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Abstract. This meeting was focused on recent results on the mathematical
analysis of many-particle systems, both classical and quantum-mechanical in
scaling regimes such that the methods of kinetic theory can be expected to
apply. Thus, the Boltzmann equation is in many ways the central equation
investigated in much of the research presented and discussed at this meet-
ing, but the range of topics naturally extended from this center to include
other non-linear partial differential and integro-differential equations, espe-
cially macroscopic/fluid-dynamical limits of kinetic equations modeling the
dynamics of many-particle systems. A significant subset of the talks focused
on propagation of chaos, and the validation and derivation of kinetic equa-
tions from underlying stochastic particle models in which there has been much
progress and activity. Models were discussed with applications not only in
physics, but also engineering, and mathematical biology. While there were
a number of new participants, especially younger researchers, an interesting
aspect of the conference was the number of talks presenting progress that had
its origins in the previous meeting in this series held in 2010.
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Introduction by the Organisers

The workshop Classical and Quantum Mechanical models of Many-Particle Sys-
tems, organized by Anton Arnold (Vienna), Eric Carlen (New Brunswick) and
Laurent Desvillettes (Cachan) was well attended with 54 participants with broad
geographic representation, and a significant number of women (10) and young
researchers. We remark that most of the participation slots were actually filled
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in the first round of invitations. So there were very few replacements (due to a
pregnancy, e.g.) or cancellations (due to a recent car accident, e.g.). Two of the
participating post-docs were supported be the NSF-grant for “junior Oberwolfach
fellows”, and four PhD-students were funded as “Oberwolfach Leibniz graduate
students”.

32 participants gave a lecture; these mostly were either 30 or 45 minute talks,
though on the first days we had two longer survey talks to familiarize young
researchers especially with the range of topics that would be covered.

A number of the talks presented progress on issues concerning propagation of
chaos, a subject that was introduced by Mark Kac in the 1950’s, but which has
become very active in the last few years, with much significant progress, especially
concerning stronger notions of chaos, such as entropic chaos, and our meeting
certainly reflected this.

Four talks dealt with this topic. The talk by Einav dealt with the construction
of chaotic initial data by novel probabilistic methods. The talk of Hauray dealt
with propagation of chaos for Vlasov equations and obtained strong new results
for potentials with singularities approaching Coulomb singularities and with prop-
agation of entropic chaos. Mischler, whose recent work with Mouhot has sparked
much of the recent activity in the field, gave a talk on propagation of chaos for the
two dimension viscous vortex model, again obtaining results concerning entropic
chaos. Finally, the talk by Pezzotti concerned propagation of chaos for a quantum
kinetic system. Since chaos is an “asymptotic independence” property of a mul-
tiparticle system, and since fermions are necessarily correlated due to the Pauli
exclusion principle, this is a topic in which there are interesting conceptual issues
as well as technical mathematical problems. The report on this work was discussed
by a number of participants of the meeting, and future progress will likely come
from this. In fact, the meeting was the setting for a number of lively discussion on
propagation of chaos, and these discussions will certainly lead to future progress.

The perspective of kinetic theory, and kinetic methods such as entropy-entropy
dissipation relations has continued to be useful in the study of a number of evo-
lution equations that do not come from kinetic theory per se, but nonetheless
have certain structural similarities to kinetic equations. Two example that were
the focus of talks at the meeting are the Cahn-Hilliard equation and the Keller-
Segel equation. The Cahn-Hilliard equation describes phase segregation in a non-
equilibrium statistical mechanical system, and describes the evolution of the order
parameter as the system organizes itself into a regular free-energy minimizing pat-
tern of regions of low and high values of the order parameter. The talk of Felix
Otto presented a significant advance in this direction. This concerned joint work
with Maria Westdickenberg in which is was shown for the first time that cer-
tain steady state free-energy minimizing transition profiles, describing the phase
boundary, are not only non-linearly stable under small perturbation, but also un-
der large perturbations. The methodology is very novel, and will lead to much
further progress.
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The theme of hypocoercivity was further studied and the concept of degenerate
hypocoercivity was discussed in the talk of Salvarani.

Several talks concerned the Keller-Segel equation which describes chemotaxis
in a bacteria population. Jean Dolbeault presented remarkable recent work on the
sub-critical Keller-Segel model, in which diffusion overwhelms the effects of the
chemical attractant, and showed how a sub-critical log-Hardy-Littlewood-Sobolev
inequality (and a dual Onofri type inequality) could be used to obtain sharp control
of the evolutions. This line of investigation continues to produce interesting new
inequalities, as well as new applications. His talk discussed application to crowd
behavior and herding.

Another interesting talk on chemotaxis, but this time concerning a linear equa-
tion instead of the Keller-Segel equation was presented by Schmeiser. The equa-
tion he studied, in joint with Calvez and Raoul, bears a resemblance to the lin-
earized Boltzmann equation. These authors prove the existence of non-trivial
steady states, describe them qualitatively, and prove exponential relaxation to
them using a novel mixture of microscopic coercivity and macroscopic coercivity.

There were several other talks on population biological problems in which ki-
netic theory provided the strategy for the solution, but through a wide range of
methods. The talks of Barbaro, Carrillo, Degond, Frouvelle and Motsch all added
to the lively development of this theme at the meeting. The talk of Alonso also
concerned a biological-like application, but at the cellular level rather than the
population level.

The quantum mechanical side of the topic was represented by a number of
talks besides that of Pezzotti that has been mentioned above. The talks of Jin,
Carles, Lasser and Negulescu all presented results on problems in which quantum
mechanics played a central role. It is important to note that these topics were
well integrated into the rest of the discussions, and indeed, most of these speakers
have also worked on classical kinetic problems, or had collaborated with others
at the meeting who presented work on classical kinetic theory. For example, the
work presented by Negulescu is joint work with Adami and Hauray, whose work
on propagation of chaos was discussed above.

We also wish to mention the talks on topics which have been developed all along
the series of Oberwolfach meetings devoted to kinetic equations: the numerical
approximation of Boltzmann or Vlasov equation, with a new approach by Bobylev
and a talk by Sonnendrücker devoted to realistic plasmas; the variants of Vlasov-
Poisson equation, with a talk by Bardos; the qualitative properties of the standard
or inelastic Boltzmann equation, represented by Gamba, Kim, Lods, Matthes; the
coagulation/fragmentation problems, with a talk by Canizo.

The talk by Fellner illustrated the usefulness of the Oberwolfach meetings de-
voted to kinetic theory: he indeed presented a result (on reaction-diffusion PDEs)
which is a direct application of discussions with Otto in the previous meeting of
the series.
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New applications of kinetic theory were investigated, as shown by the talk of
Lorz on computations of the flows in the human lung in presence of a spray, and
by the talk of Moussa on theoretical aspects of the same subject.

Finally, the talks by Brenier, Marahrens and Yu were devoted to PDEs of
different types (MHD, elliptic, hyperbolic), in which the mathematical treatment
involved methods which have common points with those used in kinetic theory.
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Abstracts

Viscoelastic fiber networks: Particle model, applications and
mechanical properties.

Ricardo Alonso

(joint work with Jennifer Young, Yingda Cheng)

Dynamic, cross-linked, biological fiber networks play major roles in cell and tis-
sue function. They are challenging structures to model due to the vast number
of components and the complexity of the interactions within the structure. We
present here a particle-based model for fiber networks inspired from flocking theory,
where fibers are modeled as point particles and cross-link interactions are mod-
eled via distance-based potential functions. The frictional potential in flocking
models takes on the form of a function that decays with increasing inter-particle
distance, with the specific form of this function fit for a particular model. The
basic flocking model is also modified to include an elastic potential as well as
drag from the surrounding fluid. Conceptually, the proposed model can be under-
stood as a distributed Kelvin-Voigt particle model. The model is able to simulate
behaviors such as strain hardening, viscoelastic creep, stress relaxation, network
rupture, and network reformation, which are common characteristics of biological
fiber networks. The benefits of this particle model over polymer-based models are
that they are computationally simple to implement and can be easily connected
to kinetic and continuum-level models.

1. Mathematical Model

Our model consists of a cross-linked system of n fibers evolving in the plane R2.
Each fiber is assigned a length L and massm, (lumped into two masses (m/2) at its
two end points). Each fiber i, 1 ≤ i ≤ n, is described by its center of mass position
vector xi = 〈x1, x2〉 ∈ R2 and center of mass velocity vector v = 〈v1, v2〉 ∈ R2.
Fibers also have an orientation angle denoted by θi ∈ [−π/2, π/2) with associated
angular velocity ωi ∈ R. In the case of fibers moving in the plane, θi is simply the
angle between the filament and the horizontal axis.

In principle, free moving fibers follow simple physical laws of fluid dynamics,
however, what make them special is their interaction with close neighbors via cross-
links. We propose here a modified Cucker-Smale model [2] for the description of
the evolution of the fiber network. The equations for the evolution of the center
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of mass position xi and velocity vi for the i
th-fiber, 1 ≤ i ≤ n are:

dxi
dt

= vi(1a)

m
dvi
dt

= −β1vi −
λ1
n

n∑

j=1

Ufr(rij)(vi − vj)(1b)

− λ2
n

n∑

j=1

U ′
e(rij)

xi − xj
rij

+ F(t,xi).

The term β1vi represents drag forces from an interstitial fluid (for example, cytosol
within the cell) on the fiber where β1 is the drag coefficient, computed using
slender body theory. The quantities Ufr(rij) and Ue(rij) are the friction and
elastic potentials, that are computed based on rij := |xi−xj |, the distance between
fibers i and j. The sum with Ufr(rij) should be thought of as representing the
total frictional force from the interaction between neighboring fibers that produces
a tracking phenomenon. That is, the velocity vi tracks a weighted average of its
neighboring fibers’ velocities. The parameter λ1 is related to the friction coefficient
for the fibers. Intuition tells us that the potential Ufr(rij) should be a function
that decays as rij increases, likely vanishing after several fiber lengths L. We
propose that Ufr(rij) takes the form of a Gaussian:

Ufr(rij) =
1√
2πσ2

e−
r2ij

2σ2

where σ is the standard deviation. It is possible to validate this choice by perform-
ing several hundred times, with different initial random networks, a fully micro-
scopic simulation of a fiber network and performing a curve-fit through the data.
By fully microscopic we mean that each fiber is modeled as a chain of masses and
springs allowing fiber deformation. In general we note that σ depends on several
of the parameters such as the network’s density and fiber length L.

We now return to Equations (1a) and (1b) to look at the third term. The sum
with Ue(rij) represents the total elastic force acting on fiber i based on its direct
cross-link interactions with other fibers. The idea is that a virtual spring appears
between two fibers i and j whenever rij is below a given threshold distance R. If
rij is greater than R then fibers i and j do not directly interact elastically, and no
contribution is made to the sum. This “on-off” switch behavior is reflected in the
structure of the Ue(rij) potential function

(2) Ue(rij) =

{
1
2k0(rij − r0)

2 − 1
2k0(R − r0)

2 rij < R ,
0 rij ≥ R ,

where k0 is the spring constant of a cross-link, and r0 is the cross-link equilibrium
length. This set-up of the elastic interaction model easily allows the model to
capture cross-link rupture (if rij transitions from less than R to greater than R)
and cross-link reformation (if rij transitions from greater than R to less than
R). The cross-link interaction distance R depends in general on the geometrical
properties of the network constituents such as typical fiber length, fiber orientation
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and most importantly the typical biding mechanism length (actin-biding protein
typical length). The parameter λ2 (like λ1) is an adjustable parameter relating
to the elastic behavior of the network. The elastic potential (2) models repulsive,
attractive and rupture zones in the cross-link behavior. In Equation (1b), the final
term F(t,xi) represents any external forces imposed on the fiber. Conceptually,
Equations (1a) and (1b) represent a Kelvin–Voigt model between any pair of fibers
having a viscosity of value λ1

n Ufr(rij) and elasticity of λ2

n U
′
e(rij). The equations

for the evolution of θi and ωi have a similar structure to Equations (1a) and (1b),
namely

dθi
dt

= ωi,(3a)

I
dωi
dt

= −β2ωi −
λ3
n

n∑

j=1

Ūfr(rij)(ωi − ωj)(3b)

+
L

2
∆F(t,xi) · (− sin(θi), cos(θi)).

The potential Ūfr models, in the same spirit explained previously, the rotational
friction forces between neighboring fibers and the fibers tendency to rotate together
depending on the forces exerted on them. The parameters I and λ3 are the inertia
of a rigid rod and the rotational friction coefficient respectively.

Finally, we mention that in spite of the fact that only distance based potentials
have been used to define system (3), this is not a restriction of the model since
more complicated ones are perfectly valid. For instance, angular dynamics of
the fibers can strongly influence the translational dynamics by using anisotropic
potentials U

(
rij , θij

)
, in this way it is possible to consider anisotropic shear and

stronger alignment effects. Furthermore, virtually any microscopic or macroscopic
quantity such as fiber velocity, local density or temperature can be included as
a valid variable in the potentials. This flexibility could partially resolve local
complex effects appearing in shearing like bending or bucking without including
more degrees of freedom per fiber.
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Effects of contagion on flocking models

Alethea Barbaro

(joint work with Andrea Bertozzi, Jesús Rosado)

The question of how a crowd moves in emergency situations is not yet well un-
derstood. However, many models have been proposed to simulate the dynamics
of socially interacting organisms. The Cucker-Smale model [3] and the model by
Vicsek et al. [6] are the most well-studied, particularly in the kinetic community.
In this talk, we explore how incorporating a variable representing a contagious
emotion (such as fear, excitement, etc.) can affect the dynamics of flocking mod-
els.

Building from a simple model in the literature in which a particle moves away
from a point with a speed proportional to its evolving fear level [5], we incorporate
flocking dynamics to allow the particles to change their directional headings. To
this end, we begin with a model similar to the Cucker-Smale and Vicsek models,
but we also include a variable that tracks the level of emotion that a particle feels.
In our model, xi denotes the position of the ith particle, ωi denotes its directional
heading, and qi is its emotion level:





ẋi = qiωi,

ω̇i = ν(Id− ωi ⊗ ωi)
[

1
N

∑
j

qjωj

(1+|xi−xj |2)β
]
,

q̇i =
1
N

∑
j

(qj−qi)
(1+|xi−xj|2)γ .

Note that the projection (Id − ωi ⊗ ωi) constrains ωi to the unit sphere if the
initial directional headings are on the unit sphere. Without the emotion variable,
this would constrain the velocity to the unit sphere, as in continuous-time versions
of the Vicsek model [4]. In our model, this projection ensures that the emotional
level serves as the speed. In the second equation, the emotion level acts as a weight,
determining how much a particle’s directional heading affects the directions of
those around it. The last equation models the evolution of the emotion variable.
The first and third equations, taken together, should call to mind models for
flocking in which a particle’s speed is determined by averaging the speeds of others
nearby [1].

We propose the mesoscopic limit for this system following the ideas in [2], and
we offer convergence results for both the directional heading and the emotion
variable under certain conditions. We also explore several possible variations on
the model, including one where the emotion variable increases dependent on the
surrounding particle density, and one where the particles have a cone of vision.
When both of these effects are included, the model can be seen to produce a solid,
liquid, and crystalline phase depending on the density of particles.
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About the Vlasov-Dirac-Benney Equation

Claude Bardos

This is a report on project initiated with Anne Nouri [2] in progress, in collabo-
ration with Nicolas Besse [1], and also in interactions with other colleagues: Yann
Brennier, Bruno Desprès and Rémi Sentis.

It concerns a version of the Vlasov equation where the self interacting Coulomb
potential is replaced by a Dirac mass.

(1)

∂tf(t, x, v) + v∂xf(t, x, v)− ∂xρf (t, x)∂vf(t, x, v) = 0 ,

ρf (t, x) =

∫

R

f(t, x, v)dv .

Hence the instabilities, when they appear, have a much more severe effect than
in the classical Vlasov Poisson equation.

Emphasis is put on the relations between the linearized version, near a constant
profile

G(v) ≥ 0

∫
G(v)dv = 1 ; ∂tf(t, x, v) + v∂xf(t, x, v)− ∂xρf(t, x)G

′(v) = 0 ,

the full non linear problem and also on natural connections with several other
equations of mathematical physics. On the linearized equation one observed that
when G(v) has only one maximum the problem is well posed and described by a
unitary group of operators in a convenient Hilbert space.

If several maxima are present the Cauchy problem may be only well posed
(locally in time) in the class of analytic initial data. It may have no solution when
G(v) has more than one maximum.

These results have their counterpart at the level of the non linear problem.
The extreme cases of the one maximum profile are the either when G(v) is the

delta distribution or when G(v) has the shape of a plateau. In both cases non linear
perturbation of this profile are described by classical equations of fluid mechanics.
In the first case it is the equation of an isentropic fluid and in the second it is
the Benney equation for water waves (Hence the name Vlasov-Dirac-Benney) and
therefore the non linear problem is also (but locally in time) well posed.
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Eventually any Vlasov type equation is at least formally (in the sense of Wigner
transform and Wigner measure) the limit of a self consistent non linear Schrödinger
equation and what is observed in the present talk is that non formal but rigorous
convergence results in such limit (cf. [3] and [5]) are in full agreement with the
above analysis.
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Landau equation: Monte Carlo methods and some open mathematical
problems

Alexander Bobylev

(joint work with Irina Potapenko)

The talk consists of two parts. Its first part is devoted to Monte Carlo (DSMC)
methods. The general DSMC method for solving Boltzmann equation for long-
range potentials and Landau-Fokker-Planck equation was proposed by Bobylev
and Nanbu in 2000 [1] (partly as a development of earlier approach of Nanbu
[2] to Coulomb collisions). The methods of [1],[2] were later applied to various
model problems of plasma physics, discussed in detail and further developed by
several authors (see, for example, [3],[4] and references in [4]). However the general
method of [1] was not clearly understood and therefore many authors still use a
more complicated original scheme of [2] with reference to [1] just for the formal
proof of consistency with the Landau-Fokker-Planck equation. The reason is that
the first presentation of the method was done in [1] in too formal and general way.
We present in this talk a completely different approach, which leads to basically
the same general method, but makes its essence absolutely clear and transparent.
The method is explained for the general case of multi-component plasma. We
also present some rigorous estimates for accuracy of the method. Finally some
numerical results on typical problems of physics of collisional plasma are presented
and discussed. The details of the first part of the talk can be found in the recently
published paper [5]. The second part of the talk is devoted to a brief discussion
of some open mathematical problems for the Landau equation. In particular,
these are problems related to (a) consistency of this equation with dynamics, (b)
existence of the global in time solution for the spatially homogeneous case, and
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(c) some asymptotic problems. It is important to stress that the discussion is
related to the true Landau equation which formally corresponds to the Coulomb
potential. This is because all other forms of the Landau equation (as a formal
limit of the Boltzmann equation for grazing collisions) are not directly connected
with physics. On the other hand, the true Landau equation is connected not only
with physical systems of charged particles, but also with particles interacting via
any bounded smooth potential in the weak coupling limit.
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Dissipative and Quantum incompressible MHD

Yann Brenier

A key equation in ideal incompressible MHD is the induction equation

(1) ∂tB +∇ · (B ⊗ v − v ⊗B) = 0, ∇ ·B = 0,

where B = Bt(x) ∈ Rd is the magnetic field, coupled to the divergence-free fluid
velocity v = vt(x) ∈ Rd. For simplicity, we consider x in the periodic cube Td.
When v is smooth, this equation just means that a curve s→ η0(s) is an integral
line of B0 [i.e. η′0(s) = B0(η0(s))] if and only if s → ηt(s) = ξt(η0(s)) is an
integral line of Bt [i.e. η

′
t(s) = Bt(η(s))], where ξt is the diffeomorphism uniquely

generated by v through ∂tξt(x) = vt(ξt(x)), ξ0(x) = x. Consequently, the topology
of the integral lines of B is preserved by (1) during the evolution. In addition, we
easily get by direct calculation and integration by part, for smooth (B, v),

(2)
d

dt
||Bt||2 + 2((Gt, vt)) = 0, Gt = ∇ · (Bt ⊗Bt),

|| · || and ((·, ·)) respectively denoting the norm and the inner product in L2(Td).

Dissipative incompressible MHD. Classical ideal incompressible MHD reads

(3) ∂tv +∇ · (v ⊗ v) +∇p = ∇ · (B ⊗B), ∇ · v = 0,
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for some scalar field p = pt(x) ∈ R, coupled to (1). For this model, the total
energy ||Bt||2+ ||vt||2 is (formally) conserved. Some authors (in particular Moffatt
[6]) have suggested the following dissipative alternative to ideal MHD, typically

(4) (−△)σvt = PGt, Gt = ∇ · (Bt ⊗Bt)

(where P denotes the L2projection ”Helmholtz” operator onto divergence-free
zero-mean vector fields on Td), which could be called ”Darcy” or ”Stokes” MHD
models as σ = 0 or σ = 1. For such models the magnetic energy dissipates
according to

(5)
d

dt
||Bt||2 = −2||vt||2.

Equilibria, formally obtained as t→ +∞ by cancelling v∞, correspond to station-
ary solutions B∞(x) to the Euler equations: P∇ · (B∞ ⊗ B∞) = 0, ∇ · B∞ = 0.
Because the topology of Bt is preserved by (1), we may hope that B∞ inherits (at
least partly) the topology of B0. So, Darcy and Stokes MHD models open a way to
solving the stationary Euler equations under topological constraints. (See [2] for
such topics.) Unfortunately, the corresponding equations (4,1) are very non-linear
(cubic in B) non-local degenerate parabolic equations and even the existence of
local smooth solutions does not look obvious to us (see [7]). Nevertheless, a ”dis-
sipative” formulation can be obtained in the following way (essentially equivalent
to the one followed by us in [3]). First, we notice that (4) can be equivalently
expressed in variational form

(6) 2((Gt, zt − vt)) + ||vt||2σ − ||zt||2σ ≤ 0, ∀ z = zt(x), smooth s.t. ∇ · zt = 0,

where || · ||σ denotes the σ− Sobolev semi-norm on Td. Thus, using (2), both
Darcy and Stokes MHD are exactly encoded by (1) together with

(7)
d

dt
||Bt||2 + 2((Gt, zt)) + ||vt||2σ − ||zt||2σ ≤ 0, ∀ z, s.t. ∇ · zt = 0.

Next, again using (2), we get, for each divergence-free test field z = zt(x),

2((Gt, zt)) = −((Bt ⊗Bt,∇zt +∇zTt )),
Let us now choose a constant r, depending on z, such that

(8) rId −∇zt(x)−∇zt(x)T ≥ 0, ∀(t, x),
in the sense of symmetric matrices, where Id denotes the identity matrix. Thus,
(7) becomes

(9) (
d

dt
− r)||Bt||2 + ((Bt ⊗Bt, rId −∇zt −∇zTt )) + ||vt||2σ − ||zt||2σ ≤ 0

for all smooth z and all r satisfying ∇·zt = 0 and (8). Observe that this inequality
only involves convex functionals of B. This leads to the following definition:

We say that (B, v) ∈ (C0
w(R+, L

2(Td)), L2(R+ × Td)) is a dissipative solution
to the Darcy or Stokes MHD model (with respectively σ = 0 or σ = 1), if i) the
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induction equation (1) is satisfied in the sense of distributions, ii) (9) is satisfied
in integral form from 0 to t for all t ≥ 0, namely:
(10)

||Bt||2 +
∫ t

0

[((Bs ⊗Bs, rId −∇zs −∇zTs )) + ||vs||2σ − ||zs||2σ]e(t−s)rds ≤ ||B0||2etr

for all smooth divergence-free and zero-mean field z and all r satisfying (8).

This definition shares some features of P.-L. Lions ”dissipative solutions” to the
Euler equations [4] and Ambrosio-Gigli-Savaré solutions of the linear heat equa-
tion in general metric spaces [1]. We can prove, for any given initial condition
B0 ∈ L2(Td), the global existence of a dissipative solution for d = 2 if σ = 0 and
for all d ≥ 2 is σ = 1. Concerning uniqueness, we are only able to assert that a
dissipative solution is unique as long as it is Lipschitz continuous in x. Details are
provided in [3].

Quantum MHD. Our proposal for a set of ”quantum” incompressible MHD equa-
tions is based on Madelung’s approach [5] to the Schrödinger equation. We start
from Darcy MHD (1,4) as the diffusive counterpart of ideal incompressible MHD
(1,3). The magnetic energy is then dissipated according to

(11) − d

dt
||Bt||2 = 2||P∇ · (Bt ⊗Bt)||2,

where the right-hand side can be viewed as a kind of ”Fisher information” for
incompressible MHD. Then, our quantum incompressible MHD equations are ob-
tained by adding this Fisher information to the action of ideal incompressible
MHD. In the case d = 3, using suitable Lagrange multipliers (z, p, q, A), we look
for saddle points of∫

{||vt||2 − ||Bt||2 + ((Bt ⊗Bt,∇zt +∇zTt )) + ||zt||2}dt

−2

∫
{((zt,∇qt)) + ((vt,∇pt))− ((Bt, ∂tAt)) + ((Bt × vt,∇×At))}dt.

Setting D = ∇×A, the resulting system of equations read

∂tB +∇× (B × v) = 0, v = ∇p+D ×B, ∇ · v = 0,

∂tD+∇× (D× v) = ∇× ((I − (∇z+∇zT ))B), z = ∇· (B⊗B)+∇q, ∇· z = 0.

References
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Exponential convergence to equilibrium for the Becker-Döring
equations

José A. Cañizo

(joint work with Bertrand Lods)

The Becker-Döring equations are a model for the kinetics of first-order phase
transitions, applicable to a wide variety of phenomena such as crystallization,
vapor condensation, aggregation of lipids or phase separation in alloys. They give
the time evolution of the size distribution of clusters of a certain substance through
the following infinite system of ordinary differential equations:

d

dt
ci(t) =Wi−1(t)−Wi(t), i ≥ 2,(1a)

d

dt
c1(t) = −W1(t)−

∞∑

k=1

Wk(t),(1b)

where

(2) Wi(t) := ai c1(t)ci(t)− bi+1 ci+1(t) i ≥ 1.

Here the unknowns are the real functions ci = ci(t) for i ≥ 1 an integer, and
represent the density of clusters of size i at time t ≥ 0 (this is, clusters composed of
i individual particles). They give the size distribution of clusters of the phase which
is assumed to have a small total concentration inside a large ambient phase — be
it clusters of crystals, lipids, or droplets of water forming in vapor. The numbers
ai, bi (for i ≥ 1) are the coagulation and fragmentation coefficients, respectively,
and we always assume them to be strictly positive.

In a recent work we have been able to show that any subcritical solution to
the Becker-Döring equations (with suitable moment bounds) converges exponen-
tially fast to the unique steady state with same mass. Our convergence result is
quantitative and we show that the rate of exponential decay is governed by the
spectral gap for the linearized equation, for which several bounds are provided.
This improves the known convergence result by Jabin & Niethammer [6].

Our proof is based on a study of the linearization of the Becker-Döring equa-
tions around the equilibrium, for which we show the existence of a spectral gap
whose size is well estimated by an explicit expression involving the coagulation and
fragmentation coefficients. This implies exponential convergence to equilibrium for
the linearized system, which can be extended to the nonlinear equations by means
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of techniques developed in the literature on kinetic equations, and particularly on
the Boltzmann equation [7, 5].

We observe that the improvement with respect to [6] comes from the use of a
different method. The main tool in [6] is an inequality between the free energy
(or entropy) H and its production rate D in the spirit of the ones available for
the Boltzmann equation [3]. As pointed out in [6], an inequality like H ≤ CD for
some constant C > 0, which would directly imply an exponential convergence to
equilibrium, is roughly analogous to a functional log-Sobolev inequality, which is
known not to hold for a measure with an exponential tail. Since this is the case
for the stationary solutions of the Becker-Döring equation, it is believed (though,
to our knowledge, not proved) that this inequality does not hold in general for this
equation; hence, the following weaker inequality (this is, weaker for small H) is
proved in [6]:

H

| logH |2 ≤ CD,

implying a convergence like exp(−Ct1/3). This obstacle has a parallel in the Boltz-
mann equation, for which the corresponding inequality (known as Cercignani’s
conjecture) has been proved not to hold in general, and can be substituted by
inequalities like H1+ǫ ≤ CD for ǫ > 0 (we refer to the recent review [3] for the
history of the conjecture and a detailed bibliography). However, just as for the
space homogeneous [7] and the full Boltzmann equation [5] this can be comple-
mented by the study of the linearized equation in order to show full exponential
convergence. By following a parallel reasoning for the Becker-Döring system we
can upgrade the convergence rate to exponential.

Hence, our analysis is built around a study of the linearized Becker-Döring
equation, which is new to our knowledge. We prove here the existence of a positive
spectral gap of the linearized operatorL around an equilibrium (Qi)i≥1, in different
spaces:

(1) We provide first a spectral description of L in a Hilbert space setting.
Namely, we shall investigate the spectral properties of the operator L in
the weighted space H = ℓ2(Q). This analysis is carried out with two (com-
plementary) techniques: on the one hand, under reasonable conditions on
the coefficients, one can show that L is self-adjoint in H and, resorting to
a compactness argument, the existence of a non constructive spectral gap
can be shown. On the other hand, using a discrete version of the weighted
Hardy’s inequality, the positivity of the spectral gap is completely charac-
terized in terms of necessary and sufficient conditions on the coefficients.
Moreover, and more importantly, quantitative estimates of this spectral
gap are given.

(2) Unfortunately, as it occurs classically for kinetic models, the Hilbert space
setting which provides good estimates for the linearized equation is usually
not suitable for the nonlinear equation. Thus, inspired by previous results
on Navier-Stokes and Boltzmann equation [4, 7], we derive the spectral
properties of the linearized operator in a larger weighted ℓ1 space. We use
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for this an abstract result allowing to enlarge the functional space in which
the exponential decay of a semigroup holds. This follows recent techniques
developed in [5], though we give a self-contained proof simplified in our
setting.

It is worth pointing out that our techniques parallel the historical development
of the study of the exponential decay of the homogeneous Boltzmann equation.
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Dämpfen, Ann. Phys. 416(8) (1935), 719–752.

[3] L. Desvillettes, C. Mouhot and C. Villani, Celebrating Cercignani’s conjecture for the Boltz-
mann equation, Kinetic and Related Models 4(1) (2011), 277–294.

[4] T. Gallay and C. E. Wayne. Invariant manifolds and the long-time asymptotics of the
Navier-Stokes and vorticity equations on R2, Archive for Rational Mechanics and Analysis
163(3) (2001), 209–258.

[5] M. P. Gualdani, S. Mischler and C. Mouhot, Factorization for non-symmetric operators and
exponential H-theorem, arXiv preprint 1006.5523, June 2010.

[6] P. E. Jabin and B. Niethammer. On the rate of convergence to equilibrium in the Becker-
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On time splitting for NLS in the semiclassical limit

Rémi Carles

Fourier time splitting methods for the nonlinear Schrödinger equation

(1) i∂tu+
1

2
∆u = f

(
|u|2
)
u, t > 0, x ∈ Rd,

with u : [0, T ]×Rd → C, and f : R+ → R, consist in solving alternatively

(2) i∂tu+
1

2
∆u = 0,

and

(3) i∂tu = f
(
|u|2
)
u.

Thanks to the Fourier transform, (2) is solved explicitly, and since the ordi-
nary differential equation (3) turns out to be linear (after one has remarked that
∂t(|u|2) = 0, since f is real-valued), an explicit formula is available as well. De-
noting by Xt the flow associated to (2), and by Y t the flow associated to (3), Lie
splitting method consists in considering Z∆t

L = Y ∆t ◦X∆t or Z∆t
L = X∆t ◦ Y ∆t.

Higher order Fourier time splitting methods can be considered on the same basis,
such as Strang splitting, Z∆t

S = X∆t/2 ◦ Y ∆t ◦ X∆t/2 for instance. The conver-
gence of such methods as the time step ∆t goes to zero has been established in
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[2] (d 6 2) and [6] (d = 3). Typically, one has the following result in the cubic
defocusing case f(|u|2)u = |u|2u. For u0 ∈ H2(Rd) and all T > 0, ∃C, h0 such as
if ∆t ∈]0, h0], ∀n ∈ N with n∆t ∈ [0, T ],

(4)
∥∥∥
(
Z∆t
L

)n
u0 − u(n∆t)

∥∥∥
L2

6 C (m2, T )∆t,

with mj = max
06t6T

‖u(t)‖Hj(Rd).

In the semiclassical case

(5) iε∂tu
ε +

ε2

2
∆uε = f

(
|uε|2

)
uε, ε→ 0,

considered in numerical experiments in [1], and motivated by Physics (superfluids,
Bose–Einstein condensation), the above error estimate becomes irrelevant. Typi-
cally, consider WKB type initial data,

(6) uε(0, x) = a0(x)e
iφ0(x)/ε,

with a0 a smooth complex-valued function, and φ0 a smooth real-valued function.
It is easy to see that, even in the case φ0 = 0, the scaling of (5) forces the presence
of rapid oscillations in uε, which is ε-oscillatory. Therefore, in (4), the factor m2

behaves like ε−2 as ε → 0, and (4) becomes rather unsatisfactory. To overcome
this issue, the idea is that the splitting scheme preserves the WKB form (6), in the
following sense: at least for some time, the numerical solution, at time tn = n∆t,
is of the form

(7) uεn(x) = aεn(x)e
iφε

n/ε,

where aεn and φεn must be expected to depend on ε, but remain bounded in Sobolev
spaces uniformly in ε ∈ (0, 1]. A similar property holds for the exact solution uε:
seeking uε = aεeiφ

ε/ε, one is led to considering the system

(8)





∂tφ
ε +

1

2
|∇φε|2 = −f

(
|aε|2

)
,

∂ta
ε +∇φε · ∇aε + 1

2
aε∆φε = i

ε

2
∆aε.

Letting ε = 0 in (8), and considering (v = ∇φ, a) as a new unknown, one recovers
the compressible Euler equation with pressure law related to f , in its symmetric
form. For that reason, we must consider time for which the solution to

(9)

{
∂tv + v · ∇v +∇f (ρ) , v|t=0 = ∇φ0,
∂tρ+ div(ρv) = 0, ρ|t=0 = |a0|2,

remains smooth. Then the time splitting scheme applied to (5) preserves the form
(7), and amounts to doing time splitting on (8). Unfortunately, by this remark,
we see that one has to face a loss of regularity issue, which brings us to make the
following assumption:

Assumption 1. The nonlinearity f is of the form f(ρ) = K ∗ ρ, where the kernel
K is such that its Fourier transform satisfies:
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• If d 6 2,

sup
ξ∈Rd

(1 + |ξ|2)|K̂(ξ)| <∞.

• If d > 3,

sup
ξ∈Rd

|ξ|2|K̂(ξ)| <∞.

Typically, this includes the case of Schrödinger-Poisson system if d > 3, where
f(ρ) is given by the Poisson equation

∆f = λρ, f,∇f → 0 as |x| → ∞,

with λ ∈ R. Our main result is he following.

Theorem 2. Suppose that d > 1, and that f satisfies Assumption 1. Let (φ0, a0) ∈
L∞(Rd) ×Hs(Rd) with s > d/2 + 2, and such that ∇φ0 ∈ Hs+1(Rd). Let T > 0
be such that the solution to (9) satisfies (v, ρ) ∈ C([0, T ];Hs+1 ×Hs). Consider
uε = Stεu

ε
0 solution to (5) and uε0 given by (6). There exist ε0 > 0 and C, c0

independent of ε ∈ (0, ε0] such that for all ∆t ∈ (0, c0], for all n ∈ N such that
tn = n∆t ∈ [0, T ], the following holds:
1. There exist φε and aε with

sup
t∈[0,T ]

(
‖aε(t)‖Hs(Rd) + ‖∇φε(t)‖Hs+1(Rd) + ‖φε(t)‖L∞(Rd)

)
6 C, ∀ε ∈ (0, ε0],

such that uε(t, x) = aε(t, x)eiφ
ε(t,x)/ε for all (t, x) ∈ [0, T ]×Rd.

2. There exist φεn and aεn with

‖aεn‖Hs(Rd) + ‖∇φεn‖Hs+1(Rd) + ‖φεn‖L∞(Rd) 6 C, ∀ε ∈ (0, ε0],

such that (Z∆t
ε )n

(
a0e

iφ0/ε
)
= aεne

iφn/ε, and the following error estimate holds:

‖aεn − aε(tn)‖Hs−1 + ‖∇φεn −∇φε(tn)‖Hs + ‖φεn − φε(tn)‖L∞ 6 C∆t.

Note that in the above result, the phase/amplitude representation of the exact
solution uε and the numerical solution is not unique. This result shows in par-
ticular that the splitting solution remains bounded in L∞, uniformly in ε, in the
WKB regime. Also, this result shows that it is possible to approximate the wave
function uε provided that ∆t = o(ε), and to approximate quadratic observables
provided that ∆t = o(1): the time step can be chosen independent of ε ∈ (0, 1],
which agrees with the numerical observations made in [1].

The proof of this result then relies on a general strategy used in [5], a general
local error formula for Lie splitting scheme derived in [4], and on various estimates.
The details are available in [3].
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Flock solutions for kinetic models: Spatial Shape and Stability

José A. Carrillo

Self-organization and pattern formation are ubiquitous in nature and science,
ranging from animal aggregation and biological systems to self-assembly of nano-
particles. The intense research during the last two decades has focused on both
individual-based systems and continuum equations. One of the essential features
in these models is the non-zero characteristic speed of the individual agents, which
has been modelled in different ways. The speed can be assumed to be constant
with a direction based on the averages of the neighbours or to be driven by random
noise. On the other hand, a large class of models consist of self-propelled particles
powered by biological or chemical mechanisms with friction forces, resulting in a
preferred characteristic speed. In general, the particles with non-zero equilibrium
speed do not form any recognizable patterns, and interactions within the group
have to be included to generate interesting spatial configurations. Most of these
interaction forces have been taken into account in the combination of three effects:
alignment, repulsion, and attraction; also called the “first principles of swarm-
ing”. The basic mechanisms account for collisional avoidance and comfort regions
(repulsion), grouping and socialization (attraction), and mimetic synchronization
(alignment).

In the talk, we focused on the cases with velocity-independent interactions.
More precisely, by introducing a pairwise symmetric interaction potential W (x) =
U(|x|), we consider the two-dimensional model

dxi
dt

= vi ,

dvi
dt

= αvi − βvi|vi|2 −
∑

j 6=i
∇W (xi − xj) ,

(1)
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where xi, vi ∈ R
2, i = 1, . . . , N are the positions and velocities of the individual

particles and α, β are effective values for self-propulsion and friction forces.
For this relatively simple system, a variety of patterns are observed, for instance

coherent moving flocks and rotating mills. Delta rings, uniform distribution on a
circle, were studied thoroughly for power-law like potentials, we refer to [7, 2, 3,
4, 1] for details. While the stability and bifurcation of the ring solutions can be
investigated by perturbations methods because of their explicit uniform particle
representations on a circle, there are few studies on the more prevalent compact
steady solutions, like flocks or mills. The reason lies in the difficulties to solve
some complicated integro-differential equations for most of the popular choices of
the potential W at the continuum level.

A flock solution of the particle model (1) is a spatial configuration x̂ with
zero net interaction force on every particle, that translates at a uniform velocity

m0 ∈ R2 with |m0| =
√

α
β , hence (xi(t), vi(t)) = (x̂i− tm0,m0). We note, that the

spatial configuration x̂ is a stationary state to the first-order interacting particle
system

(2)
dxi
dt

= −
∑

j 6=i
∇W (xi − xj) .

The continuum description level of (1) leads to a Vlasov like equation obtained
as the mean field limit of the particle system (1)

(3)
∂f

∂t
+ v · ∇xf + divv[(α− β|v|2)vf)]− divv[(∇xU ∗ ρ)f ] = 0,

where

ρ(t, x) =

∫

R2

f(t, x, v) dv .

A flock solution is a particular weak solution to (3) of the form ρ̄(x−m0t)δ(v−m0)
with |m0|2 = α

β and ρ̄ stationary solution of the aggregation equation, i.e., densities

satisfying
∇W ∗ ρ̄ = 0 on the support of ρ̄ .

The aggregation equation is given by the mean field limit of (2) given by
{
∂ρ
∂t + div (ρu) = 0

u = −∇W ∗ ρ
The aggregation equation has a natural associated Liapunov functional defined by

E[ρ] =
1

2

∫

R2

∫

R2

W (x− y) ρ(x) ρ(y) dx dy .

The first result presented in this talk concerns local minimizers of this interaction
energy functional. They are the candidates to be the long time asymptotics of the
aggregation equation. We showed in [3] that the dimensionality of the support of
local minimizers of the interaction energy E[ρ] depends on the repulsion at the
origin of the potential. If the potential is essentially C2 smooth at the origin,
numerical simulations show that there is concentration on points. We show that
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the dimension of the support has to be zero if of integer value for smooth potentials.
For more singular potentials, we prove a bound from below on the Hausdorff
dimension of the support. More precisely, if the potential behaves like the power
−|x|b/b at the origin, with 2−d ≤ b < 2, d ≥ 2, then the dimension of the support
of local minimizers is larger or equal than 2 − b. Therefore, as the potential gets
more and more repulsive at the origin the support of the minimizers gets larger
and larger in dimension.

The second result presented in the talk is the somehow unexpected deep relation
between the linear stability of the flock spatial configuration as steady state for the
first-order particle swarming model (2) and the nonlinear stability of the family of
associated flock solutions for the particle second-order swarming model (1). The
first connection was already found in the linear stability analysis around flock
solutions in [1]. There the authors showed that the linearization of (2) around the
equilibrium state x̂ has a positive eigenvalue if and only if the linearization of (1)
around the steady flock solution in the co-moving frame has an eigenvalue with
positive real part. Moreover, they show that if the equilibrium state x̂ is linearly
stable for (2), then the associated flock solution is always linearly unstable due to
the presence of a generalized eigenvector associated to the zero eigenvalue of the
linearization of the flock solution in the co-moving frame due to symmetries.

The second connection is even deeper, see [6] for details. Assume that the steady
state x̂ of (2) is linearly asymptotically stable except the obvious symmetries:
translations and rotations. Then the family of flock solutions associated to x̂ is
asymptotically stable for the dynamics of (1). Here, the asymptotic stability of the
family of flock solutions means that any small enough perturbation in (x, v)-space
at any time t0 will, under the dynamics of the system (1), relax towards (likely)
another flock solution in the family at an exponential rate as t→ ∞. Let us finally
emphasize that the most rigorous way of stating our main theorem uses advanced
concepts of dynamical systems. Our main theorem can be rephrased as follows:
the family of flock solutions to (1) associated to a linearly (except symmetries)
asymptotically stable steady state of (2) forms a normally hyperbolic invariant
manifold for the system (1) with an empty unstable manifold.
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Collective dynamics and self-organization

Pierre Degond

(joint work with E. Carlen, A. Frouvelle, J. G. Liu, S. Motsch, B. Wennberg)

Collective dynamics is observed in systems of a large number of agents moving
coherently and forming swarms, flocks, schools, crowds, etc. The cohesion be-
tween the agents is maintained by interactions between neighboring agents, such
as attraction or alignment. The cohesive interactions are local and the group does
not have a definitive leadership. In spite of the local character of the interactions,
these systems often exhibit large-scale structures, with time and length scales
much larger than the typical agents’ interaction scales. This is ’self-organization’
or ’emergence’ [5].

Systems of a large number of interacting agents (or particles) can be described
with various level of details. The models that provide the ultimate level of details
are the ’Individual-Based Models (IBM)’. A first level of coarse-graining consists in
using a statistical description of the system, i.e. replacing the perfect knowledge
of each agent’s position and state by a probabilistic description. The resulting
models are termed ’Kinetic Models’ (KM). They can be derived under a statistical
independence assumption called ’propagation of chaos’. The ultimate level of
coarse-graining is to reduce the system description to a few macroscopic quantities
such as density, mean velocity, order parameter, etc, as functions of position and
time. The associated models are called ’Continuum models’ (CM).

The study of self-organization challenges kinetic theory in several ways. For in-
stance, there are questions about the validity of the propagation of chaos in such
systems [1, 2]. Another question is about the passage from KM to CM, which
in classical physics systems relies on conservations (conservation of mass, momen-
tum, energy etc.). Biological or social systems do not exhibit simple conservation
relations. In [4], we have shown how to derive CM when conservation relations
are lacking. Finally, self-organization is intimately linked to phase transitions and
hysteresis. Indeed, the same system in different conditions may exhibit different
states of organization. We refer the interested reader to the review [3] for a math-
ematical study of phase transitions in self-propelled particle systems, as well as
references therein.
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Sharp asymptotics for the sub-critical Keller-Segel model

Jean Dolbeault

The Keller-Segel model describes aggregation phenomena of amoebae in biol-
ogy and is used more generally for the description of collective behaviours. In
the two-dimensional parabolic-elliptic case, this model has the peculiarity that a
simple parameter, the mass, allows to distinguish a diffusion dominated regime
from another, super-critical one in which finite time blow-up occurs. In the sub-
critical regime, solutions develop a self-similar behaviour for large times which can
be described accurately with an appropriate linearization of the model. Better,
optimal convergence rates towards the self-similar regime can be established using
a relative entropy functional, also called free energy functional.

In a series of papers written with J. Campos, sharp asymptotics for the sub-
critical Keller-Segel model have been obtained, based on symmetrization tech-
niques, a functional setting adapted to diffusions with mean field terms, the spec-
tral analysis of the linearized problem and Duhamel type estimates. Noticeably,
the linearized (non-local) operator associated with the Keller-Segel model is self-
adjoint when the norm is defined by the quadratic form obtained by expanding the
solution around a minimizer of the free energy, written in self-similar variables.
The component along the subspace associated with the mass parameter has to be
discarded by some appropriately chosen orthogonality condition. The two lowest
positive eigenvalues are independent of the mass of the solution as long as they
does not exceed the critical value, 8 π, when the model is properly adimensional-
ized. They can be interpreted in terms of invariances (translations and dilations)
associated with self-similar solutions in the original variables. The underlying
functional framework is dictated by a sub-critical logarithmic Hardy-Littlewood-
Sobolev inequality, and has a dual counterpart, an inequality of Onofri type on the
two-dimensional Euclidean space. Interesting results concerning uniqueness results
for weak solutions have been recently obtained by F. Giani Egaña and S. Mischler
using a technique of enlargement of the functional space for the semigroup spectral
gap.

Some of these ideas have been used in a recent paper, written in collaboration
with P. Markowich and G. Jankowiak, which is devoted to some crowd motion and
herding models and related with models with prevention of overcrowding used for
chemotaxis. In an ongoing work, G. Jankowiak is studying the stability of the
self-similar solutions of the parabolic-parabolic Keller-Segel model.
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Chaos and Entropic Chaos in Kac’s Model Without High Moments

Amit Einav

(joint work with Kleber Carraptoso)

Kac model, proposed in 1956 by Marc Kac (see [8]), is a many body stochastic
model from which, under certain conditions, a one dimensional caricature of the
Boltzmann equation arises as a mean field limit.
In his model Kac considered N indistinguishable particles, with one dimensional
velocities, constrained to the energy sphere SN−1(

√
N), which we will term as

’Kac’s sphere’. The evolution equation (or ’master equation’) describing the evo-
lution in time of the distribution function of the ensemble is:

(1)
∂

∂t
FN (v1, . . . , vN ) = −N(I −Q)FN (v1, . . . , vN ),

where the gain term, Q, is given by

QF (v1, . . . , vN ) =

∑
i<j

πN(N − 1)

∫ 2π

0

F (v1, . . . , vi(θ), . . . , vj(θ), . . . , vN ) dθ,

with

(2)
vi(θ) = vi cos(θ) + vj sin(θ),

vj(θ) = −vi sin(θ) + vj cos(θ).

Motivated by Boltzmann’s ’molecular chaos’ assumption, Kac defined the concept
of chaoticity: A family of distribution functions on Kac’s sphere is said to be
f−chaotic, if there exists a probability density on R, f , such that for any finite k
the k−th marginal of FN , Πk(FN ), satisfies

(3) lim
N→∞

Πk(FN ) = f⊗k,

where the limit is in the weak topology induced by bounded continuous functions.
Using a beautiful combinatorial argument, Kac showed that the property of

chaoticity propagates in time under (1). He showed that the solution FN (t) is
ft−chaotic, and ft satisfies the following Boltzmann-like equation:

(4)
∂f

∂t
(v, t) =

1

π

∫

R

∫ 2π

0

(f (v(θ)) f (v∗(θ)) − f (v) f (v∗)) dv∗dθ,

with initial data f0, when FN (0) is f0−chaotic, and v(θ), v∗(θ) are defined as in
(2).

The concept of chaoticity, and the newer and more robust one of entropic
chaoticity, became a fundamental one in models of many particles. As such,
identifying states that are chaotic and investigating their properties became an
important part of the study of models that satisfy the propagation of chaos prop-
erty. On Kac’s sphere, due to the equivalence of ensembles principle, one can
expect that given a distribution function f on R, a simple way to generate a
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chaotic family is to define

(5) FN (v1, . . . , vN ) =
ΠNi=1f(vi)

ZN
(
f,
√
N
) ,

where ZN (f,
√
r) =

∫
SN−1(r)

ΠNi=1f(vi)dσr , with dσr the uniform probability mea-

sure on SN−1(r), is the so called normalisation function. Families of the form (5)
are called conditioned tensorisation of f , and were considered by Kac himself in
his paper [8]. However, Kac imposed many restrictions on f in order to show that

ZN (f,
√
r) is indeed concentrated around r =

√
N . This was extended in recent

work by Carlen, Carvalho, Le Roux, Loss and Villani (see [2]). In this seminal
paper, the authors proved the following:

Theorem 1. Let f be a distribution function on R such that f ∈ Lp (R) for some
p > 1,

∫
R
v2f(v)dv = 1 and

∫
R
v4f(v)dv < ∞. Then the family of conditioned

tensorisation of f is f−chaotic.

The key ingredient of the proof is an asymptotic approximation of ZN (f,
√
r),

proved by using a local central limit theorem. The fourth moment of f corresponds
to the deviation of the random variable V 2 from its mean, which gives rise to a
Gaussian concentration of the normalisation function. However, in showing the
chaoticity of conditioned tensorisation of f what matters is not the exponential
concentration about Kac’s sphere - but the fact that there is concentration about
it. This leads to the current investigation of conditioned tensorisation of f , where
f has moments of order 2α with 1 < α < 2.

The main result in the presented work, one that relies on a newly found Lévy
type local central limit theorem, allowing us to find a new asymptotic expression
to the normalisation function, is the following:

Theorem 2. Let f be a distribution function such that f ∈ Lp (R) for some p > 1,∫
R
v2f(v)dv = 1 and let

νf (v) =

∫ √
v

−√
v

y4f(y)dy.

Then if νf (v) ∼
v→∞

Cv2−α for some C > 0 and 1 < α < 2 the family of conditioned

tensorisation of f is f−chaotic.

There is much more to be said about chaoticity, entropic chaoticity, the relation
between Kac’s model and the trend to equilibrium in the Boltzmann equation and
the importance of conditioned tensorisation in that instance. The interested reader
is recommended to look at [1, 2, 3, 4, 5, 6, 7, 9] and [10].
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Dériv. Partielles, École Polytech., Palaiseau, 2001.
[2] E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and Chaos in

the Kac Model, Kinet. Relat. Models 3 (2010), no. 1, 85–122.



3334 Oberwolfach Report 57/2013

[3] K. Carrapatoso, Quantitative and Qualitative Kac’s Chaos on the Boltzmann Sphere,
http://arxiv.org/abs/1205.1241.

[4] A. Einav, On Villani’s Conjecture Concerning Entropy Production for the Kac Master
Equation, Kinet. Relat. Models 4 (2011), no. 2, 479–497.

[5] A. Einav, A Few Ways to Destroy Entropic Chaoticity on Kac’s Sphere, Commun. Math.
Sci 12 (2014), no. 1, 41–60.

[6] T. Goudon, S. Junca and G. Toscani, Fourier Based Distances and Berry-Esseen Like
Inequalities for Smooth Densities, Monatsh. Math. 135 (2002), no. 2, 115–136.

[7] M. Hauray and S. Mischler, On Kac’s Chaos and Related Problems, http://hal.archives-
ouvertes.fr/hal-00682782/.

[8] M. Kac, Foundations of Kinetic Theory, Proceedings of the Third Berkeley Symposium
on Mathematical Statistics and Probability, 1954-1955, vol. III, pp. 171–197; University of
California Press, Berkeley and Los Angeles, 1956.

[9] S. Mischler and C. Mouhot, Kac’s Program in Kinetic Theory, Invent. Math. 193 (2013),
no. 1, 1–147.

[10] C. Villani, Cercignani’s Conjecture is Sometimes True and Always Almost True, Comm.
Math. Phys. 234 (2003), no. 3, 455–490.

Entropy- and Duality Methods for Systems of Reaction-Diffusion
Equations

Klemens Fellner

(joint work with Jose A. Cañizo, Laurent Desvillettes, Evangelos Latos, Stefan
Rosenberger, Bao Q. Tang)

The talk presents recent advances in the existence theory (weak and classical) and
the large time-behaviour of systems of nonlinear reaction-diffusion equations by
applying entropy- and duality methods.

As just one application background the study of such system is motivated by
models of asymmetric stem cell division, where particular proteins (so-called cell-
fate determinants) are localised at the cell-cortex (i.e. the cell boundary) of only
one of the two daughter cells during mitosis and subsequently trigger differentia-
tion of only one daughter cell. In Drosophila, SOP stem cells provide a well-studied
biological model of asymmetric stem cell division, see e.g. [2, 3, 4]. First math-
ematical models describing the evolution and localisation of non-phosphorylated
and phosphorylated Lgl in SOP stem cells were presented in [5].

The following system (1) formulates a nonlinear mathematical core model,
which strongly simplifies the biological model by focussing only on the volume-
concentration u(x, t) ≥ 0 of the phosphorylated Lgl diffusing in the cytoplasm
(i.e. in the cell volume) Ω ⊂ RN and the surface-concentration v(x, t) ≥ 0 of
non-phosphorylated Lgl in the cell cortex diffusing on the sufficiently smooth cell-
boundary of Γ := ∂Ω with e.g. Γ ∈ C3. The interface conditions connecting these
two concentrations are a nonlinear Robin-type boundary condition for u(x, t) and
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a matching reversible reaction source term in the equation for v(x, t):

(1)





ut − δu∆u = 0, x ∈ Ω, t ≥ 0,

δu
∂u
∂ν = −α(kuuα − kvv

β), x ∈ Γ, t ≥ 0,

vt − δv∆Γv = β(kuu
α − kvv

β), x ∈ Γ, t ≥ 0,

u(0, x) = u0(x) ≥ 0, x ∈ Ω,

v(0, x) = v0(x) ≥ 0, x ∈ Γ.

Here, ∆ denotes the Laplace operator on Ω, ∆Γ the Laplace-Beltrami operator on
Γ, δu > 0 and δv ≥ 0 diffusion coefficients, α, β ≥ 1 stoichiometric coefficients and
u0(x) ≥ 0 and v0(x) ≥ 0 nonnegative initial concentrations.

The exchange of phosphorylated Lgl u(x, t) and non-phosphorylated Lgl v(x, t)
conserves the total mass of Lgl as quantified in the following conservation law (2):
(2)

0 < M = β

∫

Ω

u0(x)dx+α

∫

Γ

v0(x)dS = β

∫

Ω

u(t, x)dx+α

∫

Γ

v(t, x)dS, ∀t ≥ 0.

For system (1), global weak solutions (which for this system can also be boot-
strapped into classical solutions by standard techniques) are shown in [6] and a
so-called entropy entropy-dissipation estimate is derived, which entails exponential
convergence to equilibrium with explicitly computable constants and rates.

The basic idea of the entropy method consists in studying the large-time asymp-
totics of a dissipative PDEmodel by looking for a nonnegative Lyapunov functional
E(f) and its nonnegative dissipation

D(f) = − d

dt
E(f(t))

along the flow of the PDE model, which is well-behaved in the following sense:
firstly, all states with D(f) = 0, which also satisfy all the involved conservation
laws, identify a unique entropy-minimising equilibrium f∞, i.e.

D(f) = 0 and conservation laws ⇐⇒ f = f∞,

and secondly, there exists an entropy entropy-dissipation estimate of the form

D(f) ≥ Φ(E(f)− E(f∞)), Φ(x) ≥ 0, Φ(x) = 0 ⇐⇒ x = 0,

for some nonnegative function Φ.
In [6] an entropy entropy-dissipation estimate is derived for (1) with gen-

eral stoichiometric coefficients α, β ≥ 1 in terms of a linear function Φ(x) =
C(M,Ω,Γ, α, β)x, which entails via a Gronwall argument that the relative entropy
E(u, v)−E(u∞, v∞) ≥ C(‖u(t)−u∞‖L1(Ω)+‖v(t)−v∞‖L1(Γ)) decays exponentially
to zero. The proof of this entropy entropy-dissipation estimate extends previous
methods established in [7, 8, 9] using new ideas.

Biological realistic models certainly require larger systems compared to (1).
However, the existence of global solutions for general systems of nonlinear reaction-
diffusion equations poses still many open questions.
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This can be illustrated by the prototypical example of four diffusing species,
which react according to the mass-action kinetics A1 +A2 ⇋ A3 +A4, i.e.

(3)





∂ta1 − d1 ∆xa1 = a3 a4 − a1 a2,
∂ta2 − d2 ∆xa2 = a3 a4 − a1 a2,
∂ta3 − d3 ∆xa3 = a1 a2 − a3 a4,
∂ta4 − d4 ∆xa4 = a1 a2 − a3 a4,

together with the homogeneous Neumann boundary conditions.
It was proven by Goudon and Vasseur in [10] based on an intricate use of De

Giorgi’s method that whenever d1, d2, d3, d4 > 0, there exists a global smooth
solution for dimensions N = 1, 2, while in higher space dimensions the existence of
classical solutions constitutes an open problem, where the Hausdorff dimension of
possible singularities was characterised in [10]. The (technical) criticality of qua-
dratic nonlinearities was underlined by Caputo and Vasseur in [11], where smooth
solutions were shown to exist in any dimension for systems with a nonlinearity of
power law type which is strictly subquadratic.

Later, in [12] a duality argument in terms of entropy variables was used to show
in an elegant way the existence of global L2-weak solutions in any space dimension
also in cases where the nonnegative diffusion coefficients depend on x in such a
way that their sum is bounded below by a strictly positive constant.

In [13], an improvement of this duality methods allowed to show global classical
solutions in 2D of the prototypical system (3) in a quite much shorter and less
technical way than via De Giorgi’s method. The key lemma considers a dual
problem on a bounded domain Ω ⊂ R

N with ∂Ω ∈ C2+α for any T > 0,




∂tu−∆x(M(t, x)u) = 0 on ΩT ,

u(0, x) = u0(x) ∈ Lp(Ω) for x ∈ Ω,

∇xu · ν(x) = 0 on [0, T ]× ∂Ω,

with 0 < a ≤M(t, x) ≤ b <∞ for (t, x) ∈ ΩT .
Then, in 2D, there exists always an exponent p′ < 2 such that any weak solution

u satisfies (1/p+ 1/p′ = 1)

‖u‖Lp(ΩT ) ≤ (1 + bDa,b,p′)T
1/p ‖u0‖Lp(Ω), p ∈ (2,+∞),

for some constant Da,b,p′ .
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Local stability of Dirac masses in a kinetic model on a sphere

Amic Frouvelle

(joint work with Pierre Degond, Gaël Raoul)

We consider a kinetic version of a model of alignment of oriented particles:
two particles are chosen uniformly at random and collide, their new orientation
becoming their previous “mean” orientation.

More formally, for any “precollisional” orientations x∗ and x′∗, we are given a
jump kernel in the form of a probability measure K(·, x∗, x′∗) for the orientation of
the particles after the collision. We suppose that the orientations are unit vectors
in Rn, so we consider probability measures in S, the unit sphere of Rn. The
model we consider here is the midpoint model: when two colliding particles are
not initially antipodal, their final orientation is the middle of the shortest geodesic
(an arc of great circle) joining their initial orientations. That is to say

K(·, x∗, x′∗) = δ x∗+x′
∗

‖x∗+x′
∗‖

.

When these colliding particles are initially antipodal, we require the probability
measure K(·, x∗, x′∗) to be supported in the set of possible midpoints (the corre-
sponding “equator” S ∩ x∗⊥).

The kinetic model describes the probability measure ρ(t, ·) (on S) of finding a
particle with a given orientation at time t (we will write ρ instead of ρ(t, ·) when
no confusion is possible). It evolves in time according to the following partial
differential equation:

(1) ∂tρ(x) =

∫

S×S

K(x, x∗, x
′
∗) dρ(x∗) dρ(x

′
∗)− ρ(x).
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When the space variable is R
n instead of S, the analogous midpoint model,

given by K(·, x∗, x′∗) = δ x∗+x′
∗

2

, is easier to study, because equation (1) conserves

the mass x0 =
∫
x dρ(x). We can then easily compute the evolution of the second

moment m2 =
∫
|x − x0|2 dρ(x), and get d

dtm2 = − 1
2m2. Therefore, since the

Wasserstein distance W2 between ρ and δx0 satisfies W2(ρ, δx0)
2 = m2, we get

that ρ converges towards a fixed Dirac mass at exponential rate 1
4 .

The aim of this talk is to present a method to circumvent the lack of conservation
of mass when the space variable is the unit sphere S. The main theorem is that we
still get convergence to a fixed Dirac mass, with the same (optimal) exponential
rate of 1

4 , provided the initial condition is sufficiently close to a Dirac mass (in
Wasserstein distance):

Theorem 1. There exist two positive constants C1, η such that for any solu-
tion ρ ∈ C(R+,P(S)) of (1) with initial condition ρ0 satisfying W2(ρ0, δx0) < η
for some x0 ∈ S, there exists x∞ ∈ S such that

W2(ρt, δx∞) 6 C1W2(ρ0, δx0) e
− 1

4 t.

The talk will consist in presenting the main ingredients of the proof of this
theorem. The first consideration is that we can define an analogous of the second
moment under the form of the following energy term:

E(ρ) =

∫

S×S

d(x, y)2 dρ(x) dρ(y),

where d(x, y) is the geodesic distance on the sphere. This energy would indeed
be equal to 2m2 if the space variable was Rn, but its definition does not use the
notion of center of mass. First of all, there is a link between this energy and the
Wasserstein distance W2 on P(S):

Lemma 2. If ρ ∈ P(S), we have for any x ∈ S,

E(ρ) 6 4W2(ρ, δx)
2,

and there exists x̄ ∈ S such that

W2(ρ, δx̄)
2
6 E(ρ).

In that case, for any κ > 0, we have
∫

{x∈S; d(x,x̄)>κ}
dρ(x) 6

1

κ2
E(ρ), and

∫

{x∈S; d(x,x̄)>κ}
d(x, x̄) dρ(x) 6

1

κ
E(ρ).

Then we can compute the time derivative of the energy E(ρ). We obtain

(2)
1

2

d

dt
E(ρ) =

∫

S×S×S

α(x∗, x
′
∗, y) dρ(x∗) dρ(x

′
∗) dρ(y).

where the function α is defined by

α(x∗, x
′
∗, y) =

∫

S

[
d(x, y)2 − d(x∗, y)2 + d(x′∗, y)

2

2

]
K(x, x∗, x

′
∗) dx.



Classical and Quantum Mechanical Models of Many-Particle Systems 3339

The terms inside the brackets corresponds to three terms of the Apollonius formula,
and would be equal to − 1

4d(x∗, x
′
∗) in the case of Rn instead of S, when x is

the midpoint of [x∗, x′∗]. Therefore the main ingredients of this study are two
estimations of the error in Apollonius formula on the sphere (one local and one
global):

Lemma 3. For any x∗, x′∗, y ∈ S, we have

α(x∗, x
′
∗, y) 6 −1

4
d(x∗, x

′
∗)

2 + 2 d(x∗, x
′
∗)min

(
d(x∗, y), d(x

′
∗, y)

)
.

For any κ1 <
2π
3 , there exists a positive constant C1 such that for any κ 6 κ1, for

any x∗, x′∗, y ∈ S such that max (d(x∗, y), d(x′∗, y), d(x∗, x
′
∗)) 6 κ, we have

α(x∗, x
′
∗, y) 6 −1

4
d(x∗, x

′
∗)

2 + C1 κ
2 d(x∗, x

′
∗)

2.

Together with a splitting of the triple integral in (2) following regions provided
by Lemma 2, these two estimates allow us to obtain the local decay of the energy
with exponential rate 1

2 , provided it is initially sufficiently small. We then control
the displacement of x̄ provided by Lemma 2 by the same kind of arguments.

A possible extension of Theorem 1 is to replace the sphere by a more general
Riemannian manifold. We obtain the same result, provided we have uniform
bounds on the radius of injectivity and the sectional curvature of the manifold.
Indeed, these bounds allow to use a corollary of Rauch comparison theorem and
we obtain the same kind of estimates in the error of Apollonius formula as we have
on the unit sphere.

We are also able to study more general models where the particles do not jump
exactly at the middle of the geodesic. Under a simple contraction assumption (for
the mean square distance to the possible midpoints), we are able to prove the same
result of convergence, at the price of a lower exponential rate.

Convergence rates for Boltzmann equation solutions for Coulombic
interactions in the grazing collision limit to the Landau equation

Irene M. Gamba

(joint work with Jeffrey R. Haack and Chenglong Zhang)

The homogeneous elastic Boltzmann collision operator in the Coulombic regime is
given by

Qb(f, f)(v, t) =

∫ ∫

v∗∈R3×σ∈S2

(f(v′∗)f(v
′)− f(v∗)f(v)) |u|−3bδε(cos θ)dσdv∗(1)

v′ = v +
1

2
(|u|σ − u), v′∗ = v∗ −

1

2
(|u|σ − u), u = v − v∗

where cos θ = û · σ, σ = û′ is the scattering direction and bδε(cos θ) defined below.
It is known that the homogeneous Landau operator, given by

QL(f, f) = ∇v ·
(∫

R3

|u|λ+2(I − u⊗ u

|u|2 )(f(v∗)∇vf(v)− f(v)(∇vf)(v∗))dv∗

)
,
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can be approximated by grazing collision ε-limit on the angular scattering cross
section bδε. In this lecture we address the rate of such approximation, varying with
respect to the parameter δ determining the order of an angular singularity in the
scattering cross section.

We first observe that both operators can be written in Fourier space by weighted
convolutions

Q̂(ζ) =
1

(2π)3/2

∫

R3

F{f(v)f(v − u)}(ζ)G(u, ζ)du

=
1

(2π)3/2

∫

R3

f̂(ξ)f̂ (ξ − ζ)Ĝ(ξ, ζ)du,

where the weights for the Boltzmann and Landau operators are, respectively,

Gb(u, ζ) = |u|λ
∫

S2

bδε(cos θ)
(
e−i

ζ
2 ·(−u+|u|σ) − 1

)
dσ and

GL(u, ζ) = |u|λ
(
4i(u · ζ)− |u|2|ζ⊥|2

)
.

Under the assumption of some regularity and decay conditions of the solution
to the Boltzmann equation [2], we analytically study the ε-convergence rate of
the Fourier transformed Boltzmann collision operator to the Fourier transformed
Landau operator in the grazing collisions limit, for a δ-parameter family of singular
angular scattering cross section models. The precise statement is as follows.

Let the angular scattering cross section bδε(cos θ) satisfy, for x = sin(θ/2),

bδε(cos θ) sin θdθ = − 1

2πHδ(sin(ε/2))
bδ(cos θ) sin θ 1θ≥ε dθ

= − 4

2πHδ(sin(ε/2))

H ′
δ(x)

x2
1x≥sin(ε/2) dx.

where the functions bδ(cos θ) are Hδ determined each other and must satisfy

lim
ε→0

1

Hδ(sin(ε/2))
= 0 and |Hδ(1)| ≤ ∞ with 0 ≤ δ ≤ 1 .

When such functions Hδ(x) take the form

H0(x) = log x , for δ = 0 and Hδ(x) = −x
−δ

δ
, for 0 < δ ≤ 1 ,

the corresponding bδ(cos θ) is then calculated to yield

b0(cos θ) =
1

sin4 θ2
, for δ = 0 and bδ(cos θ) =

1

sin4+δ θ2
for 0 < δ ≤ 1 ,

yielding the well known scattering angular singularity of Rutherford potentials
(case δ = 0) and beyond.
Remark One may view theseHδ functions as primitives of the angular integration
of suitable singular cross section bδ(cos θ) for grazing collisions, since
∫ π

ε

bδ(cos θ) sin2(θ/2) sin θdθ = 4

∫ 1

sin(ε/2)

H ′
δ(x)dx = 4(H(1)−Hδ(sin(ε/2))) .
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With these angular δ-singularity condition, the total collision cross section
bδε(cos θ) satisfies the grazing collision limit condition given by the ε-asymptotic
behavior

• limε→0 2π
∫ π
0
bδε(cos θ) sin

2(θ/2) sin θdθ = Λ0 <∞, Λ0 > 0

• 2π
∫ π
0
bδε(cos θ)(sin(θ/2))

2+k sin θdθ→
ε→0

0 for k > 0 .

• ∀θ0 > 0, bδε(cos(θ))→ε→00 uniformly on θ > θ0.

Under the above conditions the following theorem holds.

Theorem 1. Assume that any solution f δε (v, t) of (1) satisfies, uniformly in
time t,

(2) |F{f δε (v)f δε (v − u)}(ζ)| ≤ A(ζ)

1 + |u|3+a , for a > 0

with A uniformly bounded by k(1 + |ζ|)−3, with k constant.
Then, the rate of convergence of the Boltzmann collision operator with grazing

collisions to the Landau collision operator is given by

‖ ∂
∂t
f̂ δε (ζ, t) − Q̂L[f

δ
ε ]‖L∞ = ‖Q̂bδε [f

δ
ε ]− Q̂L[f

δ
ε ]‖L∞

≤ O

(∣∣1 + (| log(sin(ε/2))| − 1) 1{δ=1}
∣∣

|Hδ(sin(ε/2))|

)
→ε→0 0 .

Remarks Assumption (2) relies on the existence of solutions f δε that have at least
third order derivatives in v as well as strong decay in v.

Our results show that the angular singularity which corresponds to the Ruther-
ford scattering cross section (δ = 0) is the critical singularity for grazing collision
limits for which the Boltzmann operator can approximate the Landau and that
ε-convergence rate to the Landau operator is faster for any other value 0 < δ ≤ 1.

To finalize, we presented the formulation of a conservative Spectral-Lagrangian
method for computation of the Boltzmann collision operator with anisotropic scat-
tering cross-sections [2]. The method is an extension of the one developed in [3, 4],
that uses the weak form of the collision operator to represent the collision opera-
tor as a weighted convolution in Fourier space. The scheme for the homogeneous
variable hard potentials case is proven to converge to Maxwellians states and er-
ror estimates are provided [1]. The numerical method is tested by computing the
collision operator with a Rutherford scattering cross section when δ = 0 as well as
for δ = 1 and ε-short range cut-off Coulomb potential interaction with ε = 10−4.
Results are compared with the numerical solution of the Landau equation, which is
independent of both ε and δ. As predicted by the result in the Theorem above, the
case for grazing collisions with δ = 1 produces a better approximation to solutions
of the Landau equation with respect to δ = 0 (Rutherford case) when measured in
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time decay rate of the corresponding entropy functionals. However, the solutions
to the Boltzmann equation Rutherford scattering exhibits much faster decay to
equilibrium that the ones for the Landau equation. As a last example in collab-
oration with Chenglong Zhang [5], we applied the Lagrangian based conservative
spectral scheme to a multi-component plasma modeled by a system of Landau
equations, for a specific example of electro-neutral hydrogen system of electrons
and ions for non-isotropic initial states showing their relaxation to the stationary
states, conserving the total temperature of the system.
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Propagation of chaos for mean-field Vlasov equations.

Maxime Hauray

(joint work with Pierre-Emmanuel Jabin)

We study the evolution of N particles in dimension d, interacting via a in-
teraction force K. The position and speed of the i-th particle will be denoted
respectively by XN

i and V Ni , and we will also use the short-cut ZNi = (XN
i , V

N
i ).

The positions Xi belong to T
d (for simplicity, but this can be adapted to the case

of Rd) and the velocities Vi to Rd.
The evolution of the N particles is driven by the following system of N second

order ODEs

(1) ∀ i ≤ N, ẊN
i = V Ni , V̇ Ni = − 1

N

∑

j 6=i
K(XN

i −XN
j ).

We introduce the empirical measures on the position-velocity space:

µN (t) :=
1

N

N∑

i=1

δZi(t)
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When K(0) = 0, the empirical measures are exact weak solutions of the mean-field
Vlasov equation:

∂tf + v · ∂xf − ∂xE(t, x) · ∂vf = 0,(2)

E(t, x) = [K ∗ ρ(t)](x) =
∫
K(x− y)f(t, y, w) dydw.

It implies that the mean-field limit is equivalent to stability of measure solutions
around (strong) solution of equation (2).

A simple case: attractive or repulsive Vlasov-Poisson equation in di-
mension one. In that case, the interaction force is (we are on the torus).

(3) K(x) := −1

2
− x if x ∈

[
−1

2
, 0
)
,

1

2
− x if x ∈

(
0,

1

2

)
, 0 if x = 0,

and there is weak-strong stability principle [1]

Assume that ft is a solution of the Vlasov Poisson equation (2) with bounded
density ρt for any time t ≥ 0. Then for any global measure solution ν to the
same equation with finite first order moment in v, we have the following stability
estimate

∀t ∈ R
+, W1(ft, νt) ≤ ea(t)W1(f0, ν0), with a(t) :=

√
2 t+ 8

∫ t

0

‖ρs‖∞ ds,

where W1 denotes the 1 Monge-Kantorovitch-Wasserstein distance.

Mean-field and propagation of chaos around solutions f with bounded density,
are simple consequences of that weak-strong stability principle. Propagation of
entropic chaos (see [3, Definition 1.3] for a precise definition of that notion) can
also be proved, using the preservation of entropy by non-degenerate transport
equation.

Soft interaction in dimension three. By this, we understand a force satisfying

(4) ∃α < 1, ∃C > 0, ∀x ∈ R
d\{0}, |F (x)| ≤ C

|x|α , |∇F (x)| ≤ C

|x|α+1
.

In that case, we have the following result [2]

Theorem 1. (Mean-field limit) Assume that (4) is satisfied and let 0 < γ < 1.
Assume that f0 ∈ L∞(R6) has compact support and total mass one, and denote
by f the unique global, bounded, and compactly supported solution of the Vlasov
equation (2) (that statement is a standard result). Assume that the initial condition(
ZNi (0)

)
i≤N are such that for each N , there exists a global solution to the N particle

system (1), and that the initial empirical distribution µ0
N of the particles satisfies:

i) For a constant C∞ independent of N ,

sup
z∈R6

Nγµ0
N

(
B6

(
z,N−γ

6

))
≤ C∞, and ‖f0‖∞ ≤ C∞;

ii) For some R0 > 0, ∀N ∈ N, Suppµ0
N ⊂ B6(0, R0);
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iii) for some r ∈ (0, r∗) where r∗ := d−1
1+α ,

inf
i6=j

|(X0
i , V

0
i )− (X0

j , V
0
j )| ≥ N−γ(1+r)/6.

Then for any T > 0, there exist constants C0, C1 such that for N ≥ eC1T the
following estimate holds

(5) ∀t ∈ [0, T ], W1(µN (t), f(t)) ≤ eC0t
(
W1(µ0, f0) + 2N−γ

6

)
.

When α < 1, and that the initial position-velocity are i.i.d. with law f0, it can
be checked that the conditions i) and iii) are satisfied and with a probability going
to one in the limit N → ∞. This implies the propagation of chaos, for any finite
time.
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Semiclassical Computational Methods for Quantum Dynamics with
Band-crossings

Shi Jin

We develop semiclassical models and multiscale computational methods for quan-
tum dynamics with non-adiabatic effects. Applications of such methods include
surface hopping, Schrödinger equation with periodic potentials, elastic and electro-
magnetic waves with polarizations, and graphene. We use the Wigner transform
to derive these models. The key idea is to evolve the dynamics of the entire Wigner
matrices, which contain important non-adiabatic terms, not just the diagonal pro-
jections corresponding to the eigenstates of the Hamiltonians.

Regularity of the Boltzmann equation in convex domains

Chanwoo Kim

(joint work with Yan Guo, Daniela Tonon, Ariane Trescases)

The Boltzmann equation is the foundation of the kinetic theory for dilute collec-
tions of gas particles:

(1) ∂tF + v · ∇xF = Q(F, F ), (t, x, v) ∈ [0, T ]× Ω× R
3.

We denote a global Maxwellian µ(v) = e−|v|2/2, which is an equilibrium state of
the Boltzmann equation.

In many physical applications, the gas particles are contained in a bounded
domain Ω and the equation must be accompanied by boundary conditions. We
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denote the outward normal n(x). The basic types are following three boundary
conditions: On x ∈ ∂Ω and n(x) · v < 0

1. Specular reflection :

F (t, x, v) = F (t, x, Rxv), Rxv = v − 2(n(x) · v)n(x).
2. Bounce-back reflection : F (t, x, v) = F (t, x,−v).
3. Diffuse reflection :

F (t, x, v) = cµµ

∫

n(x)·u>0

F (t, x, u){n(x) · u}du,

for some constant cµ > 0.
Assume that ξ : R3 → R is smooth and convex

(2)
∑

i,j

∂i∂jξηiηj ≥ Cξ|η|2,

which defines a domain as Ω = {ξ(x) < 0}.
We introduce the kinetic distance, a distance toward the grazing set γ0, as

(3) α(x, v) := |v · ∇ξ(x)|2 − 2{v · ∇2ξ(x) · v}ξ(x).
On the other hand, we have ∂tα+ v · ∇xα ∼ |v|α unless ∇3ξ ≡ 0(e.g. Ω is a ball
or ellipsoid). Such |v| growth is indeed out of control in our analysis and hence we
introduce a strong decay factor e−L〈v〉t with L≫ξ 1. We are going to use e−L〈v〉tα
as a weight of our norm in the main theorem.

We denote by f , F = µ+
√
µf. We also denote 〈v〉 =

√
1 + |v|2.

Theorem. Assume Ω is convex, f0 ∈ C1, and the proper compatibility conditions
hold. We construct weighted C1 solution f in [0, T ] where the life span T =

T (||eζ|v|2f0||∞) with ζ > 0 as follows.
1. For the specular reflection, 1 < B < 3

2 , L≫ 1

||〈v〉−1e−L〈v〉tαB∂xf(t)||∞ + |||v|e−L〈v〉tαB− 1
2 ∂vf(t)||∞ + ||∂tf(t)||∞

≤ Ct

{
||αB− 1

2 ∂xf0||∞ + ||〈v〉2αB−1∂vf0||∞ + ||∂tf0||∞ + P (||eζ|v|2f0||∞)
}
.

2. For the bounce-back reflection, L≫ 1

||〈v〉−2e−L〈v〉tα∂xf(t)||∞ + |||v|〈v〉−2e−L〈v〉tα
1
2 ∂vf(t)||∞ + ||eζ|v|2∂tf(t)||∞

≤ Ct

{
||〈v〉∂xf0||∞ + ||∂vf0||∞ + P (||eζ|v|2∂tf0||∞) + P (||eζ|v|2f0||∞)

}
.

3. For the diffuse reflection, L≫ 1

||e−L〈v〉tα 1
2 ∂t,x,vf(t)||∞ ≤ Ct

{
||α 1

2 ∂t,x,vf0||∞ + P (||eζ|v|2f0||∞)
}
.

Here P is some polynomial.
For the diffuse reflection, we also established W 1,p solution (no weight) for

1 < p < 2 and e−L〈v〉tαB−weighted W 1,p solution (p−2
2p < B < p−1

2p , L ≫ 1) for
2 ≤ p <∞.
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Moreover we give sufficient conditions for the non-existence of second deriva-
tives up to the boundary.

Mainly there are three crucial ingredients of the proof. We denote the backward
trajectory [X(s; t, x, v), V (s; t, x, v)].

1. The geometric Velocity lemma ([1, 2]):
(4)

e−C|v||s1−s2|α(X(s1), V (s1)) ≤ α(X(s2), V (s2)) ≤ eC|v||s1−s2|α(X(s1), V (s1)).

2. We established the dynamical non-local to local estimate: For 1
2 < B < 3

2 and
|v| ∼ 1

(5)

∫ t

0

∫

u

e−|V (s)−u|2

|V (s)− u|
e−L〈v〉(t−s)

[α(X(s), u)]B
≤ O(

1

L
)

1

[α(x, v)]B−1/2
.

3. For the specular reflection, we established the following crucial estimates:

|∂xX(s)| ≤ Cξ
|v|e|v||t−s|√
α(x, v)

, |∂vX(s)| ≤ Cξ
e|v||t−s|

|v| ,

|∂xV (s)| ≤ Cξ
|v|3e|v||t−s|
α(x, v)

, |∂xV (s)| ≤ Cξ
|v|e|v||t−s|√
α(x, v)

.

(6)
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Wigner type methods for molecular quantum dynamics

Caroline Lasser

(joint work with Wolfgang Gaim, Johannes Keller)

The computation of expectation values for molecular quantum dynamics is numer-
ically challenging due to the high dimension d≫ 1 of the configuration space Rd.
Starting with the approach of [2], we derive a family of particle methods from the
semiclassical Egorov theorem,

eiHtεopε(a)e
−iHt/ε = opε(a ◦ Φt) +O(ε2), ε→ 0,

and the relation of Weyl quantized observables opε(a) to the Wigner function Wψ ,

〈ψ, opε(a)ψ〉L2(Rd) =

∫

R2d

a(z)Wψ(z)dz.

Thereby we reformulate previous results of M. Pulvirenti [1] in terms of ordinary
differential equations, which require higher order derivatives of the observable
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function a : R2d → R. We discuss the asymptotic accuracy of our approximations
with respect to the semiclassical parameter ε, their discretization in time and phase
space R2d and conclude by numerical experiments in up to d = 18 dimensions.
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Maxwellian intermediate asymptotics for visco-elastic hard spheres

Bertrand Lods

(joint work with Ricardo J. Alonso)

We are interested here in the long-time behavior of the solution to the free-cooling
Boltzmann equation for hard-spheres. Namely, we consider the Cauchy problem

(1) ∂τf(τ, w) = Qe(f, f)(τ, w), f(τ = 0, w) = f0(w)

where the initial datum f0 is a nonnegative velocity function. In such a description,
the gas is described by the density of particles f = f(τ, w) ≥ 0 with velocityw ∈ R

3

at time τ ≥ 0 while the collision operator Qe models the interactions of particles
by inelastic binary collisions. The inelasticity of the collision is measure by the
so-called coefficient of normal restitution e ∈ (0, 1]. We are mostly interested in
the case in which the coefficient of normal restitution is non constant and depends
solely on the impact velocity between particles. More precisely, if v and v⋆ denote
the velocities of two particles before collision, their respective velocities v′ and v′⋆
after collision are such that

(2)
(
(v′ − v′⋆) · n

)
= −

(
(v − v⋆) · n

)
e
(
|(v − v⋆) · n|

)

where the unitary vector n ∈ S2 determines the impact direction. For the coeffi-
cient of normal restitution we shall mainly assume that

(i) The mapping r ∈ R+ 7→ e(r) ∈ (0, 1] is absolutely continuous and non-
increasing.

(ii) The mapping r ∈ R
+ 7→ ϑe(r) := r e(r) is strictly increasing.

(iii) limr→∞ e(r) = e0 ∈ [0, 1).
(iv) There exists γ > 0 and a > 0 such that

(3) e(r) ≃ 1− arγ as r ≃ 0.

Such assumptions are typically met by all the existing physical models in the lit-
erature and cover in particular the relevant model of visco-elastic hard spheres
[3]. Under such assumptions on the coefficient of normal restitution, the homoge-
neous Boltzmann equation for granular particles (1) is well-posed and, if the initial
datum f0 ≥ 0 satisfies

(4)

∫

R3

f0(w)dw = 1,

∫

R3

f0(w)wdw = 0 and

∫

R3

f0(w)|w|3dw <∞



3348 Oberwolfach Report 57/2013

then existence and uniqueness of a nonnegative solution f(τ, w) to (1) has been
established in [5] and the solution f(τ, w) satisfies (4) for any τ > 0. The properties
of this model depend heavily on the behavior at zero and infinity of the coefficient
of normal restitution. Precisely, denoting by

E(τ) =
∫

R3

f(τ, w)|w|2dw

the temperature of the solution f(τ) to (1), the behavior of E(τ) for large time
has been established rigorously in [1, 2, 5] and one has

E(τ) ∝ (1 + τ)
− 2

1+γ γ ≥ 0

from which one deduces easily that

f(τ, ·) −→ δ0(·) as τ → ∞
where the converge is meant in the space of probability measures on R3 endowed
with the weak-topology [4, 5, 1]. Therefore, it is expected that the solution
f(τ, w) will converge first towards some intermediate asymptotic state F (τ, w)
with F (τ, w) → δ0 as τ → ∞.

For constant coefficient of normal restitution e(r) = α ∈ (0, 1) such state is
given by a self-similar solution

Fα(τ, w) = K(τ)Gα
(
V (τ)w

)

for some suitable scaling functions K(τ) and V (τ) independent of α. The profile
Gα(·) is precisely a steady state distribution of some rescaled Boltzmann equation
and is known as the homogeneous cooling state. The existence, exponential rate
of convergence towards this state, uniqueness and stability in the weakly inelas-
tic regime can be found in [7]. Notice however that Gα(·) is not a Maxwellian
distribution.

In the viscoelastic case (i.e. whenever e(·) is non constant and satisfies the above
listed properties) the solution f(τ, w) is also converging towards an intermediate
asymptotic state. The difference lies in the fact that such state is a time dependent
Maxwellian distribution. Precisely,

Theorem 1. Assume that the coefficient of normal restitution e(·) satisfies the
above assumptions (i) − (iv) with γ > 0 (plus some additional regularity assump-
tions). Let f0 ≥ 0 satisfy the conditions given by (4) and

f0 ∈ H
m0

k , ∀ k ≥ 0

for some explicit m0 ≥ 1. Let f(τ, ·) denote the unique solution to (1) and let us
introduce

M0(τ, w) =

(
1

2πE(τ)

)3/2

exp

(
− |w|2
2E(τ)

)
, ∀τ > 0 , w ∈ R

3.

Then, for any τ0 > 0 and any ε > 0, there exist A,B > 0 such that

(5) ‖f(τ, ·)−M0(τ, ·)‖L1 ≤ A E(τ)
γ

2(1+ǫ) ≤ B (1 + τ)−
γ

(1+ε)(1+γ) ∀τ ≥ τ0.
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Here, Hm0

k denotes the weighted Sobolev space defined through the norm

‖f‖
H

m0
k

=


 ∑

|s|≤m0

‖〈·〉k/2∂sf‖2L2




1/2

where 〈v〉 = (1 + |v|2)1/2 for any v ∈ R3.

The proof of the above result is based on the careful study of the Boltzmann
equation (1) in rescaled variable. Namely, introduce the (self-similar) rescaled
solution g = g(t, v) by

(6) f(τ, w) = V (τ)3g
(
t(τ), V (τ)w

)

where V (τ) =

√
E(0)
E(τ) , and t(τ) =

∫ τ
0

dr

V (r)
. Under such a scaling the rescaled

solution g(t, v) is such that
∫

R3

g(t, v) |v|2dv = E(0) ∀t > 0

and the rescaled solution satisfies

(7) ∂tg(t, v) + ξ(t)∇v ·
(
vg(t, v)

)
= Qet

(
g, g
)
(t, v) , g(t = 0, v) = f0(v)

for some explicit function ξ(t) and some explicit time-dependent coefficient of
normal restitution

et(r) = e(ξ(t)1/γr) r > 0.

Notice that the collision operator appearing in (7) is now depending on time. The
idea of proof for Theorem 1 is surprisingly simple and it is based on the study of the
relative entropy of g(t, v) with respect to the Maxwellian M0(v) with same mass
momentum and energy of g(t, v) (recall that g(t, v) is of constant temperature):

H(t) = H(g(t)|M0) =

∫

R3

g(t, v) log

(
g(t, v)

M0(v)

)
dv.

The convergence of H(t) towards zero is actually obtained from a well-known esti-
mate between the relative entropy H(t) and the entropy production associated to
the elastic Boltzmann operator established by C. Villani in [8, Theorem 4.1] pro-
vided g(t, ·) is regular enough and satisfies a uniform lower bound. A particularly
technical part of the work consists actually in proving such regularity and lower
bound estimates.
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Kinetic models for aerosols and numerical simulations

Alexander Lorz

(joint work with Laurent Boudin, Céline Grandmont, Ayman Moussa)

This work [2] is motivated by aerosol therapies, where drugs are directly delivered
to the lung via an aerosol. For these medical applications, it is important to know
where aerosol particles impact in the lung

We describe a model for an aerosol, the numerical scheme which we used and
the performed numerical tests. Since the aerosol is a fluid-particle mixture, we
write equations for both phases first.

Fluid equations. The airflow is classically described by its velocity field u(t, x) ∈
R3 and the pressure p(t, x) ∈ R, where t ≥ 0 is the time and x ∈ R3 is the position.
We assume that, in our framework, the air remains a Newtonian incompressible
homogeneous fluid. Let us also denote ρair the air mass density and η the dynamic
air viscosity.

In the upper airways, the airflow is governed by the incompressible Navier-
Stokes equations:

ρair[∂tu+ (u · ∇x)u] = −∇xp+ η∆xu+ F, t ∈ R+, x ∈ Ωt,(1)

∇x · u = 0, t ∈ R+, x ∈ Ωt,(2)

where F is a vector field representing the forces acting on the fluid (gravity, aerosol
retroaction). Moreover, to take into account the fact that the domain itself can
move, we consider given time-indexed open sets Ωt of R

3.

Aerosol equation. An aerosol (or spray) is a set of particles in the airflow. When
we focus on aerosols in human airways, the formalism from statistical physics and
kinetic theory is especially well fitted. We assume that the aerosol particles are
filled with an incompressible fluid very similar to water. The aerosol is then
described by a distribution function f : R+ ×R3 ×R3 → R+. It depends not only
on t and x, but also on velocity v.

This distribution function solves the Vlasov equation, i.e.

(3) ∂tf + v · ∇xf +∇v · (af) = 0,
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where a(t, x, v) is the acceleration field acting on the aerosol.
The system (1)–(3) is supplied with suitable boundary conditions that we do

not state here for the sake of simplicity.

Interaction between the fluid and the aerosol. We assume, as it is classical
in fluid mechanics, that both coupling terms a and F mainly model a drag force
between the fluid and the aerosol

(4) a(t, x, v) =
πr2

8m
ρairCD|u(t, x)− v|(u(t, x)− v).

The simplest case is to use Stokes’ law

a(t, x, v) =
6πηr

m
(u(t, x)− v),

but in our model a more complicated form of a was used [5]. Conversely, F is the
force field exerted by the aerosol on the air, that is

(5) F (t, x) = −m
∫

R3

f(t, x, v) a(t, x, v) dv,

for any t and x.
The nonlinearity in the Navier-Stokes equations and the strong coupling be-

tween Vlasov and Navier-Stokes equations are the two major difficulties in the full
system (1)–(5) from both mathematical [1] and numerical viewpoints.

The aerosol is computed with a particle-in-cell (PIC) method, and the fluid
using the arbitrary Lagrangian-Eulerian (ALE) form, primarily used in [3, 4] and
the finite element method. The difficulty of this scheme mainly lies in the coupling
between (1) and (3) through (5).

Unlike the finite element method, the particle method does not provide an
approximation of f on the mesh nodes. So the distribution function is computed
as a weighted sum of Dirac masses in the positions and velocities of the numerical
particles.

To improve and validate the scheme as well as the C++ code we study various
test cases. In a fixed domain, we compare with explicit solutions for the particle
trajectories. Moreover, we check numerical stability with respect to mesh refine-
ment, time step and we verify stability when perturbing the initial location of the
particles. Furthermore, we study the influence of the mesh size on the position
where the particles hit the boundary. Moreover, in a fixed domain we investigate
the influence of the aerosol particles on the airflow (retroaction force). In a moving
domain, we compare with non-trivial explicit solutions for the fluid.
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Regularity for elliptic equations with i.i.d. coefficients

Daniel Marahrens

(joint work with Felix Otto)

In this talk, we consider the uniformly elliptic discrete difference equation

(1) ∇∗a(x)∇u(x) = f(x) ∀x ∈ Z
d,

where

∇u(x) = (∇1u(x), . . .∇du(x)), ∇iu(x) = u(x+ ei)− u(x),

∇∗ξ(x) =
d∑

i=1

∇∗
i ξi(x), ∇∗

i ξi(x) = ξi(x− ei)− ξ(x),

denote the gradient of u : Zd → R and the (negative) divergence of ξ : Zd → Rd,
respectively. We assume that the coefficient field a : Zd → Rd×d is diagonal and
uniformly elliptic with ellipticity contrast λ > 0, i.e. aii(x) ∈ [λ, 1] for i = 1, . . . , d.
Let Ω denote the space of diagonal and uniformly elliptic coefficient fields. In
this case, the well-known result due to De Giorgi on Hölder-regularity of elliptic
equations yields that there exists an α0 = α0(d, λ) > 0 such that

∀a ∈ Ω, ∀R <∞ : sup
u

supx:|x|≤R
|u(x)−u(0)|

|x|α0

1
Rα0

supx:|x|≤R |u(x)| ≤ C(d, λ),

where the outer supremum (over u) is taken over all solutions to ∇∗a(x)∇u(x) = 0
in the ball B2R of radius 2R, see [1, Proposition 6.2] for a discrete setting. This
result cannot be improved upon in the sense that there exist counter-examples
with α0(d, λ) → 0 as λ → 0 (at least in the continuum setting and which should
in principle extend to the discrete setting).

On the other hand, in stochastic homogenization (and presumably in real-world
applications), the coefficient field a : Zd → Rd×d is often distributed according
to some stationary probability measure with decaying correlations, for instance
independent and identically distributed (i. i. d.) from site to site. Stationarity
here means that the coefficient fields a and a(x + ·) have the same distribution
for every x ∈ Zd which is clearly the case for i. i. d. coefficient fields. We follow
the convention in statistical physics and call the distribution of the coefficient field
an ensemble and denote its expectation by 〈·〉. Following the ideas developed by
Gloria and Otto [3, 4], we quantify in [5] the decay of correlations of the coefficient
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field (equivalently, the ergodicity) via the logarithmic Sobolev inequality (LSI): For
every random variable ζ : Ω → R, we have that

〈
ζ2 log

ζ2

〈ζ2〉
〉
≤ 1

2ρ

∑

z∈Zd

〈(
osca(z)ζ

)2〉
,

where osca(z)ζ denotes the oscillation of ζ = ζ(a) with respect to the value of a at
z, the so-called vertical derivative. The LSI holds for every i. i. d. coefficient field
and implies that for every p <∞ and δ > 0, we have that

(2) 〈|ζ|2p〉 ≤ C(ρ, p, δ)〈|ζ|〉2p + δ
〈( ∑

z∈Zd

(
osca(z)ζ

)2)p〉
,

Let G = G(x, y) denote the Green function corresponding to Equation (1), i.e. the
solution to

∇∗
xa(x)∇xG(x, y) = δ(x − y).

In [2], it was shown that, just assuming stationarity of the ensemble 〈·〉, that

〈|∇xG(x, y)|2〉
1
2 ≤ C(d, λ)(|x − y|+ 1)1−d,

〈|∇x∇yG(x, y)|〉 ≤ C(d, λ)(|x − y|+ 1)−d.

In [5] and this talk, we show how to combine this estimate with (2) to obtain that
all moments are bounded:

〈|∇xG(x, y)|2p〉
1
2p ≤ C(d, λ, ρ, p)(|x − y|+ 1)1−d,

〈|∇x∇yG(x, y)|2p〉
1
2p ≤ C(d, λ, ρ, p)(|x − y|+ 1)−d,

for all p < ∞. For the second mixed derivative ∇x∇yG(x, y), this is achieved by
choosing ζ = ∇x∇yG(x, y) and bounding the vertical derivatives of ∇∇G in terms
∇∇G itself. For instance, we show that

|osca(z)∇x∇yG(x, y)| ≤ C(d, λ)|∇x∇zG(x, z)| |∇z∇yG(z, y)|.

As a consequence, we obtain the following annealed regularity result : For all 0 ≤
α < 1 and R <∞, we have that

〈(
sup
u

supx:|x|≤R
|u(x)−u(0)|

|x|α
1
Rα supx:|x|≤R |u(x)|

)p〉
≤ C(d, λ, ρ, p, α),

where the outer supremum (over u) is taken over all solutions to ∇∗a(x)∇u(x) = 0
in the ball B2R of radius 2R. Thus, with high probability, a-harmonic functions
with, say, i. i. d. coefficient fields are almost Lipschitz-continuous, in a way that
can be quantified. These results have implications in the theory of stochastic
homogenization which are beyond the scope of this talk.
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Infinite energy solutions for a homogeneous inelastic Maxwell gas

Daniel Matthes

(joint work with Federico Bassetti, Lucia Ladelli)

The spatially homogeneous Inelastic Maxwell Model (shIMM) of collisional gas
theory, see [2], is characterized by the following:

• the time-dependent velocity distribution f is independent of the position,
i.e., f(t;x, v) = f(t; v) satisfies the homogeneous Boltzmann equation
∂tf = Q[f, f ];

• the collision rate is independent of the relative velocity of the colliding
particles, i.e., the collision operator has the weak form∫
Q[f, f ](v)ϕ(v) dv

=

∫

Rd

∫

Rd

∫

Sd−1

B

(
(v − v∗) · n
|v − v∗|

)(
ϕ(v′)− ϕ(v)

)
f(v)f(v∗) dv dv∗ dσ(n),

where n ∈ Sd−1 is a unit vector, σ is the normalized measure on the unit
sphere Sd−1, and B : [−1, 1] → R+ is a given cross section,

• in each collision, the relative velocity in the direction of impact is reduced
by a factor 1−2ε, i.e., the post-collisional velocities v′ and v′∗ are obtained
from the pre-collisional velocities v, v∗ via

v′ = v −
[
(1− ε)(v − v∗) · n

]
n, v′∗ = v∗ +

[
(1− ε)(v − v∗) · n

]
n,

where ε ∈ (0, 1/2) is the modulus of inelasticity.

This collision mechanism preserves the sum of the linear momenta but diminishes
the sum of the kinetic energies in each collision. One easily shows that if the total
kinetic energy of the gas is finite initially, then it tends to zero at the exponential
rate 4ε(1− ε) as t → ∞. The corresponding (self-similar) collapse of the velocity
distribution to a Dirac delta has been exhaustively studied, see e.g. [3] and the
references therein.

On the other hand, the shIMM admits stationary solutions of infinite kinetic
energy. This has first been observed in connection with the inelastic Kac model
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[6], which is a caricature of the shIMM in dimension d = 1. In that special case, a
family of stationary states is given by α-stable laws, where the index α ∈ (0, 2) is
uniquely determined by the inelasticity parameter ε. And each of these stationary
solutions attracts all transient solutions that start in the respective α-stable law’s
normal domain of attraction (NDA), see [1].

Note that this is an analogue of Tanaka’s theorem, which states that the velocity
distribution in a fully elastic homogeneous Maxwell gas converges to a Gaussian
(i.e., a 2-stable law) if it has finite kinetic energy (i.e., belongs to the NDA of a
Gaussian) initially. In our recent article [4], we have proven a similar result for
the original shIMM, in arbitrary space dimensions d > 2.

Theorem 1. Let a modulus of inelasticity ε ∈ (0, 1/2) and a cross section B ∈
L1([−1; 1]) be given. Then, there are an index α ∈ (0, 2) and a probability measure
ν on R+ such that the following is true.

(1) There is a family (fc)c>0 of stationary solutions fc that are scale mixtures
of radially symmetric α-stable laws. Specifically, fc’s Fourier transform is
given by

f̂c(ξ) =

∫ ∞

0

exp
(
− cs|ξ|α

)
dν(s) for all ξ ∈ R

d.

(2) Assume that α 6= 1. If f is a transient solution with initial datum f0 =
f(0) in the NDA of some (not necessarily radially symmetric) α-stable
law, then f converges (weakly in the sense of probability measures) to a
stationary state fc as t→ ∞, where c is computable from f0.
(This statement is “essentially true” also for α = 1, but the precise for-
mulation is more intricate in that case.)

It is expected that the fc are the only stationary solutions. More specifically, we
conjecture that if f0 belongs to the NDA of some α′-stable law with α′ > α instead,
then the corresponding transient solution converges to a Dirac delta. And if f0

does not belong to the NDA of any α′-stable law with α′ ≥ α, then the transient
solution converges vaguely to zero, i.e., the kinetic energy blows up.

We remark that the family (fc)c>0 of stationary states fc has already been
identified in the study of radially symmetric solutions to a more general class of
kinetic equations [2]. There, a part of the basin of attraction (which, however, is
much smaller than the — presumably maximal — one provided by the Theorem
above) has been described as well.

Our method of proof uses an extension of the probabilistic representation for
transient solutions f(t), that has originally been introduced for the Kac equation
in [5]. We show the following: let Vt be a random vector in Rd with Law[Vt] = f(t),
then for every R ∈ SO(d) it holds that

(Red) · Vt Law
=

νt∑

k=1

(RΛνt,ked) ·Xk,

where the X1, X2, . . . are i.i.d. random vectors in Rd with Law[Xj ] = f0, the
Λn,k are random similarities in GL(n) whose distribution is determined by the
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cross section B, and νt is a random natural number with Poisson distribution.
Once this representation has been obtained, the proof of the Theorem reduces to
a laborious application of the central limit theorem for stable laws.
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Propagation of chaos for the 2D viscous vortex model

Stéphane Mischler

(joint work with Maxime Hauray, Nicolas Fournier)

We consider a stochastic system of N particles, usually called vortices in that set-
ting, approximating the 2D Navier-Stokes equation written in vorticity. Assuming
that the initial distribution of the position and circulation of the vortices has fi-
nite (partial) entropy and a finite moment of positive order, we show that the
empirical measure of the particle system converges in law to the unique solution of
the 2D Navier-Stokes equation. We actually prove a slightly stronger result: the
propagation of chaos of the stochastic paths towards the solution of the expected
nonlinear stochastic differential equation. Moreover, the convergence holds in the
stronger (entropic) sense. The result holds without restriction (but positivity) on
the viscosity parameter. The main difficulty is the presence of the singular Biot-
Savart kernel in the equation. To overcome this problem, we use the dissipation
of entropy which provides some (uniform in N) bound on the Fisher information
of the particle system, and then use extensively that bound together with classical
and new properties of the Fisher information.

Let us briefly explain with a bit more details our result in the simple case when
all the vortices have fixed (equal to 1) circulation.

Consider a system of N indistinguishable (exchangeable) particles, each particle
being described by its position XN

1 , ...,XN
N ∈ R2, which evolves according to

dXi = 1
N

N∑

j=1

K(Xi −Xj) dt+
√
2νdBi(1)
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where (Bi)1≤i≤N areN given independent Brownian motions, ν > 0 is the viscosity
and K : R2 → R2 is the (singular) Biot-Savart kernel defined by

∀x = (x1, x2) ∈ R
2, K(x) =

x⊥

|x|2 =
(
− x2
|x|2 ,

x1
|x|2

)
= ∇⊥ log |x|.

The (formal) associated mean field limit is the 2D Navier-Stokes equation writ-
ten in vorticity formulation

∂twt(x) = (K ⋆ wt)(x) · ∇xwt(x) + ν∆xwt(x),(2)

where w : R+ × R2 → R+ is the vorticity function.

Roughly speaking, we may establish:
- If XN

0 is w0-Kac’s chaotic and ”appropriately bounded” then XN
t is wt-Kac’s

chaotic for any time t > 0.
- If XN

0 is w0-entropy chaotic and has bounded moment of order k ∈ (0, 1] then
XN
t is wt–entropy chaotic for any time t > 0.

In the sequel we do not explain what means such a statement but we focus on
a variant of such mean field convergence result for which we may write a precise
statement.

In order to do so, we first introduce an intermediate problem. We say that
X = (Xt)t>0 a continuous stochastic process with values in R2 is a solution to the
stochastic NS vortex equation if it satisfies the nonlinear SDE

dX = (K ∗ w)(X )dt +
√
2ν dB,(3)

for some given Brownian motion B and where wt = L(Xt) is the law of Xt. It is
important to point out that (thanks to Ito formula) the law wt of Xt then satisfies
the NS vortex equation (2).

For a given polish space E, we also introduce the empirical probability measure

one-to-one function X ∈ EN 7→ µNX := 1
N

N∑

i=1

δxi
∈ P(E).

We finally consider as an initial condition a function w0 ≥ 0 such that∫

R2

w0 (1 + |x|k + | logw0|) dx <∞, k ∈ (0, 1].(4)

Our main result reads as follows.

Theorem. Consider a function w0 ≥ 0 satisfying (4) and consider the vortices

trajectories XN = (XN
t )t≥0 associated to an i.c. XN

0 ∼ w⊗N
0 thanks to (1) and

X the solution to the stochastic NS vortex equation associated to an i.c. X0 ∼ w0

thanks to (3). There holds

L(µNXN ) ⇀ δL(X ) weakly in P(P(C([0,∞);R2)) as N → ∞,(5)

L(XN
1 (t), ...,XN

j (t)) → w⊗j
t strongly in L1(R2)j as N → ∞.(6)

The strategy of the proof is the by-now well-known “weak stability on nonlinear
martingales” approach, which goes back to Sznitmann 1984, and is based on the
following steps:
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• a priori estimates (on entropy, moment and Fisher information);
• tightness of the law QN of the empirical process µNXN in P(P(E));
• pass to the limit and identify the set of limit points S as the probability

measures q ∈ P(E) associated to a process X which solves the (Martingale prob-
lem associated to the) stochastic NS vortex equation (3) and has finite Fisher
information;

• if q ∈ S and q = L(X ) then wt := L(Xt) is the unique solution to the NS
vortex PDE (2);

• the Martingale problem associated to (3) has a unique solution X̄ and then
S = {q̄} where L(q̄) = X̄ .

All together, we conclude to the Kac’s chaos (5), which in turns implies (6).
The proof is then quite standard except the fact that we use the Fisher information
bound at each step in order to overcome the difficulties which come from the fact
that the Biot-Savart kernel is singular.

Particle systems and macroscopic limits in self-organized dynamics

Sebastien Motsch

(joint work with Pierre Degond, Laurent Navoret, Jeff Haack, Irene Gamba)

Self-organized dynamics is a spectacular phenomenon to observe in nature. In a
shoal of fish or in a human crowd, thousands of individuals interact and form large
scale structures. To understand these complex dynamics, particle systems have
been widely studied. In this talk, we are interested in the large scale behavior of
these models.

We first investigate the macroscopic limit of a large class of particle systems
using kinetic theory. In contrast with particle systems in physics, models of self-
organized dynamics do not conserve momentum or energy. This lack of conser-
vation requires to introduce new tools (i.e. generalized collisional invariants) to
derive macroscopic models.

In a second part, we compare numerically the different models obtained (i.e.
particle systems, kinetic equation and macroscopic limit). With this aim, we
analyze the solutions of Riemann problems (e.g. shock and rarefaction waves).
Since the models are non-conservative, we observe new types of solutions that
remain to be understood analytically.
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A fluid/kinetic model with merging small droplets

Ayman Moussa

(joint work with Saad Benjelloun, Laurent Desvillettes)

Sprays are complex flows which are constituted of an underlying gas in which
a population of droplets (or dust specks) are dispersed, cf. [8]. There are various
possibilities for modeling such flows, depending in particular on the volume fraction
of the liquid phase.

We focus here on the case when the volume fraction occupied by the droplets is
small enough to be neglected in the equations (such sprays are called thin sprays,
cf. [8]), so that the modeling of the liquid phase can be performed by the use
of a pdf (particles density function) which solves Vlasov-Boltzmann equation (cf.
[11, 1]).

Let us consider the case in which the spray is constituted of two type of particles
: large particles radius 1, described by a density function f , small particles of
radius ε, described by a density function h. Both density functions depends on
(t,x, ξ) ∈ R+ × T

3 × R
3 where T

3 is the three-dimensional torus. Large particles
may split (with conservation of the mass) into small particles which do not split
anymore. No collisions nor coalescences may occur.

If the particles are surrounded by an incompressible viscous fluid of veloc-
ity/pressure u(t,x) and p(t,x) of constant density and viscosity, the behavior of
the system may be described through the following equations (normalizing several
physical constants)

∇x · u = 0,(1)

∂tf + ξ · ∇xf +∇ξ · [fΓ] = −f,(2)

∂th+ ξ · ∇xh+∇ξ · [hΓ] =
1

ε3
h,(3)

∂tu+∇x · (u⊗ u) +∇xp−∆xu = Fret,(4)

where Γ is the drag acceleration given by the simple formula (known as “Stokes’
law”)

Γ(t,x, ξ, r) = −ξ − u(t,x)

r2
,(5)

and Fret is the retroaction of the drag force:

(6) Fret(t,x) = −
∫ +∞

0

∫

R3

r3 f Γdξdr.
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Denoting ρ = ε3
∫

R3

h dξ, and noticing that

d

dt

{∫

T3

∫

R3

f
|ξ|2
2

dξdx+

∫

T3

∫

R3

ε3h
|ξ|2
2

dξdx+

∫

T3

|u|2
2

dx

}

+

∫

T3

∫

R3

f |ξ − u|2 dξdx

+
1

ε2

∫

T3

∫

R3

ε3h |ξ − u|2 dξdx+

∫

T3

|∇xu|2 dx = 0,

we see that (at the formal level) ε3 h(t,x, ξ) → ρ(t, x) δξ=u(t,x) when ε→ 0.

Integrating eq. (3) against ε3 dξ, we end up with

(7) ∂tρ+∇x · [ρu] =
∫

R3

f dξ.

Then, integrating eq. (3) against ε3 ξ dξ and adding the result with eq. (4), we
obtain

∂t((1 + ρ)u) +∇x · ((1 + ρ)u⊗u) +∇xp−∆xu = −
∫

R3

(u− ξ) f dξ+

∫

R3

f ξ dξ.

Combining this last equation with eq. (7), we write down the system that we wish
to study

∇x · u = 0,(8)

∂tρ+∇x · [ρu] =
∫

R3

f dξ,(9)

∂tf + ξ · ∇xf +∇ξ · [(u− ξ) f ] = −f,(10)

(1 + ρ)
[
∂tu+∇x · (u⊗ u)

]
+∇xp−∆xu = 2

∫

R3

(ξ − u) f dξ,(11)

where ρ := ρ(t,x) ≥ 0, u := u(t,x) ∈ R3, p := p(t,x) ≥ 0, f := f(t,x, ξ) ≥ 0, and
t ≥ 0, x ∈ T, ξ ∈ R3. Let us recall that ρ represents here the “added density”
resulting from the very small particles. This is the reason why, though the fluid
density was initially normalized in (4), we have in (11) the term (1 + ρ) in front
of the convective part of the fluid equation. For a more detailed version of the
previous computation, see [3].

Our goal is to study the existence theory for this limit system, completed with
appropriate initial data.

Our system (8) – (11) is reminiscent of the Vlasov/incompressible Navier-Stokes
equations with a variable density, see [9] for a recent study of this system (with
bounded density). In fact, taking f = 0 in (8) – (11), leads to the usual incom-
pressible Navier-Stokes with variable density, and it is hence natural to expect
(at least) the difficulties encountered in the study of the latter system. As far
as we know, in all the articles concerning the inhomogeneous Navier-Stokes, the
density is always bounded (see [2, 7] or the more recent [9] for instance), but in
our system the density lies in some Lp space with p < ∞ and the corresponding
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transport equation has an unbounded right-hand side. It was suggested in [7, 5]
that techniques from [5] may be adapted to treat the general case of unbounded
density, and this is precisely what we have done to handle the worst non-linearities
of system (8) – (11).

As for the formal limit allowing to pass from system (1) – (4) to the limit system
(11) – (8), the problem seems quite hard to handle and is in fact quite close to the
hydrodynamic limit studied in [6] (but with less estimates !). Compactness method
seems to fail, and we do not know at the time of writing if some relative energy
method may be used to justify this limit (at least locally in time, for well-prepared
data).

The detailed proof of existence of global weak solutions for the limit system
may be found in [4].
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Decoherence for a heavy particle interacting with a light one: new
analysis and numerics

Claudia Negulescu

(joint work with R. Adami, M. Hauray)

In the present work we describe, both through a theoretical analysis and nu-
merical simulations, the following idealized experiment: a quantum particle lies
in a state given by the superposition of two localized wave functions (“bumps”),
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initially separated and moving towards each other. At a certain time, the particle
interacts with another particle which is considerably lighter. As a consequence,
the quantum interference arising when the two bumps corresponding to the heavy
particle eventually meet, is damped. The damping of the interference is called
decoherence, and provides a description of the transition from the quantum to the
classical world. Despite the conceptual relevance of decoherence in the foundations
of quantum mechanics as well as in applications (e.g. in quantum computation)
and, more generally, in the understanding of the classical picture of the macro-
scopic world, a rigorous and exhaustive description of such phenomenon is still at
its beginnings.

According to the principles of quantum mechanics, the time evolution of the
wave function ψǫ(t,X, x) representing the two-body quantum system is given by
the Schrödinger equation

(1)





i∂tψǫ = − 1

2M
∆Xψǫ −

1

2εM
∆xψǫ +

1 + ε

ε
V (x−X)ψǫ,

ψǫ(0, X, x) = ψ0
ǫ (X, x) ,

where we used units in which ~ = 1,M is the mass and X is the spatial coordinate
of the heavy particle, while ǫM is the mass and x is the spatial coordinate of the
light one. So ǫ is the ratio between the mass of the light particle and the mass
of the heavy one, and we study the regime ǫ ≪ 1, that we call small mass ratio
regime.

The interaction is described by the potential 1+ε
ε V ; the uncommon coupling

constant is chosen to be of order ǫ−1 so that even a single collision leaves an ob-
servable mark on the heavy particle; furthermore, the factor 1+ǫ hardly affects the
dynamics and makes the computations less cumbersome. We shall always choose
a factorized initial state, i.e. ψ0

ǫ will be the product of a function of the variable X
only, and a function of the variable x only. Physically, this means that initially the
two particles are uncorrelated. We shall always assume that ψ0

ǫ , and consequently
ψǫ(t), is normalized in L2(R2d).

The aim of this work is threefold: first, we rigorously derive a collisional dy-
namics for the heavy particle as an approximation of the underlying quantum
evolution (1) in the limit ǫ→ 0; second, we employ such a collisional dynamics in
order to build up an efficient numerical scheme; third, we observe the appearance
of decoherence through numerical simulation.

Concerning the analytical contribution, we show that an approximate descrip-
tion of the dynamics of the heavy particle can be carried out in two steps: first
comes the interaction, then the free evolution. In particular, all effects of the
interaction can be embodied in the action of a collision operator that acts on
the initial state of the heavy particle. With respect to previous analytical results
on the same topics, we turn our focus from the Møller wave operator to the full
scattering operator, whose analysis proves to be simpler.
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Concerning the numerical contribution, we exploit the previous analysis to con-
struct an efficient numerical scheme that turns the original, multiscale, two-body
problem in two one-body problems which can be solved separately. This leads to
a considerable gain in simulation time. We present and interpret some simulations
carried out on specific one-dimensional systems by using the new scheme.

Stability of kinks in Cahn-Hilliard equations—energy/energy
dissipation methods

Felix Otto

(joint work with Maria Westdickenberg)

Appealing to the gradient flow structure we prove a non-perturbative non-linear
stability result which gives optimal exponents in the algebraic decay. It amounts
to a non-convex version of Brézis’ result on convex gradient flows. As Brézis, it
uses the intrinsic distance (here H−1), the energy gap and the energy dissipation.
It relates these three quantities, and the slow variable (=the position of the kink)
by interpolation estimates and differential inequalities.

A Kac Model for Fermions

Federica Pezzotti

(joint work with M. Colangeli, M. Pulvirenti)

One of the most important and challenging mathematical problems in Kinetic
Theory is the rigorous derivation of the kinetic equations from the basic mechanical
laws. The first fundamental result in this direction was obtained in 1975 by O.
Lanford [8], who derived the Boltzmann equation for a system of hard spheres,
for short times, in the Low-Density (or Boltzmann-Grad) limit. A similar result
was also obtained quite recently for particle systems interacting via a two-body
short-range, smooth potential (see [6], [11] and references quoted therein).

On the other hand, a dense gas of weakly interacting particles (weak-coupling
limit) is expected to be described by the Landau equation. In this case there are
no rigorous results. We only mention a very preliminary consistency result [3].

Quantum systems are expected to be described by suitable Boltzmann equa-
tions in both Boltzmann-Grad and Weak-Coupling limits. In the first case the
Boltzmann equation is just the classical one, with the full quantum cross-section
associated with the interaction potential. In the second, more interesting, case,
the Boltzmann equation (U-U equation in the sequel) differs from the classical
one because it takes into account the effects of the Bose-Einstein or Fermi-Dirac
statistics. It was heuristically introduced by Nordheim (1928) in [10] and Uehling
and Uhlenbeck(1933) in [13].

Concerning the rigorous derivation of the U-U equation starting from an N -
particle system evolving according to the Schrödinger equation, only formal or
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partial results are available up to now (see [1], [2], [5] and references quoted
therein).

The U-U equation reads as

(∂t + v · ∇x) f = Qθ(f, f, f),

where the collision operator Qθ(f, f, f)(x, v) is given by
∫
dv1

∫
dω Bθ(v − v1;ω) [f(x, v

′)f(x, v′1)(1 + αθf(x, v))(1 + αθf(x, v1))+

−f(x, v)f(x, v1)(1 + θαf(x, v′))(1 + αθf(x, v′1))] ,

and f(x, v, t) is the probability distribution of a test particle in the classical phase
space ( (x, v, t) denote position, momentum and time) describing the time evolution
of the Wigner transform of a quantum state. Here θ = +1 or θ = −1, for the
Bose-Einstein or the Fermi-Dirac statistics and α = (2π~)3, where ~ is the Planck
constant.

Finally (v, v1) → (v′, v′1) is the transition due to an elastic collision with scat-
tering vector ω ∈ S2 and B is proportional to the symmetrized cross-section
(associated with the pair interaction potential) in the Born approximation.

In 1956 M. Kac proposed a stochastic particle model yielding, in a suitable
scaling limit (of Mean-Field type), the classical Boltzmann equation (see [7]). The
purpose was to understand the delicate passage from an N -particle system to a
one-particle kinetic description, in an easier context.

The model consists of a set of N particles with velocities VN = (v1 . . . vN ). The
positions are ignored. The original Kac Model is one dimensional (i.e., vi ∈ R,
for any i = 1, . . . , N) and he works in the microcanonical framework, requiring
the velocities to belong to the (energy) sphere v21 + · · · + v2N = N . Here we
consider a natural generalization of the original model in which velocities are
three dimensional and we work in the canonical framework. The evolution is the
following. At an exponential time pick a pair of particles (say i and j), select
a scattering vector ω ∈ S2 and perform the transition (vi, vj) → (v′i, v

′
j) with

the usual elastic collision rules. More precisely, if WN (VN , t) is a probability
distribution, its time evolution obeys the following Master equation

(1) ∂tW
N =

1

N
LK

NW
N

where

(2) LK

NW
N (VN ) =

∑

1≤i<j≤N

∫

S2

dωB(vi − vj ;ω)
[
WN (V i.jN )−WN (VN )

]

and

V i.jN = {v1, ..., v′i, ..., v′j , ..., vN}.
It is possible to show that, in the limit N → ∞, the k-particle marginals

fNk (Vk, t) of WN (VN , t), converge to a sequence of marginals fk(Vk, t). Moreover,

if initially WN (·, 0) = f⊗N
0 , where f0 is a one-particle distribution (namely the
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particles are initially independently distributed) then fk(·, t) = f⊗k(t), where f(t)
solves the Boltzmann equation with cross-section B.

The Kac model has been widely investigated, see the recent paper [9] and ref-
erences quoted therein.

In the same spirit we modify the Kac model including an exclusion constraint
mimicking the Pauli exclusion principle with the scope of deriving the U-U equa-
tion for Fermions. The exclusion principle is implemented by introducing a grid
of side δ in the one-particle phase space. Then we consider only admissible con-
figurations, namely those exhibiting at most one particle per cell. The random
transition (vi, vj) → (v′i, v

′
j) takes place only if the final configuration V i.jN =

{v1, ..., v′i, ..., v′j , ..., vN} is still admissible. Then we perform the limit N → ∞,

δ → 0 with fixed α = Nδ3, α > 0. In doing this we follow the Lanford strategy,
namely we first derive a hierarchy of equations for the marginals fNk (Vk, t) of the
time evolution of an N -particle state. Such a derivation is straightforward, but
tedious. Then we bound, locally in time, the series expansion expressing the solu-
tion of the hierarchy. We note that, due to the exclusion principle which gives us
automatically a bound on the density, we can treat arbitrary times by introducing
a suitable family of norms. Finally we exploit the term by term convergence by
piling up a finite number of series expansions, each of them converging for a short
time.

Our result is proven under suitable assumptions on the convergence of the initial
data and we also provide examples of initial states fulfilling the above assumptions.

It may be worth to underline that our analysis, as well as the one suggested by
the original Kac model, deals with the homogeneous U-U equation (f(t, x, v) =
f(t, v)). Actually, the dynamics described by the Kac model is related to the
interaction part of the popular numerical scheme called Direct Simulation Method
(see e.g. [4] for a mathematical description and [12] for the convergence). Therefore
the result presented in this talk could be of some interest for numerical problems
associated with the simulation of the U-U equation.

We finally remark that a model similar to the one we considered can be studied
for Bosons as well and it would be a very interesting issue. In this case, statistics
induces particle concentration and the mathematical analysis is harder.
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On the convergence to equilibrium for degenerate kinetic equations

Francesco Salvarani

(joint work with Étienne Bernard)

We have considered some hypocoercivity properties of the degenerate linear Boltz-
mann equation in the torus Td = Rd/Zd, d ∈ N with d ≥ 2:

(1)





∂tf + v · ∇xf + σ (f −Kf) = 0, (t, x, v) ∈ R+ × Td × V

f(0, x, v) = f in ∈ L1
(
T
d × V

)
(x, v) ∈ T

d × V,

where either V = {v ∈ Rd : 0 < vm < vM , vm ≤ |v| ≤ vM} or V = Sd−1 and

(2) Kf :=

∫

V

k(v, w)f(t, x, w) dw.

The kernel k of the operator K is a function of class L∞(V × V ) such that

(3)

∫

V

k(v, w) dw = 1 and k(v, w) > 0 a.e. on V × V.

The measures on Td × V are normalized such that
∫

Td

dx =

∫

V

dv = 1.

The function f ≡ f(t, x, v) describes the density of particles that, at time t > 0,
are located at x ∈ Td, with velocity v ∈ V , and which interact only with a fixed
background (the details of the interaction being described by the cross section σ
and the kernel k).

The properties of the cross section heavily influence the long-time behaviour of
the Cauchy problem (1). From now on, we impose the following assumptions on
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the cross sections:

(4) σ ∈ L∞ (
T
d
)
, with σ ≥ 0 a.e. and

∫

Td

σ(x)dx > 0.

It is easy to see that the only equilibria of (1) are the constants [3] and that the
only candidate to be the long-time asymptotic profile is f∞ := ‖f in‖L1(Td×V ).

A further classification is necessary for the study of the long-time behaviour of
the Cauchy problem (1) in order to take into account non-exponential convergence
effects:

Definition 1. Let σ be a cross section satisfying the requirements (4). If there
exists, moreover, a strictly positive constant m > 0 such that σ ≥ m for a.e.
x ∈ Td, then the cross section is said to be non degenerate. Otherwise, it is said
to be degenerate.

In general, the exponential relaxation to equilibrium is not true for degenerate
cross section. Indeed, the following theorem holds [3]:

Theorem 2. For all r ∈ (0, 1/2) consider the periodic open set

Zr = {x ∈ R
d : dist(x,Zd) > r}

together with the associated fundamental domain Yr = Zr/Z
d.

For all r ∈ (0, 1/2), there exists an initial condition f in ∈ L∞(Td × Sd−1)
satisfying f in(x, v) ≥ 0 for a.e. (x, v) ∈ Td × Sd−1 and such that, for each cross
section σ ∈ L∞(Td) satisfying σ(x) ≥ 0 for a.e. x ∈ Td and σ(x) = 0 for a.e.
x ∈ Yr, the solution f of the transport problem satisfies

‖f − f∞‖L2(Td×Sd−1) ≥
C√
t

for each t > r1−d, where f∞ = ‖f in(x, v)‖L1(Td×Sd−1)|Sd−1| and C is a positive
constant.

The previous result has been numerically observed [6]. Positive results on the
convergence speed have moreover been obtained. Historically, the first one is the
following [2]:

Theorem 3. Consider the Cauchy problem (1), with a cross section σ ∈ L∞(Td)∩
H1(Td). Suppose that there exist xi ∈ Td, i = 1, . . . , N , Cσ > 0 and λσ > 0 such
that

for a.e. x ∈ T
d, σ(x) ≥ Cσ inf

i=1,...,N
|x− xi|λσ .

and that k ≡ 1. If the initial condition f in ≥ 0 a.e. such that f in ∈ L∞(Td × V ),
∇xf̄

in ∈ L2(Td), and v ⊗ v : ∇x∇xf
in ∈ L2(Td × V ), then there exists a unique

nonnegative solution f to this system in C(R+;L
2(T× V )).

The solution f converges when t → +∞ to its asymptotic profile f∞(x, v) =
‖f in‖L1(Td×V ) and, moreover,

||f(t, ·, ·)− f∞||2L2(T×V ) ≤ C1 t
− 1

1+2λσ .

The explicit constant C1 depends on Cσ, λσ, ||σ||H1(Td)∩L∞(Td) and f
in.
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Even if the previous theorem is not optimal, it gives the only available quan-
titative result, up to now, on the convergence speed to equilibrium for the linear
Boltzmann equation in the degenerate case.

An additional property on σ is necessary to guarantee an exponential conver-
gence to equilibrium.

Definition 4. The cross section σ ≡ σ(x) verifies the geometrical condition if
there exist T0 and C > 0 such that

(5)

∫ T0

0

σ(x − sv)ds ≥ C a.e. in (x, v) ∈ T
d × V.

This property is reminiscent of the Bardos-Lebeau-Rauch condition that guar-
antees the exponential stabilization of the wave equation [1]. The following theo-
rem holds [4]:

Theorem 5. Let σ ∈ L∞ (Td
)
be a non-negative cross section satisfying the

geometrical condition (5). Then there exist two constants M > 0 and α > 0 such
that the solution f of the Cauchy problem (1) satisfies the inequality

(6)

∥∥∥∥f −
∫

Td×V
f in (x, v) dxdv

∥∥∥∥
L1(Td×V )

≤Me−αt
∥∥f in

∥∥
L1(Td×V )

for all t ∈ R+. Conversely, if the solution of the linear Boltzmann equation (1)
converges uniformly in L1 to its equilibrium state at an exponential rate (i.e., it
satisfies (6)), then σ must satisfy the geometrical condition (5).

We finally point out that it is possible to obtain an explicit and optimal expo-
nential decay rate to equilibrium for a simplified version of the Cauchy problem
(1), namely the generalized Goldstein-Taylor system:

(7)





∂u

∂t
+
∂u

∂x
= σ(x)(v − u)

∂v

∂t
− ∂v

∂x
= σ(x)(u − v),

x ∈ T := R/Z, t ≥ 0.

with non negative initial conditions

(8) u(0, x) = uin ∈ H1(T), v(0, x) = vin ∈ H1(T).

The following result has been proved in [5]:

Theorem 6. Let (uin, vin) ∈ H1(T) × H1(T) be non negative functions and let
σ ∈ L∞(T) satisfy (4). Denote also u∞ := ‖uin + vin‖L1(T). Then, there exists

a positive constant A∗, depending on ||uin||H1(T), ||vin||H1(T) and ||σ||L∞(T), such
that the solution (u, v) of the Goldstein-Taylor model (7)-(8) satisfies the inequality

(9) H(t) := ‖u− u∞‖2L2(T) + ‖v − u∞‖2L2(T) ≤ A∗ exp (−αt) ,
where

α = 2‖σ‖L1(T).
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Moreover, the decay rate α is optimal in the following sense:

α = sup
{
β ≥ 0 : ∃A∗, ∀t ≥ 0, ∀(uin, vin) ∈ H1(T) ×H1(T), H(t) ≤ A∗e

−βt} .
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Nontrivial equilibria of kinetic transport models for chemotaxis

Christian Schmeiser

(joint work with Vincent Calvez, Gaël Raoul)

Linear kinetic transport equations with velocity jumps biased towards the origin in
position space are considered, as models for the chemotactic response of bacteria
with run-and-tumble motility to a prescribed peaked chemoattractant concentra-
tion. For a one-dimensional model problem, the existence and dynamic stability
of peaked equilibrium distributions of bacteria is shown. Exponential decay to
the equilibrium is proven by hypocoercivity methods, which are related to the
decay behavior of diffusive macroscopic limits taking the form of Fokker-Planck
equations with confining potentials. Detailed results can be found in [1].

The linear kinetic equation for the distribution function f(t, x, v), t, x ∈ R,
v ∈ V = [−1/2, 1/2],

(1) ∂tf + v ∂xf = Q(f) =

∫

V

(K(x, v′)f(t, x, v′)−K(x, v)f(t, x, v)) dv′ ,

where the turning rate is increased for particles moving away from x = 0: K(x, v) =
1 + χsign(xv) with 0 < χ < 1.

Theorem 1. [1] There exists a nontrivial steady state solution g(x, v) of (1). It
is positive, bounded and symmetric: g(x, v) = g(−x,−v). There exists α > 0, a
positive velocity profile G, and constants 0 < c < C such that

(2) c e−αxG(v) ≤ g(x, v) ≤ C e−αxG(v) , x ≥ 0 , v ∈ V .

Outline of the proof: The decay parameter α and the profile G solve the eigenvalue
problem −αvG = Q(G), which determines α > 0 uniquely and G up to a multi-
plicative constant. The Milne problem for u = eαxg/G for x > 0 with given inflow
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data u(0, v), v > 0, can be solved by standard methods, and boundedness of u
in terms of the inflow data follows from the maximum principle, which eventually
proves the estimate (2).

By the symmetry assumption on g the Albedo operator mapping the inflow to
the outflow data can be used to formulate a fixed point problem for the determi-
nation of u(0, v), v > 0. The fixed point operator allows the application of the
Krein-Rutman theorem giving the existence of a positive eigenfunction. The mass
conservation property shows that the eigenvalue is equal to one.

The evolution operator Q−v ∂x is not coercive in the sense that the dissipation
of the entropy ‖f‖2 (where ‖ · ‖ is the norm in L2(dv dx/g)) vanishes, whenever
the distribution function has the form f(x, v) = h(x)g(x, v) with arbitrary h(x).
Our proof of hypocoercivity, i.e. exponential decay to the steady state, employs
the approach of [2], which is based on the construction of a modified entropy
functional with coercive dissipation rate. The method is based on a splitting
Q − v ∂x = L − T of the evolution operator in a symmetric negative semidefinite
operator L and a skewsymmetric operator T , such that the steady state is in the
intersection of the null spaces of L and T . Since Q(g) and v ∂xg do not vanish,
the standard splitting into collision and transport operator is not suitable, but it
can be modified appropriately.

Theorem 2. [1] Let fI ∈ L2(dv dx/g) (⊂ L1(dv dx)) and let

f∞(x, v) := g(x, v)

∫

R×V
fIdv dx

(∫

R×V
g dv dx

)−1

.

Then the solution of (1) subject to f(t = 0) = fI satisfies

‖f(t, ·, ·)− f∞‖L2(dv dx/g) ≤ Ce−λt‖fI − f∞‖L2(dv dx/g) ,

with positive constants C and λ, only depending on χ ∈ (0, 1).

Main ingredients of the proof are microscopic coercivity, i.e. coercivity of L on
the orthogonal complement of its null space, and macroscopic coercivity, which is
equivalent to a weighted Poincaré inequality with the macroscopic density of g as
weight. This also implies exponential decay to steady states for the correspond-
ing macroscopic limit model having the form of a Fokker-Planck equation with
confining potential.
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Noise reduction strategies for PIC simulations of Tokamaks and
Stellarators

Eric Sonnendrücker

(joint work with Roman Hatzky, Ralf Kleiber, Abigail Wacher)

Controlled thermonuclear fusion is a potential solution for safe and sustainable
energy production in the future. In order to achieve fusion conditions in a reactor
deuterium and tritium atoms need to be heated to about 100 000 000 ◦C and
confined at a high enough density for a sufficient time. This can be achieved
by confining the gas of charged particles, called a plasma, with a large magnetic
field. The experimental devices in which this is done are called tokamaks, when
the equilibrium is axisymmetric, or stellarator, when the equilibrium plasma has
a three-dimensional shape.

In order to understand energy confinement properties in these devices, turbulent
transport arising due to micro-instabilities in the plasma is a key issue. This can
be simulated numerically based on the so-called gyrokinetic model which is an
approximation of the full kinetic Vlasov-Maxwell equations in a very large external
magnetic field. The gyrokinetic model is defined in a five-dimensional phase-space,
thanks to the averaging of the particle motion over the magnetic field lines which
enables to remove one dimension compared to the full kinetic models. Moreover
some weak collisional effects need to be taken into account to add diffusion and
cut off the small scales in turbulence simulations.

Three kinds of method are generally used for such gyrokinetic simulations: fully
Eulerian methods which use a grid of phase space and standard methods for trans-
port equations like finite difference or finite volume methods with a Runge-Kutta
time advance, this approach is used for example in the GENE code [4]; a second
approach is the semi-Lagrangian method which is based on the method of charac-
teristics and solves the characteristics backwards before interpolating at the grid
points, this is used in the GYSELA code [3]; the third approach, which is the old-
est, and that we use here is the particle in cell (PIC) method which approximates
the distribution function by a set of macro-particles, see for example [5] which de-
scribes the ORB5 code. A excellent review article on the physics problems studied
with such codes can be found in [2].

The PIC method we consider in this talk can be cast into a Monte Carlo setting.
The quantities that need to be evaluated numerically being expected values with
respect to the particle distribution function that is normalised to one and consid-
ered as being a probability density function. For this method to be competitive
with the others, we need to apply noise reduction techniques to which an ample
literature is devoted in the statistics community, see for example [7].

In this talk we place the gyrokinetic equation with a linear collision operator in
the context of an abstract Fokker-Planck equation of the form

(1)
∂f

∂t
+∇ · (Af)− 1

2
ν2∆vf = 0.
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The advection field A itself depends on the electromagnetic field. So the equation
is nonlinear. But we won’t discuss the computation of A here, as we will focus
on how to reduce the noise in the evaluation of integral quantities related to the
distribution function f from the particle data.

Without the collision term from which the ∆vf stems, the equation would be a
scalar transport equation that could be solved with the method of characteristics.
With this term, the equation can be interpreted as a Fokker-Planck equation
(or Kolmogorov backward equation) associated, using the Itô formalism, to the
stochastic differential equation (SDE)

dZ = A(t,Z)dt+ νdW

where W is a multidimensional Wiener process.
Now the charge and current densities which can be computed as velocity mo-

ments of the distribution functions are essential for the dynamics as they are the
source terms for Maxwell’s equation or their approximations that are used for the
computation of the self-consistent electromagnetic field. In order to get a good
accuracy in their computation, variance reduction techniques can be used. In par-
ticular for magnetic fusion applications, one can use the fact that the distribution
function always stays fairly close to some analytically known equilibrium distribu-
tion. This has been used, since the 1990s in the context of the so-called δf method
where the distribution function was linearised around the equilibrium distribution.
This method has been later expanded to include non linear terms, but has always
been expressed as a δf method. In our work, we take a different approach, where
we consider a particle approximation of the full distribution function, but use the
equilibrium function in order to compute the needed expected values with a con-
siderably smaller variance. For example to compute the expected value of ψ(Z),
for some smooth function ψ, with respect to the probability density function f ,
we write

E[ψ(Z)] =

∫
ψ(z)f(z) dz =

∫
ψ(z)(f(z) − f0(z)) dz +

∫
ψ(z)f0(z) dz

where the last term can be computed analytically. Furthermore as the expected
values corresponding to the first integral will be computed with the law of large
number from the phase space position of marker particles representing the distribu-
tion functions f(t, z) and f0(t, z), we need to represent both distribution functions
with the same markers. In order to to this we need to introduce a weight for the
second population of particles f0. An equation for the evolution of the weights
can be found using an extended phase space with the weight as an additional
phase space variable [6, 7]. Note that it is possible, and generally done in practice,
to use a third independent marker distribution g, with then two weights relating
respectively f and f0 to g.

This method works very well without collisions, and in this case the integration
of the weights can be performed analytically using the characteristics. However,
as shown in [6], the expected value of the weight increases as a function of time,
making this control variate useless after some time.
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In this talk, we perform an analysis of the problem and a solution to the weight
growth problem using a splitting technique between transport and collision part
and using the equilibrium function of the collision operator as the control variate
f0. Similar ideas have been used for low noise Monte Carlo simulations of the
Boltzmann equations in [1].

References

[1] H. A. Al-Mohssen and N. G. Hadjiconstantinou, Low-variance direct Monte Carlo simula-
tions using importance weights, ESAIM: Math. Model. Numer. Anal. 44 (2010), 1069–1083.

[2] X. Garbet, Y. Idomura, L. Villard, and T.H. Watanabe, Gyrokinetic simulations of turbulent
transport, Nuclear Fusion 50(4) (2010).

[3] V. Grandgirard, Y. Sarazin, P. Angelino, A. Bottino, N. Crouseilles, G. Darmet, G. Dif-
Pradalier, X. Garbet, P. Ghendrih, S. Jolliet, G. Latu, E. Sonnendrücker, and L. Villard,
Global full-f gyrokinetic simulations of plasma turbulence, Plasma Physics and Controlled
Fusion 49 (2007), no. 12B, p. B173.

[4] T. Görler, X. Lapillonne, S. Brunner, T. Dannert, F. Jenko, F. Merz, and D. Told, The
global version of the gyrokinetic turbulence code gene, J. Comput. Phys. 230(18) (2011),
7053–7071.

[5] S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, T.M. Tran, B.F. McMillan, O. Sauter, K.

Appert, Y. Idomura, and L. Villard, A global collisionless PIC code in magnetic coordinates,
Comput. Phys. Commun. 177(5) (2007), 409–425.

[6] R. Kleiber, R. Hatzky, A. Könies, K. Kauffmann, and P. Helander, An improved control-
variate scheme for particle-in-cell simulations with collisions, Comput. Phy. Comm. 182
(2011), 1005–1012.

[7] Jun S. Liu. Monte Carlo Strategies in Scientific Computing, Springer Series in Statistics,
Springer, 2002.

Wave motion

Shih-Hsien Yu

In this talk, we have presented a stable-unstable formulation to study a wave mo-
tion of linearized Burgers equation around a hyperbolic shock wave. This approach
is done through a transform variable in the time domain so that the equation for
the Green’s function becomes an ODE. Through the ODE, the notion of stable-
unstable can be used to derive an algebraic equation to describe the behavior of
the wave motion crossing the shock front. Finally, those algebraic information can
be transform wave propagation information in the space-time domain.

Reporter: Franz Achleitner
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Institut de Mathématiques de Toulouse
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