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Introduction by the Organisers

The workshop ”Langlands Correspondence and Constructive Galois Theory”
organized by Michael Dettweiler, Jochen Heinloth and Zhiwei Yun was held from
February 2 to February 8, 2014. It was attended by 23 participants. The partic-
ipants ranged from senior leaders in the field to young post-doctoral fellows and
one PhD student. The range of expertise covered areas ranging from geometric
Langlands correspondence to inverse Galois theory. The program contained 18
talks of 60 minutes.



288 Oberwolfach Report 05/2014

Overview

Recently, techniques originating from the Langlands programme have been suc-
cessfully applied to obtain uniform constructions of Galois representations and
local systems with surprising properties.

One of the approaches originated from a construction of Gross who managed
to find automorphic forms with very special properties. Interpreting these auto-
morphic forms from the point of view of the geometric Langlands correspondence
allowed to give an explicit description of the correspondig Hecke eigensheaves from
which one can then obtain local systems that are cohomologically rigid and whose
corresponding Galois representations have dense image in exceptional groups.

This was first obtained in the geometric situation, considering the function
field of the projective line over a finite field by Ngo, Heinloth and Yun, building
up on previous work of Katz and Frenkel, Gross. Zhiwei Yun surprisingly managed
to find arithmetic examples by a similar procedure, which allowed him to solve
longstanding open problems of constructing Galois extensions and motives of the
rational numbers with Galois images in exceptional algebraic groups, generalizing
previous work of Dettweiler, Katz and Reiter. The results of Yun lead to exciting
new Galois realizations of exceptional finite simple groups. In the meanwhile, these
Galois realizations have been reproven by Guralnick and Malle using the character
theory of groups of Lie type.

It turns out that the geometric Langlands conjectures which led to the above
constructions also indicate a geometric interpretation of the rigidity property of
many classical local systems. Namely, it seems that rigidity of local systems should
be reflected on the automorphic side of the Langlands correspondence by the phe-
nomenon that the moduli stacks of bundles that support the automorphic sheaves
are essentially 0 dimensional, which is a condition which is very easy to check
computationally. Again, it is surprising that one can understand many classical
rigid local systems from this point of view, again showing close relation of the clas-
sical results of Belyi, Katz and others to the geometric Langlands correspondence.
This indicates more generally that the cases of the Langlands correspondence for
which the moduli stacks have a simple geometric description should also have
applications in constructive Galois theory.

Researchers attending the conference reported on the substantial progress
(achieved within the last three years), discussed open problems, and exchanged
methods and ideas. Most lectures were followed by lively discussions among par-
ticipants.

The program can be highlighted as follows:

• Nick Katz’ introductory lecture, motivating brilliantly the topic of the con-
ference building the bridge between the area of classical constructions of
rigid local systems and the new approach using Langlands correspondence

• The talk of Zhiwei Yun on the construction of rigid local systems using geo-
metric Langlands correspondence, also providing a proof of a long standing
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question of Serre on the existence of motives with an exceptional simple
motivic Galois group.

• Gunter Malle’s talk on the Galois realizations of finite exceptional groups
of Lie type which were motivated by the work of Yun, illustrating the need
of cooperation between both fields of research. Stefan Reiter’s report on
the construction of rigid G2-local systems and associated D-modules.

• The talks of Gordan Savin, Sara-Aria-de-Reina and Gabor Wiese on the
construction of Galois groups using automorphic forms.

• Talks on progress in the geometric Langlands program by Yakov Var-
shavsky, Dac Tuan Ngo, Timo Richarz and Roman Fedorov.

• Talks of Lars Kindler and Hélène Esnault on D-modules in positive charac-
teristic, providing new insights into the structure of the étale fundamental
groups and associated local systems in positive characteristics.

• Lectures on general properties and conjectures on Galois representations
by Gebhard Böckle, Anna Cadoret, Pierre Dèbes and David Roberts.

Conculding, the framework of the conference was perfect for various mutual
interactions between the participants, resulting in various new collaboriations be-
tween the participants. It became clear, that many open problems in the construc-
tion of rigid local systems can be attacked using geometric Langlands corespon-
dence, resulting in the success this conference.
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Abstracts

Introduction

Nicholas M. Katz

1. Why some people care about local systems-character sums over
finite fields

Here is an example. We take an elliptic curve E over a finite field Fq of odd
characteristic, and write its number of rational points as

#E(Fq) = q + 1− aq(E).

Then aq(E) is visibly an integer, and a main problem in the early 1930’s, solved
by Hasse, was to establish the estimate

|aq(E)| ≤ 2
√
q.

Write a Weierstrass equation Y 2 = f(X) for E, with f a square free cubic, and
denote by χ2 : F×

q → ±1 ⊂ C× the quadratic character. Define χ2(0) := 0. Then
aq(E) is the character sum

aq(E) = −
∑

x∈Fq

χ2(f(x)).

If we take the Legendre family of elliptic curves Y 2 = X(X − 1)(X − λ), then
for each Fq of odd characteristic, and each λ ∈ Fq \{0, 1}, we have an elliptic curve
Eλ/Fq. Using Hasse’s bound, we write

aq(Eλ) = 2
√
q cos(θq,λ)

for a unique angle θq,λ in the closed interval [0, π]. The question of how this angle
varies was raised by Sato in the early 1960’s, and taken up by Tate a bit later.
If we fix a large q and vary λ, the Sato-Tate conjecture asserted that as q grows,
these q − 2 angles in [0, π] become equidistributed for the probability measure
(2/π) sin2(θ)dθ.

The Artin-Grothendieck ℓ-adic theory gives a (in this case a 2-adic !) local
system, call it F , on P1 \ {0, 1,∞} over Z[1/2] whose trace function at any point
(Fq, λ) is aq(Eλ). By Hasse’s estimate, this local system F is pure of weight one.
In each odd characteristic p, we can separately form a half Tate twist F(1/2),
whose trace function is now 2 cos(θq,λ), and which is pure of weight zero.

Deligne’s general equidistribution theorem tells us that for any local system G
which is pure of weight zero, we should look at the two algebraic groups Ggeom ⊂
Garith (here over Q2 !) which are the Zariski closures of the images of πgeom

1 and
of π1 of the base (here P1 \ {0, 1,∞} over Fp, any odd p). The group Ggeom has
its identity component semisimple. If it happens that Ggeom = Garith, then we

embed Q2 into C, and choose a maximal compact subgroup K of the complex Lie
group Garith(C). Deligne tells us that the semisimplification of the image of each
Frobenius class in Garith(C) is conjugate to an element of K, which is itself unique
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up to K-conjugacy. The theorem is then that as we take larger and larger Fq, these
Frobenius conjugacay classes in K become equidistributed for “Haar measure” on
the space K# of conjugacy classes in K.

In the case of the Legendre family, one shows that in each odd characteristic,
one has Ggeom = Garith = SL(2). HereK is the compact group SU(2), its space of

conjugacy classes is the interval [0, π], its “Haar measure” is (2/π) sin2(θ)dθ, and
for each (Fq, λ), its Frobenius conjugacy class is the angle θq,λ. In other words,
the Sato-Tate conjecture for the Legendre family holds.

In general, the upshot is that an “interesting” family of character sums will be
the values of the trace function of some local system. With luck, Deligne’s Weil
II results will show that the local system in question is pure of weight zero, and
we will be able to both calculate Ggeom and to show that Ggeom = Garith. When
all this works, we end up with an equidistribution theorem for the sums we were
interested in.

2. Why other people care about local systems-the automorphic
approach

In brief summary, automorphic considerations allow the construction of local
systems which are pure of weight zero, and where one knows a priori that Ggeom

is some specified group (G2, F4, E7, E8 have all been obtained this way, cf. [HNY])
and that Ggeom = Garith. So the automorphic constructions lead to cases where
one knows a Sato-Tate theorem for the trace function values (indeed for the Frobe-
nius conjugacy classes) of the local systems in question. What one does NOT know
in general is a concrete calculation of what the trace function is for these local sys-
tems.

3. Concluding summary

If we start with interesting sums, we need to calculate Ggeom in order to get
a Sato-Tate theorem. If we start on the automorphic side, we get Ggeom for free,
but we don’t know what sums we are proving Sato-Tate for. Can the two sides
come together?
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Galois groups over Q attached to automorphic representations

Gordan Savin

We gave an overview of results contained in the following two papers:

Functoriality and the inverse Galois problem (with C. Khare and M. Larsen),
Compositio Math. 144 (2008) 541-564.

Functoriality and the inverse Galois problem II: groups of type Bn and G2 (with
C. Khare and M. Larsen), Ann. Fac. Sci. Toulouse Math. (the issue in honor of
Khare’s Prix Fermat) Vol XIX, no 1 (2010) 37-70.

These two papers contain an application of Langlands’ functoriality principle
to the classical problem: which finite groups, in particular which simple groups,
appear as Galois groups over Q? Let ℓ be a prime. Let G be an adjoint simple Lie
group over the finite field Fℓ of type Cn, Bn or G2. Let t be a positive integer. We
show that there exists an integer k divisible by t such that G(Fℓk) or its derived
group appears as Galois groups over Q. In particular, for each of the three Lie
types and fixed ℓ we construct infinitely many Galois groups, however, we do not
have a precise control of k. It is worth mentioning that, in contrast, the rigidity
method (due to Thompson, Beily and Matzat) produces usually groups of Lie type
as Galois groups over a (large) cyclotomic extension Q. Only perhaps for k = 1
these Galois groups are over Q. Our method is based on the following three steps:

• Construction of a cohomological, automorphic representation Π ofGLm(A)
with pre-described ramification as a lift of a cuspidal generic representation
σ of G = SO2n+1, Sp2n and G2 respectively.

• Attaching an m-dimensional ℓ-adic representation

rΠ : Gal(Q) → GLm(Q̄ℓ)

to Π compatible with the local Langlands parametrization outside ℓ. This
means that for every prime v 6= ℓ the restriction of rΠ to the decomposition
group at v gives the Langlands parameter of Πv.

• Reducing rΠ modulo ℓ. In this way we obtain a finite subgroup Γ̄ of
GLm(F̄ℓ). Γ̄ can be controled by: (1) picking a (large) prime q so that it
splits completely in every Galois extension of Q ramified at ℓ only and of
the degree≤ d, for some sufficiently large d, and (2) by picking Πq to be the
lift (in the sense of the first step) of a tame supercuspidal representation
σq.

The first step is based on constructing a generic automorphic representation σ
of a classical group, with some desired local properties. We lift σ to a cuspidal
representation Π of GLm(A) using a result of Cogdell, Kim, Piatetski-Shapiro and
Shahidi, combined with the local parameterization by Jiang and Soudry. The lift
from G2 is based on the exceptional theta correspondence arising from the minimal
representation of E7. The second step is based on a result of Harris and Taylor.
That result is subject to a condition that Π has a discrete series representation at
one place. Since GL2n+1(Qq) has no self-dual tame supercuspidal representations
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and, in fact, no self-dual supercuspidal representations at all since q is odd, the
representation Πq is not a discrete series representation if m = 2n + 1. This
technical difficulty had originally prevented us from constructing Galois groups of
type Bn and G2 in the first paper. A way around this is to arrange Π2 to be a
ramified self-dual cuspidal representation of GL2n+1(Q2). Alternatively, one can
use a generalization of the result of Harris-Tayor, due to Shin, where the condition
that Π has a discrete series representation at one place has been removed. The
third step relies on a paper of Larsen and Pink, a wast generalization to reductive
groups of Dickson’s classification of finite subgroups of PGL2(F̄ℓ).

Lightly ramified number fields
(with an eye towards automorphic forms)

David P. Roberts

The talk summarizes my recent and ongoing work towards constructing number
fields which are lightly ramified for their Galois group G in various senses. The
light ramification makes these fields promising candidates for explicit matches with
automorphic forms. The talk is organized by increasing Galois group and towards
the beginning some explicit matches are discussed. Some of the fields presented:
G = SL±

2 (F11). Malle’sM22 cover has an exceptional specialization point which
yields an PGL2(11) field ramified at 2, 3, and 11 only. We present a degree 24
even polynomial lifting this field to the double cover SL2(F11). The ramification
is tame at 11 and we have found explicit corresponding classical modular forms in
S4(24) and S8(24) whose mod 11 Galois representations agree with this lift. This
example provides a very explicit illustration of Gross’ theory of companion forms.
G = SL2(16).4, PGL2(27).3, SL2(5)

5.10. We present lightly ramified fields in
these cases which numerically match Hilbert modular forms. The first two matches
form part of work with Dembélé and Diamond. They have helped to refine a con-
jecture relating ramification at the residual prime ℓ of Galois representations with
Serre weights of automorphic forms. The last is particularly interesting because
the field ramifies at 5 only, the form having been found by Démbélé, Greenberg,
and Voight.
G = W (E7)

+. Representing many polynomials giving mod ℓ Galois repre-
sentations associated to Katz’s rigid local systems, we present equations for five
one-parameter families of number fields with Galois group W (E7)

+. These fam-
ilies are numbers 58-62 on the Beukers-Heckman list, with the first one having
equation

218(x3 + 3x2 − 3)9 = t36x3(3x+ 4)(x2 + 6x+ 6)12.

The five explicit polynomials are found in a simple uniform way by specializing
Shioda’s universalW (E7)

+ polynomial. The corresponding curves in the t-x plane
all have genus zero.
G = G2(2) = U3(3).2. There are newer theories of rigidity associated to more

general algebraic groups. We present a two-parameter family with Galois group
G2(2) = U3(3).2 and bad reduction at 2 and 3 only. Like the examples of the
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previous paragraph, this family comes in several ways from mod ℓ representa-
tions associated to motives, and these connections should facilitate future explicit
connections with automorphic forms.
G = 2.M11.2. The final example is a field with Galois group 2.M12.2 and bad

reduction at 11 only. Gross remarks that an associated automorphic form might
come from the embedding M12 ⊂ E7. While the group is very large here, the fact
that the automorphic form may be everywhere unramified reduces complexity.

Geometric interpretation and stability of characters of
Deligne–Lusztig representations of p-adic groups

Yakov Varshavsky

In my talk I am going to explain a joint work with Roman Bezrukavnikov
([BV]). Our main goal is to give a geometric proof of the stability of L-packets
of Deligne–Lusztig representions of p-adic groups, shown earlier in my joint work
with David Kazhdan [KV].

To show the result, we reinterpret these characters in terms of homology of
affine Springer fibres. After this is done, we deduce the stability from a theorem of
Zhiwei Yun [Yun], which asserts that commuting actions of the affine Weyl group
and the stabilizer are compatible.

Let us describe our results in more details. Let F be a local non-archimedean
field, WF the Weil group of F , l a prime number different from the characteristic

of F , G an unramified connected reductive group over F and LG = Ĝ ⋊WF the
Langlands dual group of G over Ql.

Recall that a local Langlands conjecture predicts that for every Langlands pa-
rameter λ : WF → LG(Ql) should gives rise to certain finite set Πλ of irreducible
admissible representations of G(F ), called the L-packet. Moreover, it is believed
that a certain explicit linear combination χst

λ =
∑

π∈Πλ
dλχ(π) of characters of

representations from Πλ should be stable. In particular, one expects to have a
map λ 7→ χst

λ from the set of Langlands parameters to the space of stable gener-

alized functions Dst(G(F ),Ql).
Though conjectural generalized functions χst

λ are predicted in some cases, clas-
sically there is no neither characterization of the map λ 7→ χst

λ nor a general
procedure, which for a given λ produces a generalizes function χst

λ . On the other
hand, when F is of positive characteristic, one believes that should exists a ”nat-
ural” map λ 7→ χst

λ ”via geometry”.
Assume λ is tamely ramified and factors through LT ⊂ LG, for certain embed-

ding of L-groups LT →֒ LG for certain elliptic unramified torus T over F of the
same absolute rank as G. In this case, the expected generalized function is known
classically. The goal of my talk is to give a geometric description of the restriction
of χst

λ to the set of regular semisimple compact elements Grss,c(F ). Using this
description we give an alternative geometric proof of the stability of χst

λ at least
on the regular semisimple locus.
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First we describe the classical construction. Recall that by the local Langlands
for torus, λ : WF → LG corresponds to tamely ramified homomorphism θ = θλ :

T (F ) → Ql
×
. Let Fq be the residue field of F . Then T gives rise to a torus

T over Fq and the restriction θ|T (O) : T (O) → Ql
×

factors through a character

θ : T (Fq) → Ql
×
. On the other hand, an embedding LT →֒ LG gives rise to

an embedding of a maximal torus a : T →֒ G, defined uniquely up to a stable
conjugacy.

Let a1 = a, a2, . . . , an be a set of representatives of the set of conjugacy class of
embeddings T →֒ G, which are stably conjugate to a. Since a(T ) ⊂ G is elliptic,
for each such ai, there exists a unique parahoric subgroup Gai

⊂ G(F ) such
that ai(T (O)) ⊂ Gai

. We denote by Lai
the corresponding ”Levi subgroup”, by

ai : T →֒ Lai
the map induced by ai, by ρai,θ

the virtual cuspidal Deligne-Lusztig

representation of Lai
(Fq), corresponding to a torus ai(T ) ⊂ Lai

and a character

θ.
Next let ρai,θ be the unique representation of Gai

Z0(F ) whose restriction to
Gai

is the inflation of ρai,θ
and restriction to Z0(F ) is equal to the restriction of θ,

and let πai
be the induced representation Ind

G(F )
Gai

Z0(F )(ρai
). The πai

is known to

be a virtual cuspidal representation, and we denote by πst
λ = πst

λ,G to be the sum∑
i πai

.
Now we assume that F is a local field of positive characteristic and describe

our geometric construction of the restriction of χst
λ to Grss,c(F ). By a theorem

of Lang, a character θ : T (Fq) → Fq gives rise to a one-dimensional local system

Lθ on T , equipped with a Weil structure. Recall that G is defined over Fq, and

let TG be the abstract Cartan over Fq, and WG the Weyl group of G. Note that

there is a natural WG-conjugacy class of isomorphisms φ : TG
∼→ T (defined over

Fq). In particular, we get a WG-equivariant local system Eθ := ⊕ϕϕ
∗(Lθ) on TG,

equipped with a Weil structure.
Now for each γ ∈ Grss,c(F ), there is a natural projection Sprγ → TG, defined

over Fq. Since Eθ is a Weil sheaf, its pull back is a Weil sheaf on Sprγ , which
we again denote by Eθ. Moreover, since Eθ was WG-equivariant, its homology
Vi,γ := Hi(Sprγ , Eθ) is equipped with an action of the extended affine Weyl group

W̃G :=WG ⋉Λ, where Λ := X∗(TG) is a lattice of cocharacters of TG. Moreover,

each Vi,γ is a finitely generated W̃G module, therefore the derived coinvariants

H∗,γ := H∗(W̃G,⊕i(−1)iVi,γ) is virtual finite dimensional vector space, equipped

with an action of Gal(Fq/Fq).
The main result of this work asserts that stable character χst

λ (γ) equals the
trace of the geometric Frobenius element Tr(Fr, H∗,γ). As a consequence we give
an alternative geometric proof of the fact that the character χst

λ is stable on the
set of regular semisimple elements.

The main technical tool in our arguments is the following result, which is es-
sentially due to Zhiwei Yun [Yun]. More precisely, Yun proved the corresponding
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result for Lie algebras using global methods, while we deduce the group algebra
version using the topological Jordan decomposition and quasi-lograithm maps.

To describe the result of Yun, we recall that the homology group Vi,γ is also
equipped with an action of the centralizer Gγ(F ), commuting with the action

of W̃G. Moreover, this action factors through the group of connected compo-
nents π0(Gγ) = X∗(Gγ)ΓFnr . Note also that there is a natural isomorphism

Λ
∼→ X∗(Gγ), unique up to a WG-conjugacy, hence a canonical homomorphism

p : Ql[Λ]
WG → Ql[π0(Gγ)]. Then the result we heavily used is an assertion that for

each i there is a finite W̃G×Gγ-equivariant filtration of Vi,γ such that the induced

action of Ql[Λ]
WG on each graded piece is induced from the action of π0(Gγ) via

homomorphism p.
Let us indicate how a theorem of Yun was used. Recall that Sprγ is an ind-

scheme such that the quotient π0(Gγ)\Sprγ is of finite type. Therefore each Vi,γ
is a finitely generated π0(Gγ) module. Using theorem of Yun we deduce that

each Vi,γ is a finitely generated Ql[Λ]
WG module, hence W̃G-module. Therefore

H∗,γ is a virtual finite dimensional vector space, hence the trace Tr(Fr, H∗,γ) is
defined. Secondly, Yun’s theorem implies that π0(Gγ) trivially acts on on the space

of W̃G-coinvariants H∗,γ , which immediately implies the stability of the function
γ 7→ Tr(Fr, H∗,γ).
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Rigid local systems from automorphic forms

Zhiwei Yun

In my talk, I gave a survey on some new construction of local systems on
punctured lines from the point of automorphic representations. For more details
we refer to [9].

Rigid automorphic data. Consider P1
k−S where k is a finite field and S ⊂ P1(k)

is a finite set. Let F = k(t) be the function field of P1
k and let AF be the ring of

adèles of F . Let G be a semisimple split algebraic group over k. Let Ĝ be the
Langlands dual group of G over Qℓ. We can talk about automorphic represen-
tations of G(AF ). We would like to impose local conditions on the automorphic
representations π of the following kind:

(1) πv is unramified for places v of P1 not in S;
(2) For each v ∈ S, πv contains an eigenvector of a certain compact open

subgroupKv ⊂ G(Ov) on which it acts through a character χv : Kv → Q
×

ℓ .
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(3) We require the pairs {Kv, χv}v∈S to “come from geometry”, hence make
sense when we base change k to a finite field extension k′.

An automorphic datum (Kv, χv)v∈S as above is said to be rigid, if there is a
constantN such that for every finite extension k′ of k (correspondingly F ′ = k′(t)),
the number of automorphic representation π′ of G(AF ′) satisfying the obvious F ′-
analogues of the above conditions is bounded from above by N (and there is such
a π′ for some extension k′).

When G = PGL2, we give two examples.
First, take S = {0, 1,∞}, take Kv to be an Iwahori subgroup and require the

characters χv to factor through the torus quotient of Kv. Under some genericity
conditions on these characters, (Kv, χv)v∈S is rigid.

Second, take S = {0,∞}, take K0 to be an Iwahori with χv trivial, while K∞

to be the pro-unipotent radical of an Iwahori with a generic additive character χ∞

on it. Then (Kv, χv)v∈S is also rigid.

Constructing local systems. Using ideas from geometric Langlands correspon-

dence, we are able to produce Ĝ-local systems over P1
k−S from a rigid automorphic

datum (Kv, χv)v∈S as above. We can control the local monodromy of the result-
ing local system, which often implies that the global geometric monodromy is the

whole Ĝ.
In the first example, taking χ0 = χ1 to be trivial and χ∞ quadratic, the corre-

sponding Ĝ = SL2-local system is the local system of ℓ-adic Tate modules of the
Legendre family of elliptic curves Et : y

2 = x(x− 1)(x− t), t ∈ P1 − {0, 1,∞}.
In the second example, the Ĝ = SL2-local system we get is the Kloosterman

sheaf introduced by Deligne [1]. Its Frobenius trace function is the classical Kloost-
erman sum

t 7→
∑

xy=t,x,y∈k×

ψ(x+ y).

Applications. In [4], we produce Ĝ-local systems over P1
Fp
−{0,∞} that are tame

at 0 and wild at ∞. When G = PGL2 this is the second example above. The

construction is uniform for all Ĝ, and they give examples of local systems with
geometric monodromy groups of type E7, E8, F4 and G2 (the G2 case was known
by Katz [5]).

In [8], we produce tame Ĝ-local systems over P1
k − {0, 1,∞} where k is any

prime field of characteristic not two, including Q. When G = PGL2 it belongs to

the first example above. For Ĝ = E7, E8, F4 and G2 we again get full geometric
monodromy. Specializing to a general Q-point, the local system gives a motive

over Q with motivic Galois group is of type Ĝ, answering a question of Serre in
[6]. Reduce the local system modulo ℓ we deduce that E8(Fℓ), F4(Fℓ) and G2(Fℓ)
are Galois groups over Q for sufficiently large ℓ, solving special cases of the inverse
Galois problem (in both situations the G2 cases were known before our work, see
[2], [3] and [7]).
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Galois realization of E8(p), p ≥ 7

Gunter Malle

We reported on the proof of the theorem, obtained in joint work with Robert
Guralnick (USC), that all finite simple groups E8(p), for p ≥ 7 a prime, occur as
Galois groups of infinitely many linearly disjoint extensions of the field of rational
numbers Q. This extends earlier results of the speaker (who showed the claim for
a set of primes of density 16/30 in 1986) and of Z. Yun (who recently showed it
by completely different methods for all primes larger than an unspecified bound,
see the previous talk).

Our proof relies on the rigidity criterion of Belyi, Fried, Matzat and Thompson.
We exhibit three rational conjugacy classes of E8(p), one of them consisting of
regular unipotent elements, which we show to be rigid. This is proved by first
carefully estimating the structure constant for that triple using results of Lusztig
on characters of finite reductive groups. As a side result we obtain a remarkable
symmetry between the character table of a finite reductive group when restricted
to semisimple classes and semisimple characters, and that of its Langland’s dual
group.

We then show that any triple from the chosen conjugacy classes with product 1
must generate E8(p) by classifying the Lie primitive subgroups of E8(q) containing
regular unipotent elements.

Our results also show that a triple of elements from the chosen classes can
already be found in E8(S), where S = Z[1/30].
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On the classification of orthogonally rigid G2-local systems

Stefan Reiter

Let L be a C-local system on X := P1 \ {x1, . . . , xr, xr+1 = ∞} of rank n and

ρ : π1(X, x0) = 〈γ1, . . . , γr+1〉 → GL(Lx0
) ∼= GLn(C), γi 7→ ρ(γi) =: gi

the corresponding monodromy representation. Thus
∏r+1

i=1 gi = 1. We call L a

G-local system if ρ(π1) ⊆ G(C), where G is a linear algebraic group. Further, L is
called irreducible if the monodromy representation is irreducible. An irreducible
local system L of rank n is called GLn-rigid if

−(r − 1)n2 +
r+1∑

i=1

dimCGLn
(gi) = χ(P1, j∗EndL|X) = 2.

In this case ρ is uniquely determined by its local monodromy (up to simultaneous
conjugation) by a result of Deligne and Katz, cf. [1] . We call an irreducible local
system L of rank n orthogonally rigid if L a On-local system and

−(r − 1) dimOn +
r+1∑

i=1

dimCOn
(gi) = 0.

This a necessary condition that there are only finitely many equivalence classes of
such monodromy representations with given local monodromy data. (In general
such a local system is not uniquely determined by its local monodromy data).

By the work of N. Katz on the middle convolution functor MCχ, all GLn-rigid
irreducible local systems L on the punctured line can be constructed by applying
iteratively MCχ and tensor products with rank-1-sheaves to a rank-1-sheaf. For
orthogonally rigid local systems with G2-monodromy we prove that there is a
similar method of construction:

Theorem 1. Let L be an orthogonally rigid C-local system on a punctured pro-
jective line P1 \ {x1, . . . , xr+1} of rank 7 whose monodromy group is dense in the
exceptional simple group G2. If L has nontrivial local monodromy at x1, . . . , xr+1,
then r = 2, 3 and L can be constructed by applying iteratively a sequence of the
following operations to a rank-1-system:

• Middle convolutions MCχ, with varying χ.
• Tensor products with rank-1-local systems.
• Tensor operations like symmetric or alternating products.
• Pullbacks along rational functions.

Especially, each such local system which has quasi-unipotent monodromy, i.e. all
the eigenvalues of the local monodromy are roots of unity, is motivic, i.e., it arises
from the variation of periods of a family of varieties over the punctured projective
line.

The verification that the monodromy group is inside the group G2(C) cannot be
decided by looking at the local monodromy data alone. Therefore we interpretate
MCχ at the level of differential operators. The differential operators which belong
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to the local systems of Thm. 1 under Riemann-Hilbert correspondence can be
determined by the following criterion:

Theorem 2. Let L =
∑7

i=0 ai(x)∂
i ∈ C(x)[∂] be monic, i.e. a7(x) = 1. If L is

self adjoint then

a6(x) = 0

a4(x) =
5

2

d

dx
a5(x)

a2(x) = −5

2

d3

dx3
a5(x) +

3

2

d

dx
a3(x)

a0(x) =
1

2

d

dx
a1(x)−

1

4

d3

dx3
a3(x) +

1

2

d5

dx5
a5(x)

Moreover, if the above conditions hold and if further

a3(x) = 3
d2

dx2
a5(x) +

1

4
a5(x)

2,

then the differential Galois group and the monodromy group of L is contained in
G2(C).

This is a joint work with Michael Dettweiler [2].
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On the cohomology of stacks of G-shtukas

Ngo Dac Tuan

Let X be a smooth, projective, geometrically connected curve over a finite field
Fq et let F be its function field. Let G a split reductive group over Fq equipped

with a Borel pair (T,B). Denote by Ĝ the Langlands dual group of G over Q̄l

with l 6= char(Fq).
For every finite set (not necessarily non-empty) I, every irreducible representa-

tion W of ĜI and every finite subscheme N of X , we define the stack ChtI,W,N

classifying G-shtukas associated to the pair (I,W ) with level structure N . The
stack ChtI,W,N is a Deligne-Mumford stack, locally of finite type, equipped with
a natural map

p : ChtI,W,N → (X −N)I .

For every rational dominant coweight µ of T ad, we introduce the open substack

Cht≤µ
I,W,N of ChtI,W,N . It is well-known that the connected components of Cht≤µ

I,W,N

are quotients of a quasi-projective scheme over (X − N)I by a finite group. We
define

H∗,≤µ
c,I,W,N = Rp!(IC(Cht

≤µ
I,W,N )) ∈ Db

c((X −N)I , Q̄l)



304 Oberwolfach Report 05/2014

where IC(Cht≤µ
I,W,N ) is the intersection sheaf of Cht≤µ

I,W,N . Then we define the
cohomology of the stack ChtI,W,N as follows:

H∗
c,I,W,N = lim−→H∗,≤µ

c,I,W,N .

Remark that it is necessary to introduce a lattice Ξ as in [8], but we ignore it in
this note for simplicity.

The generic fiber H∗
c,I,W,N |ηI

is equipped with three actions: the action of the

Hecke algebra HN of level N , the action of the Galois group Gal(ηI/ηI) and the
actions of partial Frobenius. These actions commute with each other. However,

the actions of the Hecke algebra and partial Frobenius do not preserve H∗,≤µ
c,I,W,N .

The main goal of our talk is how to define the so-called essential cohomology
H∗,ess

c,I,W,N |ηI
in which the Langlands correspondence would be realized.

The first example is the case of the general linear group G = GLr for r ≥ 2.
Let I be a set of two elements and W be the representation V ⊠ V ∨ where V is
the standard representation of GLr. The associated stack ChtI,W,N is known as
the stack classifying Drinfeld’s shtukas of rank r. Drinfeld (for r = 2) [1, 2] and
L. Lafforgue (for r > 3) [5, 6, 7] constructed H∗,ess

c,I,W,N |ηI
and proved that

H∗,ess
c,I,W,N |ηI

=
⊕

π

πKN ⊗ σ(π) ⊗ σ∨(π)

where the sum runs through cuspidal automorphic representations of GLr(AF )
(whose determinant is of finite order) and σ(π) : Gal(F̄ /F ) → GLr(Q̄l) is the
Galois representation associated to π.

The second example is due to Varshavsky [12]. We still work with the general
linear group G = GLr for r ≥ 2. For any triple (I,W,N) as above, Varshavsky
suggested a construction for H∗,ess

c,I,W,N |ηI
and conjectured that

H∗,ess
c,I,W,N |ηI

=
⊕

π

πKN ⊗W

where the sum runs through cuspidal automorphic representations of GLr(AF )
(whose determinant is of finite order) and the Galois action on W is given via the
associated Galois representation σ(π) : Gal(F̄ /F ) → GLr(Q̄l).

The third striking example is due to Vincent Lafforgue [8]. We take I to be
the empty set and W to be the trivial representation. Then V. Lafforgue defined

the so-called Hecke-finite cohomology H0,Hf
c,I,W,N |ηI

. He proved that it is exactly

Ccusp
c (G(F )\G(AF /KN , Q̄l), the space of Ql-valued cuspidal functions of compact

support on G(F )\G(AF )/KN and admits a canonical decomposition of this space
indexed by Langlands parameters.

In this talk, we formulate a precise conjecture for H∗,ess
c,I,W,N |ηI

for any split

reductive group G over Fq. The conjecture is based on our recent work [9, 10,

11] which gives a formula for the number of fixed points of Cht≤µ
I,W,N under the

composition of a Hecke action with a certain power of the Frobenius. It is inspired
from the work of Kottwitz on certain Shimura varieties [3, 4].
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[11] T. Ngô Dac, On a counting problem for G-shtukas, preprint.
[12] Y. Varshavsky, Moduli spaces of principal F -bundles, Selecta Math., 10 (2004), 131-166.

On modular forms in the inverse Galois problem

Gabor Wiese

For many finite groups the Inverse Galois Problem (IGP) can be approached
through modular/automorphic Galois representations. This report is about the
ideas and the methods that my coauthors and I have used so far, and their
limitations (in my experience).
In this report I will mostly stick to the case of 2-dimensional Galois representations
because it is technically much simpler and already exhibits essential features; occa-
sionally I’ll mention n-dimensional symplectic representations; details on that case
can be found in Sara Arias-de-Reyna’s report on our joint work with Dieulefait
and Shin (see page 310 in this report).

Basics of the approach

The link between the IGP and Galois representations. Let K/Q be a
finite Galois extension such that G := Gal(K/Q) ⊂ GLn(Fℓ) is a subgroup. Then
GQ := Gal(Q/Q) ։ Gal(K/Q) →֒ GLn(Fℓ) is an n-dimensional continuous Galois
representation with image G. Conversely, given a Galois representation ρ : GQ →
GLn(Fℓ) (all our Galois representations are assumed continuous), then im(ρ) ⊂
GLn(Fℓ) is the Galois group of the Galois extension Q

ker(ρ)
/Q.
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Source of Galois representations: abelian varieties. Let A be a GL2-type
abelian variety over Q of dimension d with multiplication by the number field F/Q
(of degree d) with integer ring OF . Then for every prime ideal λ⊳OF , the λ-adic
Tate module of A gives rise to ρA,λ : GQ → GL2(OF,λ). These representations
are a special case of those presented next (due to work of Ribet and the proof of
Serre’s modularity conjecture).

Source of Galois representations: modular/automorphic forms. Let f =∑∞
n=1 ane

2πinz be a normalised Hecke eigenform of level N and weight k without
CM (or, more generally, an automorphic representation of a certain type over Q).
The coefficients an are algebraic integers and Qf = Q(an | n ∈ N) is a number
field, the coefficient field of f . Denote by Zf its ring of integers. The eigenform
f gives rise to a compatible system of Galois representations, that is, for
every prime λ of Qf a Galois representation ρf,λ : GQ → GL2(Zf,λ) such that
ρf,λ is unramified outside Nℓ (where (ℓ) = Z ∩ λ) and for all p 6 | Nℓ we have
Tr(ρf,λ(Frobp)) = ap. All representations thus obtained are odd (determinant of
complex conjugation equals −1).

Reduction and projectivisation. We consider the representations ρf,λ : GQ

ρf,λ−−−→
GL2(Zf,λ) ։ GL2(Ff,λ) and ρprojf,λ : GQ

ρf,λ−−−→ GL2(Ff,λ) ։ PGL2(Ff,λ), where

Ff,λ = Zf,λ/λ. In our research we focus on projective representations because the
groups PSL2(Fℓd) are simple for ℓd ≥ 4.
Main idea: By varying f and λ (and thus ℓ), realise as many finite
subgroups of PGL2(Fℓ) as possible.

Trust in the approach. If ℓ > 2, the oddness of the representations leads

to Q
ker(ρproj

f,ℓ
)
being totally imaginary. The approach through modular Ga-

lois representations for the groups PSL2(Fℓd) and PGL2(Fℓd) to the IGP
should in principle work for the following reason: If Gal(K/Q) ⊂ PGL2(Fℓ)
is a finite (irreducible) subgroup and K/Q is totally imaginary (which is ‘much
more likely’ than being totally real), then Serre’s modularity conjecture implies
that K can be obtained from some f and λ. In more general contexts, there are
generalisations of Serre’s modularity conjecture (however, unproved!) and I am
inclined to believe that the approach is promising in more general contexts than
just GL2.

The two directions. We have so far explored two directions for the realisation of
PSL2(Fℓd) and PSpn(Fℓd). Vertical direction: fix ℓ, let d run (results by me for
PSL2 [Wie08], generalised by Khare-Larsen-Savin for PSpn [KLS08]); horizontal
direction: fix d, let ℓ run (results by Dieulefait and me for PSL2 [DW11] and by
Arias-de-Reyna, Dieulefait, Shin and me for PSpn [AdDSW13]).

Main challenges

In approaching the IGP through modular forms for specific groups, in my experi-
ence one is faced with two challenges:
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(1) Control/predetermine the type of the image ρprojf,λ (GQ).

(2) Control/predetermine the coefficient field Qf .
Problem (2) appears harder to me.

Controlling the type of the images. By a classical theorem of Dickson, if ρf,λ
is irreducible, then it is either induced from a lower dimensional representation
(only possiblity: a character) or ρprojf,λ (GQ) ∈ {PSL2(Fℓd),PGL2(Fℓd)} for some d

(we call this case huge/big image). Under the assumption of a transvection in
the image, we have generalised this result to symplectic representations. In our
applications we want to exclude reducibility and induction. One can expect a
generic huge image result (for GL2 this is classical work of Ribet; for other
cases e.g. recent work of Larsen and Chin Yin Hui in this direction [HL13]).

Inner twists. If one has e.g. determined that ρprojf,λ (GQ) is huge, one still needs to

compute which d ∈ N and which of the two cases PSL2(Fℓd), PGL2(Fℓd) occurs.
The answer is given by inner twists. For GL2 these are well-understood (with
Dieulefait we exclude them by a good choice of f); for PSpn we proved a gener-
alisation allowing us to describe d by means of a number field, but, as to now we
are unable to distinguish between the two cases.

Coefficient field

One knows that Qf is either totally real or totally imaginary (depending on the
nebentype of f). Moreover, [Qf : Q] ≤ dimSk(N), where Sk(N) is the space of
cusp forms of level N and weight k. Furthermore, a result of Serre says that for
any sequence (Nn, kn)n such that Nn+ kn tends to infinity, there is fn ∈ Skn

(Nn)
such that [Qfn : Q] tends to infinity. However, to the best of my knowledge, almost
nothing is known about the arithmetic of the coefficient fields and the
Galois groups of their normal closures over Q. In my experience, this is the
biggest obstacle preventing us from obtaining very strong results on the IGP.

Almost complete control through Maeda’s conjecture. A conjecture of
Maeda gives us some control on the coefficient field by claiming that for any
f ∈ Sk(1) one has [Qf : Q] = dimSk(1) =: mk and that the Galois group of the
normal closure of Qf over Q is Smk

, the symmetric group. The conjecture has
been numerically tested for quite high values of k, but to my knowledge a proof
is out of sight at the moment and there’s no generalisation to higher dimensions
either. Assuming Maeda’s conjecture I was able to prove in [Wie13] that for even d
the groups PSL2(Fℓd) occur as Galois groups over Q with only ℓ ramifying for all ℓ,
except possibly a density-0 set. In a nutshell, for the proof I choose a sequence fn
of forms of level 1 such that [Qfn : Q] strictly increases. That the Galois group
is the symmetric group ensures two things: firstly, every Qfn possesses a degree-d
prime; secondly, the fields Qfn and Qfm for m 6= n are almost disjoint (in the
sense that their intersection is at most quadratic) and thus the sets of primes of
degree d in the two fields are almost independent, so that their density adds up
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to 1 when n→ ∞. This illustrates that some control on the coefficient field
promises strong results on the IGP.

A conjecture of Coleman on GL2-type abelian varieties. The modular
form f corresponding to a GL2-type abelian variety with multiplication by F
has coefficient field Qf = F . However, I don’t know of any method to construct a
GL2-type abelian variety with multiplication by a given field. Indeed, a conjecture
attributed to Coleman (see [BFGR06]) predicts that for a given dimension, only
finitely many number fields occur. In other words, for weight-2 modular forms in
all levels, there are only finitely many Qf of a given degree. Under the assump-
tion of Coleman’s conjecture, it is impossible to obtain PSL2(Fℓ2) for all ℓ from
GL2-type abelian surfaces because there will be a positive density set of ℓ that are
split in all number fields of degree 2 that occur as multiplication fields. Although
I don’t know if there are finitely or infinitely many quadratic fields occuring as Qf

for f of arbitrary level and arbitrary weight, this nevertheless suggests to me that
one should make use of modular forms of arbitrary coefficient degrees for ap-
proaching PSL2(Fℓd) for fixed d (as we did when we assumed Maeda’s conjecture).

Numerical data. Some very simple computer calculations for p = 2 during my
PhD have very quickly revealed that all PSL2(F2d) with 1 ≤ d ≤ 77 occur over Q.
With Marcel Mohyla we plotted Ff,λ for small fixed weight and f having prime
levels [MW11]. The computations suggest that the maximum and the average
degrees (for f in Sk(N) for N prime) of Ff,λ are roughly proportional to the
dimension of Sk(N).

The local ‘bad primes’ approach to the main challenges

We need to gain some control on the coefficient fields and in the absence of a
generic huge image result, we also need to force huge image of the Galois represen-
tation. In all our work (like in that of Khare-Larsen-Savin [KLS08]), we approach
this by choosing suitable inertial types, or in the language of abelian varieties, by
choosing certain types of bad reduction. The basic idea appeared in the work of
Khare-Wintenberger on Serre’s modularity conjecture. More precisely, one chooses
inertial types at some primes q guaranteeing that ρf,λ(Iq) contains certain elements
(Iq denotes the inertia group at q) . For instance, if an element that is conjugate
to ( 1 1

0 1 ) is contained, the representation cannot be induced. In the n-dimensional
symplectic case, we use this to obtain a transvection in the image, allowing us to
apply our classification (see above). We also employ Khare-Larsen-Savin’s gener-
alisation of Khare-Wintenberger’s good-dihedral primes. More precisely, for GL2

we impose ρf,λ|GQq
= Ind

Qq

Qq2
(α) where α is a character of Q×

q2 of prime order t not

descending to Q×
q . This has two uses: (1) As the representation is irreducible

locally at q, so it is globally. (2) Qf contains ζt+ ζ
−1
t (this follows from an explicit

description of the induction). This cyclotomic field in the coefficient field
can be exploited in two ways. (2a) By making t big, [Ff,λ : Fℓ] becomes big. This
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leads to the results in the vertical direction. (2b) Given d, by choosing t
suitably, Q(ζt + ζ−1

t ) contains prime ideals of degree d, thus Qf contains prime
ideals of degree d, which makes the results in the horizontal direction
work. In the absence of any knowledge on the Galois closure of Qf over Q in
general, I do not know of any other way to guarantee that degree-d primes exist
at all (we need them to realise PSL2(Fℓd)).
My feeling is that the cyclotomic field Q(ζt+ζ

−1
t ) only makes up a very small part

of the coefficient field, i.e. that [Qf : Q] will be much bigger than [Q(ζt+ζ
−1
t ) : Q].

Thus, in our results in the horizontal direction, for given d and f , we only obtain
very small densities. Moreover, I cannot prove that by varying f for fixed d, the
sets of primes of residue degree d are not contained in each other. Any information,
for instance, on the ramification of Qf changing with f or on the Galois group
would probably enable us to obtain a big density by taking the union of the sets
of degree-d primes for many f .

Constructing the relevant modular/automorphic forms

For finishing the approach, one must finally construct or show the existence of mod-
ular/automorphic forms having the required inertial types. For modular forms one
can do this in quite a down-to-earth way by using level raising. This approach was
taken in the work by Dieulefait and me. In the symplectic case, we exploit work
of Shin, as well as level-lowering results of Barnet-Lamb, Gee, Geraghty and Tay-
lor [BLGGT13]. Khare-Larsen-Savin [KLS08] use other automorphic techniques.

Conclusion

The presented approach to the IGP for many families of finite groups through
automorphic representations seems in principle promising. In my opinion, the
main obstacle is a poor understanding of the coefficient fields.
The approach has the advantage that it allows full control on the ramification.
A disadvantage is that one does not obtain a regular realisation.

Acknowledgements. I thank Sara Arias-de-Reyna for valuable comments on a
first draft of this report.
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des Nombres et Applications”, Publ. Math. Besançon Algèbre Théorie Nr., Presses
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Compatible systems of symplectic Galois representations and the
inverse Galois problem

Sara Arias-de-Reyna

Together with L. Dieulefait, S.W. Shin and G. Wiese, we have completed a
project on the realization of (projective) symplectic groups over finite fields as
Galois groups over Q, making use of the compatible systems of Galois representa-
tions attached to certain automorphic forms (cf. [1], [2], [3]).

As a motivation for our work, consider a principally polarized n-dimensional
abelian variety A defined over Q. Then, for all prime numbers ℓ, we can consider
the ℓ-torsion Galois representation

ρA,ℓ : GQ → GSp(A[ℓ], eℓ) ≃ GSp2n(Fℓ),

where GQ denotes the absolute Galois group of Q and eℓ is the Weil pairing on
A[ℓ]. If ρA,ℓ is surjective, we obtain a realization of GSp2n(Fℓ) as a Galois group
over Q. Choosing a suitable abelian variety (e.g. [7]), it can be proven that, for all
sufficiently large ℓ, GSp2n(Fℓ) can be realized as the Galois group of an extension
K/Q. Moreover, K/Q ramifies only at ℓ and the primes dividing the conductor of
A.

We could try to replace the field Fℓ by Fℓd , for some fixed integer d ≥ 1. This
naturally leads us to consider compatible systems of symplectic Galois represen-
tations ρ• = (ρλ)λ, where λ runs through the primes of a number field L, and

ρλ : GQ → GSp2n(Lλ),

where Lλ denotes an algebraic closure of the completion of L at the prime λ, and
ℓ denotes the rational prime below λ. The result we obtain is the following.

Theorem 1 (A., Dieulefait, Shin, Wiese). Let n, d ∈ N. There exists a posi-
tive density set L of rational primes such that, for every prime ℓ ∈ L, the group
PGSp2n(Fℓd) or PSp2n(Fℓd) can be realized as a Galois group over Q. The cor-
responding number field ramifies at most at ℓ and two more primes, which are
independent of ℓ.
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This result generalizes to the n-dimensional setting the work of Dieulefait and
Wiese on the realization of groups of the form PGL2(Fℓd) and PSL2(Fℓd) (see [6]).
In the terminology introduced in Gabor Wiese’s report on applications of modular
Galois representations to the inverse Galois problem, the theorem presented above
can be encompassed in the horizontal direction, complementing the results in the
vertical direction due to Wiese in the 2-dimensional setting (cf. [10]) and Khare,
Larsen and Savin for symplectic groups of arbitrary dimension (cf. [8]).

To prove this result, we need to address the following questions:

1: Find conditions ensuring that the image of the residual Galois representation
ρλ : GQ → GSp2n(Fℓ) is huge, i.e., contains the subgroup Sp2n(Fℓ) (note that if
Imρλ is huge, then the projective image of ρλ is PGSp2n(Fℓr ) or PSp2n(Fℓr ) for
some r ∈ N).

A key observation is that the classification of the finite subgroups of GSp2n(Fℓ)
containing a transvection is quite simple.

Theorem 2. Let G ⊂ GSp2n(Fℓ) be a finite subgroup containing a transvection.
Then G is either reducible, imprimitive, or it contains Sp2n(Fℓ).

If G = Imρλ, this theorem implies that ρλ is either reducible, induced from
an open subgroup of GQ, or has huge image. We assume that Imρλ contains a
transvection, and look for conditions ensuring that the other two possibilities can-
not occur. The reducible case can be ruled out if the compatible system possesses a
maximally induced place of order p, which is a generalization to the n-dimensional
setting, due to Khare, Larsen and Savin (cf. [8]), of the notion of good-dihedral
prime appearing in the work of Khare and Wintenberger on Serre’s Modularity
Conjecture. To rule out the induced case for ℓ sufficiently large, we need to assume
some regularity condition for the restriction of ρλ to a decomposition group at ℓ.

2: Determine the smallest field F(λ) such that the image of the composition ρprojλ

of ρλ with the projection GSp2n(Fℓ) → PGSp2n(Fℓ) can be defined over F(λ).

Assume that ρλ is (absolutely) residually irreducible. Then ρλ can be conju-
gated (in GL2n(Lλ)) to take values in GL2n(Lλ). Enlarging L if necessary, we
may assume that L/Q is a Galois extension. The key ingredient to address this
question is the notion of inner twist. Namely, a pair (γ, ε) consisting of an element
γ ∈ Gal(Lλ/Qℓ) and a character ε : GQ → L×

λ is called an inner twist of ρλ if
the representations γρλ and ρλ ⊗ ε are conjugated. Let Γρλ

⊂ Gal(Lλ/Qℓ) be the

subgroup of elements appearing in inner twists of ρλ, and Kρλ
:= L

Γρλ

λ . If ρ• sat-
isfies several conditions (e.g. huge residual image, bounded inertial weights), then
for all except finitely many primes λ the residue field F(λ) of Kρλ

is the smallest

field on which ρprojλ can be defined. Moreover, there exists a global field Kρ•
⊂ L

such that Kρλ
is the completion of Kρ•

at the prime below λ (except for finitely
many λ).

3: Force the field Kρ•
to contain as many primes λ of residue degree d as possible.

Let p, q be two rational primes, let ζp ∈ Q be a primitive p-th root of unity, and let
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ξp =
∑2n−1

i=0 ζq
i

p . The key observation is that the presence of a maximally induced
place of order p at a prime q above q implies that the cyclotomic field Q(ξp) is

contained in Kρ•
. This implies that, for all d|p−1

2n , there exists a positive density
set of rational primes ℓ such that Kρ•

contains a prime λ above ℓ of residue degree
d.

Once these three points have been addressed, we can formulate sufficient con-
ditions on a compatible system ρ• of symplectic Galois representations ensuring
that the projective image of the residual representation ρλ will equal PGSp2n(Fℓd)
or PSp2n(Fℓd), where ℓ runs through a positive density set L of rational primes as
λ runs through the primes of L.

4: Find some object giving rise to a compatible system satisfying all the conditions
above.

We exploit the compatible systems of Galois representations attached to reg-
ular, algebraic, essentially self-dual, cuspidal automorphic representations π of
GL2n(AQ). An additional condition on π ensures that these Galois representa-
tions have symplectic images (cf. [5]). We have to specify local conditions at two
auxiliary primes (one to obtain a transvection in the image of ρλ, the other to ob-
tain a maximally induced place of order p). Equivalently (via the Local Langlands
Correspondence) we need to specify the local components of π at two finite places.
The results of Shin on equidistribution of local components at a fixed prime in the
unitary dual with respect to the Plancherel measure (cf. [9]) ensure the existence of
the desired π. We still have to take care of the fact that the transvection contained
in the image of ρλ may become trivial when we reduce mod λ. To ensure that this
can occur only at a density zero set of rational primes ℓ, we use a level-lowering
argument based on results of [4] over imaginary quadratic fields.
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Affine Grassmannians and Geometric Satake Equivalences

Timo Richarz

I report on my recent work [5] on the geometric Satake equivalence in ramified
cases from the point of view of Bruhat-Tits theory [3]. The main result may be
seen as an extension of Zhu’s work [6] from the case of tamely ramified groups to
the case of general connected reductive groups. As a prerequisite I prove basic
structure theorems on the geometry of twisted affine flag varieties introduced by
Pappas and Rapoport [4].

Let k be an algebraically closed field and denote by F = k((t)) the Laurent
power series local field with ring of integers O = k[[t]]. Let G be a connected
reductive F -group and let G be a smooth affine model over O with geometrically
connected fibers. Denote by FℓG the separated ind-scheme of ind-finite type over
k parametrizing G-bundles on the formal disc together with a trivialization on
the punctured disc. Then FℓG is ind-projective if and only if G is parahoric in
the sense of Bruhat-Tits, cf. [5, Theorem A]. In this case, FℓG is a twisted affine
flag variety, cf. [4]. Let L+G be the twisted positive loop group associated with
G. Then L+G acts on FℓG from the left by changing the trivialization. Fix a
prime ℓ different from the characteristic of k. Let SatG be the category of L+G-
equivariant Q̄ℓ-perverse sheaves on FℓG . Then SatG is semi-simple if and only
if G is special parahoric, cf. [5, Theorem A]. In this case, the simple objects of
SatG are as follows: Choose suitable T ⊂ B ⊂ G, a maximal torus contained in a
Borel subgroup, cf. [5, Introduction] for further explanation. The absolute Galois
group Γ = Gal(F̄ /F ) acts on the cocharacters X∗(T ), and we let X∗(T )Γ be the
coinvariants. To every µ ∈ X∗(T )Γ, one associates a k-point tµ in FℓG via the
Kottwitz morphism. Let Yµ be the reduced L+G-orbit closure of tµ. The scheme
Yµ is a projective k-variety which is in general not smooth. The reduced locus of
FℓG has an ind-presentation

(FℓG)red = lim−→
µ∈X∗(T )+

Γ

Yµ,

whereX∗(T )
+
Γ is the image of the set of dominant cocharacters under the canonical

projection X∗(T ) → X∗(T )Γ. Then the simple objects of SatG are the intersection
complexes ICµ of Yµ, as µ ranges over X∗(T )

+
Γ .

Let Ĝ be the Langland’s dual group formed over Q̄ℓ. Then the Galois group

Γ acts on Ĝ via a finite quotient. We denote by ĜΓ the group of invariants, a
reductive group which is in general not connected. Note that X∗(T )Γ = X∗(T̂ Γ),
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and that for every µ ∈ X∗(T̂ Γ)+, there exists a unique irreducible representation

of ĜΓ of highest weight µ, cf. [5, Appendix A] for the definition of highest weight
representations in this case.

Theorem 1. Let G be special parahoric.

i) The category SatG is stable under the convolution product ⋆, and the pair
(SatG , ⋆) admits a unique structure of a symmetric monoidal category such that
the global cohomology functor ω(−) = ⊕i∈ZH

i(FℓG ,−) is symmetric monoidal.

ii) The functor ω is a faithful exact tensor functor, and induces via the Tannakian
formalism an equivalence of tensor categories

(SatG , ⋆)
≃−→ (RepQ̄ℓ

(ĜI),⊗)

which is uniquely determined up to inner automorphisms by elements in T̂ Γ by the
property that ω(ICµ) is the irreducible representation of highest weight µ.

iii) Let T ⊂M ⊂ G be a Levi subgroup. Denote by M the flat closure of M in G.
Then M is special parahoric and there exists a tensor functor CM : SatG → SatM
compatible with the fiber functors such that CM induces under the equivalence in
ii) the restriction functor of representations from ĜΓ to M̂Γ.

Part i) and ii) of the Theorem are proven in [5, Theorem C] whereas part iii)
will be adressed in subsequent work. The proof of iii) relies on Braden’s hyperbolic
localization theorem [2]. As a corollary I recover Arkhipov and Bezrukavnikovs’
result [1, Theorem 4 b)] in the case of a general connected reductive group.
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Independence of ℓ-adic representations of geometric Galois groups

Gebhard Böckle

(joint work with W. Gajda, S. Petersen)

Let L be a set of prime numbers (which will usually be denoted by ℓ). Let K
be any field and denote by ΓK = Gal(Ksep/K) its absolute Galois group, and by
p ≥ 0 its characteristic. In the following we consider families

ρ• = (ρℓ)ℓ∈L = (ρℓ : ΓK −→ AutQℓ
(Vℓ))ℓ∈L

of continuous representations of ΓK on finite dimensional Qℓ-vector spaces Vℓ,
equipped with their ℓ-adic topology.

In [17], Serre calls such a family independent if the natural inclusion

(1)
(∏

ℓ∈L

ρℓ

)
(ΓK) ⊆

∏

ℓ∈L

(
ρℓ(ΓK)

)

is an isomorphism. The family ρ• is called almost independent if there exists a
finite field extension K ′/K such that the family ρℓ|ΓK′ obtained by restriction to
ΓK′ ⊂ ΓK is independent.

A sufficient condition for almost independence is that the subgroup in (1) is open
in the ambient group. As simple examples show, the converse is not true. The
independence of a family can also be formulated in terms of the linear independence
of fields: denote for each ℓ by Kℓ the fixed field KKer(ρℓ); then ρ• is independent
if the span of any finite subset of (Kℓ)ℓ∈L is linearly disjoint from any other field
Kℓ not in that subset. If one further defines K ′

ℓ as the span of the fields Kℓ with
ℓ 6= ℓ′, then almost independence is equivalent to the field

⋂
ℓ∈LK

′
ℓ being a finite

extension of K; see [17, Thme 1’].
We now introduce the main example of a family for which the question of

independence is of interest: Let X be a separated scheme of finite type over K,
let q be an integer and let ? ∈ {∅, c}. Let L be the set of primes different from p.
Then we define

ρqX,?,ℓ : ΓK → AutQℓ
(Hq

? (XK ,Qℓ))

as the representation that arises from the action of ΓK by functoriality on étale
cohomology or étale cohomology with supports Hq

? (XK ,Qℓ) for each ℓ ∈ L.
For instance if X is an abelian variety overK, then ρ1X,• is the dual of the Galois

representations of ΓK on the ℓ-adic Tate module of A. In the special case where
X = E is an elliptic curve over the rational numbers Q (or more generally over
any number field), and if E does not have complex multiplication, then around
1970 Serre showed in [16] that

(2)
(∏

ℓ∈L

ρ1E,ℓ

)
(ΓQ) ⊆

∏

ℓ∈L

GL2(Zℓ)

is open. As we noted above this implies that ρ1E,• is almost independent. Already

in the 1950’s, Igusa in [9, 2] considered the case of a non-isotrivial elliptic curve



316 Oberwolfach Report 05/2014

over the field of rational functions Fp(t) over the field of p-elements Fp. He showed
that (∏

ℓ∈L

ρ1E,ℓ

)
(Γ

Fp(t)
) ⊆

∏

ℓ∈L

SL2(Zℓ)

is open. The direct analog of (2) is however not true: the determinants of the
latter family, i.e., the family

ρℓ : ΓFp
→ AutQℓ

(µℓ∞(Fp))

is not almost independent.

To state the main results, we define ρX,• :=
⊕

q≥0

(
ρqX,• ⊕ ρqX,c,•

)
.

Theorem 1 (Serre, [17]). If K is a number field, then ρX,• is almost independent.

Theorem 2 (Gajda-Petersen, [7]). If K is a finitely generated field over Q, then
ρX,• is almost independent.

Theorem 3 (Böckle-Gajda-Petersen, indep. Cadoret-Tamagawa, [4, 5]). Let k ⊂
K be a subfield such that K/k is finitely generated. Then ρX,•|ΓkK

is almost
independent.

In the remainder, we discuss the proof of Theorem 3.
1: Some group theory. For positive integers c, d define the set Jor(d) of d-
Jordanian groups as the set of finite groups H that possess a normal abelian
subgroup A of index at most d. The subset of Jor(d) of those H such that A has
order prime to ℓ is denoted Jorℓ(d). Define also the set Σℓ(c) as the set of profinite
groups M that possess open normal subgroups P E I EM such that P is a pro-ℓ
group, I/P is finite abelian of order at most c and prime to ℓ andM/I is a product
of finite simple characteristic ℓ Lie type groups. From [14] one then deduces:

Proposition 4. There exists a constant J(n) such that for all primes ℓ and all
compact Hausdorff subquotients Gℓ of GLn(Qℓ) there exists a short exact sequence

1 −→Mℓ −→ Gℓ −→ Hℓ −→ 1

such that M ∈ Σℓ(2
n) and Hℓ ∈ Jorℓ(J(n)).

2: Strategy of proof. The proof now proceeds in the following steps:
i) Replace K by a finite extension K ′ such that for all ℓ the ramification of the
restriction ρℓ|ΓK′

is at most pro-ℓ. Below we shall give more details on this.
ii) Use finiteness results for tame fundamental groups to find a finite extension K ′′

of K ′ such that after restriction to ΓkK′′ the Hℓ in Proposition 4 become trivial.
This uses standard results from [8, 10] and [7] for p = 0.
iii) Use the 2n-bound in Σℓ(2

n) in Proposition 4 and again the results used in ii),
to reduce to the case where each Mℓ is generated by all its pro-ℓ-Sylow subgroups.
iv) Define Ξℓ as the set of all characteristic ℓ simple Lie type groups together with
the cyclic group of order ℓ. Then after iii) all simple quotient ofMℓ lie in Ξℓ. Now
from [1, 12] one knows that for all ℓ, ℓ′ ≥ 5, if ℓ 6= ℓ′, then Ξℓ ∩ Ξℓ′ = ∅. And the
proof is complete.
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3: On the proof of i). An immediate algebro-geometric proof of i) follows from
a recent preprint by Orgogozo:

Proposition 5 ([15]). Let X/K be as above. Then there exists a finite extension
K ′ over kK and a smooth projective scheme Y ′/k with function field K ′ containing
a normal crossings divisor D′ such that for all ℓ 6= p the following hold:

• the action of ΓK′ on H∗(XK ,Qℓ) factors via the tame fundamental group
πtame
1 (Y ′, D′) along D′;

• at all maximal points of D′ the ramification on H∗(XK ,Qℓ) is unipotent.

The proof in [4] is different, and may have other uses: The main point is to
control the ramification of ρX,•. After developing suitable notions of ramification
bounds in families, a first simple reduction allows one to assume that k is finite or
a number field, and K/k is finitely generated. A second reduction is based on de
Jong’s alteration technique [6] as applied in [3, Thm. 6.3.2]: there exists a finite
extension K ′ of K and a finite family of smooth projective schemes Yi over K ′

such that for all ℓ the semisimplification ρssX,• is a direct summand of
⊕

i ρ
ss
Yi,•

.

Suppose from now on that k is finite. Let X/K be smooth, and choose a smooth
scheme U over k with function fieldK and a smooth projective model X over U for
X → SpecK. A modification of a result of Kerz-Schmidt-Wiesend, cf. [11], give
the following criterion: ρX,• regarded as a representation of π1(U) (we suppress a
base point) is at most pro-ℓ ramified of this holds for the pullback to any curve
C →֒ U . To such pullbacks (after semisimplification) one can apply L. Lafforgue’s
theorem on the global Langlands correspondence for GLn over function fields,
[13]: If all ramification of one ρX,ℓ0 |π1(C) is unipotent at ramified places, then
this extends to the entire compatible system. To guarantee unipotence at some
(sufficiently large) ℓ0, choose a lattice Λ stable under ρX,ℓ0 and replace K ′ by a
finite extension K ′′ such that the image of ΓK′′ under ρX,ℓ0 is trivial mod ℓ0Λ.
This implies unipotence of ramification after pullback to any curve C, and hence
over K ′′ all ramification of ρX,• is pro-ℓ unipotent.
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Specialization of modulo ℓ Galois groups in 1-dimensional families

Anna Cadoret

(joint work with Akio Tamagawa)

Let k be a finitely generated field of characteristic p ≥ 0 with absolute Galois group
Γk := Gal(ksep|k). Let X be a smooth, separated, geometrically connected scheme
over k with generic point η and set of closed points |X |. Set X := X×kk. When X

is a curve let X
cpt

denote the smooth compactification of X, write ∂X := X
cpt \X

for the divisor at infinity and gX , γX for the genus and gonality ofX
cpt

respectively.
Recall that any x ∈ |X | produces a quasi-splitting σx : Γk(x) →֒ π1(X) of the struc-
tural projection π1(X) → Γk (here k(x) denotes the residue field at x).
Let r ∈ Z≥1. Let L be an infinite set of primes, p /∈ L and for every ℓ ∈ L, fix a field
Fℓ of characteristic ℓ and a discrete Fℓ[π1(X)]-module Hℓ with Fℓ-rank rℓ ≤ r that
is, equivalently, a continuous group morphism ρℓ : π1(X) → GL(Hℓ) ≃ GLrℓ(Fℓ).
Set Gℓ := im(ρℓ), Gℓ := ρℓ(π1(X)) and Gℓ,x := ρℓ ◦ σx(Γk(x)). Note that Gℓ ⊳ Gℓ

and [Gℓ : GℓGℓ,x] ≤ [k(x) : k].

The problem we want to address is the description of the local Galois images Gℓ,x

as x varies in |X |. In general, given a family Fℓ (= the ‘moduli data’) of subgroups
of Gℓ which does not contain Gℓ, one expects that the set X(Fℓ) of all x ∈ |X |
such that Gℓ,x is contained in a groups of Fℓ is ‘small’. This naturally yields to
introduce the abstract modular scheme (AMS or AMC for short) associated with
ρℓ, Fℓ

X
(ρℓ)
Fℓ

:=
⊔

U∈Fℓ

XU → X,
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whereXU → X denotes the connected étale cover (defined over the finite extension
kU of k) corresponding to the open subgroup ρ−1

ℓ (U) ⊂ π1(X). It follows from the
general formalism of Galois categories that
• XU×kU

k → X is the connected étale cover corresponding to U := U∩Gℓ ⊂ Gℓ.
• (Moduli) x ∈ |X | lifts to a k(x)-rational point on XU if and only if Gℓ,x ⊂ U .
Thus X(Fℓ) is exactly the set of all x ∈ |X | which lift to a k(x)-rational point on
XFℓ

. This gives a diophantine reformulation of our original group representation-
theoretic problem and already shows that X(Fℓ) is thin. But, of course, one
expects much more to hold. For instance, depending on the situation, that for
every integer d ≥ 1 the set X(Fℓ)

≤d of all x ∈ X(Fℓ) such that [k(x) : k] ≤ d
is not Zariski-dense (hence finite when X is a curve), that X(Fℓ) is of bounded
height, that X(Fℓ) is not Zariski-dense or even that X(Fℓ) is empty. In this work,
we focus on the weakest of these finiteness properties, namely, we would like to
find minimal conditions on the ρℓ, Fℓ, ℓ ∈ L which ensure that X(Fℓ)(k) is not
Zariski-dense. But even this weakened problem seems out of reach in whole gen-
erality. However, for curves, one has the remarkable fact that the genus controls
the finiteness of its set of rational points. More precisely, recall

Fact (Faltings (p = 0), Voloch (p > 0)): Let k be a finitely generated field. Then
there exists an integer g(k) ≥ 2 such that for every curve C over k with gC ≥ g(k)
one has |C(k)| < +∞.

When X is a curve, which we will assume from now on, this reduces our original
problem to determining under which conditions on the ρℓ, Fℓ, ℓ ∈ L one has

gXFℓ
:= min{gXU

| U ∈ Fℓ} → +∞?

If one consider the family Fℓ,tot of all subgroups U of Gℓ such that Gℓ 6⊂ U (that
is X(Fℓ)(k) is the set of all x ∈ X(k) such that Gℓ,x ( Gℓ), it may happen that

there exists an integer B ≥ 1 and infinitely many ℓ such that 1 < [Gℓ : U ] ≤ B
for some U ∈ Fℓ,tot. This is an obstruction to gXFℓ,tot

→ +∞. This obstruction

disappears if one replaces Fℓ,tot with the set Fℓ,+ of all subgroups U of Gℓ such

that G
+

ℓ 6⊂ U . Here, given a subgroup G ⊂ GL(Hℓ), we write G+ ⊂ G for the
subgroup generated by its ℓ-Sylow. Surprisingly, almost no information is lost
when replacing Fℓ,tot with Fℓ,+; this is a general property of bounded families of
continuous Fℓ-representation of π1(X) for X a curve over a finitely generated field
k.

Theorem A: Assume (T): For every x ∈ ∂X there exists an open subgroup Ux

of the inertia group at x such that p 6 |ρℓ(Ux)), ℓ ∈ L. Then there exists an open
subgroup Π ⊂ π1(X) such that ρℓ(Π) = ρℓ(Π)

+, ℓ ∈ L.

In particular, [Gℓ : G
+

ℓ ] is bounded from above independently of ℓ. This yields
to consider the AMC Xℓ,+ := XFℓ,+

. Also, as one can always construct family
Cℓ → C of connected étale covers with group Z/ℓ and Cℓ of genus 0, the following
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perfectness condition is necessary

(P): For every open subgroup Π ⊂ π1(X) there exists an integer BΠ ≥ 1 such that
|ρℓ(Π)ab| ≤ BΠ, ℓ ∈ L.

When p = 0, Fℓ = Fℓ and assuming (P), one already knows (see below) that
γXℓ,+

:= min{γXU
| U ∈ Fℓ} → +∞. Thus, when Fℓ = Fℓ, which we assume from

now on unless otherwise mentioned, the following seems the best possible result.

(Main) Theorem: Assume (T) and (P). Then gXℓ,+
→ +∞.

Corollary: Assume (T) and (P). Then there exists an integer B ≥ 1 such that
for ℓ ≫ 0 and all but finitely many x ∈ X(k) one has [Gℓ : Gℓ,x] ≤ B (and if

Gℓ = G
+

ℓ for ℓ≫ 0, one can even take B = 1).

The main Theorem and its Corollary apply to families of the form

ρℓ : π1(X) → GL(H(Yη,Fℓ)), ℓ ∈ L

for Y → X a smooth proper morphism. In that case, (T) and the boundedness
condition follow from de Jong’s alterations and the fact - due to Gabber - that
H(Yη,Zℓ) is torsion-free for ℓ≫ 0. After several reductions (including Theorem A,
Nori-Serre’s approximation theory and specialization of tame fundamental group),
(P) essentially reduces to the Weil conjectures1.
They also apply to specialization of first cohomology groups and a consequence of
them is the following. For x ∈ |X |, consider the restriction map

resx : Vℓ →֒ H1(π1(X), Hℓ)
resx→ H1(k(x), Hℓ),

where Vℓ is a Fℓ-subvector space with Fℓ-rank sℓ ≤ s. Assume that the fam-
ily π1(X) → GL(Hℓ), ℓ ∈ L is bounded, satisfies (T), (SS): Hℓ is a semi-simple
π1(X)-module for ℓ ≫ 0 and (I): for every open subgroup Π ⊂ π1(X), one has
HΠ

ℓ = 0 for ℓ ≫ 0. Then, for ℓ ≫ 0 and all but finitely many x ∈ X(k), the

restriction map resx : Vℓ → H1(k,Hℓ) is injective. In particular, if A → X is
an abelian scheme such that Aη contains no non-trivial isotrivial abelian sub-
variety, for ℓ ≫ 0 and all but finitely many x ∈ X(k), the restriction map

A(X)/ℓ
Kummer→֒ H1(π1(X), Hℓ)

resx→ H1(k,Hℓ) is injective which, as observed by
Serre, implies that A(X) →֒ Ax(k) is injective as well. This is an extension to ar-
bitrary characteristic p ≥ 0 of the Néron-Silverman specialization theorem. More
generally, one can apply this kind of argument to specialization of the reduction
modulo ℓ of the first higher ℓ-adic Abel-Jacobi maps.

1More generally, when k = Fp, our results also apply to reduction modulo ℓ of families

π1(X) → GLr(Qℓ), ℓ ∈ L of continuous representations which are pure in the usual sense since,
by a result of Chin, these descend to an extension Fℓs of Fℓ for a fixed integer s ≥ 1.
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The strategy of the proof of the main Theorem is to construct a ‘universal tensor

representation’ in order to separate by lines groups in Fℓ,+ fromG
+

ℓ for ℓ≫ 0. This

allows to construct an auxilliary bounded family ρ̃ℓ : π1(X) → GL(T̃ℓ), ℓ ∈ L of
continuous Fℓ-representations such that every connected component of Xℓ,+ dom-

inates a connected component of the AMC X ρ̃ℓ

ℓ,0 associated to the family Fℓ,0 of

all stabilizer of lines in T̃ℓ. This reduces the problem to showing that g
X

ρ̃ℓ
ℓ,0

→ +∞
which, due to the specific shape of the moduli problem encoded in Fℓ,0, is doable.
More precisely, the two main intermediate statements are the following.

Theorem B: There exists a map f : (Z≥0)
⊕2 → Z≥0 with finite support such that

for ℓ≫ 0 and every U ∈ Fℓ,+ there exists a line D ⊂ T f(Hℓ) :=
⊕

m,n≥0(H
⊕m
ℓ ⊗

(H∨
ℓ )

⊕n)⊕f(m,n) (depending on U , G
+

ℓ ) with the property that G
+

ℓ D 6= D but
UD = D.

Theorem C: Assume (T) and (I). Then gXℓ,0
→ +∞.

To deduce the main Theorem from Theorem B and Theorem C, just set T̃ℓ :=

Tℓ/T
G

+

ℓ

ℓ , where Tℓ := T f(Hℓ), ℓ ∈ L. Then the family ρ̃ℓ : π1(X) → GL(T̃ℓ),
ℓ ∈ L is bounded and satisfies (T) and (I) as soon as the family ρℓ, ℓ ∈ L satisfies
(T) and (P). From Theorem B, every connected component of Xℓ,+ dominates a

connected component of X ρ̃ℓ

ℓ,0 and, from Theorem C, g
X

ρ̃ℓ
ℓ,0

→ +∞.

Theorem B is a variant for finite subgroups of GLr(Fℓ) (r fixed, ℓ varying) of the
classical Chevalley theorem for algebraic groups and, unsurprisingly, it relies on ap-
proximation theory. Approximation theory2 associates to a subgroupG of GLr(Fℓ)

a connected algebraic subgroup G̃ →֒ GLr,Fℓ
(Fℓ ⊂ Fℓ) - the algebraic enveloppe

- whose properties reflect those of G and whose rational points approximate well
G for ℓ ≫ 0. There are two approaches, one by Nori and Serre, which works
only for Fℓ = Fℓ but is ‘functorial’ and one by Larsen and Pink, which works for
arbitrary fields Fℓ of characteristic ℓ but is ‘not functorial’. The restriction of our
results to Fℓ-coefficients comes from the fact that we resort to the former3, where
G̃ →֒ GLHℓ

is defined as the algebraic subgroup generated by the one-parameter

groups A1
Fℓ

→ GLHℓ
, t → exp(tlog(g)) for g ∈ G of order ℓ. By construction G̃

is connected and generated by its unipotent elements and for ℓ≫ 0 the following
properties hold: (i) G̃(Fℓ)

+ = G+, (ii) G̃(Fℓ)/G̃(Fℓ)
+ is abelian of order ≤ 2r−1,

(iii) there exists an abelian subgroup of prime-to-ℓ order A ⊂ G such that G+A
is normal in G with [G : G+A] ≤ δ(r). To prove Theorem B, one considers a
family GLr × Nr ⊃ Ur → Nr over Z[ 1r! ] parametrizing exponentially generated

2Here, we consider, again, an arbitrary field Fℓ of characteristic ℓ
3Though it is possible that, resorting to much more elaborate group-theoretic arguments, our

approach extends to arbitrary Fℓ-coefficients via Larsen-Pink’s approximation theory.
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subgroups of GLr and, by induction on dimension and the classical Chevalley the-
orem, one constructs a universal map f : (Z≥0)

⊕2 → Z≥0 with the property that
every exponentially generated subgroup of GLr,Fℓ

(ℓ > r) is the stabilizer of a line
in T f(F⊕r

ℓ ). By approximation theory (property (i) above), f separates - in the

sense of Theorem B - U+ from G
+

ℓ for U ∈ Fℓ,+ and ℓ ≫ 0. Then, by ad-hoc
arguments (including properties (i), (iii) above), one adjusts f so that it satisfies
exactly the conclusion of Theorem B.

To prove Theorem C, one proves first that, for the ‘Galois closure’ X̂ℓ,0 of Xℓ,0 →
X , the ratio λX̂ℓ,0

=‘genus/degree’ is bounded from below by an absolute constant

K > 0. Since the cover X̂ℓ,0 → X is Galois, Stichenoth’s bound and the Riemann-
Hurwitz formula show that this amounts to prove that gX̂ℓ,0

≤ 1 which, in turn,

reduces to a combination of group-theoretic arguments involving the classifica-
tion of finite subgroups of automorphism groups of genus ≤ 1 curves, Theorem
A and assumptions (T), (I). One then shows by Riemann-Hurwitz formula that
(λX̂ℓ,0

−λXℓ,0
) → 0. Here, the main difficulty is to control the length of the ramifi-

cation filtration and the size of the ramification terms. Using assumption (T) and
Theorem A, this eventually amounts to the following ‘non-concentration’ estimate:
there exists a sequence ǫ(ℓ), ℓ ∈ L such that ǫ(ℓ) ln(ℓ) → 0 and for every Fℓ-vector

subspace Nℓ ⊂ Hℓ and 0 6= vℓ ∈ Hℓ, if G
+

ℓ vℓ 6⊂ Nℓ then
|G

+

ℓ vℓ∩Nℓ|

|G
+

ℓ vℓ|
≤ ǫ(ℓ), which,

again, is proved using Nori’s algebraic enveloppe.

To conclude, let us mention two further possible directions, still in the case where
the base scheme X is a curve.

Arbitrary Fℓ-coefficients: By an easy specialization argument, one can always as-
sume that Fℓ ⊂ Fℓ. Using Theorem A and Larsen-Pink’s approximation theory,
one can reduces our main theorem for arbitrary Fℓ-coefficients to a deep4 group-
theoretical result by Guralnick. However, we know no counter-example to the
following conjectural statement:

Conjecture: Let ρℓ : π1(X) → GLr(Fℓ), ℓ ∈ L be a bounded family of continuous
representations satisfying (T), (P). Then there exists an integer s ≥ 1 such that
ρℓ|π1(X) : π1(X) → GLr(Fℓ) is GLr(Fℓ)-conjugate to a representation with coeffi-

cients in Fℓs, ℓ ∈ L.

This conjecture is in the spirit of the ℓ-independence conjectures/statements for
families of automorphic representations but the compatibility condition (P) and
the arithmetic input that the representations are not only representations of π1(X)

4involving satellite theorems of the classification like Aschbasher’s theorem for maximal sub-
groups of finite classical groups.
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but also of π1(X) are weaker than the standard ℓ-independency and purity assump-
tions about the characteristic polynomials of Frobenii. One could try and tackle
first this conjecture when k is finite and for Qℓ-coefficients or replacing (P) by the
assumption that for every x ∈ |X | the characteristic polynomial of the Frobenius
at x is the reduction modulo ℓ of a polynomial independent of ℓ, with coefficients
in the completion of a finite extension of Q independent of x and pure.

Gonality: When p = 0 and Fℓ = Fℓ, it was shown by Ellenberg, Hall and Koval-
ski that Theorem A combined with Cayley-Schreier graphs and complex-analytic
technics implies that, under (P), γXℓ,+

→ +∞. The generalization of this result to
arbitrary Fℓ-coefficients seems to be conditioned by the extension of the Cayley-
Schreier graphs part of the proof (due to Pyber and Szabo). One can also ask
for similar results when p > 0. Akio Tamagawa and I have obtained some partial
positive results in this direction when Fℓ = Fℓ by purely algebraic methods5.

Counting Galois extensions of Q

Pierre Dèbes

Given a finite group G and a real number y > 0, there are only finitely many
Galois extensions E/Q (inside a fixed algebraic closure Q of Q) of group G and
discriminant |dE | ≤ y. We are interested in lower bounds for their numberN(G, y).

The Malle conjecture is a classical landmark in this context. It predicts that
for some constant a(G) ∈]0, 1], specifically defined by Malle (depending only on
G), and for all ε > 0,

(*) c1(G) y
a(G) ≤ N(G, y) ≤ c2(G, ε) y

a(G)+ε for all y > y0(G, ε).

for some positive constants c1(G), c2(G, ε) and y0(G, ε) [6]. A more precise asymp-
totic for N(G, Y ) is even offered in [7], namely N(G, y) ∼ c(G) ya(G) (log(y))b(G),
for some other specified constant b(G) ≥ 0, and an another constant c(G) > 0.

The lower bound in (*) is a strong statement; it implies in particular that G is
the Galois group of at least one extension E/Q, which is an open question for many
groups – the so-called Inverse Galois Problem. Relying on the Shafarevich theorem
solving the IGP for solvable groups, Klüners and Malle proved the conjecture (*)
for nilpotent groups [4]. Klüners also established the lower bound for dihedral
groups of order 2p with p an odd prime [3]. The more precise asymptotic for
N(G, y) is known for abelian groups.

There is another classical class of finite groups known to be Galois groups over
Q: those groups G which are regular Galois groups over Q, i.e., such that there
exists a Galois extension F/Q(T ) of group G with F ∩ Q = Q. In addition to
abelian groups and dihedral groups, this class includes many non solvable groups,
for example, all symmetric and alternating groups and many simple groups. We
prove a lower bound like in (*) for all these groups.

5Gonality may decrease under specialization and there is a priori no hope to reduce the study
of gonality when p > 0 to a characteristic 0 setting.
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In this regular situation, Hilbert’s irreducibility theorem classically produces
“many” t0 ∈ Q such that the corresponding specialized extensions Ft0/Q are
Galois extensions of group G. Beyond making more precise these “many t0 ∈ Q”
and controlling the corresponding discriminants, our goal requires an even further
step which is to show that many of these extensions are distinct. It is for this part
that the self-twisted cover, a new tool that we construct, is used (see §).

Furthermore, in addition to being of group G and discriminant ≤ y, the Galois
extensions we count can be prescribed any unramified behavior at every large
prime p ≤ log(y)/δ (for some δ > 1). Malle had suggested that his estimates
should hold with some local conditions [7, Remark 1.2]. Ours however have a set
of primes growing with y, which provides noteworthy constraints on regular Galois
groups, related to the Grunwald problem and the Tchebotarev theorem (§).
Main result. Given a finite group G, a finite set S of primes and for each p ∈ S,
a subset Fp ⊂ G consisting of a non-empty union of conjugacy classes of G, the
collection F = (Fp)p∈S is called a Frobenius data forG on S. The number of Galois
extensions E/Q of group G, of discriminant |dE | ≤ y and which are unramified
with Frobenius Frobp(E/Q) ∈ Fp (p ∈ S) is denoted by N(G, y,F).

Theorem 1. Let G be a regular Galois group over Q, non trivial. There exists
a constant p0(G) with the following property. For every δ > δ(G), there exists
y0(G, δ) > 0 such that for every y > y0(G, δ) and every Frobenius data Fy on the
set Sy = {p0(G) < p ≤ log(y)/δ}, we have

N(G, y,Fy) ≥ yα(G,δ) with α(G, δ) = (1 − 1/|G|)/δ.
The parameter δ(G) is the minimal affine branching index of regular realizations

of G over Q, i.e. the minimal degree of the discriminant ∆P (T ) of a polynomial
P ∈ Q[T, Y ], monic in Y , such that Q(T )[Y ]/〈P 〉 is a regular Galois extension of
Q(T ) of group G. If a regular realization F/Q(T ) of G is given by a polynomial
P ∈ Q[T, Y ], monic in Y , then δ(G) < 2 |G| degT (P ) and so one can take δ =
2|G| degT (P ) in theorem 1; the more intrinsic value δ = 3r |G|3 log |G| with r the
branch point number of F/Q(T ) can also be used. Our exponent α(G, δ) can be
shown to be bigger than or equal to Malle’s exponent a(G) and so our result is
compatible with Malle’s conjecture in this case.

Remark 2. Extending theorem 1 to number fields seems to present no major ob-
stacles. As each finite group is known to be a regular Galois group over some
suitable number field, the same can then be deduced for the lower bound part in
the Malle conjecture: given any finite group, a lower bound like in (*) (appropri-
ately generalized) holds over some suitable number field.

The Grunwald problem and the Tchebotarev theorem. Theorem 1 has
some implication (already present in our previous work [1] with N. Ghazi) towards
issues related to the Tchebotarev density theorem.

Definition 3. Given a real number ℓ ≥ 0, we say that a finite group G is of
Tchebotarev order ≤ ℓ, which we write tch(G) ≤ ℓ, if there exist real numbers
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m, δ > 0 such that for every x > m and every Frobenius data Fx = (Fp)m<p≤x for
G, there exists at least one Galois extension E/Q of group G such that these two
conditions hold:
1. for each m < p ≤ x, E/Q is unramified and Frobp(E/Q) ∈ Fp,
2. log |dE | ≤ δxℓ.

Fix δ > δ(G) and m suitably large. Theorem 1 for y = eδx with x > m provides
many extensions E/Q satisfying conditions of definition 3 with ℓ = 1.

Corollary 4. If a finite group G is a regular Galois group over Q, then tch(G) ≤ 1.

On the other hand there is a universal lower bound for tch(G): some famous
estimates on the Tchebotarev theorem [5] show that, under the General Riemann
Hypothesis, for every finite group G, we have

tch(G) > (1/2)− ε, for every ε > 0.

Corollary 4 raises the question of whether tch(G) > 1 for some group G, in
which case G could not be a regular Galois group over Q. Such a group may not
exist (if the RIGP is true), while at the other extreme it cannot be excluded at the
moment that tch(G) = ∞ for some group G. Even without questioning its being
a Galois group over Q: for example realizations Ep/Q, totally split at p, could
exist for all but finitely many primes p — a strong form of IGP —, but only with
discriminants exceeding the bounds from definition 3.

Role of the self-twisted cover. Our method starts with a regular realization
F/Q(T ) of G. The extensions E/Q that we wish to produce are specializations
Ft0/Q at some integers t0. A key tool is the twisting lemma from [1], which reduces
the search of specializations of a given type to that of rational points on a certain
twisted cover. We use it twice, first over Qp as in [1], to construct specializations
Ft0/Q with a specified local behavior. A main ingredient for this first stage is the
Lang-Weil estimate for the number of rational points on a curve over a finite field.
We obtain many good specialisations t0 ∈ Z and a lower bound for their number.

The next question is to bound the corresponding specializations Ft0/Q that are
distinct. First we reduce it to counting integral points of a given size on certain
twisted covers. This is our second use of the twisting lemma, over Q this time.
For the count of the integral points, we use a result of Walkowiak [8] based on a
method of Heath-Brown [2]. However the bounds from [8] involve the height of the
defining polynomials, which here depend on the specializations Ft0/Q. We have
to control the dependence in t0. This is where enters the self-twisted cover, which
is a family of covers, depending only on the original extension F/Q(T ) and which
has all the twisted covers among its fibers. As a result, a bound of the form c1t

c2
0

for the height of the polynomials follows with c1 and c2 depending on F/Q(T ).

References
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Local-to-global extensions of D-modules in positive characteristic

Lars Kindler

Let k be an algebraically closed field of positive characteristic p, andX a smooth
k-variety. Let DX/k denote the ring of differential operators, as defined in [EGA4,
§16.]. Write Strat(X) for the category of OX -coherent DX/k-modules. Following
Grothendieck ([Gro68]) such objects are called stratified bundles ; they are auto-
matically locally free as OX -modules. After choosing a base point, Strat(X) is a
neutral Tannakian category over k. For every finite étale covering f : Y → X , the
vector bundle f∗OX carries a natural DX/k-action, and if Y is Galois, then the
monodromy group of the stratified bundle f∗OY is the constant k-group scheme
attached to the Galois group of Y/X . Thus stratified bundles can be seen as
natural generalizations of coverings of X .

One can generalize other notions related to D-modules over C to this context.
For example there is a notion of regular singularity for stratified bundles ([Gie75],
[Kin12]), and for f as above, f∗OY is regular singular if and only if f is tamely
ramified in the sense of [KS10].

In my talk I discuss stratified bundles on Gm,k = P1
k \ {0,∞}. In characteristic

0, the formal local variant of a flat connection on C((t)) is the notion of a differential
module; in our characteristic p > 0 context, a formal local variant of a stratified
bundle also exists and is called iterated differential module in [MvdP03]. For
brevity, we write Strat(k((t))) for the category of such objects. A priori, there is
no obvious choice for a neutralization of Strat(k((t))). If we consider Spec(k((t))) ⊂
Gm,k as the punctured disc around the origin, we obtain a restriction functor
Strat(Gm,k) → Strat(k((t))). In [Kin13], I show that this functor is “split”. More

precisely, I define a full tannakian subcategory Stratspecial(Gm,k) ⊂ Strat(Gm,k)
of special stratified bundles on Gm, such that the restriction functor

(1) Stratspecial(Gm,k)
∼=−→ Strat(k((t)))

is an equivalence. Amongst other applications, this allows us to neutralize the
category Strat(k((t))).

This is of course heavily inspired by the work of Katz: In [Kat87] he proves
the exact analogue of (1) for flat connections on Gm,C, and in [Kat86] he proves
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(1) with Strat replaced by Cov; the categories of étale coverings. In fact the
equivalence (1) implies the corresponding result for coverings from [Kat86] as a
“finite monodromy part”.
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Cycles on modular varieties via geometric Satake

Xinwen Zhu

(joint work with Liang Xiao)

The Tate conjecture and the Langlands conjecture together predict that there
should exist a large number of algebraic cycles on the special fibers of the modular
varieties (i.e. Shimura varieties or the moduli of Shtukas).

Let us explain this in a relative simple but already new case. Namely, we
consider Shimura varieties S attached to the unitary group U(2, 2) defined by
a quadratic imaginary field E. This is a 4-fold over Q. We write its middle
dimensional (compactly supported) cohmology as

H4
c (SQ̄,Qℓ(2)) ≃

⊕

π

πK
f ⊗W (π),

where πK
f ’s are in a certain set of Hecke modules, withW (π) its multiplicity space,

equipped with the action of the absolute Galois group GQ of Q. Then in the first
approximation, Langlands conjecture predicts that

W (π) = m(π)ρπ,
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where m(π) is the multiplicity of π, and ρπ is a 6-dimensional representation of
GQ of the form

ρπ : GQ

rec(π)−→ GL4 ⋊Gal(E/Q)
∧2 Std−→ GL6,

where rec(π) is the Langlands parameter attached to π, and (∧2 std) is the sec-
ond wedge of the standard representation of GL4 (which canonically extends to a
representation of GL4 ⋊Gal(E/Q)).

Now, we assume that p is a prime inert in E and S has a good reduction at
p. Let us write S̄ for its (geometric) special fiber. Let σp denote the Frobenius.
Then it is easy to see that in this six-dimensional vector space, ρπ(σ

2
p) always

fixes a two-dimensional subspace. In fact, we can assume rec(π)(σp) = t × σp ⊂
GL4 ⋊Gal(E/Q), where t ∈ GL4 is a diagonal matrix. Then ρπ(σ

2
p) acts trivially

on the weight subspaces of (∧2 std) of weights εi + ε4−i, where εi form a standard
basis of the weight lattice of GL4. Note that if t is sufficiently, (i.e. the Hecke
eigenvalue of π at p is not too special), the subspace fixed by ρπ(σ

2
p) is exactly

two-dimensional.
Now according to the Tate conjecture, there should exist two families of cycles

in S̄, defined over Fp2 , whose cycle classes span these two-dimensional spaces
(for various π). It turns out that in this case the supersingular Newton stratum
of S̄ has a partition into two families of cycles, whose cycle classes realize the
above predicted Tate classes. Note that the geometry of the supersingular Newton
Stratum for S̄ has recently studied by [HP].

The above analysis of the special example can be generalized. Also, as is seen,
the span of these Frobenius-invariant cohomology classes are related to certain
weight spaces of the representation of the Langlands dual group. So it is natural
to ask whether the corresponding algebraic cycles as predicted by the Tate con-
jecture also relate to the Mirkovic-Vilonen (MV) cycles from the geometric Satake
correspondence. This turns out to be the case. Our results are as follows:

When there should exist Tate cycles of the above type, we can partition the
basic Newton stratum of the modular variety (Shimura varieties of Hodge type,
or moduli of Shtukas) into several families {Zγ} of cycles. The families {γ} are
parameterized by certain MV cycles. In fact, we prove this by giving the partition
of (the reduced subscheme of) certain Rapoport-Zink spaces and affine Deligne-
Lusztig varieties.

It remains to prove that these cycle classes span the Tate classes as predicted
by the Langlands conjecture.

In the function field case, using some idea similar to the recent work of V.
Lafforgue [La] (namely the fusion of Beilinson-Drinfeld (BD) Grassmannians),
we can prove that in the generic case these cycle classes are linearly independent
and therefore realize the expected Tate classes (at least in type A case).
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Partial Fourier-Mukai transform for algebraically integrable systems

Roman Fedorov

This is a report on a joint ongoing project with Dima Arinkin. The celebrated
Fourier-Mukai transform is an equivalence between the derived category of an
abelian variety and that of the dual abelian variety. Recently there have been a
lot of interest in Fourier-Mukai transforms for singular degenerations of abelian
varieties, e.g., for Jacobians of singular curves. However, very little is known
beyond the Jacobian case.

In a joint work with D. Arinkin we suggest a different setup. Let πX : X → B
be a flat morphism of smooth complex varieties with integral projective fibers. We
also assume that X is symplectic and the smooth locus of each fiber is lagrangian
(thus, we do not assume that the fibers are smooth). Let us call this data an
algebraically integrable system. Assume also that we have a section ζX : B → X .

Let Xsm ⊂ X be the locus, where πX is smooth. Our first claim is that Xsm

has a natural structure of a commuative group scheme over B such that the action
of Xsm on itself by translations extends to an action Xsm ×B X → X .

Let Pic(X/B) be the relative Picard scheme. Let Picτ (X/B) ⊂ Pic(X/B) be
the open subscheme classifying numerically trivial line bunldes (equivalently, the
fiber of Picτ (X/B) over b ∈ B classifies line bundles whose image in the group of
connected components of Pic(Xb) is torsion). The point is that one should view
Picτ (X/B) as the smooth part of the ‘dual integrable system’.

We argue that the universal line bundle on X×BPicτ (X/B) gives rise to a fully
faithful functor

Db(Qcoh(Picτ (X/B))) → Db(Qcoh(X)).

Here Qcoh stands for the category of quasi-coherent sheaves, Db stands for the
bounded derived category.

Applications to Hitchin systems are also discussed.
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Étale fundamental group and local systems

Hélène Esnault

1. Introduction

For a smooth variety X defined over the field of complex numbers, the Grothen-
dieck-Malcev theorem asserts that if the étale fundamental group πét

1 (X) of X is
trivial, then so are all finite dimensional complex local systems, thus, via the
Riemann-Hilbert correspondence, any regular singular OX -coherent DX -module
is trivial.

If the ground field k, which we assume to be algebraicaly closed, has character-
istic p > 0, the category of OX -coherent DX -modules is k-linear Tannakian, the
objects are identified with F∞-divised vector bundles {(E0, E1, . . . , σ0, σ1, . . .), σi :

F ∗Ei+1

∼=−→ Ei+1} (Katz, [Gie75]), the profinite completion of its Tannaka k-
groupscheme πstrat

1 (X) is identified πét
1 (X) (dos Santos, [dSan07]).

Gieseker (1975) ([Gie75]) conjectured that Grothendieck-Malcev’s theorem re-
mains true in this context if X is smooth projective. It has been answered in the
positive

Theorem 1. [EsnMeh10] Let X be a smooth projective variety over k. Then if
πét
1 (X) is trivial, so are all OX-coherent DX-modules trivial.

The proof makes use of geometry, boundedness (construction of moduli by
Langer), and Hrushovsky’s theorem on the Weil-Lang estimates.

On the other hand, in his thesis, L. Kindler defined the right notion of regular
singularities at infinity, without assuming resolution of singularities, defining the
quotient πstrat

1 (X) ։ πstrat,rs
1 (X), and he showed that the profinite completion of

this surjection is πét
1 (X) ։ πét,tame

1 (X).
This enables one to pose the question:

Question 2. U smooth quasi-projective over k = k̄ of char. p > 0.

i) πét,tame
1 (U) = 0 =⇒ no non-trivial r.s. stratified bundle?

ii) πét
1 (U) = 0 =⇒ no non-trivial stratified bundle?

On i): An OK (E-Kindler), and (Kindler) πtame, ab
1 (U) = 0 and no Z/p-quotient

von πab
1 (X) implies no non-trivial stratified bundle E with G(E) abelian. Here X

is a good compactification (so we assume it exists, e.g. in dimension 2).
Our problem is to understand ii), as it in particular contains the question of

understanding the geometry of U with πét
1 (U) = 0.

From now on: joint work in progress with V. Srinivas.

2. First property of simply connected U

H1(U,Fp) = 0 =⇒ H0(U,OU ) = k(1)
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so no such non-proper U in dim 1. Assume dim X = 2. Let U ⊂ X be a good
compactification, such that D := X \ U is a NCD.

Lemma 3. Assume H0(U,OU ) = k. Then (Di ·Dj) ≤ 0.

Example 4. Example with H0(U,OU ) = k, (Di ·Dj) < 0, U has a normal com-
pactification U →֒ X̄ such that X̄ \ U consists of normal finite quotient singular-
itiies, X̄ has a desingularization X → X̄ such that πét

1 (X) = 0, thus πét
1 (X̄) = 0,

yet πét
1 (U) is infinite.

X̄ is the Kummer surface X̄ = A/(±) with p > 2, where A is an abelian
surface, U = Xreg. Then a desingularization X → X̄ is a K3, yet U ×X̄A ⊂ A has
complement of codimension 2, thus πét

1 (U ×X̄ A) = πét
1 (A) is infinite, thus πét

1 (U)
is infinite.

Example 5. Example with H0(U,OU ) = k, (Di · Dj) ≤ 0 but not strictly, with
πtame
1 (U) = 0 but we do not know πét

1 (U).

Assume k ⊃ Fp(t), p 6= 3. Then X is the blow up of P2 in 9 general points
on a genus 1 curve C, where general means that if D is the strict transform
of D, thus D2 = 0, one has OD(D) ∈ Pic0(D) not torsion. Then U = X \
D. Then H0(X,OX(nD)/OX) = 0 while H0(U,OU ) = lim−→n

H0(X,OX(nD) =

H0(X,OX) = k. Further one has Z/3 = πét,tame
1 (P2 \ C) ։ πét,tame

1 (U) and the
Kummer 3 : 1 cover of P2 \ C ramifies fully along C, thus along the exceptional

lines in X , thus πét,tame
1 (U) = 0. Finally, one has

H1(U,OU ) = lim−→
n

H1(X,OX(nD)/OX) = 0,

thus a fortiori H1(U,Fp) = 0.

Claim 6. There is no surjective specialization map πét
1 (U) → πét

1 (UF̄).

Proof. In a specialization, H0(UF̄,O) 6= F̄, so H1(UF̄,Fp) 6= 0. �

3. First non-trivial example for which Question 2 ii) has a positive
answer

Y projective smooth over k = k̄, L = OX(∆) line bundle, ∆ effective 6= ∅,
X = P(I⊕ L), U = X \∞-section so U/Y is the total space of the bundle L.

Proposition 7. i) πét
1 (U) → πét

1 (Y ) is an isomorphism and f∗, for f : U →
Y , induces an isomorphism on the category of stratified bundles.

ii) If πét
1 (Y ) = 0, there are no non-trivial stratified bundles on U .

Remark 8. Note this example, for dim Y = 1, is of the kind D2 < 0.

4. Second non-trivial example for which Question 2 ii) has a
positive answer

Proposition 9. Let C be a connected proper scheme over k = k̄. Then the
category of stratified bundles on it (i.e. F divided bundles, the Hom being the ones
compatible with the relative structure) is Tannaka.
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Proposition 10. F -divided bundles in the sense of Proposition 9 are modules
with stratification in the sense of Saavedra.

Theorem 11. Let U be a smooth quasi-projective variety over k = k̄, let ι : C →֒ U
be a projective ample Cartier divisor. Then πstrat(C) → πstrat

1 (U) is surjective.

Proof makes use of Bost’s most recent work on Lefschetz’ theorems.

Theorem 12. Let U be a quasi-projective surface over k = k̄, let ι : C → U be an
ample curve such that πét

1 (C) is abelian. Then if πét
1 (U) = 0, all stratified bundles

on U are trivial.

There are examples where the theorem applies.

5. General theorem

Theorem 13. Let U be a quasi-projective surface over F̄p, let ι : C → U be an
ample curve. Then if πét

1 (U) = 0, all stratified bundles on U are trivial.

The proof makes use of the following non-trivial theorem. Let j : U → X be a
normal compactification.

Theorem 14. Let r ∈ N \ {0} be given. Under the assumptions of the theorems,
there are finitely many polynomials χi(m) in Q[m], i ∈ I, for any stratified bundle
(En, σn), there is a n0 such that for a for n ≥ n0, χ(X, j∗En(mC)) ∈ {χi(m), i ∈
I}.

Analogy over C:

Theorem 15 (Deligne, [Del14]). Let U be a smooth variety over the field of com-
plex numbers. Let r ∈ N \ {0} be given. Let j : U → X be a good compactification.
Then the set of Chern classes of all Deligne’s canonical extensions of E such that
(E,∇) is a regular singular connection on U , is finite.

The main theorem could be generalized to a higher dimensional U such that there
is a normal compactification X such that X \U has codimension ≥ 2 if one had a
Lefschetz theorem for stratifications (thus in particular for the étale fundamental
group), and could be generalized to any characteristic p > 0 field k = k̄ if one had
a surjective specialization theorem for the étale fundamental group.
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Université Henri Poincare, Nancy 1
Institut Elie Cartan
P.O. Box 239
54506 Vandoeuvre-les-Nancy
FRANCE

Prof. Dr. Dr. h.c. Hélène Esnault

FB Mathematik und Informatik
Freie Universität Berlin
Arnimallee 3
14195 Berlin
GERMANY

Prof. Dr. Roman Fedorov

Department of Mathematics
Kansas State University
Manhattan, KS 66506-2602
UNITED STATES

Dr. Nuno Freitas

Mathematisches Institut
Lehrstuhl für Computeralgebra
Universität Bayreuth
95440 Bayreuth
GERMANY

Jochen Heinloth

Fachbereich Mathematik
Universität Duisburg-Essen
Universitätsstr. 3
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