MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Report No. 07/2014

DOI: 10.4171/OWR/2014/07

New Trends in Teichmiiller Theory and Mapping Class
Groups

Organised by
Shigeyuki Morita, Tokyo
Athanase Papadopoulos, Strasbourg
Robert C. Penner, Aarhus
Anna Wienhard, Heidelberg

9 February — 15 February 2014

ABSTRACT. The program “New Trends in Teichmiiller Theory and Mapping
Class Groups” brought together people working in various aspects of the field
and beyond. The focus was on the recent developments that include higher
Teichmiiller theory, the relation with three-manifolds, mapping class groups,
dynamical aspects of the Weil-Petersson geodesic flow, and the relation with
physics. The goal of bringing together researchers in these various areas,
including young PhDs, and promoting interaction and collaboration between
them was attained.

Mathematics Subject Classification (2010): Primary: 32G15, 30F60, 30F20, 30F45; Secondary:
57N16, 30C62, 20G05, 53A35, 30F45, 14H15, 20F65
IMU classification: 4 (Geometry); 5 (Topology).

Introduction by the Organisers

Teichmiiller theory is a broad and important field of research, and it can be consid-
ered from various point of views (algebraic geometry, hyperbolic geometry, com-
plex analysis, uniformization theory and partial differential equations). This stems
from the fact that Teichmiiller space can be seen as a space of equivalence classes
of marked conformal structures, or of marked hyperbolic metrics, or of complex
algebraic curves, or of representations of the fundamental group of a surface into
the Lie group PSL(2,R). There are also other aspects. The theory has a wide



396 Oberwolfach Report 07/2014

range of applications in low-dimensional topology, algebraic topology, representa-
tions of discrete groups in Lie groups, symplectic geometry, topological quantum
field theory, string theory, etc.

The workshop New Trends in Teichmdiiller Theory and Mapping Class Groups,
organized by Shigeyuki Morita (Tokyo), Athanase Papadopoulos (Strasbourg),
Robert C. Penner (Aarhus and Caltech) and Anna Wienhard (Heidelberg) was
attended by 55 participants from all over Europe, the Americas and several coun-
tries in Asia. The participants included world specialists of the subjects and also
young researchers, comprising more than 10 PhD students and several post-docs.
The discussions and the talks concerned several aspects of Teichmiiller theory, that
included complex geometry in one and in several variables (Riemann surfaces and
uniformization and families of Riemann surfaces), the study of symmetric spaces
and the analogies with Teichmiiller theory, the metric theory (Teichmiiller, Weil-
Petersson and Thurston), complex projective structures on surfaces, 3-manifolds
and their invariants, mapping class groups (representation theory, factorizations,
quasihomomorphisms, Johnson-Morita theory, characteristic classes), relation with
theoretical physics (chord diagrams and random matrices), representations of sur-
face groups in character varieties in arbitrary semisimple Lie groups modulo con-
jugacy (higher Teichmiiller theory), dynamics (Teichmiiller and Weil-Petersson
geodesic flows) and the symplectic geometry of moduli spaces. There was also an
open problem session.

Several new collaborations were started during that workshop.
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Abstracts

Intertwining Hitchin Representations
NORBERT A’CAMPO

Let Sy be a closed surface of genus g > 2 and Hity the Hitchin component in the
representation space

{p T = 7T1(Sg) — PSL(”’R)}/PSL(H,R) , n> 2.

We want to construct a mapping class group equivariant intertwiner I : Hity —

Hit? =

(1)

(2)

(4)

Ty

Let CRp: : (]P’l)4 — {diag} — R be the cross ratio function. A geometric
definition is given as follows: for X,Y, a,b 1-dimensional subspaces, think
of R? as product X xY andthea : X — Y, b: X — Y as maps with graphs
a,b. A= CRp (X,Y,a,b) is the stretching factor of b=t oa: X — X.

F. Labourie constructed for p € Hity a curve A, : 7 — P"(R) with image
L,, which is a C'*t*_submanifold homeomorphic to P'. The group 7 acts
by projective motions p(j),j € 7.

From L, with 7m-action we construct a C Ry, 4-points function on L, as
follows: Let X,Y,a,b in that cyclic order on L, and let j € m be with
fixpoints f, F on L,. Let u be a C'T* coordinate on L, centered at F.
We put X,, = j*(X),a, = j"(a),... and

L (ulba) = 0(X)) ((Ya) — u(an))
CRr,(X,Y,a,b) = lim )
n—=oo (u(an) — u(Xn)) (w(Yn) — u(by))

Claim: CRp, is a 4-point, m-invariant, cross ratio function, that is con-

gruent by a homeomorphism to C Rp:.
From the data L,, CRp, we get a space

HE :={o:L,— L, | o involution, continuous, without fixpoints} .

The space H7 has the geometry of the hyperbolic plane. 7 acts on H
producing a Riemann surface Hp2 /m, so we get an intertwiner I;' : Hity —
H g2 = T,4. The proof of the claim uses the minimality of the action of 7 on
pairs of distinct points of L.
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Complex analytic properties of deformation spaces of Kleinian groups
HIROSHIGE SHIGA

Let Gy be a finitely generated non-elementary Kleinian group. We assume that
the region of discontinuity Q(Gp) is non-empty. We say that a quasiconformal
map w : C — C is Gy-equivariant if there exists a p,, € Hom (G, PSL(2,C)) such
that

woy = pu(y)ow (v € Go)
Two such maps wq,ws are equivalent if there is A € PSL(2,C) such that

P (V) = A0 puy(7) 0o A

hold for all v € Gy. We denote by [w] the equivalence class of w. The set of
all equivalence classes is denoted by D(Gy), and it is called the (quasiconformal)
deformation space of Go. Kra-Maskit [4] showed that D(Gp) admits a natural
complex structure and it is holomorphically convex. In this talk, we first show that
D(Gy) is H*®-convex if every connected component of Q(Gy) is simply connected.
On the other hand, if some connected component is not simply connected, then
we can show that D(Gy) is not H°-convex.

Since D(Gp) is defined by quasiconformal maps, the Teichmiiller distance is
defined on D(Gg). We show that on D(Gp), the Teichmiiller distance is equal to
the Kobayashi distance, which is a generalization of a theorem of H. Royden (cf.

3])-
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Spines of Teichmiiller spaces and symmetric spaces
LizHEN J1

Let 7,4 be the Teichmiiller space of compact Riemann surfaces of genus g > 1,
Mod, the mapping class group of a compact oriented surface of genus g. Then
Mod, acts on 7, holomorphically and properly, and the quotient Mod,\7y is the
moduli space M, of compact Riemann surfaces of genus g.

Let G be a noncompact semisimple Lie group, K C G a maximal compact
subgroup. Then the quotient space X = G/K with a G-invariant Riemannian
metric is a symmetric space of noncompact type, and hence it is simply connected
and nonpositively curved. Let I' C G be an arithmetic subgroup. Then I' acts
isometrically and properly on X. The quotient '\ X is a locally symmetric space
of finite volume.
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There is a lot of similarities between these two group actions: (Modg, Ty),
(T, X). See [1] for an overview. In this talk, I discussed one more connection
between them from the perspective of classifying spaces.

Given a discrete group I', there are several spaces associated with it: BT is a
CW-complex which is uniquely determined up to homotopy equivalence such that
m(BT) =T, and 7;(BT) = {1} for ¢ > 2. The universal covering space ET of BT
is characterized by the conditions: (1) ET is a I'-CW-complex such that T' acts
properly and fixed point freely on it, (2) ET is contractible.

The I'-principal bundle ET' — BT classifies I'-principal bundles. The classifying
space BT can be used to compute cohomology groups of I': H¥(TI',Z) = H'(BT,Z),
and it is also a crucial ingredient of the Novikov conjectures and the Baum-Connes
conjecture, which compute the global groups such as the algebraic K-groups and
the surgery groups of the group ring ZI'.

For these purposes, it is important to find small and explicit models of BT’
and of ET. For example, we hope to construct models of BI' which are finite
dimensional or even are finite CW-complezes.

The Milnor construction gives an infinite-dimensional model of ET and hence
of BT'. It is known that (1) for every model of BT, dim BI' > cd(T"), the co-
homological dimension of I', (2) if I' contains nontrivial torsion elements, then
cd(T") = 400, and hence every model of BT is infinite dimensional.

On the other hand, many natural groups contain torsion elements: the mapping
class groups of surfaces Mod,, ,,, the outer automorphism group Out(F,,) of the free
group F,, arithmetic groups such as SL(n,Z) and Sp(2n, Z), etc. For such groups,
a more convenient space is a universal space for proper actions of I'; denoted by
ET, which is characterized by the following conditions: (1) I" acts properly on ET,
(2) for every finite subgroup F' C T, the set of fixed points (ET')¥ is nonempty
and contractible.

When T is torsion-free, then ET" is reduced to ET'. Similarly, ET" and its quotient
D\ET are useful for the computation of cohomology groups of I' and the Novikov
conjectures and Baum-Connes conjecture for I'. It is known that for every model
of ET, dim ET > ved(T'), where ved(T") = ¢d(T”), IV being a torsion-free subgroup
of " of finite index, and it is independent of the choice of T".

When ved(I') < 400, we hope to obtain explicit models of EI' which are co-
compact with respect to I' and has dimension as small as possible. For general T,
it is a difficult problem.

Proposition 1. (1) For I' = Mod,, T, is a finite dimensional model of ET.
(2) For an arithmetic subgroup of G as above, the symmetric space X is a finite
dimensional model of ET .

The positive solution to the Nielsen realization is needed for the first state-
ment, and the Cartan fixed point theorem for the second one. It is known that
the quotient I'\ 7, is noncompact since compact Riemann surfaces can degenerate
and become singular. Similarly, for many natural arithmetic subgroups such as
SL(n,Z), T\ X is noncompact. It is known that T'\ X is noncompact if and only if
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the Q-rank of T’ (or rather the associated linear algebraic group whose real locus
is equal to G and which defines the commensurable class of T') is positive.

There are two possible approaches to the above problems: (1) Construct equi-
variant partial compactificatons Tg with compact quotient under Mod, such that
the inclusion Mod,\T, — Mod,\T, is an homotopy equivalence. (2) Construct
equivariant deformation retracts S of T, such that Modg\S is compact and of
dimension as small as possible. Such a subspace S is called a spine of Ty.

Similarly, we can try to carry out both constructions for symmetric spaces.
Let T' be an arithmetic subgroup acting on a symmetric space X = G/K as

above. Borel and Serre constructed the partial Borel-Serre compactification YBS
and proved that the inclusion T\X < I‘\YBS is a homotopy equivalence and
ved(T) = dim X — Q—rank(T).

It was later proved by Ji that YBS is a cocompact model of ET. (By construc-
tion, I' acts properly on YBS. The point is to prove the contractibility of the fixed
point set in X7 of every finite subgroup of T'.)

For the Teichmiiller sapce 7,, Harvey outlined a construction of TQBS, an ana-

—BS - . . . .
logue of X, which is a real analytic manifold with corners and introduced the
notion of curve complex of a surface to play the role of Tits buildings for symmet-
ric spaces. No detail has appeared, and Ivanov constructed a C*°-analogue. But

it has not been proved that TQBS is a model of EMod,.

On the other hand, Ji and Wolpert proved that the thick part 7,(e) of the
Teichmdiller space 7y is a spine of 7,4, where € is a sufficiently small positive number.
When g > 2, every compact Riemann surface ¥, admits a unique hyperbolic metric
which is conformal to the complex structure. (By definition, the thick part 7,(e)
consists of hyperbolic surfaces in 7, which do not contain geodesics of length less
than e.)

Harer proved that ved(Mody) = 4g—5. Since 49—5 < 6g—6 = dim 7, for g > 2,
T,4(e) is far from being of the optimal dimension. One folklore open problem is:
Construct a spine of Ty of dimension 4g — 5. This is the number 1 problem in a
list of open problems by Bridson and Vogtmann in 2006.

Similarly, for a nonuniform arithmetic subgroup I" of GG, one open problem is:
Construct a spine of the symmetric space X with respect to I' of dimension equal
to ved(T) = dim X — Q—rank(T).

In this talk, we presented the following results:

Theorem 2 ([2]). The Teichmiiller space Ty admits a spine S of codimension 1
and a spine S’ of codimension 2 which are intrinsically defined in terms of the
hyperbolic geometry of the surfaces in Tg.

A geodesic in a hyperbolic surface ¥4 of the shortest length is called a systole
of the surface. The spine S consists of all hyperbolic surfaces in 7; which admit at
least two systoles and two of them intersect. It is clear that S is invariant under
Modg, and the collar theorem for hyperbolic surfaces implies that it has a compact
quotient under Mod,.
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The spine S” consists of those hyperbolic surfaces which admit at least three
systoles and at least two of them intersect.

In 1985, Thurston circulated a preprint titled “Spines of Teichmiiller spaces”.
He proposed a candidate for a spine consisting of hyperbolic surfaces whose systoles
fill the surfaces, i.e., every closed geodesic of the hyperbolic surfaces intersects one
of the systoles.

For Teichmiiller space T4, of compact Riemann surfaces with n punctures,
n > 1, spines of optimal dimension are known. The reason is that 7, admits an
ideal triangulation, and the sub-complex of the dual complex obtained by removing
the cells whose closures meet the ideal simplices gives the desired spine.

Theorem 3 ([3]). When Q—rank(I") < 2, X admits a spine of optimal dimension.

The history of spines for symmetric spaces is as follows (see [1] for references):

(1) When I' = SL(2,Z), X = H?, Serre observed a spine given by a trivalent
tree.

(2) When T" = SL(3,7Z), Soule constructed a spine of optimal dimension using
Minkowski reduction in his thesis.

(3) Later, for I' = SL(n,Z), Lannes and Soule constructed the well-rounded
deformation retract of the space of positive definite quadratic forms, or
equivalently lattices in R™. The deformation retraction is also intrinsic.

(4) Ash generalized the above results of Soule to linear symmetric spaces (self-
adjoint cones and their homothety sections) and symmetric spaces associ-
ated with G = GL(n, A), SL(n, A), where A is a division algebra.

(5) Mendoza constructed explicit spines for some arithmetic groups acting on
the three-dimensional hyperbolic space.

(6) When Q—rank(I') = 1, spines of codimension 1 were constructed by
Yasaki,

(7) MacPherson and McConell constructed a spine of codimension 2 of the
Siegel upper-half of degree 2 for torsion-free finite index subgroups I' C
Sp(4,Z). This was the only known examples of nonlinear symmetric spaces
of higher rank which admit such optimal spines.

Our result in Theorem 2 provides many new examples of high rank symmetric
space with optimal spines.

The proofs of both results were motivated by the well-rounded retracts of lat-
tices. When Q—rank(T") > 2, we have a natural candidate for a spine of optimal
dimension ved(I'). On the other hand, for the Teichmiiller space 74, there is
no known candidate for a spine of optimal dimension. The spine proposed by
Thurston seems to be far away from the optimal dimension. One natural open
problem is to propose good spines of Tg.
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Holonomy fibers of complex projective structures
SUuBHOJOY GUPTA
(joint work with Shinpei Baba, Caltech)

Let S be a closed oriented surface of genus g > 2. A complex projective structure
on S is a geometric structure modeled on CP!, namely it is a maximal atlas of
charts to CP! with transition maps in PSLy(C) = Aut(CP!). Its holonomy (or
monodromy) determines a representation p : m(S) — PSLy(C), and defines the
holonomy map

hol : P — x
from the space P of all marked projective structures on S to x, the PSLs(C)-
character variety of 71(S). The image of hol consists of the representations in x
which are non-elementary and lift to representations of 71 (.5) to SLy(C) (see [4]).

A basic question is to understand the holonomy fiber hol™*(p) =: P, in P
([5, 12, 4]). In particular [10, p 274] asked what the projection of P, to the
Teichmiiller space T looks like, where the projection p : P — T is given by
considering the underlying conformal structures of the projective structures. We
can consider its further projection into the moduli space M of Riemann surfaces,
the quotient of T by the action of the mapping class group of S:

PLTIL M.
In our talk we discuss our new result in [3] that proves that for any p € hol(P),
the holonomy fiber P, projects to a dense set in moduli space M.

The proof uses “grafting” deformations of complex projective structures, ob-
tained by inserting projective annuli along geodesic multicurves on a hyperbolic
structure on S, an operation that extends to measured laminations by taking lim-
its. This results in the geometric parametrization

PET xML

due to Thurston (see [11, 13, 15]), where ML is the set of all measured laminations
on S.

As we graft a hyperbolic surface, by scaling the transversal measure on the
lamination, we obtain a ray of projective structures in P that descends to a grafting
ray in T. The results of [8] and [9] yield the strong asymptoticity of these grafting
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rays to Teichmiiller geodesic rays. By the ergodicity of the Teichmiiller geodesic
flow ([14, 16]), this implies that almost every grafting ray further projects to a
dense set in M.

On the other hand, grafting a projective surface C' along admissible multic-
urves weighted by integer-multiples of 27 preserves the holonomy ([6], see also [1],
[2]). Our new result is obtained by approximating dense grafting rays by such 27-
grafts along admissible loops on some C' € P,. The proof introduces a piecewise
Euclidean/hyperbolic metric on projective surfaces that modifies the “Thurston
metric” (¢f. [13]) and involves the construction of “almost-isometric” maps with
respect to these metrics. The arguments involve three-dimensional hyperbolic ge-
ometry, and in particular the geometry of the p-equivariant locally-convex pleated
plane in H? associated to a complex projective structure.

As described in [7], the holonomy map hol : P — x gives a “resolution” of
the mapping class group action on x. Namely, the mapping class group action is
hol-equivariant and its action on P is discrete. It would thus be interesting to see
if the holonomy fibers P, tell us about the action on .
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Complex projective surfaces bounding 3-manifolds
STEVE KERCKHOFF

A complex projective structure on a closed surface S of genus g > 2 determines
a developing map from the universal cover of S to CP! = S? and a holonomy
representation p : w1 (S) — PSL(2,C). It also determines a conformal structure
on S, which, given a marking, determines a point in the Teichmuller space T (S).
The map p : P(S) — T(S) of the space of complex projective structures to the
Teichmuller space gives P(S) the structure of an affine bundle over 7(S). The
translation group of the fiber over a point X € T'(S) equals the vector space of
holomorphic quadratic differentials on X; the difference between two points in the
same fiber is the Schwarzian derivative of the conformal map between the two
projective structures.

The (Zariski) tangent space of P(S) is equal to H'(S;g,), the first cohomology
group of S with coefficients in the Lie algebra g of PSL(2,C), twisted by the
adjoint action induced from the holonomy representation p. There is a complex-
valued, skew-symmetric pairing on the tangent space using the cup product on
cohomology and the Killing form on the coefficients. This determines a (holomor-
phic) symplectic structure on P(S) which is due to Goldman([1]). Unless stated
otherwise, all statements concerning a symplectic structure will refer to this one.
The purpose of this talk is to provide a unified derivation of a number of known
results about the symplectic geometry of P(S).

An infinitesimal change of complex projective structure (i.e., a vector tangent
to P(S)) determines an infinitesimal change in the developing map, which can be
viewed as a vector field on the the universal cover S of S with values in the tangent
bundle of CP! (pulled back by the developing map). We will refer to this simply
as a "vector field” and denote it by v. Below we describe how to lift it naturally
to a section s of the g, bundle over S (also pulled back via the developing map).
Taking the derivative of s determines a 1-form ds on S, with values in the 9o
bundle, that descends to S. It is a (deRham) representative of the cohomology
class corresponding to the infinitesimal deformation.

To define the section s we identify the Lie algebra with the vector space of qua-
dratic polynomial vector fields on S? and then, at each point w € S? in the image
of the developing map, take the quadratic vector field that best approximates v.
Specifically, we choose s(w) = v(w) + v.(w)(z — w) + Fv.-(w)(z — w)?. Then, an
elementary computation proves the following:

Let o, B3 € H'(S;g,) be two infinitesimal deformations of a complex projective
structure on S. Suppose they determine vector fields v and w, 1-forms ds and ds,
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respectively. Then the symplectic pairing < «, 8 > equals

/ VzWzzz — WzVzzz-
S

As an immediate corollary, we see that the fibers of the bundle p : P(S) — T(5)
are lagrangian subspaces. This was first proved by Kawai ([2]).

One source of complex projective structures comes from any convex, cocom-
pact hyperbolic 3-manifold M with non-empty boundary. For simplicity, we as-
sume that the boundary components are incompressible. The holonomy group of
the hyperbolic structure acts properly discontinuously on an open subset of the
sphere at infinity with quotient equal to a (possibly disconnected) surface. Since
the action is by elements of PSL(2,C), the surface inherits a complex projec-
tive structure. The quasi-conformal theory of Ahlfors and Bers implies that the
space of convex cocompact hyperbolic structures on M is diffeomorphic to the
Teichmuller space of the boundary; the map is defined by taking the induced con-
formal structure coming from the sphere at infinity. Thus, M determines a section
oy T(OM) — P(OM) of the affine bundle.

Restricting an infinitesimal deformation of the hyperbolic structure on M to
an infinitesimal deformation of the projective structure on its boundary induces
a map i* : H*(M;g,) — H'(0M;g,). Using the long exact sequence for the
cohomology of a manifold with boundary and Poincare duality, one can easily
show that the image of ¢* is half-dimensional and self-annihilating. Thus the
image of the section o, is Langrangian for any M. In particular, if v and w are
vector fields corresponding to deformations of M that are restricted to S = 0M
we obtain f gUsWzzz — W5V, = 0. This formula was first derived by McMullen
in [4], where it was called ”Kleinian reciprocity.” The techniques were completely
different; no symplectic structure was utilized.

A special case occurs for M = S x I; such structures are called ” quasi-Fuchsian”
since they are quasi-conformal deformations of Fuchsian groups, viewed as acting
on 3-dimensional hyperbolic space. The space of such structures is diffeomorphic
to a product of two copies of 7(S). Fixing the conformal structure of one of
the surfaces determines a slice, called a ”Bers slice”, which is holomorphically
equivalent to 7(S). The conformal surfaces of the varying end also have complex
projective structures. An application of the formula above immediately implies
that the image of the resulting section of p : P(S) — T (9) is lagrangian. A similar
statement holds for any ”generalized Bers slice”, where the conformal structures
of all but one of the components of M are held fixed. These results first appeared
in [2] and [3], respectively.

Finally, any section of the affine bundle turns it into a vector bundle, using the
image of the section as the zero-section. This identifies P(S) with the bundle of
holomorphic quadratic differentials over 7(5), which, in turn, is identified with
the cotangent bundle of 7(S). If the section is holomorphic, these identifications
are holomorphic. A cotangent bundle has a canonical symplectic form which we
can compare with that coming from the Goldman pairing. Using the fact that the
fibers and the image of the section are lagrangian, it is not difficult to show that,
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for the various sections described above, the two symplectic forms are equal (up
to a multiplicative constant). Again, similar results can be found in [2] and [3].
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Subgroups of mapping class groups associated to Heegaard splittings
and their actions on projective lamination spaces

KEN’ICHI OHSHIKA

We consider a Heegaard splitting of a 3-manifold M = H; Ug Hy. Any mapping
class of H;(j = 1,2) can be regarded as a mapping class of S by restricting it
to the boundary. We consider a subgroup of the mapping class group MCG(H;)
consisting of all classes represented by homeomorphisms homotopic to the identity
in H;, and denote it by MCG°(H;). We let G; and Gs be the subgroups of
the mapping class group MCG(S) corresponding to MCG°(H;) and MCG°(Hz)
respectively. We are interested in the group generated by G; and G3 in MCG(S),
which we denote by G := (G1,G2). It is Minsky that first took interest in this
group G. He raised some problems on this group G, which can be found in the
list of problems of Heegaard splittings edited by Gordon [2].

The sets of meridians for two handlebodies H; and Hs define a subset A; and
Ay of the curve graph C(S) of the splitting surface S. The distance between A;
and A, is called the Hempel distance of the decomposition.

The first thing we are interested in is the algebraic structure of G. The following
theorem is an answer to one of the questions posed by Minsky.

Theorem 1 (Bowditch-Ohshika-Sakuma [1]). If the Hempel distance is large
enough, then G = G1 * Gs.

To prove this theorem, we use the Gromov hyperbolicity of the curve graph and
the acylindiricity of the action of the mapping class group on the curve complex
which was proved by Bowditch.

Since the mapping class group acts on the projective lamination space PL(S),
its subgroup G = (G, G2) also acts on it. The second thing we are interested in is
to study the dynamics of this action: for instance we should like to know if there
is a region of discontinuity for this action. In [1], we have shown that indeed this
action has a non-empty region of discontinuity. Here we shall give a more concrete
way to construct a region of discontinuity than the argument in [1].
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Definition 2. For a Heegaard splitting M = H; Ug Hs, for j = 1,2, we let A;- be
the set of weighted disjoint unions of meridians in H;, which is regarded as a subset
of the measured lamination space ML(S). We set A to be G(A] UA}). Then we
define a subset U of ML(S) to be U = {\ € ML(S) | i(A\,p) > 0 for all u € A},
where the over line denotes the closure in ML(S). We also define PU to be the
projection of U into the projective lamination space PML(S).

It is easy to see that PU is an open set in PML(S).

We have proved the following for Heegaard splittings with combinatorial bounded
geometry. Here we shall not give a detailed definition of combinatorial bounded-
ness of Heegaard splittings M = H; Ug Ha, but just mention that this corresponds
to the condition that there is a positive lower bound for the injectivity radii of
the hyperbolic 3-manifolds M. (Note that it is know that M is hyperbolic if the
Hempel distance is greater than 2.)

Theorem 3 (Lecuire-Ohshika-Sakuma). For any positive constant D, there exists
K such that any Heegaar splitting M = H1Ug Mo with D-combinatorially bounded
geometry and Hempel distance > K has the following property.

(1) PU is non-emitpy.

(2) G acts properly discontinuously on PU.

(8) PU is almost mazximal: for any open set V in PML(S) containing PU

on which G acts properly discontinuously, the Lebesgue measure of V'\ PU
15 0.
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Arbitrarily long factorizations in surface mapping class groups
MUSTAFA KORKMAZ
(joint work with Elif Dalyan, Mehmetcik Pamuk)

Let 37 denote a compact connected oriented surface of genus g with n > 1 bound-
ary components d1, d2, . ..,d,. The mapping class group Mod(X}) of the surface
Y3 is the group of isotopy classes of orientation-preserving self-diffeomorphisms of
Y. Diffeomorphisms and isotopies are assumed to fix each point of the boundary.

By the results of Giroux [2] and Thurston-Winkelnkemper [5], every open book
decomposition (37, ®), where ® € Mod(X7), of a closed oriented 3-manifold M
admits a compatible contact structure and all contact structures on compact 3-
manifolds come from open book decompositions. If the monodromy ® of the
open book can be written as a product of positive Dehn twists, then the contact
structure is Stein fillable. Writing ® as a product of positive Dehn twists provides
a Stein filling of the contact 3-manifold M via Lefschetz fibrations.
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In this work we consider the following question: Is the number of positive Dehn
twists in a factorization of the boundary multitwist ts ts, - --t5, bounded? For
a simple closed curve a, the Dehn twist about a is denoted by t,. Any such
factorization of ts,ts, - - - t5, describes a Lefschetz fibration with n disjoint sections
of self-intersection —1. Thus, this question is related to Lefschetz fibrations.

Baykur and Van Horn-Morris [1] proved that for g > 8 the boundary multitwist
ts,ts, in Mod(X?2) can be written as a product of arbitrarily large number of
positive Dehn twists about nonseparating simple closed curves. In this work, we
prove that the same conclusion can be drawn for all ¢ > 3. For g = 2, this
statement is not true anymore. Our main result is the following theorem.

Theorem. Let a be a nonseparating simple closed curve on a surface 23 of genus
g with two boundary components 61 and d2. In the mapping class group Mod(Eg),
the multitwist

(Z) t51t52ta fO’f’ g= 2;

(i) ts,ts, for g >3
can be written as a product of arbitrarily large number of positive Dehn twists about
nonseparating simple closed curves.

By capping off one of the boundary components, we obtain the following im-

mediate corollary for surfaces with one boundary component.

Corollary 1. Let E; be a compact connected oriented surface of genus g with one
boundary component §. In the mapping class group Mod(E}]), the element

(i) t5 forg=2,

(ii) ts forg>3
can be written as a product of arbitrarily large number of positive Dehn twists about
nonseparating simple closed curves.

We note that in the mapping class group Mod(X,) of a closed orientable surface
Y4 the identity element can be written as a product of positive Dehn twists about
nonseparating simple closed curves. It follows that every element in Mod(X%,) can
be expressed as a product of arbitrarily large number of nonseparating positive
Dehn twists. However, in case n > 1, the identity element of Mod(¥}) admits no
nontrivial factorization into a product of positive Dehn twists.

A factorization of the multitwist ¢s5,%s, - - - £s5,, into a product of positive Dehn
twists of the form

T
ts,ts, - ts, = Htai
i=1

in the group Mod(X7?) describes a genus-g Lefschetz fibration X, (r) — 52 with n
disjoint sections such that the self-intersection of each section is —1. The Euler
characteristic of the total space X,(r) is x(X4(r)) = 2(2 — 2g) +r.

The following corollary is an improvement of [1, Theorem 1.2].

Corollary 2. For every g > 3, there is a family of genus-g Lefschetz fibrations
Xy(r) = S? with two disjoint sections of self-intersection —1 such that the set
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{x(X4(r))} of Euler characteristics is unbounded. The same conclusion holds true
for genus-2 Lefschetz fibrations but this time with two disjoint sections of self-
intersection —2.

Given a genus—g Lefschetz fibration f : X — S? with a section ¢ and with a
regular fiber X, the complement of a regular neighborhood of the union X U o is a
Stein filling of its boundary M equipped with the induced tight contact structure
([4]). Tt was conjectured in [4] that the set

Cirey = {x(X) | X is a Stein filling of (M, ¢)}

is finite. In [1], it was shown that this conjecture is false. Our theorem provides
more counterexamples to this conjecture.

Corollary 3. For every g > 2, there is a contact 3-manifold (My,&,) admitting
infinitely many pairwise non-diffeomorphic Stein fillings such that the set Ciar, ¢,
is unbounded.

We remark that Kaloti [3] showed that if a contact 3-manifold (M,§) can be
supported by a planar open book, then C(js,¢) must be finite. Hence, the contact
structure supported by the open book with monodromy t¢s,%s5,, g > 3, cannot be
supported by a planar open book.

Here is the idea of the proof of our theorem.

Suppose that ¢ > 2 and n > 1. Let ¢;, 1 < i < 4, be nonseparating simple
closed curves on X forming a chain. That is, ¢; intersects c; 41 transversely once
for ¢ = 1,2,3, and ¢; does not intersect ¢; if |[i — j| > 1. Let d and e be the
boundary components of a regular neighborhood of ¢; U ca U c3, so that dU e
bounds a surface of genus one. Let x be any nonseparating simple closed curve on
Yy intersecting c3 and d transversely only once. Let

T = (teytegtes) testey testes-
Then, in the mapping class group Mod(%y), for any positive integer m, we write
(b = t04t03 tCQ tc1 tc1 tC2 t03 t04 tmtdtcs, ty

= (t;mt?tc4t03t02tcltclt02t03t04tmtdt03tmt;mt2)Tm

= tetetetete te et tartarteyla ™,
where ¢ = t_ 17" (c;) etc. In particular, for any positive integer m the element ¢
may be written as a product of 12+ 10m positive Dehn twists about nonseparating
simple closed curves.

Given an element f of Mod(E;‘), if one can factor f as f = ¢h where h is a

product of positive Dehn twists, then f can be written as a product of arbitrarily
large number of positive Dehn twists. We use this idea to prove our theorem.

REFERENCES

1] R. I. Baykur and J. Van Horn-Morris, Topological complezity of symplectic 4-manifolds and
Stein fillings, arXiv:1212.1699.



412 Oberwolfach Report 07/2014

2] E. Giroux, Géométrie de contact: de la dimension trois wvers les dimensions
supérieures, [Contact geometry: from dimension three to higher dimensions], Proceedings
of the International Congress of Mathematicians, Vol. II, Higher Education Press, Beijing,
2002, 405-414.

(3] A. Kaloti, Stein fillings of planar open books, arXiv:1311.0208.

[4] B. Ozbagci and A. 1. Stipsicz, Contact 3-manifolds with infinitely many Stein fillings 132
(2003), 1549-1558 .

[5] W. P. Thurston and H. Winkelnkemper, On the ezistence of contact forms, Proc. Amer.
Math. Soc. 52 (1975), 345-347

On Weil-Petersson Funk metric on Teichmiiller spaces
SUMIO YAMADA

1. THE FUNK METRIC IN R? AND ITS REPRESENTATIONS

Let Q be an open bounded convex subset in a Euclidean space (R?, d) where d
is the standard Euclidean metric. We set the presentation in [2] as our reference
for the Funk and Hilbert metrics of 2, and we also refer to the first part of the
paper [8].

There are three different descriptions of the Funk metric. The first one is the
original definition:

d(z, b(z,y))

d(y, b(x,y))’

where for x # y in Q, the point b(x, y) is the intersection of the boundary 92 with
the Euclidean ray {x + t&;, : ¢t > 0} from z though y and where &, is the unit
tangent vector in R¢ pointing from z to y. When x = y, we set F(z,y) = 0. The
second description is the variational interpretation of the above value using the
geometry of supporting hyperplanes;

Fi(z,y) =log

d(x, )
Fy(x,y) = sup log ———,
TeP d(yu 7T)
where P is the set of all supporting hyperplanes of 2. This is given in [8].
Finally, the Finsler structure pq.(£) is given by the following function (the
Minkowski functional) on vectors £ in each tangent space to {2 at x:

(vr(x), €)
p,z(§) = sup
A= i)
where v, is the unit vector in T, perpendicular to, and directed toward m. This
is a weak norm on each tangent space which is defined so that the Funk distance
is described as the infimum of length of curves:

)

b
F3(z,y) = igf/ P, (a(t))dt,

the infimum being taken over all the piecewise C! curves with o(a) = z and
a(b) =y.
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For any convex domain  C R?, the three quantities Fy (v, y), Fa(z,9), F3(z,9)
are all equal to each other, and we set

F(x,y) = Fl(xvy) = F2(x7y) = F3($,y)

for every z and y in (.

2. WEIL-PETERSSON GEOMETRY

Let X, be a closed topological surface of genus larger than one. We assume
that ¥, is equipped with some hyperbolic metric.

The Weil-Petersson metric on the Teichmiiller space is the L? metric on the
surface X for deformation tensors of the hyperbolic metric G;

(h1, ha)wp =/2<h1(x),h2(x)>g(z) dpc ()

where the tangency condition for the tensors hi, hy are traceless and divergence-
free with respect to GG, which preserves the constant curvature condition as well
as the perpendicularity to the diffeomorphism fibers. We denote by d(z,y) the
Weil-Petersson distance between the points x and y.

The Weil-Petersson completion 7T, a space of Cauchy sequences in (7, d), con-
sists of the original Teichmiiller space T as well as the bordification points of T
so that X is allowed to have nodes, which are geometrically interpreted as simple
closed geodesics of zero hyperbolic length. The completed space T (also identified
as augmented Teichmiiller space by Bers and Abikoff) has the stratification

T =Usec(s)Ts

where the original Teichmiiller space T is expressed as Ty, and where C(S) is the
complex of curves.

We showed in [7] that this stratification is very much compatible with the
Weil-Petersson geometry. Namely for each collection o € C(S), each boundary
Teichmiiller space T, is a Weil-Petersson geodesically convex subset of 7. Here
geodesic convexity means that given a pair of points in 7, there is a distance-
realizing Weil-Petersson geodesic segment connecting them lying entirely in 7.
The non-positive curvature implies the uniqueness of the geodesics.

In [8], a new space was introduced which can be viewed as a Weil-Petersson
geodesic completion, called the Teichmiiller-Coxeter complex D(T,¢). The space
is a development of the original space T by a Coxeter group generated by reflections
across the frontier stratum {7, }. It was shown by Wolpert [4] that two intersecting
strata of the same dimension meet at a right angle (in the sense of the Alexandrov
angle between Weil-Petersson geodesics,) making the development D(T,1) a so-
called cubical complex [1]. This feature then is used to show that the development
is also a CAT(0) space.

In this setting, for each o with |o| = 1, one can consider a half space, namely
the set H, in D(T,t), containing 7 and bounded by D(T,,:). We note the
fact obtained by Wolpert [4] that the Weil-Petersson metric completion 7 is the
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closure of the convex hull of the vertex set {7y | |0 = 3g — 3}, which suggests an
interpretation of the Teichmiiller space as a simplex.
We can summarize the above discussion as

T =NoesHy, with 0T C Uy D(T4,t)
where every boundary point b € T belongs to D(T4,t¢) for some o in S. Each

half space H, is bounded by the “supporting hyperplane” D(T,,¢).

2.1. The Weil-Petersson Funk metric F>. We now transcribe the Euclidean
Funk geometry as well as its compatible Finsler structure in the previous section to
the Weil-Petersson setting. We exhibited three equivalent ways of writing down the
Funk distance, which we called Fi, F5 and F3. In the Weil-Petersson setting, these
definitions a-priori differ from each other, and they are related by inequalities.

We define the Weil-Petersson Funk metric F5 on T as

Fy(x,y) = sup log M,
oS d(y, T(T)

where d is the Weil-Petersson distance defined on 7.

We claim the following result concerning the three metrics, which are the Weil-
Petersson analogues of F, F; and F3 we have seen in the Euclidean setting.

Theorem 1. [9] The three weak metrics are related by the foliowing inequalities
Fl(xuy) S FZ(xuy) S F3($7y)

for x,y in T, and there are pairs of points (x,y) for which the inequalities are
strict.

As a consequence of the comparison, we obtain the following statement, which
gives an interesting contrast with the other Funk type metrics, the Teichmiiller
metric and the Thurston metric, which are both Finsler.

Corollary 2. [9] The Weil-Petersson Funk metric Fy is not Finsler.
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Chord diagrams, random matrices, and topological recursion
PIOTR SULKOWSKI

In this summary the Hermitian matrix model with potential V(z) = x2/2 —
stx/(1 — tx) is introduced and its properties are discussed, following [1]. The
partition function of this model enumerates linear chord diagrams of fixed genus
with specified numbers of backbones generated by s and chords generated by
t. This partition function is computed using the formalism of the topological
recursion. The corresponding enumeration of chord diagrams — or more precisely
some simple transform of those — gives the number of cells in Riemann’s moduli
spaces for surfaces with boundaries. These numbers have also other applications
— for example, they provide the number of RNA complexes of a given topology.
We recall that another matrix model, with logarithmic potential, computes Euler
characteristic of moduli spaces, as shown by Penner in [2]. The model which
we introduce here provides yet another example of how powerful a description of
moduli spaces by random matrices is.

We recall that a chord diagram, which we assume to be connected, is comprised
of a collection of n > 0 semi-circles (called chords) lying in the upper half plane,
whose endpoints lie at distinct interior points of b > 1 pairwise disjoint, oriented
and labeled intervals (called backbones) lying in the real line R € C. A chord
diagram naturally determines an oriented and connected surface, which is charac-
terized up to homeomorphism by its genus g > 0 and number r > 1 of boundary
components. The Euler characteristic of this surfaceisb—n=2—2g —r.

Let ¢45(n) denote the number of isomorphism classes of chord diagrams of
genus g with n chords on b labeled backbones. We will show how to determine
recursively the generating functions

(1) Cou(2) = Z cgp(n) 2", for g >0,
n>0

using the topological recursion [3, 4] of a Hermitian one-matrix model

(2) Z = /DH e NUVH) — oxp (—N2s + ZNQ_Z‘]FQ),
g=0
where N denotes size of matrices, for a particular potential
x? stx
3 Viz) = — — )
3) (@) =5~ 17—

The crucial fact is the statement that the free energy in genus g of this model
encodes Cj 5(t?) via

b
s
(4) Fy(s,t) = const + E o Cyp(t?), for g >0,
b>1
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where the constant terms reproduce the Gaussian free energies given by %,
where Byg denote Bernoulli numbers. The extra factor b! arises because Cy (1)
counts chord diagrams with labeled backbones as opposed to unlabeled in the
topological recursion.

Therefore, the problem of enumerating cells in Riemann’s bordered moduli
spaces reduces to the problem of performing the matrix integral and determin-
ing free energies Fy in (2). To find free energies one should solve the so-called loop
equations of the matrix model, which are equations satisfied by certain multi-linear
correlators W,(Ig) (p1,...,pn) in this model. The leading order equation among
those identities specifies a so-called spectral curve, i.e., an algebraic curve which
characterizes distribution of eigenvalues in the matrix model in the N — oo limit.
It also turns out that all correlators W,gg ) (p1,--.,pn) and loop equations they sat-
isfy can be encoded entirely in terms of this spectral curve. These loop equations

can be solved in a recursive way [3], and in this manner, free energies F, (for

g > 2) are completely determined by correlators Wl(g) (p). Therefore, the spectral
curve can also be regarded as the initial condition for this recursion. This entire
procedure requires just the knowledge of the spectral curve (and a universal form
of the solution to loop equations), and no other details of a matrix model from
which this curve was derived. An important achievement of Eynard and Orantin

[4] was to realize that one can use the recursive solution of loop equations to assign

correlators Wég ) (p1,...,pn) and Fy to an arbitrary algebraic curve, not necessarily

of matrix model origin. On the other hand, it is guaranteed that F;, computed for
the spectral curve of a matrix model reproduce the free energies.

In order to solve the matrix model (2) with the potential (3) we can therefore
use the formalism described above. This has indeed been done in [1], and the main
steps of this solution are as follows. First, we need to determine the spectral curve
of the model (2). This can be done by the analysis of a distribution of eigenvalues
in the large N limit. Because the potential (3) is a deformation of the quadratic
function, it has a single minimum, and in the equilibrium configuration eigenvalues
spread around this minimum. For large IV the eigenvalues are distributed along an
interval with end-points a and b, which defines a cut in a certain auxiliary complex
plane. Such a one-cut solution defines the corresponding spectral curve which has
genus zero, and it turns out to be given by the following algebraic equation for
two complex variables z and y

(5) d(tr — 1)t = (a:—a)(x—b)((ta:—1+M)2+7)2,

where

(at + bt)((at)? + (bt)* + 14(at + bt — abt?) — 16)
16(at + bt — 2) '

Y=
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While the end-points of the cut a and b cannot be given in a closed form, it can
be found that they are determined by the following system of equations

st(at+bt—2)

((at-1)(bt-1))
(6) 16 = (a— )2 + 4s((2— 9N (at4bt—2)+2abt> ~3t(a-+b) +4)
((at-1)(pt—1)) "

O=a+b+

3/2»

From the knowledge of the curve (5) and the formalism of the topological recursion
we can now determine Fy for ¢ > 2 (Fy and F; must be determined separately,
independently of the topological recursion, for details see [1]). In particular we get
the following exact result for the free energy at genus 2:

B t4(1 — 0)? "
24004(1 — 0 — 40 4+ 302)3(1 + 0 — 40 + 302)°
X (16064(1 ~30)4(1 — 0)® — 806%(1 — 30)5(1 — &)®

Fy =

+16(1 — 30)3(1 — 0)'0 4+ 60(—16 + 2190 — 46202 + 2520°)
+106%(1 — 30)%(1 — 0)*(—16 — 1260 — 42302 + 22860° — 28620 + 11340°)
+56°%(1 — 0)%(16 + 1890 — 297002 + 95490° — 112860 + 453605))

where o = ((at 4+ bt)/2 and 6 = (at — bt)/2. We also obtain an exact result for
the free energy F3 which is yet more complicated, and its precise form is given in
[1]. Expanding these results in the form given in (4), and using the perturbative
expansion of a and b in s which follows from (6), we can determine appropriate
generating functions Cy;(z). For example, expansion of the above F5 in powers
of s determines generating functions Cs ;(z) for all b., such as

14427 )
C2.4(2) 1) (38675 + 620648z + 20878082
+15693282° + 1342082%),
14428 )
Cos(z) = e (2543625 + 624245202z + 3750443962
4

+6716660532° + 3147618482" 4 183356962°),

This procedure can be continued in an algorithmic manner, and with sufficient
computational power one can determine exact form of Fj; for any g, and so the
corresponding Cy 4(2), and finally all ¢4 3(n).
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Combinatorial methods on actions on character varieties
SARA MALONI
(joint work with Frederic Palesi, Ser Peow Tan)

In his PhD thesis [6], McShane established the following remarkable identity for
lengths of simple closed geodesics on a once-punctured torus S ; with a complete,
finite area hyperbolic structure:

1 1
(1) ; 1+exp(l(y)) 27
where « varies over all simple closed geodesics on Sp,1, and () is the hyperbolic
length of v under the given hyperbolic structure on S7 ;. This result was later
generalized to (general) hyperbolic surfaces with cusps by McShane himself [7], to
hyperbolic surfaces with cusps and/or geodesic boundary components by Mirza-
khani [9], and to hyperbolic surfaces with cusps, geodesic boundary and/or conical
singularities, as well as to classical Schottky groups by Tan, Wong and Zhang in
[12], [14].

On the other hand, Bowditch in [1] gave an alternative proof of (1) via Markoff
maps, and extended it in [3] to type-preserving representations of the once-punctured
torus group into SL(2, C) satisfying certain conditions which we call here the BQ—
conditions (Bowditch’s Q—conditions). He also obtained in [2] a variation of (1)
which applies to hyperbolic once-punctured torus bundles. In [13] Tan, Wong and
Zhang also further extended Bowditch’s results to representations of the once-
punctured torus group into SL(2, C) which are not type-preserving, that is, where
the commutator is not parabolic, and also to representations which are fixed by an
Anosov element of the mapping class group and which satisfy a relative version of
the Bowditch’s Q—conditions. They also showed that the BQ-conditions defined
an open subset of the character variety on which the mapping class group of the
punctured torus acted properly discontinuously.

The above papers provided much of the motivation for this talk, in particular,
the identities obtained were in many cases valid for the moduli spaces of hyper-
bolic structures, so invariant under the action of the mapping class group, and in
the case of cone structures, they could be interpreted as identities valid for cer-
tain subsets of the character variety which were invariant under the action of the
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mapping class group, even though the representations in the subset may be non-
discrete or non-faithful. This leads naturally to the question of whether there were
interesting subsets of the character varieties on which the mapping class group acts
properly discontinuously, but which consists of more than just discrete, faithful
representations, as explored in the punctured torus case in [13].

In this talk we will consider representations of the free group on three generators
F3 ={a, 8,7, : aB~v6 = I) into SL(2,C). We adopt the viewpoint that F3 is the
fundamental group of the four-holed sphere S, with «, 3,7, d identified with 05,
and study the natural action of MCG(S), the mapping class group of S on the
character variety

X := Hom(F3,SL(2,C))//SL(2,C),
where we take the quotient in the sense of geometric invariant theory. If 6 €
MCG(S) and [p] € X, this action is given by

0([p]) = [po (0.)7"],
where 0,: m(S) — m1(5) is the map associated to 6 in homotopy. We are
interested in the dynamics of this action, in particular, on the relative character
varieties X(q,p,c,4), Which is the set of representations for which the traces of the
boundary curves are fixed.
We describe the following result.

Theorem A. There exists a domain of discontinuity for the action of MCG(S)
on Xap,c,d), that is, an open MCG(S)-invariant subset D C X(qp,c.a) on which
MCG(S) acts properly discontinuously.

Remark 0.1. As already observed by several other authors in related situations
(see Goldman [5], Tan—-Wong—Zhang [13] and Minsky [8]), our domain of discon-
tinuity contains the interior of the discrete and faithful characters, but also char-
acters which may not be discrete or faithful. For example, when the boundary
traces are in (—2,2) we can produce representations that are non-discrete, but are
nevertheless in the domain of discontinuity.

This set is described by two conditions, much in the spirit of [3] and [13], and
is given as follows. If & denotes the set of free homotopy classes of essential,
non-peripheral simple closed curves on S, then the conditions for [p] to be in D
are

(1) tr p(y) € [—2,2] for all v € S; and
(i) |tr p(y)| < K for only finitely many v € S, where K > 0 is a fixed constant
that depends only on a, b, ¢, d.

Furthermore, the set of v satisfying condition (ii) above satisfy a quasi-convexity
property, equivalently, is connected when represented as the subset of the comple-
mentary regions of a properly embedded binary tree. This property is particularly
important when writing a computer program to draw slices of the domain of dis-
continuity.

Of particular interest is the set of real characters, which consists of represen-
tations in SL(2,R) or SU(2). In the latter case, Goldman [4] proved ergodicity
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of the mapping class group action for all orientable hyperbolizable surfaces, with
respect to the invariant measure induced by the natural symplectic structure on
the moduli space. (This was generalized by Palesi in the non-orientable case in
[10]). On the other hand, in the SL(2,R) case the dynamics is much richer and
less understood. For example, when S, is a closed surface of genus g > 2, Gold-
man conjectured that the action of MCG(S,) on the components of X'(S,) with
non-maximal Euler class is ergodic. An approach towards a proof of this would
be to use a cut-and-paste argument involving pieces homeomorphic to one-holed
tori and four-holed spheres. While the case of the one-holed torus was completely
described by Goldman in [5], we obtain partial results in the four-holed sphere
case here. In fact, an important corollary of our analysis is the following:

Theorem B. In the real case, for all boundary datas, except a dimension one sub-
set, there is a non-empty open domain of discontinuity for the action of MCG(S)
on the relative SL(2,R)—character variety.

This implies that there are representations in these components for which all
essential simple closed curves on S have hyperbolic representatives, even though
these representations may not be discrete and faithful. There are also some sur-
prises here, in particular, certain slices of the real character variety satisfying some
general condition always have non-empty intersection with the domain of discon-
tinuity.
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Penner coordinates for closed surfaces
RINAT KASHAEV

Let S be a closed oriented surface of genus g > 1, and let

(1) Ry, C Hom(m, PSL(2,R)), m =m1(S,20),

be the connected component of representations of Euler number k € Z. According
to the result of Goldman [1], the component Rs_s, corresponds to discrete faith-
ful representations, so that one has a principal PSL(2,R)-fibre bundle over the
Teichmiiller space T = T(S)

(2) p: R2—2g — T.

Denoting by € the space of all horocycles in the hyperbolic plane H?, we consider
the associated fibre bundle

(3) ¢Z % — T, ;7: = Rg_gg X PSL(2,R) Q,

as a substitute for Penner’s decorated Teichmiiller space [3, 4] in the case of closed
surfaces. We define the A-distance

(4) A Qx Q= Rsg

as follows. If h,h’ € Q are based on distinct points of OHZ2, then \(h,h’) is the
hyperbolic length of the horocyclic segment between tangent points of a horocycle
tangent simultaneously to both h and &/, and we define A(h,h’) = 0 if h and I’/
are based on one and the same point of OH?Z.

To any « € 7 \ {1}, we associate a function

(5) Aa: T = Rso,  [p,h] — A(p(a)h, h).

The set A;1(0) is a sub-bundle of 7 with the fibers homemorphic to RLR. More-
over, one has

(6) a#B=2"0)NnAr;"(0)=0.
For any subset A C m; \ {1}, we associate the subset
(7) Ta = Nacady' (Rxo)
together with a function
(8) Ja: Ta = RY,, Ja(@)(@) = Ma(z), VzeTa, Vae A

In what follows, for any cellular complex X, we will denote by X; the set of its
i-dimensional cells.

We define a triangulation of (S,zg) as a cellular decomposition with only one
vertex at xg and where all 2-cells are triangles. We denote by A = A(S, zg) the
set of all triangulations of (S, zg).
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For any 7 € A, to any edge e € 11 there correspond two mutually inverse
elements y*! € ;. By abuse of notation, we identify e with any of the functions
)\,Yil :

9) e=XAy = Ay-1: T — Rso.

For any 7 € A and e € 7y, we denote by 7¢ the triangulation obtained by the
diagonal flip at e, with the flipped edge being denoted as e;:

(10) T3 ~ % e’
It is easily shown that for any 7 € A, one has a finite covering
(11) T =T U(Ueen Trp)-

Our first result gives a realization of ’7}1 as an algebraic subset of co-dimension one
in RY). Namely, to any pair (7,t) with 7 € A and t € 7, we associate a function

a?+b%+c2

(12) Yri= > et(t’)T: RY, — R,

t'eTo
where a, b, ¢ are the three sides of ¢/, while the function
(13) e: o — {—1,1}
takes the value —1 on ¢ and the value 1 on all other triangles. We remark that
(14) t#t =91 (0) N1y, (0) = 0.
We also define
(15) w‘r = H "/’T,t'

teTs

Theorem 1. For any 7 € A, the map J-, : T, = RZ is an embedding with the
image 7 1(0) = I_It€7.21/);} (0).

Remark 1. The transition functions J,, o J;lel on the overlaps '7;1 N 7~'Tf are given
by the signed Ptolemy transformation of [2] (Proposition 4) with the sign function
being given by (13).

Our second result gives explicit coordinatization of the sub-bundles A;*(0) to-
gether with the explicit Rsp-action along the fibers. The result follows.

Let S = 8(5) be the set of homotopy classes of essential simple closed curves
in S, and A* C A the set of triangulations of the form 7* with 7 having an edge
representing «. From (6), it is easily seen that

(16) A0) C Tryy VT E A
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For a € S, let
(17) lo: T = Rsp

be the hyperbolic length of the geodesic in the homotopy class of a. Any 7 € A®
has a distinguished edge ;. Let 7, be the quadrilateral having a, as its diagonal.

Theorem 2. Let o € S and 7 € A®. Then

(i): one has the inclusion J-, (A;*(0)) C Use(ra), 5t (0);
(ii): for any t € (14)2, the map

(18) Lars: Tla,t) = A71(0) N (¢r 0 Jry)"H(0) = Rug x RZ)™
m = (ﬂa (¢(m))7 J7'1\t1 (m))

is a homeomorphism;
(iii): For any d € Rsq one has the following equivalence

(19) ¢(m) =¢(m') & I ceRug: Jrp\y, (M) = cJrg, (M),
VYm,m' € (o0 d)~ (d) N T(a,t).

Remark 2. The space 7~'(04, t) in Theorem 2 is a connected component of A;*(0).
It can also be singled out by fixing an orientation on «, and considering only the
classes [p, h], with h based on the attracting fixed point of p(«).
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Quantum representations of mapping class groups and asymptotics in
Teichmiiller space

JORGEN ELLEGAARD ANDERSEN

Let ¥ be a closed oriented surface of genus g > 2. We consider the quantum
representations of the Witten-Reshetikin-Turaev Topology Quantum Field Theory
[W, RT1, RT2]

p®) : Ty —5 PAut (PZW(E))
where I's; is the mapping class group of ¥ and PZ®*)(X) is the projectivization

of the finite dimensional vector the WRT-TQFT associates to X for the quantum
group Uy(sl(2,C)), ¢ = exp (2mi/(k + 2)).
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The geometric construction of p*) proceeds via geometric quantization of the
moduli space of flat SU(2)-connections on X: Let

M = Hom (m1(2), SU(2)) /SU(2)

be the moduli space of flat SU(2)-connections on the surface 3. This moduli space
has the Goldman symplectic form w and a unique prequantum bundle (L, { ), V)
with

Fv = —w.

To quantize we consider a complex structure o, which is a point in Teichmiiller
space Tx, of ¥. 0 € Ty, induces a complex structure on I, s.t. (M,w, ;) = M, is
Kihler and we define a holomorphic bundle H*®) over 75, given by

H® = HO(M,, L*).

This bundle has a natural I's-invariant connection V* constructed by Hitchin [H]
who showed that this Hitchin connection is projectively flat.

By combining a theorem of Laszlo [L] with a theorem of this author and Ueno
[AU1, AU2, AU3, AU4] we get that

PZ™®) (%) = covariant constant sections of (]P’H(k), VH) .

By using the theory of Toeplitz operators we prove [Al]

Theorem (Asymptotic faithfulness).

JH{LHY g=2
Okerp(k) B {{1} g>2

where H 1is hyperelliptic involution.

By analysing the asymptotics of the connection V¥ we get that it extends to a
connection with log-singularity over augmented Teichmiiller space 7~'E Considering
points in ’7‘2 corresponding to pairs of pants decompositions of the surface ¥ we
then explicitly construct a unitary structure on H®) which is preserved by V7
and the action of I's;. This means

p:Tys— O Endy (PZW())

k+2 prime

is a unitary Hilbert space representation. We prove it has an almost fixed vector,
but Roberts has proved it has no fixed vector. Hence we arrive at the following
theorem [A2]

Theorem. I's; does not have Kazhdan’s property T.



New Trends in Teichmiiller Theory and Mapping Class Groups 425

REFERENCES

[A1] J.E. Andersen, ” Asymptotic faithfulness of the quantum SU (n) representations of the map-
ping class groups”. Annals of Mathematics, 163 (2006), 347-368.

[A2] J.E. Andersen, ”Mapping Class Groups do not have Kazhdan’s Property (T)”,
arXiv:0706.2184, pp. 21.

[AU1] J.E. Andersen & K. Ueno, ”Geometric construction of modular functors from conformal
field theory”, Journal of Knot theory and its Ramifications. 16 2 (2007), 127-202.

[AU2] J.E. Andersen & K. Ueno, ” Abelian Conformal Field theories and Determinant Bundles”,
International Journal of Mathematics. 18, (2007) 919-993.

[AU3] J.E. Andersen & K. Ueno, ”Modular functors are determined by their genus zero data”,
Quantum Topology 3 3/4 (2012) 255-291.

[AU4] J.E. Andersen & K. Ueno, ” Construction of the Reshetikhin-Turaev TQFT from conformal
field theory”, arXiv:1110.5027, pp. 39.

[H] N. Hitchin, Flat connections and geometric quantization, Comm.Math.Phys., 131 (1990)
347-380.

[L] Y. Laszlo, Hitchin’s and WZW connections are the same, J. Diff. Geom. 49 (1998), no. 3,
547-576.

[RT1] N. Reshetikhin & V. Turaev, Ribbon graphs and their invariants derived fron quantum
groups, Comm. Math. Phys. 127 (1990), 1-26.

[RT2] N. Reshetikhin & V. Turaev, Invariants of 3-manifolds via link polynomials and quantum
groups, Invent. Math. 103 (1991), 547-597.

[W] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys 121
(1989) 351-98.

Teichmiiller spaces of orbifold Riemann surfaces and related algebras
LEONID CHEKHOV

We consider the combinatorial description in terms of fat graphs of decorated
Teichmiiller spaces 7y s, of Riemann surfaces ¥, of genus g with s > 0 holes
and with r > 0 orbifold points having orders p;, ¢ = 1,...,r, where p; are in-
tegers greater or equal two. ¥, ., is obtained using the Poincaré uniformiza-
tion from the upper half-plane H? endowed with the hyperbolic metric: X, 5, =
H?/Ag s» where Ay, C PSL(2,R) is a discretely acting subgroup whose con-
jugacy classes are hyperbolic (parabolic in case of punctures) except exactly s
elliptic classes. The spine (fat graph) of this surface is a fat graph of genus g
containing exactly s faces, exactly r one-valent vertices, 6g — 6 + 3s + 2r edges
and 49 — 4 + 2s + r 3-valent vertices. We decorate all edges with real numbers
Za. The set {2, }29 03427 ¢ RO9-6+3542r wwhich we identify with 7;,,. We
use the 1-1 correspondences between sets of closed geodesics on ¥ s ., conjugacy
classes of hyperbolic elements of Ay, and closed paths not homeomorphic to

orbifold points to construct geodesic functions G in accordance with rules: when
0 _ez/2

passing through any edge we set X, = (ez /2 0 ), when turning left/right

at 3-valent vertices we set L, R = (_01 _11> or (_11 (1)) , when going clockwise

0 1

w; = 2cos =, when goin
_1 _wi b 2 pi, g g

around Zj,-orbifold points we set Fi,, = (
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twice (—)F3, etc. G =tr(X,, LX., ,-...- X, F, X, -...-LX,,RX L) are traces
of products of 2x2 matrices. We describe flip morphisms: the new one related to
flipping a pending edge is

</ >A+¢z+z7r/pl + o(z —im/p;)
2+W/pz) ¢(—z —im/p;)
= log(1 4 ¢*)

and we have the following theorem establishing a “completeness” of this descrip-
tion: for any X, , we have a (nonunique) set of {z,} (for any spine I'y 5 ;) and
for any {za},I'g.s,» we have X, 5 .. We introduce the Poisson bracket, quantize it
and obtain quantum MCG transformations for which it suffices to replace ¢ by

h e~z dp

o= [T

2 J sinh(mp) sinh(whp)
We study the obtained quantum geodesic algebras and show that they satisfy the
quantum skein relations.

Moments of the boundary hitting function for geodesic flow
MARTIN BRIDGEMAN
(joint work with Ser Peow Tan)

We consider finite volume hyperbolic manifold with non-empty totally geodesic
boundary. We consider the distribution of the time for the geodesic flow to hit
the boundary and derive a formula for the moments of the associated random
variable in terms of the orthospectrum. We show that the the first two moments
correspond to two cases of known identities for the orthospectrum. We further
obtain an explicit formula in terms of the trilogarithm functions for the average
time for the geodesic flow to hit the boundary in the surface case, using the third
moment.

On quasihomomorphisms with noncommutative targets
Kout Fusitwara
(joint work with Misha Kapovich)

This is a talk on the paper [4]. Let G be a group and H be a topological group
equipped with a proper left-invariant metric d (e.g., a finitely-generated group,
equipped with a word metric). A map f: G — H is called a quasihomomorphism
if there exists a constant C' so that

d(f(xy), f(2)f(y) < C
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for all z,y € G. In the case when H is discrete (and in this paper we limit ourselves
only to this class of groups), f is a quasihomomorphism if and only if the set of
defects of f

D(f) ={f(y) " f(z) " flzy) : 3,y € G}

is finite. A quasihomomorphism with values in Z is called a quasimorphism.
There is a substantial literature on constructing quasimorphisms, going back to
the work of R. Brooks on free groups. For example, see [3] for hyperbolic groups.
We explain why it is so hard to construct quasihomomorphisms to noncommu-
tative groups which are neither homomorphisms, nor come from quasihomomor-
phisms with commutative targets, provided that H is a discrete group. Our main
theorem is:

Theorem 1. Every quasihomomorphism f : G — H is constructible. Namely,
there ezists a finite-index subgroup G, < G, a subgroup H, < H, an abelian
subgroup A < H, central in H,, and a quasihomomorphism f, : G, — H, within
finite distance from f|G, so that:

The projection of f, to G, = Q = H,/A is a homomorphism.

Definition 1 (almost homomorphism). Suppose that a map f : G — H between
groups has the property that f(G) is contained in a subgroup J < H, J contains
a finite normal subgroup K < J, so that the projection f : G — J = J/K is
a homomorphism. We then will refer to f as an almost homomorphism, it is a
homomorphism modulo a finite normal subgroup (in the range of f).

Here are some sample applications.

Theorem 2. 1. Suppose that H is a torsion-free hyperbolic group. Then (for an
arbitrary group G) every unbounded quasihomomorphism [ : G — H is either a
homomorphism or a quasihomomorphism to a cyclic subgroup of H.

2. Suppose that H is a general hyperbolic group. Then for every unbounded
quasihomomorphism f : G — H either the image of f is contained in an elemen-
tary subgroup of H or [ is an almost homomorphism.

Corollary 1. Suppose that T is an irreducible lattice in a semisimple Lie group of
real rank > 2. Then every quasihomomorphism f : 1" — H, with hyperbolic target
group H, is bounded.

This sharpens the main result of Ozawa in [5], where he proves it only for
lattices in SL(n, K). Our proof is different.

Theorem 3. Suppose that I' is a higher rank irreducible lattice. Then every
quasihomomorphism of T' to a mapping class group of a compact surface, Map(X),
has finite image.

The conclusion was known for homomorphisms (cf. [1]), and we use that fact
and a result by Burger-Monod from [2].
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Combinatorics of integrable systems.
VLADIMIR FOCK

In the first part of the talk we give an interpretation of cluster coordinates on
SL(N) character varieties and in particular sharing coordinates on Teichmiiller
space as a connection on a bipartite graph. For example, given a triangulated sur-
face, replace each triangle by a Mercedes graphs as shown on the figure.
Given an PSL(2) local system on the surface with
punctures in the vertices of the triangulation, choose
a l-dimensional subspace invariant under the mon-
odromy about each puncture and associate it to the
corresponding white vertex. Then associate to every
black vertex the kernel of the map V, @ V, ® V, — C2,
where V,, V;, V. are the subspaces associated to the
corresponding vertices. Together with natural maps as-
sociated to edges of the graph, this construction gives an Abelian local system on
the graph. This construction can be easily generalized to SL(N) local systems
giving more complicated graphs attached to each triangles.

In the second part of the talk we describe following Goncharov and Kenyon [1]
that the space of Abelian local systems on certain bipartite graphs I" on a torus
has a natural integrable system structure. We also study its properties following
[2] and [3].

If the graph is embedded into a surface, the space of connections on the graph
is fibered over the space Xt = {(z1,...,2,)} of monodromies around faces with
fiber isomorphic to the space of cohomology of the surface with coefficient in the
multiplicative group.

On every bipartite graph I' there exists a Kasteleyn orientation — a marking
of edges by +1 such that the number of sides counted with signs of every face be
2 modulo 4. For a given Abelian local system define a Dirac operator © acting
from the direct sum of spaces attached to black vertices to the direct sum of spaces
attached to the white ones, which is just a direct sum of maps corresponding to
edges with signs given by the Kasteleyn orientation. If the numbers of white an
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black vertices coincide the Dirac operator can be nondegenerate on the space of
graph connections outside of a divisor.

The space At possesses a canonical Poisson bracket given by x;,x; = €527
with €;; determined by the combinatorics of the graph as the number of common
edges of the faces i and j counted with signs determined by the orientations of the
edges from black to white vertex.

If the surface is a torus, the fiber over every point x € AT is two-dimensional and
the degeneration locus of the Dirac operator is an algebraic curve in it. This curve
¥ is the zero locus of a Laurent polynomial of two variables 3, yca Hij ()N =
det ® with a Newton polygon A fixed by the graph up to a shift and the action of
SL(2,Z). The coefficients of this polynomial (after normalization of three of them
to one) give a full collection of commuting Hamiltonians.

If the curve is smooth the kernel of the Dirac operator defines a line bundle on
Y of degree g — 1, where g is the genus of the curve, which is equal to the number
of integer points strictly inside the polygon A.

It turns out that the map associating to a point of Ar an algebraic curve
and a line bundle on it can be inverted. Namely for a planar algebraic curve X
given by a Laurent polynomial with a Newton polygon A and a bipartite graph I'
corresponding to the same polygon one can explicitly describe the inverse image
of ¥ under the action map. This inverse image is isomorphic to the Jacobian of
the curve Jac(X) and our aim now is to make this isomorphism explicit.

The main observation is that the graph I" can be (almost canonically) embedded
into the spectral curve ¥ in such a way that every connected component of the
complement to ' in ¥ is a punctured disc. Denote by F the set of such discs and
for any a € F' denote by w, a point of the universal cover of the Picard variety
Picl(E) corresponding to the puncture of the disc and by Da the disc itself. Let
W be the universal cover of the Jacobian of 3. Fix a Lagrangian lattice L € W
in the kernel of the projection W — Jac(X).

Associate to every face i an element z; € W that obeys the following rule. For
any two faces ¢ and j and any path +;; on the torus from ¢ to j we have

zZj— 2z = Z (Vij, ODg)wo modulo L,
acF

Such association is defined uniquely up to a shift z; — z; +1; +t with £ € W and
l; e L.

Choose an odd nonsingular theta-characteristics ¢ € Pic? '(X). Then the
monodromies z; around the faces given by

0,(z; —2z)\ 7"
T = H ( a(2 z))
; 04 (Zj + t)
for any ¢t € W runs over the inverse Lagrangian torus, which is the common level
set of the Hamiltonians. Here 0, is the Riemann theta function on W periodic

with respect to the lattice L.
The proof the formula is based on the Fay’s triple secant formula.
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The space X1 can be considered as a chart of a cluster z-variety. Changing
the graph I' without changing the Newton polygon A amounts to the cluster
transformations of the chart. In particular the space Ar admits an action of an
Abelian group Ga of birational transformations commuting with the Hamiltonian
flows. This group turns out to be a subgroup to the group of divisors of the curve
Y. of degree zero, supported at infinity modulo principal divisors. The rank of this
group is equal to the number of corners of the Newton polygon A.
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Computations in formal symplectic geometry and characteristic
classes of moduli spaces

TAKUYA SAKASAI
(joint work with Shigeyuki Morita, Masaaki Suzuki)

1. HOMOLOGY OF A POSITIVE GRADED LIE ALGEBRA

Let g = &2 ,0(k) be a graded Lie algebra over Q and let g™ = &7° ,g(k) be
its ideal consisting of all the elements of g with positive gradings. We assume that
each piece g(k) is finite dimensional for all k. Then the chain complex Ci(g) of g
splits into the direct sum

oo

Cia) = P i(a)

w=0

of finite dimensional subcomplexes C\"(g) = & ,C'"(g) where

G = P AEO) A1) @@ A (gw)
ToF11+tiyw =1
1142t 4 Wi,y =w
so that Ci(w)(g) =0 for i > w+ 2d(d — 1) (d = dimg(0)). This gives a bigrading
to the homology group H,(g) and we decompose it as

Hi(g) = €D Hi(o)w
w=0

where H;(g)w = H;(C{")(g)) is called the weight w-part of H;(g).
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2. SYMPLECTIC DERIVATION LIE ALGEBRAS

Let X4 be a closed connected oriented surface of genus g > 1. The first rational
homology group H;(2,; Q) has a non-degenerate and skew-symmetric form

JU Hl(zg;Q) X Hl(zg;Q) — Q,
which is called the intersection pairing. By using this pairing, we can identify
H1(2,.1; Q) with the dual space H!(2, 1;Q) and we denote them by H.
Let Sp(H) be the symplectic group, that is, the group of automorphisms of

H preserving p. This group Sp(H) ~ Sp(2¢g,Q) can be regarded as the group of
automorphisms of H preserving the symplectic element

wo € (H® H)*® ~Q.

Here (H ® H)SP is the invariant subspace of H ® H under the diagonal action of
Sp(H) on H® H.

Definition 2.1. We define symplectic derivation Lie algebras for three cases:
(1) ¢f = {positive “Sp-derivations” of the free commutative algebra on H}
Hamiltonian Q-polynomial vector fields
- { on H ® R =2 R?9 without constant and linear terms. } ’
(2) b} = {positive Sp-derivations of the free Lie algebra on H},
(3) af = {positive Sp-derivations of the free associative algebra on H}.

Then we take direct limits with respect to g:

+ +

o + + +
¢t = lim ¢ = lim a
® g5 97 bo g—00 bg ’

— lim at
o = lim aj.

g*}OO h
By the representation theory of Sp(H), the corresponding Sp-invariant chain com-

plexes C,Ew)(c;"o)Sp, C,E“”(h;g)SP and Ciw)(ag‘o)Sp are all finite dimensional for each
weight w.

3. MAIN THEOREMS

00

homology of outer automorphism groups Out F), of free groups and mapping class
groups of punctured surfaces. Geometrically, these cohomology are also interpreted
as those of moduli spaces of metric graphs and punctured Riemann surfaces. The
homology of ¢I also have topological meanings.

Our first result is on the abelianization of aZ .

Theorem 3.1 ([7]). Hi(a)%? =0.

Kontsevich [5, 6] related the homology of the Lie algebras bt , af to the co-

As a corollary, we see that the “top” dimensional rational cohomology groups of
moduli spaces of closed and once-punctured Riemann surfaces vanish.
Next, we consider the Euler characteristics of the above three complexes.

Theorem 3.2 ([8]). The Fuler characteristics e of the complexes Ciw)(cjo)Sp,
Ciw)(f)jo)sl’ and C’iw)(ajo)sl’ in low weights are given by the following:
(1) e(H,(c£)3P) = 1,2,3,6,8,14,20,32,44,68  (w =2,4,...,20),
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(2) e(H,(h£)SP) =1,2,4,6,10,16,23,13,-96  (w =2,4,...,18),
(3) e(H,(al)5P) =2,5,12,24,50,100,188,347  (w =2,4,...,16).

Applying Kontsevich’s theorem to (2), we obtain the integral Euler characteristics
of Out F,.

Corollary 3.3. The integral Euler characteristics e of Out F,, forn =2,3,...,10
are

e(Out F,) =1,1,2,1,2,1,1, -21, —124.

In pa