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Abstract.
The workshop brought together 15 scientists, which included leaders in the

fields of mathematics (partial differential equations, statistical mechanics and
calculus of variations) and mechanics (continuum mechanics, computational
mechanics, microstructure and material science) as well as mid- and early-
career participants. We addressed the themes of modeling crystal plasticity,
crystallization and fracture, and non-equilibrium thermodynamics.
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Introduction by the Organisers

The workshop Inelastic and Non-equilibrium Material Behavior: from Atomistic
Structure to Macroscopic Constitutive Relations addressed two key problems in the
multiscale characterization of materials undergoing large inelastic deformations:
(i) the understanding of non-equilibrium deformation of materials and nanostruc-
tures, and (ii) the atomistic-to-continuum limit of inelastic processes such as dislo-
cation induced plasticity, crystal formation, and fracture. The diverse background
of the participants made it possible to have a vibrant and open exchange of ideas
in this intrinsically interdisciplinary problem of scale bridging in materials.

On the materials science side of the topic, we had presentations from areas of
computation and modeling, in particular regarding the topic of objective structures
and their thermodynamic behavior, phase field models for modeling phase tran-
sitions and crystallization. The mathematical topics covered included relaxation
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in models for crystal plasticity, crystallization and fracture, as well as modeling
thermodynamic processes far from equilibrium in both particle systems and the
continuum. In all presentations we had a lively discussion that usually already
started during the lecture and continued during the afternoon and evening breaks,
sparking many ideas for improvements and further research and collaboration.
The discussions in the mini-workshop atmosphere exceeded our expectations.

Complementary to the lectures on current research we had evening sessions
where experts in the respective fields provided introductions to specialized topics.
These sessions covered three areas: models for crystal plasticity, with a particular
focus on kinematics derived from atomistics, the Boltzmann equation, and gradient
flows. These lectures proved to be very successful and further facilitated the
interdisciplinary exchange within the workshop.

In the feedback we solicited from the workshop participants, the high scientific
standard and the benefits of informal structure and the small group, leading to
long and in depth discussions during and after the presentations were explicitly
mentioned. The more tutorials were also praised by the participants, especially
their focus on open questions. This even lead to some new collaborations.

The workshop participants came from the US, Germany, and the UK, with a
diverse mix of established researchers and early career scientists as well as PhD
students. The excellent working and living conditions at the institute were vital
for the lively and productive scientific atmosphere. The organizers thank the NSF
for contributing to the travel expenses of two doctoral students and two professors
from the US.
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Abstracts

Objective Density Functional Theory: Ab-initio simulation schemes
for Objective Structures

Amartya Banerjee

(joint work with Ryan Elliot, Richard D. James)

Objective structures are atomic/molecular configurations which generalize the no-
tion of crystals and are such that all the constituent atoms/molecules of the struc-
ture see the same environment up to orthogonal transformations and translations.
Objective structures are ubiquitously present in all of materials science, biology
and nanotechnology and examples of these structures include nanotubes, bucky-
balls, tail sheaths and capsids of viruses, graphene sheets and molecular bilayers.
Due to their association with large degrees of symmetry, objective structures are
likely to be a fertile source of materials with remarkable material properties -
particularly, collective material properties such as ferromagnetism and ferroelec-
tricity. A systematic study of objective structures therefore, is likely to lead to
the discovery of novel materials. At the same time, formulation of computational
methods specifically designed for studying objective structures, is likely to lead to
the development of novel nanomechanics simulations methodologies.

Following this line of thought, we have been developing Objective Density Func-
tional Theory - a suite of rigorously formulated quantum mechanical theories and
numerical algorithms for carrying out abinitio simulation studies of objective struc-
tures. Drawing analogies from the classical plane-wave density functional method
of solid state physics, our focus has been on the development of novel spectral
schemes for studying objective structures using Kohn-Sham Density Functional
Theory. In this work, we first demonstrate how the equations of Kohn-Sham
Density Functional Theory for objective structures admit interpretation in terms
of symmetry adapted cell problems. Next, we propose a complete orthonormal
basis set for discretizing these cell problems. We then discuss the significant chal-
lenges associated with the efficient solution of the discretized cell problems and
our progress in addressing these challenges through a variety of numerical and
algorithmic strategies.

We discuss some examples highlighting the efficiency and accuracy of our nu-
merical methods. Finally, we present applications of our spectral schemes to the
study of some problems in nano-mechanics, including the study of nano-clusters
and simulations of the bending and twisting of nano-beams.

References

[1] M. Muster, Computing certain invariants of topological spaces of dimension three, Topology
32 (1990), 100–120.

[2] M. Muster, Computing other invariants of topological spaces of dimension three, Topology
32 (1990), 120–140.
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Quasi-Static Brittle Damage Evolution in Elastic Materials with
Multiple Damaged States

Isaac Vikram Chenchiah

(joint work with Christopher J. Larsen)

We present energetic and strain-threshold models for the quasi-static evolution of
brutal brittle damage for geometrically-linear elastic materials. By allowing for
anisotropic elastic moduli and multiple damaged states we present the issues for
the first time in a truly elastic setting, and show that the methods developed in
[Garroni, A., Larsen, C. J., Threshold-based quasi-static brittle damage evolution,
Archive for Rational Mechanics and Analysis 194 (2), 585-609 (2009)] extend nat-
urally to a class of elastic damageable materials. We show existence of solutions
and that energetic evolutions are also threshold evolutions.

1. Introduction

Many irreversible phenomena in mechanics have been studied through varia-
tional models, plasticity and fracture being prominent examples. Variational for-
mulations enable the use of the powerful tools of calculus of variations, for instance
it is typically easy to show existence of global minimisers albeit perhaps only for
a relaxed energy.

Mechanical phenomena have also been understood through threshold criteria.
In the examples given above, plastic behaviour is triggered when stress reaches
a yield surface and fracture occurs where the stress has a sufficiently large sin-
gularity. An attractive feature of these models is that these criteria are spatially
local, which is physically natural, expresses engineering intuition and facilitates
modelling. On the other hand it is unclear what correspondence (if any) there is
between variational and threshold formulations of the same phenomenon.

In this paper we present, first, energetic (i.e., variational) and threshold mod-
els for the quasi-static evolution of brutal brittle damage in geometrically-linear
elastic materials. This part of our work may be viewed as an extension to true elas-
ticity (i.e., with vector-valued displacement fields and possibly anisotropic elastic
moduli) of an earlier model [1] which was restricted to anti-plane shear (a scalar
setting) with essentially scalar moduli (multiples of the identity). Moreover we al-
low for multiple damage processes, and thus multiple damaged states; to the best
of our knowledge this is the first model to do so. For the energetic formulation we
show existence of solutions under reasonable hypotheses.

These two approaches to damage are formulated independently but the question
arises as to whether they are related for any given material and, if yes, how. In the
second part of our work we relate these formulations for a broad class of materials.
We show that energetic evolutions are also threshold evolutions, for a threshold
that is related to the energetic cost of damage (i.e., the energy dissipated per
unit volume due to damage). Thus energetic evolutions also have a spatially-local
description.
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1.1. Notation. We set D := {0, 1}. Let s be the dimension of space. Let Ω ⊂ R
s

be Lipschitz and P(Ω) := 2Ω, the set of subsets of Ω. | · | denotes either the
Euclidean norm on R or the Lebesque measure on Rs. We denote the Euclidean
inner product in Rs by ·. For a, b ∈ Rs,

a⊗s b :=
1

2
(a⊗ b+ b⊗ a)

where a⊗ b is the tensor product of a and b.
Let S :=

{

M ∈ Rs×s | M =MT
}

be the linear space of symmetric matrices.
We denote the standard inner product in S by 〈·, ·〉. P is the set of all orthogonal
projections on S and M is the set of all elastic modulli (i.e., positive-definite
self-adjoint linear operators) on S. We use the standard operator norm on M:

‖ · ‖ := sup
ǫ∈S

〈·ǫ, ǫ〉
‖ǫ‖2 ,

and the standard partial order that is defined through quadratic forms: ∀α1, α2 ∈
M,

α1 6 α2 ⇐⇒ ∀ǫ ∈ S, 〈α1ǫ, ǫ〉 6 〈α1ǫ, ǫ〉.
We set

M(c1, c2) := {α ∈ M | c1 6 ‖α‖ 6 c2}
for 0 < c1 < c2.

The map e : H1
0 (Ω,R

s) → L2(Ω, S) is defined through

e(·) := 1

2

(

D ·+D·T
)

,

so e(u) is the strain corresponding to the deformation u. For α ∈ L∞(Ω,M(c1, c2))
and body force f ∈ H−1(Ω,Rs) by u(α, f) we denote the solution in H1

0 (Ω,R
s) of

− div(αe(·)) = f.

In addition we set e(α, f) := e (u(α, f)) ∈ L2(Ω, S). The corresponding elastic
energy is

E(α, f) :=
∫

Ω

(

1

2
〈α e(α, f), e(α, f)〉 − f · u(α, f)

)

dx.

Unless explicitly indicated otherwise, by
⋆
⇀ we denote weak⋆ convergence in

L∞(Ω,Rm), where m would be clear from the context.

1.2. G-convergence and G-closures. We recall the notion of G-convergence:

Definition 1.1 (G-convergence,
G→). A sequence An ∈ L∞(Ω,M(c1, c2)) G-

converges to A ∈ L∞(Ω,M(c1, c2)), A
n G→ A, iff for every f ∈ H−1(Ω,Rs),

u(An, f)⇀ u(A, f) weakly in H1
0 (Ω,R

s).
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Next we introduce two notions of G-closure. While the concept of G-closure
is standard the specific notation here has been chosen to suit our purposes. Our
definition of Constrained G-closures extends the corresponding definition in [1].
For these definitions we set A0 ∈ M(c1, c2), m ∈ N and

A := {A0} ∪ {∆Ai ∈ M(c1, c2) | i = 1, . . . ,m},
(viewed as a (m+ 1)-tuple) while requiring

A0 −
m
∑

i=1

∆Ai ∈ M(c1, c2).

Definition 1.2 (G-closure, G·). Let θ ∈ L∞(Ω, [0, 1]m) and let χn : Ω → Dm be

such that χn ⋆
⇀ θ. Then the G-closure of A, Gθ(A), is the set of all possible

G-limits of

A0 −
m
∑

i=1

χn
i ∆Ai.

We also set

G(A) := {α | ∃θ ∈ L∞(Ω, [0, 1]m), α ∈ Gθ(A)} .
Definition 1.3 (Constrained G-closure). Let ξn : Ω → Dm be weak-* convergent
characteristic functions on Ω. When the sequence χ in Definition 1.2 is picked
such that χn

i > ξni , i = 1, . . . ,m, then the set of all possible G-limits of

A0 −
m
∑

i=1

χn
i ∆Ai

is the constrained G-closure of A (with phase fraction θ and constraint {ξ}),
Gθ({ξ},A).

2. Damage

We consider a geometrically-linear elastic material which in the undamaged
state has elastic modulus α{0}m ∈ M (the reason for this notation will become
clear in a moment) and, thus, energy density W{0}m : S → R given by

W{0}m(·) = 1

2

〈

α{0}m ·, ·
〉

.

This material is capable of undergoing m > 1 damage processes, any combination
of which can occur simultaneously in both space and time. The (pointwise) damage
state of the material is denoted by d ∈ Dm where

di =

{

1 if i-damage has occurred,

0 otherwise.

Thus, for example, {0}m denotes the undamaged material and {1}m the fully
damaged material.
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The ith damage process (“i-damage”) weakens the material by diminishing the
elastic modulus by ∆αi ∈ M where ∆αi > 0. Thus, the elastic modulus and
energy density corresponding to damage d ∈ Dm are

αd := α{0}m −
m
∑

i=1

di∆αi,(1a)

Wd :=
1

2
〈αd ·, ·〉+ kd,(1b)

and the possible elastic moduli are

α = {αd | d ∈ D
m} ⊂ M.

The weakest elastic modulus corresponds to the material being damaged in all m
ways; we require this to be positive-definite:

α{1}m = α{0}m −
m
∑

i=1

∆αi > 0.

For convenience we set M := {1, . . . ,m}.
2.1. Two criteria for damage. Let i ∈ M.

Criterion 2.1 (Threshold criterion for damage). The ith damage process is (point-
wise) sensitive only to the strain ǫ and only through an orthogonal projection Λi

on a subspace of S: At x ∈ Ω, i-damage occurs only if

(2) ‖Λiǫ(x)‖ > λi

for some threshold λi > 0. We refer to range(Λi) as the ith damage subspace.

Criterion 2.2 (Energetic criterion for damage). The ith damage process costs
ki > 0: The energy density corresponding to damage d ∈ Dm is

Wd(·) :=
1

2
〈αd·, ·〉+ d · k

where αd is given by (1).

We explore these criteria in Sections 3.1 and 3.2 respectively. In Theorem 3.5
we explore the relationship between these formulations for materials that possesses
the following property:

Property 2.3.

(1) The damage subspaces are strain compatible: For each i ∈ M,

ǫ ∈ Range(Λi) =⇒ ∃a, b ∈ R
s such that ǫ = a⊗s b.

(2) The undamaged elastic modulus is a multiple of the identity on each dam-
age subspace: For each i ∈ M,

α{0}mΛi = βiΛi

for some (scalar) βi > 0. (That is, the damage subspaces are eigenspaces
of the undamaged elastic modulus with βi being the corresponding positive
eigenvalue.)
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(3) The elastic modulus is weakened only on the relevant damage subspace,
and uniformly on the subspace: For i ∈ M,

∆αi = ∆βiΛi.

for some ∆βi ∈ (0, βi).
(4) The damage subspaces are orthogonal: For i, j ∈ M with i 6= j,

ΛiΛj = 0.

2.2. Notation. In the rest of the paper we adopt the following notation:
Let Di ⊂ Ω, i ∈ M, denote the region in which i-damage has occurred, and let

χDi be the corresponding characteristic functions. We define:

D := (D1, . . . , Dm) ∈ P(Ω)m,

χD := (χD1 , . . . , χDm) .

By abuse of notation we set,

αD(x) := αχD(x)
,

e(D, ·) := e(αD, ·).
Set-theoretic operations on P(Ω)m are performed component-wise, e.g., forD,D′ ∈
P(Ω)m,

D ∪D′ = (D1 ∪D′
1, . . . , Dm ∪D′

m) ,

D ∩D′ = (D1 ∩D′
1, . . . , Dm ∩D′

m) ,

D \D′ = (D1 \D′
1, . . . , Dm \D′

m) ;

and likewise for set-theoretic statements on P(Ω)m:

D ⊂ D′ ⇐⇒ Di ⊂ D′
i, ∀i ∈ M.

3. Damage Evolution

3.1. Threshold formulation.

Definition 3.1 (Weak threshold evolution). Let f : [0, T ] → H−1(Ω,Rs). An
evolution

[0, T ] ∋ t 7→ (A(t), θ(t)) ∈ L∞(Ω,M(c1, c2))× [0, 1]m

is a weak threshold evolution with thresholds (2) if: For every t ∈ [0, T ] there exists
a sequence {Dn(t)} ⊂ P(Ω)m such that

αDn(t)
G→ A(t)

χDn(t)
⋆
⇀ θ(t)

and the following hold for each i ∈ M:

(1) Monotonicity: The damage evolution t 7→ Dn
i (t) is non-decreasing.
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(2) Threshold: For each δ > 0 the sets in which there is no i-damage but the
threshold is exceeded by at least δ converge in measure to the empty set:
∀t ∈ [0, T ],

|Un
i (δ)| → 0 as n→ ∞,

where

Un
i (δ) := {x /∈ Dn

i (t) | ‖Λi e(D
n(t), f(t))(x)‖ > λi + δ} .

(3) Necessity of the damage: For each δ > 0,
(a) For every En ⊂ Di(T ) with lim inf |En| > 0 and every sufficiently

small ∆τ , there exists τ < T −∆τ such that, with ∆En ∈ P(Ω)m,

∆En
j :=

{

En ∩Dn
i (τ +∆τ) \Dn

i (τ) if j = i,

∅ if j 6= i,

we have

lim inf
n→∞

|V n
i (δ)| > 0,

where

V n
i (δ) := {x ∈ En

i | ‖Λi e
n(x)‖ > λi − δ} ,

en := e(Dn(τ +∆τ) \ En, f(τ +∆τ)).

(b) (Trivially satisfied if
∫

Ω
θi(x, ·) dx is continuous from below at T .)

For every tn ր T and every En ∈ P(Ω)m satisfying

En
j ⊂

{

Dn
i (T ) \Dn

i (t
n) if j = i,

∅, if j 6= i,

with lim inf |En
i | > 0 we have

lim inf
n→∞

|Wn
i (δ)| > 0,

where

Wn
i (δ) := {x ∈ En

i | ‖Λi e(D
n(T ) \ En, f(T ))(x)‖ > λi − δ} .

3.2. Energetic formulation.

Definition 3.2 (Energy). The energy associated with α ∈ L∞(Ω,M(c1, c2)), f ∈
H−1(Ω,Rs) and θ ∈ L∞(Ω,Rm) is

W(α, θ, f) := E(α, f) +
∫

Ω

k · θ dx

=

∫

Ω

1

2
〈α e(α, f), e(α, f)〉 − f · u(α, f) + k · θ dx.(3)

In (3), where necessary, by f we mean the localisation of a representative of f
to S, see [1, page 602] for details.
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Definition 3.3 (Weak energy-minimizing evolution).
Let f ∈W 1,1([0, T ], H−1(Ω,Rs)). An evolution

[0, T ] ∋ t 7→ (A(t), θ(t)) ∈ L∞(Ω,M(c1, c2))× L∞(Ω,Rm)

with

A(t) ∈ Gθ(t)(α)

is a weak energy-minimizing evolution if the following hold:

(1) Monotonicity: The map t 7→ A(t) is non-increasing and for each i ∈ M,
the map t 7→ θi(t) is non-decreasing.

(2) Energy balance: For every t ∈ [0, T ] the energy

W(t) := W(A(t), θ(t), f(t))

satisfies

W(t) = W(0)−
∫ t

0

ḟ(s) · u(A, f)(s) ds.

(3) Minimality: There exists a sequence {Dn(t)} ⊂ P(Ω)m, non-decreasing in
t for each n, such that for every t ∈ [0, T ],

αDn(t)
G→ A(t),

χDn(t)
⋆
⇀ θ(t)

and for every (Ã, θ̃) such that Ã ∈ Gθ̃(t)({χDn(t)},α) we have

W(t) 6 W(Ã, θ̃, f(t)).

We are able to show that weak energy-minimising evolutions exist and are also
threshold evolutions:

Theorem 3.4. For every f ∈W 1,1([0, T ], H−1(Ω,Rs)), there exists a weak energy-
minimising evolution.

Theorem 3.5. For a material satisfying Property 2.3, a weak energy-minimising
evolution with damage cost k ∈ Rm is a weak threshold evolution with threshold
λ ∈ Rm satisfying

ki =
1

2

βi∆βi
βi −∆βi

λ2i , i ∈ M.

References
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Interfaces of discrete patterns

Marco Cicalese

(joint work with A. Braides)

The behavior of several physical systems is strongly influenced by phase instabili-
ties. Roughly speaking this kind of instabilities can be thought as the spontaneous
emergence of a large number of interfaces during phase separation.

In the framework of atomistic systems characterized by finitely many stable states
(the case of bi-stable systems being firstly studied by Braun, Cahn, McFadden and
Wheeler in [3]) we consider a class of systems presenting phase instabilities. Our
interest is the description of the atomistic-to-continuum limit of these systems and
in particular the macroscopic description of the instabilities in terms of “natural”
continuum order parameters and energies.

As usual in this context (see [1]) we may regard atomistic systems as classical
lattice spin systems whose state is described by an order parameter u : Zn → X
where X ⊂ R is such that #X < +∞.

The physical systems we are interested in are driven by energies of the type:

Eε(u) =
∑

i∈Zn

εn−1ψ({ui+j}j∈Zn)

where ψ : (X)Z
n → [0, L] is the potential energy, ε > 0 denotes the lattice spacing

of the atomistic system (a small parameter which will eventually go to zero in the
so-called continuum limit) and the surface scaling εn−1 is reminiscent of the fact
that we want to study interfacial type phenomena.

Note that we let all the atoms of the system interact, and moreover we do not
account only for pairwise interactions: any interaction between one particle and
all the rest of the system is admissible.

We make the following set of hypotheses (here we denote by {e1, e2, . . . , en} the
standard basis in R

n and we set Q := [−1/2, 1/2]n the unitary cube in R
n centered

at the origin):

given h ∈ N, we assume that there exist K ∈ N functions v1, v2, . . . , vK : Zn → X
that are hQ-periodic and such that

(H1) (ground states energy) ψ({zj}j∈Zn) = 0 ⇔ zj = vjl , l ∈ {1, 2, . . . ,K},
(H2) (incompatibility of ground states) for k ∈ {1, 2, . . . , n} and l, l′ ∈ {1, 2, . . . ,K},

l 6= l′ let zk,l,l′ : Zn → X be such that

zik,l,l′ :=

{

vil if i ∈ hQ ∩ Zn

vil′ if i ∈ (hQ+ ek) ∩ Zn.
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Then there exists i ∈ h(Q ∪ (Q + ek)) and Cl,l′ > 0 such that

ψ({zi+j
k,l,l′}j∈Zn) ≥ Cl,l′ .

(H3) (mild non-locality) given z, w : Zn → X and m ∈ N such that zj = wj ,
∀j ∈ (mh)Q ∩ Z

n, then

|ψ({wj}j∈Zn)− ψ({zj}j∈Zn)| < cm

where the constants cm are such that
∑

m∈N
cmm

n−1 < +∞.

Some comments are in order. Hypothesis (H1) states the existence of finitely many
periodic ground states (as a side remark, note that for many real systems, since
the energy is invariant under translations, the existence of one non-trivial periodic
minimizer implies the existence of other periodic minimizers). By (H2) there is
a non negative amount of energy the system has to spend in order to mix two
different ground states. Hypothesis (H3) is crucial to our analysis: it refers to the
control of the admissible non-locality of the energy at discrete level. Thanks to
this hypothesis we are able to describe the continuum energy of the system as a
local functional.

Under this set of assumptions we are able to prove the following theorem (as
usual in this framework we assume that the energies Eε have been appropriately
extended to Eε : L

1
loc(R

n) → [0,+∞]).

Theorem 1. Let uε be such that supεEε(uε) ≤ C < +∞. Then, under the

assumptions (H1),(H2),(H3), there exists Ã1,ε, Ã2,ε, . . . , ÃK,ε ⊆ Zn such that

uiε = vij for all i ∈ Ãj,ε. Moreover, set Aj,ε :=
⋃

i∈Ãj,ε
(ε(i + Q)), we have that

χAj,ε → χAj in L1
loc(R

n) where (A1, A2, . . . , An) is a partition of Rn. In addition,
we have that

(1) Γ - lim
ε→0

Eε(u) =
∑

l,l′

∫

∂∗Al∩∂∗Al′

ϕ(l, l′, νl,l′) dHn−1,

where ∂∗Al denotes the reduced boundary of the set Al, νl,l′ the measure theoretic
normal to the common boundary of Al and Al′ and ϕ > 0 is given by an asymptotic
homogenization-type formula.

We observe that the macroscopic energy is the energy the system spends in a
transition between two admissible periodic minimizers. It is proportional to the
length of the transition layer. As a consequence any transition between different
periodic ground-states is disfavored in the continuum limit.

As an application of the result above we may explain, using a minimal toy model,
the following result of a Langmuir-Blodgett condensation experiment. When
depositing hydrophobic/hydrophilic surfactant material on a Langmuir-Blodgett
film, the geometry of the free surface strongly depends on the immersion-emersion
time in the experiment. If the time is not too large, striped, but non uniformly
striped pattern appear. On the contrary, for large enough times uniform patterns
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characterize the geometry of the deposited surfactant. One possible explanation is
that non-uniform stripes are metastable states, while only uniform stripes are the
ground states of the system. Our result is compatible with this explanation since
in our toy model uniformly striped patterns are unique periodic minimizers, while
non uniform striped patterns are obtained as transitions between several periodic
minimizers and thus energetically disfavored.
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A Multiscale Atomistic-to-Continuum Method for Atomic Monolayers
Undergoing Bending

Kaushik Dayal

(joint work with A. Aghaei)

The framework of Objective Structures introduced by Richard D. James pro-
vides a method to systematically examine the behavior of various geometrically
complex nanostructures. These nanostructures include rod-like objects as well as
flat sheets. In this talk, we describe an extension of this framework to sheets
that undergo bending in complex ways. We then apply the extended framework
to develop a computational atomic multiscale method to understand the atomic
structure of defects in these systems.

1. What are Objective Structures?

James [1] defined an objective atomic structure as a finite or infinite set of
atoms in which every atom sees the same environment up to translation and ro-
tation. Similarly, an objective molecular structure is defined as a structure with
a number of identical molecules, each molecule consisting of a number of atoms,
arranged such that corresponding atoms in every molecule see the same environ-
ment up to translation and rotation. We note that the molecules in an objective
molecular structure need not correspond to standard physical molecules as usually
understood. Bravais (multi) lattices are special cases of objective atomic (molec-
ular) structures in which each atom (molecule) has the same environment up to
translation and the rotation is trivial.

Following recent works that build on James’ original formulation, e.g. [5, 4, 6,
2, 3], we can define OS equivalently in the language of group theory. The group
theoretic approach enables practical calculations. Let G = {g0, g1, · · · , gN} be
a set of isometries indexed by a multi-index. Each element of G has the form
gj = (Qj |cj) where Qj ∈ O(3) is orthogonal and cj ∈ R3 is a vector.
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The action of an isometry on a point x ∈ R
3 is

(1) gj(x) = Qjx+ cj

Composition of mappings then provides:

gi(gj(x)) = Qi (Qjx+ cj) + ci = QiQjx+Qicj + ci

This motivates a definition for multiplication of isometries:

(2) gigj = (QiQj |Qicj + ci)

From this definition, it follows that the identity element is g0 := (I|0) and the
inverse of gi is defined by g−1

i := (QT
i | −QT

i ci).
If the set G is additionally a group with respect to the multiplication operation

above, then placing an atom at each of the points given by the action of elements
of G on a given point x0 gives an objective atomic structure. In addition, placing
an atom of species k at each of the points given by the action of elements of G on
a given set of points x0,k gives an objective molecular structure.

2. Going beyond Objective Structures: quasi Objective Structures
(qOS)

The OS framework defined above can be considered the analog of perfect crys-
tals. While perfect crystals are an important first step in studying crystalline ma-
terials, defects and inhomogeneously-deformed crystals are closer to real systems.
The analogs of these questions in OS can be studied using extensions of methods
such as the quasi continuum method. However, this talk dealt with systems that
are close to OS in a geometrical and energetic sense, yet cannot be considered as
patched together with multiple OS. These structures, qOS, cannot be considered
as perfect OS even locally. However, they are important to multiscale atomic
modeling of lipid bilayers, graphene, and other low-dimensional materials.
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Relaxation and Gamma convergence for variational problems related
to models in finite plasticity for single crystals with few slip systems

Georg Dolzmann

(joint work with S. Conti, C. Kreisbeck, S. Müller)

A time-incremental formulation of models for the plastic behaviour of single
crystals in the framework of finite plasticity leads to a sequence of variational
problems that need to be solved at each time step [10, 2]. Here we focus on the
first time step for which the corresponding variational problem can be formulated
as follows: minimize

I[u] =

∫

Ω

W (Du)dx

in a suitable class A of admissible functions with given Dirichlet boundary data.
We adopt the multiplicative decomposition of the deformation gradient F = Du
into an elastic part Fe and a plastic part Fp, i.e., F = FeFp and we assume that
W is the sum of the elastic potential We, the plastic potential Wp, the dissipated
energy and the contribution related to geometrically necessary dislocations [3].
More precisely, we assume that

W (F ) =We(Fe) +Wp(Fp) + Diss(Fp) + δ|curl(Fp)|(Ω) .

In the following we restrict our attention to the case n = 2 and a bounded and
open domain Ω ⊂ R2. We also assume that δ = 0, see [11] for recent results on
scaling relations for the full model.

We begin our analysis for the case of rigid elasticity where

We(Fe) =

{

0 if Fe ∈ SO(2) ,
∞ otherwise .

Here SO(2) denotes the group of all proper rotations of the plane. Moreover we
assume that the slip systems are given by pairs of vectors si andmi with si ·mi = 0
for i = 1, . . . , N . For simplicity we suppose that we are given either one slip system
with (s1,m1) = (e1, e2) or two orthogonal slip systems with (s1,m1) = (e1, e2)
and (s2,m2) = (e2, e1). The combination of the dissipative effects and the plastic
potential is modeled by

Wp(Fp) + Diss(Fp) =

{

|γ|p if Fp = I + γsi ⊗mi , i ∈ {1, . . . , N} ,
∞ otherwise .

Here p ≥ 1 and p = 1 corresponds to dissipation and p = 2 to linear hardening.
The condensed energy is given by

Wcond(F ) = inf
F=FeFp

W (F ) =

{

|γ|p if F = Q(I + γsi ⊗mi) ,
∞ otherwise ,

where Q ∈ SO(2) and i ∈ {1, . . . , N}. Table 1 summarizes the relaxation results
that are known in the literature. The quasiconvex hull of the density W =Wcond
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number of slip systems

exponent p one two (orthogonal) three or more

p = 1 W qc, see [8] W pc 6=W rc, see [1] ?
1 < p < 2 ? ? ?
p ≥ 2 W qc, see [4] W qc, see [5] ?

Table 1. Relaxation results with different exponents and slip
systems in the literature. A question mark indicates models for
which no results are available.

is denoted by W qc and given by

W qc(F ) = inf
{

∫

(0,1)2
W (F +Dφ)dx, φ ∈W 1,∞

0 ((0, 1)2;R2)
}

.

For more information on this definition and on the related rank-one convex and
polyconvex envelopes W rc and W pc, respectively, see [9].

It is notable that in the case of two orthogonal slip systems and dissipation
p = 1 the polyconvex and the rank-one convex envelope are different in the region
in which both slip systems are used. Moreover, the rank-one convex envelope
cannot be obtained by finite lamination and requires arbitrarily large matrices.

The assumption of rigid elasticity is a quite restrictive assumption and it is an
important question of whether these models can be derived by a notion of vari-
ational convergence like Γ -convergence from models with large elastic constants.
For ǫ > 0 we define for q ≥ 1 the elastic model energy

We(Fe) =
1

ǫ
distq(Fe, SO(2)) .

The condensed energy in the case of one slip system is given by

Wǫ(F ) =Wcond(F ) = inf
γ∈R

[1

ǫ
distq

(

F (I − γe1 ⊗ e2), SO(2)
)

+ |γ|p
]

.(1)

The key observation is the fact that the multiplicative decomposition F = FeFp

leads to nonstandard growth conditions. In order to illustrate this effect, we seek
a one-parameter family of matrices Ft with |Ft| → ∞ for which W (Ft) can be
estimated from above. We choose for t > 0 and α > 1 the matrices

Ft = Ft,eFt,p =

(

t 0
0 t

)(

1 tα−1

0 1

)

=

(

t tα

0 t

)

.

This choice leads to an estimate of the form

W (Ft) ≤ C
(

|Ft,e|q + |Ft,p|p
)

≤ C
(

|Ft|q/α + |Ft|pα/(α−1)
)

.

A minimization in α leads to α = (p + q)/p and W (Ft) ≤ C|Ft|pq/(p+q), that is,
the energy has sublinear growth along the direction t 7→ Ft for q < p/(p−1). This
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observation leads to the definition of the parameter regions

S =
{

p, q ≥ 1, q <
p

p− 1

}

, H =
{

p, q ≥ 1, q ≥ p

p− 1
, q ≤ 2p

}

.

In order to state the convergence result we define the functionals

Iǫ(u) =

∫

Ω

Wǫ(Du)dx , I0(u) =

∫

Ω

WCT (Du)dx(2)

whereWCT is the relaxation of the elastically rigid energy with one slip system [8],

WCT (F ) =

{ √

|F |2 − 2 if F ∈ N ,
∞ otherwise .

Here N = {F ∈ R2×2, detF = 1, |Fe1| ≤ 1}.
Theorem [6, 5]: Suppose that Wǫ is defined by (1) and Iǫ and I0 by (2).

(a) If (p, q) ∈ S, then W qc
ǫ = 0 on N .

(b) If (p, q) ∈ H , then the functionals Iǫ converge in the sense of Γ -convergence
with respect to the Lpq/(p+q)-norm to the functional I0. Moreover, sequences
(uǫ)ǫ>0 with uniformly bounded energies Iǫ(uǫ) are relatively compact.

The most subtle point in the proof is the verification of the nonlinear constraint
detDu = 1 for weak limits of subsequences uǫk with ǫk → 0 for k → ∞. This is
accomplished by a suitable div-curl lemma [7].
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Some energy estimates for strain gradient plasticity with
cross-hardening

Patrick W. Dondl

(joint work with Keith Anguige)

Consideration is given to a non-convex variational model for a shear experiment in
the framework of single-crystal linearised plasticity with infinite cross-hardening
within the general framework developed in [1]. The rectangular shear sample is
clamped at each end, and is subjected to a prescribed horizontal shear, modelled
by an appropriate hard Dirichlet condition. In this setting we write the energy of
the plastically deformed crystal as

EL(u, β) =

∫

ΩL

|(∇u − β)sym|2 dx+ σ

∫

ΩL

| curlβ|,

neglecting dissipation or hardening. The side condition of infinite cross hardening
is enforced by requiring

β(x) ∈
{
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}

,

for almost every x = (x1, x2, x3) ∈ ΩL and some coefficient s : ΩL → R. The
admissible displacements for the minimisation problem are all functions u such
that u(·, 0, ·) = (0, 0, 0), u(·, L, ·) = γ(1, 0, 0) for some parameter γ ≥ 0, and such
that (u, β) has finite energy for some β subject to the side condition above.

We ask: how much energy is required to impose such a shear, and how does it
depend on the aspect ratio? Assuming that just two slip systems are active, we
show that there is a critical aspect ratio, above which the energy is strictly positive,
and below which it is zero. Furthermore, in the respective regimes determined by
the aspect ratio, we prove energy scaling bounds, expressed in terms of the amount
of prescribed shear. Explicitly, using methods from [2] and [3] we can show that















inf EL = 0 L ≥ 2,
cLσγ2

σ+
√

σ2+2cLγ2
≤ inf EL ≤ min

{

γ2

2L , 2
√
2γσ

}

1 ≤ L < 2,

γ2

2L(1 − L) ≤ inf EL ≤ min
{

γ2

2L ,
γ2

2L(1− L) + cLσγ
}

L < 1,

if σ > 0 and the single slip side condition is enforced, and
{

inf EL = 0 L ≥ 1,

inf EL = min
{

γ2

2L ,
γ2

2L(1− L) + cLσγ
}

L < 1,
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otherwise.
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Unexpected thermodynamic properties of some exact
far-from-equilibrium solutions in molecular dynamics

Richard D. James

(joint work with Kaushik Dayal, Stefan Müller)

I discuss recent results on objective molecular dynamics. The basic equations of
molecular dynamics are

(1) mkẍk = − ∂ϕ

∂xi
(x1, . . . , xN ), i = 1, . . . , N,

for (x1(t), . . . , xN (t)) ∈ R, t > 0, subject to initial conditions, xi(0) = x◦i , ẋi(0) =
v◦i and with positive masses m1, . . . ,mn. The right hand side of these equations
is interpreted as the force on atom i. We impose minimal structural assump-
tions on this force as a function of the atomic positions, but we do assume the
standard invariance of atomic theory, i.e., frame-indifference (under the full or-
thogonal group) and permutation invariance. These assumptions are satisfied by
all accepted models of atomic forces in the nonrelativistic case. A very general
example is the Hellmann-Feynman force based on full quantum mechanics under
the Born-Oppenheimer assumption. Classical models of atomic forces are of course
also allowed.

The terminology “objective molecular dynamics” refers to a time-dependent
invariant manifold of these equations generated by a discrete group of isometries.
The invariant manifold has the usual meaning in nonlinear dynamics: if, in the
space R6N of positions and momenta, you start initial value problem on this mani-
fold, the resulting solution stays on this manifold. For the discrete group of isome-
tries, I concentrated in the lecture mostly on the case of the translation group,
x → x +

∑3
j=1(I + tA)νjej , where A is any given 3 × 3 matrix, e1, e2, e3 are lin-

early independent vectors in R3 and ν = (ν1, ν2, ν3) ∈ Z3. The time-dependence
expressed by the presence of I+ tA is the most general allowed under the theorem
that justifies the existence of this manifold. Some examples based on a general
form of the helical group were also presented, with applications to the mechanical
behavior of carbon nanotubes.

This manifold can be described most easily by describing a numerical method
designed to simulate motions on this manifold. Consider the translation group
and imagine a set of motions x1(t), . . . , xM (t) associated to the simulated atoms.
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In this case M is finite but N = ∞. The additional atoms will be called the non
simulated atoms. The simulated atoms will be required to satisfy the equations
of molecular dynamics with forces given by all the atoms. Let other motions be
given by an instantaneous action of the translation group on the simulated atoms,
i.e., define,

(2) xν,i(t) = xi(t) +

3
∑

j=1

(I + tA)νjej , i = 1, . . . ,M, ν = (ν1, ν2, ν3) ∈ Z
3.

Since the non simulated atoms are simply given by the formula (2), they are
not required to satisfy the equations of molecular dynamics. On the other hand,
as noted above, the simulated atoms are so required, and for this purpose the
formula (2) is substituted into the right hand side of (1). Then (1) becomes a
finite nonautonomous system of ODEs in standard form for the simulated atoms.
The basic theorem on objective molecular dynamics then says that all infinitely
many non simulated atoms satisfy the equations of molecular dynamics.

This result can be reformulated as an invariant manifold of molecular dynamics.
It is described by simple formulas that only depend on A. Thus, the manifold is
independent of the material. It is exactly the same manifold whether the atomic
forces are appropriate for water, air or steel.

In the case of the translation group just described, the simulated and non-
simulated atoms fill all of space. They have a macroscopic motion that can easily
be identified. It is described by the velocity field

(3) v(x, t) = A(I + tA)−1x.

If this velocity field is substituted into any accepted equation of continuum me-
chanics, e.g., Navier-Stokes fluid, nonlinear elastic or viscoelastic solid, models of
complex fluids, then it is an exact solution. In this sense, the invariant manifold
is perfectly inherited by continuum mechanics, despite the fact that molecular
dynamics is time-reversible on this manifold, while many examples in continuum
mechanics are time-irreversible on (the averaged version of) this manifold.

These solutions of the equations of molecular dynamics have a certain statistics.
Consider an objective molecular dynamics solution, a point x0 ∈ R3, and a fixed
time t. Draw a ball around x0 of radius r > 0. If r is sufficiently large, there will be
atoms in this ball, perhaps some of these are simulated and the rest nonsimulated.

Now consider a ball of the same radius centered at the point x0+
∑3

j=1(I+tA)ν
jej .

By instantaneous periodicity, this ball will contain the same number of atoms as
the one around x0, but they will have different velocities. But their velocities
are known explicitly by differentiating the formula (2). So, the statistics of the
velocity distribution at different points are related by formulas. If we reinterpret
this fact as an ansatz for the molecular density function f(t, x, v) of the kinetic
theory of gases, it becomes

(4) f(t, x, v) = g(t, v −A(I + tA)−1x).
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Substitution of this ansatz into the Boltzmann equation gives an exact reduced
equation:

(5)
∂g

∂t
− ∂g

∂w
·A(I + tA)−1w = C(g),

where the right hand side is the usual collisions operator operating on g. In this
sense the Boltzmann equation also inherits exactly (an averaged version of) this
invariant manifold. A further ansatz on this equation that brings out the time
dependence of g in the case of inverse fifth power molecules further reduces this
equation. There remains an equation restricting the initial datum g(0, w).

With this background, we reach the main observation of my presentation. Both
numerical simulations of objective molecular dynamics, and this reduced Boltz-
mann equation in the case of inverse fifth power molecules, reveal a rather unex-
pected thermodynamics. Before describing this observation, note that generally
these solutions are far from equilibrium. For example, the reduced Boltzmann
equation does not admit solutions as Maxwellians, unless A = 0. However, the
simulations and the reduced Boltzmann equation exhibit relationships between
macroscopic quantities similar to those of the equilibrium case. As a dramatic
example, a Maxwellian density (appropriate for equilibrium) has an H-function
(interpreted as minus the entropy) that yields the following relation between H
the density ρ and the temperature θ:

(6) H = − log
θ3/2

ρ
+ const.

For all of the solutions found of the reduced Boltzmann equation, this relation
is still satisfied, despite the fact that, in some cases, all three of H(t), θ(t) and
ρ(t) are strongly time dependent. In one case H(t) tends to −∞ in finite time,
which is decidedly far-from-equilibrium. Numerical examples also reveal similar
unexpected behavior.

Taken together, these examples suggest that there may be a “statistical me-
chanics” on this manifold, which would be extremely interesting to find. The
“extremely” here refers to the fact that objective molecular dynamics is universal
(independent of the material), and that there is widespread inheritance of this
manifold in mesoscopic and macroscopic theory.

There is one caveat of this work in the case of the Boltzmann equation. This
is the caveat that we have not yet given an existence theorem for the equation for
the initial datum g(0, w) referred to above.
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Atomistic-to-Continuum Multiscale Modeling of Materials with
Long-Range Electrostatic Interactions

Jason Marshall

(joint work with Kaushik Dayal)

In this talk we present a multiscale atomistic-to-continuum method for ionic crys-
tals with defects. Defects often play a central role in ionic and electronic solids,
not only to limit reliability, but more importantly to enable the functionalities that
make these materials of critical importance. Examples include solid electrolytes
that conduct current through the motion of charged point defects, and complex
oxide ferroelectrics that display multifunctionality through the motion of domain
wall defects. Therefore, it is important to understand the structure of defects
and their response to electrical and mechanical fields. A central hurdle, however,
is that interactions in ionic solids include both short-range atomic interactions as
well as long-range electrostatic interactions. Existing atomistic-to-continuum mul-
tiscale methods, such as the Quasicontinuum method, are applicable only when
the atomic interactions are short-range. In addition, empirical reductions of quan-
tum mechanics to density functional models are unable to capture key phenomena
of interest in these materials.

To address this open problem, we develop a multiscale atomistic method to
coarse-grain the long-range electrical interactions in ionic crystals with defects.
In these settings, the charge density is rapidly varying, but in an almost-periodic
manner. We develop the method following a two-scale approach from James and
Müller [1]. The key idea is to use the polarization density field as a multiscale
mediator that enables efficient coarse-graining by exploiting the almost-periodic
nature of the variation. In regions far from the defect, where the crystal is close-to-
perfect, the polarization field serves as a proxy that enables us to avoid accounting
for the details of the charge variation. We combine this approach for long-range
electrostatics with the standard Quasicontinuum method for short-range interac-
tions to achieve an efficient multiscale atomistic-to-continuum method. As a side
note, we examine an important issue that is critical to our method: namely, the de-
pendence of the computed polarization field on the choice of unit cell. Potentially,
this is fatal to our coarse-graining scheme; however, we show that consistently ac-
counting for boundary charges leaves the continuum electrostatic fields invariant
to choice of unit cell. Further details of the method are available in [2].
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Multiscale modeling of rapid crystallization of Germanium from
amorphous thin films

Celia Reina

(joint work with Jaime Marian and Luis Sandoval)

Germanium is the base element in many phase-change materials, i.e. systems that
can undergo reversible transformations between their crystalline and amorphous
phases. They are widely used in current digital electronics and hold great promise
for the next generation of non-volatile memory devices. However, the ultra fast
phase transformations required for these applications can be exceedingly complex
even for single component systems, and a full physical understanding of these phe-
nomena is still lacking. In this talk we presented a study of nucleation and growth
of crystalline Ge from amorphous thin films at high temperature using phase field
models informed by atomistic calculations of fundamental material properties. The
atomistic calculations capture the full anisotropy of the Ge crystal lattice, which
results in orientation dependences for interfacial energies and mobilities. These
orientation relations are then exactly recovered by the phase field model at finite
thickness via a novel parametrization strategy based on invariance solutions of
the Allen-Cahn equations. By means of this multiscale approach, we study the
interplay between nucleation and growth and find that the relation between the
mean radius of the crystallized Ge grains and the nucleation rate follows simple
Avrami-type scaling laws. We argue that these can be used to cover a wide region
of the nucleation rate space, hence facilitating comparison with experiments.

From Atomistic to Continuum Systems and Elasticity to Crystal
Cleavage

Bernd Schmidt

(joint work with Julian Braun, Manuel Friedrich)

The relation of atomistic and continuum models in mathematical material science
is an active area of current research, both from a computational and from the
analytical point of view. Ultimately, the effective models in continuum mechanics
should be derivable from atomistic interaction properties. The main aim of this
note is to report on recent results on the rigorous derivation of the passage from
atomistic systems to a continuum model in the following three set-ups:

(1) From nonlinear and atomistic to linear continuum elasticity,
(2) From nonlinear and atomistic to nonlinear continuum elasticity and
(3) From nonlinear and atomistic to cleavage laws in continuum mechanics.

1. In the first passage, which also serves to introduce the general scheme of
discrete-to-continuum limits, we review an older result from [5] deriving linear
elasticity theory from atomistic models by means Γ -convergence. In particular,
we obtain the simultaneous limit when both the number of atoms tends to infinity
(i.e., when the interatomic distances tend to zero) and the strains within the
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material become infinitesimally small. We also consider boundary value problems
where a part of the boundary is free.

Consider the atomistic reference configuration εL ∩ Ω, where Ω ⊂ Rd (the
‘macroscopic region’ occupied by the material) is a Lipschitz domain, L = AZd,
A ∈ Rd×d with detA > 0, a Bravais lattice (the ‘atomic crystal’) and ε ≪ 1 is a
small parameter (the ‘interatomic distance’). Atomic deformations are mappings

y : εL ∩Ω → R
d.

Let x′ ∈ εL′ denote the centers of the unit cells εA(z + [0, 1)d), z ∈ Zd. Our
main structural assumption is that the energy of a deformation y : εL ∩ Ω → R

d

be given as a sum of individual cell energies as follows.

Eε(y) =
∑

x′

Wε(x
′, ∇̄y(x′)), Wε(x

′, ·) =Wcell(·) +Wsurface(x
′, ·),

where the discrete gradient ∇̄y(x′) encodes all the relative displacements of the
corners of the cell containing x′. For simplicity, we will neglect Wsurface in the
sequel. See [5] for further details. We also assume that Wcell satisfies suitable
assumptions of frame-indifference, non-generacy at the identity matrix and growth
at infinity.

We set

Ik(u) = δ−2
k εdkEε(Id+δku) = δ−2

k εdk
∑

x′

Wcell(Z + δk∇̄u(x′))

for u = g on boundary cells.

Theorem 1 (Compactness). If Ik(uk) ≤ C, then for a subsequence

(i) (interpolations of) uk → u in L2 for some u ∈ H1
g (Ω).

(ii) For (p. c. interpolations of) ∇̄uk: ∇̄uk ⇀ ∇u · Z in L2.

Theorem 2 (Gamma-convergence). The functionals Ik Γ -converge to

I : H1
g (Ω) → R, I(u) =

1

2 detA

∫

Ω

Qcell(e(u) · Z),

e(u) = 1
2 ((∇u)T +∇u).

Theorem 3. If Ik(wk) − inf Ik → 0, then (after modification on non-Dirichlet
boundary cells)

∇̄uk → ∇u · Z strongly in L2, u the unique minimizer of I.

2. (Joint work with Julian Braun) With the notation introduced above we now
consider the energy functionals

Iε(y) = εdEε(y) = εd
∑

x′

Wcell(∇̄y(x′))
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for y = g on boundary cells, the only assumption now being that Wcell satisfies
p-growth assumptions from below and above:

c|F |p − C ≤Wcell(F ) ≤ C|F |p + C.

Theorem 4 (Gamma-convergence). Iε Γ -converges to the functional I :
W 1,p(g,Ω;Rd) → R, defined by

I(y) =

∫

Ω

Wcont(∇y(x)) dx

where Wcont : R
d×d → [0,∞) is given by

Wcont(M) =
1

| detA| lim
N→∞

1

Nd
inf

{

∑

x′∈L′∩A(0,N)d

Wcell(∇̄y(x′))

: y ∈ A1(Mx,A(0, N)d)

}

.

Theorem 5 (Compactness). If Iε(yε) ≤ C, then for a subsequence yεk ⇀ y and
∇̄y ⇀ ∇yZ for some y ∈W 1,p

g (Ω;Rd).

Remarks.

(1) This is related to homogenization results for nonlinear integral functionales
of Braides and Müller (’85 and ’87).

(2) Forces can be added without problems.
(3) The result can be extended to general finite range interactions.
(4) Even to multi-lattices.
(5) For pair interactions this has been shown previously by Alicandro and

Cicalese, cf. [1].
(6) Under stronger (yet still reasonable) assumptions onWcell,Wcont(F ) agrees

with the Cauchy-Born energy WCB(F ) = Wcell(FZ) for F in a neighbor-
hood of SO(d):

For the proofs of these results we refer the reader to [2].

3. (Joint work with Manuel Friedrich) In the last part of this note we con-
sider the problem of deriving continuum cleavage laws for crystals from discrete
interactions. We first consider a 2d model problem: a 2d strip with atoms on a
(generically) rotated triangular lattice interacting via a NN Lennard-Jones type
interactions under uniaxial stretch.

For interatomic distance ε we first find an asymptotic formula for the minimaum
energy:

Theorem 6 (Cleavage law with sharp energy estimates).

lim
ε→0

inf Eε = min

{

al√
3
a2 +

6α+ 7α′ − 2(3α− α′) cos(6φ)

27
√
3

l
√
εa3,

2β

γ

}

+O(ε).
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Here α, α′ and β describe the response of the pair interaction potential near its
equilibrium and for well separated atoms, respectively, l is a geometric factor of
the domain and φ is the orientation angle of the lattice.

Theorem 8 (Strong convergence of minimizers). If Eε(id+
√
εuε) = inf Eε+

O(ε) and ũε denotes the piecewise affine interpolation of uε, then there exist
ūε : (0, l)× (0, 1) → R

2 with |{x : ūε(x) 6= ũε(x)}| = O(ε) such that:

(i) If a < acrit, then there is a sequence sε ∈ R such that

‖ūε − (0, sε)−
(

a 0
0 −

a

3

)

· ‖H1(Ω) → 0.

(ii) If a > acrit, then there exist sequences pε ∈ (0, l), sε, tε ∈ R such that
(pε, 0)+Rvγ intersects both the segments (0, l)×{0} and (0, l)×{1} and,

for the parts Ω(1) to the left and Ω(2) to the right of (pε, 0)+Rvγ we have

‖ūε − (0, sε)‖H1(Ω(1)) + ‖ūε − (al, tε)‖H1(Ω(2)) → 0.

For the proofs of these results we refer the reader to [3].
We conclude by providing a version of Theorem 8 in higher dimensions when

the energy again is given in terms of suitable cell energies as in the first two parts
near the set of rigid motions and decouples into pair interactions between well
separated subsets near infinity, cf. [4].

References

[1] R Alicandro and M. Cicalese, A general integral representation result for continuum limits
of discrete energies with superlinear growth, SIAM J. Math. Anal. 36 (2004), 1–37.

[2] J. Braun and B. Schmidt, On the passage from atomistic systems to nonlinear elasticity
theory for general multi-body potentials with p-growth, Netw. Heterog. Media 8 (2013), 879–
912.

[3] M. Friedrich and B. Schmidt, An atomistic-to-continuum analysis of crystal cleavage in a
two-dimensional model problem, J. Nonlin. Sci., in press.

[4] M. Friedrich and B. Schmidt, An analysis of crystal cleavage in the passage from atomistic
models to continuum theory, To be submitted.

[5] B. Schmidt, On the derivation of linear elasticity from atomistic models, Netw. Heterog.
Media 4 (2009), 789–812.

Energy driven pattern formation in atomistic systems

Florian Theil

(joint work with Mark Peletier, David Bourne, Sabine Jansen, Wolfgang König,
Bernd Schmidt)

We consider the crystallization problem at zero temperature and at finite temper-
ature. Many nanoscale phenomena can be modeled by finite point configurations
Y ⊂ Rd, d ∈ {1, 2, 3} which interact via a potential V (y, Y ) in the sense that
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V (y, Y ) accounts for the interaction between a particle y ∈ Y and Y \ {y}. The
total energy of Y is given by

E(Y ) =
∑

y∈Y

V (y, Y ).(1)

We are mostly concerned with cases where V is invariant under the Euclidean
group

V (Ry + t, RY + t) = V (y, Y ) for all R ∈ O(d), t ∈ R
d.(2)

An interesting example of an energy which can be expressed in the form (1) and
respects (2) up to boundary effects is given by

EΛ(Y ) = min

{

2 c6
∑

y∈Y

µ({y}) 1
2 +W (2)(µ,LΛ) :(3)

µ ∈M+(Y ) and µ(Y ) = |Λ|
}

.

Here we assume that Y ⊂ Λ is a finite set, Λ ⊂ R2 is open and bounded, M+(Y )

is the set of non-negative Radon measures supported in Y , c6 = 5
√
3

54 , the measure
LΛ denotes the Lebesgue measure restricted to Λ and

W (2)(µ, ν) = inf

{∫

Λ

|x− φ(x)|2 dν(x) : µ(φ(A)) = ν(A) for all A ⊂ Λ

}

is the 2-Wasserstein distance between two non-negative measures µ and ν. The
specific choice of the prefactor 2 c6 is motivated by the simplicity of formula (4).

The first result shows that the minimum of 1
|Λ|EΛ converges to the energy of a

triangular lattice as |Λ| → ∞.

Theorem 2 ([1]). Let H ⊂ R2 be a regular unit hexagon centered in the origin.
If E is given by by (3) then

lim
|Λ|→∞

inf
Y⊂Λ

1

|Λ|EΛ(Y ) = EH({0}).(4)

Refinements of Theorem 2 show that most points in Y are very close to the
points of a triangular lattice.

Our second result concerns the case where the inverse temperature β > 0 is
finite. Here we assume that d = 1 and

v(y, Y ) =
∑

y′∈Y \{y}
v(|y − y′|),

where v(r) = r−12 − r−6. If Λ ⊂ R is a bounded set such that Y ⊂ Λ and
β ∈ (0,∞), then the canonical Boltzmann-Gibbs probability of the configuration
Y can be defined as

Pβ,Λ(Y ) =
1

Z(Λ, β)
e−β E(Y ).

The value of the partition function Z(Λ, ρ) is determined by the requirement that
Pβ,Λ(·) is a probability distribution.
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To characterize the microstructure of a state Y we first define the Cauchy-Born
energy density

W (r) =

∞
∑

i=1

v(r i)

and the numbers a(ρ) ∈ [0, 1ρ ], e0(ρ) ∈ R by the equations

e0(ρ) =W (a(ρ)) = min
a≤ 1

ρ

W (a).

The intuition is that a(ρ), e0(ρ) represent the asymptotic nearest neighbor distance
and the bulk energy per particle in the limits N → ∞ followed by β → ∞. After
these preparations we can partition Y into disjoint clusters Cj ⊂ Y , j = 1 . . .M
which are defined by the requirements

Y =
M
⋃

j=1

Cj ,

dist(Cj , Ck) ≥ 2a if j 6= k,

dist(y, Cj \ {y}) < 2a if y ∈ Cj for some j.

The random variable

νβ,Λ(k) =
1

M
#{j : #Cj = k}

characterizes the distribution of the cluster lengths. We will show that the ex-
pectation of νβ,Λ remains finite as |Λ| → ∞ while ρ = #Y/|Λ| is kept fixed. The
expectation diverges as β → ∞. To this end we define

K(β, ρ) =

(

1

ρ
− a

)− 1
2 (βW ′′(a)

2π

)1/4

,

p(β, ρ) = K(β, ρ) e
β
2 e0 .

The number p, which is exponentially small in β if ρ < ρ0 = 1
a(0) , represents the

leading order term, K accounts for lower order corrections. To characterize the
asymptotic behavior of νβ,Λ we define rescaled cluster length distribution ν̃β,Λ ∈
L1([0,∞)) by

ν̃β,Λ(x) =
1

p
νβ,Λ

(⌊

x

p

⌋)

,

with the convention ⌊x⌋ = max{k ∈ {0, 1, . . .} : k ≤ x}. Note that ν̃β,Λ is
piecewise constant.

Theorem 3 ([2]). If ρ < ρ0, then the rescaled cluster-length distribution ν̃β,Λ
converges to the exponential distribution as β → ∞:

lim
β→∞

lim
N→∞

‖ν̃β,Λ − exp1 ‖ = 0

in probability with exp1(x) = e−x.
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Nonequilibrium Processes for Current Reservoirs

Dimitrios Tsagkarogiannis

(joint work with Anna De Masi, Errico Presutti, Maria Eulalia Vares)

Stationary non equilibrium states are characterised by the presence of steady cur-
rents flowing through the system. Currents are produced by external forces and we
are interested in forces acting on the boundary trying to establish a given current.
We model this process considering the simple exclusion process in one space di-
mension with appropriate boundary mechanisms which create particles on the one
side (right) and kill particles on the other (left). The system is then “unbalanced”
and in the stationary measure there is a non-zero steady current of particles flow-
ing from right to left. The system is designed to model Fick’s law which relates
the current to the density gradient. In statistical mechanics non-equilibrium is not
as well understood as equilibrium, hence the interest from a physical viewpoint to
look at systems which are stationary yet in non-equilibrium: in our case the sta-
tionary process is in fact non-reversible and the stationary measure not Gibbsian.
We refer to [1], [2] and [3] for some recent reviews on the subject, see also [4] and
[5].

Back to our model of current reservoirs, in the interior we consider simple
exclusion process for η(x) ∈ {0, 1} for x ∈ {−N,−N + 1, . . . , N − 1}. Let f be a
test function then the generator is given by

L0f(η) :=
1

2

N−1
∑

x=−N

[f(η(x,x+1))− f(η)].

On the boundary intervals I± (see below), with |I±| = K for K finite, we impose
a (microscopic) current ǫj with ǫ = 1/N

Lb,±f(η) := ǫ
j

2

∑

x∈I±

D±η(x)[f(η
(x))− f(η)],

where

D+η(x) = [1− η(x)]η(x + 1)η(x + 2) . . . η(N), x ∈ I+ ≡ {N −K + 1, . . . , N}
and

D−η(x) = η(x)[1 − η(x− 1)][1− η(x − 2)] . . . [1− η(−N)],

x ∈ I− ≡ {−N, . . . ,−N +K − 1}.
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The first result [6] is that considering the density ρǫ(x, t) := Eǫ[η(x, t)] and the
the correlation functions

vǫ(x, t|µǫ) := Eǫ

[

n
∏

i=1

{η(xi, t)− ρǫ(xi, t)}
]

, x ∈ Λn, 6=
N , n ≥ 1

we prove propagation of chaos, i.e., that ∃τ > 0, c∗ > 0, s.t. ∀β∗ > 0, n ∈ Z+, ∃cn
s.t. ∀ǫ > 0

sup
x∈Λn,6=

N

|vǫ(x, t|µǫ)| ≤
{

cn(ǫ
−2t)−c∗n, t ≤ ǫβ

∗

cnǫ
(2−β∗)c∗n ǫβ

∗ ≤ t ≤ τ log ǫ−1

Then we prove that the hydrodynamic limit (ǫ → 0) is given by the linear
heat equation with Dirichlet boundary conditions obtained by solving a non-linear
equation which essentially fixes the values of the density at the boundary [7]. For
any t1 > t0 > 0 we have that

lim
ǫ→0

sup
x∈ΛN

sup
t0≤t≤t1

|ρǫ(x, t) − ρ(ǫx, t)| = 0,

where

∂

∂t
ρ(r, t) =

1

2

∂2

∂r2
ρ(r, t), r ∈ (−1, 1)(1)

∂ρ(r, t)

∂r
|r=1 = j(1 − ρ(1, t)K),

∂ρ(r, t)

∂r
|r=−1 = j(1 − (1− ρ(−1, t))K).(2)

In a similar fashion [7], we can also obtain the validity of Fourier law, i.e., we
show that for the expected current through x+ 1

2 , given by

j(ǫ)(x, t) =
ǫ−2

2
Eǫ

[

ǫ{η(x, t)− η(x+ 1, t)}
]

= −1

2
Eǫ

[η(x + 1, t)− η(x, t)

ǫ

]

,

we have that for r ∈ (−1, 1):

lim
ǫ→0

j(ǫ)([ǫ−1r], t) = −1

2

dρ(r, t)

dr
.

Then we show that the rescaled limiting density profile of the (unique) invari-
ant measure of the process coincides with the unique stationary solution of the
hydrodynamic equation, [8]. Let µN be the unique invariant measure, then

lim
N→∞

max
(x1,..,xk)∈Λk,6=

N

∣

∣

∣
µN

(

η(x1) · · · η(xk)
)

− ρ∗(x1/N) · · · ρ∗(xk/N)
∣

∣

∣
= 0,

where ρ∗(r) is the unique stationary solution of the macroscopic equation (1).
Hence, after times of order N2 the measure µN shrinks concentrating on a L1-

neighborhood of the limit profile ρ∗. Last, we also obtain a spectral gap estimate
in the (non equilibrium) stationary process uniformly on the system size, see [9]
and [10]. For any initial measure we have that

‖µ(t)
N − µst

N‖ ≤ cNe−bN−2t

where for any signed measure λ, ‖λ‖ =
∑

η |λ(η)|.
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Crystalline Order, Surface Energy Densities and Wulff Shapes:
Emergence from Atomistic Models

Yuen Au Yeung

We address the question why (under suitable conditions) a large number of
atoms self–arrange into macroscopic clusters of special polyhedral shapes in the
limit of large particle number.

By assuming zero temperature and simplified interatomic interactions the emer-
gence and derivation of such macroscopic clusters can be ultimately extracted from
atomistic pair interactions through a coarse–graining process via Γ–convergence.
This is performed for the physically relevant case of face–centred cubic configura-
tions (see [2]) and generalises the previous 2D results in [1].

We begin by stating our model: We consider N particles x1, . . . , xN in R3 with
total energy

(1) E(x1, . . . , xN ) =
∑

i6=j

V (|xi − xj |).

Here, V is any short–range pair–interaction potential that attains its absolute
minimum at distance |xi − xj | = 1 and that has a sufficiently narrow and deep
potential well.

A key to our proof is to make use of the Eulerian viewpoint, i.e., to identify
N–particle configurations with probability measures µN necessitating in energies
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extended to the space of probability measures in R
3. The overall strategy, which

was first employed in [1], is now outlined below:

(1) Associate to any N–particle configuration {x1, . . . , xN} its empirical mea-

sure
∑N

i=1 δxi .
(2) Re–scale the empirical measure to keep the mass and the expected diam-

eter of the support of order one as N → ∞.
(3) Show that the limit measure is a constant multiple of a characteristic

function of a set of finite perimeter. Identify the constant as the density
of atoms per unit volume in a close–packed lattice.

(4) Derive, from atomistic energy minimisation, a Wulff–Herring type varia-
tional principle for the shape, by Gamma–convergence.

(5) Appeal to unique solubility of the Wulff–Herring type variational principle
(cf. Taylor [4], Fonseca–Müller [3]) to identify the shape.

Steps one to three are established for arbitrary close–packing configurations and
steps four and five are achieved by assuming face–centred cubic configurations.
The fourth step requires the introduction of the surface energy density as a count
of missing bonds per unit surface area in a thermodynamic limit. The first three
steps are now summarised in the following theorem:

Theorem 1. Assume E and V are given as above and let L be any close–packing.

Let {x(N)
1 , . . . , x

(N)
N } ⊂ L be any sequence of connected N–particle configurations

that is bounded, i.e.,

(2) max
i,j

|x(N)
i − x

(N)
j | ≤ CN1/3

and that satisfies an energy bound, i.e.,

(3) E(x
(N)
1 , . . . , x

(N)
N ) ≤ −12N + CN2/3,

for some constant C independent of N . Let µN be the associated sequence of
re–scaled empirical measures

(4) µN =
1

N

N
∑

i=1

δ
N−1/3x

(N)
i
.

Then, up to translation (that is to say, up to replacing µN by µN (·+aN ) for some
constant aN ∈ R3) and passage to a subsequence, µN weak∗ converges in M(R3)
to µ ∈ M(R3). Moreover, µ has mass one, i.e.,

∫

R3 dµ = 1.
Further, the limit measure is of the form

µ = ρχE ,

where ρ =
√
2 ( i.e., the density of atoms per unit volume of L) and E is a set of

finite perimeter of volume ρ−1.

Next, for exact face–centred cubic minimiser the ensuing cluster has a unique
shape (regular truncated octahedron):

Theorem 2. Assume E and V are as above and let E have crystallised ground
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states, i.e., every ground state is—after translation and rotation—a subset of the

face–centred cubic lattice. Let {x(N)
1 , . . . , x

(N)
N } be any minimising N–particle con-

figuration of E of bounded diameters and of bounded energy, i.e., satisfying (2)
and (3), and let µN be the associated re–scaled empirical measure (4).
As N → ∞, up to translation and rotation (that is to say, up to replacing µN

by µN (RN · +aN) for some rotation RN ∈ SO(3) and some translation vector
aN ∈ R3) µN converges weak∗ to the limit measure

(5) µ =
√
2χW .

Here the set W is the c–multiple of the regular truncated octahedron whose vertices
are given by all permutations of (0, 2, 4)T , (0,−2, 4)T , (0, 2,−4)T , (0,−2,−4)T ,

with the constant c being
√
2

512 .

0

Figure 1. The Wulff shape for the face–centred cubic lattice
is a regular truncated octahedron; its normals locally minimise
the surface energy density and coincide with the directions of the
3–fold and 4–fold rotation axes. In fact, these minima give rise to
the emergence of the hexagons and squares.
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From simple particle models to GENERIC

Johannes Zimmer

(joint work with S. Adams, N. Dirr, H. Duong, V. Laschos, M. A. Peletier)

One possible way to describe nonequilibrium systems is to use a framework such
as GENERIC [8]. GENERIC stands for General Equation for Non-Equilibrium
Reversible-Irreversible Coupling. In this setting, the evolution of a thermodynamic
system in a state space Z is described by the equation

(1) ∂tz = L(z) dE(z) + K(z) dS(z),

where E, S : Z → R are the energy and entropy functionals, dE, dS are appropriate
derivatives (they could be Fréchet derivative or a gradient with respect to some
inner product); L = L(z) describes the conservative evolution and is an antisym-
metric operator satisfying the Jacobi identity

{{F1,F2}L,F3}L + {{F2,F3}L,F1}L + {{F3,F1}L,F2}L = 0

for all functions Fi : Z : Z → R,, with Poisson bracket {·, ·}L
{F,G}L := dF · L dG,

K = K(z) is symmetric and positive semidefinite [5, 8, 7]. In a nutshell, the
GENERIC formulation (1) expresses the expectation that, even in nonequilibrium
situations, the evolution of a thermodynamic system is governed by an energy
E and an entropy S, where the former evolves conservatively and the latter is
nondecreasing (the physical entropy is minus the mathematical entropy). While
formulated for nonequilibrium, a setting such as GENERIC of course also suits
situations near equilibrium or in local equilibrium, and we will only discuss systems
without drift.

There are many facets of a possible mathematical analysis of GENERIC. Mielke
has shown that GENERIC is very beneficial for mathematical modelling, giving
a clear understanding how to derive thermodynamically consistent models [7].
There are two areas which are to the best of our knowledge completely open:
First, there is no existence theory for a thermodynamic system using the structure
of GENERIC. The evolution operators L, K are in general nonlinear. Second, there
is no rigorous theory for a derivation of (1) from a microscopically conservative
system (however, a systematic approach for this this passage is developed in the

work of Öttinger and coworkers, e.g., [8]).
We consider the much simpler question of how to derive systems in GENERIC

form from mesoscopic (stochastic) models. Two cases are discussed, diffusion as a
purely entropic process and the Vlasov-Fokker-Poisson equation as a system driven
by energy and entropy.

For diffusion, the (physical) entropy S(ρ) := −
∫

Rn ρ(x) log ρ(x)dx is nonde-
creasing,

∂

∂t
ρ(x, t) = ∆ρ(x, t) = div (ρ(x, t)∇dS(ρ)) =: gradWdS(ρ) =: KdS;(2)



Mini-Workshop: Inelastic and Non-equilibrium Material Behavior 3183

here Kξ = gradW ξ = div (ρ(x, t)∇ξ) denotes the Wasserstein gradient and dS is
the variational derivative. It is a classic result that diffusion is the many-particle
limit of Brownian motion, and we show how this result can be obtained in such a
way that the limit passage reveals the entropy and the Wasserstein metric directly.
Namely, for the empirical measure ρn := 1

n

∑n
i=1 δXi associated with n Brownian

particles, a large deviation result [1] states in essence

P
(

Lh
n ≈ ρ |L0

n ≈ ρ0
)

≈ exp
[

−nJh(ρ ; ρ0)
]

as n→ ∞,

with rate function

Jh(ρ ; ρ0) := inf
q : π0q=ρ0,π1q=ρ

H(q | q0)

with

H(q | p) :=







∫

R×R

f(x, y) log f(x, y) p(d(x, y)) if q ≪ p, f = dq
dp

+∞ else
.

One can then see for different classes of measures [1, 4] that Jh and the time
discretisation of the variational formulation of the Wasserstein-entropy gradient
flow for time step h [6] agree asymptotically in the limit h → 0, in the sense of
Γ -convergence.

Alternatively, given n Brownian particles and a fixed terminal time T > 0, one
can consider the path of empirical measures [0, T ] ∋ t 7→ ρn(t) = 1

n

∑n
j=1 δX(j);

then a large deviation result of Dawson and Gärtner [3] states

(3) Prob(ρn ≈ ρ) ∼ exp[−nJ(ρ)],

with rate functional

(4) J(ρ) :=
1

2

∫ T

0

∥

∥

∥

∥

∂ρ

∂t
−∆ρ

∥

∥

∥

∥

2

ρ(t),∗
dt,

where the norm ‖·‖ρ(t),∗ is associated with the Wasserstein metric. Using this

connection to Wasserstein evolution and the identity ∆ρ = div(ρ∇dS), the rate
functional can be rewritten as

S(ρ(T ))− S(ρ(0)) +
1

2

∫ T

0

[

∥

∥

∥

∥

∂ρ

∂t

∥

∥

∥

∥

2

ρ,∗
+ ‖−dS‖2ρ

]

dt,

which reveals the Wasserstein structure via the norm, and the entropy as driving
force.

The Vlasov-Fokker-Poisson equation is an example of a system driven by energy
and entropy. It describes the evolution of a density ρ = ρ(p, q) depending on
position q and momentum p,

(5) ∂tρ = −divq

(

ρ
p

m

)

+ divpρ
(

∇qV +∇qψ ∗ ρ+ γ
p

m

)

+ γθ∆pρ,
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which is the many particle limit of interacting Brownian particles with inertia,

dQi(t) =
Pi(t)

m
dt,

dPi(t) = −∇V (Qi(t))dt−
n
∑

j=1

∇ψ(Qi(t)−Qj(t))

− γ

m
Pi(t) dt+

√

2γθdWi(t)

(here Qi and Pi are the position and momentum of particle i = 1, . . . , n with mass
m experiencing potential V , interaction potential ψ, drift term −γPidt/m, and
stochastic forcing by a Wiener measures Wi, where the Wi’s are independent [5]).

Once this particle model is augmented by a heat balance to account for the
exchange of energy through the heat bath, it is possible to write the Vlasov-
Fokker-Poisson equation in GENERIC form [5]. To be precise, the one can add
the energy balance

den =
1

n

n
∑

i=1

[

γ

m2
P 2
i dt−

γθd

m
dt+

√
2γθ

m
PidWi

]

and derive a GENERIC formulation for (ρ, e) ∈ P2(R
2d) × R, where P2 are the

probability measures with finite second moment. It can be shown that a large
deviation principle for the Vlasov-Fokker-Poisson equation given by Budhiraja,
Dupuis and Fischer [2] can be adapted to describe (up to a constant) the latter
equation as minimiser of rate functional I in GENERIC form [5],

I(ρ) =







1

4γθ

∫ T

0

∥

∥∂tρt −Aτ
ρt
ρt
∥

∥

2

−1,ρt
dt ρ ∈ AC([0, T ];P (R2d)), ρ|t=0 = ρ0,

+∞ otherwise,

where Aνf := p
m · ∇pf −

[

∇qV +∇qψ ∗ ν + γ p
m

]

· ∇pf + γθ∆pf .
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Epitaxially strained crystalline films: Scaling regimes and beyond

Barbara Zwicknagl

(joint work with Peter Bella, Michael Goldman, Irene Fonseca and Aldo Pratelli)

0.1. Motivation. We discuss variational models to describe the epitaxial depo-
sition of a thin crystalline film on a rigid substrate when there is a mismatch
between the crystal lattices. Due to this misfit, a strain is induced in the film
during deposition. Experimental observations show that depending on the volume
of the deposited film and the amplitude of the misfit, the film develops different
morphologies. Typically, at small volumes, a flat layer is formed, while at larger
volumes, compact islands arise. This pattern formation is explained as the result
of a competition between the strain energy in the film and the surface energy of
the film’s free surface.

0.2. Model. Our analytical studies adopt two-dimensional continuum models in-
troduced in the physical literature (see [1]), i.e., for fixed d, e0 > 0, we consider
the functional

Fd,e0(u, h) :=

∫

Ωh

W (∇u) +
∫ 1

0

√

1 + |h′|2(1)

for Lipschitz functions h : [0, 1] → R with h(0) = h(1) = 0, and
∫ 1

0
h(x) dx = d,

and u ∈ W 1,2(Ωh) with u(x, 0) = e0(x, 0), where Ωh := {(x, y) : x ∈ [0, 1], 0 ≤
y ≤ h(x)}. Here, h is the height profile function of the deposited film, and its
subgraph Ωh is the domain occupied by the film. The first term in (1) describes
the stored strain energy whereW is a typical elastic energy density with p-growth,
1 < p < ∞, typical examples for p = 2 being W (M) = dist2(M,SO(2)) or
W (M) = 1

4 |M+MT |2. We study film profiles at fixed volume d, and the parameter
e0 measures the amplitude of the crystallographic misfit. Regularity and other
qualitative properties of minimizers of (1) have been studied in [4, 3]

0.3. Results. We discuss joint work with Michael Goldman [5], in which the
qualitative behavior of the minimal energy in terms of the volume d of the film
and the amplitude e0 of the misfit is studied: There are constants C1 and C2 > 0
such that for all d > 0 and all e0 > 0,

C1 max{1, d, ep/30 d2/3} ≤ inf Fd,e0 ≤ C2 max{1, d, ep/30 d2/3}.
Corresponding reduced asymptotic models in the sense of Γ -convergence in the
various regimes are discussed. The results agree qualitatively with the experi-
mentally observed patterns. In particular it is shown that in some regimes the
formation of islands is energetically favored in the sense that properly rescaled
profile functions of low energy sequences converge to sums of Dirac measures.
This is in particular the case when the amplitude of the misfit large compared to
the volume of the film.
The analysis makes use of the fact that the profile function h is supported on a
compact interval [0, 1], which prevents the formation of a very thin layer, that is,
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the wetting effect. We briefly discuss related results obtained in joint work with
Peter Bella and Michael Goldman [6], for island formation on unbounded domains,
in particular with respect to existence and nonexistence of minimizers.
In the last part, results from joint work with Irene Fonseca and Aldo Pratelli [7]
are briefly discussed. Here, a fully facetted model with positive miscut angle intro-
duced in [8] (based on [2]) is analyzed, which captures more microscopic properties
of the island formation. The energy functional is given by

Ed(h) :=

∫ W

0

∫ W

0

log |x− y| dy dx+

∫ W

0

(
√

1 + |h′|2 − 1) dx(2)

for profile functions h ∈ W 1,∞(R) with supp(h) = [0,W ],
∫

R
h(x) dx = d and

h′ ∈ {tan(−θm + nθ) : n ∈ N} almost everywhere in their support, with some
finite setN ⊂ Z. The second term in (2) models again the extra surface energy, and
the first term is a small slope approximation of a relaxed strain energy. The angles
θ > θm > 0 are given parameters, where the latter is the miscut angle. A positive
miscut angle prevents the wetting effect, since flat profiles are not admissible due
to the constraint on the slopes. Consequently, we obtain existence of minimizers
for all volumes d. We discuss the relaxation of the problem with respect to uniform
convergence. The limit functional turns out to be the sum of an elastic energy
term and an anisotropic surface energy term. We show that all minimizers of the
relaxed problem are fully facetted, i.e., h′ ∈ {tan(−θm + nθ) : n ∈ N} almost
everywhere in their support, and we finally discuss some geometric properties of
minimizers, including an analogue of the zero contact angle property.
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