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Abstract. Metrics of special holonomy are of central interest in both Rie-
mannian and complex algebraic geometry. We focus on an important classi-
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compact quaternion-Kähler with positive scalar curvature (Salamon-LeBrun
conjecture). In the language of algebraic geometry this corresponds to the
classification of Fano contact manifolds. By bringing together leading experts
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to develop new strategies for proving the most central conjecture in the field
of quaternionic Kähler geometry. Second, to introduce young researchers at
PhD/PostDoc level to this interdisciplinary circle of ideas.
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Introduction by the Organisers

This mini-workshop was organised by Anna Fino (Università di Torino), Uwe Sem-
melmann (Universität Stuttgart), Jaros law Wísniewski (Uniwersytet Warszawski)
and Frederik Witt (Universität Münster). We had 16 participants (four of which
at junior level) to discuss new and old approaches to the Salamon-LeBrun conjec-
ture. Its Riemannian side asserts that any compact quaternion-Kähler with posi-
tive scalar curvature is necessarily symmetric. On the algebraic side this matches
the conjecture that any Fano contact manifold is homogeneous.

To explain this link briefly, let us recall that metrics of special holonomy, such as
quaternion-Kähler metrics, are of central interest in both Riemannian and com-
plex algebraic geometry. This is evident in the case of Kähler and Calabi-Yau
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metrics where the metric induces a distinguished complex structure. The case
of hyperkähler and quaternionic-Kähler manifolds is less clear. For hyperkähler
metrics we have an S2 worth family of complex structures which in general are
not biholomorphic to each other, while for quaternionic-Kähler metrics there is
in general no complex structure at all. However, a generalisation of the Atiyah-
Hitchin-Singer twistor space construction in dimension four to higher dimensions
associates with these metrics a well-defined complex manifold. For instance, if
(M4k, g) is a quaternionic-Kähler manifold of real dimension 4k, then its associ-
ated twistor space Z is a complex contact manifold of complex dimension 2k + 1.
Moreover, Z carries a positive Kähler-Einstein metric if M is compact with positive
scalar curvature. In particular, Z is Fano.

Existence of special holonomy metrics, in particular non-symmetric ones, is one
of the central issues of the theory. For instance, Berger’s original classification
of non-symmetric metrics included the case of Spin(9) which subsequently could
be ruled out. Similarly, the only known examples of compact quaternion-Kähler
manifolds with positive scalar curvature are symmetric. The Salamon-LeBrun
conjecture (which for instance is true in dimension 8) asserts that these are the
only examples. Translated into complex geometry via the twistor construction this
boils down to show that any Fano contact manifold is homogeneous.

On the other hand, contact structures on complex projective manifolds are very
rare. By results of Demailly, Kebekus, Peternell, Sommese and Wísniewski, if a
contact projective manifold admits a contact structure and its second Betti number
is > 1 then the manifold in question is the projectivisation of the (co)tangent
bundle over another projective manifold and the contact structure is the natural
one. Thus, such manifolds seem to be exceptional and it is plausible to expect
that the only known examples constitute the complete list of such manifolds.

The workshop started off with a couple of introductory lectures by Witt and
Simon Salamon (who joined us via a video conference) on quaternionic-Kähler
manifolds and the twistor construction, and by Wísniewski on Fano contact man-
ifolds. We then had more specialised lectures dealing with specific issues.

On the differential geometric side, Semmelmann and Weingart talked about
representation theoretic methods for proving Weitzenböck formulæ and vanishing
theorems. This linked also into Dessai’s talk on quaternion-Kähler manifolds in
dimension 12 where an application of the index theoretic and topological ideas suc-
cessful in dimension 8 have failed so far. The talks by Swann, Cortés and Bielawski
dealt with the construction of quaternion-Kähler metrics. Finally, Amann and Mo-
roianu talked about important properties of quaternion-Kähler manifolds, namely
formality and the non-existence of almost complex structures.

On the algebraic side, apart of the Wísniewski’s lecture which provided a gen-
eral introduction to contact Fano manifolds, there were four lectures about specific
algebraic geometry methods for studying such manifolds. Buczyński, Hwang and
Kebekus lectures were about rational curves on contact Fano manifolds. Kebekus
used families of minimal rational curves to recover the contact distribution. Hwang
explained his results and expectations regarding the rôle of the variety of minimal
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rational tangents (or VMRT) of a contact manifold in the classification of such
manifolds. On the other hand, Buczyński’s talk was about the singularities of
minimal rational curves on contact manifolds. The lecture by Campana concerned
a different approach to the classification problem. Namely, Campana presented
results by Clemens and Ran concerning generic semipositivity of sheaves of differ-
ential operators on Fano manifolds.

During the week we had intensive discussions on old and new approaches to this
conjecture with stimulating exchanges between Riemannian and algebraic geome-
ters during and after the talks. We also noted with pleasure the high commitment
and very active presence of the young participants. As a result we are planning a
sequel to this workshop in the near future. Finally we are happy to acknowledge
the never failing support and professional handling by the entire Oberwolfach stuff.
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Weitzenböck formulas on quaternionic Kähler manifolds . . . . . . . . . . . . . . 3125

Stefan Kebekus
Rational curves on complex manifolds with complex contact structure . . 3127
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Abstracts

Introduction to quaternion-Kähler manifolds and the twistor space

construction

Frederik Witt

This talk gave an introduction to quaternion-Kähler geometry and its associated
twistor space in two sessions. Good references are [Bes87], [Bea07], [Sal82] and
[Sal99].

Holonomy groups. With a Riemannian manifold (Mn, g) we can associate the
so-called holonomy group which is a subgroup of O(n). In fact, a generic metric will
always have full holonomy O(n). At the other extreme, triviality of the holonomy
group implies flatness of the metric. In between are the metrics of special holonomy.
It is a surprising and highly nontrivial fact that the list of possible holonomy
groups for a simply-connected, complete and irreducible Riemannian manifold
is rather simple. There are two cases to consider. If g is symmetric, then the
holonomy group can be read off from Cartan’s list of irreducible symmetric spaces.
Otherwise, we can look it up in Berger’s list [Ber55]:

dim holonomy geometry algebra

2m U(m) Kähler C

2m SU(m) Calabi-Yau C

4k Sp(k)Sp(1) quaternion-Kähler H

4k Sp(k) hyperkähler H

8 Spin(7) Spin(7) O

7 G2 G2 O

Loosely speaking the occurring geometries are tied to the three normed division
algebras extending the reals, namely the complex numbers C, the quaternions H

and the octonians O.

Quaternion-Kähler manifolds. By definition, a quaternion-Kähler manifold is
a Riemannian manifold (M4k, g) whose holonomy group is contained in Sp(k)Sp(1)
which is one of the possible holonomy groups of an irreducible Riemannian man-
ifold. In particular, g is of special holonomy if g is not flat. At any rate, g must
be Einstein, that is, its Ricci tensor must be a constant multiple of g, Ricg = λg.
If λ 6= 0, then g is irreducible and therefore, the holonomy group must be equal
to Sp(k)Sp(1).

Examples. (i) The projective quaternionic space HP
n = Sp(n + 1)/

(

Sp(n) ×

Sp(1)
)
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(ii) More generally, there is exactly one compact symmetric quaternion-Kähler
manifold G/KSp(1) for each compact simple Lie group G except SU(2), the so-
called Wolf spaces [Wol65]. They are all positive, i.e. λ > 0. It is an open ques-
tion if any positive compact quaternion-Kähler manifold is symmetric (Salamon-

LeBrun conjecture).
(iii) Alekseevskĭı proved that any homogeneous compact quaternion-Kähler man-
ifold is symmetric [Ale68]. On the other hand he exhibited examples of non-
symmetric homogeneous quaternion-Kähler manifolds [Ale75] (these have neces-
sarily λ < 0).

Despite their name quaternion-Kähler manifolds are almost never Kähler. In fact,
they are in general not even complex. Ultimately this stems from the following
linear algebra fact. The standard action of Sp(k) on R4 ∼= Hk commutes with the
action of imaginary quaternions from the right, so that in particular, we have three
complex structures i, j and k. However, these are permuted by the Sp(1) factor so
that there is no distinct complex structure. In global terms this is reflected by the
existence of a preferred rank three subbundle E ⊂ End(TM) over a quaternion-
Kähler manifold. Locally, E is spanned by three (almost) complex structures I, J
and K which, however, have no global meaning in general.

Twistor spaces. If (M, g) is quaternion-Kähler, then the sphere bundle Z(M) =
S(E) → M of the endomorphism bundle E → M is called the twistor space of
(M, g). This is a generalisation of the twistor space of a selfdual 4-manifold con-
structed by Atiyah, Hitchin and Singer [AHS7].

Theorem (Bérard-Bergery [Bes87], Salamon [Sal82]). The twistor space Z →
M4k carries a natural complex manifold structure of complex dimension 2k + 1
such that

• the fibres are rational curves with normal bundle 2kO(1).

• the usual antipodal map of CP1 induces a fibre preserving antiholomorphic
involution Z → Z.

• we have an exact sequence of holomorphic bundles

0 → D → TZ
θ
→ L → 0

with θ ∧ (dθ)k 6= 0, that is, θ defines a contact structure with D = ker θ.
In particular,

L⊗(k+1) ∼= K−1,

where K → Z is the canonical line bundle of Z.

In the case of λ > 0, even more is true.

Theorem (LeBrun [LeB95], Salamon [Sal82]).

• If (M, g) is positive, then Z(M) carries a positive Kähler metric such that
Z → M4k becomes a Riemannian submersion with totally geodesic fibres.
In particular, Z(M) is a Fano contact manifold.
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• Conversely, any Z(M) Fano contact manifold which admits a Kähler-
Einstein metric is the twistor space of a positive quaternion-Kähler mani-
fold.

Examples. (i) For the projective quaternionic space we find Z(HPk) = CP2k+1

where the fibration is simply the Hopf fibration C2k+2 \ {0}/C∗ → Hk+1 \ {0}/H∗.
(ii) More generally, for the symmetric spaces G/KSp(1) we find Z

(

G/KSp(1)
)

=
G/KU(1) where the fibration is induced by the inclusion U(1) →֒ Sp(1).

In particular, a symmetric quaternion-Kähler space has a homogeneous twistor
space. Further, if the symmetric space is compact, then its twistor space is a homo-
geneous Fano contact manifold with a positive Kähler-Einstein metric. More gen-
erally, it is conjectured that any Fano contact manifold (positive Kähler-Einstein
or not) is homogeneous which, if it was true, would imply the Salamon-LeBrun
conjecture (see for instance [Bea98] for some evidence in support of this conjec-
ture).

References
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Introduction to contact Fano manifolds

Jaros law A. Wísniewski

This talk was presented on the first day of the workshop. Its aim was to introduce
the basic notions and techniques concerning Fano manifolds and contact complex
structures which are in relation to the classification of positive quaternion Kähler
manifolds. Excellent general references to this subject are [2] and [4].

Let X be a complex projective manifold with the (complex) tangent bundle
TX and the cotangent bundle ΩX of holomorphic differentials. A line bundle L
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over X is called ample if for some m > 0 the bundle L⊗m is a pullback of the
hyperplane section bundle over PN for some embedding in the complex projective
space X →֒ PN .

We say that X is a Fano manifold if the line bundle detTX is ample. The
classification of Fano manifolds is known in dimension ≤ 3. In general, it is known
that in every dimension there is a finite number of deformation families of such
manifolds.

The key result in the modern treatment of Fano manifolds is the following
theorem by Mori, see [6]: For every point x ∈ X there exists a rational curve
f : P1 → X , such that x ∈ f(P1) and 0 < deg(f∗TX) ≤ dimX + 1. Studying
Fano manifolds via rational curves is the technique of choice for most algebraic
geometers nowadays.

In particular, a Fano manifold X can be studied by using a variety of minimal
rational tangents (or VMRT) which parametrizes tangent directions to minimal
rational curves contained in X and passing through a sufficiently general point
x ∈ X . In many instances the information about VMRT of X allows to recover
the structure of X itself.

Let X be a complex manifold of dimension 2n + 1 with a line bundle L. Let
us consider a twisted holomorphic 1-form θ ∈ H0(X,ΩX ⊗ L). We say that θ is a
contact form and X is a contact manifold if θ ∧ (dθ)n does not vanish anywhere.
This implies that L⊗(n+1) ∼= det TX .

If X is the twistor space of a positive quaternion Kähler manifold then it is a
Fano contact manifold and, in addition, it admits Einstein metric so, in particular,
its tangent bundle is stable.

If X is a contact Fano manifold of dimension 2n+ 1 then, by [5] and [7], either
X is the projectivized (co)-tangent bundle over Pn+1 or its second Betti number
is 1. In the latter case, by [3], either X ∼= P2n+1 or L generates the group of line
bundles over X (the Picard group of X).

Beauville proved, see [1], the following theorem: Suppose that X is a contact
Fano manifold which admits Kähler–Einstein metric and L has enough (holomor-
phic) sections so that they generate first jets of L at a generic point of X or,
equivalently, the rational map defined by these sections is generically finite-to-one.
Then X is a rational homogeneous manifold. In fact, then X is isomorphic to the
closed (minimal) orbit in the projectivization of the adjoint representation of a
simple algebraic group.

Thus, in view of Beauville’s result, we have a natural counterpart of the cele-
brated LeBrun-Salamon conjecture, [5], namely every contact Fano manifold is a
rational homogeneous variety.
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Weitzenböck formulas on quaternionic Kähler manifolds

Uwe Semmelmann

(joint work with Gregor Weingart)

The aim of my talk was to show how Weitzenböck formulas on quaternionic Kähler
manifolds can be used to prove the vanishing of certain characteristic numbers,
e.g. indices of twisted Dirac operators.

Let (M4n, g) be a complete quaternion Kähler manifold of positive scalar curva-
ture. Then the holonomy condition Hol(M, g) ⊂ Sp(n) ·Sp(1) implies a reduction
of the frame bundle to a Sp(n) · Sp(1)-principal bundle P . In the first part of my
talk I explained how geometric vector bundles can be realized as vector bundles
associated to P using the fundamental Sp(n)-representation E and the funda-
mental Sp(1)-representation H . Examples are the complexified tangent bundle
TMC ∼= H ⊗ E or the spinor bundle S = ⊕n

i=0R
l,n−l where the bundle Rl,d is

defined as Rl,d = SymlH ⊗ Λd
0E.

In the second part of my talk I introduced differential operators acting on sec-
tions of vector bundles π(M) associated to P via a representation π. In particular
the universal Laplace operator ∆π := ∇∗∇ + q(R), where q(R) is a certain cur-
vature term, defined as endomorphism of π(M). A first important property of
∆π is the following: the Hodge Laplace operator ∆ = dd∗ + d∗d restricted to
any parallel subbundle π(M) of the form bundle Λ∗T ∗M is given by ∆π. More-
over, on symmetric spaces G/K the operator ∆π coincides with the Casimir op-
erator of G. An other important class of operators are twisted Dirac operators
DV : Γ(S ⊗ V ) → Γ(S ⊗ V ). They are defined as a certain projections of the
covariant derivative on S ⊗ V .

In [1] we proved a formula relating ∆π and the square of the twisted Dirac
operator DRl,d restricted to some irreducible representation π ⊂ S ⊗Rl,d:

∆π = D2
Rl,d

∣

∣

π
+ ϕ(l, d) idπ ,

where ϕ(l, d) = scal
8n(n+2) (l + d− n) (l − d + n + 2).

In the third part of my talk I explained several applications of this formula. The
first application is an eigenvalue estimate of the operator ∆π for representations
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π = SymkH ⊗ Λa,b
0 E. The result is:

∆π ≥ λπ :=
scal

8n(n + 2)
(k + a− b) (2n + 2 + k − a− b) .

In particular, ∆π > 0 for all representations π different from Λa,a
0 E. Since Λa,a

0 E ⊂
ΛevTM there are no harmonic forms in odd degree. Hence we obtain a new proof
of the well known fact (due to S. Salamon) that the odd Betti numbers of a positive
quaternionic Kähler manifold have to vanish.

As a second application I showed in my talk that the kernel of the twisted
Dirac operator DRl,d is given as a direct sum of certain minimal eigenspaces of the
operator ∆π. In particular we have the following expression for the index of the
twisted Dirac operator DRl,d (details can be found in [1]):

index(DRl,d) =
∑

(−1)|π| dim ker(∆π − λπ)

where the sum goes over all representations π ⊂ S ⊗ Rl,d, such that the number
ϕ(l, d) is maximal under all ϕ(r, s) with π ⊂ S ⊗ Rr,s. In this situation the twist
bundle Rl,d is called the maximal twist of the representation π. The sign (−1)|π|

is also explicitly given. The minimal eigenvalue λπ is this maximal number ϕ(l, d).
An immediate consequence is the vanishing result index(DRl,d) = 0, for l+ d <

n, first proved by C. LeBrun and S. Salamon. Indeed, all maximal twist bundles
Rr,s satisfy r + s ≥ n. Thus there is no representation π with maximal twist Rl,d

with l + d < n and the kernel of DRl,d is zero.

As a new example I considered in my talk the special twist bundle Rl,d =
Symn+1H ⊗E. The representations π appearing in the sum above are π = H ⊗E
and π = Sym2H⊗Λ1,1

0 E. However it is well known that ker(∆HE−λπ) is different
from zero only on the quaternionic projective space HPn. This is an analogue of
the Lichnerowicz Obata Theorem for quaternionic Kähler manifolds. Hence on all
quaternionic Kähler manifolds different from HPn we have

index(DRn+1,1) = − dim ker(∆Sym2HΛ1,1
0

E − λπ) ≤ 0 ,

where for both summands λπ is the minimal eigenvalue is (n+1)scal
2n(n+2) .

The final example in my talk was the twist bundle Rl,d = Symn+2rH . In this
case the representation π = Sym2rH is the only one appearing in the sum above.
Thus we obtain the following expression for the Hilbert Polynomial P (r) (cf. [2]
for further details):

P (r) := index(DSymn+2rH) = −dim ker(∆Sym2rH − λπ)

The Hilbert polynomial is also given as a holomorphic Euler characteristic P (r) =
χ(Z,O(Lr)). Here L is the contact line bundle on the twistor space Z. We note
that the bundle L is related to the canonical bundle K via Ln+1 = K∗. The
minimal eigenvalue λπ is given as λπ = r(n+1+r)scal

2n(n+2) .

The Hilbert polynomial P is a polynomial of degree 2n + 1 with leading coeffi-

cient deg(Z)
(2n+1)! , where deg(Z) =< c1(L)2n+1, [Z] >.
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At the end of my talk I discussed an upper bound of P (r) obtained in [2]. There
we proved

P (r) ≤ PHPn(r) = dim(Sym2r(H ⊕ E)) =

(

2n + 1 + 2r

2n + 1

)

Immediate consequences are upper bounds for the dimension of the isometry group
dimIso(M, g), the quaternionic volume v(M) and the related degree deg(Z). We
find that dimIso(M, g) and v(M) are bounded from above by the corresponding
value for HPn and similarly that deg(Z) ≤ deg(CP 2n+1).

The idea of the proof is to identify the minimal eigenspace of ∆Sym2rH with the
kernel of a certain first order differential operator D+

u of finite type:

ker(∆Sym2rH − λπ) = H0(Z,O(Lr)) = kerD+
u .

This can be done using Weitzenböck formulas on quaternionic Kähler manifolds
(modifying the approach of [3]). Finally one has to show that the maximal pro-
longation of D+

u is given by Sym2r(H ⊕ E) (cf. [2]).
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Rational curves on complex manifolds with complex contact structure

Stefan Kebekus

Let X be a complex projective manifold which carries a contact structure, given
by a sequence

0 → F → TX → L → 0.

Then, the results of [Dem02] and [KPSW00] show that X is either isomorphic to
a projectivized (co-)tangent bundle of a complex manifold, or that X is Fano and
b2(X) = 1. This talk discusses the latter case where X is Fano of b2(X) = 1.
It is generally believed that these assumptions imply that X is homogeneous.
Assuming that X is not isomorphic to the projective space, it follows from our
previous work [Keb02b, Keb02a] that X can always be covered by “contact lines”,
that is, rational curves ℓ which intersect the line bundle L with multiplicity one
and are tangent to the contact distribution F wherever they are smooth. Thus, it
seems natural to consider the geometry of lines in greater detail.

We illustrate how the contact structure influences the deformation theory of
these curves. As a result, we obtain that if x ∈ X is a general point, then all
contact lines through x are smooth, [Keb01]. In addition, we show that the “variety
of minimal rational tangents”, that is, the set of tangent directions to lines at x,
generates the contact distribution at x. It follows that the contact structure on X
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can be reconstructed from the rational curves on X , and is hence unique, [Keb01].
This answers a question of C. LeBrun [LeB95b, Question 11.3]. The result was
previously obtained by C. LeBrun [LeB95a] if X is a twistor space. The talk
briefly indicates how related methods apply to show that the tangent bundle of X
is slope-stable, [Keb05].
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Special lines on contact Fano manifolds

Jaros law Buczyński

(joint work with Grzegorz Kapustka and Micha l Kapustka)

We addresses the problem of classification of contact projective manifolds. A
lot of work has already been done in this direction, see [1] for an overview and
motivation. The main remaining task is to classify contact Fano manifolds, which
are expected to be always homogeneous spaces.

Among the main tools to approach the problem is the theory of minimal rational
curves. In the case of contact Fano manifold X of dimension 2n+ 1 it amounts to
study contact lines. A rational curve C with the normalisation f : P1 → C ⊂ X
is a contact line, if f∗KX = OP1(−n− 1). Here KX denotes the canonical divisor
of X . Unless X ≃ P2n+1, those contact lines exist, cover X and form a family of
pure dimension 3n− 1.

For a general contact line with a parametrisation f : P1 → X the pullback of
the tangent bundle TX has a certian standard splitting type, namely:

(1) f∗TX ≃ O⊕(n+1) ⊕O(1)⊕(n−1) ⊕O(2) = O(0n+1, 1n−1, 2).

Contact lines satisfying (1) are called standard. Life would be much easier (but
more borring), if all the contact lines were known to be standard. This happens for
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homogeneous contact manifolds (because the group acts transitively on the set of
lines). But in general we know very little. Kebekus proved that any line through
general point is smooth and standard. We streghten his results and show:

Let X be a contact Fano manifold. The dimension of the scheme parametrising
singular contact lines on X is at most 2n − 1. The dimension of the scheme
parametrising special contact lines (i.e. lines for which (1) does not hold) on X is
at most 3n − 3, i.e. it has no divisorial components in the scheme parametrising
all contact lines.

The second statement was claimed earlier by Kebekus in an equivalent form,
see [4, Prop. 3.2]. However, his argument contains a gap, see [1, Rem. 3.2] for more
details. Proposition 3.2 in [4] is one of the key steps in the proof of [4, Thm 3.1],
which we repeat:

Let X be a contact Fano manifold of Picard rank 1. Let H be an irreducible
component of the space parametrising lines on X . Suppose x ∈ X is a general
point, then the set Hx of lines from H passing through x is irreducible.

This research is among the first attempts to study minimal rational curves on a
projective manifold X , without assuming they are general, or they pass through a
general point. Alternatively, one may view our work as an initiation of the studies
of minimal rational curves on projective varieties, singular in codimension 1.

Sketch of proofs and intermediate results. Kebekus [2, Prop. 3.3] proved
that a contact line through a fixed general point is necessarily smooth. Our proof
of the claim about singular lines is a modification of his argument. We prove that
the tangent space to the locus swept by the singular lines is perpendicular (with
respect to the contact structure) to the tangent directions of the singular contact
lines. This implies that the dimension of the locus plus the dimension of the locus
singular lines through a fixed point is at most 2n = dimX − 1, and the conclusion
is straightforward.

The proof of the statement about non-standard lines is much more involved. It
is centered about the concept of a linear subspace in the contact manifold, which
generalises the notion of contact line to higher dimensions. Precisely, a subvariety
Γ ⊂ X is a linear subspace, if and only if the normalisation of Γ is a projective
space and the restriction of L to Γ is a line bundle of degree 1.

We suppose by contradiction that there is a component B of the set of non-
standard lines of dimension 3n− 2. Then, by results of Kebekus, there is a divisor
B on X swept out by the lines from B. The aim is to prove that B is dominated
by a family of linear subspaces of dimension n and to obtain a contradiction with
the following statement:

Suppose X is a contact Fano manifold with b2 = 1, and suppose X is not
isomorphic to a projective space. Furthermore, let π : UR → R be a family of
linear subspaces of dimension n on X with the evaluation map ξ : UR → X , which
is a morphism birational onto its image. Then dimUR ≤ 2n− 1, i.e., the closure
of the image ξ(UR) has codimension at least 2 in X .

To construct the linear subspaces, we use the following characterisation of a
projective space:
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Suppose Γ is a projective variety with an ample line bundle L, such that a
general pair of points x, y ∈ Γ is connected by a single rational curve f : P1 → Γ
of degree 1, i.e., f∗L ≃ OP1(1), x, y ∈ f(P1). Then Γ admits a normalisation
µ : Pk → Γ, where k = dim Γ and µ∗L = OPk(1).

This is a consequence of [3, Thm 3.6] and in our argument is used twice. In the
first place we construct a large family of linear subspaces of dimension 2, next we
bundle together the planes, to obtain a family of linear subspaces of dimension n.
More precisely, the tangent spaces to B naturally determine a distribution G of
rank 1, i.e., a line subbundle of TB defined on an open subset of U ⊂ B. Suppose
c ∈ B is a general non-standard line and C ⊂ X is the corresponding curve in
X . We take the union of leaves of G through points of C, and we let Γc to be
the Zariski closure of this union. Then we show that every two points in Γc are
connected by a contact line. Thus the normalisation of Γc is a projective space
Pk. We carefully study the distribution G restricted to Γc and conclude using
that the leaves of G actually are lines from B. In particular, dim Γc = 2, and its
normalisation is P2.

This construction also equips each P2 with a distinguished point y, and its
image in X . We consider Y ⊂ X to be the union of all distinguished points in X
obtained by varying c ∈ B. The critical step in the proof is the dimension count:
we show dimY = n. The conclusion is that there is a lot of Γc, with the same
distinguished point y. On the other hand the locus P y of these projective planes
is always contained in the locus of lines through a fixed point y, which is known
to have dimension at most n. We use these informations to show that general two
points x1.x2 in P y are contained in a single Γc, whose distinguished point is y.
The line in the P2 normalising Γc is the required line connecting x1 with x2. Thus
P y is normalised by a projective space, and its dimension is calculated to be n.
This is the way to construct the family of linear subspaces of dimension n, whose
locus is the divisor B.
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VMRT-structures on Fano contact manifolds

Jun-Muk Hwang

Given a Fano manifold X with b2(X) = 1, we can find a minimal dominating
family of rational curves on X and the associated VMRT Cx ⊂ PTxX at a general
point x ∈ X . We discuss the following two conjectures.
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Conjecture 1 Let X be a Fano manifold with b2(X) = 1 equipped with a
contact structure F ⊂ TX . If Cx at a general point x ∈ X is a connected
nonlinear Legendrean submanifold of PFx, then X is homogeneous.

Conjecture 2 Let X be a Fano manifold with b2(X) = 1. If Cx at a general
point x ∈ X is a nonlinear smooth hypersurface of PTxX , then X is homogeneous.

The two conjectures are parallel in the sense that hypersurfaces are nonlinear
submanifolds of maximal dimension in projective space in Conjecture 2, while
Legendrean submanifolds are isotropic submanifolds of maximal dimension in the
contact distribution in Conjecture 1.

Conjecture 1 is important because it implies LeBrun-Salamon conjecture for
positive quaternionic-Kähler manifolds by [5] and the supplementary result pre-
sented in J. Buczynski’s talk in this workshop.

To prove Conjecture 1 and Conjecture 2, it suffices to show that Cx ⊂ PTxX is
a homogeneous projective subvariety by the result of [6]. This strategy, however,
has been unsuccessful and little progress has been made in this direction.

We introduce a different approach, concentrating on the following weaker ver-
sions of the two conjectures.

Conjecture 1’ Let X be a Fano manifold with b2(X) = 1 equipped with
a contact structure F ⊂ TX . If Cx at a general point x ∈ X is a connected
nonlinear Legendrean submanifold of PFx, then X is quasi-homogeneous.

Conjecture 2’ Let X be a Fano manifold with b2(X) = 1. If Cx at a gen-
eral point x ∈ X is a nonlinear smooth hypersurface of PTxX , then X is quasi-
homogeneous.

By [1], Conjecture 1’ still implies LeBrun-Salamon conjecture. By Kobayashi-
Ochiai criterion, one can show that Conjecture 2’ implies Conjecture 2. Thus these
weaker versions are as good as the original conjectures.

We have an approach to these conjectures by viewing VMRT as a geometric
structure on the Fano manifold. Then both Conjecture 1’ and Conjecture 2’ can
be reduced to local homogeneity of this geometric structure by [4]. Using this
approach, Conjecture 2’ has been settled in [2] and [3]. This sheds some hope on
Conjecture 1’.
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Quaternionic Kähler manifolds: symmetries and related geometries

Andrew Swann

(joint work with Óscar Maciá, Valencia)

Given a quaternionic Kähler manifold M4n, there are associated geometries on
the twistor space Z4n+2 and the hyperKähler cone or Swann bundle U4n+4. In
the case of positive scalar curvature on M , the twistor space is a Kähler-Einstein
manifold with a complex contact structure, and U is a hyperKähler manifold with
an action of SO(3) rotating the complex structures.

Symmetries of the geometries on base M lift to symmetries of the geometries
on Z and U . Notions of moment maps are defined on each of these manifolds, and
reductions at level 0 correspond [2]. However, for one-dimensional group actions,
we may reduce U at a non-zero level. Haydys [1] noted in the case that M has
positive scalar curvature that such reductions are hyperKähler with a circle sym-
metry preserving one complex structures and rotating the other two. In addition,
he showed how to invert the construction.

In work in progress, we show that these constructions can be interpreted in
terms of the twist construction of [3], and note that they apply in arbitrary signa-
ture. More precisely, suppose (N, g, I, J,K) is hyperKähler, with an isometry X
such that LXI = 0 and LXJ = K.

A twist manifold is specified as follows: let F ∈ Ω2(N) be closed two form
such that there is an a ∈ C∞(N) with da = −XyN . Let P be one-dimensional
principal bundle with connection form α and principal vector field Y . Lift X to
X ′ = X̃ + aY , with X̃ ∈ H = kerα the horizontal lift. Then the twist manifold is
defined to be M = P/X ′. The assumptions ensure that X ′ commutes with Y , so
M inherits a vector field. If βN and βM are differential forms on N and M , then
we say that they are H-related if their pull-backs to P agree on H. The essential
computational fact is that dβM is then H-related to dβN − 1

a
F ∧XyβN .

We prove that for dimN 6= 4, there is only a one-parameter family of metrics
g̃ = fg+hgHX on N that twist to quaternionic Kähler metrics on some manifold M ,
and that the twisting form is uniquely determined as F = dX♭ + ωI . This shows
that all descriptions of the hK/qK correspondence in the literature coincide.
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QK-manifolds in dimension 12

Anand Dessai

All known examples of quaternionic Kähler manifolds of positive scalar curvature
(positive QK-manifolds for short) are symmetric spaces and it has been conjectured
that there aren’t any other examples (LeBrun-Salamon conjecture). The main
purpose of this talk was to indicate how one proves the conjecture in real dimension
8 and to describe some of the frustrating attempts to prove the conjecture in
dimension 12.

In dimension 8, 12, 16 one knows from the work of Salamon [7] that the group of
isometries of a positive QK-manifold is at least of dimension 6, 5, 8, respectively.
Using these symmetries Poon-Salamon [6] and LeBrun-Salamon [5] proved the
conjecture in dimension 8. In the talk I gave a sketch of the proof following closely
the argument in [5].

Similar arguments have been used in higher dimension under additional hypoth-
esis. For example, by the work of Simon Salamon [5] and Manuel Amann [1, 2]
any positive QK-manifold of dimension ≤ 24 with forth Betti number b4 equal to
one is symmetric.

The conjecture is also known to be true in dimension 12 assuming the asser-
tion that the Â-genus vanishes on simply connected manifolds with S1-action and
b2 = 0 (Haydée and Rafael Herrera [4]). In [4] the authors gave an argument for
the latter assertion. Unfortunately, their argument cannot be correct in this gen-
erality. In fact, as explained in the talk, it is possible to construct for any n ≥ 2
simply connected 4n-dimensional manifolds with S1-action and b2 = 0 which have
nonvanishing Â-genus [3]. The construction is based on a simple argument from
equivariant surgery.

Towards the end of the talk I tried to describe the state of the art concerning
the conjecture in dimension 12.
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Rozansky–Witten Invariants for Quaternionic Kähler Manifolds

Gregor Weingart

Several attempts to prove the Salamon conjecture extend the approach successfully
taken in quaternionic dimension n = 2, which studies the relation between charac-
teristic numbers and the geometry of positive quaternionic Kähler manifolds. The
powerful vanishing theorems for indices of twisted Dirac operators on quaternionic
Kähler manifolds imply relations between these characteristic numbers, which in
turn have repercussions for the geometry of the underlying manifold.

Extending the construction of Rozansky–Witten invariants from hyperkähler to
quaternionic Kähler manifolds we can simplify this approach to the Salamon con-
jecture significantly, information on just four characteristic numbers is sufficient to
conclude that a positive quaternionic Kähler manifold is a symmetric space. Con-
sider in fact the first Pontryagin class u and the first and second Pontryagin classes
u1, u2 of the virtual vector bundles HM and HM ⊕EM respectively on a quater-
nionic Kähler manifold M of quaternionic dimension n ≥ 2 and positive scalar
curvature κ > 0. The L2–norm of the covariant derivative ∇R of the curvature
tensor R ∈ Γ(Sym4EM) can be calculated from the characteristic numbers

〈un, [M ] 〉 〈u1u
n−1, [M ] 〉 〈u2

1u
n−2, [M ] 〉 〈u2u

n−2, [M ] 〉

by means of the identity

1

4π3

(

κ

16πn(n + 2)

)2n−3 (

|| ∇R ||2L2 + 720

∫

M

ρrest ( ∆ +
κ

2(n + 2)
) ρrest vol

)

=
1

(2n− 2)!
〈 (7u2

1 − 4u2)un−2, [M ] 〉

+
2

3

n + 2

(2n− 1)!
〈u1u

n−1, [M ] 〉 − 5
2n + 1

(2n− 1)!

〈u1u
n−1, [M ] 〉2

〈un, [M ] 〉

where ρrest ∈ C∞(M) is an auxiliary function characterized by:

(

∆ +
κ

2 (n + 2)

)

ρrest = | R | −
|| R ||L2

Vol M

Cartan’s characterization of symmetric spaces as manifolds M , whose curvature
tensor R is covariantly constant in the sense ∇R = 0, thus implies that a positive
quaternionic Kähler manifold M is a symmetric space, if and only if the specified
four characteristic numbers make the right hand side of the decisive identity vanish.
Needless to say this characterization of the symmetric positive quaternionic Kähler
manifolds can be verified directly for all Wolf spaces, the interesting question
however is, whether it is possible to prove sufficiently many relations between
characteristic numbers to prove the Salamon conjecture in this way.
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Generic semipositivity of sheaves of differential operators on complex

projective manifolds, after Clemens-Ran

Frédéric Campana

This talk is just a report, mainly aimed at the differential geometers participating
to this workshop, on the paper of Clemens-Ran ([1]). The methods introduced in
this paper might indeed prove useful in the study of contact Fano manifolds.

After recalling the notion of slope (relative to given ample line bundle H) of
a coherent torsion-free sheaf E of rank r on a connected n-dimensional complex
projective manifold X , we defined stability, semi-stability, minimal µmin(E) and
maximal slopes, as well as the Harder-Narasimhan filtration, stating finally the
Mehta-Ramanathan theorem. The notions of generic postivity and generic semi-
positivity (relative to H) were then defined.

It was then proved that the tangent bundle TX of a Fano manifold with b2 = 1 is
generically positive (with respect to the ample generator off Pic(X), for example),
using the vanishing theorems of Akizuki-Nakano and Kodaira.

Theorem ([1]). Let X be complex projective, together with a given H . Let
E be a generically semi-positive vector bundle (or torsionfree coherent sheaf)
on X . Assume that TX is generically positive. Let Dm(E) be the sheaf of
differential operators of order m > 0 sending germs of sections of E to germs
of holomorphic sections on X . Then µmin(Dm(E)) ≥ m.b + µmin(E∗), where
b := min{a, 12 .µmin(TX)} > 0, with a := min{D.Hn−1} is the minimal degree of
an effective divisor with respect to H .

In other words, the positivity of TX compensates the negativity of E∗, dual of
E, if one takes differential operators of sufficiently high order. Notice that this
results applies in particular to Fano manifolds with b2 = 1, since TX is then
generically positive.

This theorem permits to show (as in [1]) that if X is a Fano manifold with
b2 = 1, and TX semi-stable, then (−KX)n ≤ (2n)n.

The proof is an immediate consequence of the preceding theorem and of the
following two easy lemmas:

Lemma. Let E be a vector bundle on (any) X such that Dm(E) is generically
semi-positive. Then any non-zero-section of E vanishes at order at most m at any
generic point x of X .

Lemma (‘Fano method’). Let L be an ample line bundle on (any) X . Assume
that for some xk ∈ X and any non-zero section s of kL, for any k > 0, the
vanishing order of s at xk is bounded by km, for some real constant m > 0. Then
(Ln)

1
n ≤ m.

The rest of the talk was devoted to briefly explain the 3 main steps of the proof of
the above theorem: First step: m = 1, E is a line-bundle. Second step: m = 1, E is
of arbitrary rank. The proof of this step is quite delicate, and involves in particular
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the use of the Narasimhan-Seshadri theorem asserting that a stable bundle EC

with c1(EC) = 0 on a curve C is unitary flat. Third step: m > 1, E arbitrary.
One proceeds inductively on m, using the surjective morphism of (left) sheaves of
coherent modules on X : D1(Jm(E)) → Dm+1(E), where Jm(E) = Dm(E)∗ is the
sheaf of m-jets of E.

References

[1] H. Clemens-Z. Ran, A new method in Fano geometry, Int. Res. Math. Notes 10 (2000),
527–549.

Quaternionic Kähler manifolds of negative scalar curvature

Vicente Cortés

The talk is focussed on a construction of explicit complete quaternionic Kähler
metrics of negative scalar curvature. It is based on the result [10] that every com-
plete projective special real manifold of dimension n defines a complete quater-
nionic Kähler manifold of dimension 4n + 8. A projective special real manifold is
a smooth hypersurface H ⊂ Rn+1, such that there exists a homogeneous cubic
polynomial h on Rn+1 with the property that h = 1 on H and ∂2h < 0 on TH. It
is called complete, if −∂2g induces a complete metric on H. More generally [10],
every complete projective special Kähler manifold of (real) dimension 2n defines
a complete quaternionic Kähler manifold of dimension 4n + 4.

These are global versions of constructions, known in the physics literature under
the names q-map [3] and c-map [2], respectively. The quaternionic Kähler property
of the resulting metrics follows from [2] and [7].

We give a new proof, which shows that a certain one-parameter deformation
of the c-map metric is also quaternionic Kähler [14]. Our proof is based on a
generalization [11, 14] of the HK/QK-correspondence of Andriy Haydys [6], which
allows for the use of indefinite metrics in all steps of the construction with con-
trol of the signature of the resulting metric and the sign of its scalar curvature.
Furthermore, we provide a new formula for the quaternionic Kähler metric in the
HK/QK-correspondence explicit enough to be matched with the c-map metric (for
the corresponding pseudo-hyper-Kähler initial data). We find, that the Hamilton-
ian constant in the HK/QK-correspondence corresponds precisely to the one-loop
parameter of the quantum corrected c-map metric gc, as described in [5, 9]. Our
work on the HK/QK-correspondence relates nicely to work in progress by Andrew
Swann et al. on twist constructions presented in this workshop and to recent work
by Nigel Hitchin [12].

Complete projective special real manifolds are classified up to dimension 2 [13].
Under the q-map, these examples give rise to complete quaternionic Kähler man-
ifolds of dimensions 8, 12, and 16 of cohomogeneity ≤ 2. Moreover, all known
examples of non-symmetric homogeneous quaternionic Kähler manifolds can be
obtained by the q-map [1, 3, 4].
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Work in progress (joint with Marc Nardmann and Stefan Suhr) shows that a
projective special real manifold H ⊂ {h = 1} ⊂ Rn+1 is complete if and only if H
is a component of {h = 1}. This provides an effective tool for the construction of
complete quaternionic Kähler metrics of negative scalar curvature by the q-map.

Finally, I would like to remark, that the twistor spaces of the quaternionic
Kähler manifolds obtained from the q-map are complex contact manifolds encoded
in a real homogeneous cubic polynomial. More generally, one can associate a
complex contact manifold with any non-degenerate complex homogeneous cubic
polynomial [8], as I learned from Jun-Muk Hwang during the workshop.
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Formality of Positive Quaternion Kähler Manifolds

Manuel Amann

(joint work with Vitali Kapovitch)

In this talk the focus lied on the algebraic topology of Positive Quaternion Kähler
Manifolds M . I collected several results on what is known on the Betti numbers
of such manifolds. The situation here seems a little ambiguous: On the one hand
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there are strong results like the vanishing of odd-degree Betti numbers (yielding
a lower bound on the Euler characteristic) or classification results under the as-
sumption of b2 = 1 or b4 = 1 (in certain dimensions), on the other hand no upper
bound on the Euler characteristic is known—see [6], [2].

The talk was centred around stating and discussing the following

Conjecture. A Positive Quaternion Kähler Manifold is geometrically formal and
rationally elliptic.

The weakest direct corollary one could draw out of either of the two parts of
this conjecture is an upper bound for the Euler characteristic of Mn given by 2n.

Let me give a short overview of parts of the discussion motivating this conjec-
ture. A simply-connected closed manifold M is rationally elliptic if its rational
homotopy groups πi(M)⊗Q vanish from some degree on. Prototypical examples of
rationally elliptic spaces are simply-connected homogeneous spaces of compact Lie
groups. Since Positive Quaternion Kähler manifolds seem to share some “struc-
tural similarities” with manifolds of positive sectional curvature, the conjecture
that they are rationally elliptic might be considered a “quaternionic Bott conjec-
ture”. Moreover, I can show that in low dimensions rationally elliptic Positive
Quaternion Kähler Manifolds are rational homology Wolf spaces—see [1].

A Riemannian manifold is geometrically formal, if the product of harmonic
forms is harmonic again. Very few examples of geometrically formal manifolds
are known, only slightly exceeding the class of symmetric spaces of compact type.
However, manifolds with non-formal metrics can already be found amongst n-
symmetric spaces—see [4], [5].

Thus, in particular, if the LeBrun–Salamon conjecture is true, so is the con-
jecture above. Moreover, a wild speculation only based on the lack of examples
might still be that the class of spaces combining the properties of the conjecture
might not be much larger than the class of symmetric spaces.

An obstruction to geometric formality is formality, a property which expresses
that the rational homotopy type of the manifold can be derived from the knowledge
of its rational cohomology algebra already. Since the odd Betti numbers of a
Positive Quaternion Kähler manifold vanish, formality is also an obstruction to
rational ellipticity.

However, in [3] we prove that this obstruction vanishes, i.e. that a Positive
Quaternion Kähler manifold is a formal space—this is generally conjectured for
manifolds of special holonomy. Using the twistor fibration and the formality of
Kähler manifolds, this is a simple special case of a more general result from that
article: In a fibration of simply-connected spaces of finite type with the fibre
being rationally elliptic, formal and satisfying a generalised version of the Halperin
conjecture, the formality of the base space is equivalent to the one of the total
space.
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Almost complex structures on quaternion-Kähler manifolds

Andrei Moroianu

(joint work with Paul Gauduchon and Uwe Semmelmann)

It is a well-known fact that the quaternionic projective spaces HPn have no almost
complex structure. The proof goes back to F. Hirzebruch in 1953 for n ≥ 4
(cf. [5]). The non-existence of almost-complex structure on HP1 = S4 had been
established a few years earlier by Ch. Ehresmann [3] and H. Hopf [7]. According
to Hirzebruch’s lecture at the 1958 ICM [6], J. Milnor had in the meantime settled
the remaining cases n = 2 and 3, but his proof has remained unpublished. Later
on, W.S. Massey [10] gave an original proof of the non-existence of almost-complex
structure on HPn, for any n, based on the explicit calculation of the ring K(X)
and of the Chern character ch(TX) for X = HPn.

Quaternionic projective spaces are particular examples of quaternion-Kähler

manifolds. These, we recall, are 4n-dimensional Riemannian manifolds, whose
holonomy is contained in Sp(n) · Sp(1) ⊂ SO(4n), if n > 1, or, if n = 1, (oriented)
Einstein, self-dual 4-dimensional Riemannian manifolds. In all dimensions 4n,
n ≥ 1, quaternion-Kähler manifolds are Einstein and are called of positive type if
their scalar curvature is positive. In this talk we only consider quaternion-Kähler
of positive type and we implicitly assume that they are complete, hence compact.

For n ≥ 2, the above definition of quaternion-Kähler manifolds is equivalent
to the existence of locally defined almost complex structures I, J,K, satisfying
the quaternion relations and spanning a global rank 3 sub-bundle Q ⊂ End(TM),
which is preserved by the Levi-Civita connection. Almost complex structures
on M which are sections of Q are called compatible. In [1], it is shown that
quaternion-Kähler manifolds of positive type admit no compatible almost com-
plex structure. In particular the natural complex structure of the complex Grass-
mannians Gr2(Cn+2), which constitute a well-known class of quaternion-Kähler
manifolds of positive type, is not compatible.

The main result of this talk is:
Theorem 1. ([4]) Let M4n, n ≥ 2, be a compact quaternion-Kähler manifold

of positive type, which is not isometric to the complex Grassmannian Gr2(Cn+2).
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Then M4n has no weak almost complex structure, in the sense that the tangent

bundle TM is not stably isomorphic to a complex vector bundle.

Notice that the assumption n ≥ 2 is necessary, since HP1 = S4 is weakly
complex but not almost complex.

It is well known that the complexified tangent bundle of a quaternion-Kähler
manifold M is given as TMC = E ⊗H . Recall that a quaternion-Kähler manifold
M4n of positive type is spin if and only if either M4n = HPn, or the quaternionic
dimension n is even ([12, Proposition 2.3]). If this holds, the spinor bundle ΣM
decomposes as the direct sum of Rp,q := SympH ⊗ Λq

0E over all positive integers
p, q with p+ q = n, cf. e.g. [8, Proposition 2.1]. Here Λq

0E denotes the sub-bundle
of ΛqE defined as the kernel of the contraction with the symplectic form of E. In
particular, the twisted spin bundles Σ±M ⊗ Rp,q are globally defined whenever
p+q+n is even. We then denote by DRp,q be the (twisted) Dirac operator defined
on sections of Σ+M ⊗Rp,q and by ind(DRp,q) the index of DRp,q .

Our argument crucially relies on the following result of C. LeBrun and S. Sala-
mon [9, Theorem 5.1]:

(1) ind(DRp,q ) =

{

0 for p + q < n

(−1)q (b2q(M) + b2q−2(M)) for p + q = n ,

where bi(M) denote the Betti numbers of M . Consider the twist bundle V =
Symn−2H ⊗ TMC (it is here that the assumption n ≥ 2 is needed). The Clebsch-
Gordan decomposition yields

V = (Symn−1H ⊗ E) ⊕ (Symn−3H ⊗ E).

The bundle ΣM ⊗ V is globally defined for all quaternionic dimensions n and
we can therefore compute the index ind(DV ) of the corresponding twisted Dirac
operator by using (1). We thus obtain

ind(DSymn−2H⊗TMC ) = ind(DSymn−1H⊗E) + ind(DSymn−3H⊗E)

= − (b2(M) + b0(M)).
(2)

A key fact, cf. [9, Corollary 4.3], is that b2(M) = 0 for all compact quaternion-
Kähler manifold M of positive type other than the Grassmannians of complex
2-planes Gr2(Cn+2), whereas b2(M) = 1 if M = Gr2(Cn+2), which, as already
observed, has a natural complex structure. We now assume that M is different
from Gr2(Cn+2), so that b2(M) = 0. The above index calculation then reads

(3) ind(DSymn−2H⊗TMC ) = −1 .

Assume, for a contradiction, that M carries an almost complex structure. Then
the tangent bundle TM is a complex vector bundle and its complexification splits
into the sum of two complex sub-bundles TMC = θ⊕θ∗. For the components of the
Chern character we have chi(θ

∗) = (−1)ichi(θ). On the other hand, ch(Symn−2H)

and Â(TM) have non-zero components only in degree 4k. Indeed, Â(TM) is a
polynomial in the Pontryagin classes of M and Symn−2H is a self-dual locally
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defined complex bundle. The Atiyah-Singer formula for twisted Dirac operators
(cf. [2]) then yields

ind(DSymn−2H⊗TMC ) =ch(Symn−2H)ch(TMC)Â(TM)[M ]

=2 ch(Symn−2H)ch(θ)Â(TM)[M ].
(4)

Notice that ch(Symn−2H) is well-defined in H∗(M,Q), even if n is odd.

Now, ch(Symn−2H)ch(θ)Â(TM)[M ] is the index of the twisted Dirac operator
DSymn−2H⊗θ on the (globally defined) bundle ΣM ⊗Symn−2H⊗θ and thus has to
be an integer. This implies that ind(DSymn−2H⊗TMC ) is even, hence contradicts
(3).

If the manifold is assumed to be weakly complex then there exists a trivial
real vector bundle ǫ such that TM ⊕ ǫ is a complex vector bundle. By replacing
V = Symn−2H ⊗ TMC with V = Symn−2H ⊗ (TM ⊕ ǫ)C in the above argument,
this remains unchanged, as the extra term

ind(DSymn−2H⊗ǫC) = rk(ǫ) ind(DSymn−2H)

in (2) is zero, again because of (1).
The above methods were also used in order to classify compact inner symmetric

spaces and, more generally, equal rank compact homogeneous spaces with stably
complex tangent bundle (see [4], and [11] for details).
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Construction of potentially new QK-metrics

Roger Bielawski

The talk is really about hyperkähler metrics. It is known that to any quaternion-
Kähler manifold M one can associate canonically a hyperkähler manifold: the
Swann bundle of M .

This work has been motivated by three sources. First and foremost, the work
of Nash [2], who gave a new twistor construction of hyperkähler metrics on moduli
spaces of SU(2) magnetic monopoles. Second, the so-called generalised Legendre
transform construction of hyperkähler metrics, due to Lindström and Roček [1],
which often leads to curves of higher genus. Third, the well-known fact that the
smooth locus of the Hilbert scheme of (local complete intersection) curves of degree
d and genus g in P3 has, if nonempty, dimension 4d. Because of author’s H-bias,
the factor 4 seems to him to call for some sort of a quaternionic structure.

Recall that hypercomplex or hyperkähler manifolds arise as parameter spaces
of rational lines in twistor spaces. The twistor space Z of a hypercomplex mani-
fold M is diffeomorphic to M × S2, and is canonically a complex manifold. The
projection π onto S2 ≃ CP1 is holomorphic and the antipodal map on S2 induces
an antiholomorphic involution σ on Z. A point of M corresponds to a section
of π, and the normal bundle of such a section splits as sum of O(1)-s. M with
its hypercomplex structure is recovered as a connected component of the moduli
space of σ-invariant sections with such a normal bundle. To get a hyperkähler
metric we need additional structure on Z.

We now consider higher degree (say d) curves C in Z, i.e. d-fold (flat) coverings
of P1. It turns out that the parameter space Md of σ-invariant curves C of degree
d, the normal bundle of which tensored with π∗O(−2) has no cohomology, is again
a hypercomplex manifold (of dimension d dimM). Moreover, was M hyperkähler
(resp. Swann bundle), then so is Md.

The complex structures of Md are those of (unramified covering of) open subset
of the smooth locus of the Hilbert scheme of d points in M (with the corresponding
complex structure).

As an example, if we start with the twistor space P3−P1 of the flat R4, we shall
obtain a hyperkähler structure on manifolds parameterising σ-invariant curves in
P3 not intersecting a fixed line. Moreover, these manifolds are double covers of
a Swann bundle. In the simplest case, that of twisted normal cubics, the re-
sulting 12-dimensional metric is still flat, and the question arises what happens
for other admissible values of genus and degree. Potentially more interesting is
what happens if we start with the twistor space of the Swann bundle of compact
quaternion-Kähler manifolds (dim ≥ 8).
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Other activities

In addition to the scheduled talks the mini-workshop involved several problem
sessions and vivid discussions centering around the topics of the talks and the
problem of classifiying positive quaternion Kähler manifolds in general. In addi-
tion, people used the time in order to collaborate in the evenings and to take profit
of the gathering of experts from very different fields.

It is especially notable to have incorporated video conferences with Simon Sala-
mon from Imperial College, London, who was also willing to present his views on
quaternion Kähler geometry in a video talk. This did boost and enrich our insight
into the subject heavily and we are both thankful to Simon Salamon as well as the
MFO to have made this possible.

Reporter: Manuel Amann
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Université de Fribourg
Perolles
Chemin du Musée 23
1700 Fribourg
SWITZERLAND

Marysia Donten-Bury

Institute of Mathematics
University of Warsaw
02-097 Warszawa
POLAND

Dr. Anna Maria Fino

Dipartimento di Matematica
Universita degli Studi di Torino
Via Carlo Alberto, 10
10123 Torino
ITALY

Prof. Dr. Jun-Muk Hwang

School of Mathematics
Korea Institute for Advanced Study
(KIAS)
87 Hoegiro, Dongdaemun-gu
Seoul 130-722
KOREA, REPUBLIC OF

Prof. Dr. Stefan Kebekus

Mathematisches Institut
Universität Freiburg
Eckerstr. 1
79104 Freiburg
GERMANY

Dr. Andrei Moroianu

Université de Versailles - St Quentin
UMR 8100 du CNRS
45, Ave. des Etats-Unis
78035 Versailles Cedex
FRANCE



Mini-Workshop: Quaternion Kähler Structures 3145

Prof. Dr. Uwe Semmelmann

Institut für Geometrie & Topologie
Universität Stuttgart
70569 Stuttgart
GERMANY

Prof. Dr. Andrew F. Swann

Matematisk Institut
Aarhus Universitet
Ny Munkegade 118
8000 Aarhus C
DENMARK

Prof. Dr. Gregor Weingart

Instituto de Matemáticas
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