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Jan Schröer, Bonn

8 December – 14 December 2013

Abstract. Cluster algebras are a class of commutative algebras intoduced
by Fomin and Zelevinsky in 2000. Their original purpose was to obtain a
combinatorial approach to Lusztig’s dual canonical bases of quantum groups
and to total positivity. Since then numerous connections between other areas
of mathematics have been discovered. The aim of this workshop was to
further strengthen these connections and to develop interactions.

Mathematics Subject Classification (2010): 13F60.

Introduction by the Organisers

The workshop Cluster Algebras and Related Topics, organised by Bernhard Keller
(Paris 7), Bernard Leclerc (Caen) and Jan Schröer (Bonn) was attended by 52
participants coming from various different areas of mathematics. There were 23
one hour lectures given at the meeting allowing ample time for questions and
discussions.

Cluster algebras were introduced by Fomin and Zelevinsky in 2000. They are
by definition a class of commutative algebras with an inductively constructed set
of algebra generators called cluster variables. These are grouped together in finite
overlapping subsets (called clusters) of a given size. Starting with an initial cluster
the other clusters and cluster variables are obtained via a combinatorially defined
process called mutation.

The positivity conjecture (saying that all cluster variables are positive Laurent
polynomials in any given cluster) was solved only very recently by Schiffler and
Lee. Schiffler presented their proof in the opening talk of the conference.
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The search for bases of cluster algebras with favourable properties (such as pos-
itivity) is still wide open. However substantial progress has been made for some
classes of cluster algebras. Thurston presented in his talk a construction of a posi-
tive basis for skein algebras, which are intimately related to cluster algebras arising
from triangulations of marked surfaces. For arbitrary skew-symmetric cluster al-
gebras Plamondon presented his joint work with Cerulli, Keller and Labardini
showing that all cluster monomials are linearly independent. The proof uses a
categorification of cluster algebras via generalized cluster categories.

Geiß explained in his talk that for most mutation-finite quivers there exists up
to equivalence only one non-degenerate potential. This implies that for such quiv-
ers there is essentially just one generalized cluster category. Labardini (joint work
with Zelevinsky) presented a new approach via representations of species in an
attempt to generalize Derksen, Weyman and Zelevinsky’s additive categorification
via Jacobian algebras from skew-symmetric to skew-symmetrizable cluster alge-
bras. Iyama (joint work with Reiten and Adachi) presented a report on τ -tilting,
a new framework for categorifying cluster algebras.

An important question is which algebras carry natural cluster algebra struc-
tures. Yakimov (joint work with Goodearl) presented a new ring theoretical ap-
proach for the construction of quantum cluster algebra structures on numerous
quantum coordinate algebras arising in Lie theory. A different link between clus-
ter algebras and Lie theory was the content of Gekhtman’s talk on Poisson-Lie
groups and cluster algebras.

The homogeneous coordinate rings of Grassmannians carry a natural cluster
algebra structure by work of Scott. King presented a new categorification of these
Grassmann cluster algebras, in terms of Cohen-Macauley modules over a twisted
group ring. The interaction between Grassmann cluster algebras, the classical
combinatorics of Grassmannians and dimer models have been the leading theme
of the talks of Baur, Muller, Musiker and L. Williams.

The link between complex integrable systems and cluster algebras was the topic
of Fock’s talk and of Soibelman’s report on his ground breaking work with Kontse-
vich. The strong connections between mathematical physics and cluster algebras
were also discussed in the talks by Neitzke and H. Williams and Di Francesco.

Other interesting topics related with cluster algebras have been presented: co-
homology of cluster varieties (Chapoton), complex volume of knots (Inoue), gen-
eralized friezes and cluster categories (Jorgensen, joint work with Holm), noncom-
mutative cluster algebras (Retakh, joint work with Berenstein).

Last not least the week was filled with many informal discussions. The workshop
provided a perfect atmosphere for exchanging ideas and strengthen interactions.
It us our pleasure to thank the administration and the staff of the Oberwolfach
Institute for their support and hospitality.
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Abstracts

Dimer models with boundary and Grassmannian cluster categories

Karin Baur

(joint work with Alastair King, Robert J. Marsh)

A dimer model can be defined as a quiver with an embedding of it into a compact
oriented surface, giving rise to a tiling of the surface. Such dimer models can
also be considered in the case of a surface with boundary. To Q we associate a
natural potential W , obtained by using the oriented faces of the embedded quiver.
Modifying the usual approach, we only take cyclic derivatives of W w.r.t. internal
arrows: every internal arrow α ∈ Q1 belongs to two unique oriented cycles αp+α ,
αp−α (of opposite orientations), where p±α are paths from the head of α to the tail
of α. Let ∂W be the set of relations p+α = p−α for all internal arrows α. We then
define the dimer algebra AQ of Q to be the quotient of path algebra C(Q) by the
relations ∂W . In the boundary case, the idea of only considering relation with
respect to internal arrows has arisen independently in work of Franco ([3]) and of
Demonet-Luo ([2]).

In this work, we are interested in dimer models arising from alternating strand
diagrams on a disk. They are collections of curves in a disk satisfying certain
axioms. Alternating strand diagrams have been introduced by Postnikov for ar-
bitrary permutations of n ([9]). Such diagrams also appear in this volume ([11],
[7], [6]). In particular, we are interested in diagrams arising from the permutation
i 7→ i + k, for 1 ≤ i ≤ n, with k < n fixed, as used in Scott’s work [10] on the
cluster structure of the homogeneous coordinate ring of Gr(k, n). We call them
(k, n)-diagrams.

We recall the algebra B appearing in [5] in this volume: B is the quotient of

the preprojective algebra Π(Ãn−1) of type Ãn−1 on 2n generators x1, . . . , xn, with
xi : i → i + 1, y1, . . . , yn−1, with yi : i + 1 → i by the n (additional) relations
xk = yn−k (subscripts omitted for brevity).

By [4], there is a bijection between k-subsets of {1, . . . , n} and rigid indecompos-
able rank 1 modules in the category CM(B) of maximal Cohen-Macaulay modules
for B. Furthermore, it is shown in [4, Prop 5.6] that two k-subsets are non-crossing
if and only if the corresponding rank 1-modules have vanishing extension spaces.

We recall that any (k, n)-diagram D corresponds to a maximal collection of
non-crossing k-subsets of {1, . . . , n} ([10], [8]). So the maximal collection of non-
crossing k-subsets associated to a (k, n)-diagram gives rise to a cluster tilting object
TD of CM(B).

With this, we are ready to formulate the main result of this talk:

Theorem (B-K-M [1], §9). Let D be an arbitrary (k, n)-diagram of reduced type.
Let AQ(D) be the associated dimer algebra and TD the associated B-module. Then
there is an isomorphism AQ(D)

∼= EndB(TD).
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From this, we can deduce that the algebra Bop is isomorphic to the idempotent
subalgebra eAQ(D)e by the idempotent e of all boundary vertices of Q(D). In
particular, the idempotent subalgebra is independent of the choice of D.

Thus, we obtain a description of B via an arbitrary (k, n)-diagram.
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Cohomology of fibers of cluster varieties

Frédéric Chapoton

Cluster algebras are commutative algebras, and it is natural to try to understand
them from the point of view of algebraic geometry. In the case of acyclic cluster
algebras, a finite presentation by generators and relations has been given in [1].
This allows to consider the spectrum of these cluster algebras as sub-schemes of
affine spaces.

One very classical and useful invariant of algebraic varieties is the cohomology
ring of their complex points. Our main question is therefore: what can be said
about the cohomology of spectra of acyclic cluster algebras ? There are several
additional motivations for asking this question. The first one is that some interest-
ing integrals are related to these varieties, and understanding algebraic differential
forms is a necessary first step to say more about them. The second reason is
that there are already known differential forms, showing that at least part of the
cohomology has a nice description.

As a first step towards the general case of acyclic cluster algebras, one restricts
to the case of cluster algebras admitting a seed whose quiver is a tree. This is
of course a strong limitation, as many cluster algebras do not have such a seed.
But it remains a rather large family, where cohomology seems already complicated
to describe. As explained later, our study involves nice combinatorial aspects of
trees, that do not extend easily to more general quivers.
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It is also well-known that cohomology of complex points of varieties defined
over Q is strongly related (by famous results of Deligne) to counting the number
of points over finite fields, but the latter is usually much simpler, as more tools
are available.

To define the varieties that we want to study, it is necessary to first consider in
depth the combinatorics of independent sets and matching of trees. The following
result is due independently to J. Zito [2] and to M. Bauer and S. Coulomb [4].

Theorem 1. For any tree T , there is a
unique partition of the vertices of T into three
subsets, called green, orange and red vertices,
such that
- Every red vertex • has only green neighbors.
- Every green vertex ◦ has at least two red
neighbors.
- There is a perfect matching on the induced
forest on orange vertices •.

In this theorem, a matching is a set of disjoint edges, called dominos, which
is perfect if every edge belongs to a domino. This coloring admits an alternative
description using matchings of maximum cardinality (maximum matchings), and
yet another one using independent sets of maximal cardinality. In particular, one
can show that vertices not covered by a maximum matching must be red.

Let us now choose a tree T and a maximum matching of T . From this data,
one can make an ice quiver as follows. The mutable vertices will be the vertices of
T and frozen vertices will be new vertices, one for every vertex of T not covered
by the matching. Every frozen vertex is attached by an edge to the corresponding
vertex of T . This extended graph is still a tree, and is endowed with the alternating
orientation.

One can then consider two kinds of varieties. The first one is the spectrum of
the ring defined by the known presentation of the cluster algebra (where coefficient
variables attached to frozen vertices are assumed to be invertible). For example,
for the tree with one vertex, the generators are x, x′ and the invertible coefficient
α, with unique relation xx′ = 1+α. This define an open set in the affine space of
dimension 2.

The second sort of varieties one can look at are the fibers of the morphism to
an algebraic torus defined by the coefficient variables. In the same example, this
means fixing a complex value for α. This is smooth if the choice is generic.

One can generalize this as follows. The red-orange-green coloring of vertices
of a tree T allows to define the red-green components of T as the components of
the induced forest on vertices that belong to at least one red-green edge. One can
then choose for every red-green component C either to let the coefficients variables
attached to C stay variables, or to give them generic values.

Theorem 2. The variety defined in this way does not depend on the chosen match-
ing, up to isomorphism. All these varieties are smooth.
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The genericity assumption on the fixed values of coefficient variables can be
made explicit, and is necessary to ensure smoothness. Consider for example the
tree with 3 vertices. Its coloring is red–green–red. A maximum matching covers
only two vertices, so there is a coefficient variable α attached to the remaining
vertex. If the value of α is fixed to 1, then the variety is singular.

Theorem 3. For any variety X in this family, the number of points of X over
the finite fields Fq is a polynomial in q.

One can show that there is an algebraic torus acting freely on these varieties.
The dimension N of this torus is given by the sum, over red-green components
where coefficients have been given a fixed generic value, of the number of red points
minus the number of green points.

Theorem 4. The number of points of X over the finite fields Fq is (q−1)N times
a reciprocal polynomial in q.

Let us now turn to cohomology. One is interested in the explicit description
of algebraic differential forms, that should be a basis of the algebraic de Rham
cohomology. Because our varieties are smooth, the cohomology with compact
support (which is more closely connected to the counting of points over finite
fields) can also be used to get some information. All the cohomology groups
involved carry a mixed Hodge structure. One can show by induction that this
mixed Hodge structure is of Tate type, i.e. an iterated extension of pure Hodge
structures Q(i) for some integers i.

The main tools that can be used to compute cohomology are the Mayer-Vietoris
long exact sequence for a covering by two open sets, and the similar spectral
sequence attached to a covering by more open sets.

The cohomology ring contains 1-forms dα
α for every coefficient variable (those

not with a fixed value). It also contains the Weil-Petersson 2-form introduced in
[3] and defined by the following sum over all edges:

(1) WP =
∑

i→j

dxidxj

xixj
,

where one has to include frozen vertices, but exclude those that bear a fixed
coefficient. In general these differential forms do not generate the full cohomology
ring.

Let us now describe some results and conjectures, first for linear trees (Dynkin
diagrams of type A):

• For n even, the cohomology ring is generated by WP.
• For n odd and one free coefficient variable α, it is generated by WP and

dα
α .

• For n odd and a generic fixed value for α, one conjectures that the coho-
mology ring is generated by WP and n− 1 classes in top degree.

For trees of type Dn with n odd and one generic coefficient, the cohomology
ring is generated by WP, an element of degree 3 and an element of top degree.
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There is currently work in progress about understanding the case of trees given
by adding one edge between two linear trees. A precise description of the coho-
mology of varieties attached to a general tree remains elusive so far.
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Fusion Products and Cluster Algebra

Philippe Di Francesco

(joint work with Rinat Kedem)

The characters of special finite-dimensional modules of simple Lie algebras g,
or corresponding quantum affine algebras or Yangians, satisfy recursion relations,
known as the Q-systems [1]. In the simply-laced case, the Q-system reads:

(1) Qi,k+1Qi,k−1 = Q2
i,k −

∏

jĩ

Qj,k (j = 1, 2, ..., r; k ∈ Z+)

where the index i labels the nodes of the corresponding Dynkin diagram, whereas
the last product extends over the neighbors j of the node i, and r is the rank of
the Lie algebra. For initial conditions Qi,0 = 1, Qi,k as determined by the above
system is the character of the Kirillov-Reshetikhin module KRi,k. The latter enjoy
special properties such as cyclicity of any tensor product thereof.

The equations (1), up to a trivial rescaling and upon relaxing the initial con-
dition, were shown to form a subset of the mutations of a suitably defined cluster
algebra [2, 3]. For the simply-laced case, the latter has rank 2r, and the initial

exchange matrix B =

(
0 −C
C 0

)
, where C is the corresponding Cartan matrix,

while the initial cluster is {Qi,0, Qi,1}ri=1.
The associated quantum cluster algebra induces a natural deformation of these

relations, called the quantum Q-system. For instance, for sl2, the latter reads:

tQk+1Qk−1 = Q2
k − 1 (k ∈ Z)(2)

QkQk+1 = tQk+1Qk (k ∈ Z)(3)

for some fixed quantum parameter t ∈ C∗. The non-commuting variables Qk can
no longer be interpreted as characters of the corresponding Kirillov-Reshetikhin
modules. Moreover, from the Laurent property of quantum cluster algebra, they
are expressible as Laurent polynomials of the initial cluster (Q0, Q1).
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The solutions of the quantum Q-system turn out to play a crucial role in under-
standing the graded tensor product multiplicities of Kirillov-Reshetikhin modules
in their decomposition onto fundamental ones, known as Feigin and Loktev’s fu-
sion products, defined as follows. We start from the action of the current algebra
g[z] on the tensor product of Kirillov-Reshetikhin modules V1, ..., VN localized at
generic complex points z1, ..., zN . The action of the current x ⊗ zm is simply via
usual coproduct for the Lie algebra part x, and zmi on the localized module Vi(zi)
for the current part zm. The homogeneous degree in z induces a grading of the
tensor product (which is a cyclic module by the Kirillov-Reshetikhin property),
and the fusion product, denoted by V1⋆V2⋆ · · ·⋆VN is simply the associated graded
space Fm = F [m]/F [m − 1] where F [m] denotes the total degree m part of the
tensor product. This in turn allows to define graded tensor product multiplicities
in the decomposition of the fusion product onto irreducible modules Vλ as the
Hilbert series:

N{Vi};Vλ
(q) =

∑

m≥0

qm dim (Hom(Fm, Vλ))

The fusion product was shown to be independent of the localization parameters
zi, henceforth we may drop them, and rewrite

V1 ⋆ V2 ⋆ · · · ⋆ VN = ⋆i,kKR
⋆ni,k

i,k

Our main result is a compact constant term formula for the graded tensor
product multiplicities [4], taking the following form in the case of sl2, where the
Kirillov-Reshetikhin modules KR1,k are simply the irreducible modules Vkω1

:

Theorem.

N{ni};ℓ(q) = qf({ni},ℓ) φ

(
Q1Q

−1
0

k∏

i=1

Qni

i ξℓ+1

)

where the notation N{nk};ℓ stands for N{
∏

k V
nk
kω1

};Vℓω1

and tf is a normalization

factor depending on the n’s and ℓ only. The Qi denote the solution of the quantum

Q-system (2) with t = q
1

2 , expressed as a Laurent polynomial of the initial variables
Q0, Q1 while ξ = limm→∞ QmQ−1

m+1 ∈ C[Q0, Q
−1
0 ] ⊗ C((Q−1

1 )). Here φ denotes
the left evaluation at Q0 = 1 of the constant term in Q1, namely for any formal
power series f =

∑
m≥−N cm(Q0, Q

−1
0 )Q−m

1 ∈ C[Q0, Q
−1
0 ] ⊗ C((Q−1

1 )), we have

φ(f) = c0(1, 1).

A straightforward generalization exists for simply laced Lie algebras [4], and we
believe the non-simply-laced case should pose no other problems than technical
ones.

The formula above gives a very simple way of computing the graded fusion
numbers N{Vi};Vλ

(t). By defining suitable generating functions thereof, we have
managed to derive difference equations that completely characterize them up to
Cauchy type initial conditions. The latter generating series resemble standard
Whittacker functions and are subject to a discrete version of the Toda equations
these satisfy.
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Classification of non-degenerate potentials for mutation-finite quivers

Christof Geiss

(joint work with Daniel Labardini, Jan Schröer)

1. Mutation finite quivers

We say that a 2-acyclic quiver is mutation finite if its mutation class contains
only finitely many isomorphism classes of quivers. For example all quivers with at
most two vertices are trivially mutation finite.

Fomin, Shapiro and Thurston presented in [4] an important class of mutation
finite quivers coming from triangulations of marked oriented surfaces with possibly
non-empty boundary. Roughly speaking, the vertices of such a quiver correspond
to the arcs of the triangulation, and there is an arrow i → j if the arcs i and j
are consecutive sides of a triangle in clockwise sense. Since, somewhat simplifying,
flipping arcs corresponds to mutation of quivers, this class is closed under mutation.
It contains all quivers of the finite types An and Dn (n ≥ 4) as well as all quivers

of the affine types A
(1)
n and D

(1)
n (n ≥ 4). Further interesting examples are the

following quivers

T1 ◦

α1

��✺
✺✺

✺✺
✺✺

✺

α2

��✺
✺✺

✺✺
✺✺

✺

◦

γ1

CC✞✞✞✞✞✞✞✞
γ2

CC✞✞✞✞✞✞✞✞
◦

β1

oo
β2oo

T2 ◦

α1

��

α2

��

◦

γ1

88♣♣♣♣♣♣♣♣♣♣

δ

��

◦

γ2

ff▼▼▼▼▼▼▼▼▼▼

◦
β1

gg❖❖❖❖❖❖❖❖❖❖ β2

88♣♣♣♣♣♣♣♣♣

D
(1,1)
4 ◦

α1

��

α2

��

◦

γ1♥♥♥♥♥♥

77♥♥♥♥♥♥

◦

γ2✄✄✄

AA✄✄✄

◦

γ3❀❀❀

]]❀❀❀

◦

γ4▼▼▼▼▼

ff▼▼▼▼▼

◦

β1PPPPPP

ggPPPPPP
β2❀❀❀

]]❀❀
β3✄✄✄

AA✄✄
β4qqqqq

88qqqqq

which come from triangulations of a once punctured torus, a torus with one bound-
ary component and one marked point, and a sphere with 4 punctures, respectively.
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Note that the mutation class of T1 and T2 consists of only one isomorphism class

of quivers, and the mutation class of D
(1,1)
4 consists of four isomorphism classes of

quivers. We have the following remarkable classification [3]:

Theorem (Felikson, Shapiro, Tumarkin). Let Q be a connected, mutation finite
quiver with at least 3 vertices which does not come from a triangulation of a
surface, thenQ belongs to the mutation class of precisely one quiver of the following
list:

• a quiver of finite type E6, E7 or E8 (any orientation),

• a quiver of affine type E
(1)
6 , E

(1)
7 or E

(1)
8 (any orientation),

• one of the following 5 non-acyclic quivers:
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2. Quivers with potential

In this section we briefly review several fundamental constructions from [1]. Let
K be an algebraically closed field and Q a quiver. We denote by K〈〈Q〉〉 the com-
plete path algebra of Q and write m(Q) for the corresponding Jacobson radical.
K〈〈Q〉〉 has the paths ofQ as a topological basis, so that possibly infinite linear com-
binations of paths of increasing length are allowed. Following [1, Rem. 6.8], a po-
tential for Q is by definition an element of C(Q) := m(Q)/{K〈〈Q〉〉,K〈〈Q〉〉}, where
{K〈〈Q〉〉,K〈〈Q〉〉} ⊂ m(Q) is the closure of the set of commutators {a · a′ − a′ · a |
a, a′ ∈ K〈〈Q〉〉}. Thus the cyclic paths of Q, up to rotation, form a topological basis
of C(Q). Next, denote by AutQ0

(K〈〈Q〉〉) the group of automorphisms of K〈〈Q〉〉
which fix pointwise trivial paths. AutQ0

(K〈〈Q〉〉) acts naturally on C(Q). Two po-
tentials W,W ′ ∈ C(Q) are right equivalent, if there exists φ ∈ AutQ0

(K〈〈Q〉〉) with
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W ′ = φ(W ). We say that W and W ′ are weakly right equivalent if W ′ = tφ(W )
for some t ∈ K∗ and φ ∈ AutQ0

(K〈〈Q〉〉).

For example, the potentials W
(1)
t := γ1β1α1 + γ2β2α2 − tγ2β1α2γ1β2α1 for

the quiver T1 are not right equivalent for t 6= t′. However, W
(1)
t is weakly right

equivalent to W
(1)
1 if and only if t ∈ K∗.

In [1] also mutations of loop-free quivers with potential (Q,W ) are introduced.
Let k ∈ Q0 and suppose that k is not incident to any 2-cycle in Q, and that W
involves no 2-cycles. In this case (Q′,W ′) = µk(Q,W ) with the same proper-
ties is defined. However, Q′ depends on W , and W ′ is well defined up to right
equivalence. In particular, for non-generic choices of W , the quiver Q′ may have
2-cycles. If this does not occur, Q′ is given by the usual quiver mutation of Q in
direction k. A potential W for a 2-acyclic quiver is called non-degenerate if after
arbitrary sequences of the above mutation procedure, for quivers with potential,
the resulting quiver is still 2-acyclic. Being non-degenerate for a potential comes
down to avoiding the zeros of infinitely many polynomial equations on the vector
space C(Q). Thus, a standard argument shows that over uncountable fields for
every 2-acyclic quiver there exists a non-degenerate potential.

In general, it is quite difficult to identify a given potential as non-degenerate,
however D. Labardini-Fragoso managed to produce for each quiver coming from a
triangulated surface a non-degenerate potential, essentially by showing that these
potentials are compatible with arbitrary QP-mutations [6].

Non-degenerate potentials are relevant for cluster algebras since in this situa-
tion one obtains for example the Laurent expansions of cluster variables in terms
of quiver Grassmannians over the corresponding Jacobian algebra P(Q,W ). This
observation allowed Derksen, Weyman and Zelevinsky to prove many difficult con-
jectures about cluster algebras with skew symmetric exchange matrix, see [2].

3. Main Result

In the following theorem we collect our findings about the classification of non-
degenerate potentials for mutation finite quivers [5].

Theorem. Let Q be a connected quiver.

(a) For Q there exists up to right equivalence a unique non-degenerate poten-
tial W in the following cases:

– Q comes from a triangulation of a surface with non-empty boundary
except if Q is isomorphic to the quiver T2.

– Q is mutation equivalent to one of the following exceptional quivers:
E∗
q with ∗ ∈ {∅, (1), (1, 1)} and q ∈ {6, 7, 8} or X6.

(b) For Q there exists up to weak right equivalence a unique non-degenerate
potential in the following cases:

– Q comes from a triangulation of a closed surface of positive genus and
at least 3 punctures.

– Q comes from a triangulation of a sphere with at least 5 punctures.
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(c) For the quiver T2 the potentials W = (γ1β1 + γ2β2)α1 + γ2δβ1α2 and
S = γ1β1α1 + γ2β2α2 form a complete system of representatives for the
(weak) right equivalence classes of non-degenerate potentials.

(d) For the quiver D
(1,1)
4 a complete system of representatives of the (weak)

right equivalence classes of non-degenerate potentials is given by Wt :=
(γ1β1 + γ2β2 + γ3β3)α1 + (tγ2β2 + γ3β3 + γ4β4)α2 with t ∈ K \ {0, 1}.

(e) If Q comes from a closed surface of positive genus with exactly one punc-
ture, then Q admits at least two classes of non-degenerate potentials up
to weak right equivalence.

Comments.

• Part (a) and (b) are [5, Thm. 1.4], part (c) is [5, Sec. 9.7.1], part (d) follows
from the discussion in [5, Sec. 9.9], part (e) is [5, Prp. 9.19].

• By the theorem of Felikson-Shapiro-Tumarkin, the above theorem covers
all mutation finite quivers except those coming from triangulations of a
closed surface of positive genus with exactly 2 punctures, and the two quiv-
ers in the mutation class of X7. We conjecture that in the first case there
exists a unique non-degenerate potential up to weak right equivalence.

• By [1] for mutation equivalent quivers Q and Q′ the (weak) right equiva-
lence classes of non-degenerate potentials for Q and Q′ respectively are in
bijection. Thus a first step towards the classification problem is to identify
in each mutation class a quiver with convenient properties. For example,
if Q is mutation acyclic, then there exists for Q a unique non-degenerate
potential up to right equivalence.

• For triangulations of a closed surface with at least 3 punctures it is im-
portant to observe that in this case there exists a triangulation with no
loops and such that each vertex has valency at least 4. The correspond-
ing quivers have a convenient constellation of cycles which simplifies the
classification.

• The potentials W
(1)
1 and W

(1)
0 for the quiver T1 from the previous section

are typical examples of two non-degenerate potentials which are not weakly
right equivalent in the situation of part (e) of our Theorem.
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Cluster structures on Poisson-Lie groups

Michael Gekhtman

(joint work with Michael Shapiro, Alek Vainshtein)

This talk can be viewed as a progress report on the conjecture formulated in [7],
that state each class in the Belavin-Drinfeld classification of Poisson-Lie structures
on a complex simple group G corresponds to a cluster structure in O(G). Our ap-
proach, developed and documented in [5, 6], is on the notion of a Poisson bracket
compatible with a cluster structure. If an algebraic Poisson variety (M, { , })
possesses a coordinate chart that consists of regular functions whose logarithms
have pairwise constant Poisson brackets (log-canonical coordinates), then one can
try to use this chart to define a cluster structure CM compatible with { , }. Al-
gebraic structures corresponding to CM (the cluster algebra and the upper cluster
algebra) are closely related to the ring O(M) of regular functions on M.

Let G be a Lie group equipped with a Poisson bracket { , }. G is called a
Poisson–Lie group if the multiplication map

G × G ∋ (x, y) 7→ xy ∈ G

is Poisson. We are interested in the case when G be a simple complex Lie group
and a Poisson-Lie structure is associated with a classical R-matrix, r ∈ g ⊗ g, a
solution of the classical Yang-Baxter equation which satisfy an additional condition
that r + r21 is an element of g ⊗ g that defines an invariant nondegenerate inner
product on G. (Here g = Lie(G) and r21 is obtained from r by switching factors
in tensor products.) Classical R-matrices were classified, up to an automorphism,
by Belavin and Drinfeld in [1]. Let h be a Cartan subalgebra of G and ∆ be
the set of positive simple roots in the root system associated with G. A Belavin-
Drinfeld triple T = (Γ1,Γ2,Γ) consists of two subsets Γ1,Γ2 of ∆ and an isometry
Γ : Γ1 → Γ2 nilpotent in the following sense: for every α ∈ Γ1 there exists m ∈ N

such that Γj(α) ∈ Γ1 for j = 0, . . . ,m − 1, but Γm(α) /∈ Γ1. To each T there
corresponds a set RT of classical R-matrices that we call the Belavin-Drinfeld
class corresponding to T . Two R-matrices in RT differ by an element from h⊗ h

satisfying a linear relation specified by T . We denote by { , }r the Poisson-Lie
bracket associated with r ∈ RT .

In [7] we conjectured that there exists a classification of regular cluster struc-
tures on G that is completely parallel to the Belavin-Drinfeld classification.

Conjecture 1. For any Belavin-Drinfeld triple T = (Γ1,Γ2, γ) there exists a clus-
ter structure (CT , ϕT ) on G compatible with { , }r for any r ∈ RT . Furthermore,
the corresponding upper cluster algebra AC(CT ) is naturally isomorphic to O(G).

We called a cluster structure compatible with non-standard Poisson-Lie brackets
exotic.

This conjecture has been verified

• for any G in the case of the standard Poisson-Lie structure (trivial Belavin-
Drinfeld data) [7];
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• for all Belavin-Drinfeld classes in SL(n), n < 6 [7, 3];
• for the Cremmer-Gervais Poisson-Lie structure on SL(n):
Γ1 = {α2, . . . , αn−1}, Γ2 = {α1, . . . , αn−2} and γ(αi) = αi−1 for i =
2, . . . , n− 1 [8, 9].

To construct an initial cluster in the Cremmer-Gervais case, we needed an
insight that comes from analyzing the corresponding Poisson-Lie structure in the
Drinfeld double of G. It is associated with the Manin triple (D(g), dg, gr), where
D(g) = g⊕g = dg+̇gr is equipped with the invariant nondegenerate inner product
〈〈(ξ, η), (ξ′, η′)〉〉 = 〈ξ, ξ′〉 − 〈η, η′〉, an isotropic subalgebra dg is the image of
g in D(g) under the diagonal embedding and gr is an isotropic subalgebra of
D(g) given by gr = {(R+(ξ), R−(ξ)) : ξ ∈ g}, where R± ∈ End g are given by
〈R+η, ζ〉 = −〈R−ζ, η〉 = 〈r, η ⊗ ζ〉. (G, { , }r) is a Poisson-Lie subgroup of D(G)
under the diagonal embedding. Another Poisson-Lie subgroup is Gr = Exp(gr).

Working with the Drinfeld double, one is able to recognize stable variables for
the exotic cluster structure as two-sided semi-invariants of the Gr-action and to
obtain an initial cluster as a restriction to the diagonal subgroup of a certain fam-
ily of regular functions log-canonical on the double. This also hints at a possibility
of endowing the double itself with a cluster structure. However, our current work
in progress shows that while it is possible to construct a regular log-canonical co-
ordinate system in the double in all the cases in which Conjecture 1 is established,
in order to stay within the ring of regular functions, one is forced to replace one
of the the exchange relations with a generalized exchange relation in the sense of
[2]:

xx′ = u−p

(
u+

u−

)
,

where x is a cluster variable being transformed, u± are monomials in variables from
the same cluster and p is a polynomial of degree d (the case d = 1 corresponds to
the usual cluster exchange relation featured in the definition of the cluster algebra
[4]). We can now formulate

Conjecture 2. For any Belavin-Drinfeld triple T = (Γ1,Γ2, γ) there exists a
generalized cluster structure on D(G) compatible with the corresponding Poisson-
Lie structure.

Theorem. Conjecture 2 is valid for the trivial and Cremmer-Gervais Belavin-
Drinfeld data.
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Cluster algebra and complex volume of knots

Rei Inoue

(joint work with Kazuhiro Hikami)

The cluster algebra is widely studied from the viewpoint of geometry, such
as Teichmüller theory [1] and triangulated surface [3, 4]. The key observation
is that a cluster mutation corresponds to a flip (a change of triangulation). In
[9], the cluster algebraic techniques are used to describe hyperbolic structures
of punctured surface bundles on S1. There a flip in hyperbolic three-space is
interpreted as attachment of an ideal tetrahedron, and its modulus is identified
with a cluster y-variable. Inspired by this work, in [6, 7] we study the complex
volume by using cluster variables with coefficients. The complex volume of a
hyperbolic three-manifold M is a complexification of hyperbolic volume given by

Vol(M) + iCS(M),

where Vol(M) is the hyperbolic volume and CS(M) is the Chern–Simons invariant
of M .

In this talk we introduce the idea to compute the complex volume of the two-
bridge knot complement based on [6]. First, we explain some basics of three-
dimensional hyperbolic geometry: an ideal tetrahedron △, its modulus z ∈ C, and
hyperbolic volume. We also introduce the tools to compute complex volume: an
oriented ideal tetrahedron and its flattening (z; p, q) ∈ C×Z2 [10]. A flattening is
an element of the extended pre-Bloch group which is, roughly speaking, a quotient
of the free Z-module on C × Z2 by the (generalized) five-term relation. When a
cusped hyperbolic three-manifold M is decomposed into ideal tetrahedra {△ν}ν ,
the complex volume of M is

i (Vol(M) + iCS(M)) =
∑

ν

sgn(ν)L(zν ; pν , qν).

Here (zν ; pν , qν) is the flattening of △ν , sgn(ν) = ±1 is determined by the orien-
tation of △ν , and L is the extended Rogers dilogarithm function given by

L(z; p, q) = Li(z) +
1

2
log z log(1− z) +

π i

2

(
q log z + p log(1− z)

)
−

π2

6
,

where Li(z) is the dilogarithm function.
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Next we introduce the cluster algebraic interpretation for hyperbolic structure
of a punctured surface bundle. To compute complex volume, we use the cluster
variables with coefficients where coefficients belong to a tropical semifield. Then
our main observation is that the cluster variable with coefficients is closely related
to Zickert’s formulation of flattening [13], and that the complex volume is obtained
from the cluster variable.

We use the ideal tetrahedral decomposition of two-bridge knot complement
given by a 4-punctured sphere bundle on an interval (with a specific gluing at the
two boundaries) [11]. We translate it into a sequence of mutations of seed which
reduces to algebraic equations for cluster variables. By taking an appropriate
solution of the equations, we get the complex volume. We remark that a punctured
surface bundle on S1 is translated into a sequence of mutations of seed with a
periodic boundary condition (cf. [9]).

In closing, we mention some related topics and future problems. It would be
interesting to study hyperbolic three-manifolds by applying quantum cluster al-
gebra [2] or cluster algebra related to higher Teichmüller theory [1]. Actually in
the case of once-punctured torus bundle on S1, it is studied in [12] that a classical
limit of adjoint action of mutations, from which complex volume and A-polynomial
are obtained. A generalization to higher rank should be related to [5]. On the
other hand, in [7] we define the R-operators in terms of cluster mutation, which
satisfy the braid relation. We also study its quantization [8] using quantum clus-
ter algebra. This R-operator may be helpful in studying a relationship between
hyperbolic geometry and quantum invariants.
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Mutation and g-vectors in τ -tilting theory

Osamu Iyama

(joint work with Takahide Adachi, Idun Reiten)

Let AQ be a cluster algebra associated with a quiver Q. For a potential W , the
cluster category CQ,W is defined by the Ginzburg dg algebra ΓQ,W . We denote
by c-tiltCQ,W the set of isomorphism classes of basic cluster-tilting objects, and
c-tilt0 CQ,W the subset consisting of reachable cluster-tilting objects (i.e. cluster-
tilting objects which are obtained from ΓQ,W by iterated mutation). When (Q,W )
is non-degenerate, we have a bijection

(1) c-tilt0 CQ,W → {clusters in AQ}

which commutes with mutation [CKLP] after works by a number of authors.
τ -tilting theory [AIR] provides another framework of categorifying cluster al-

gebras, which is simpler since it deals with the Jacobian algebra PQ,W instead of
the Ginzburg dg algebra ΓQ,W . It is interesting from a representation theoretic
viewpoint since it works for arbitrary finite dimensional algebras.

1. τ-tilting theory Let k be an algebraically closed field and Λ a basic finite
dimensional k-algebra. We denote by modΛ the category of finitely generated
left Λ-modules, and projΛ (respectively, injΛ) the full subcategory consisting of
projective (respectively, injective) modules. We have an equivalence ν := (DΛ)⊗Λ

− : projΛ → injΛ called Nakayama functor. For M ∈ modΛ, we denote by

PM
1

f
−→ PM

0 → M → 0 a minimal projective presentation. The AR-translation of

M is defined by an exact sequence 0 → τM → ν(PM
1 )

ν(f)
−−−→ ν(PM

0 ).
Clearly τM = 0 if M is projective. Moreover τ gives a bijection between the

set of isomorphism classes of indecomposable non-projective Λ-modules and the
set of isomorphism classes of indecomposable non-injective Λ-modules.

The notion of τ -rigid modules appeared in an old work by Auslander-Smalø:

Definition 1 Let M ∈ modΛ. We call M τ-rigid if HomΛ(M, τM) = 0. We call
M τ-tilting if it is τ -rigid and |M | = |Λ| holds, where |M | is the number of non-
isomorphic indecomposable direct summands of M . We call M support τ-tilting
if there exists an idempotent e of Λ such that M is a τ -tilting (Λ/〈e〉)-module.

We denote by sτ -tiltΛ the set of isomorphism classes of basic support τ -tilting
Λ-modules. We give a few examples.

Example 2 (a) Λ and 0 always belong to sτ -tiltΛ.
(b) If Λ is local, then sτ -tiltΛ = {Λ, 0}.
(c) [M] Let Π be a preprojective algebra of a Dynkin quiverQ,W the corresponding
Weyl group, and Ii := 〈1 − ei〉 a two-sided ideal of Π for the vertex i of Q. Then
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there exists a bijection W → sτ -tiltΠ sending w ∈ W to Iw := Ii1 · · · Iiℓ , where
w = si1 · · · siℓ is an arbitrary reduced expression of w.
(d) For the path algebra kQ of the quiver Q of type A2, sτ -tilt(kQ) consists of 5
elements kQ, D(kQ), S1, S2 and 0. This is a special case of the next (e).
(e) Let C be a 2-Calabi-Yau triangulated category with a cluster-tilting object T .
Then we have a bijection

(2) c-tiltC → sτ -tilt EndC(T ), U 7→ HomΛ(T, U).

When C = CQ,W and T = ΓQ,W for a non-degenerate Jacobi-finite potential
(Q,W ), by combining (1) and (2) we have a bijection

sτ -tilt0PQ,W → {clusters in AQ}

for the Jacobian algebra PQ,W , where sτ -tilt0PQ,W is the set of reachable support
τ -tilting PQ,W -modules.

To introduce mutation of support τ -tilting modules, we need to deal with pairs
(M,P ) with M ∈ modΛ and P ∈ projΛ. We call (M,P ) τ-rigid if M is τ -rigid
and HomΛ(P,M) = 0. We call (M,P ) support τ-tilting if (M,P ) is τ -rigid and
|M |+ |P | = |Λ|.

Theorem 3 Let (M,P ) be a basic τ -rigid-pair for Λ.
(a) (M,P ) is a direct summand of some (N,Q) ∈ sτ -tiltΛ (i.e. M and P are direct
summands of N and Q respectively).
(b) If |M | + |P | = |Λ| − 1, then (M,P ) is a direct summand of precisely two
elements (Ni, Qi) ∈ sτ -tiltΛ (i = 1, 2).
(c) [J] There exist finite dimensional k-algebra Γ with |M |+ |P | = |Λ| − |Γ| and a
bijection {(N,Q) ∈ sτ -tiltΛ | (N,Q) has (M,P ) as a direct summand} → sτ -tiltΓ.

Note that (b) is a special case of (c) since |Γ| = 1 implies sτ -tiltΓ = {Γ, 0}.
We call (N1, Q1) and (N2, Q2) in (b) above mutation of each other. The ex-

change graph of Λ has the set sτ -tiltΛ of vertices and edges correspond to mutation.
It is important to know the number of connected components of the exchange

graph. The partial order gives an effective tool.

2. Partial order The partial order on tilting modules due to Riedtmann-
Schofield and Happel-Unger can be extended to support τ -tilting modules.

A torsion class is a full subcategory T in modΛ which is closed under factor
modules and extensions. We call a torsion class functorially finite if there exists
M ∈ modΛ such that T = FacM , where FacM is the full subcategory of modΛ
consisting of all factor modules of finite direct sums of copies of M .

Theorem 4 (a) There exists a bijection from sτ -tiltΛ to the set of all functorially
finite torsion classes in modΛ. Hence sτ -tiltΛ has a natural partial order, i.e. we
define M ≥ N if and only if FacM ⊃ FacN . Clearly Λ is a unique maximal
element and 0 is a unique minimal element.
(b) [DIJ] Let M ∈ sτ -tiltΛ, and let T be a torsion class in modΛ. If FacM ) T
(respectively, FacM ( T ), then there exists a mutation N of M such that FacM )

FacN ⊃ T (respectively, FacM ( FacN ⊂ T ).
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(c) The exchange graph of sτ -tiltΛ coincides with the Hasse graph of sτ -tiltΛ.

Note that (c) is an easy consequence of (b).
We call a finite dimensional k-algebra Λ τ-rigid-finite if there exists only finitely

many indecomposable τ -rigid Λ-modules, or equivalently, sτ -tiltΛ is a finite set
[DIJ]. For example, any representation-finite algebra and any local algebra are
τ -rigid-finite. Any preprojective algebra Π of Dynkin type is also τ -rigid-finite
(Example 2(c)), and the partially ordered set sτ -tiltΠ is isomorphic to W with
respect to the opposite of weak order.

It is an interesting question to classify τ -rigid-finite algebras.
Another easy consequence of (b) above is the following result.

Corollary 5 [DIJ] A finite dimensional k-algebra Λ is τ -rigid-finite if and only if
any torsion class in modΛ is functorially finite. In this case, the exchange graph
of sτ -tiltΛ is connected.

This is an analog of a classical result: A finite dimensional k-algebra Λ is
representation-finite if and only if any subcategory in modΛ is functorially finite.

3. g-vectors A combinatorial invariant of τ -rigid pairs is given by g-vectors.
Let Λ be a basic finite dimensional k-algebra such that 1 = e1 + · · · + en for
primitive orthogonal idempotents e1, . . . , en. The Grothendieck group K0(projΛ)
of an additive category projΛ is a free abelian group with a basis [e1Λ], . . . , [enΛ].

Theorem 6 [AIR, DIJ] (a) If (M,P ) is a τ -rigid pair, then PM
0 and PM

1 ⊕ P
have no non-zero common direct summands. We define the g-vector (or index ) of
(M,P ) as

g(M,P ) := [PM
0 ]− [PM

1 ⊕ P ] ∈ K0(projΛ).

(b) τ -rigid pairs are determined by their g-vectors.
(c) Let (M,P ) ∈ sτ -tiltΛ. Then g-vectors of indecomposable direct summands of
(M,P ) give a basis of K0(projΛ). Let C(M,P ) be the cone in K0(projΛ) ⊗Z R

spanned by these basis elements.
(d) Different cones intersect only at their boundaries.
(e) If Λ is τ -rigid-finite, then

⋃
(M,P )∈sτ -tiltΛC(M,P ) = K0(projΛ)⊗Z R.

For the preprojective algebra Π of Dynkin type, the cones C(M,P ) are precisely
Weyl chambers.

Note that τ -rigid pairs for Λ have a structure of a simplicial complex, and a
geometric realization is given by g-vectors. If Λ is τ -rigid-finite, then it is homeo-
morphic to an (n− 1)-sphere as an easy consequence of (d) and (e) above.

We conjecture that g-vectors determine the partial order on sτ -tiltΛ.
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Generalised friezes and a modified Caldero-Chapoton map depending

on a rigid object

Peter Jørgensen

(joint work with Thorsten Holm)

This report is based on [4]. Let Q be a finite quiver without loops and 2-cycles.
The (original) Caldero-Chapoton (CC) map is a map from the set of objects of the
cluster category C(Q) to a ring of Laurent polynomials over Z. If Q has no cycles
then the CC map restricts to a bijection from the set of rigid indecomposable
objects to the set of cluster variables of the cluster algebra A(Q), see [3, thm. 4].

We show how to modify the CC map by replacing the cluster tilting object
which appears in the original definition with a basic rigid object. The modified
CC map turns out to be what we call a generalised frieze. We show that when
applied to C(An), the cluster category of Dynkin type An, the modified CC map
recovers the generalised friezes defined by combinatorial means in [1].

Abstract setup of the CC map. Let k be an algebraically closed field, C a k-linear
Hom-finite Krull-Schmidt triangulated category with Auslander-Reiten (AR) tri-
angles. Note that the cluster category C(Q) is an example, but there are many
others.

LetR be an object of C and writeE = EndR. There is a functorG : C → modE
given by G(c) = Hom(R,Σc) where Σ is the suspension functor of C.

Let A be a commutative ring and let α : objC → A and β : K0(modE) → A
be maps which are “exponential” in the sense that α(0) = 1, α(c⊕ d) = α(c)α(d)
and β(0) = 1, β(e+ f) = β(e)β(f).

The CC map defined by these data is the map ρ : objC → A given by

(1) ρ(c) = α(c)
∑

e

χ
(
Gre(Gc)

)
β(e).

The sum is over e ∈ K0(modE). By χ is denoted the Euler characteristic defined
by étale cohomology with proper support, and Gre(Gc) is the Grassmannian of
submodules M ⊆ Gc with [M ] = e.

The original CC map is the following special case. Assume that C is 2-Calabi-Yau.
Let R be a basic cluster tilting object of C, set A = Z[x±1

1 , . . . , x±1
n ] where n is

the number of indecomposable direct summands of R, and define α and β on the
basis of certain distinguished triangles in C which involve R, see [6, lem. 4.1].

The modified CC map is the following special case. Let R be a basic object of C
which is rigid, that is, Hom(R,ΣR) = 0. This is much more general than being
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Figure 1. An 8-gon with a fixed vertex i and a polygon dissec-
tion. For each vertex j, the corresponding number mij is shown
next to j.

cluster tilting. Set A = Z, and let α and β be identically equal to 1. Then

ρ(c) =
∑

e

χ
(
Gre(Gc)

)
.

Theorem A. The modified CC map ρ is a generalised frieze, that is,

(1) ρ(b1 ⊕ b2) = ρ(b1)ρ(b2),

(2) if ∆ = τc → b → c is an AR triangle, then ρ(τc)ρ(c) − ρ(b) ∈ { 0, 1 }.

More precisely, ρ(τc)ρ(c) − ρ(b) is 0 if G(∆) is a split short exact sequence and 1
otherwise.

Dynkin type An. Consider the cluster category C(An) of Dynkin type An. By [2]
there is a bijection between the indecomposable objects of C(An) and the diagonals
of an (n+ 3)-gon P . Let R be a basic rigid object of C(An). Under the bijection,
the indecomposable summands of R correspond to a set D of pairwise non-crossing
diagonals, that is, to a polygon dissection D of P .

In [1, def. 3.1] we described the following inductive procedure. Consider a vertex
i of P and set mii = 0. Let j 6= i be another vertex of P . If i and j belong to
the same piece π of P , as defined by the dissection D, then set mij = 1. If i and
j belong to different pieces, then we can assume inductively that j belongs to a
piece, π, which has two vertices, k and ℓ, such that mik and miℓ have already been
defined, and we set mij = mik +miℓ. Figure 1 shows an example.

There is a map ϕ from the set of indecomposable objects of C(An) to Z, given
by

ϕ(c) = mij
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Figure 2. The generalised frieze in Dynkin type A5 arising from
the polygon dissection in Figure 1. The slice starting at the south-
west corner contains the numbers 3, 3, 2, 2, 1 obtained from Figure
1. Since the figure shows the AR quiver of C(A5), the dotted lines
should be identified with opposite orientations.

where the indecomposable object c corresponds to the diagonal between i and j.
This makes sense because mij = mji by [1, thm. 3.3]. We extend ϕ to all objects
of C(An) by requiring ϕ(b1 ⊕ b2) = ϕ(b1)ϕ(b2). Figure 2 shows the AR quiver of
C(A5) with the values of ϕ arising from the dissection in Figure 1.

Theorem B. Let ρ and ϕ be the maps objC(An) → Z defined above. Then
ρ = ϕ.

In particular, ϕ is a generalised frieze by Theorem A. This was shown by com-
binatorial means in [1, thm. 5.1].

Further developments. Going back to the abstract setup, the modified CC map
in Equation (1) depends on choices for A, α, and β. In [5] we show that if R is
a rigid object in a suitable 2-Calabi-Yau category C, then A can be chosen as a
ring of Laurent polynomials over Z and α and β can be chosen to be non-constant
maps. This produces generalised friezes with values in Laurent polynomials.
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Grassmannian Cluster Categories

Alastair King

(joint work with Bernt Jensen and Xiuping Su)

We find an additive categorification of the cluster algebra structure of Fomin-

Zelevinsky [1] and Scott [4] on the homogeneous coordinate ring C
[
Ĝn

k

]
of the

Grassmannian of k-subspaces ofCn, extending the categorification by Geiss-Leclerc-
Schröer [2] for the affine coordinate ring C[N ] of the open cell.

Theorem. (G-L-S [2]) Let Π be the preprojective algebra of type An−1. Then
C[N ] is categorified by the category SubQk of Π-modules with socle at k.

Since C[N ] = C
[
Ĝn

k

]
/(φ0 − 1), we see that φ0 is the one Plücker coordinate

missed by SubQk: it corresponds to the zero module, not a rigid indecomposable.

Theorem. (J-K-S [3]) Let B be the twisted group ring C[x, y]/(xk − yn−k) ∗Cn,

where Cn is a diagonal cyclic subgroup of SL2(C). Then C
[
Ĝn

k

]
is categorified by

the category CM(B) of B-modules that are free over the centre Z(B) = C[xy].

The proof uses the fact that B has an idempotent e0 such that B/Be0B is
a quotient of Π supporting SubQk. Then the functor M 7→ M/Be0M identifies
SubQk as the quotient of CM(B) by the projective P0 = Be0. Note: P0 is precisely
the new rigid indecomposable corresponding to the missed coordinate φ0.

For example, when k = 2, the Auslander-Reiten quiver of CM(B) has a struc-
ture that mirrors that of a Coxeter-Conway frieze pattern, e.g. when n = 5:

15 12 23 34 45

45 15

25

35

13

14

24

25

35

−− −−

−− −− −−
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Strongly primitive species with potentials: aims and limitations

Daniel Labardini-Fragoso

(joint work with Andrei Zelevinsky)

This talk is based on [4]. We define mutations of strongly primitive species with
potentials, and show that if B is any n × n integer matrix admitting a skew-
symmetrizer with pairwise coprime diagonal entries, then for any given sequence
of mutations which one wants to perform there exists a species realization A of
B which admits a potential S such that the mutations of (A,S) along the given
sequence are compatible with matrix mutation.

An n×n integer matrix B is said to be skew-symmetrizable if there exist positive
integers d1, . . . , dn such that DB is skew-symmetric, where D = diag(d1, . . . , dn).
Such D is said to be a skew-symmetrizer of B.

A weighted quiver is a pair (Q,d), where Q = (Q0, Q1, t, h) is a loop-free quiver
and d = (di)i∈Q0

is a tuple of positive integers attached to the vertices of Q. We
call d the weight tuple of (Q,d).

If B is a skew-symmetrizable matrix with skew-symmetrizer D, we define a
weighted quiver (QB,d) as follows: The vertex set of QB is {1, . . . , n}, and QB

has exactly

gcd(di, dj)bij
dj

arrows from j to i whenever bij ≥ 0. The tuple d is defined to be the tuple of
diagonal entries of D.

If D (and hence d) is kept fixed, the assignment B 7→ (QB,d) is easily seen to
be a bijection between the set of n×n integer matrices that are skew-symmetrized
by D and the set of 2-acyclic weighted quivers with weight tuple d. This means
that there is a weighted quiver counterpart of the notion of matrix mutation:

Definition 1. Let (Q,d) be a weighted quiver. For k ∈ Q0, define the mutation
of (Q,d) with respect to k to be the weighted quiver µk(Q,d) with vertex set
Q0 and weight tuple d, obtained as the result of performing the following 3-step
procedure:

(Step 1) For each pair of arrows a : j → k and b : k → i of Q, introduce
gcd(di,dj)dk

gcd(di,dk) gcd(dk,dj)
“composite” arrows from j to i;

(Step 2) replace each c ∈ Q1 incident to k with an arrow c∗ going in the opposite
direction;

(Step 3) choose a maximal collection of disjoint 2-cycles and remove them.

Let d be the least common multiple of the tuple d = (di)i∈Q0
, F be a finite

field, and E be the unique degree-d field extension of F . For i ∈ Q0, set Fi to
be the unique degree-di field subextension of E/F , and for every pair of vertices
i, j ∈ Q0, set

Aij =
⊕

a:j→i

Fi ⊗Fi∩Fj
Fj .
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Define

R =
⊕

i∈Q0

Fi and A =
⊕

i,j∈Q0

Aij .

Then R is a semisimple ring and A is an R-R-bimodule. We say that A is the
species of (Q,d) over E/F .

Remark 2. The data ((Fi)i∈Q0
, (Aij)i,j∈Q0

, (A∗
ij)i,j∈Q0

) constitutes a species (or
modulation) of the valued quiver of B in the sense of Dlab-Ringel [3], hence our
use of the term “species”.

The complete tensor algebra of A over R is called the complete path algebra of
A and denoted R〈〈A〉〉. Thus we have

R〈〈A〉〉 =
∞∏

ℓ=0

Aℓ

as an R-R-bimodule, where Aℓ denotes the ℓ-fold tensor product A ⊗R . . .⊗R A.
If an element S ∈

∏∞
ℓ=1 A

ℓ satisfies S =
∑

i∈Q0
eiSei, where ei is the idempotent

sitting in the ith component of R, we say that S is a potential on A and that (A,S)
is a species with potential.

From now on we assume that (Q,d) is strongly primitive, that is, we suppose
that gcd(di, dj) = 1 for all i 6= j. We shall say that A, the species of (Q,d)
over E/F , is strongly primitive as well, and that (A,S) is a strongly primitive
species with potential whenever S is a potential on A. We also assume that the
characteristic of F is congruent to 1 modulo d. This implies that there exists an
element v ∈ E such that the set B = {1, v, v2, . . . , vd−1} is an eigenbasis of E/F ,
that is, an F -basis of E consisting of eigenvectors of all elements of the Galois
group Gal(E/F ). This eigenbasis is quite useful to obtain an explicit description
of the elements of R〈〈A〉〉; indeed, setting Bi = B ∩ Fi for i ∈ Q0 we have:

Lemma 3. For every ℓ ≥ 0, the set {ω0a1ω1a2 . . . ωℓ−1aℓωℓ | t(am) = h(am+1) for
m = 1, . . . , ℓ− 1, ω0 ∈ Bh(a1) and ωm ∈ Bt(am) for m = 1, . . . , ℓ}, whose elements

we call paths of length ℓ, is a basis of Aℓ as an F -vector space. Consequently,
every element of R〈〈A〉〉 has a unique expression as a possibly infinite F -linear
combination of paths. In particular, every potential has a unique expression as a
possibly infinite F -linear combination of cyclic paths of positive length.

Given a 2-acyclic strongly primitive weighted quiver (Q,d) and a vertex k ∈ Q0,
for each pair of arrows a : j → k and b : k → i of Q, the composite arrows
introduced in the first step of the weighted-quiver mutation with respect to k are
denoted with the symbols [bωa], where ω runs in the set Bk.

We can state now the mutation rule for strongly primitive species with poten-
tials.

Definition 4. Let (Q,d) be a 2-acyclic strongly primitive weighted quiver, and
let A be its species over E/F . For k ∈ Q0, let µ̃k(A) denote the species over E/F
of the weighted quiver obtained from (Q,d) by applying only the first two steps
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of weighted-quiver mutation. If S is a potential on A, we define a potential µ̃k(S)
on µ̃k(A) according to the formula

µ̃k(S) = [S] +
∑

a
→k

b
→

∑

ω∈Bk

ω−1b∗[bωa]a∗.

The species with potential which is the reduced part of (µ̃k(A), µ̃k(S)) will be called
the mutation of (A,S) with respect to k and denoted µk(A,S).

We refer the reader to [4] for the definition of reduced parts as well as for a proof
of their existence. Note that the underlying species of µk(A,S) is again strongly
primitive, although its underlying weighted quiver may have oriented 2-cycles.

Definition 5. Given a finite sequence (k1, . . . , km) of vertices of Q, we say that
(A,S) is (km, . . . , k1)-non-degenerate if the quivers underlying the species with
potentials (A,S), µk1

(A,S), µk2
µk1

(A,S), . . ., µkm
. . . µk2

µk1
(A,S), are 2-acyclic

(hence well-defined).

The following is the main result of the talk.

Theorem 6. [4] If (Q,d) is a 2-acyclic strongly primitive weighted quiver, then for
every finite sequence (k1, . . . , km) of vertices of Q there exists a finite-degree field
extension K/F which is linearly disjoint from E/F and has the property that the
species AKE/K of (Q,d) over KE/K admits a potential S such that (AKE/K , S)
is (k1, . . . , km)-non-degenerate.

Besides Theorem 6, mutations of strongly primitive species with potentials share
many other properties with the mutations of quivers with potentials of Derksen-
Weyman-Zelevinsky. For example, they are well-defined up to right-equivalence
and involutive up to right-equivalence, and they preserve Jacobi-finiteness. Fol-
lowing the spirit of [2], the notion of mutation is further lifted in [4] to the
representation-theoretic level.

The class of skew-symmetrizable matrices whose associated weighted quivers are
strongly primitive includes several examples of matrices that do not admit global
unfoldings whatsoever (a global unfolding is an unfolding which is compatible with
all possible sequences of mutations). So, the species framework in [4] provides a
representation-theoretic approach to (the skew-symmetrizable matrices of) several
cluster algebras where approaches via unfoldings do not work.

Now, how about matrices that admit global unfoldings?, and how about species
with potentials for weighted quivers that are not strongly primitive? The answer
to the first question is provided by the work [1] of L. Demonet, who developed
an approach to mutations via group species with potentials. The framework of
group species differs from the one we have presented above in that a group species
attaches group algebras to the vertices of Q rather than fields; the bimodules at-
tached to the arrows are hence also different in nature from the bimodules Aij

above. Group species with potentials provide a representation-theoretic approach
that can be successfully applied to those matrices that admit global unfoldings
through group actions. Unfortunately, for matrices that do not admit global un-
foldings one needs a framework different from the group species framework.
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Regarding the second question: if gcd(di, dj) is not assumed to be equal to 1
for all i 6= j, one can easily construct an example of a weighted quiver (Q,d)
that has a 2-cycle ab which is cyclically equivalent to 0 in R〈〈A〉〉, and this implies
that none of the arrows a, b belongs to the Jacobian ideal of any potential on the
species A of (Q,d) over E/F . This means that none of a, b can be deleted from Q.
Ultimately, this yields an example of a 2-acyclic species (not strongly primitive)
such that, no matter which potential on it we take, when we try to perform the
three steps of weighted-quiver mutation at the level of species with potentials,
the species framework presented above fails to delete 2-cycles from the underlying
weighted quiver.
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Locally acyclic cluster algebras and Grassmannians

Greg Muller

(joint work with David Speyer)

Cluster algebras exhibit a curious dichotomy. Many of the first examples of
cluster algebras - the simple or motivational examples - are algebraically well-
behaved: finitely generated and with mild or no singularities. However, one does
not need to wander too far into the general theory to encounter cluster algebras
and upper cluster algebras which are non-Noetherian and badly singular [2, 5, 7].
The class of locally acyclic cluster algebras attempts to capture the well-behaved
cluster algebras.

Locally acyclic cluster algebras are ‘locally elementary’, in a sense we now make
precise. A cluster localization A′ of a cluster algebra A is a localization which
coincides with freezing a subset of a cluster in A. The seeds and cluster variables
of A′ are contained in the seeds and cluster variables of A; hence, one should
typically expect that A′ is a simpler cluster algebra than A.

Geometrically, the spectrum Spec(A′) of a cluster localization describes an open
affine patch in the spectrum Spec(A). Given a cover of Spec(A) by such patches,
we can verify many algebraic properties by checking them locally on the cover.
Ideally, this cover consists of cluster localizations for which these properties are
already known; so that these results lift to A without any cleverness on our part.

A cluster algebra A is locally acyclic if there is a set of cluster localizations
{Ai} of A such that each Ai is an acyclic cluster algebra, and ∪Spec(Ai) =
Spec(A) [5]. Remarkably, this class of cluster algebras is the same if we replace
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acyclic with several other notions of ‘elementary’ cluster algebra; for example,
locally tree-type, locally finite-type and locally isolated are all equivalent to being
locally acyclic.1

As intended, many properties of acyclic cluster algebras lift to locally acyclics.

Proposition. Let A be locally acyclic.

(1) [5] A is finitely generated and locally a complete intersection.
(2) [5, 4] The cluster algebra A equals its own upper cluster algebra.2

(3) [5] A is normal.
(4) [5] If A is full-rank, then Spec(C ⊗ A) is smooth.
(5) [1] In general, Spec(C ⊗ A) has at worst ‘canonical singularities’.3

Locally acyclic cluster algebras contain many important examples of cluster
algebras. Acyclic cluster algebras already contain many of the first examples of
cluster algebras, such as the finite-type cluster algebras. In [5], it was shown that
the cluster algebra of a triangulable marked surface with at least two marked
points on the boundary was locally acyclic.

The main subject of my talk is new work (joint with David Speyer) which es-
tablishes the local acyclicity of a broad class of important cluster algebras: those
from Postnikov diagrams in the disc. Given a permutation π : {1, 2, ..., n} →
{1, 2, ..., n}, a Postnikov diagram for π is a collection of generic oriented strands
in the disc with marked points indexed by {1, 2, ..., n}, with the following proper-
ties.

• The unique strand which begins at i ends at π(i).
• No strand intersects itself except possibly at its endpoints.
• There are no pairs of intersections between the same two strands, such
that the strands are both oriented from one intersection to the other.

• Travelling along any strand, the orientations of the crossings alternate.

In his seminal unpublished work, Postnikov associates to each such diagram a
seed, and proves that the resulting cluster algebra only depends on the underlying
permutation π. This formalism includes many well-studied families of cluster
algebras, including coordinate rings of Grassmannians [6], double Bruhat cells in
SLn [2], and higher Teichmüller space of A-type [3].

The idea of the proof is based on a combinatorial criterion for local acyclicity,
which can be checked on the level of quivers. Define the class of SB quivers to
be the smallest class of quivers with the following properties.

(1) The mutation of an SB quiver is SB.
(2) The empty quiver is SB.
(3) The union of an SB quiver with an isolated vertex is SB.

1A cluster algebra is isolated if, for any seed, there are no arrows between mutable vertices.
2The proof which appears in [5] has a gap. To use the analogous result from [2], one needs to

refine an acyclic cover until it is also totally coprime, though, this is always possible. The note
[4] gives a self-contained proof that A = U for locally acyclic cluster algebras.

3A singularity in a normal variety is canonical if, in any resolution of singularities, every
exceptional divisor has non-negative discrepancy.
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(4) Let s be a source in Q, and t the target of some arrow out of s. Let Qs

and Qt denote the induced subquivers of Q on the complement of s and t,
respectively. If Qs and Qt are SB, then Q is SB.

Any cluster algebra with a seed whose mutable quiver is SB is locally acyclic.
In practice, the main obstacle for applying this criterion to Postnikov diagrams

is to find an equivalent seed with a source. Different Postnikov diagrams with the
same permutation π describe a connected component of the exchange graph, and
in some cases, there is a seed with a source among these seeds. However, this
won’t work for all permutations.

A way around this obstacle is to observe that distinct permutations π1 and π2

can have Postnikov diagrams with the same underlying mutable quiver. If π1 has
a different Postnikov diagram with a source, then the cluster algebra associated
to π2 has a seed with a source (though it may not be described by a Postnikov
diagram). An extension of this argument produces a mutation-equivalent seed
with a source for every Postnikov diagram.
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Connections between cluster algebras and string theory

Gregg Musiker

(joint work with In-Jee Jeong, Sicong Zhang)

In this talk, we gave a glimpse of the connections between cluster algebras and
string theory. In particular, string theorists study certain bipartite graphs on a
torus, referred to as a brane tiling, to describe world volumes of D3 branes and
certain (3 + 1)-dimensional superconformal field theories. The geometry of the
extra dimensions around D-branes determines the structure of the quantum field
theories living on them. This geometry also gives rise to a Calabi-Yau 3-fold with
singularities which can be described by a polygon, known as a toric diagram.

Following a construction in Goncharov-Kenyon [GK] and appearing in the
physics literature, such as [FHKVW] and [HK], one can take a toric diagram,
compute normal vectors, and draw them as directed lines on a torus. By then
deforming oriented regions to black or white vertices and labeling the remaining
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regions, one can obtain a brane tiling, i.e. a tesselation of the torus. This construc-
tion also appeared in earlier work of Kenyon, Okounkov, and Sheffield [KOS06],
as cited in [HK].

Given such a brane tiling, we take the dual to get a quiver hence a cluster
algebra, in the sense of Fomin and Zelevinsky [FZ02a]. With an eye towards the
corresponding geometry, physicists such as R. Eager, S. Franco, A, Hanany, K.D.
Kennaway, R.-K. Seong, D. Vegh, B. Wecht, and others [FHKVW, DHP10, HS12]
study certain special families of quivers, for instance those coming from reflexive
polygons.

In joint work with University of Minnesota REU students I. Jeong and S. Zhang,
we investigated several such examples, including a six-vertex quiver associated
to the dP3 lattice and periodic quivers coming from Gale-Robinson sequences
[BPW09, Gal91], defined by the recurrence

xnxn−m = xn−rxn−m+r + xn−sxn−m+s.

We obtain combinatorial formulas for cluster varibles with principal coefficients
as subgraphs of these brane tilings. Forthcoming work [JMZ], also presented at
FPSAC 2013 [JMZ13], focuses on these cases and other special period−1 and
period−2 cases. Associated REU reports from 2011 and 2012 are also available
[J, Z].

In particular, for the dP3 lattice, also known as the honeycomb lattice, muta-
tion periodically by 1, 2, 3, 4, 5, 6, 1, 2, . . . leads to a sequence of cluster variables
whose Laurent expansions have combinatorial interpretations in terms of perfect
matchings of certain graphs. One assigns weights and heights to each such match-
ing, and using a certain labeling of Aztec Dragons, a family of graphs appearing in
work of Cottrell-Young [CY], M. Ciucu [C03], and J. Propp [P99]. This definition
of weights appears previously in D. Speyer’s discussion of the Octahedron Recur-
rence [S07] and the heights appear in a few places such as [P]. Using graphical
condensation [K04], one obtains the desired formulas. These cluster variables were
also studied by S. Franco and R. Eager [E11, EF], where they are referred to as
Colored BPS Pyramid Partition functions, and a related construction of a shadow
of a brane tiling is described. A joint project with S. Franco is currently underway
which investigates the exact connections between subgraphs and shadows of the
brane tilings.

In 2013, University of Minnesota REU students M. Leoni, S. Neel, and P. Turner
extended results for the dP3 lattice even further by inventing a two-parameter
family of graphs known as Aztec Castles which yield combinatorial interpretations
for a much larger class of cluster variables [LNT]. In particular, by mutating
at antipodal vertices of the dP3 quiver, one obtains the same quiver back up to
a cyclic rotation. This allows us to consider sequences of composite mutations
τ1, τ2, τ3 which each represent mutation at a different antipodal pair. They satisfy
relations of the affine A2 Weyl group, e.g. (τ1τ2)

3 = τ23 = 1. However, after
quotienting out by these relations, there is a two-parameter family of τ -mutation
sequences whose cluster variables correspond to Aztec Castles.
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Exact WKB analysis and cluster algebras

Tomoki Nakanishi

(joint work with Kohei Iwaki)

We develop the mutation theory in the exact WKB analysis using the frame-
work of cluster algebras. Under a continuous deformation of the potential of the
Schrödinger equation on a compact Riemann surface, the Stokes graph may un-
dergo discontinuous deformations, which we call mutations of Stokes graphs. Along
the mutations of Stokes graphs, the Voros symbols, which are monodromy data of
the equation, also mutate due to the Stokes phenomenon. We show that the Voros
symbols mutate as variables of a cluster algebra with surface realization. As an
application, we obtain the identities of the Stokes automorphisms associated with
periods of cluster algebras.

This talk is based on our forthcoming paper [1].
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Abelianization and cluster-like coordinate systems

Andrew Neitzke

Abelianization is a way of studying moduli spaces M(C,GL(K)) of flat GL(K)-
connections over a surface C by relating them to moduli spaces M(Σ, GL(1)) of
flat GL(1)-connections over K-fold branched coverings Σ → C. Roughly the idea
is that a generic flat GL(K)-connection can be obtained by pushing forward a
flat GL(1)-connection from Σ and then “correcting” the result. The correction
process amounts to cutting-and-gluing along a network of curves on C (“spectral
network”), using flat unipotent endomorphisms as the gluing maps. In this way
one eliminates unwanted monodromy around branch points of Σ → C, while not
introducing monodromy anywhere else. For each spectral network W we thus
obtain a map

ΨW : M(Σ, GL(1)) → M(C,GL(K)).

This map is expected to preserve the Poisson structure; moreover there are
many examples of spectral networks W for which ΨW is 1-1 onto an open dense
subset UW ⊂ M(C,GL(K)). Because M(Σ, GL(1)) is a complex torus, we thus
get a local coordinate system on UW , which we call “spectral coordinate system.”
The coordinate functions Xγ in the spectral coordinate system are interpreted as
holonomies of the GL(1)-connection around cycles γ ∈ H1(Σ,Z).

The spectral coordinate systems have many delightful properties. In particu-
lar, they include the coordinate systems studied by Fock-Goncharov in [1], which
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belong to the atlas of cluster coordinate systems on M(C,GL(K)). One also ob-
tains other, new coordinate systems — some belonging to the cluster atlas, others
not (for example, in the case K = 2 one can get Fenchel-Nielsen coordinates as
spectral coordinates, but these are not cluster coordinates.) The various spectral
coordinate systems are related to one another by various transformations, which
include cluster mutations as well as some “generalized mutations” of the form

Xγ 7−→ Xγ

∞∏

n=1

(1 −Xnγ′)n〈γ,γ
′〉Ω(nγ′)

The coefficients Ω(·) appearing here are generalized Donaldson-Thomas invariants
in the sense of [2, 3].

These general expectations were worked out in [4, 5], but relatively few examples
have been explored. One simple class of examples which should be interesting is
the following: by considering connections over C = CP1 with a single irregular sin-
gularity of a particular kind, we can arrange that the moduli space M(C,GL(K))
is a certain torus quotient of a Grassmannian Gr(k, n)/(C×)n−1. By considering
connections equipped with a certain extra decoration we can “undo” the quotient,
obtaining the affine cone over Gr(k, n). We conjecture that the spectral coordi-
nates in this case will recover the cluster structure on homogeneous coordinate
rings of Grassmannians [6]. In particular, there should be a spectral network cor-
responding to each cluster. This should give some insight into (some special cases
of) the proposal of [7] for how the clusters are described.
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On linear independence of cluster monomials

Pierre-Guy Plamondon

(joint work with Giovanni Cerulli Irelli, Bernhard Keller and Daniel
Labardini-Fragoso)

One of the main problems in the theory of cluster algebras, developed by S. Fomin
and A. Zelevinsky [7], is that of finding a “good” basis for these algebras. Among
the good properties that these bases are expected to possess is the following: they
should contain the cluster monomials, that is, the products of cluster variables
belonging to a common cluster. Thus the following conjecture:

Conjecture 1 (Conjecture 4.16 of [8]). Let A be a cluster algebra defined over a
coefficient semifield P. Then the cluster monomials of A are linearly independent
over ZP.

The aim of this report is to sketch the proof of the following result, using
methods from the additive categorification of cluster algebras:

Theorem 2 ([4]). If the defining matrix of A is skew-symmetric, then its cluster
monomials are linearly independent over ZP.

1. The proper Laurent property

The proof of Theorem 2 is done by showing that an apparently stronger condi-
tion, described in the following definition, is satisfied.

Definition 3 ([5], see also [12]). Let A be any cluster algebra.

(1) Let u = (u1, . . . , un) be a cluster in A. A proper Laurent monomial in
u is an element of the form ua1

1 · · ·uan
n , where at least one of the ai’s is

negative.
(2) The cluster algebra A has the proper Laurent monomial property if, for

any two clusters u and u′, any cluster monomial in u′ in which at least
one element of u′ \ u appears with positive power is a proper Laurent
monomial in u.

The importance of this definition for our purposes comes from the following
result.

Theorem 4 (Theorem 6.4 of [5]). If A has the proper Laurent monomial property,
then its cluster monomials are linearly independent over ZP.

Our aim is thus to prove that skew-symmetric cluster algebras have the proper
Laurent monomial property. Note that if the cluster algebra defined by a matrix
B over principal coefficients has the property, then so does any cluster algebra
defined by the same B over arbitrary coefficients, thanks to the “separation of
additions” of [9, Theorem 3.7].
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2. Additive categorification

Our proof relies on the categorification of cluster algebras using (generalized)
cluster categories. In this section, we will briefly describe the relevant results of
this theory.

Let us work over the field C. To any skew-symmetric cluster algebra B, one
can associate a quiver Q without oriented cycles of length 1 or 2. Let W be a non-
degenerate potential on Q [6]. Then C. Amiot [1] has constructed a triangulated
category CQ,W , the (generalized) cluster category, with suspension functor Σ. This
category comes equipped with a basic rigid object Γ = Γ1 ⊕ . . . ⊕ Γn whose en-
domorphism algebra is isomorphic to the Jacobian algebra J(Q,W ). Inside CQ,W

lies a full subcategory D, whose objects are those M such that

(1) HomC(Γ,ΣM) is finite-dimensional;
(2) there is a triangle TM

1 → TM
0 → M → ΣTM

1 , with TM
1 and TM

0 in add(Γ);
(3) there is a triangle T 0

M → T 1
M → ΣM → ΣT 0

M , with T 0
M and T 1

M in add(Γ).

The category D contains Γ and is Krull–Schmidt, although it is not triangulated.
The index of an object M of Γ is indΓM = [TM

0 ] − [TM
1 ] ∈ K0(add(Γ)); since

K0(add(Γ)) is isomorphic to Zn, we view the index of M as a vector of n integers.
Define the cluster character CC as being the map taking an object M of D and

sending it to the Laurent polynomial

CC(M) =
∑

e∈Nn

χ
(
Gre

(
HomC(Γ,ΣM)

))
xindΓM+B·e,

where HomC(Γ,ΣM) is viewed as a right module over J(Q,W ), Gre(−) is the
quiver Grassmannian (a projective variety whose points parametrize submodules
of dimension vector e), and χ is the Euler characteristic.

The main result for categorification of cluster algebras is the following:

Theorem 5 ([2][3][10][11][4]). The map CC induces a bijection

{indecomposable reachable rigid objects of D}/isom → {cluster variables of A}.

As a result, any cluster monomial of A is the image by CC of a rigid object in D.

Note that this theorem allows for the categorification of any cluster algebra of
geometric type, by viewing them as coming from a quiver with “frozen vertices”.
In particular, the result applies to cluster algebras with principal coefficient.

3. Sketch of the proof of the main theorem

We now want to prove that a cluster algebra A (say with trivial coefficients
for simplicity) has the proper Laurent monomial property. Let z be a cluster
monomial in A involving non initial cluster variables. Then, by Theorem 5, there
exists a rigid object R in D but not in add(Γ) such that CC(R) = z. We need to
prove the following:

Theorem 6 ([4]). With the above assumptions, CC(R) is a linear combination of
proper Laurent monomials in the initial cluster.
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The idea of the proof is as follows. In view of the formula for CC(R), we need
to prove that whenever Gre

(
HomC(Γ,ΣR)

)
is non-empty (and thus has possibly

non-zero Euler characteristic), the vector (indΓR+B · e) has a negative entry.
If e is zero, then the vector becomes indΓR, which has a negative entry since

we assumed that R is not in add(Γ).
If e is non-zero, we prove the following stronger statement: the integer e ·

(indΓR + B · e) is negative. Since B is skew-symmetric, this integer simplifies to
e · (indΓR).

By our assumptions, HomC(Γ,ΣR) has a non-zero submodule of dimension
vector e; let L be an object of D such that HomC(Γ,ΣL) is that submodule.
Applying the functor HomC(?,ΣL) to the triangle TR

1 → TR
0 → R → ΣTR

1 , we
get an exact sequence

0 → (R,ΣL)/(ΣΓ) → (TR
0 ,ΣL) → (TR

1 ,ΣL) → (Γ)(Σ−1R,ΣL) → 0,

where we write (X,Y ) instead of HomC(X,Y ). This yields the equality

dim(TR
0 ,ΣL)− dim(TR

1 ,ΣL) = dim(R,ΣL)/(ΣΓ)− dim(Γ)(Σ−1R,ΣL).

A direct computation shows that the left-hand side is equal to e · (indΓR). To
finish the proof, one uses the fact that R is rigid to show that (R,ΣL)/(ΣΓ) is
zero, and the fact that HomC(Γ,ΣL) is a submodule of HomC(Γ,ΣR) to prove
that (Γ)(Σ−1R,ΣL) is non-zero. This shows that the right-hand side is negative,
which is sufficient to finish the proof.
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Noncommutative Laurent phenomenon, triangulations and surfaces

Vladimir Retakh

(joint work with Arkady Berenstein)

In this talk we introduce noncommutative triangulations of oriented surfaces,
relate them by noncommutative Ptolemy relations, and prove the Noncommutative
Laurent Phenomenon. This gives a foundation of noncommutative cluster theory
of these surfaces. As a surprising byproduct, we obtain a new topological invariant
of closed oriented surfaces with punctures. Another application is the proof of
Laurentness and positivity of a noncommutative Kontsevich recursion.

This is a joint work with Arkady Berenstein from University of Oregon. The
goal of this talk is to introduce noncommutative triangulations of oriented surfaces
(with marked boundary points and punctures). This will provide a foundation of
noncommutative cluster theory of these geometric objects (this is the main theme
of the paper in preparation [2]).

Since each surface can be obtained by gluing edges of a polygon (actually, in
many ways), the most important object of study are noncommutative triangula-
tions of a given polygon, or simply noncommutative polygons.

In the commutative case, cluster structure (of type An−3) on triangulations of
an n-gon is based on the Ptolemy relations:

(1) xikxjℓ = xijxkℓ + xiℓxjk

for all quadrilaterals (i, j, k, ℓ) inscribed in a circle, 1 ≤ i, j, k, ℓ ≤ n, so that the
chords (ik) and (jℓ) are diagonals of the quadrilateral, and xij = xji, i 6= j is
the Euclidean length of the chord (ij). The Ptolemy relations (1) can also be
interpreted as Plücker identities for 2× n matrices.

In our noncommutative version we do not assume that xij = xji and we think
of xij as a measurement of a directed chord from i to j. We suggest the following
noncommutative generalization of the Ptolemy identity based on the theory of
noncommutative quasi-Plücker coordinates developed in [5]:

(2) xikx
−1
jk xjℓ = xiℓ + xijx

−1
kj xkℓ.

for every quadrilateral (i, j, k, ℓ), in which (i, k) and (j, ℓ) are the diagonals.
Note that since elements xij correspond to directed arrows, the products of the

form xijx
−1
kℓ , x

−1
ℓk xji make sense only when ℓ = j.

The noncommutative Ptolemy relations are not enough for developing a rea-
sonable theory of noncommutative cluster algebras, in particular, for establishing
the noncommutative Laurent Phenomenon. However, the Phenomenon holds if
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we additionally impose the triangular relations (also suggested by properties of
quasi-Plücker coordinates):

(3) xijx
−1
kj xki = xikx

−1
jk xik

for all distinct i, j, k (of course, (3) is redundant in the commutative case).
The triangular relations (3) are of fundamental importance because they allow

to introduce non-commutative angles T j,k
i := x−1

ji xjkx
−1
ik in each triangle (i, j, k)

so that T j,k
i = T k,j

i due to (3). That is, the noncommutative angle at a vertex
of a triangle does not depend on the order of the remaining two vertices. The
“commutative” angles were introduced by Penner in [8, Section 3] (where they
were called “h-lengths”), where each xij = xji was viewed as the λ-length of
the side (ij) of an ideal triangle (i, j, k) (see also [4, Section 12] and [6, Section
1.2], where the term “angle” was used, apparently, for the first time) and thus
noncommutative angles together with the “noncommutative λ-lengths” xij can
be thought of as a totally noncommutative metric on the Lobachevsky plane.
The term “angle” is justified by the following observation. The noncommutative
Ptolemy relations (2) together with the triangular relations (3) are equivalent to:

T ik
j = T iℓ

j + T kℓ
j

for every quadrilateral (i, j, k, ℓ), in which (i, k) and (j, ℓ) are the diagonals. In
other words, the (both commutative and noncommutative) angles are additive,
which justifies the name. Using additivity of noncommutative angles, we establish
the first instance of the noncommutative Laurent Phenomenon for the n-gon with
vertices 1, . . . , n:

xij =

j−1∑

k=i

xi,1T
k,k+1
1 x1,j

for all 2 ≤ i < j ≤ n−1, e.g., each xij is a noncommutative Laurent polynomial in
x1,k, xk,1, k = 2, . . . , n−1 and all xi,i±1. In fact, the latter elements correspond to
a triangulation of the n-gon where each triangle has a vertex at 1. We generalize
this to any triangulation of the n-gon and, as expected, the commutative version
of this result (with all xij = xji) specializes to the Schiffler formula ([9, Theorem
1.2]).

These arguments extend verbatim if we replace a polygon with a surface Σ
with marked points in the boundary and possibly with some punctures. That is,
for each such Σ one defines a Z-algebra AΣ generated by x±1

γ , where γ runs over
homotopy classes of curves on Σ between marked points subject to the triangular
and noncommutative Ptolemy relations. The Laurent Phenomenon asserts that
for a given triangulation ∆ of Σ each xγ belongs to the subalgebra generated by

all x±1
γ′ , γ′ ∈ ∆.

A surprising byproduct of our approach is that the corresponding group T∆

(generated by all tγ , γ ∈ ∆ subject to the triangular relations) does not depend
on the triangulation of Σ, therefore, is a topological invariant of Σ, which we
denote by T(Σ). It turns out that T∆ is either free or a one-relator group. It looks
like the fundamental group of Σ, however it is different from π1(Σ). For instance,
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if Σn is the sphere S2 with n punctures, then T(Σ3) is a free group in 5 generators
and T(Σn) is a 1-relator torsion-free group in 4n− 7 generators if n ≥ 4. In fact,
T(Σ) is related to the fundamental group of a ramified two-fold cover of Σ. In any
case, the association Σ 7→ T(Σ) defines a functor from the (topological) category
of surfaces with marked points to the category of finitely generated groups.

For each marked point i on Σ and each triangulation ∆ we also introduce a total
(noncommutative) angle T∆

i ∈ AΣ to be the sum of noncommutative angles of all
adjacent triangles. Similarly to the commutative case, we establish that the total
angles do not depend on the choice of a triangulation ∆. Thus the collection of the
total angles {Ti} can be thought of as a noncommutative version of a (hyperbolic)
Riemann structure on Σ. Using them we define algebra UΣ to be the subalgebra of
AΣ generated by all noncommutative edges xγ , the inverses of the boundary edges
and all noncommutative angles Ti and verify that UΣ is an totally noncommutative
analogue of the upper cluster algebra corresponding to Σ (see e.g., [1]).

As an application of our noncommutative Laurent phenomenon, taking Σ to
be an annulus with no punctures, one marked point on the inner boundary and
k marked points on the outer boundary, we prove Laurentness of the following
noncommutative recursion from [7] thus answering a question of M. Kontsevich.
Let noncommutative variables Un, n ∈ Z satisfy the system

(4)

{
Un−kUn = 1 + Un−1Un−k+1 if n is even

UnUn−k = 1 + Un−k+1Un−1 if n is odd

where k ≥ 3 is a fixed odd natural number. We prove the conjecture of Kontsevich
that each Un is a noncommutative Laurent polynomial in U0, . . . , Uk with positive
coefficients.

Another proof of the Laurentness for this system was given in [3].
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Positivity for cluster algebras

Ralf Schiffler

(joint work with Kyungyong Lee)

Cluster algebras were introduced by Fomin and Zelevinsky in 2002 to provide a
better understanding of Lusztig’s canonical basis in Lie Theory. By definition, a
cluster algebra is a subalgebra of a field of rational functions in several variables,
given by constructing a set of generators, the so-called cluster variables. These
cluster variables are constructed recursively using a procedure called mutation.
Although this construction is elementary, it is very difficult to compute cluster
variables in general because of the recursive nature of the construction.

In 2002, Fomin and Zelevinsky have proved that the cluster variables are Lau-
rent polynomials with integer coefficients and conjectured that these coefficients
are non-negative. This is known as the positivity conjecture.

In a joint work with Kyungyong Lee [3], we give a proof of the positivity conjec-
ture using only elementary methods. Our prove is building on our earlier results,
namely a combinatorial formula for rank 2 obtained in [1], and a proof of the
positivity conjecture in the case of rank 3 in [2].
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Complex integrable systems and tropical geometry

Yan Soibelman

Complex integrable system is usually understood as a holomorphic generi-
cally surjective map π : (X,ω2,0) → B of a complex analytic symplectic man-
ifold of dimension 2n to a complex analytic manifold of dimension n such that
generic fibers are holomorphic Lagrangian submanifolds. Non-degenerate fibers
are parametrized by an open subset B0 ⊂ B. There is a local system Γ → B0 of
lattices with fibers given by H1(π

−1(b),Z). Integrating ω2,0 over first homology
we obtain a closed 1-form on the base. In case if it can be globally represented as
dbZ, b ∈ B0 we say that Z is the central charge of our integrable system.

My talk was devoted to various conjectures about integrable systems with cen-
tral charge, mainly following [1] (joint paper with M. Kontsevich).

Here is the summary of the talk.
1) Under certain conditions (mainly on the discriminant locus Bsing = B−B0)

one can associate with any b ∈ B0 and γ ∈ Γb an integer Ωb(γ). Collection of
these integers (tropical Donaldson-Thomas invariants) satisfy wall-crossing for-
mulas from our paper [2]. Tropical DT-invariants are defined by counting certain
tropical trees on B with external vertices in Bsing .
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2) In the case of Hitchin integrable systems numbers Ωb(γ) are Donaldson-
Thomas invariants of the Fukaya category associated with the spectral curve.

3) Consider the flow on B0 given by

d

dt
Re(Zb) = −Re(Zb).

Under some reality assumptions on Z the flow extends continuously to B and
contracts it to a unique point bmin ∈ B. Assume bmin ∈ B0. Then every smooth
irreducible component Di of Bsing gives rise to an integer vector γi ∈ Tbmin

B0.
Thus we obtain a collection of integer vectors in a vector space endowed with
skew-symmetric integer form. These data give rise to a quiver. Hence we recover
the set-up of cluster theory. The whole framework is a special case of the notion
of wall-crossing structure introduced in [1].

4) In the case of Hitchin integrable systems we can consider the mirror dual to
the real symplectic manifold (X,Re(ω2,0)). It is a cluster variety, which is in fact
an affine scheme of finite type. Its algebra of functions is isomorphic to the cluster
algebra associated with the quiver described in 3).
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A positive basis for surface skein algebras

Dylan P. Thurston

For a compact oriented surface Σ (possibly with boundary), the Kauffman bracket
skein algebra, denoted Skq(Σ), is the Z[q±1]-module spanned by framed links in
Σ× [0, 1] modulo the local relations

〈 〉
= q

〈 〉
+ q−1

〈 〉
(1)

〈 〉
= −q2 − q−2.(2)

Vertical stacking of links makes Skq(Σ) into an algebra: to form 〈D1〉 · 〈D2〉,
superimpose D1 onto D2, making D1 cross over D2.

This skein algebra was first defined by Przytycki [2] and Turaev [3] as an exten-
sion of the Jones polynomial of knots in S3 to knots in a surface cross an interval.
When specialized to q = ±1, the algebra becomes commutative and we no longer
need to record crossing information. For q = −1, we essentially get the algebra of
functions on the SL2(R) character variety of Σ [4, 5, 6]. Sk1(Σ) can be thought of
as the algebra of functions on the twisted SL2(R) character variety.
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Figure 1. Examples of bangle, band, and bracelet operations
applied to the core curve of an annulus. The bangle has parallel
copies, the band averages over all ways of joining, and the bracelet
wraps multiple times.

Definition 1. A twisted SL2(R) representation of a surface Σ is a representation
of π1(UTΣ), the fundamental group of the unit tangent bundle of Σ, into SL2(R),
with the property that rotation by 2π acts by −1 ∈ SL2(R).

For instance, a hyperbolic structure on Σ gives a canonical twisted SL2(R)
representation.

Our main result is that Sk1(Σ) (now called Sk(Σ)) has a positive basis.

Definition 2. For an algebraA over Z (free as a Z-module), a basis {xi} is positive
if

xi · xj =
∑

k

mk
ijxk

where mk
ij ≥ 0.

The bracelets basis of the skein algebra is positive. This basis is not made of
crossingless curves. In Fig. 1, instead of bangles we use bracelets.

Theorem 3. The bracelets basis is a natural positive basis for Sk(Σ).

There is an extension of the skein algebra to surfaces with marked points, which
may be on the boundary or in the interior, and arcs ending at the marked points,
with tagging by a local orientation near the marked points in the interior (the
punctures). Such surfaces have an associated cluster algebra [7, 8], whose cluster
variables correspond to certain of the tagged arcs [9].

In this context, the (tagged) skein algebra is intermediate between the cluster
algebra and the upper cluster algebra associated to the surface:

A(Σ) ⊂ Sk(Σ) ⊂ A(Σ).

Both inclusions can be strict, for instance for the once-punctured torus. However,
we make the following conjecture.

Conjecture 4. For Σ any surface with a triangulation that is not a closed surface
with exactly one puncture, Sk(Σ) = A(Σ).

The bracelets basis was first introduced by Musiker, Schiffler, and Williams in
the context of cluster algebras [10].

In order to prove Theorem 3, we prove a stronger theorem.
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Theorem 5. For any diagram D on Σ, the expansion of D in terms of the bracelets
basis is sign-coherent. If C has no null-homotopic components or nugatory cross-
ings, then the expansion in terms of the bracelets basis is positive.

Here, sign-coherent means that either all terms are positive or all are negative.
A nugatory crossing is a crossing that cuts off a null-homotopic loop.

The proof proceeds by taking a diagram with crossings and picking a crossing
to resolve, being careful to avoid introducing a negative sign.
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Q-Systems, Double Bruhat Cells, and N = 2 Yang-Mills Theory

Harold Williams

In this talk we discuss connections between cluster algebras and N = 2 quan-
tum field theory in a basic but rich class of examples. The relevant exchange

matrices are of the form

[
0 C

−C 0

]
for a finite-type Cartan matrix C. These ma-

trices appeared independently in mathematics and physics during the past decade.
Mathematically they arose in the study of Q-systems as cluster algebra relations
by Di Francesco and Kedem [4]. Physically, they were discovered in computations
of BPS spectra of N = 2 Yang-Mills theory [1].

A remarkable feature of these exchange matrices is that they possess a special
integrable mutation sequence, which underlies the iteration of the Q-system re-
currence or the spectrum generator of the corresponding Yang-Mills theory. We
explain recent work clarifying this integrability by identifying these exchange ma-
trices with those of quotients of certain Coxeter double Bruhat cells [5]. The
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restrictions of conjugation invariant functions form an integrable Hamiltonian sys-
tem (of Toda type) on this quotient, and provide conserved quantities for the
corresponding sequence of cluster transformations. This generalizes previous work
of Gekhtman, Shapiro, Vainshtein in the setting of planar networks [2].

On the other hand, the spectral networks of Gaiotto, Neitzke, Moore extract
cluster coordinates on moduli spaces of flat connections from Seiberg-Witten sys-
tems of certain N = 2 field theories [3]. In these examples the Seiberg-Witten
systems are (irregular) Hitchin systems, and for N = 2 Yang-Mills this is a
Hitchin system on CP1 with irregular singularities at 0 and ∞. We show the
example of gauge group SU(3), and show that the corresponding spectral network
parametrizes the holonomy around the unit circle by specifying that it factors ex-
actly like an element of a Coxeter double Bruhat cell. Thus we see that the two a
priori unrelated appearances of the exchange matrices we consider are in fact due
to a common underlying structure, which we can access from the point of view of
spectral networks.
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Cluster duality and mirror symmetry for Grassmannians

Lauren Williams

(joint work with Konstanze Rietsch)

We consider the Grassmannian X = Grn−k(C
n) and a mirror dual Landau-

Ginzburg model (X̌,Wq : X̌ → C), where X̌ is the complement of a particular
anti-canonical divisor in a Langlands dual Grassmannian, and Wq is the superpo-
tential. Let N = k(n− k). For each reduced plabic graph G of type (k, n) (in the
sense of Postnikov), we associate a plabic chart ΦG : ((C∗)N ) → X and a cluster
chart Φ̌G : ((C∗)N ) → X̌. On the A-model side, we use the plabic chart ΦG and a
corresponding valuation to define a set of points in ZN which are the lattice points
of a convex polytope, the Newton-Okounkov body NOG. On the B-model side, we
use the cluster chart and the superpotential WQ to define a polytope QG ⊂ ZN

as the intersection of some halfspaces. Our main result is that the two polytopes
coincide, i.e. NOG = QG.

This work builds on work of [3], [1], and our proof uses some results of [2].
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Cluster algebra structures on quantum double Bruhat cells

Milen Yakimov

(joint work with Kenneth R. Goodearl)

We give a proof of the Berenstein–Zelevinsky conjecture [2] on the existence of
upper cluster algebra structures on quantized coordinate rings of double Bruhat
cells and show that the corresponding quantum cluster algebras coincide with the
upper quantum cluster algebras. The starting point is the following definition:

Definition 1. An iterated skew polynomial extension over an arbitrary field K

R = K[x1][x2;σ2, δ2] · · · [xN ;σN , δN ]

is called a quantum nilpotent algebra if it is equipped with a rational action of a
K-torus H by K-algebra automorphisms satisfying the following conditions:

(a) The elements x1, . . . , xN are H-eigenvectors.
(b) For every 2 ≤ k ≤ N , δk is a locally nilpotent σk-derivation of

Rk−1 := K[x1] · · · [xk−1;σk−1, δk−1]

(c) For every 1 ≤ k ≤ N , there exists hk ∈ H such that σk = (hk·) and the
hk-eigenvalue of xk, to be denoted by λk, is not a root of unity.

Such an algebra will be called a symmetric quantum nilpotent algebra if the
above conditions are satisfied for the reverse order of adjoining its generators

R = K[xN ][xN−1;σ
∗
N−1, δ

∗
N−1] · · · [x1;σ

∗
1 , δ

∗
1 ]

which is essentially equivalent to an abstract form of the Levendorskii–Soibelman
straightening law from quantum group theory.

A noncommutative analog of the notion of unique factorization domain was in-
troduced by Chatters in [3]. A nonzero, non-invertible element p of a domain R is
called prime if pR = Rp and the factor R/Rp is a domain. A noetherian domain
R is called a unique factorization domain (UFD) if every nonzero prime ideal of R
contains a prime element. By [9], all quantum nilpotent algebras are (equivariant
H)-UFDs.
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Theorem 2. Every symmetric quantum nilpotent algebra R satisfying two minor
technical conditions (see [5, Theorem 8.2] for details) possesses a canonical struc-
ture of quantum cluster algebra for which no frozen cluster variables are inverted
and its initial cluster consists of the set of all homogeneous prime elements of the
subalgebras R1, . . . , RN (taken up to scalar multiples).

Furthermore, this quantum cluster algebra aways coincides with the correspond-
ing upper quantum cluster algebra. After an appropriate rescaling, each of the
generators xk of the algebra R is a cluster variable.

Many additional facts about the above cluster algebras are collected in [5, The-
orem 8.2]. The theorem also has an analog for cluster algebra structures using a
notion of Poisson UFDs, see [6, Theorem 8].

The previous approaches to the problem of the construction of (quantum) clus-
ter algebra structures on (quantized) coordinate rings dealt with explicit families
of algebras. The power of the above theorem is that it concerns an axiomatic class
of algebras which contains many important families as special cases, for example
the family of quantum Schubert cell algebras U+[w]. There is one such algebra
for each Kac–Moody algebra g and Weyl group element w. Theorem 2 constructs
cluster algebra structures on them which extends the result of Geiß, Leclerc and
Schröer [4] from the case of symmetric Kac–Moody algebra g.

Theorem 3. (Berenstein–Zelevinsky conjecture, [2]) For any complex simple
Lie group G and a pair of Weyl group elements (w, v), the quantum double Bruhat
cell algebra Rq[G

w,v] possesses a canonical structure of quantum cluster algebra
for which all frozen cluster variables are inverted and the initial cluster consists of
the Berenstein–Fomin–Zelevinsky set of quantum minors [1, 2].

Furthermore, this quantum cluster algebra coincides with the corresponding up-
per quantum cluster algebra.

We briefly sketch the main idea in the proof of Theorem 3. Using results of
Joseph [7], we first prove that Rq[G

w,v] is a localization of

(S+
w ⊲⊳ S−

v )#K[∆±1
1 , . . . ,∆±1

r ]

where S+
w and S−

v are the Joseph algebras associated to w, v, see [7], and ∆1, . . . ,∆r

are certain quantum minors. The bicrossed and smash products are defined using
the Drinfeld R-matrix commutation relations of Rq[G]. We then use the isomor-
phisms

S+
w
∼= U−[w]op and S−

v
∼= U+[v]

from [10]. The key point is to prove that U−[w]op ⊲⊳ U+[v] is a symmetric quantum
nilpotent algebra and to establish that the set of homogeneous prime elements in
Theorem 2 is given by the Berenstein–Fomin–Zelevinsky set of quantum minors
[1] (after a quantum twist isomorphism).

The notion of maximal green sequence of cluster mutations was introduced by
Keller [8] in relations to applications to refined Donaldson–Thomas invariants and
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quantum dilogarithm identities. A further development of the above construction
proves [11] the existence of a maximal green sequence for the cluster algebra struc-
ture on each double Bruhat cell Gw,v. The main idea in the proof is to construct
such a sequence that starts from a new initial seed and contains the Berenstein–
Fomin–Zelevinsky seed at an intermediate step.
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Mathematisches Institut

Universität Bonn

Endenicher Allee 60

53115 Bonn

GERMANY

Prof. Dr. Michael Shapiro

Department of Mathematics

Michigan State University

Wells Hall

East Lansing, MI 48824-1027

UNITED STATES

Prof. Dr. Yan Soibelman

Department of Mathematics

Kansas State University

Manhattan, KS 66506-2602

UNITED STATES

Prof. Dr. Hugh Thomas

Department of Mathematics

University of New Brunswick

P.O. Box 4400

Fredericton, N.B. E3B 5A3

CANADA

Prof. Dr. Dylan Thurston

Department of Mathematics

Indiana University at Bloomington

531 E. Third St.

Bloomington, IN 47405

UNITED STATES

Prof. Dr. Gordana Todorov

Department of Mathematics

Northeastern University

567 Lake Hall

Boston MA 02115-5000

UNITED STATES

Prof. Dr. Alek Vainshtein

Department of Mathematics &

Department of Computer Sciences

University of Haifa

Mount Carmel

Haifa 31905

ISRAEL



3432 Oberwolfach Report 58/2013

Prof. Dr. Michel van den Bergh

Department of Mathematics

Limburgs Universitair Centrum

Universitaire Campus

3590 Diepenbeek

BELGIUM

Harold Williams

Department of Mathematics

University of California

Berkeley CA 94720-3840

UNITED STATES

Prof. Dr. Lauren K. Williams

Department of Mathematics

University of California, Berkeley

Evans Hall

Berkeley, CA 94720-3840

UNITED STATES

Prof. Dr. Milen Yakimov

Department of Mathematics

Louisiana State University

Baton Rouge LA 70803-4918

UNITED STATES


