we denote by πn(η; du) the
empirical measure given by πn(η; du) = 1

n

∑
x∈Z

η(x)δx/n(du) and πn
t (η, du) :=

πn(ηtn2 , du). The hydrodynamic limit is the following statement. Assume a Law
of Large Numbers (L.L.N.) for {πn

0 }n∈N to ρ0(u) du, under an initial distribution of
the system, then for any t > 0 the L.L.N. holds for {πn

t }n∈N to ρ(t, u) du under the
corresponding distribution of the system at time t, where ρ(t, u) evolves according
to the hydrodynamic equation of the process.

For this model, the hydrodynamic limit is stated as follows. Fix ρ0 : R → [0, 1]
and a sequence of probability measures {µn}n∈N associated to ρ0. For any T ≥ 0,
the sequence of measure valued processes {πn

t (dx); t ∈ [0, T ]}n∈N converges, as n
tends to infinity, to some {u(t, x) dx; t ∈ [0, T ]} in probability with respect to the
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Skorohod topology of D([0, T ],M+(R)), that is, the space of càdlàg paths taking
values in M+(R)) (the space of positive measures in R with total mass bounded
by one). Moreover,

• for β < 1, {u(t, x); t ≥ 0, x ∈ R} is the unique weak solution of the heat
equation ∂tu(t, x) = ∂2xxu(t, x), t ≥ 0, x ∈ R.

• for β = 1, {u(t, x); t ≥ 0, x ∈ R} is the unique weak solution of the
heat equation ∂tu(t, x) = ∂2xxu(t, x), t ≥ 0, x ∈ R \ {0} with a bound-
ary condition of Robin’s type at zero, namely ∂xu(t, 0

+) = ∂xu(t, 0
−) =

α
(
u(t, 0+)− u(t, 0−)

)
, t ≥ 0.

• for β > 1, {u(t, x); t ≥ 0, x ∈ R} is the weak solution of the heat equation
∂tu(t, x) = ∂2xxu(t, x), t ≥ 0, x ∈ R \ {0} with a boundary condition of
Neumann’s type at zero, namely, ∂xu(t, 0

+) = ∂xu(t, 0
−) = 0, t ≥ 0.

See [1, 2] for details on the proof of this statement.

Equilibrium fluctuations. We start by describing the equilibrium fluctua-
tions for the density of particles, from where we obtain the equilibrium fluctuations
for other observables of the Markov process as: the current, tagged particle and
the occupation time.

Fix ρ ∈ [0, 1]. We denote our space of test functions by S(R \ {0}), which
consists in the space of functions f ∈ C∞(R \ {0}), that are continuous from the
right at x = 0, with ‖f‖k,ℓ := supx∈R\{0} |(1 + |x|ℓ) f (k)(x)| < ∞, for all integers

k, ℓ ≥ 0, and f (k)(0−) = f (k)(0+), for all k integer, k ≥ 1. Let Sβ(R) be the subset
of S(R \ {0}) composed of functions f satisfying

• For β < 1, f(0−) = f(0+).

• For β = 1, f (1)(0+) = f (1)(0−) = α
(
f(0+)− f(0−)

)
.

• For β > 1, f (1)(0+) = f (1)(0−) = 0.

For t ∈ [0, T ], we define the density fluctuation field on functions f ∈ Sβ(R) as
Yn
t (f) :=

1√
n

∑
x∈Z

f
(
x
n

)(
ηtn2(x)−ρ

)
. For this model, the equilibrium fluctuations

for the density are stated as follows. The sequence of processes {Yn
t }n∈N converges

in distribution, as n tends to infinity, with respect to the Skorohod topology of
D([0, T ],S ′

β(R)) (the space of càdlàg paths taking values in S ′
β(R)) to a Gaussian

process Yt in C([0, T ],S ′
β(R)) (the space of continuous paths taking values in

S ′
β(R)), which is the stationary solution of the Ornstein-Uhlenbeck equation

dYt = ∆βYtdt +
√
2χ(ρ)∇β dBt,

where Bt is a S ′
β(R)-valued Brownian motion. This means that the trajectories

of Yt are in C([0, T ],S ′
β(R)), Y0 is a white noise of variance χ(ρ), namely if for

any f ∈ Sβ(R), the real-valued random variable Y0(f) has a normal distribution
of mean zero and variance χ(ρ)

∫
R
(f(x))2dx.

Now we look to other observables of our Markov Process. We start with the
current. For u ∈ R define the current through the bond {⌊un⌋ − 1, ⌊un⌋}, as
Jn
u (t), that is Jn

u (t) counts the total number of jumps from the site ⌊un⌋ − 1 to
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the site ⌊un⌋ minus the total number of jumps from the site ⌊un⌋ to the site
⌊un⌋ − 1 in the time interval [0, tn2]. Then, for every t ≥ 0 and every u ∈ R,{
Jn
u (t)/

√
n
}
n∈N

converges, as n tends to infinity, to Ju(t), in the sense of finite-

dimensional distributions, where Ju(t) is a Gaussian process with mean zero and
variance given by

• for β < 1, E[(Ju(t))
2] = 2χ(ρ)

√
t
π ;

• for β = 1, E[(Ju(t))
2] = 2χ(ρ)

(√
t
π + Φ2t(2u+4αt) e4αu+4α2t−Φ2t(2u)

2α

)
;

• for β > 1, E[(Ju(t))
2] = 2χ(ρ)

(√
t
π

[
1− e−u2/t

]
+ 2uΦ2t(2u)

)
,

where Φ2t(x) :=
∫ +∞
x

e−u2/4t
√
4πt

du.

To observe the fluctuations for a tagged particle, we have to start the process from
νρ conditioned to have a particle at the site ⌊un⌋. If Xn

u (t) is the position at the
time tn2 of that tagged particle, then

{
Xn

u (t) ≥ k
}

=
{
Jn
u (t) ≥

∑⌊un⌋+k−1

x=⌊un⌋
ηtn2(x)

}
.

Therefore, for all β ≥ 0, every u ∈ R and t ≥ 0
{
Xn

u (t)/
√
n
}
n∈N

converges, as n

tends to infinity, to Xu(t), in the sense of finite-dimensional distributions, where
Xu(t) = Ju(t)/ρ in law. See [3] for details on the proofs of these results.

Finally, we define the occupation time of the origin as the process

Γn(t) :=
1

n3/2

∫ tn2

0

(
ηs(0)− ρ

)
ds.

Then, for every t ≥ 0, {Γn(t) : t ∈ [0, T ]}n∈N converges in distribution with respect
to the uniform of C([0, T ],R), as n tends to infinity, to a mean-zero Gaussian
process {Γ(t) : t ∈ [0, T ]} with variance given by

• for β < 1, E
[(
Γ(t)

)2]
= 4

3
χ(ρ)√

π
t3/2, that is, the limit process is (up to a

constant) a fractional Brownian motion of Hurst exponent 3/4.

• for β = 1, E
[(
Γ(t)

)2]
= 4

3
χ(ρ)√

π
t3/2 + 2χ(ρ)

∫ t

0

∫ s

0
Fα(s−r)√
4π(s−r)

dr ds,

where

Fα(t) =
1

2t

∫ +∞

0

z e−z2/4t−2αz dz.

Moreover, the limit process is not self-similar, hence it is not a fractional
Brownian motion.

• for β > 1, E
[(
Γ(t)

)2]
= 8

3
χ(ρ)√

π
t3/2, that is, the limit process is (up to a

constant) a fractional Brownian motion of Hurst exponent 3/4.

This is an example of a process for which the fluctuations of the current and of the
occupation time are not of the same type. For details on the proof of this result,
we refer the reader to [4].
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A quenched central limit theorem for random walks in random

sceneries in two dimensions

Renato S. dos Santos

(joint work with Nadine Guillotin-Plantard and Julien Poisat)

Random walks in random sceneries (RWRS) are simple models of processes in
disordered media. They were introduced at the end of the 70’s independently
by Kesten–Spitzer and Borodin, with the motivation of constructing new self-
similar processes with stationary increments. They are defined from two sources
of randomness: a field ξ = (ξ(x))x∈Zd of i.i.d. random variables, called the random
scenery, and a random walk S = (Sn)n∈N in Z

d, independent of the scenery.
The RWRS Z = (Zn)n∈N is then defined as the scenery accumulated along the
trajectory of the random walk, that is, Zn = ξ(S1) + . . . + ξ(Sn). The law of Z
under the joint law P of ξ and S is called the annealed law, while its conditional
law given ξ, i.e., under P[ · |ξ], is called the quenched law.

To describe the limit theorems under the annealed law, assume that the random
walk increment and the scenery at the origin are taken in the normal domain
of attraction of stable laws of indices a and b, respectively. In the case d =
1 > a, Kesten and Spitzer showed in [9] that the process

(
n−δZ⌊nt⌋

)
t≥0

, where

δ = 1 − a−1 + (ab)−1, converges weakly under the annealed law to a self-similar
process with stationary increments that is not stable. Later on, Bolthausen proved

in [2] that, for d = 2 = a = b, a functional CLT holds for (
√
n logn

−1
Z⌊nt⌋)t≥0, and

his result also covers the case d = 1 = a, b = 2. The case d = a ∈ {1, 2}, 0 < b < 2
was considered by Castell, Guillotin-Plantard and Pène in [6], who showed that
in this case, the process rescaled by n1/b(log n)1−1/b converges to stable process of
index b. The transient case, i.e., a > d, had already been considered by Borodin
in [5]; rescaling by n1/b one obtains also as a limit a stable process of index b.

Limit theorems under the quenched law are more recent. One of the first results
in this direction was obtained by Ben Arous and Černý in [1] for the Bouchaud
trap model in dimensions d ≥ 2. Recently, Guillotin-Plantard and Poisat proved
in [7] in the case b = 2 that the functional central limit theorem holds under the
quenched law for a class of transient random walks, including walks with finite
covariance matrices in dimensions d ≥ 3. In dimension d = 2, they were only
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able to prove convergence along a subsequence, raising the question of whether
the convergence takes place along the full subsequence.

Together with Nadine Guillotin-Plantard and Julien Poisat, we give in [8] a
positive answer to this question when the scenery at the origin has slightly more
than a second moment. More precisely, under the assumptions

(A1) The random walk increment S1 has a finite non-singular covariance matrix
Σ and is aperiodic in the sense of Spitzer [10];

(A2) E[ξ0] = 0, E[ξ20 ] = 1 and there exists a γ > 0 such that

E
[
ξ20(log

+ |ξ0|)γ
]
< ∞,

where log+ x := 0 ∨ log x,

we are able to prove the following theorem:

Theorem 1. If d = 2 and (A1)–(A2) hold, then, for P-almost every ξ, the process

Z⌊nt⌋√
n logn

, t ≥ 0

converges weakly under P[ · |ξ] in the Skorohod topology to a Brownian motion with

variance σ2 = (π
√
detΣ)−1.

The proof of the above theorem uses an approach developed by Bolthausen
and Sznitman [3] in the context of random walks in random environments. The
idea is to pass the known annealed functional CLT to the quenched law using
concentration properties of the quenched expectations of Lipchitz functionals of
the rescaled path. This concentration is in turn obtained via a martingale decom-
position of the difference between the quenched and annealed expectations, and
arises naturally as a consequence of the difference in the asymptotic growth of the
so-called self-intersection local time of S and the mutual intersection local time
of two independent copies of S, the former being much larger than the latter in
dimensions d ≥ 2.
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Occupation times in long-range asymmetric simple exclusion processes

and KPZ exponents

Sunder Sethuraman

(joint work with Cedric Bernardin and Patricia Goncalves)

The main focus of the talk was to discuss the fluctuations of the occupation time
at the origin with respect to asymmetric simple exclusion processes on Z

d when
started from a Bernoulli invariant measure. When the jumps are short-range and
ρ = 1/2, it is known that the fluctuations are superdiffusive in d = 1, 2 [3], [10].
Moreover, it can be inferred from the results in [1], [2], [6] that the exact variance
order should be t4/3 in d = 1 and t(log t)2/3 in d = 2. For the diffusivity, a related
quantity, this has been already proved (cf. [4], [7], [11] and references therein).
When the density ρ 6= 1/2, the fluctuations are in diffusive scale and convergence
to Brownian motion is known [3], [8], [9].

Consider now long-range jumps, that is say when the jump law p(x) = c1{xi >
0, 1 ≤ i ≤ d} |x|−d−α (more general asymmetries and relations between these
asymmetries were also considered) for α > 0 and density ρ = 1/2. We find in
d = 1 a curious ‘change-point’ at α = 3/2. That is, for 0 < α ≤ 3/2, the variance
orders (in Tauberian sense) are the same as under the associated symmetric process
and equal t for 0 < α < 1 and t2−1/α for 1 ≤ α ≤ 3/2. For α > 2, we show that
the variance order is the same as that under the short-range model. Also, for
3/2 < α ≤ 2, we show superdiffusive behavior, that the variance is bounded below

by t1+(2α)−1

.
One notices at α = 3/2, the variance is t4/3 and this is also the conjectured

order when α > 2. We propose therefore, since volatility should increase with α,
that the variance is order t4/3 for all α ≥ 3/2. Some preliminary ‘explanation’ of
these results was given in terms of scaling limits of fluctuation fields of weakly-
asymmetric long-range processes.

When d = 2, the variance is order t when α < 2 and is order t log(log(t)) (in
Tauberian sense) when α = 2. When α > 2, the variance is the same order as in
the short-range case.

When d ≥ 3, or when density ρ 6= 1/2 in d = 1, 2, the variance is always
diffusive, that is order t no matter the α, as expected.

In addition, the scaling limits of occupation times in symmetric long-range
systems were also explained. These, in d = 1 when 1 < α < 2, turn out to
be fractional Brownian motions with Hurst parameter H = 1 − (2α)−1, and in
all other cases and dimensions, the limits are Brownian motions. These results
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complement those in symmetric finite-range models [5], [9]: In d = 1, the limit is
fractional Brownian motion with H = 3/4 and Brownian motion in d ≥ 2.
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Derivation of Euler and Nonlinear Sound Equations

József Fritz

Dedicated to the Memory of Hermann Rost

The Anharmonic Chain: It is perhaps the simplest microscopic model of one-
dimensional elasticity. The Hamiltonian of coupled oscillators of unit mass on Z

reads as

H(ω) :=
∑

k∈Z

Hk(ω) , Hk(ω) :=
p2k
2

+ V (qk+1 − qk) ,

where ω = {(pk, qk) : k ∈ Z}, pk, qk ∈ R denotes a configuration of the infinite
system. In terms of the deformation (strain) variables rk := qk+1−qk the equations
of motion read as

ṗk = V ′(rk) − V ′(rk−1) and ṙk = pk+1 − pk for k ∈ Z ;

in this formulation V needs not be symmetric. Total momentum P :=
∑
pk, total

deformation R :=
∑
rk and total energyH are preserved by the dynamics, thus we

have a three-parameter family λβ,π,γ of translation invariant stationary product
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measures, where β > 0 is the inverse temperature. Under λβ,π,γ the Lebesgue
density of any couple (pk, rk) ∼ (y, z) reads as exp(γz − βI(y, z|π) − F (β, γ)),
where I(y, z|π) := (y − π)2/2 + V (z); the normalization F is sometimes referred
to as the free energy. Hyperbolic scaling means that we are interested in the
behavior of the empirical processes πε(t, x) := pk(t/ε), ρε(t, x) := rk(t/ε) and
χε(t, x) := Hk(ω(t/ε)) if |εk−x| < ε/2, as 0 < ε→ 0. A formal calculation results
in the triplet of compressible Euler equations:

∂tπ = ∂xJ(Ĩ , ρ), ∂tρ = ∂xπ and ∂tχ = ∂x(πJ(Ĩ , ρ)),

where Ĩ = χ − π2/2 is the internal energy and J(Ĩ , ρ) = γ/β denotes the equi-
librium mean of energy flux. To obtain a complete picture on stationary states,
which is a first requirement of a correct derivation of hydrodynamic equations,
random perturbations of the evolution law should be introduced.

Random exchange of momenta: This weak noise preserves the classical con-
servation laws, and it is sufficient for the strong ergodic hypothesis claiming that
every translation invariant stationary measure is a superposition of our product
measures λβ,π,γ , see [2]. Therefore the relative entropy argument of H.-T. Yau [1]
implies the above set of Euler equations in a smooth regime.

Ginzburg - Landau perturbation: The stochastic dynamics

dpk =
(
V ′(rk)− V ′(rk−1)

)
dt + σ

(
pk+1 + pk−1 − 2pk

)
dt

+
√
2σ

(
dwk − dwk−1

)
,

drk =
(
pk+1 − pk

)
dt, k ∈ Z,

where σ > 0 is fixed and {wk : k ∈ Z} are independent Wiener processes, violates
the law of energy conservation, thus λπ,γ := λ1,π,γ are the stationary product
measures. In this case we get convergence to classical solutions of the nonlinear
sound equation of elastodynamics:

∂tu = ∂xS
′(v) and ∂tv = ∂xu,

where S(v) denotes the convex conjugate of F (γ) := log
∫
exp(γx− V (x)) dx.

Artificial Viscosity: In a regime of shock waves the randomness must be very
strong:

dpk =
(
V ′(rk)− V ′(rk−1)

)
dt + σ(ε)

(
pk+1 + pk−1 − 2pk

)
dt

+
√
2σ(ε)

(
dwk − dwk−1

)
, k ∈ Z,

drk = (pk+1 − pk) dt + σ(ε)
(
V ′(rk+1) + V ′(rk−1)− 2V ′(rk)

)
dt

+
√
2σ(ε)

(
dw̃k+1 − dw̃k

)
, k ∈ Z,

where {wk} and {w̃k} are independent families of independent Wiener processes.
The macroscopic viscosity: εσ(ε) → 0, but εσ2(ε) → +∞ as ε→ 0. Conservation
laws and stationary states are as before, thus again the sound equation is expected
as the result of the hyperbolic scaling limit.
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Conditions on V : The substitution of the microscopic current V ′ by its equilib-
rium expectation S′ is done by means of a logarithmic Sobolev inequality, thus V
must be strictly convex. Moreover, the genuine nonlinearity of its flux is a condi-
tion for existence of weak solutions to the sound equation, that is S′′′(v) = 0 can
not have more that one root. In terms of V this follows from the same property
of V ′′′. For instance, V (r) := r2/2 − log ch(κr), but there are many other exam-
ples, too. A technical condition of asymptotic normality is also needed: V ′′(x)
converges at an exponential rate as x→ ±∞.

Main Result: Since we are not able to prove the uniqueness of the hydrodynamic
limit, our only hypothesis on the initial distribution is that its specific entropy
(relative to λ0,0) is finite. Then the distributions Pε of the empirical process
(uε, vε) form a tight family with respect to the weak topology of the C space
of trajectories, and its limit distributions are all concentrated on a set of weak
solutions to the sound equation. The notion of weak convergence above changes
from step to step of the argument. We start with the weak compactness of the
family of Young measures of the block - averaged empirical processes, finally we
get tightness in the strong local Lp(R2

+) topology if p < 2, see [5] for details.

Compensated compactness: This is the most relevant keyword of the proofs, it
is based on the evaluation of Lax entropy pairs (h, J). Although we have ∂th(u, v)+
∂xJ(u, v) = 0 along classical solutions, a nontrivial h is not preserved by the
microscopic evolution because it can not admit extra conservation laws. Therefore
h exhibits a non-gradient behavior, which can be controlled by a clever logarithmic
Sobolev inequality, at least if εσ2(ε) → 0 as ε → 0. Finally, Tartar’s celebrated
factorization identity implies the Dirac property of the limiting Young measure by
means of the delicate, slowly increasing Lax entropy pairs of J.W. Shearer [3] and
Serre - Shearer [4].
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Couplings and attractiveness for interacting particle systems

Ellen Saada

(joint work with Lucie Fajfrová and Thierry Gobron)

The simple exclusion process ([19]) is one of the most studied interacting particle
systems: In spite of its simplicity, it is a toy model for most of the panorama of
nowaday’s issues. It is described as follows. Each site of Zd is endowed with a
rate 1 exponential clock (all clocks being mutually independent). The state space

is Ω = XZ
d

, with X = {0, 1}: There is at most one particle per site, ηt(x) = 1 if
there is a particle on site x ∈ Z

d at time t ≥ 0, and ηt(x) = 0 if x is empty at t. If
at time t the clock at x rings and ηt−(x) = 1, the particle present at x attempts
a jump to a target site y according to a probability transition p(y − x), and the
jump is performed only if y is empty, i.e. ηt−(y) = 0 (this is the exclusion rule).

Attractiveness is a crucial property of simple exclusion, proved through basic
coupling: In the Markovian coupled process (ξt, ζt)t≥0, particles of (ξt) and (ζt)
attempt jumps together as much as possible, that is they obey to the same clocks
and choose the same target site. This coupling satisfies:

(A) if ξ0 ≤ ζ0 (coordinate-wise), then for all t ≥ 0, ξt ≤ ζt a.s.

Attractiveness is a key tool to determine the extremal invariant and translation
invariant measures of the process, and its hydrodynamic behavior under Euler
scaling.

Our question is: What about attractiveness for other processes than simple
exclusion, how to check it, how to use it as a tool to derive for instance invariant
measures or hydrodynamics?

Our works focus on multiple particle jump models, which are conservative par-
ticle systems of state space Ω = XZ with X ⊂ Z or X ⊂ N.

If X ⊂ N, ηt(z) is the number of particles at site z at time t; if X ⊂ Z, |ηt(z)|
is the number of unit charges at site z (either positive for ηt(z) > 0 or negative
for ηt(z) < 0). For such models, in a transition at time t, for a configuration ηt,
and an integer k ≥ 1, with a rate Γk

ηt− (x),ηt− (y)(y − x), k particles (respectively k

positive charges) ‘attempt a jump’ from a site x to a site y, that is, the values at
sites x and y are changed to ηt−(x) − k and ηt−(y) + k as long as the resulting
configuration belongs to the state space. The conserved quantity is ηt(x) + ηt(y),
the total number of particles (resp. the total charge) involved in the transition.

If k takes only the value 1, we recover simple exclusion when Γ1
1,0(y − x) =

p(y−x)×1, zero range process ([1]) when Γ1
α,β(y−x) = p(y−x)g(α), misanthropes

process ([10]) when Γ1
α,β(y − x) = p(y − x)b(α, β) and target process ([16]) when

Γ1
α,β(y − x) = p(y − x)1{α≥1}b(β). Two examples with k ≥ 1 are a stick model

related to the Hammersley process ([13, 21]), and a two species exclusion model
with charge conservation ([11]).

It turns out that, if for some rates k > 1, then the basic coupling construction
is not possible any more for such multiple particle jump models when they are
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attractive. In [15], we have derived necessary and sufficient conditions for attrac-
tiveness of such models. Under these conditions, we have constructed an increasing
coupling. The latter permits to determine the extremal invariant and translation
invariant measures for the dynamics, under an irreducibility condition on the cou-
pled transition rates. This latter condition ensures that for the coupled process,
discrepancies of opposite signs in two coupled configurations will merge (as for
simple exclusion, this part is the main step of the proof); we have to take into
account a new feature appearing in those models, the partial (or total) exchange
of discrepancies in a coupled transition. Finally, all this setup enables to derive
hydrodynamics under Euler scaling for attractive multiple particle jump models,
relying on the method in [2, 3, 4, 5]; we have for that to ascertain the macroscopic
stability property ([9, 20]) for those models.

We are now working ([14]) on a class of examples that we call mass migration
processes, for which Γk

α,β = p(y−x)gkα,β . This includes mass migration zero range

process for which Γk
α,β(y − x) = p(y − x)gkα (see [17] in finite volume), and mass

migration target process for which Γk
α,β(y − x) = p(y − x)1[k≤α] g

k
∗,β.

We look for product invariant measures for a mass migration process (ηt)t≥0.
We exhibit relations between the transition rates and the single site marginal of
a product probability measure µ̄ which is invariant and translation invariant for
(ηt)t≥0. These relations are exploited in two ways: (1) given the rates, check that
a measure µ̄ is invariant; (2) given µ̄, define rates for which µ̄ is invariant.

This correspondence gives new examples of models, mass migration zero range
processes, for which condensation ([12, 18, 6]) occurs, since the latter property
concerns only stationary distributions: Having a stationary state µ̄ which produces
condensation we can study different rates which lead to this µ̄.

We have also begun to work on exclusion processes with speed change. Davide
Borrello has derived similar methods for attractiveness and couplings for non-
conservative dynamics in [7], which enabled him to study biological models in
[8].
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UMR CNRS 7351
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Winterthurerstr. 190
8057 Zürich
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