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Introduction by the Organisers

Teichmüller theory is a broad and important field of research, and it can be consid-
ered from various point of views (algebraic geometry, hyperbolic geometry, com-
plex analysis, uniformization theory and partial differential equations). This stems
from the fact that Teichmüller space can be seen as a space of equivalence classes
of marked conformal structures, or of marked hyperbolic metrics, or of complex
algebraic curves, or of representations of the fundamental group of a surface into
the Lie group PSL(2,R). There are also other aspects. The theory has a wide
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range of applications in low-dimensional topology, algebraic topology, representa-
tions of discrete groups in Lie groups, symplectic geometry, topological quantum
field theory, string theory, etc.

The workshop New Trends in Teichmüller Theory and Mapping Class Groups,
organized by Shigeyuki Morita (Tokyo), Athanase Papadopoulos (Strasbourg),
Robert C. Penner (Aarhus and Caltech) and Anna Wienhard (Heidelberg) was
attended by 55 participants from all over Europe, the Americas and several coun-
tries in Asia. The participants included world specialists of the subjects and also
young researchers, comprising more than 10 PhD students and several post-docs.
The discussions and the talks concerned several aspects of Teichmüller theory, that
included complex geometry in one and in several variables (Riemann surfaces and
uniformization and families of Riemann surfaces), the study of symmetric spaces
and the analogies with Teichmüller theory, the metric theory (Teichmüller, Weil-
Petersson and Thurston), complex projective structures on surfaces, 3-manifolds
and their invariants, mapping class groups (representation theory, factorizations,
quasihomomorphisms, Johnson-Morita theory, characteristic classes), relation with
theoretical physics (chord diagrams and random matrices), representations of sur-
face groups in character varieties in arbitrary semisimple Lie groups modulo con-
jugacy (higher Teichmüller theory), dynamics (Teichmüller and Weil-Petersson
geodesic flows) and the symplectic geometry of moduli spaces. There was also an
open problem session.

Several new collaborations were started during that workshop.
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Abstracts

Intertwining Hitchin Representations

Norbert A’Campo

Let Sg be a closed surface of genus g ≥ 2 and Hitng the Hitchin component in the
representation space

{ρ : π = π1(Sg) → PSL(n,R)}
/

PSL(n,R) , n ≥ 2.

We want to construct a mapping class group equivariant intertwiner Ing : Hitng →

Hit2g = Tg.

(1) Let CRP1 :
(
P1

)4
− {diag} → R be the cross ratio function. A geometric

definition is given as follows: for X,Y, a, b 1-dimensional subspaces, think
of R2 as product X×Y and the a : X → Y, b : X → Y as maps with graphs
a, b. λ = CRP1(X,Y, a, b) is the stretching factor of b−1 ◦ a : X → X .

(2) F. Labourie constructed for ρ ∈ Hitng a curve λρ : ∂π → Pn(R) with image

Lρ, which is a C1+α-submanifold homeomorphic to P1. The group π acts
by projective motions ρ(j), j ∈ π.

(3) From Lρ with π-action we construct a CRLρ 4-points function on Lρ as
follows: Let X,Y, a, b in that cyclic order on Lρ and let j ∈ π be with
fixpoints f, F on Lρ. Let u be a C1+α coordinate on Lρ centered at F .
We put Xn = jn(X), an = jn(a), . . . and

CRLρ(X,Y, a, b) = lim
n→∞

(u(bn) − u(Xn)) (u(Yn) − u(an))

(u(an) − u(Xn)) (u(Yn) − u(bn))
.

Claim: CRLρ is a 4-point, π-invariant, cross ratio function, that is con-
gruent by a homeomorphism to CRP1 .

(4) From the data Lρ, CRLρ we get a space

H2
ρ := {σ : Lρ → Lρ | σ involution, continuous, without fixpoints} .

The space H2
ρ has the geometry of the hyperbolic plane. π acts on H2

ρ

producing a Riemann surface H2
ρ/π, so we get an intertwiner Ing : Hitng →

H2
g = Tg. The proof of the claim uses the minimality of the action of π on

pairs of distinct points of Lρ.
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Complex analytic properties of deformation spaces of Kleinian groups

Hiroshige Shiga

Let G0 be a finitely generated non-elementary Kleinian group. We assume that
the region of discontinuity Ω(G0) is non-empty. We say that a quasiconformal

map w : Ĉ → Ĉ is G0-equivariant if there exists a ρw ∈ Hom(G0,PSL(2,C)) such
that

w ◦ γ = ρw(γ) ◦ w (γ ∈ G0).

Two such maps w1, w2 are equivalent if there is A ∈ PSL(2,C) such that

ρw1(γ) = A ◦ ρw2(γ) ◦A−1

hold for all γ ∈ G0. We denote by [w] the equivalence class of w. The set of
all equivalence classes is denoted by D(G0), and it is called the (quasiconformal)
deformation space of G0. Kra-Maskit [4] showed that D(G0) admits a natural
complex structure and it is holomorphically convex. In this talk, we first show that
D(G0) is H∞-convex if every connected component of Ω(G0) is simply connected.
On the other hand, if some connected component is not simply connected, then
we can show that D(G0) is not H∞-convex.

Since D(G0) is defined by quasiconformal maps, the Teichmüller distance is
defined on D(G0). We show that on D(G0), the Teichmüller distance is equal to
the Kobayashi distance, which is a generalization of a theorem of H. Royden (cf.
[3]).
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Spines of Teichmüller spaces and symmetric spaces

Lizhen Ji

Let Tg be the Teichmüller space of compact Riemann surfaces of genus g ≥ 1,
Modg the mapping class group of a compact oriented surface of genus g. Then
Modg acts on Tg holomorphically and properly, and the quotient Modg\Tg is the
moduli space Mg of compact Riemann surfaces of genus g.

Let G be a noncompact semisimple Lie group, K ⊂ G a maximal compact
subgroup. Then the quotient space X = G/K with a G-invariant Riemannian
metric is a symmetric space of noncompact type, and hence it is simply connected
and nonpositively curved. Let Γ ⊂ G be an arithmetic subgroup. Then Γ acts
isometrically and properly on X . The quotient Γ\X is a locally symmetric space
of finite volume.



New Trends in Teichmüller Theory and Mapping Class Groups 401

There is a lot of similarities between these two group actions: (Modg, Tg),
(Γ, X). See [1] for an overview. In this talk, I discussed one more connection
between them from the perspective of classifying spaces.

Given a discrete group Γ, there are several spaces associated with it: BΓ is a
CW-complex which is uniquely determined up to homotopy equivalence such that
π1(BΓ) = Γ, and πi(BΓ) = {1} for i ≥ 2. The universal covering space EΓ of BΓ
is characterized by the conditions: (1) EΓ is a Γ-CW-complex such that Γ acts
properly and fixed point freely on it, (2) EΓ is contractible.

The Γ-principal bundle EΓ → BΓ classifies Γ-principal bundles. The classifying
space BΓ can be used to compute cohomology groups of Γ: Hi(Γ,Z) ∼= Hi(BΓ,Z),
and it is also a crucial ingredient of the Novikov conjectures and the Baum-Connes
conjecture, which compute the global groups such as the algebraic K-groups and
the surgery groups of the group ring ZΓ.

For these purposes, it is important to find small and explicit models of BΓ
and of EΓ. For example, we hope to construct models of BΓ which are finite
dimensional or even are finite CW-complexes.

The Milnor construction gives an infinite-dimensional model of EΓ and hence
of BΓ. It is known that (1) for every model of BΓ, dimBΓ ≥ cd(Γ), the co-
homological dimension of Γ, (2) if Γ contains nontrivial torsion elements, then
cd(Γ) = +∞, and hence every model of BΓ is infinite dimensional.

On the other hand, many natural groups contain torsion elements: the mapping
class groups of surfaces Modg,n, the outer automorphism group Out(Fn) of the free
group Fn, arithmetic groups such as SL(n,Z) and Sp(2n,Z), etc. For such groups,
a more convenient space is a universal space for proper actions of Γ, denoted by
EΓ, which is characterized by the following conditions: (1) Γ acts properly on EΓ,
(2) for every finite subgroup F ⊂ Γ, the set of fixed points (EΓ)F is nonempty
and contractible.

When Γ is torsion-free, then EΓ is reduced to EΓ. Similarly, EΓ and its quotient
Γ\EΓ are useful for the computation of cohomology groups of Γ and the Novikov
conjectures and Baum-Connes conjecture for Γ. It is known that for every model
of EΓ, dimEΓ ≥ vcd(Γ), where vcd(Γ) = cd(Γ′), Γ′ being a torsion-free subgroup
of Γ of finite index, and it is independent of the choice of Γ′.

When vcd(Γ) < +∞, we hope to obtain explicit models of EΓ which are co-
compact with respect to Γ and has dimension as small as possible. For general Γ,
it is a difficult problem.

Proposition 1. (1) For Γ = Modg, Tg is a finite dimensional model of EΓ.
(2) For an arithmetic subgroup of G as above, the symmetric space X is a finite
dimensional model of EΓ.

The positive solution to the Nielsen realization is needed for the first state-
ment, and the Cartan fixed point theorem for the second one. It is known that
the quotient Γ\Tg is noncompact since compact Riemann surfaces can degenerate
and become singular. Similarly, for many natural arithmetic subgroups such as
SL(n,Z), Γ\X is noncompact. It is known that Γ\X is noncompact if and only if
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the Q-rank of Γ (or rather the associated linear algebraic group whose real locus
is equal to G and which defines the commensurable class of Γ) is positive.

There are two possible approaches to the above problems: (1) Construct equi-
variant partial compactificatons Tg with compact quotient under Modg such that

the inclusion Modg\Tg →֒ Modg\Tg is an homotopy equivalence. (2) Construct
equivariant deformation retracts S of Tg such that Modg\S is compact and of
dimension as small as possible. Such a subspace S is called a spine of Tg.

Similarly, we can try to carry out both constructions for symmetric spaces.
Let Γ be an arithmetic subgroup acting on a symmetric space X = G/K as

above. Borel and Serre constructed the partial Borel-Serre compactification X
BS

and proved that the inclusion Γ\X →֒ Γ\X
BS

is a homotopy equivalence and
vcd(Γ) = dimX −Q−rank(Γ).

It was later proved by Ji that X
BS

is a cocompact model of EΓ. (By construc-

tion, Γ acts properly on X
BS

. The point is to prove the contractibility of the fixed

point set in X
BS

of every finite subgroup of Γ.)

For the Teichmüller sapce Tg, Harvey outlined a construction of Tg
BS

, an ana-

logue of X
BS

, which is a real analytic manifold with corners and introduced the
notion of curve complex of a surface to play the role of Tits buildings for symmet-
ric spaces. No detail has appeared, and Ivanov constructed a C∞-analogue. But

it has not been proved that Tg
BS

is a model of EModg.
On the other hand, Ji and Wolpert proved that the thick part Tg(ε) of the

Teichmüller space Tg is a spine of Tg, where ε is a sufficiently small positive number.
When g ≥ 2, every compact Riemann surface Σg admits a unique hyperbolic metric
which is conformal to the complex structure. (By definition, the thick part Tg(ε)
consists of hyperbolic surfaces in Tg which do not contain geodesics of length less
than ε.)

Harer proved that vcd(Modg) = 4g−5. Since 4g−5 < 6g−6 = dim Tg for g ≥ 2,
Tg(ε) is far from being of the optimal dimension. One folklore open problem is:
Construct a spine of Tg of dimension 4g − 5. This is the number 1 problem in a
list of open problems by Bridson and Vogtmann in 2006.

Similarly, for a nonuniform arithmetic subgroup Γ of G, one open problem is:
Construct a spine of the symmetric space X with respect to Γ of dimension equal
to vcd(Γ) = dimX −Q−rank(Γ).

In this talk, we presented the following results:

Theorem 2 ([2]). The Teichmüller space Tg admits a spine S of codimension 1
and a spine S′ of codimension 2 which are intrinsically defined in terms of the
hyperbolic geometry of the surfaces in Tg.

A geodesic in a hyperbolic surface Σg of the shortest length is called a systole
of the surface. The spine S consists of all hyperbolic surfaces in Tg which admit at
least two systoles and two of them intersect. It is clear that S is invariant under
Modg, and the collar theorem for hyperbolic surfaces implies that it has a compact
quotient under Modg.
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The spine S′′ consists of those hyperbolic surfaces which admit at least three
systoles and at least two of them intersect.

In 1985, Thurston circulated a preprint titled “Spines of Teichmüller spaces”.
He proposed a candidate for a spine consisting of hyperbolic surfaces whose systoles
fill the surfaces, i.e., every closed geodesic of the hyperbolic surfaces intersects one
of the systoles.

For Teichmüller space Tg,n of compact Riemann surfaces with n punctures,
n ≥ 1, spines of optimal dimension are known. The reason is that Tg,n admits an
ideal triangulation, and the sub-complex of the dual complex obtained by removing
the cells whose closures meet the ideal simplices gives the desired spine.

Theorem 3 ([3]). When Q−rank(Γ) ≤ 2, X admits a spine of optimal dimension.

The history of spines for symmetric spaces is as follows (see [1] for references):

(1) When Γ = SL(2,Z), X = H2, Serre observed a spine given by a trivalent
tree.

(2) When Γ = SL(3,Z), Soule constructed a spine of optimal dimension using
Minkowski reduction in his thesis.

(3) Later, for Γ = SL(n,Z), Lannes and Soule constructed the well-rounded
deformation retract of the space of positive definite quadratic forms, or
equivalently lattices in Rn. The deformation retraction is also intrinsic.

(4) Ash generalized the above results of Soule to linear symmetric spaces (self-
adjoint cones and their homothety sections) and symmetric spaces associ-
ated with G = GL(n,A), SL(n,A), where A is a division algebra.

(5) Mendoza constructed explicit spines for some arithmetic groups acting on
the three-dimensional hyperbolic space.

(6) When Q−rank(Γ) = 1, spines of codimension 1 were constructed by
Yasaki,

(7) MacPherson and McConell constructed a spine of codimension 2 of the
Siegel upper-half of degree 2 for torsion-free finite index subgroups Γ ⊂
Sp(4,Z). This was the only known examples of nonlinear symmetric spaces
of higher rank which admit such optimal spines.

Our result in Theorem 2 provides many new examples of high rank symmetric
space with optimal spines.

The proofs of both results were motivated by the well-rounded retracts of lat-
tices. When Q−rank(Γ) ≥ 2, we have a natural candidate for a spine of optimal
dimension vcd(Γ). On the other hand, for the Teichmüller space Tg, there is
no known candidate for a spine of optimal dimension. The spine proposed by
Thurston seems to be far away from the optimal dimension. One natural open
problem is to propose good spines of Tg.
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Soc., Zürich, 2012.

[2] L. Ji, Equivariant deformation retracts of Teichmüller spaces, to appear, Enseign. Math.
2014.

[3] L. Ji, Spines of symmetric spaces, in preparation.

Holonomy fibers of complex projective structures

Subhojoy Gupta

(joint work with Shinpei Baba, Caltech)

Let S be a closed oriented surface of genus g ≥ 2. A complex projective structure
on S is a geometric structure modeled on CP1, namely it is a maximal atlas of
charts to CP1 with transition maps in PSL2(C) = Aut(CP1). Its holonomy (or
monodromy) determines a representation ρ : π1(S) → PSL2(C), and defines the
holonomy map

hol : P → χ

from the space P of all marked projective structures on S to χ, the PSL2(C)-
character variety of π1(S). The image of hol consists of the representations in χ
which are non-elementary and lift to representations of π1(S) to SL2(C) (see [4]).

A basic question is to understand the holonomy fiber hol−1(ρ) =: Pρ in P
([5, 12, 4]). In particular [10, p 274] asked what the projection of Pρ to the
Teichmüller space T looks like, where the projection p : P → T is given by
considering the underlying conformal structures of the projective structures. We
can consider its further projection into the moduli space M of Riemann surfaces,
the quotient of T by the action of the mapping class group of S:

P
p
−→ T

π
−→ M.

In our talk we discuss our new result in [3] that proves that for any ρ ∈ hol(P),
the holonomy fiber Pρ projects to a dense set in moduli space M.

The proof uses “grafting” deformations of complex projective structures, ob-
tained by inserting projective annuli along geodesic multicurves on a hyperbolic
structure on S, an operation that extends to measured laminations by taking lim-
its. This results in the geometric parametrization

P ∼= T ×ML

due to Thurston (see [11, 13, 15]), where ML is the set of all measured laminations
on S.

As we graft a hyperbolic surface, by scaling the transversal measure on the
lamination, we obtain a ray of projective structures in P that descends to a grafting
ray in T . The results of [8] and [9] yield the strong asymptoticity of these grafting



New Trends in Teichmüller Theory and Mapping Class Groups 405

rays to Teichmüller geodesic rays. By the ergodicity of the Teichmüller geodesic
flow ([14, 16]), this implies that almost every grafting ray further projects to a
dense set in M.

On the other hand, grafting a projective surface C along admissible multic-
urves weighted by integer-multiples of 2π preserves the holonomy ([6], see also [1],
[2]). Our new result is obtained by approximating dense grafting rays by such 2π-
grafts along admissible loops on some C ∈ Pρ. The proof introduces a piecewise
Euclidean/hyperbolic metric on projective surfaces that modifies the “Thurston
metric” (cf. [13]) and involves the construction of “almost-isometric” maps with
respect to these metrics. The arguments involve three-dimensional hyperbolic ge-
ometry, and in particular the geometry of the ρ-equivariant locally-convex pleated
plane in H3 associated to a complex projective structure.

As described in [7], the holonomy map hol : P → χ gives a “resolution” of
the mapping class group action on χ. Namely, the mapping class group action is
hol-equivariant and its action on P is discrete. It would thus be interesting to see
if the holonomy fibers Pρ tell us about the action on χ.
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Complex projective surfaces bounding 3-manifolds

Steve Kerckhoff

A complex projective structure on a closed surface S of genus g ≥ 2 determines
a developing map from the universal cover of S to CP 1 ∼= S2 and a holonomy
representation ρ : π1(S) → PSL(2,C). It also determines a conformal structure
on S, which, given a marking, determines a point in the Teichmuller space T (S).
The map p : P(S) → T (S) of the space of complex projective structures to the
Teichmuller space gives P(S) the structure of an affine bundle over T (S). The
translation group of the fiber over a point X ∈ T (S) equals the vector space of
holomorphic quadratic differentials on X ; the difference between two points in the
same fiber is the Schwarzian derivative of the conformal map between the two
projective structures.

The (Zariski) tangent space of P(S) is equal to H1(S; gρ), the first cohomology
group of S with coefficients in the Lie algebra g of PSL(2,C), twisted by the
adjoint action induced from the holonomy representation ρ. There is a complex-
valued, skew-symmetric pairing on the tangent space using the cup product on
cohomology and the Killing form on the coefficients. This determines a (holomor-
phic) symplectic structure on P(S) which is due to Goldman([1]). Unless stated
otherwise, all statements concerning a symplectic structure will refer to this one.
The purpose of this talk is to provide a unified derivation of a number of known
results about the symplectic geometry of P(S).

An infinitesimal change of complex projective structure (i.e., a vector tangent
to P(S)) determines an infinitesimal change in the developing map, which can be

viewed as a vector field on the the universal cover S̃ of S with values in the tangent
bundle of CP 1 (pulled back by the developing map). We will refer to this simply
as a ”vector field” and denote it by v. Below we describe how to lift it naturally
to a section s of the gρ bundle over S̃ (also pulled back via the developing map).

Taking the derivative of s determines a 1-form ds on S̃, with values in the gρ
bundle, that descends to S. It is a (deRham) representative of the cohomology
class corresponding to the infinitesimal deformation.

To define the section s we identify the Lie algebra with the vector space of qua-
dratic polynomial vector fields on S2 and then, at each point w ∈ S2 in the image
of the developing map, take the quadratic vector field that best approximates v.
Specifically, we choose s(w) = v(w) + vz(w)(z − w) + 1

2vzz(w)(z − w)2. Then, an
elementary computation proves the following:

Let α, β ∈ H1(S; gρ) be two infinitesimal deformations of a complex projective
structure on S. Suppose they determine vector fields v and w, 1-forms ds and dŝ,
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respectively. Then the symplectic pairing < α, β > equals
∫

S

vz̄wzzz − wz̄vzzz .

As an immediate corollary, we see that the fibers of the bundle p : P(S) → T (S)
are lagrangian subspaces. This was first proved by Kawai ([2]).

One source of complex projective structures comes from any convex, cocom-
pact hyperbolic 3-manifold M with non-empty boundary. For simplicity, we as-
sume that the boundary components are incompressible. The holonomy group of
the hyperbolic structure acts properly discontinuously on an open subset of the
sphere at infinity with quotient equal to a (possibly disconnected) surface. Since
the action is by elements of PSL(2,C), the surface inherits a complex projec-
tive structure. The quasi-conformal theory of Ahlfors and Bers implies that the
space of convex cocompact hyperbolic structures on M is diffeomorphic to the
Teichmuller space of the boundary; the map is defined by taking the induced con-
formal structure coming from the sphere at infinity. Thus, M determines a section
σM : T (∂M) → P(∂M) of the affine bundle.

Restricting an infinitesimal deformation of the hyperbolic structure on M to
an infinitesimal deformation of the projective structure on its boundary induces
a map i∗ : H1(M ; gρ) → H1(∂M ; gρ). Using the long exact sequence for the
cohomology of a manifold with boundary and Poincare duality, one can easily
show that the image of i∗ is half-dimensional and self-annihilating. Thus the
image of the section σM is Langrangian for any M . In particular, if v and w are
vector fields corresponding to deformations of M that are restricted to S = ∂M
we obtain

∫
S vz̄wzzz − wz̄vzzz = 0. This formula was first derived by McMullen

in [4], where it was called ”Kleinian reciprocity.” The techniques were completely
different; no symplectic structure was utilized.

A special case occurs for M ∼= S×I; such structures are called ”quasi-Fuchsian”
since they are quasi-conformal deformations of Fuchsian groups, viewed as acting
on 3-dimensional hyperbolic space. The space of such structures is diffeomorphic
to a product of two copies of T (S). Fixing the conformal structure of one of
the surfaces determines a slice, called a ”Bers slice”, which is holomorphically
equivalent to T (S). The conformal surfaces of the varying end also have complex
projective structures. An application of the formula above immediately implies
that the image of the resulting section of p : P(S) → T (S) is lagrangian. A similar
statement holds for any ”generalized Bers slice”, where the conformal structures
of all but one of the components of ∂M are held fixed. These results first appeared
in [2] and [3], respectively.

Finally, any section of the affine bundle turns it into a vector bundle, using the
image of the section as the zero-section. This identifies P(S) with the bundle of
holomorphic quadratic differentials over T (S), which, in turn, is identified with
the cotangent bundle of T (S). If the section is holomorphic, these identifications
are holomorphic. A cotangent bundle has a canonical symplectic form which we
can compare with that coming from the Goldman pairing. Using the fact that the
fibers and the image of the section are lagrangian, it is not difficult to show that,
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for the various sections described above, the two symplectic forms are equal (up
to a multiplicative constant). Again, similar results can be found in [2] and [3].
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Subgroups of mapping class groups associated to Heegaard splittings
and their actions on projective lamination spaces

Ken’ichi Ohshika

We consider a Heegaard splitting of a 3-manifold M = H1 ∪S H2. Any mapping
class of Hj(j = 1, 2) can be regarded as a mapping class of S by restricting it
to the boundary. We consider a subgroup of the mapping class group MCG(Hj)
consisting of all classes represented by homeomorphisms homotopic to the identity
in Hj , and denote it by MCG0(Hj). We let G1 and G2 be the subgroups of
the mapping class group MCG(S) corresponding to MCG0(H1) and MCG0(H2)
respectively. We are interested in the group generated by G1 and G2 in MCG(S),
which we denote by G := 〈G1, G2〉. It is Minsky that first took interest in this
group G. He raised some problems on this group G, which can be found in the
list of problems of Heegaard splittings edited by Gordon [2].

The sets of meridians for two handlebodies H1 and H2 define a subset ∆1 and
∆2 of the curve graph C(S) of the splitting surface S. The distance between ∆1

and ∆2 is called the Hempel distance of the decomposition.
The first thing we are interested in is the algebraic structure of G. The following

theorem is an answer to one of the questions posed by Minsky.

Theorem 1 (Bowditch-Ohshika-Sakuma [1]). If the Hempel distance is large
enough, then G = G1 ∗G2.

To prove this theorem, we use the Gromov hyperbolicity of the curve graph and
the acylindiricity of the action of the mapping class group on the curve complex
which was proved by Bowditch.

Since the mapping class group acts on the projective lamination space PL(S),
its subgroup G = 〈G1, G2〉 also acts on it. The second thing we are interested in is
to study the dynamics of this action: for instance we should like to know if there
is a region of discontinuity for this action. In [1], we have shown that indeed this
action has a non-empty region of discontinuity. Here we shall give a more concrete
way to construct a region of discontinuity than the argument in [1].
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Definition 2. For a Heegaard splitting M = H1 ∪S H2, for j = 1, 2, we let ∆′
j be

the set of weighted disjoint unions of meridians in Hj , which is regarded as a subset
of the measured lamination space ML(S). We set ∆ to be G(∆′

1 ∪∆′
2). Then we

define a subset U of ML(S) to be U = {λ ∈ ML(S) | i(λ, µ) > 0 for all µ ∈ ∆},
where the over line denotes the closure in ML(S). We also define PU to be the
projection of U into the projective lamination space PML(S).

It is easy to see that PU is an open set in PML(S).
We have proved the following for Heegaard splittings with combinatorial bounded

geometry. Here we shall not give a detailed definition of combinatorial bounded-
ness of Heegaard splittings M = H1∪SH2, but just mention that this corresponds
to the condition that there is a positive lower bound for the injectivity radii of
the hyperbolic 3-manifolds M . (Note that it is know that M is hyperbolic if the
Hempel distance is greater than 2.)

Theorem 3 (Lecuire-Ohshika-Sakuma). For any positive constant D, there exists
K such that any Heegaar splitting M = H1∪SM2 with D-combinatorially bounded
geometry and Hempel distance ≥ K has the following property.

(1) PU is non-emtpy.
(2) G acts properly discontinuously on PU .
(3) PU is almost maximal: for any open set V in PML(S) containing PU

on which G acts properly discontinuously, the Lebesgue measure of V \PU
is 0.
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Arbitrarily long factorizations in surface mapping class groups

Mustafa Korkmaz

(joint work with Elif Dalyan, Mehmetcik Pamuk)

Let Σn
g denote a compact connected oriented surface of genus g with n ≥ 1 bound-

ary components δ1, δ2, . . . , δn. The mapping class group Mod(Σn
g ) of the surface

Σn
g is the group of isotopy classes of orientation-preserving self-diffeomorphisms of

Σn
g . Diffeomorphisms and isotopies are assumed to fix each point of the boundary.
By the results of Giroux [2] and Thurston-Winkelnkemper [5], every open book

decomposition (Σn
g ,Φ), where Φ ∈ Mod(Σn

g ), of a closed oriented 3-manifold M
admits a compatible contact structure and all contact structures on compact 3-
manifolds come from open book decompositions. If the monodromy Φ of the
open book can be written as a product of positive Dehn twists, then the contact
structure is Stein fillable. Writing Φ as a product of positive Dehn twists provides
a Stein filling of the contact 3-manifold M via Lefschetz fibrations.
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In this work we consider the following question: Is the number of positive Dehn
twists in a factorization of the boundary multitwist tδ1tδ2 · · · tδn bounded? For
a simple closed curve a, the Dehn twist about a is denoted by ta. Any such
factorization of tδ1tδ2 · · · tδn describes a Lefschetz fibration with n disjoint sections
of self-intersection −1. Thus, this question is related to Lefschetz fibrations.

Baykur and Van Horn-Morris [1] proved that for g ≥ 8 the boundary multitwist
tδ1tδ2 in Mod(Σ2

g) can be written as a product of arbitrarily large number of
positive Dehn twists about nonseparating simple closed curves. In this work, we
prove that the same conclusion can be drawn for all g ≥ 3. For g = 2, this
statement is not true anymore. Our main result is the following theorem.

Theorem. Let a be a nonseparating simple closed curve on a surface Σ2
g of genus

g with two boundary components δ1 and δ2. In the mapping class group Mod(Σ2
g),

the multitwist
(i) tδ1tδ2ta for g = 2,
(ii) tδ1tδ2 for g ≥ 3

can be written as a product of arbitrarily large number of positive Dehn twists about
nonseparating simple closed curves.

By capping off one of the boundary components, we obtain the following im-
mediate corollary for surfaces with one boundary component.

Corollary 1. Let Σ1
g be a compact connected oriented surface of genus g with one

boundary component δ. In the mapping class group Mod(Σ1
g), the element

(i) t2δ for g = 2,
(ii) tδ for g ≥ 3

can be written as a product of arbitrarily large number of positive Dehn twists about
nonseparating simple closed curves.

We note that in the mapping class group Mod(Σg) of a closed orientable surface
Σg the identity element can be written as a product of positive Dehn twists about
nonseparating simple closed curves. It follows that every element in Mod(Σg) can
be expressed as a product of arbitrarily large number of nonseparating positive
Dehn twists. However, in case n ≥ 1, the identity element of Mod(Σn

g ) admits no
nontrivial factorization into a product of positive Dehn twists.

A factorization of the multitwist tδ1tδ2 · · · tδn into a product of positive Dehn
twists of the form

tδ1tδ2 · · · tδn =

r∏

i=1

tai

in the group Mod(Σn
g ) describes a genus-g Lefschetz fibration Xg(r) → S2 with n

disjoint sections such that the self-intersection of each section is −1. The Euler
characteristic of the total space Xg(r) is χ(Xg(r)) = 2(2 − 2g) + r.

The following corollary is an improvement of [1, Theorem 1.2].

Corollary 2. For every g ≥ 3, there is a family of genus-g Lefschetz fibrations
Xg(r) → S2 with two disjoint sections of self-intersection −1 such that the set
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{χ(Xg(r))} of Euler characteristics is unbounded. The same conclusion holds true
for genus–2 Lefschetz fibrations but this time with two disjoint sections of self-
intersection −2.

Given a genus–g Lefschetz fibration f : X → S2 with a section σ and with a
regular fiber Σ, the complement of a regular neighborhood of the union Σ∪ σ is a
Stein filling of its boundary M equipped with the induced tight contact structure
([4]). It was conjectured in [4] that the set

C(M,ξ) = {χ(X) | X is a Stein filling of (M, ξ)}

is finite. In [1], it was shown that this conjecture is false. Our theorem provides
more counterexamples to this conjecture.

Corollary 3. For every g ≥ 2, there is a contact 3-manifold (Mg, ξg) admitting
infinitely many pairwise non-diffeomorphic Stein fillings such that the set C(Mg ,ξg)

is unbounded.

We remark that Kaloti [3] showed that if a contact 3-manifold (M, ξ) can be
supported by a planar open book, then C(M,ξ) must be finite. Hence, the contact
structure supported by the open book with monodromy tδ1tδ2 , g ≥ 3, cannot be
supported by a planar open book.

Here is the idea of the proof of our theorem.
Suppose that g ≥ 2 and n ≥ 1. Let ci, 1 ≤ i ≤ 4, be nonseparating simple

closed curves on Σn
g forming a chain. That is, ci intersects ci+1 transversely once

for i = 1, 2, 3, and ci does not intersect cj if |i − j| > 1. Let d and e be the
boundary components of a regular neighborhood of c1 ∪ c2 ∪ c3, so that d ∪ e
bounds a surface of genus one. Let x be any nonseparating simple closed curve on
Σn

g intersecting c3 and d transversely only once. Let

T = (tc1tc2tc3)2tc2tc1tc3tc2 .

Then, in the mapping class group Mod(Σn
g ), for any positive integer m, we write

φ = tc4tc3tc2tc1tc1tc2tc3tc4txtdtc3tx

= (t−m
c3 tme tc4tc3tc2tc1tc1tc2tc3tc4txtdtc3txt

−m
e tmc3)Tm

= tc′4tc′3tc′2tc′1tc′1tc′2tc′3tc′4tx′td′tc′3tx′Tm,

where c′i = t−m
c3 tme (ci) etc. In particular, for any positive integer m the element φ

may be written as a product of 12+10m positive Dehn twists about nonseparating
simple closed curves.

Given an element f of Mod(Σn
g ), if one can factor f as f = φh where h is a

product of positive Dehn twists, then f can be written as a product of arbitrarily
large number of positive Dehn twists. We use this idea to prove our theorem.
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On Weil-Petersson Funk metric on Teichmüller spaces

Sumio Yamada

1. The Funk metric in Rd and its representations

Let Ω be an open bounded convex subset in a Euclidean space (Rd, d) where d
is the standard Euclidean metric. We set the presentation in [2] as our reference
for the Funk and Hilbert metrics of Ω, and we also refer to the first part of the
paper [8].

There are three different descriptions of the Funk metric. The first one is the
original definition:

F1(x, y) = log
d(x, b(x, y))

d(y, b(x, y))
,

where for x 6= y in Ω, the point b(x, y) is the intersection of the boundary ∂Ω with
the Euclidean ray {x + tξxy : t > 0} from x though y and where ξxy is the unit
tangent vector in Rd pointing from x to y. When x = y, we set F (x, y) = 0. The
second description is the variational interpretation of the above value using the
geometry of supporting hyperplanes;

F2(x, y) = sup
π∈P

log
d(x, π)

d(y, π)
,

where P is the set of all supporting hyperplanes of Ω. This is given in [8].
Finally, the Finsler structure pΩ,x(ξ) is given by the following function (the

Minkowski functional) on vectors ξ in each tangent space to Ω at x:

pΩ,x(ξ) = sup
π∈P

〈νπ(x), ξ〉

d(x, π)
,

where νπ is the unit vector in TxΩ perpendicular to, and directed toward π. This
is a weak norm on each tangent space which is defined so that the Funk distance
is described as the infimum of length of curves:

F3(x, y) = inf
σ

∫ b

a

pΩ,σ(t)(σ̇(t)) dt,

the infimum being taken over all the piecewise C1 curves with σ(a) = x and
σ(b) = y.
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For any convex domain Ω ⊂ Rd, the three quantities F1(x, y), F2(x, y), F3(x, y)
are all equal to each other, and we set

F (x, y) := F1(x, y) = F2(x, y) = F3(x, y)

for every x and y in Ω.

2. Weil-Petersson geometry

Let Σg be a closed topological surface of genus larger than one. We assume
that Σg is equipped with some hyperbolic metric.

The Weil-Petersson metric on the Teichmüller space is the L2 metric on the
surface Σ for deformation tensors of the hyperbolic metric G;

〈h1, h2〉WP =

∫

Σ

〈h1(x), h2(x)〉G(x) dµG(x)

where the tangency condition for the tensors h1, h2 are traceless and divergence-
free with respect to G, which preserves the constant curvature condition as well
as the perpendicularity to the diffeomorphism fibers. We denote by d(x, y) the
Weil-Petersson distance between the points x and y.

The Weil-Petersson completion T , a space of Cauchy sequences in (T , d), con-
sists of the original Teichmüller space T as well as the bordification points of T
so that Σ is allowed to have nodes, which are geometrically interpreted as simple
closed geodesics of zero hyperbolic length. The completed space T (also identified
as augmented Teichmüller space by Bers and Abikoff) has the stratification

T = ∪σ∈C(S)Tσ

where the original Teichmüller space T is expressed as T∅, and where C(S) is the
complex of curves.

We showed in [7] that this stratification is very much compatible with the
Weil-Petersson geometry. Namely for each collection σ ∈ C(S), each boundary
Teichmüller space Tσ is a Weil-Petersson geodesically convex subset of T . Here
geodesic convexity means that given a pair of points in Tσ, there is a distance-
realizing Weil-Petersson geodesic segment connecting them lying entirely in Tσ.
The non-positive curvature implies the uniqueness of the geodesics.

In [8], a new space was introduced which can be viewed as a Weil-Petersson
geodesic completion, called the Teichmüller-Coxeter complex D(T , ι). The space
is a development of the original space T by a Coxeter group generated by reflections
across the frontier stratum {T σ}. It was shown by Wolpert [4] that two intersecting
strata of the same dimension meet at a right angle (in the sense of the Alexandrov
angle between Weil-Petersson geodesics,) making the development D(T , ι) a so-
called cubical complex [1]. This feature then is used to show that the development
is also a CAT(0) space.

In this setting, for each σ with |σ| = 1, one can consider a half space, namely
the set Hσ in D(T , ι), containing T and bounded by D(T σ, ι). We note the
fact obtained by Wolpert [4] that the Weil-Petersson metric completion T is the
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closure of the convex hull of the vertex set {T θ | |θ| = 3g − 3}, which suggests an
interpretation of the Teichmüller space as a simplex.

We can summarize the above discussion as

T = ∩σ∈SHσ with ∂T ⊂ ∪σD(T σ, ι)

where every boundary point b ∈ ∂T belongs to D(T σ, ι) for some σ in S. Each
half space Hσ is bounded by the “supporting hyperplane” D(T σ, ι).

2.1. The Weil-Petersson Funk metric F2. We now transcribe the Euclidean
Funk geometry as well as its compatible Finsler structure in the previous section to
the Weil-Petersson setting. We exhibited three equivalent ways of writing down the
Funk distance, which we called F1, F2 and F3. In the Weil-Petersson setting, these
definitions a-priori differ from each other, and they are related by inequalities.

We define the Weil-Petersson Funk metric F2 on T as

F2(x, y) = sup
σ∈S

log
d(x, T σ)

d(y, T σ)
,

where d is the Weil-Petersson distance defined on T .
We claim the following result concerning the three metrics, which are the Weil-

Petersson analogues of F1, F2 and F3 we have seen in the Euclidean setting.

Theorem 1. [9] The three weak metrics are related by the foliowing inequalities

F1(x, y) ≤ F2(x, y) ≤ F3(x, y)

for x, y in T , and there are pairs of points (x, y) for which the inequalities are
strict.

As a consequence of the comparison, we obtain the following statement, which
gives an interesting contrast with the other Funk type metrics, the Teichmüller
metric and the Thurston metric, which are both Finsler.

Corollary 2. [9] The Weil-Petersson Funk metric F2 is not Finsler.
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Chord diagrams, random matrices, and topological recursion

Piotr Su lkowski

In this summary the Hermitian matrix model with potential V (x) = x2/2 −
stx/(1 − tx) is introduced and its properties are discussed, following [1]. The
partition function of this model enumerates linear chord diagrams of fixed genus
with specified numbers of backbones generated by s and chords generated by
t. This partition function is computed using the formalism of the topological
recursion. The corresponding enumeration of chord diagrams – or more precisely
some simple transform of those – gives the number of cells in Riemann’s moduli
spaces for surfaces with boundaries. These numbers have also other applications
– for example, they provide the number of RNA complexes of a given topology.
We recall that another matrix model, with logarithmic potential, computes Euler
characteristic of moduli spaces, as shown by Penner in [2]. The model which
we introduce here provides yet another example of how powerful a description of
moduli spaces by random matrices is.

We recall that a chord diagram, which we assume to be connected, is comprised
of a collection of n ≥ 0 semi-circles (called chords) lying in the upper half plane,
whose endpoints lie at distinct interior points of b ≥ 1 pairwise disjoint, oriented
and labeled intervals (called backbones) lying in the real line R ⊂ C. A chord
diagram naturally determines an oriented and connected surface, which is charac-
terized up to homeomorphism by its genus g ≥ 0 and number r ≥ 1 of boundary
components. The Euler characteristic of this surface is b− n = 2 − 2g − r.

Let cg,b(n) denote the number of isomorphism classes of chord diagrams of
genus g with n chords on b labeled backbones. We will show how to determine
recursively the generating functions

(1) Cg,b(z) =
∑

n≥0

cg,b(n) zn, for g ≥ 0,

using the topological recursion [3, 4] of a Hermitian one-matrix model

(2) Z =

∫
DH e−NtrV (H) = exp

(
−N2s+

∞∑

g=0

N2−2gFg

)
,

where N denotes size of matrices, for a particular potential

(3) V (x) =
x2

2
−

stx

1 − tx
.

The crucial fact is the statement that the free energy in genus g of this model
encodes Cg,b(t

2) via

(4) Fg(s, t) = const+
∑

b≥1

sb

b!
Cg,b(t

2), for g ≥ 0,
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where the constant terms reproduce the Gaussian free energies given by
B2g

2g(2g−2) ,

where B2g denote Bernoulli numbers. The extra factor b! arises because Cg,b(n)
counts chord diagrams with labeled backbones as opposed to unlabeled in the
topological recursion.

Therefore, the problem of enumerating cells in Riemann’s bordered moduli
spaces reduces to the problem of performing the matrix integral and determin-
ing free energies Fg in (2). To find free energies one should solve the so-called loop
equations of the matrix model, which are equations satisfied by certain multi-linear

correlators W
(g)
n (p1, . . . , pn) in this model. The leading order equation among

those identities specifies a so-called spectral curve, i.e., an algebraic curve which
characterizes distribution of eigenvalues in the matrix model in the N → ∞ limit.

It also turns out that all correlators W
(g)
n (p1, . . . , pn) and loop equations they sat-

isfy can be encoded entirely in terms of this spectral curve. These loop equations
can be solved in a recursive way [3], and in this manner, free energies Fg (for

g ≥ 2) are completely determined by correlators W
(g)
1 (p). Therefore, the spectral

curve can also be regarded as the initial condition for this recursion. This entire
procedure requires just the knowledge of the spectral curve (and a universal form
of the solution to loop equations), and no other details of a matrix model from
which this curve was derived. An important achievement of Eynard and Orantin
[4] was to realize that one can use the recursive solution of loop equations to assign

correlatorsW
(g)
n (p1, . . . , pn) and Fg to an arbitrary algebraic curve, not necessarily

of matrix model origin. On the other hand, it is guaranteed that Fg computed for
the spectral curve of a matrix model reproduce the free energies.

In order to solve the matrix model (2) with the potential (3) we can therefore
use the formalism described above. This has indeed been done in [1], and the main
steps of this solution are as follows. First, we need to determine the spectral curve
of the model (2). This can be done by the analysis of a distribution of eigenvalues
in the large N limit. Because the potential (3) is a deformation of the quadratic
function, it has a single minimum, and in the equilibrium configuration eigenvalues
spread around this minimum. For large N the eigenvalues are distributed along an
interval with end-points a and b, which defines a cut in a certain auxiliary complex
plane. Such a one-cut solution defines the corresponding spectral curve which has
genus zero, and it turns out to be given by the following algebraic equation for
two complex variables x and y

(5) 4y2(tx− 1)4 = (x− a)(x − b)
((
tx− 1 +

(a+ b)t

4

)2
+ γ

)2

,

where

γ = −
(at+ bt)

(
(at)2 + (bt)2 + 14(at+ bt− abt2) − 16

)

16(at+ bt− 2)
.
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While the end-points of the cut a and b cannot be given in a closed form, it can
be found that they are determined by the following system of equations

(6)





0 = a+ b+ st(at+bt−2)(
(at−1)(bt−1)

)3/2 ,

16 = (a− b)2 +
4s
(
(2− (a+b)t

2 )(at+bt−2)+2abt2−3t(a+b)+4
)

(
(at−1)(bt−1)

)3/2 .

From the knowledge of the curve (5) and the formalism of the topological recursion
we can now determine Fg for g ≥ 2 (F0 and F1 must be determined separately,
independently of the topological recursion, for details see [1]). In particular we get
the following exact result for the free energy at genus 2:

F2 = −
t4(1 − σ)2

240δ4(1 − δ − 4σ + 3σ2)5(1 + δ − 4σ + 3σ2)5
×

×
(

160δ4(1 − 3σ)4(1 − σ)6 − 80δ2(1 − 3σ)6(1 − σ)8

+ 16(1 − 3σ)8(1 − σ)10 + δ10(−16 + 219σ − 462σ2 + 252σ3)

+ 10δ6(1 − 3σ)2(1 − σ)4(−16 − 126σ − 423σ2 + 2286σ3 − 2862σ4 + 1134σ5)

+ 5δ8(1 − σ)2(16 + 189σ − 2970σ2 + 9549σ3 − 11286σ4 + 4536σ5)
)

where σ = ((at + bt)/2 and δ = (at − bt)/2. We also obtain an exact result for
the free energy F3 which is yet more complicated, and its precise form is given in
[1]. Expanding these results in the form given in (4), and using the perturbative
expansion of a and b in s which follows from (6), we can determine appropriate
generating functions Cg,b(z). For example, expansion of the above F2 in powers
of s determines generating functions C2,b(z) for all b., such as

C2,4(z) =
144z7

(1 − 4z)13
(38675 + 620648z + 2087808z2

+1569328z3 + 134208z4),

C2,5(z) =
144z8

(1 − 4z)
31
2

(2543625 + 62424520z+ 375044396z2

+671666053z3 + 314761848z4 + 18335696z5),

This procedure can be continued in an algorithmic manner, and with sufficient
computational power one can determine exact form of Fg for any g, and so the
corresponding Cg,b(z), and finally all cg,b(n).
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Combinatorial methods on actions on character varieties

Sara Maloni

(joint work with Frederic Palesi, Ser Peow Tan)

In his PhD thesis [6], McShane established the following remarkable identity for
lengths of simple closed geodesics on a once-punctured torus S1,1 with a complete,
finite area hyperbolic structure:

(1)
∑

γ

1

1 + exp(l(γ))
=

1

2
,

where γ varies over all simple closed geodesics on S1,1, and l(γ) is the hyperbolic
length of γ under the given hyperbolic structure on S1,1. This result was later
generalized to (general) hyperbolic surfaces with cusps by McShane himself [7], to
hyperbolic surfaces with cusps and/or geodesic boundary components by Mirza-
khani [9], and to hyperbolic surfaces with cusps, geodesic boundary and/or conical
singularities, as well as to classical Schottky groups by Tan, Wong and Zhang in
[12], [14].

On the other hand, Bowditch in [1] gave an alternative proof of (1) via Markoff
maps, and extended it in [3] to type-preserving representations of the once-punctured
torus group into SL(2,C) satisfying certain conditions which we call here the BQ–
conditions (Bowditch’s Q–conditions). He also obtained in [2] a variation of (1)
which applies to hyperbolic once-punctured torus bundles. In [13] Tan, Wong and
Zhang also further extended Bowditch’s results to representations of the once-
punctured torus group into SL(2,C) which are not type-preserving, that is, where
the commutator is not parabolic, and also to representations which are fixed by an
Anosov element of the mapping class group and which satisfy a relative version of
the Bowditch’s Q–conditions. They also showed that the BQ-conditions defined
an open subset of the character variety on which the mapping class group of the
punctured torus acted properly discontinuously.

The above papers provided much of the motivation for this talk, in particular,
the identities obtained were in many cases valid for the moduli spaces of hyper-
bolic structures, so invariant under the action of the mapping class group, and in
the case of cone structures, they could be interpreted as identities valid for cer-
tain subsets of the character variety which were invariant under the action of the
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mapping class group, even though the representations in the subset may be non-
discrete or non-faithful. This leads naturally to the question of whether there were
interesting subsets of the character varieties on which the mapping class group acts
properly discontinuously, but which consists of more than just discrete, faithful
representations, as explored in the punctured torus case in [13].

In this talk we will consider representations of the free group on three generators
F3 = 〈α, β, γ, δ : αβγδ = I〉 into SL(2,C). We adopt the viewpoint that F3 is the
fundamental group of the four-holed sphere S, with α, β, γ, δ identified with ∂S,
and study the natural action of MCG(S), the mapping class group of S on the
character variety

X := Hom(F3, SL(2,C))//SL(2,C),

where we take the quotient in the sense of geometric invariant theory. If θ ∈
MCG(S) and [ρ] ∈ X , this action is given by

θ([ρ]) = [ρ ◦ (θ∗)−1],

where θ∗ : π1(S) −→ π1(S) is the map associated to θ in homotopy. We are
interested in the dynamics of this action, in particular, on the relative character
varieties X(a,b,c,d), which is the set of representations for which the traces of the
boundary curves are fixed.

We describe the following result.

Theorem A. There exists a domain of discontinuity for the action of MCG(S)
on X(a,b,c,d), that is, an open MCG(S)–invariant subset D ⊂ X(a,b,c,d) on which
MCG(S) acts properly discontinuously.

Remark 0.1. As already observed by several other authors in related situations
(see Goldman [5], Tan–Wong–Zhang [13] and Minsky [8]), our domain of discon-
tinuity contains the interior of the discrete and faithful characters, but also char-
acters which may not be discrete or faithful. For example, when the boundary
traces are in (−2, 2) we can produce representations that are non-discrete, but are
nevertheless in the domain of discontinuity.

This set is described by two conditions, much in the spirit of [3] and [13], and
is given as follows. If S denotes the set of free homotopy classes of essential,
non-peripheral simple closed curves on S, then the conditions for [ρ] to be in D
are

(i) tr ρ(γ) 6∈ [−2, 2] for all γ ∈ S; and
(ii) |tr ρ(γ)| < K for only finitely many γ ∈ S, where K > 0 is a fixed constant

that depends only on a, b, c, d.

Furthermore, the set of γ satisfying condition (ii) above satisfy a quasi-convexity
property, equivalently, is connected when represented as the subset of the comple-
mentary regions of a properly embedded binary tree. This property is particularly
important when writing a computer program to draw slices of the domain of dis-
continuity.

Of particular interest is the set of real characters, which consists of represen-
tations in SL(2,R) or SU(2). In the latter case, Goldman [4] proved ergodicity
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of the mapping class group action for all orientable hyperbolizable surfaces, with
respect to the invariant measure induced by the natural symplectic structure on
the moduli space. (This was generalized by Palesi in the non-orientable case in
[10]). On the other hand, in the SL(2,R) case the dynamics is much richer and
less understood. For example, when Sg is a closed surface of genus g ≥ 2, Gold-
man conjectured that the action of MCG(Sg) on the components of X (Sg) with
non-maximal Euler class is ergodic. An approach towards a proof of this would
be to use a cut-and-paste argument involving pieces homeomorphic to one-holed
tori and four-holed spheres. While the case of the one-holed torus was completely
described by Goldman in [5], we obtain partial results in the four-holed sphere
case here. In fact, an important corollary of our analysis is the following:

Theorem B. In the real case, for all boundary datas, except a dimension one sub-
set, there is a non-empty open domain of discontinuity for the action of MCG(S)
on the relative SL(2,R)–character variety.

This implies that there are representations in these components for which all
essential simple closed curves on S have hyperbolic representatives, even though
these representations may not be discrete and faithful. There are also some sur-
prises here, in particular, certain slices of the real character variety satisfying some
general condition always have non-empty intersection with the domain of discon-
tinuity.
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Penner coordinates for closed surfaces

Rinat Kashaev

Let S be a closed oriented surface of genus g > 1, and let

(1) Rk ⊂ Hom(π1, PSL(2,R)), π1 ≡ π1(S, x0),

be the connected component of representations of Euler number k ∈ Z. According
to the result of Goldman [1], the component R2−2g corresponds to discrete faith-
ful representations, so that one has a principal PSL(2,R)-fibre bundle over the
Teichmüller space T ≡ T (S)

(2) p : R2−2g → T .

Denoting by Ω the space of all horocycles in the hyperbolic plane H2, we consider
the associated fibre bundle

(3) φ : T̃ → T , T̃ ≡ R2−2g ×PSL(2,R) Ω,

as a substitute for Penner’s decorated Teichmüller space [3, 4] in the case of closed
surfaces. We define the λ-distance

(4) λ : Ω × Ω → R≥0

as follows. If h, h′ ∈ Ω are based on distinct points of ∂H2, then λ(h, h′) is the
hyperbolic length of the horocyclic segment between tangent points of a horocycle
tangent simultaneously to both h and h′, and we define λ(h, h′) = 0 if h and h′

are based on one and the same point of ∂H2.
To any α ∈ π1 \ {1}, we associate a function

(5) λα : T̃ → R≥0, [ρ, h] 7→ λ(ρ(α)h, h).

The set λ−1
α (0) is a sub-bundle of T̃ with the fibers homemorphic to R⊔R. More-

over, one has

(6) α 6= β ⇒ λ−1
α (0) ∩ λ−1

β (0) = ∅.

For any subset A ⊂ π1 \ {1}, we associate the subset

(7) T̃A ≡ ∩α∈Aλ
−1
α (R>0)

together with a function

(8) JA : T̃A → RA
>0, JA(x)(α) = λα(x), ∀x ∈ T̃A, ∀α ∈ A.

In what follows, for any cellular complex X , we will denote by Xi the set of its
i-dimensional cells.

We define a triangulation of (S, x0) as a cellular decomposition with only one
vertex at x0 and where all 2-cells are triangles. We denote by ∆ ≡ ∆(S, x0) the
set of all triangulations of (S, x0).
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For any τ ∈ ∆, to any edge e ∈ τ1 there correspond two mutually inverse
elements γ±1 ∈ π1. By abuse of notation, we identify e with any of the functions
λγ±1 :

(9) e ≡ λγ = λγ−1 : T̃ → R>0.

For any τ ∈ ∆ and e ∈ τ1, we denote by τe the triangulation obtained by the
diagonal flip at e, with the flipped edge being denoted as eτ :

(10) τ ∋ e  

eτ
∈ τe

It is easily shown that for any τ ∈ ∆, one has a finite covering

(11) T̃ = T̃τ1 ∪ (∪e∈τ1 T̃τe
1
).

Our first result gives a realization of T̃τ1 as an algebraic subset of co-dimension one
in Rτ1

>0. Namely, to any pair (τ, t) with τ ∈ ∆ and t ∈ τ2, we associate a function

(12) ψτ,t ≡
∑

t′∈τ2

ǫt(t
′)
a2 + b2 + c2

abc
: Rτ1

>0 → R,

where a, b, c are the three sides of t′, while the function

(13) ǫt : τ2 → {−1, 1}

takes the value −1 on t and the value 1 on all other triangles. We remark that

(14) t 6= t′ ⇒ ψ−1
τ,t (0) ∩ ψ−1

τ,t′(0) = ∅.

We also define

(15) ψτ ≡
∏

t∈τ2

ψτ,t.

Theorem 1. For any τ ∈ ∆, the map Jτ1 : T̃τ1 → Rτ1
>0 is an embedding with the

image ψ−1
τ (0) = ⊔t∈τ2ψ

−1
τ,t (0).

Remark 1. The transition functions Jτ1 ◦J
−1
τe
1

on the overlaps T̃τ1 ∩ T̃τe
1

are given

by the signed Ptolemy transformation of [2] (Proposition 4) with the sign function
being given by (13).

Our second result gives explicit coordinatization of the sub-bundles λ−1
α (0) to-

gether with the explicit R>0-action along the fibers. The result follows.
Let S ≡ S(S) be the set of homotopy classes of essential simple closed curves

in S, and ∆α ⊂ ∆ the set of triangulations of the form τα with τ having an edge
representing α. From (6), it is easily seen that

(16) λ−1
α (0) ⊂ T̃τ1 , ∀τ ∈ ∆α.
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For α ∈ S, let

(17) ℓα : T → R>0

be the hyperbolic length of the geodesic in the homotopy class of α. Any τ ∈ ∆α

has a distinguished edge ατ . Let τα be the quadrilateral having ατ as its diagonal.

Theorem 2. Let α ∈ S and τ ∈ ∆α. Then

(i): one has the inclusion Jτ1(λ−1
α (0)) ⊂ ∪t∈(τα)2ψ

−1
τ,t (0);

(ii): for any t ∈ (τα)2, the map

(18) Lα,τ,t : T̃ (α, t) ≡ λ−1
α (0) ∩ (ψτ,t ◦ Jτ1)−1(0) → R>0 × Rτ1\t1

>0

m 7→ (ℓα(φ(m)), Jτ1\t1(m))

is a homeomorphism;
(iii): For any d ∈ R>0 one has the following equivalence

(19) φ(m) = φ(m′) ⇔ ∃ c ∈ R>0 : Jτ1\t1(m) = c Jτ1\t1(m′),

∀m,m′ ∈ (ℓα ◦ φ)−1(d) ∩ T̃ (α, t).

Remark 2. The space T̃ (α, t) in Theorem 2 is a connected component of λ−1
α (0).

It can also be singled out by fixing an orientation on α, and considering only the
classes [ρ, h], with h based on the attracting fixed point of ρ(α).
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Quantum representations of mapping class groups and asymptotics in
Teichmüller space

Jørgen Ellegaard Andersen

Let Σ be a closed oriented surface of genus g ≥ 2. We consider the quantum
representations of the Witten-Reshetikin-Turaev Topology Quantum Field Theory
[W, RT1, RT2]

ρ(k) : ΓΣ → PAut
(
PZ(k)(Σ)

)

where ΓΣ is the mapping class group of Σ and PZ(k)(Σ) is the projectivization
of the finite dimensional vector the WRT-TQFT associates to Σ for the quantum
group Uq(sl(2,C)), q = exp (2πi/(k + 2)).
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The geometric construction of ρ(k) proceeds via geometric quantization of the
moduli space of flat SU(2)-connections on Σ: Let

M = Hom (π1(Σ), SU(2)) /SU(2)

be the moduli space of flat SU(2)-connections on the surface Σ. This moduli space
has the Goldman symplectic form ω and a unique prequantum bundle (L, 〈 〉 ,∇)
with

F∇ = −iω.

To quantize we consider a complex structure σ, which is a point in Teichmüller
space TΣ of Σ. σ ∈ TΣ induces a complex structure on Iσ s.t. (M, ω, Iσ) = Mσ is
Kähler and we define a holomorphic bundle H(k) over TΣ given by

H(k)
σ = H0(Mσ, L

k).

This bundle has a natural ΓΣ-invariant connection ∇
H constructed by Hitchin [H]

who showed that this Hitchin connection is projectively flat.
By combining a theorem of Laszlo [L] with a theorem of this author and Ueno
[AU1, AU2, AU3, AU4] we get that

PZ(k)(Σ) = covariant constant sections of
(
PH(k),∇H

)
.

By using the theory of Toeplitz operators we prove [A1]

Theorem (Asymptotic faithfulness).

⋂

k

kerρ(k) =

{
{1, H} g = 2

{1} g > 2

where H is hyperelliptic involution.

By analysing the asymptotics of the connection ∇H we get that it extends to a

connection with log-singularity over augmented Teichmüller space T̃Σ. Considering

points in T̃Σ corresponding to pairs of pants decompositions of the surface Σ we
then explicitly construct a unitary structure on H(k) which is preserved by ∇H

and the action of ΓΣ. This means

ρ : ΓΣ −→
⊕

k+2 prime

End0

(
PZ(k)(Σ)

)

is a unitary Hilbert space representation. We prove it has an almost fixed vector,
but Roberts has proved it has no fixed vector. Hence we arrive at the following
theorem [A2]

Theorem. ΓΣ does not have Kazhdan’s property T.
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Teichmüller spaces of orbifold Riemann surfaces and related algebras

Leonid Chekhov

We consider the combinatorial description in terms of fat graphs of decorated
Teichmüller spaces Tg,s,r of Riemann surfaces Σg,s,r of genus g with s > 0 holes
and with r ≥ 0 orbifold points having orders pi, i = 1, . . . , r, where pi are in-
tegers greater or equal two. Σg,s,r is obtained using the Poincaré uniformiza-
tion from the upper half-plane H2 endowed with the hyperbolic metric: Σg,s,r =
H2/∆g,s,r where ∆g,s,r ⊂ PSL(2,R) is a discretely acting subgroup whose con-
jugacy classes are hyperbolic (parabolic in case of punctures) except exactly s
elliptic classes. The spine (fat graph) of this surface is a fat graph of genus g
containing exactly s faces, exactly r one-valent vertices, 6g − 6 + 3s + 2r edges
and 4g − 4 + 2s + r 3-valent vertices. We decorate all edges with real numbers
zα. The set {zα}

6g−6+3s+2r
α=1 ∈ R6g−6+3s+2r which we identify with Tg,s,r. We

use the 1-1 correspondences between sets of closed geodesics on Σg,s,r, conjugacy
classes of hyperbolic elements of ∆g,s,r and closed paths not homeomorphic to
orbifold points to construct geodesic functions G in accordance with rules: when

passing through any edge we set Xz =

(
0 −ez/2

e−z/2 0

)
, when turning left/right

at 3-valent vertices we set L,R =

(
0 1
−1 −1

)
or

(
1 1
−1 0

)
, when going clockwise

around Zpi -orbifold points we set Fωi =

(
0 1
−1 −ωi

)
, ωi = 2 cos π

pi
, when going
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twice (−)F 2
ωi

etc. G = tr(XznLXzn−1 · . . . ·XziFωiXzi · . . . ·LXz2RXz1L) are traces
of products of 2x2 matrices. We describe flip morphisms: the new one related to
flipping a pending edge is

Z
A

B
-Z

A + φ(z + iπ/pi) + φ(z − iπ/pi)

B − φ(−z + iπ/pi) − φ(−z − iπ/pi)

φ = log(1 + ez)

and we have the following theorem establishing a “completeness” of this descrip-
tion: for any Σg,s,r we have a (nonunique) set of {zα} (for any spine Γg,s,r) and
for any {zα},Γg,s,r we have Σg,s,r. We introduce the Poisson bracket, quantize it
and obtain quantum MCG transformations for which it suffices to replace φ by

φ~(z) = −
π~
2

∫
e−ipx

sinh(πp)

dp

sinh(π~p)
.

We study the obtained quantum geodesic algebras and show that they satisfy the
quantum skein relations.

Moments of the boundary hitting function for geodesic flow

Martin Bridgeman

(joint work with Ser Peow Tan)

We consider finite volume hyperbolic manifold with non-empty totally geodesic
boundary. We consider the distribution of the time for the geodesic flow to hit
the boundary and derive a formula for the moments of the associated random
variable in terms of the orthospectrum. We show that the the first two moments
correspond to two cases of known identities for the orthospectrum. We further
obtain an explicit formula in terms of the trilogarithm functions for the average
time for the geodesic flow to hit the boundary in the surface case, using the third
moment.

On quasihomomorphisms with noncommutative targets

Koji Fujiwara

(joint work with Misha Kapovich)

This is a talk on the paper [4]. Let G be a group and H be a topological group
equipped with a proper left-invariant metric d (e.g., a finitely-generated group,
equipped with a word metric). A map f : G→ H is called a quasihomomorphism
if there exists a constant C so that

d(f(xy), f(x)f(y)) ≤ C
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for all x, y ∈ G. In the case when H is discrete (and in this paper we limit ourselves
only to this class of groups), f is a quasihomomorphism if and only if the set of
defects of f

D(f) = {f(y)−1f(x)−1f(xy) : x, y ∈ G}

is finite. A quasihomomorphism with values in Z is called a quasimorphism.
There is a substantial literature on constructing quasimorphisms, going back to

the work of R. Brooks on free groups. For example, see [3] for hyperbolic groups.
We explain why it is so hard to construct quasihomomorphisms to noncommu-

tative groups which are neither homomorphisms, nor come from quasihomomor-
phisms with commutative targets, provided that H is a discrete group. Our main
theorem is:

Theorem 1. Every quasihomomorphism f : G → H is constructible. Namely,
there exists a finite-index subgroup Go < G, a subgroup Ho < H, an abelian
subgroup A < Ho central in Ho, and a quasihomomorphism fo : Go → Ho within
finite distance from f |Go so that:

The projection of fo to Go → Q = Ho/A is a homomorphism.

Definition 1 (almost homomorphism). Suppose that a map f : G → H between
groups has the property that f(G) is contained in a subgroup J < H, J contains
a finite normal subgroup K < J , so that the projection f̄ : G → J̄ = J/K is
a homomorphism. We then will refer to f as an almost homomorphism, it is a
homomorphism modulo a finite normal subgroup (in the range of f).

Here are some sample applications.

Theorem 2. 1. Suppose that H is a torsion-free hyperbolic group. Then (for an
arbitrary group G) every unbounded quasihomomorphism f : G → H is either a
homomorphism or a quasihomomorphism to a cyclic subgroup of H.

2. Suppose that H is a general hyperbolic group. Then for every unbounded
quasihomomorphism f : G → H either the image of f is contained in an elemen-
tary subgroup of H or f is an almost homomorphism.

Corollary 1. Suppose that Γ is an irreducible lattice in a semisimple Lie group of
real rank ≥ 2. Then every quasihomomorphism f : Γ → H, with hyperbolic target
group H, is bounded.

This sharpens the main result of Ozawa in [5], where he proves it only for
lattices in SL(n,K). Our proof is different.

Theorem 3. Suppose that Γ is a higher rank irreducible lattice. Then every
quasihomomorphism of Γ to a mapping class group of a compact surface, Map(Σ),
has finite image.

The conclusion was known for homomorphisms (cf. [1]), and we use that fact
and a result by Burger-Monod from [2].
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Combinatorics of integrable systems.

Vladimir Fock

In the first part of the talk we give an interpretation of cluster coordinates on
SL(N) character varieties and in particular sharing coordinates on Teichmüller
space as a connection on a bipartite graph. For example, given a triangulated sur-
face, replace each triangle by a Mercedes graphs as shown on the figure.
Given an PSL(2) local system on the surface with
punctures in the vertices of the triangulation, choose
a 1-dimensional subspace invariant under the mon-
odromy about each puncture and associate it to the
corresponding white vertex. Then associate to every
black vertex the kernel of the map Va ⊕ Vb ⊕ Vc → C2,
where Va, Vb, Vc are the subspaces associated to the
corresponding vertices. Together with natural maps as-
sociated to edges of the graph, this construction gives an Abelian local system on
the graph. This construction can be easily generalized to SL(N) local systems
giving more complicated graphs attached to each triangles.

In the second part of the talk we describe following Goncharov and Kenyon [1]
that the space of Abelian local systems on certain bipartite graphs Γ on a torus
has a natural integrable system structure. We also study its properties following
[2] and [3].

If the graph is embedded into a surface, the space of connections on the graph
is fibered over the space XΓ = {(x1, . . . , xn)} of monodromies around faces with
fiber isomorphic to the space of cohomology of the surface with coefficient in the
multiplicative group.

On every bipartite graph Γ there exists a Kasteleyn orientation — a marking
of edges by ±1 such that the number of sides counted with signs of every face be
2 modulo 4. For a given Abelian local system define a Dirac operator D acting
from the direct sum of spaces attached to black vertices to the direct sum of spaces
attached to the white ones, which is just a direct sum of maps corresponding to
edges with signs given by the Kasteleyn orientation. If the numbers of white an
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black vertices coincide the Dirac operator can be nondegenerate on the space of
graph connections outside of a divisor.

The space XΓ possesses a canonical Poisson bracket given by xi, xj = εijxixj
with εij determined by the combinatorics of the graph as the number of common
edges of the faces i and j counted with signs determined by the orientations of the
edges from black to white vertex.

If the surface is a torus, the fiber over every point x ∈ XΓ is two-dimensional and
the degeneration locus of the Dirac operator is an algebraic curve in it. This curve
Σ is the zero locus of a Laurent polynomial of two variables

∑
(ij)∈∆Hij(x)λiµj =

detD with a Newton polygon ∆ fixed by the graph up to a shift and the action of
SL(2,Z). The coefficients of this polynomial (after normalization of three of them
to one) give a full collection of commuting Hamiltonians.

If the curve is smooth the kernel of the Dirac operator defines a line bundle on
Σ of degree g− 1, where g is the genus of the curve, which is equal to the number
of integer points strictly inside the polygon ∆.

It turns out that the map associating to a point of XΓ an algebraic curve
and a line bundle on it can be inverted. Namely for a planar algebraic curve Σ
given by a Laurent polynomial with a Newton polygon ∆ and a bipartite graph Γ
corresponding to the same polygon one can explicitly describe the inverse image
of Σ under the action map. This inverse image is isomorphic to the Jacobian of
the curve Jac(Σ) and our aim now is to make this isomorphism explicit.

The main observation is that the graph Γ can be (almost canonically) embedded
into the spectral curve Σ in such a way that every connected component of the
complement to Γ in Σ is a punctured disc. Denote by F̌ the set of such discs and
for any α ∈ F̌ denote by wα a point of the universal cover of the Picard variety
Pic1(Σ) corresponding to the puncture of the disc and by Dα the disc itself. Let
W be the universal cover of the Jacobian of Σ. Fix a Lagrangian lattice L ∈ W
in the kernel of the projection W → Jac(Σ).

Associate to every face i an element zi ∈ W that obeys the following rule. For
any two faces i and j and any path γij on the torus from i to j we have

zj − zi =
∑

α∈F̌

〈γij , ∂Dα〉wα modulo L,

Such association is defined uniquely up to a shift zi → zi + li + t with t ∈W and
li ∈ L.

Choose an odd nonsingular theta-characteristics q ∈ Picg−1(Σ). Then the
monodromies xi around the faces given by

xi =
∏

j

(
θq(zj − zi)

θq(zj + t)

)εij

for any t ∈ W runs over the inverse Lagrangian torus, which is the common level
set of the Hamiltonians. Here θq is the Riemann theta function on W periodic
with respect to the lattice L.

The proof the formula is based on the Fay’s triple secant formula.
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The space XΓ can be considered as a chart of a cluster x-variety. Changing
the graph Γ without changing the Newton polygon ∆ amounts to the cluster
transformations of the chart. In particular the space XΓ admits an action of an
Abelian group G∆ of birational transformations commuting with the Hamiltonian
flows. This group turns out to be a subgroup to the group of divisors of the curve
Σ of degree zero, supported at infinity modulo principal divisors. The rank of this
group is equal to the number of corners of the Newton polygon ∆.
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Computations in formal symplectic geometry and characteristic
classes of moduli spaces

Takuya Sakasai

(joint work with Shigeyuki Morita, Masaaki Suzuki)

1. Homology of a positive graded Lie algebra

Let g = ⊕∞
k=0g(k) be a graded Lie algebra over Q and let g+ = ⊕∞

k=1g(k) be
its ideal consisting of all the elements of g with positive gradings. We assume that
each piece g(k) is finite dimensional for all k. Then the chain complex C∗(g) of g
splits into the direct sum

C∗(g) =

∞⊕

w=0

C
(w)
∗ (g)

of finite dimensional subcomplexes C
(w)
∗ (g) = ⊕w

i=0C
(w)
i (g) where

C
(w)
i (g) =

⊕

i0+i1+···+iw=i
i1+2i2+···+wiw=w

∧i0 (g(0)) ⊗ ∧i1(g(1)) ⊗ · · · ⊗ ∧iw (g(w))

so that C
(w)
i (g) = 0 for i > w + 1

2d(d − 1) (d = dim g(0)). This gives a bigrading
to the homology group H∗(g) and we decompose it as

Hi(g) =
∞⊕

w=0

Hi(g)w

where Hi(g)w = Hi(C
(w)
∗ (g)) is called the weight w-part of Hi(g).
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2. Symplectic derivation Lie algebras

Let Σg be a closed connected oriented surface of genus g ≥ 1. The first rational
homology group H1(Σg;Q) has a non-degenerate and skew-symmetric form

µ : H1(Σg;Q) ⊗H1(Σg;Q) −→ Q,

which is called the intersection pairing. By using this pairing, we can identify
H1(Σg,1;Q) with the dual space H1(Σg,1;Q) and we denote them by H .

Let Sp(H) be the symplectic group, that is, the group of automorphisms of
H preserving µ. This group Sp(H) ≃ Sp(2g,Q) can be regarded as the group of
automorphisms of H preserving the symplectic element

ω0 ∈ (H ⊗H)Sp ≃ Q.

Here (H ⊗H)Sp is the invariant subspace of H ⊗H under the diagonal action of
Sp(H) on H ⊗H .

Definition 2.1. We define symplectic derivation Lie algebras for three cases:

(1) c+g = {positive “Sp-derivations” of the free commutative algebra on H}

=

{
Hamiltonian Q-polynomial vector fields
on H ⊗ R ∼= R2g without constant and linear terms.

}
,

(2) h+g = {positive Sp-derivations of the free Lie algebra on H},
(3) a+g = {positive Sp-derivations of the free associative algebra on H}.

Then we take direct limits with respect to g:

c+∞ = lim
g→∞

c+g , h+∞ = lim
g→∞

h+g , a+∞ = lim
g→∞

a+g .

By the representation theory of Sp(H), the corresponding Sp-invariant chain com-

plexes C
(w)
∗ (c+∞)Sp, C

(w)
∗ (h+∞)Sp and C

(w)
∗ (a+∞)Sp are all finite dimensional for each

weight w.

3. Main theorems

Kontsevich [5, 6] related the homology of the Lie algebras h+∞, a+∞ to the co-
homology of outer automorphism groups OutFn of free groups and mapping class
groups of punctured surfaces. Geometrically, these cohomology are also interpreted
as those of moduli spaces of metric graphs and punctured Riemann surfaces. The
homology of c+∞ also have topological meanings.

Our first result is on the abelianization of a+∞.

Theorem 3.1 ([7]). H1(a+∞)Sp = 0.

As a corollary, we see that the “top” dimensional rational cohomology groups of
moduli spaces of closed and once-punctured Riemann surfaces vanish.

Next, we consider the Euler characteristics of the above three complexes.

Theorem 3.2 ([8]). The Euler characteristics e of the complexes C
(w)
∗ (c+∞)Sp,

C
(w)
∗ (h+∞)Sp and C

(w)
∗ (a+∞)Sp in low weights are given by the following:

(1) e(H∗(c+∞)Spw ) = 1, 2, 3, 6, 8, 14, 20, 32, 44, 68 (w = 2, 4, . . . , 20),
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(2) e(H∗(h+∞)Spw ) = 1, 2, 4, 6, 10, 16, 23, 13,−96 (w = 2, 4, . . . , 18),
(3) e(H∗(a+∞)Spw ) = 2, 5, 12, 24, 50, 100, 188, 347 (w = 2, 4, . . . , 16).

Applying Kontsevich’s theorem to (2), we obtain the integral Euler characteristics
of OutFn.

Corollary 3.3. The integral Euler characteristics e of OutFn for n = 2, 3, . . . , 10
are

e(OutFn) = 1, 1, 2, 1, 2, 1, 1,−21,−124.

In particular, there exist at least 1, 22, 125 odd dimensional non-trivial Q-homology
classes of OutFn for n = 8, 9, 10.

Remark 3.4. Hatcher-Vogtmann in [4] (n ≤ 5) and Ohashi in [9] (n = 6) deter-
mined H∗(OutFn;Q). Besides, Galatius [1] showed that Hk(OutFn;Q) = 0 for
0 < k ≪ n. However, it had not been known whether non-trivial odd dimensional
Q-homology classes of OutFn exist or not. Note that Gray [3] computed that
H12(OutF8;Q) is non-trivial. This result with our computation e(OutF8) = 1
show that there exists at least one odd dimensional non-trivial Q-homology class
of OutF8.

Remark 3.5. As for the Euler characteristics of the associative case a+∞, we can
use Gorsky’s formula [2]. By implementing it as a Mathematica program, we
computed e(H∗(a+∞)Spw ) up to w = 500. In the talk, an expectation concerning the
asymptotic behavior of these values was mentioned.
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The Goldman-Turaev Lie bialgebra and the Johnson homomorphisms

Yusuke Kuno

(joint work with Nariya Kawazumi)

Consider a compact oriented surface Σ of genus g > 0 with one boundary
component. Taking a basepoint on the boundary we let π = π1(Σ). We denote by
π̂ the set of free homotopy classes of loops on Σ. The Q-vector space Qπ̂ is a Lie

algebra with respect to the Goldman bracket [1]. We can make its completion Q̂π̂
by using the augmentation ideal of the group ring Qπ.

On the other hand, let H = H1(Σ;Q) be the first homology of Σ, and consider

the completed tensor algebra T̂ =
∏∞

m=0H
⊗m. By the intersection form on Σ,

we can identify H with its dual H∗ = Hom(H,Q). Let ω ∈ H⊗2 be the 2-tensor

corresponding to 1H ∈ Hom(H,H) ∼= H⊗2. We define Derω(T̂ ) to be the set of

(continuous) derivations on T̂ annihilating ω. This is called the Lie algebra of
symplectic derivations [8].

Theorem 1 ([4][5]). There exists a Lie algebra homomorphism λθ : Qπ̂ → Derω(T̂ ).

Moreover, λθ induces an isomorphism Q̂π̂ ∼= Derω(T̂ ).

Key ingredients of this theorem are the following.

(1) There is a map σ : Qπ̂ → Der∂(Qπ) defined in a way similar to the def-
inition of the Goldman bracket. Here the target is the set of derivations
on Qπ annihilating the boundary loop ∂ ∈ π. Moreover, σ induces an

isomorphism Q̂π̂ ∼= Der∂(Q̂π). Here Q̂π is the completion of the group
ring with respect to the augmentation ideal.

(2) A symplectic expansion [9] is a map θ : π → T̂ satisfying some conditions.

Such a map θ induces an isomorphism Q̂π ∼= T̂ of complete Hopf algebras
sending ∂ to exp(ω). The map λθ is given by λθ(α)(u) = θ(σ(α)θ−1(u))

for α ∈ Qπ̂ and u ∈ T̂ .

Our proof uses the (co)homology theory of Hopf algebras. Massuyeau and
Turaev [10] gave a different proof. We have an analogue of Theorem 1 and the

isomorphism Q̂π̂ ∼= Der∂(Q̂π) for any compact oriented surface with non-empty
boundary. For details see [7].

Let 1 ∈ π̂ be the class of a constant loop. The Turaev cobracket [13] is a map
δ : Qπ̂/Q1 → (Qπ̂/Q1)⊗2 defined by using the self intersection of loops. The Q-
vector space Qπ̂/Q1 is an involutive Lie bialgebra with respect to the Goldman
bracket and the Turaev cobracket. The map δ extends naturally to the completion

Q̂π̂.
Now the isomorphism λθ induces a Lie cobracket δθ := (λθ⊗̂λθ) ◦ δ ◦ λ−1

θ on

Derω(T̂ ). To see δθ, we consider the embedding

Derω(T̂ ) →֒ Hom(H, T̂ ) ∼= H ⊗ T̂ = T̂≥1, D 7→ D|H .

Then Derω(T̂ ) is identified as a Q-vector space with the space of cyclic invariant
tensors. For X1, . . . , Xm ∈ H , we set N(X1 · · ·Xm) =

∑
iXi · · ·XmX1 · · ·Xi−1 ∈
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H⊗m, and define δalg : Derω(T̂ ) → (Derω(T̂ ))⊗2 by

δalg(N(X1 · · ·Xm))

:=
∑

i<j

(Xi ·Xj)

{
N(Xj+1 · · ·XmX1 · · ·Xi−1) ⊗N(Xi+1 · · ·Xj−1)
−N(Xi+1 · · ·Xj−1) ⊗N(Xj+1 · · ·XmX1 · · ·Xi−1)

}
.

This is a homogeneous Q-linear map of degree −2.

Theorem 2 ([6] [11]). We have

δθ = δalg + δθ(1) + δθ(2) + · · · .

Here, δθ(n) is a homogeneous Q-linear map of degree n.

The proof uses a tensorial description of the homotopy intersection form by
Massuyeau and Turaev [10]. In general, δθ(n) does depend on the choice of θ.

The Johnson homomorphisms were introduced by Johnson [2][3] and were elab-
orated later by Morita [12]. They are important tools to study the algebraic
structure of the mapping class group and the Torelli group. By using the opera-

tion σ, in particular the isomorphism Q̂π̂ ∼= Der∂(Q̂π), we can embed the Torelli

group of Σ into Q̂π̂. From this embedding we can recover the Johnson homomor-
phisms. From the fact that any diffeomorphism of the surface preserves the self
intersection of curves, we can show that the image of our embedding is contained
in the kernel of the Turaev cobracket. This gives a geometric constraint for the
image of the Johnson homomorphisms. For more details see [7].
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Asymptotic Behaviors of Some Rays in Hitchin Components

Qiongling Li

(joint work with Brian Collier)

For a closed, connected, oriented surface S of genus g ≥ 2, consider the space
of group homomorphisms ρ : π1(S)→G from the fundamental group π1(S) to a
reductive Lie group G. Through the nonabelian Hodge correspondence, the repre-
sentation variety

R(π1, G) = Hom(π1(S), G)//G ∼= MHiggs(G)

is diffeomorphic to the moduli space of semistable G-Higgs bundles.
In [2], Hitchin used Higgs bundles to show that this component of the character

variety R(π1, PSL(n,R)) is an open cell of complex dimension (n2 − 1)(g − 1).
This component is called the Hitchin component. Furthermore, if we fix a Riemann
surface structure Σ on S, with canonical bundle K, then Hitn(S) is parameterized

by the space
n⊕

j=2

(Σ,Kj) of holomorphic differentials.

For a stable SL(n,C)-Higgs bundle (E, φ), there is a unique hermitian metric
h on E, with Chern connection Ah, solving the Higgs bundle equations

FAh
+ [φ, φ∗h ] = 0,

where φ∗h denotes the the hermitian adjoint. Hitchin proved this for n = 2 and
later Simpson [5] proved it for general n. Such a solution (Ah, φ) gives rise to a
flat connection A+ φ+ φ∗h .

Given a semistable Higgs bundle (E, φ), consider the family of semistable Higgs
bundles (E, tφ), where t ∈ C. Solving the Higgs bundle equations yields a family
of harmonic metrics ht on E and thus a family of flat connections ∇t with cor-

responding representations ρt. For P,Q ∈ Σ̃, let TP,Q(t) be the parallel transport
matrices of the family of flat connections. In a recent arxiv paper [3], Katzarkov,
Noll, Pandit, and Simpson asked the following question:

Question 1. What is the asymptotic behavior of ρt and TP,Q(t) as t→∞?

This is a difficult problem, as it involves asymptotically solving the Higgs bundle
equations. In this paper we restrict to the following situation

• (E, φ) is in the Hitchin component
• t ∈ R
• φ = ẽ1 + qnen−1 and φ = ẽ1 + qn−1en−2.

Instead of tφ, we use tqn and tqn−1, which are equivalent to tφ after a gauge
transformation.

We restrict our attention to our φ = ẽ1+qnen−1 and φ = ẽ1+qn−1en−2 because
of the following theorem.
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Theorem 2. For k = n and k = n− 1 the Higgs fields are φ = ẽ1 + qnen−1 and
φ = ẽ1 + qn−1en−2, and the harmonic metric splits as

h1 ⊕ h2 ⊕ · · · ⊕ h−1
2 ⊕ h−1

1

on the line bundles

K
n−1
2 ⊕K

n−3
2 ⊕ · · · ⊕K−n−3

2 ⊕K−n−1
2

For k = n, this was proven by Baraglia [1] in which he called cyclic case.
For n = 3 cyclic case, Loftin [4] considered the above questions in a slightly

different setting. We try to generalize his method to apply to general n case.
The above theorem significantly simplifies the Higgs bundle equations from n2

equations to ⌊n
2 ⌋ equations. We first obtain estimates of the solution metric ht of

the Higgs bundle equations as t→∞.

Theorem 3. (n=3 cyclic case by J.Loftin) For every point p ∈ Σ, as t→∞ we
have

1. For (Σ, (0, . . . , 0, tqn)) ∈ Hitn(S)

ht =



















t
n−1
2 |qn|

n−1
n

t
n−3
n |qn|

n−3
n

.

.

.

t−
n−3
n |qn|

−

n−3
n

t−
n−1
n |qn|

−

n−1
n



















(1+O(t−
2
n ))

2. For (Σ, (0, . . . , 0, tqn−1, 0)) ∈ Hitn(S)

ht =

















t|qn−1|

(2t)
n−3
n−1 |qn−1|
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n−1

.

.

.

(2t)−
n−3
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−
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t−1|qn|
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(1+O(t−
2

n−1 ))

After obtaining asymptotic estimates of the solution metric together with error
estimates, we make use of all the estimates to integrate the ODE defined by the
flat connection. This yields an estimate of the parallel transport matrices TP,Q(t)
as t→∞.

Theorem 4. (n=3 cyclic case by J.Loftin) Let P ∈ Σ̃ be away from the zeroes
of qn (or qn−1), choose a neighborhood centered at P and coordinate z so that
qn = dzn (or qn−1 = dzn−1). For any Q in the neighborhood Q = Leiθ, then as
t→∞

TP,Q(t) = (Id+R)T




e−Lt
1
n µ1

e−Lt
1
n µ2

. . .

e−Lt
1
n µn



T−1
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where

1. For the case φ = ẽ1 + en−1qn, the error term R ∼ O(t−
1
n ), T is a constant

unitary matrix and the set {µ1, . . . , µn} is the set {2cos(θ + 2πj
n )}.

2. For the case φ = ẽ1 + en−2qn−1, the error term R ∼ O(t−
1

n−1 ), T is a constant
unitary matrix and there is one µi = 0 and other µj’s are the roots of a degree
n− 1 polynomial depending on θ.

Given a family of hermitian metrics ht on E, select a positively oriented unitary
frame {ej} over a base point p ∈ Σ̃. Parallel transportation using the family of flat
connections gives a global setion of the unitary frame bundle which we will denote
{ej}. Define a family of ρt-equivariant maps {ft} by

Σ̃
ft

−−−−−→ SL(n,R)/SO(n,R)

q 7−−−−−→ {ht(ej(q), ej(q))}.

We have the following corollary concerning the maps ft.

Corollary 5. For the family of rays (Σ, 0, . . . , 0, tqn), (Σ, 0, . . . , 0, tqn−1, 0) ∈
Hitn(S) and for any p away from the zeros of qn or qn−1, there exists a neighbor-

hood U of p so that the ρt-equivariant maps ft : Σ̃→SL(n,R)/SO(n,R) satisfies
ft(U) is mapped, aymptotically, into a flat of the symmetric space.

Our approach is inspired by Loftin’s work in [4] where he studied the asymptotic
holonomy of convex real projective structures on the surface S along a ray (Σ, tq3).
We apply the maximum principal many times to the system of ⌊n

2 ⌋ fully coupled
nonlinear elliptic equations to obtain estimates of the solution metric as t→∞
along with error estimates. We then obtain the estimates of the first derivative of
the solution metric using standard PDE techniques from the error estimates. In
the end, we make use of all the estimates to integrate the ODE defined by the flat
connection.
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Dynamics of Proper Actions on Lie Groups

Olivier Guichard

(joint work with François Guéritaud, Fanny Kassel, Anna Wienhard)

The purpose of the present work is to gain a better understanding of a certain
class of groups acting properly discontinuously on a real rank one Lie group G by
left and right multiplication. A precise statement is the following theorem.

Theorem 1. Let Γ be a finitely generated subgroup of G ×G the product of two
copies of a real rank one semisimple Lie group G. Then the following statements
are equivalent :

(1) The injection of Γ into G×G is a quasi-isometric embedding and the action
of Γ onto G by left and right multiplication is properly discontinuous.

(2) (Up to finite index and up to exchanging the 2 factors in G×G) the group
Γ is a graph {(γ, j(γ)) / γ ∈ Γ0} where Γ0 < G is a convex-cocompact subgroup
and j : Γ0 → G is a representation that is uniformly dominated by the injection of
Γ0 into G.

Let us start by defining the notions appearing in that theorem.
• The injection of Γ into G × G is a quasi-isometric embedding if there are

positive constants k and C such that

∀γ ∈ Γ, kℓΓ(γ) − C ≤ ℓG×G(γ) ≤ k−1ℓΓ(γ) + C

where ℓΓ is a word length on Γ and ℓG×G(γ) is the distance from γ to the identity
element coming from a left invariant Riemannian metric on G×G.

• The group G×G acts on G by left and right multiplication : (g, h)·x = gxh−1

for any (g, h) ∈ G×G and any x ∈ G.
• A semisimple Lie group G is of real rank one if and only if its symmetric X

is negatively curved. For any g in G we will denote by λ(g) ∈ R≥0 its translation
length on X : λ(g) = infx∈X dX (x, g · x).

• A subgroup Γ0 of G is said convex cocompact if there is a closed Γ0-invariant
convex C of X and Γ0 acts on C is properly discontinuously and cocompactly.

• The morphism j : Γ0 → G is uniformly dominated by the injection of Γ0 into
G if there is κ ∈ (0, 1) such that λ(j(γ)) ≤ κλ(γ) for any γ ∈ Γ0 of infinite order.

The fact that subgroups Γ of G × G acting properly on G are always graphs
over discrete subgroups of G (up to finite index) is a theorem of F. Kassel [Kas08].
Conjecturally every such action should have the above domination property, in fact
a more general conjecture for proper actions on homogeneous spaces can be found
in [KK12]. The additional hypothesis that Γ is quasi-isometrically embedded in
G×G implies that Γ0 is also quasi-isometrically embedded in G and this is known
to be equivalent to Γ0 being a convex-cocompact subgroup of G, see [Bow95].

The key step in order to obtain the conclusion that j is uniformly dominated
by the inclusion of Γ0 is to prove that the group Γ is Anosov in the sense of
Labourie [Lab06]. A precise statement for the case when the real rank one Lie
group G is SO(1, n) is the following theorem. Let us observe first that SO(1, n) ×
SO(1, n) is naturally a subgroup of SO(n+ 1, n+ 1).
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Theorem 2. Let Γ be a finitely generated subgroup of SO(1, n) × SO(1, n) then
the following properties are equivalent

(1) The injection of Γ into SO(1, n) × SO(1, n) is a quasi-isometric embedding
and the left-right action of Γ onto SO(1, n) by is properly discontinuous.

(2) The group Γ is word hyperbolic and the injection of Γ into SO(n+ 1, n+ 1)
is F0-Anosov.

The contraction properties involved in the defintion of Anosov representations
imply the sought for domination. The more general definition of Anosov rep-
resentations given in [GW12] is with respect to any partial flag variety G/P
of the Lie group G. Here we restrict to the case G = SO(n + 1, n + 1) and
G/P = F0 = P(q = 0) is the projectivization of the null cone of q the quadratic
form of signature (n + 1, n + 1). Hence elements of F0 are isotropic lines. The
original definition of Anosov representations makes use of the flow space of the
word hyperbolic group Γ and is therefore quite elaborate. The above theorem
relies on the following characterization of Anosov representations that makes only
use on the boundary at infinity ∂∞Γ.

Theorem 3. Let Γ be a word hyperbolic group, ∂∞Γ be its boundary at infinity
and ρ : Γ → SO(n+ 1, n+ 1) be a representation.

Then the representation ρ is F0-Anosov if and only if there exists a continuous
and ρ-equivariant map ξ : ∂∞Γ → F0 satisfying the following conditions:

• ξ is transverse: for any t and t′ 6= t in ∂∞Γ the lines l = ξ(t) and l′ = ξ(t′)
are transverse (i.e. l′ * l⊥q).

• ξ is dynamics-preserving: for any non-torsion element γ of Γ, if t+γ denotes

its attracting fixed point in ∂∞Γ, the element ξ(t+γ ) is the attracting fixed point of
ρ(γ) in F0. In particular the action of ρ(γ) is contracting on the tangent space
Tξ(t+γ )F0, we denote by e−α(ρ(γ)) its contraction factor.

• There is a positive constant c > 0 such that, for any non-torsion element γ
of Γ, α(ρ(γ)) ≥ cℓ∞(γ) where ℓ∞(γ) = lim 1

nℓΓ(γn) is the stable length of γ (and
ℓΓ is the word length in Γ).

The above results hold in a wider generality, we refer to [GGKW] for a more
complete discussion.
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The Johnson-Morita theory for the rings of Fricke characters of free
groups

Takao Satoh

(joint work with Eri Hatakenaka)

In the 1980s, Dennis Johnson established a remarkable method to investigate the
group structure of mapping class groups of surfaces in a series of his works. In
particular, he [5] constructed a homomorphism τ to determine the abelianization
of the Torelli group. Today, his homomorphism τ is called the first Johnson
homomorphism, and it is generalized to those of higher degrees. Over the last two
decades, good progress was made in the study of the Johnson homomorphisms of
the mapping class group through the works of many authors including Morita [7],
Hain [2] and others.

As is well known, the mapping class group of a compact oriented surface with
one boundary component can be embedded into the automorphism group of a free
group by a classical work of Dehn and Nielsen. The definition of the Johnson
homomorphisms can be naturally generalized to the automorphism group of a free
group. Let Fn be a free group of rank n, H the abelianization of Fn, and AutFn the
automorphism group of Fn. The kernel of the homomorphism AutFn → GL(n,Z)
induced from the action of AutFn on H , is called the IA-automorphism group of
Fn, and is denoted by IAn. The group IAn is a free group analogue of the Torelli
group. In 1965, Andreadakis [1] intorduced a central filtration

IAn = An(1) ⊃ An(2) ⊃ · · ·

of IAn. He showed that each graded quotient grk(An) := An(k)/An(k+1) is a free
abelian group of finite rank, and that this filtration has the trivial intersection.
We call the above filtration the Andreadakis-Johnson filtration of AutFn. Johnson
studied this kind of filtration for the mapping class groups of surfaces in 1980s.
The conjugation action of AutFn on each grk(An) induces that of the general
linear group GL(n,Z). Let

τk : grk(An) → H∗ ⊗Z Ln(k + 1)

be a homomorphism defined by

σ (mod An(k + 1)) 7→
[
x (mod Γn(k + 1)) 7→ x−1xσ (mod Γn(k + 2))

]
.

Each τk is a GL(n,Z)-equvariant injective homomorphism, and is called the k-th
Johnson homomorphism of AutFn. These τk are powerful and usuful tools to
investigate the graded quotients grk(An).

In this talk, we study a Fricke character analogue of the Andreadakis-Johnson
filtration and the Johnson homomorphisms of AutFn. Let R(Fn) be the set of all
SL(2,C)-representations of Fn, and F(n,C) the set of all complex-valued functions
on R(Fn). Then F(n,C) naturally has a C-algebra structure, and AutFn naturally
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acts on F(n,C) from the right. For any x ∈ Fn, define tr x ∈ F(n,C) to be

(tr x)(ρ) := tr ρ(x), ρ ∈ R(Fn).

Here “tr” in the right hand side means the usual trace of 2 × 2 matrix ρ(x). The
element trx is called the Fricke character of x ∈ Fn. The action of σ ∈ AutFn on
tr x is given by tr xσ.

Classically, Fricke characters were introduced by Fricke to study the classifi-
cation of the Riemann surfaces. In this talk, we concentrate ourselves on purely
algebraic properties of the Fricke characters. Let XQ(Fn) be the Q-subalgebra
of F(n,C) generated by all tr x for x ∈ Fn. We call XQ(Fn) the ring of Fricke
characters of Fn over Q. Horowitz [3] showed that XQ(Fn) is finitely generated by

{trxi1 · · ·xil | 1 ≤ l ≤ 3, 1 ≤ i1 < i2 < · · · < il ≤ n}.

Here we consider an AutFn-invariant ideal

J := (tr′ xi1 · · ·xil | 1 ≤ l ≤ 3, 1 ≤ i1 < i2 < · · · < il ≤ n) ⊂ XQ(Fn)

where tr′ x := tr x− 2 for any x ∈ Fn. Then, we have a descending filtration

J ⊃ J2 ⊃ J3 ⊃ · · · ,

and each graded quotient grk(J) := Jk/Jk+1 is an AutFn-invariant finite dimen-
sional Q-vector space. In general, however, by combinatorial complexities, it is
quite difficult to give a basis of grk(J). In our previous paper [4], we explicitly
give bases of grk(J) for k = 1 and 2.

Now, for any k ≥ 1, let En(k) be the kernel of the homomorphism AutFn →
Aut(J/Jk+1) induced from the action of AutFn on J/Jk+1. Then the groups
En(k) define a descending filtration

En(1) ⊃ En(2) ⊃ · · · ⊃ En(k) ⊃ · · ·

of AutFn. This is a Fricke character analogue of the Andreadakis-Johnson filtra-
tion. In [4], we showed

Theorem 1 (Hatakenaka-S.). For n ≥ 3,

(1) [EG(k), EG(l)] ⊂ EG(k + l) for any k, l ≥ 1.
(2) En(1) = InnFn · An(2).
(3) An(2k) ⊂ En(k) for any k ≥ 1.

Here InnFn is the inner automorphism group of Fn. In order to study the
structure of the graded quotients grk(En) := En(k)/En(k+1) of the above filtration,
we [4] introduced a homomorphism

ηk : grk(En) → HomQ(gr1(J), grk+1(J))

defined by

σ (mod En(k + 1)) 7→
[
f (mod J2) 7→ fσ − f (mod Jk+1)

]
.
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The homomorphism ηk is a Fricke character analogue of the Johnson homomor-
phism τk. In [4], we showed that each ηk is AutFn/En(1)-equivariant injec-
tive homomorphism. This implies that each of grk(En) is torsion-free, and that
dimQ(grk(En) ⊗Z Q) <∞. It seems a basic problem to determine the structure of
Im(ηk).

On the other hand, another our interest is what kind of properties ηk and
τk share with. In this talk, we consider the extendability of the first Johnson
homomorphisms to the mapping class group and the automorphism group of a
free group. In [8], Morita showed that the first Johnson homomorphism can be
uniquely extended to the mapping class group as a crossed homomorphism up to
coboundary. Similar result for AutFn was obtained by Kawazumi [6]. As a Fricke
character analogue of these works, we [9] obtained

Theorem 2 (S.). For n ≥ 3, the homomorphism η1 can be extended to AutFn as
a crossed homomorphism.

At the present stage, the uniqueness of the extension of η1 is not known since
we can not comput the twisted first cohomology group of AutFn with coefficients
in HomQ(gr1(J), gr2(J)) due to the combinatorial complexity.
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A discrete uniformization theorem for polyhedral surfaces

Feng Luo

(joint work with David Gu, Jian Sun, Tianqi Wu)

We introduce a notion of discrete conformality for polyhedral metrics on com-
pact surfaces. Given a closed surface S with a finite non-empty subset of points
V , a (Euclidean) polyhedral metric on (S, V ), to be called a PL metric on (S, V ),
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is a flat cone metric on (S, V ) with cone points in V . The discrete curvature k of
a PL metric on (S, V ) is the function on V sending a vertex to 2π less the cone
angle at the vertex. It is well known that the Gauss-Bonnet formula holds for
PL metrics, i.e.,

∑
v∈V k(v) = 2πχ(S). Each polyhedral metric d on (S, V ) has

a Delaunay triangulation Td which is a geodesic triangulation with vertices V so
that for each edge, the sum of two opposite angles facing e is at most π. Suppose
d and d′ are two PL metrics on (S, V ). We say they are discrete conformal if there
is a sequence of PL metrics d1 = d, d2, ..., dn = d′ and a sequence of triangulations
T1, T2, ..., Tn of (S, V ) (with vertex sets V (Ti) = V ) so that (1) each Ti is Delau-
nay in di; (2) if Ti 6= Ti+1, then there is an isometry hi from (S, di) to (S, di+1)
which is homotopic to the identity map on (S, V ); and (3) if Ti = Ti+1, there is
a function xi : V → R>0 so that for each edge e = vv′ in Ti, the lengths ldi(vv

′)
and ldi+1(vv′) of e in di and di+1 are related by

ldi+1(vv′) = ldi(vv
′)xi(v)xi(v

′).

Our main theorems are,

Theorem 1. Given two PL metrics on a closed marked surface (S, V ), there exists
an algorithm to decide if they are discrete conformal.

Theorem 2. Given any PL metric d on a closed marked surface (S, V ) and any
k∗ : V → (−∞, 2π) so that

∑
v∈V k

∗(v) = 2πχ(S), there exists a PL metric d∗,
unique up to scaling, so that

(1) d∗ is discrete conformal to d and,
(2) the discrete curvature of d∗ is k∗.
Furthermore, d∗ can be found by a finite dimensional variational principle.

Theorem 1 is proved by using the work of W. Thurston and L. Mosher on ideal
triangulations of surfaces and the work of R. Penner on decorated Teichmüller
spaces.

To prove Theorem 2, let recall that the PL Teichmüller space Tpl(S, V ) is defined
to be the set of all Teichmüller equivalence classes of PL metrics on (S,V). Here
two PL metrics are Teichmüller equivalent if they are isometric by an isometry
homotopic to the identity in (S, V ). The discrete conformality is an equivalence
relation on Tpl(S, V ). For each point [d] ∈ Tpl(S, V ), let CD([d]) be the set of
all metrics in Tpl(S, V ) which are discrete conformal to [d]. Let K : Tpl(S, V ) →
(−∞, 2π)V be the discrete curvature map sending a metric to its discrete curvature.
Theorem 2 can be stated as saying that the restriction of the discrete curvature
map K to the discrete conformal class CD([d]) is a bijection from CD([d])/R>0

to (−∞, 2π)V ∩ {x ∈ RV |
∑

v x(v) = 2πχ(S) } where R>0 acts on PL metrics
by scaling. To achieve this, we proceed in two steps. In the first step, we show
that the discrete conformal class DC([d]) is naturally a Euclidean space. This
is achieved by producing a C1 smooth diffeomorphism A from PL Teichmuller
space Tpl(S, V ) to Penner’s decorated Teichmuller space T (S − V ) × RV

>0 so that
two PL metrics d and d′ are discrete conformal if and only if the projections of
A(d) and A(d′) to the Teichmuller space T (S − V ) are the same. The map A
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is constructed in a piecewise smooth manner on the natural cell decompositions
of Tpl(S, V ) and T (S − V ) × RV

>0. These cell decompositions are derived from
the Delaunay triangulations of the underlying spaces by the work of Penner and
Rivin. In the second step, we exam the restriction of discrete curvature map on the
DC([d]). By step 1, DC([d]) is naturally a Euclidean space. Using a variational
principle developed by Luo in 2004, we show that the discrete curvature map on
DC([d])/R>0 is the gradient of a strictly convex function. Thus, it is an injective
map. On the other hand, by analyzing the degeneration of discrete conformality
of triangles and using a result of Akiyoshi, we show that the image K(DC([d])) is
closed in Y = (−∞, 2π)V ∩{x ∈ RV |

∑
v x(v) = 2πχ(S)}. Since both DC([d])/R>0

and Y are connected manifolds of the same dimension, we conclude that K| is a
homeomorphism and thus prove theorem 2.

There are several open problems related to the discrete conformality. First,
we do not know how to prove theorem 2 for non-compact surfaces. Second, we
conjecture that discrete conformality converges to the classical conformality when
triangulations become finer and finer. The numerical evidences to this conjecture
are very strong. However, a rigorous proof is still lacking.
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Problem Session

Problems compiled by Daniele Alessandrini, session chaired by

Norbert A’Campo

Problem 1. (Norbert A’Campo) Given an immersed curve in R2 with transverse
self-intersection, we can count the number of self-intersections. Denote by N(g)
the number of curves as above with exactly g self-intersections, up to isotopy. Give
an interpretation to the power series:

∑

g≥0

N(g)zg

This problem is related with matrix models and to the problem of counting cells
in Mg,1, the moduli space of Riemann surfaces with one marked point.

Problem 2. (Athanase Papadopoulos) Understand the relation between the Ga-
lois group and the Teichmüller space. The absolute Galois group, Gal(Q/Q) acts
on the set of isotopy classes of finite planar trees. This is almost in bijection with
the set of complex polynomials in 1 variable having 0 and 1 as their only critical
values, given such a polynomial p the planar tree is given by p−1([0, 1]). The co-
efficients of such polynomials lie in some number field, hence the absolute Galois
group acts on the set of polynomial by changing the coefficients. This action is
faithful. The problem is to understand the orbits at the level of planar trees. This
is in relation with problem 1.
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Problem 3. (Ursula Hamenstädt) A Hurwitz curve is a Riemann surface with
maximal symmetry, for example the one obtained from the triangle surface with
angles π/2, π/3, π/7. The Galois group acts on the collection of Hurwitz curves.
Robert Kucharczyk proved that this action is faithful. What is the smallest genus
of a Riemann surface such that the action sends it to one that is not isomorphic?

Problem 4. (Lizhen Ji)

(1) Does the Teichmüller space Tg,n admit a complete CAT (0)-metric invari-
ant under the mapping class group MCG?

(2) Does the outer space On admit a complete CAT (0)-metric invariant under
Out(Fn)?

Note that Tg,n/MCG and On/Out(Fn) are not compact, so the questions don’t
imply that the groups MCG and Out(Fn) are CAT (0), which is false.

Problem 5. (Lizhen Ji) Consider the Teichmüller space Tg,n with the Teichmüller
metric. The moduli space Mg,n = Tg,n/MCG has finite volume. How special is
this volume? Is it algebraic or transcendental? One may conjecture that it is
transcendental, and some special value of an L-function.

Similar question for the first eigenvalue of the Laplacian for the Teichmüller
metric, λ1(Tg,n). McMullen proved that it is strictly positive, but how special is
it?

In Thurston’s list of open problems he asks how special are the volumes of
closed hyperbolic 3-manifolds.

Problem 6. (Lizhen Ji) What is the number of integral points on the moduli
space?

Problem 7. (Sumio Yamada) Thurston’s stretch map between two hyperbolic
surfaces minimises the Lipschitz constant of maps in its homotopy class. Is there
a distance on the target surface that makes the stretch map harmonic? This
question is motivated by the analogy with the Teichmüller map, minimising the
quasiconformal constant of maps in its homotopy class. This map is harmonic with
reference to the flat metric with singularities induced by the Teichmüller quadratic
differential.

Problem 8. (Michael Wolf) The Hitchin component Hit(n) is a connected compo-
nent of the variety of representations of the fundamental group of a closed surface
in PSL(n,R) up to conjugation. Hitchin proved that given a fixed Riemann surface
structure X on the surface, Hit(n) is parametrised by the space

⊕n
i=2H

0(X,Ki),
where K is the canonical bundle of X . Labourie asked the question whether it is
possible to parametrise Hit(n) with the space

⋃
X∈Tg

⊕n
i=3H

0(X,Ki). Labourie

and Loftin proved this for n = 3 using affine spheres and the Monge-Ampere
equation.

Problem 9. (Hiroshige Shiga) Let X be a finite type Riemann surface with
negative Euler characteristic, and consider a holomorphic map ϕ : X → Mg.
This map can be lifted to a holomorphic map φ : H2 → Tg, with monodromy
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ρ : π1(X) → Modg. A result of rigidity by Imayoshi and Shiga says that given two
such holomorphic maps ϕ1, ϕ2, if their monodromies agree, then ϕ1 = ϕ2.

Is this again true if we consider the representation ρ′ that is the composition of
the monodromy ρ with the representation Modg → Sp(2g,Z) ? More explicitely,
if two holomorphic maps ϕ1, ϕ2 satisfy ρ′1 = ρ′2, is it true that ϕ1 = ϕ2?

If this is true, we can have an effective bound on the number of holomorphic
maps X →Mg.

Problem 10. (Ursula Hamenstädt) What is the smallest genus of a closed surface
that can be mapped to Mg in such a way that the associated monodromy is
injective?

Problem 11. (Mustafa Korkmaz)

(1) Is the mapping class group linear?
(2) Let S be a surface with genus g ≥ 3 and boundary components δ1, . . . , δn.

Denote by τγ the Dehn twist around γ. Is it possible to write τδ1 · · · τδn
as a product of positive Dehn twists about non-separating simple closed
curves? This is true for n ≤ 4g + 4, but what about the general case?

(3) If g ≥ 3 and n ≥ 3, is it possible to write τδ1 · · · τδn as a product of
an arbitrarily large number of positive Dehn twists about non-separating
simple closed curves? The motivation comes from the theory of Stein
filling contact 3-manifolds.

(4) Can we understand H3(Modg,Z) ? For the moment we can only under-
stand H3(Modg,Q).

(5) Is the Torelli group finitely presented?
(6) Is there a finite index subgroup of Modg that contains the Torelli group?

Problem 12. (Gregor Masbaum) The group Modg,n acts on Teichmüller space
and on the curve complex. Consider the normal subgroup t(k) that is generated
by all the k-th powers of Dehn twists. Is it possible to find some nice space with
a good action of Modg,n/t(k) ? This is interesting for the theory of quantum
representations, where we can construct representations with kernel containing
t(k). This problem can be solved for Mod1,1, is it possible to generalise? (Leonid
O. Chekhov provided additional insight about the properties of Mod1,1 and its
relations with Kontsevich’s matrix models, asking if this can also be generalised).

Problem 13. (Jørgen E. Andersen) Let M = Hom(π1(S), SU(2))/SU(2) or M =
Hom(π1(S), SL(2,C))//SL(2,C), and let M ′ be the subset corresponding to irre-
ducible representations. The mapping class group Γ acts on M and M ′. Let U
be one of the rings O(M), L2(M), C∞

c (M), C∞(M ′). What is H1(Γ, U) ? The
motivation for this question is to understand if there is a unique *-product on the
set of functions that are invariants under Γ.

Problem 14. (Nariya Kawazumi) Let S be a compact connected oriented surface.
Let π̂(S) denote the set of homotopy classes of curves in S, and Rπ̂(S) denote the
Goldman Lie algebra. A theorem states that if S is closed, then the center of
Rπ̂(S) is the subspace generated by 1. What happens for surfaces with boundary?
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Is it true that the center is the linear span of 1 and of all the powers of boundary
curves?

Reporter: Nicolaus Treib
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Institut de Mathématiques de Jussieu
Case 247
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Département de Mathématique d’Orsay
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